Sh:388

Annals of Pure and Applied Logic 49 (1990) 121-142 121
North-Holland

RAMSEY ULTRAFILTERS AND THE REAPING
NUMBER—Con(r < u)

M. GOLDSTERN

Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA,
and Department of Mathematics, Bar Ilan University, 52900 Ramat Gan, Israel

S. SHELAH

Institute of Mathematics and Computer Science, Hebrew University of Jerusalem, Jerusalem,
Israel

Communicated by A. Nerode
Received 10 November 1989

We show that it is consistent that the reaping number t is less than u, the size of the smallest
base for an ultrafilter. To show that our forcing preserves certain ultrafilters, we prove a
general partition theorem involving Ramsey ideals.

1. Introduction and definitions

1.1. Definition. A set x (weakly) reaps a family U < [w]® iff

VaeUlaNx and a N (w — x) are infinite (nonempty)].
Let

r=min{|¥U|: A c [w]®, and no set reaps A}.

(This definition is from [2]. An equivalent definition is in [7]. It is clear that the
analogously defined cardinal ty.caxy is equal to 1.)

i is the size of the smallest maximal independent family of subsets of w, u is the
size of the smallest base for an ultrafilter on @, b is the size of the smallest
unbounded family in @ ®, b is the size of the smallest dominating family in w®,
and 3 is the size of the smallest splitting family. ¢=2% is the size of the
continuum. (These cardinals are defined and discussed in [6]. See also [12] for
open problems relating to these cardinals, and topological questions in which
these cardinals play a role.)

1.2, Fact. (1) o, st=<¢;
2) MA—-1r=yg
(3) b=y,
@ st
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5) u;
6) b, b=<b;
7) b=i.
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Proof. (1) is trivial, (2) follows from (3). (6) is well known. For (7), see [12].

(3) (This proof is similar to the one for b=<u in [11].) Let A c[w]®, |U| <b.
Let M satisfy some large enough fragment of ZFC, A c M, |M|<b. Let fbe a
strictly increasing function satisfying f(n) > n for all n, such that every function in

0®N M is eventually bounded by f. Let a¢=0, a,.,=f(a,). It can easily be
checked that

(VaeMN[w]®)V°n (aN|a,, a,.1) #9),
sO

X = U [aZn) a2n+1)
reaps every set in M.

For (4), let B c[w]” be a maximal independent family. Let 9 be the set of all
(nontrivial) Boolean combinations of 8. Then || = |B|, and any set reaping A
would contradict the maximality of B.

For (5), note that a base for an ultrafilter cannot be reaped. []

1.3. Remarks. Martin’s axiom implies that all these cardinals are equal to ¢, in
fact many consequences of MA are already implied by certain relations between
these cardinals. (See [6, 12].)

Given the above relations (3)—(6) (that are proved in ZFC), the question arises
whether this list is complete. The most general question in this direction is:

(A) Given a set {b, r,i,...} of cardinals satisfying the appropriate relations
(i.e., b=r=i, etc.), is there a model in which b=b, r=r, i=1i,...?

A less ambitious list of questions is given by the following scheme:

(B) For which x #y in {b, 1, ...} does ZFC prove x <y?

Adding R, many random reals (with countable support, or with the measure
algebra) to a model of GCH will generate a model in which r=i=u=N, and
=79 =Db=NR,, and adding N, many Cohen reals will generate a model in which
p=i=u=r=N,and 3=b=R,;. In[3]isshownthat $=Dd=i=R, Ab=u=N,is
consistent. Adding X; many random reals to a model of b= ¢ will make 3 =N,
and leave b= ¢.

These models show that 1.2(3)—(6) (plus the trivial consequences, like b < 1) is
a complete list of relations that can occur in (B), except for possibly u=r and
usit

In this paper we will give positive answers to several instances of question (A),
and we will show in particular that 1 =1 does not follow from ZFC. All the

! Note added in proof. Recently the second author has established Con(i < u).
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models we produce will satisfy ¢ = N,, so that the cardinals considered will all be
in {X,%}.

The strategy for making u=2X, is as follows: Start with a model V; of
ZFC + GCH, and construct an increasing chain of models using a countable
support iteration Q = (P,, Q,: a < ,) of proper forcing notions Q,. Letting
V, = V%= we have to ensure that all ultrafilters D in V, (for « < w,) are ‘killed’ in
some model V; (a < B < w,), i.e., we have to add a new set x € [w]* N (V; - V,)
such that neither x nor w —x will contain a set in D.

To get V,,,Er =R;, we will try to ensure
V. E“lw]” NV, cannot be reaped”
for all & < w,. It will be sufficient to have, for all o < w,,

V.E“there is a D eV,, D c[w]”NYV,, that generates an ultrafilter in
[w]*NV,,”

because a base for an ultrafilter cannot be reaped.

So we are looking for a class of forcing notions {Qp: D an ultrafilter}, such that

(1) Qp kills D, but

(2) Qp Kkills only a ‘small’ set of ultrafilters, where ‘small’ can refer to any
<X,-closed ideal of ultrafilters.

Many well-known forcing notions (such as Cohen forcing) do not satisfy the
second demand, as they kill all ultrafilters of the ground model. Other forcing
notions (such as Sacks forcing) do not kill any ultrafilter at all, or can only kill
ultrafilters of a certain type (e.g., the forcing in [3] cannot kill P-points).

For technical reasons, we will concentrate on the set of Ramsey ultrafilters; a
set of ultrafilters will be ‘small’ if it contains at most X; many Ramsey ultrafilters,
i.e., we will work with forcing notions O, that kill at most X, many Ramsey
ultrafilters. (Note that there are X, many Ramsey ultrafilters in the ground
model.)

1.4. Theorem. ZFC+ Con(ZFC)— Con(ZFC+r=X, <¥=u=i=8=0d=¢) A
Con(ZFC+3=d=r=X; <X, =u=1i=1¢).

The proof is due to the second author.

1.5. Contents of the paper. In Section 2 we will postulate properties for a class of
forcing notions {Q,: I an ideal on w} and show that a certain iteration of these
forcing notions yields a model for r =N, and u = X,. In Section 3 we describe Q,
and prove some basic properties of it. In Section 4 we prove a general partition
lemma in the spirit of the classical theorems of Hindman [8], Baumgartner [1] and
Carlson and Simpson [4, 5]. In Section 5 we apply the result of Section 4 to show
that Q, kills only few Ramsey ultrafilters. In Section 6 we describe how the
iteration in 2.4 can be modified to ensure either 3=bd=1=R, or s =bd =R, and
t=N,.



Sh:388

124 M. Goldstern, S. Shelah

2. The model

2.1. Notation. (a) In this paper, ‘ideal’ will mean “an ideal (on w) that contains
all finite sets”.

(b) If I = B(w) (such that w cannot be covered by a finite union of elements
from I), then let I denote the ideal generated by 1, similarly for filters.

(c) If I, I' are ideals, then I’ is called a ‘quotient’ of I, if there is a function
f e w?®such that I' = f*(I) =" {A c w: f"'(A) € I} (or I’ <[ in the Rudin—Keisler
order). (Note that by (a), f~'(n) € I for all n.)

(d) I* is the filter dual to the ideal I, I'" = B(w) — L

(e) P(w)/I =P(w)/I* is the quotient of P(w) modulo the equivalence
relation A~Bo(A-B)U(B—A)el

(f) For Ac w, w—Ael”, I+ A is the ideal generated by 1U {A}.

2.2. Lemma. Assume that 2% =R,, 2™ =R,. For every ideal I (on ) there exists
a forcing notion Q; with the following properties:
(1) Qy adds a real x; ¢ @ such that for everyy e " NV
Fo,“laNyl=l(w —x ) Ny[ =Ry

(2) For every maximal ideal J that is dual to a Ramsey ultrafilter: if k£, “J is not
maximal”, then there is a quotient I' of I such that I' c J.

(3) Qs is proper, |Q;| = X,.
4) Q;is w®-bounding.

This lemma will be proved in Sections 3 and 5.

2.3. Corollary. Under the assumptions of Lemma 2.2, we have:
(1) kg, I is not maximal”.
(2) Fix a sequence {D;: i < w,) of distinct Ramsey ultrafilters. If
For every I' <1 there are <X, many maximal ideals extending I’, (*)
then there is a j < w, such that
(Vi € (j, wy)) o, "D is an ultrafilter”.
(In particular this is true if I is maximal.) To show that 2.2(2) implies 2.3(2), note

that I has only <2™ =R, many quotients.
(3) "_Q12N0 = Nl, 2R' = xz.

2.4. Proof of Con(r<u) from the lemma. Start with a model V, satisfying
2% =N, and 2% = X,. Construct a countable support iteration (P,, Q.: & < w,),
where for each o < w,

by “Qq = Q,,, I, a maximal ideal on w”.

(We will write It for IFp . V, = V%= will be the intermediate model constructed in
stage a, and V,, = V"2 will be the final model.)
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It is easy to see that for each a < w, we will have I+, 2% =R, 2% =R, (so in the
final model we will have ¢ <R,).

Hence in each intermediate model there are only X, ultrafilters, and using a
bookkeeping argument we can (by Corollary 2.3(1)) ensure that for each a < w,:

If UeV,, then V,, kU is not an ultrafilter.

By properness, every real of V,,, appears in some intermediate model V,, so no
ultrafilter in V,,, can be generated by less than X, sets, hence

Ve, FU=Cc=R,.
To show V,,,Er =X, it is enough to prove that
Vo, F[@]” NV, cannot be reaped.

In V there are X, many distinct Ramsey ultrafilters {D;: i <X,}. We will show that
Va < w, i, < w, such that

V, E“Vj € (i,, ,): D; is a (Ramsey) ultrafilter”.

(It is enough to show that D is an ultrafilter, then by 2.2(3) and 2.2(4) and [10] it
will follow that D; is Ramsey.)

We can take i, =0, and for limit ordinals § it follows from [3] that we can let
is =sup{i,: « <8}. Applying Corollary 2.3(3) to (D;:i,<j<w,) in V, we
get i,.,. (Using the R,-cc of P, (see [10]), we may assume i, € V;.)

So for each a < w, there is a D € L such that

V, ED is an ultrafilter.

But any real r € V,,, is in some V,. Since in V, there is an ultrafilter generated by
sets of V;, there is an x in V, such that rcx or rNx =0, so r does not reap
[w]® N V,.

2.5. Remark. If CH does not hold in the ground model V,, there may be no
Ramsey ultrafilters in V,. However, we can force Ramsey ultrafilters with a
o-complete forcing R. Then the above argument shows that in V**f: the family
VEN[w]®=V,N[w]® cannot be reaped, so again V,N [w]® cannot be reaped
in V¥,

3. Construction of O,

3.1. Definition. If I is an ideal (on w), an I-partition is a partition (of @) all of
whose classes are in

3.2. Definition. For any ideal / on w, we will define a forcing Q;:
(1) Q, is the forcing with conditions of the form p = (h, E;E,, E,, E,,...)
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where

h is a function with domain @ and range c{+1, —1},
(E, Ey, E,, . ..) is an I-partition of w.

(@) Ifp=(h, E;Ey, E,, E,, ...), we write h?, E, E? for h, E, E;.
(3 fp=(h E;Eo, E\,E,,...) and p’'=(h’, E'; E{, E{, E5, ...), then we
let p’=p (p’ is stronger than p), if:

EcE',

(E, Eo, Ey, E;, .. .) is a finer partition than (E’, E}, E}, .. .)
(i.e. each E; is contained in some E; or in E’),

h|E=h'|E,
foralli:h' |E;e{h|E;, —h|E;}
(where —h is defined by —h(n) = —(h(n)) for all n),

(i.e., to make p stronger, you can merge classes in the partition, and/or flip the
value of & on some of the classes E;, but not on E).

A generic set G will define a generic function
g=U{n | E":p eG}.
So a condition p=(h, E;E,, E|, E,, ...) forces that h | Ecg, and for all i,
glE e{h|E, —h|E;}.
3.3. Fact. x=""{n € w: g(n) = 1} satisfies 2.2(1).

3.4. Definition. For p, g € Q,, define

P<oq < p=gqand Ef =E9,

P<n.q < p<oqand (Vj<n)Ef=E]and (Vk<n)keE?UJ EY.

j=n

(Note that it says “Vj <n”, but in the last clause the union is taken over all Ef
for all j =<n. Hence for any condition p € Q; and for any n there is g € Q, such
that p <, g, which can be obtained by merging all classes E?, (m = n) that contain
numbers <n, to obtain E?.)

3.5. Fact, If p<gpo=<,p1S2P,<3' -, then there exists a condition q such that
Vnp,<gq.

(Proof. Let E? = EP, E9= Ef~=EP? for j=n, h? | E9=h" | E"".)
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3.6. Notation. If 5:[0,n)— {+1, —1}, let g = p® be the condition defined by
Ei=FEPU\JE?, h7E?=s@)Xxh”|E?, fori € [0, n),

i<n

E}=FE%,,, h?| E]=h? | Ef,,.

]
3.7. Lemma. Let p € Q;, a a J,-name of an ordinal, n < w. Then there exists a
condition q,p <, q, and a set F of ordinals of size 2"*" such that

qgltackF.

Proof. Assume that n=0. Let n=p, nita=a,. Let ri={(f, E"; E}, E},...),
where f is defined by
—h"(n) forneE"—E”,
fm)y=1,, )
h"(n), otherwise.
Let r,=rq, ;I @ = a,, and define
q=(h™ EP;E"—E?, E} EZ2,...).
Then clearly ¢ IF @ € {a;, a,}: Let g’ = q force a value to a@. Then without loss
of generality E¥ o E?oE""=E". Then either h? oh|(E"—E”) or h' o
—h"| (E”— E?). In the first case ¢’ =r, and in the second case q' =r,, hence
q'Fae{a,, as}.
Now we can consider the case n >0. Let sy, . . . , s, enumerate "2. Let py=, p

and define a sequence py<,p;<,---<,p, as follows. Given p,_;, let r, be a
< -extension of pj , (see 3.6) forcing @ € {@; |, @; ,}, and let

p]= (hrlaEy E()" .. 7En—I’Eg’E3" . >;

then p;=, p;_,. Finally, let F = {a, ;, &, 3,..., O, a5}, and let g = p,.. O
This lemma easily implies the next theorem.
3.8. Theorem. O, is proper and w “-bounding.

Proof (for w®-bounding. Properness is proved similarly). Let pl-f:w— w.
Using Lemma 3.7, construct a sequence p <,p, <, p, <, p, <5 - - and a sequence
(F,: n < w) of finite sets such that p,, IF“f(n) € F,”. By Fact 3.5, there is ¢, g = p,,
for all n. Finally, let g(n) =max F,, thengl-f<sg. O

Note that the condition g given by Lemma 3.7 and Fact 3.5 satisfies:

if s:n— {+1, —1}, then ¢° decides f | n.

In the next section we will prove a partition theorem that will be used to prove
the remaining claim.
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3.9. Main Lemma. If J is a maximal Ramsey ideal in V, and no quotient of I is
included in J, then J generates a maximal ideal in the extension V<.

(For a direct proof of Lemma 3.9, see [9].)

4. A partition theorem

4.1. Definition. Let J be an ideal on w. J is a Ramsey ideal, if in the following
game G; player ZERO does not have a winning strategy:

start with A_, = w;

in the jth move:

player ZERO chooses a set A;c A;_, A;eJ™;

then player PLUS chooses an element k; € A;;

in the end player PLUS wins if {k;:j<w}eJ".

4.2. Remarks. (1) The ideal of finite sets is trivially Ramsey.
(2) A maximal ideal / is Ramsey iff for every f: w— w there exists aset A e I
such that: f | A is constant or 1-1 (iff the dual filter is a Ramsey ultrafilter).

4.3. Convention. Fix a Ramsey ideal J for this section. (We will show that
without loss of generality we may assume J is a maximal ideal.)

Also, fix an ideal I, and assume that for no finite-to-one function f € w®,
f*(J)2f*W). (See Notation 2.1(c).)

4.4. Definition. (1) A sequence (w;:i < w) of finite pairwise disjoint subsets of
w is called almost convex iff for all i € w:

max w; < max w;.p, min w; <min w,,;, max w; + 1 <min w; .,
U w, is an ‘interval’ [min w,, w).
<w
(2) A finite sequence (w;:i <n) of disjoint sets is called almost convex, if the
first three conditions above are satisfied (for all indices i for which they make
sense), and in addition |_J;,, w; is an interval [min w,, max w,_,).
(3) A (finite or infinite) sequence {w;: i < &) (@ < w) of finite intervals cw is
called neat, if they are adjacent intervals in the proper order, i.e., maxw; +1=
minw,, for all i < a.

4.5. Definition. We say that T8 = (W, X) is a word system, iff:
(a) W is a set of finite partial functions on @ with range <{+1, —1} or some
other fixed finite set. For f € W we let a; = min dom(f);
(b) Xis a partial function from W= to [W]~%;
©) Z(fy, - . - » fn-1) is well-defined whenever {dom(f;): i <n) is almost convex;
(d) if f € Z(fo, - - ., fa-1), then dom(f) = J; dom(f);
(e) if O=ko<ky<---<kp, fo,---,fe,-1€ W, Z(fo, ..., fr,1) well-defined,
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and for each [ <p

glez(fkn LR ,fk,H—l),
then
2"(g07 . ’gp—l)-c—z(ﬁ)’ e ’fkp—l);
() if Z(fy, . . - »fu—1) is well-defined, then LU - - - Uf,_ € Z(f, . . - , facr)s
(g) we let Z—-(f(‘)’ MR 7fn—1) = {f EZ(ﬁ], e ’fn——l):f Qﬁ)ufn—l}'

4.6. Remarks. (1) When we apply this theorem, we will use the word system
B* = (W*, 2*) given by W* = all partial finite functions from o into {—1, +1},
and

2*(fo, - - - s fu-1) = {f: dom(f) = U dom(f), Vi <n f | dom(f)) € {f;, —f:}}.
(2) We will fix a word system 28 for this section.

4.7. Definition. For g € w, let W{ be the set of all sequences f=(f:icw)
satisfying

(1) (dom(f):i< ) is an almost convex patrtition of [¢, w);
@ E(=*{apJdom(f) = [q,a)} "

(Remember that a;=""min dom(f).) Forf =(f:iew),rew,letf |r={f:i<
ryand f|[r,0)=(fir<i<w)={(f,ico).

4.8. Definition. For f,g e WY, let f<g iff for some almost convex partition
(wii<w) of w, for all i, g; € Z(f;: j e w,).

(Similarly for finite sequences f = (f5,...,fic1), 8={80»- - - »&m—1), WE Write
f=<gif (dom(fy),...,dom(f,_,)) is almost convex and for some almost convex
partition (w;: i <m) of [0, n), for all i<m, g; € Z(f;: j e w;).)

4.9. Fact. (1) < is reflexive and transitive.
(2) Note that if (w;:i<w) and (d;:j< w) are almost convex partitions of w,

then 50 is (Ujew, dit i < ).

4.10. Definition. f is neat, if each dom(f) is an interval, i.e., if (dom(f): i < @)
is neat.

4.11. Remark. The set of neat sequences is dense.
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4.12. Definition. (1) For f € WJ, define wd(f) (the words below f) by
wd(f) = {g: for some [/, g € Z(f | l), and dom(g) is an interval [gq, a;)}.

(Note that by 4.7(2), this is, in some sense, a ‘large’ set.)
(2) Let IW!={g:3f e W}, rew,ge =(f|r), dom(g) an interval} = {wd(f):
fews).

4.13. Definition. If f e WJ, X c IW{, we say that X is J-large above f, if:
for every f' e WY, if f' =f, then wd(f') N X #0.

4.14. Fact. (1) Iff <f', then wd(f) o wd(f").
(2) If X is J-large above f, f' =, then X is J-large above f'.
(3) X is J-large above f iff X N wd(f) is.
(4) If X is J-large above f, J = J', f € W}., then X is J'-large above f.

4.15. Fact. If X, UX,U--- X, is J-large above f then there exists f' =f, such
that for some l<d, X, is J- large above f'.

Proof. It is enough to show it for d =2. If X, is not J-large above f, then there
exists a sequence f' =f such that X, Nwd(f’) =@. If X, is not J-large above f’,
then there exists f”=f' such that X, Nwd(f")=80. But wd(f") cwd(f'), so
wd(f") N X =4, contradiction. O

4.16. Definition. We say that (T8, J) satisfies the finite partition hypothesis (FPH),
if, whenever X is large above f,fe WJ, then we can find r,>r,>0 and
(g% &', 82 =f |, he 2(f |[n, r,)) satisfying

(a) dom(g°Ug"), dom(g?) and dom(h) are adjacent intervals,

(b) VgeZ (g% g, 8) (geXand gUh e X).

(We will show in the next section that this is true for the word system 28*.)
In the next section we will see that the following lemma is sufficient to prove
the Main Lemma 3.9.

4.17. Theorem. Assume J is a Ramsey ideal, 1 an ideal, for every finite-to-one
function f:o— @ and for every A#wmodJ, f*(J+A)2f*() (see 2.1), and
(T, J) satisfies FPH. Then: if f e W}, and X is J-large above f, then there exists g
such that
() f<g;

(i) E@@)2{a,, i<w} el (so dom(gs U gsisr1 Ugsir2) = [ag,, a¢,..));

(iti) Ui<, dom(gs;11) = @ (mod I);

(iv) if 8 € Z_(83, 8ai+1, 83i+2) for all i >0, then ¥j>0UJ;;8:i € X.
(Note. Without loss of generality g =0, and f is neat.)
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4.18. Remarks. (1) We may assume that J is maximal: if J is not maximal, we
can do the following: without loss of generality CH holds. (Otherwise force CH
with a o-complete forcing, then no reals are added.) Then we can inductively find
a c*-decreasing sequence (A,: @ < w,) such that:

(D Ax¢J;

) ¥f:o— o da<w;:f|A, is 1-1 or constant;

(III) for every A c @ there is & such that A, c*A or A, c*(w — A);

(IV) for all finite-to-one f: w— @ there is an « such that f'(A,) € L
Then J'= {Ac w: 3a AN A, €I} is a maximal Ramsey ideal extending J such
that for no finite-to-one f, f*(J') o f*(I). Then X is still J'-large. Now apply the
theorem for J', then the resulting sequence g will be in W{. c W7, so it satisfies
the conclusion of the original theorem.

(2) Why do we use ‘almost convex’ at all?

(a) If we use only convex domains (i.e., intervals), we do not know how to
prove FPH in the case that we need.

(b) If we waive the almost convexity, then we still have to define the
connection to the ideal, a connection we have not checked. However, if we omit
all references to the ideal and replace “ € J*” by “infinite”, then we could prove
a similar theorem with essentially the same proof. We could have omitted
“almost convexity”, and instead of W7 have f e W* (for T < w finite) meaning
Udom(f)=w—1.

(3) We could relax the condition on the domain of X, but we have to at least
assume that (g°, g', g°) e dom(X) in 4.16(b), and we would also like to have that
the neat sequences are still dense (see Remark 4.11 and also Remark 4.24).

(4) We could change FPH, and accordingly the theorem. E.g., we can have a
function 3’ defined on some convex felIW (and omit fiU---Uf, €
2(fi,- - - ,f.)- In FPH instead of (b) we would have

Zf(fl’zf(fb e Z:f(fn—lafn)' : )) c X

4.19. Proof of Theorem 4.17. To prove Theorem 4.17, we will do the following.
(A) Define a game G(I,J) with two players, ZERO and PLUS.
(B) Prove that ZERO does not have a winning strategy.
(C1) Provide ZERO with a strategy, which on the side builds a sequence g.
(C2) Prove that this strategy is well-defined.
(D) Prove that any play in which ZERO followed the strategy from C but
PLUS won, produces a g € W9 satisfying the requirements.

(A) For any ideals I,J on w, we will define a game G(I,J).

4.20. Definition. G(I,J) is the following game.

Letk_,=0.

In the jth move (j =0), player ZERO chooses an integer a; > k,_,, an infinite
set B; c [a;, ), and for each b € B; aset K; , e J*.

Then player PLUS chooses b, € B;, k; € K; ..
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In the end (after w moves), player PLUS wins if
{ki:jew}eJ* and U [g;, b)) =w (modl).
jew

(Note. It cannot hurt ZERO to make K, smaller, so without loss of generality
Kj,b c (bx (,l)))

(B) Now assume that the ideals / and J are as in the hypothesis of Theorem
4.17. Then we can state the following fact.

4.21. Fact. ZERO does not have a winning strategy in this game.

Proof. Let o be a strategy for ZERO. Choose a sequence (N;:i <) of finite
submodels of H((2™)*) and sequences (k;:i<w), {(m;:i<w) of natural
numbers such that:

(a) N, contains 1, J, o, and all the (finitely many) functions we may need later
on (see the following remark);

(b) N;c=N;s1;

(c) NNw=m;

(d) if heN, h a function, x,,...,x,€N, {(xy,...,x,)edom(h), all x,
distinct, then A(x,, ..., x,) € N;,q;

(€) m <k, <my,y;

() {k:iew}el*;

(g) kie(V{A:AeJ", AeN;}.
This can easily be done playing the ‘Ramsey game’ for J (see Definition
4.1). O (Fact4.21)

Remark. We may assume
(h) if Ae N;,N[w]® then AN[m;, m;, ) #8;
(we only have to put the function F(A, k) =min{i € A:i >k} into Ny.)
Without loss of generality {ks;,3:i€ w}eJ'. Consider the function f € w
defined by

w

f(n)=i & ms<n<msy,s

By assumption on J and /, we can find a set u c o, such that

g‘ [msi, ms;s) e, .Lei [msi, msivs5) = @ (mod I).
Let u = {&;: I < w}, in increasing order. Without loss of generality a;,>0. Note
that {Kks,«3: [ <w}eJ*, as J* is a filter.
We will define a play of the game G(/, J) in which ZERO uses her strategy.
By induction we will preserve the fact that everything chosen in the first j — 1
moves (j = 1) belongs to Ns4_, 14
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In the jth move, player ZERO uses her strategy o to choose a;, B;
(K;»:beB;), all in Ns,,_,+s. By the remark above, PLUS can choose a b; in
[msa;, Msa+1) N B, sO [a;, b)) 2[S5a;_1 +5, 5;). As K; , € Nsq 42, We can let

ki=K5‘¥i+3Em{A:A€J+,A ENS“’["'Z}Q j.bj

Clearly everything chosen so far is in Ns, .4 (as k; <msq.4), SO we have
completed the induction step. At the end of the game we have

{kijew}={Ksqr3:jew}e]”
and

U [a;,0;) 2 U [m5a,+5, m5a,~+1) =2 !;J [ms;, ms;vs) = @ (mod I),
JEw jew i¢u

so player PLUS wins this play, and o was not a winning strategy.
(C1) We will define a strategy for G({,J).

4.22. Definition. Assuming that X is J-large above f e WY, f neat, define a
strategy as follows.

Let f'=f, X_,=X. (Remember that by the rules of the game, k_; =0.) In
move j, player ZERO will define a;, B;, (K,-,,,: b € B;). On the side, ZERO will
also define f’ € W7, X; cwd(f), <83j, 83j+1> g3j+2)-

In the jth move (j € w), player ZERO chooses an integer a; > k;_,, an infinite
set B;, and defines, for each b € B;, a set K|, el

K;, is the set _Qf k satisfying: there are functions gs;, g3;.1, £3j+2, an integer r;,
and a sequence f such that

(1) (83> 83+1-83+2) =F 13

(2) dom(gs; U g4;4+1) and dom(gs;,,) are intervals with union = [k;_,, k);

G) =", w);

(4) [a;, b) = dom(gs;+1);

(5) Z_(g3)>83j+1> 83j+2) is well-defined and cX;_;;

(6) the set

X;={he Wd(fj)3 Vg e X (83, 83+1,83+2) §Uh € X;_1}

is J-large above f’.

(Note that K;, decreases as b increases. Also note that without loss of
generality all f/ are neat.)

We will prove below that it is always possible to choose a; such that for
infinitely many b’s the set K , is in J™.

Then player PLUS chooses b; € B;, k; € K; ,, (and thus implicitly f/, g;, etc.)

(Note. To be precise, player ZERO really chooses g;, B;, and a function F
mapping each (b, k) (b € B;, k € K;,) to a tuple (g3 54> 83j+1.6.4> &3j+2.6.k> X >
F**, risx). By selecting k; and b; player PLUS implicitly selects X; =X, i,
etc.)
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(C2) We have to prove that this strategy is always well-defined, i.e., that it is
always possible to choose a; and B; as required (i.e., there is a; such that
{b: K;, €J"} is infinite).

4.23. Fact. Let f € W9, X J-large above f. Then we can find functions g3, g%, &,
integers I* and q*, a sequence f* € Wi and set X* < wd(f*) such that

(a) (g3, gt 83)=f11%

(b) dom(gg U gT) and dom(g3) are intervals whose union is [q, q*);

© FI* w)<freW];

(d) X* is J-large above f*;

(e) if he X* geZ (g5, 81,83), then g X and gUh € X*; (g5, 81,83) €
dom(2), (g, h) e dom(X).

Proof. We use the game from the definition of “J is a Ramsey ideal”. We shall
describe a strategy for player ZERO. Without loss of generality X c wd(f).

Let k_, =g, f ' =f In move j player ZERO on the side chooses g;, r;, f’ such
that

(i) ag=k;—s;

i) 7/ 1, ) <7

(iii) g € Z(F 7" 11), go=0;

(iv) for all {(g° g', g*)=(g1,..., &) such that dom(g’°Ug") is an interval
(hence also dom(g?)): if Z_(g° g, g°) = X and well-defined, then there is no h
satisfying

hewd(f), ifgeX_(g%g" g%, thengUheX.

Then ZERO lets A; = E(f’). PLUS has to choose k; € A;.

Note. It is not clear whether player ZERO can follow this strategy, i.e., she may
be stuck sometimes. In this case she just gives up, and PLUS wins immediately.
(We will show in fact this is the only way for PLUS to win.)

This strategy is not a winning strategy (as the additional option of giving up is
no advantage for player ZERO). So there is a play in which PLUS wins. But if
the play lasts @ moves, then PLUS has produced {k;:je w}eJ™, so §=(g::i<
w) € Wi, and g =f. But then X is J-large above g, so by FPH we can find a j and
g° g', g* contradicting (iv).

So for some j player ZERO is stuck in the jth step. The choice of r; was
certainly possible (in fact dictated by the value of k;_;). But she found that for all
FeWk if ff=f~'|[r, w) and g e Z(f~"|r,), then there are (g° g',g°) =
(o> - - - » &) in dom(Z), dom(g°U g') and dom(g?) are intervals, and h € wd(f’)
such that

VgeX (g% g, g"):geXandgUhe X, (g, h) edom(2). (*)
For each possible (g°, g’, g%), consider the set

Zpgg=1the wd(f/7! | [, @D: (%)}
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As dom(g°Ug'Ug? =[q,k;) is a fixed finite set, there are only finitely many
such sets Z 40,1 ,2, and their union is J-large above f'~'|[r;, ). Hence we can

find some {(g&,gt,g>) and a sequence f*, f/~'<f* such that Z,. . . is large
Baas B 8055819827 *1 J o J J 8581 -85 B
above f*.

This is as required (letting X* = Z. .. ..), so Fact 4.23 is proved. O (Fact
4.23)

4.24. Remark. We could change the definition of a word system 4.5 by only
requiring Z(f, . . . , f._;) to be defined whenever (dom(f(i)): i <n}) is neat. Then
we could still prove Fact 4.23. If J is the ideal of finite sets, we could use Fact 4.23
to prove that the neat sequences are dense by inductively constructing a neat
sequence above f.

Now Fact 4.23 almost proved (C2), i.e., that the strategy from (Cl) is
well-defined. We only have to strengthen Fact 4.23 to the next fact.

4.25. Fact. Let fe Wi, X J-large above f. Let EcE(f), E€J*, and let
G:w— w be a function satisfying Vi, i < G(i). Then we can find functions g§, g7,
g3, integers I* and q*, a sequence f* and a set X* such that (a)—(e) of Fact 4.23
hold, and in addition

(f) g*€E;

(g) for some i, [i, G(i)] < dom(gy}).

Proof. Let BeJ*, BcFE and ie B—» G(i)<min(B—{0,...,i}). (Such a B
can be found using the property that J is Ramsey.)

Let 0=ry<r,<--- be such that B={a;:/ € w}. Now replace f by f', where
f1 € 2(f |[n, r+1)) and apply Fact 4.23. [0 (Fact 4.25)

4.26. Conclusion. Now we can show that the strategy of (C) is well-defined:
consider the situation at the jth move. For each ae€[k;_;, w) let u,=u, ;=
{b:K;, €J*}. (Remember that K, was defined by the strategy in step (C).) We
have to show that for some a, u, is infinite. If not, define

G(a)=max({a} Uu,) +2.

Apply Fact 4.25 to G. But then G(a) € u, (by definition of u,), a contradiction.
This finishes the proof of (C2).

(D) The strategy described in (C) cannot be a winning strategy. Hence there
exists a play in which ZERO follows her strategy but PLUS wins. It is easy to see
that the sequence g = (g, g),...) defined by this play will satisfy the require-
ments of Theorem 4.17: Assume that g/ € £ _(g3;, g3+1» £3i+2), for all i <j. Then
by Definition 4.22(5) we get that g/_, € X;_,. Using (6) and the definition of the
X’s we get for [=j—2,...,0 that U,-;g/ € X,_,, so eventually |, g/ € X.
So we finish. O
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5. Proof of Lemma 3.9

In order to apply the result of the previous section to the proof of the Main
Lemma 3.9 from Section 3, we first have to show that whenever J is a maximal
Ramsey ideal, then (38*, J) satisfies FPH.

5.1. Lemma (Letting I8 = B*, sece Remark 4.6). If X is J-large f € W], then for
some f' =f and some r with a; € E(f"),

{g e wd(f' | [r, ®)): for some e, # e, in Z_(f |r),efUgeX and e,Ug e X}
is J-large above f' | [r, w).
Proof. Without loss of generality f is neat. We will try to build by induction
(playing the Ramsey game on the side) a sequence h=(h:i<w)=f he
Z(f | [;, r:+1)) such that for each i

() there is at most one e € Z_(/ | i) such that e U h, € X;
(B) there is at most one e € X_(h | i) such that e U (—h;) € X.

Case 1: Assume the induction gets stuck in some stage i. Then we have
wd(f | [r;, ))=Z_UZ,, where
Z,={h ewd(f | [r;, ®)): for some e;#e;, ecUR e X, e,Uh e X},
Z_={hewd(f | [r;, w)): for some e, #e;, e,U(—h) e X, e;U(—h)e X}.
One of these sets is J-large above some f'=f As Z_={-g:g€Z,}, we are
done.
Case 2: Assume that the induction succeeds. Then we have found a sequence
h=fin W{ such that
if I € , g € {h;, —h;}, then for at most one e T_(f {[)iseUge X.
Now we can easily build by induction (playing the Ramsey game on the side) a
sequence ' = h such that for each r, wd(h' | r)N X =§, sowd(h')NX =0. O
5.2. Corollary (B =B*). If X is J-large above f € W], then for some r € ,
some ' = f and some eo# e, in T_(f | r) and some f' = f |[r, ) the set
(g:gewd(f'), epUge X, e,UgeX}
is large above f'.
Proof. Fix r as in the conclusion of Lemma 5.1. There are only finitely many

possible pairs (eo, €;). So we can use the previous claim and then apply Fact
4.15. 0O

5.3. Lemma. If X is J-large above f, f neat, then for some hy,h,€X, h, is a
proper initial segment of h,.
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Proof. Assume otherwise. Let A, Fwd(f\ﬂX say

a2 22 BALESE S -l i < o

extension of hy is in X. Let hy € Z(f | [r, 1)) be such tha tn

Z(f |r5). Then no
>r, and

if some extension on (—hyg) is in X Nwd(f | [ro, ®)), then —(hoU k,) € X.

Let r,>r, hy e f | [n, r,) arbitrary. Let

f’ = <h0Uhl Uh27fr§’frz+1, .. )

Then f'=f Take any gewd(f)NX. Then either go2hoUh,Uh, or go
—(hoU h, U h,). But then in the first case hy has an extension in X and in the
second case —h, has an extension in X, hence by definition ~(hoU h,) € X, and
—(ho U h,) has an extension g in X. So in both cases we reach a contradiction. O

Putting the last two claims together we get FPH. Let ey e, g, h, r, be such
that

g, g Uhewd(f |[r, w)),
eeUg,eqUg,eqUgUh,e;UgUheX.

Now define g' =e, | {i: eo#e;}, and let g and g° be such that g°Ug'Ug*=e¢,
and dom(g®Ug") =[q, max dom(g")]. It is easy to check that this works. (Note
that e, and e, agree on dom(fy) Udom(f,_,). This ensures mindom(g?) <
min dom(g'), etc.)

5.4. Proof of Lemma 3.9. Let J be an ideal dual to a Ramsey ultrafilter D, and
assume that for no quotient I' of I we have JoI'. Then also for every
finite-to-one function f, f*(J) 2f*(I), and the same is true for every quotient of
I Let T be a name for a subset of w. (We will also denote the characteristic
function of this set by z.) Let p be a condition in Q,. It is enough to find a
condition g =p and aset TeJsuch thatglrzc TorglkeNT =0.

Without loss of generality we may assume that for all n, for all s:[0,n)—
{+1, —1}, p* decides whether |s| is in 7.

As {g € O;: q = p} is naturally isomorphic to Q,, where I’ is the quotient of /
modulo the equivalence relation induced by p, we may without loss of generality
assume that p is the empty condition, i.e., Ef =@, E; = {i}. (Note that I’ has the
same properties that were initially assumed about /, and the operation p— p° is
respected by this isomorphism). Also without loss of generality, let A” be the
function that is constantly equal to 1. (So now p° is the condition with
EP =[0,n), h*’ o5, and we still have that p* decides whether |s| is in 7.)

Let X ={s:5:[0,n)— {+1, —1},n e w}. Then X = X,U X, where X;={s €
X:p'lF¥()s|) =i}. As X is J-large above any sequence, we can find a sequence f
such that either X, or X, is J-large above f. Without loss of generality, assume
that X, is J-large above f (otherwise replace T by w — t). Find a sequence g as in
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Theorem 4.17. Now define a condition g as follows:

E?= iLE_i (dom(gs;) U dom(gs;.2)),

E{=dom(gs;.1), h? = U &;-
jew
Note that by (iii) £7 €1, and each E7, being a finite set, is also in I, so this
definition is legitimate. Then clearly we have q € Q,, g = p. To finish the proof of
Lemma 3.9, it is (by (ii)) enough to show that for all i

qlag et

Assume that this is not true, and take any condition r =g that forces a,, ¢ 7.
Then without loss of generality E” 20, a,,).

Let, for I <i, g; =h"|[ag,, 8g,.,)- Then as r=g, g/ € T_(g31, 8a+1, 831+2)- Let
s ={;<3:81; then, by the lemma, s € X;, and, by construction, r =p°. Hence
ri-a,, € t, a contradiction. [

6. Conclusions

We will finish the proof of Theorem 1.4 by describing how the iteration in 2.4
can be modified to adjust the values of 3 and i.

6.1. Proof of Con(*»=R;<N,=u=i=8=9d=¢). We will do a countable sup-
port iteration (P,, Q,: @ <®,), where for even ¢, Q, = Q,, for some maximal
Ramsey ideal I,, and for odd «, Q, is the (first) forcing Q in [3]. This forcing is
proper, and it adds a new subset of w that is not split by any old infinite set, so we
will have V, k3 =D =1=NX,. This forcing Q also does not destroy any P-points,
so the same arguments as the ones in 2.4 show that V,, Fu=R, At=N,.

To show the second part of Theorem 1.4, we first need a few simple facts about
independent families.

6.2. Definition. (1) For any infinite family X < [X]* (X a countable set), let
FI(X) = {f: f a finite partial function from X to {+1, —1}}.
(2) For f e FI(X), let

= f(A)
%= AedQn(f) AT
(where A*'=A, A7 =(X - A)).
(There should be an index indicating what the base set X is, but this will always
be clear from the context.)
(3) X is independent (on X), if for all f € FI(¥X), X, is infinite (iff for all
f eFI(X), X; #0).
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6.3. Definition. If X is an independent family, let
ILi={Acw:Vf3go2f X, NA finite}
={Acw:VfIgofX,NA=0}

Clearly, I is an ideal, containing all finite sets. For all f, X, ¢ I.

6.4. Definition. A maximal independent family is dense, if for every A € I3 there
is f € FI(X) such that X, c A.

6.5. Definition. If X is a maximal independent family, f e FI(X), then let
X|X;={ANX;:AeX—dom(f)}.

6.6. Lemma. For every maximal independent family X there is f € FI(X) such that
for every g of , X | X, is a maximal independent family.

Proof. Let (f,: n € ®) be a maximal family in FI(X) with the properties:

all f,,’s are incompatible;

X | f, is not a maximal independent family.
(The A-system lemma implies that such a family must indeed have size <w.)

For each n let A, c X, be independent from X | X;. Let A=1J, A,. There is a
function f such that X; N A is finite (or X; N(w — A) is finite). f cannot be
compatible with any f,, otherwise Xy, NA 2 X, ,,NA, would be finite (or
similarly for @ — A).

Now consider X | X;. For any g of, ¥ | X, must be maximal, since otherwise g
would be a contradiction to the maximality of (f,:n € w), being incompatible
with each f,. O

6.7. Lemma. If X is a maximal independent family, and for every f € FI(X),
X | X; is a maximal independent family, then X is dense.
Proof. Assume A ¢ Iz. Then there is an f € FI(X) such that
Vg =2 fA N X, infinite.
But as X | X is still maximal, there must be a function g € FI(X), g o f, such that
(w-—A)NX,=8.
Hence X, c A. 0

6.8. Lemma. If X is a dense maximal independent family, then *B(w)/Ix is ccc.

Proof. Assume that we have a sequence (A;:i < @,) of elements of I§ such that
for all i#j, A;NA;el;. For each i <w,, let f;e FI(X) be such that X,c A,.



Sh:388

140 M. Goldstern, S. Shelah

Then for i #j, X;N X, 7€ I, so f; and f; must be incompatible (see Definition 6.3).
But FI(X) is ccc, by the A-system lemma. 0O

We will prove Con(ZFC+38=b=1r=K;<K,=u=1i=¢) by an interation
similar to the one in 2.4.

However, some of the ideals I, will not be maximal. To show that V,N[w]®
cannot be reaped in V,,,, we will select a ‘separated’ family of X, many Ramsey
ultrafilters in the ground model and show that in every intermediate model ‘most’
of them are still ultrafilters.

Remember that our ground model V, satisfies 2 =R, and 2" =N,. The
following construction takes place in Vj.

6.9. Definition. For each a < w,, let
(A,:m € “wy)
be a family such that for all n € T="{,,, “®;
(1) Ay € [w]w§
2) nev—A,c*A,;
B) i#Fj—= 1A, NA ] <Ro;
(4) for all B € [w]® there is some & < @, such that
(Vn e “w)(B2*A, or Bo*(w—A,));
(5) for all f: w— w, for some a < w,

(Vn € “w,)(f | A, is constant or 1-1).

Such families can easily be found by induction. (Clearly, (4) and (5) continue to
hold if we replace “Ia < w,” by “Ja’' <w,Va=a'”.)

6.10. Definition. For e lim T = “'w,, let
D,={Xcw:3aA,.c* X}

Then the collection D=(D,:nelimT) is a collection of X, many distinct
Ramsey ultrafilters.

6.11. Lemma. For any sequence (n;:i < w,) of distinct elements of lim T, there is
a subsequence (vi:E<w;)=(n,:E<w,) and a sequence (Ag:§< w,) of
almost disjoint sets such that for all &, A¢ € D,,.
Proof. Case 1: (7n;:i<w,) has a limit point 7, i.e.,

Vadin,|a=n|aand n;#n.

In this case we can find by induction a sequence (is: & <,) and an increasing
sequence {az: & < w;) such that

Melas=nlag and Ml ae# 1| @enr
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Then the family
(A’?i§|‘¥§+l: E < w1>

will separate (D,,: § < ;).

Case 2: (n,:i < ®,) has no limit point, in particular no #; is a limit point, so
Vi3 Vi(i#jon |l a#n | «).

In this case, let A;=A,, v: =1, =7 O

6.12. Lemma. If [ is an ideal, B(w)/1 is ccc, then {D,:neT,D,21*} is
countable.

Proof. Assume not, then by the previous lemma we can find sequences
(D, i<w), ViD,21I*, and (A;:i<w,) such that A;eD,, and i #j— |4, N
Aj| <Ro. But as D, c I'*, (A;/I:i < w,) is an uncountable antichain in B(w)/I, a
contradiction. 0O

6.13. Fact. If I is an ideal such that B(w)/I is ccc, then for every quotient I' of I,
B(w)/I' is ccc.

(Proof. Let fro—w, I'={Acw:f"(A)el}. Let (A,;a<w;) be an
uncountable antichain modulo I'. Then (f '(A,): a<®;) is an uncountable
antichain modulo 1)

6.14. Conclusion. If CH holds, and 8(w)/I is ccc, then there are at most R,
many 7 such that D extends some quotient of I.

6.15. Proof of Con(ZFC+8=d=r=X;<N,=u=i=¢). As before, we
do a countable support iteration (P,, Q,: a < w,), where each Q, is of the form
Q,,. For even a,

P, -1, is a maximal ideal on w.

As before, this will ensure that P,,, IFu = X,.
For odd «

P, k1, is the ideal Iy, associated with some dense maximal
independent family X, on w.

From Lemma 2.2(1) it is easy io see that for I = Iy, Q, I X is not maximal, so we
can ensure that P, IFi=N,.

Finally, why is r = R,? Looking at the proof in 2.4, we see that it is enough to
show that (D,: n e T) satisfies the hypothesis (*) of Corollary 2.3(2). But this
follows from Lemma 6.12, Fact 6.13 and Lemma 6.8. O



Sh:388

142 M. Goldstern, S. Shelah
References

[1] J.E. Baumgartner, A short proof of Hindman’s Theorem, J. Combin. Theory Ser. A 17 (1974)
384-386.
[2] A. Beslagi¢ and E.K. van Douwen, Spaces of subuniform ultrafilters on N covered by nowhere
dense sets, preprint.
[3] A. Blass and S. Shelah, There may be simple Py - and Py,-points, and the Rudin-Keisler
ordering may be downward directed, Ann. Pure Appl. Logic 33 (3) (1987) 213-243.
[4] T.J. Carlson, Some unifying principles in Ramsey theory, Discrete Math. 68 (2,3) (1988)
117-169.
[5] T.J. Carlson and S.G. Simpson, A dual form of Hindman’s Theorem, Adv. in Math. 53 (1984)
265-290.
[6] E.K. van Douwen, The integers and topology, in: K. Kunen and J.E. Vaughan, eds., Handbook
of Set-Theoretic Topology (North-Holland, Amsterdam, 1984) 111-167.
[7] R. Fri¢ and P. Vojta§, The space “@ in sequential convergence, Convergence Structures 1984,
Proc. Bechyné Conference 1984, Math. Res. 1984 (Akademie Verlag, Berlin, 1985).
[8] N. Hindman, Finite sums from sequences within cells of a partition in N, J. Combin. Theory Ser.
A 17 (1974) 1-11.
[9] W. Just, A more direct proof of a result of Shelah, preprint.
[10] S. Shelah, Proper Forcing, Lecture Notes in Math. 940 (Springer, Berlin, 1982).
[11] R.C. Solomon, Families of sets and functions, Czechoslovak. Math. J. 27 (102) (1977) 556-559.
[12] J.E. Vaughan, Small uncountable cardinals and topology, preprint.



