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We show that it is consistent that the reaping number c is less than II, the size of the smallest 
base for an ultrafilter. To show that our forcing preserves certain ultrafilters, we prove a 
general partition theorem involving Ramsey ideals. 

1. Introduction and dehitions 

1.1. Definition. A set x (weakly) reaps a family Yl G [o]“’ iff 

Va E Yl [a fl x and a II (w - x) are infinite (nonempty)]. 

Let 

r = min{]%): ‘II s [o]~, and no set reaps a}. 

(This definition is from [2]. An equivalent definition is in [7]. It is clear that the 
analogously defined cardinal i&&y is equal to r.) 

i is the size of the smallest maximal independent family of subsets of w, u is the 
size of the smallest base for an ultrafilter on o, b is the size of the smallest 
unbounded family in w “, b is the size of the smallest dominating family in o”, 
and 5 is the size of the smallest splitting family. c = 2% is the size of the 
continuum. (These cardinals are defined and discussed in [6]. See also [12] for 
open problems relating to these cardinals, and topological questions in which 
these cardinals play a role.) 

1.2. Fact. (1) O,~CC c; 

(2) MA-r = c; 

(3) b <r; 

(4) rci; 
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(5) rsu; 

(6) Gcb, b<b; 

(7) bsi. 

Proof. (1) is trivial, (2) follows from (3). (6) is well known. For (7), see [12]. 
(3) (This proof is similar to the one for b < u in [ll].) Let Vl s [@lo, lYl1 < b. 

Let M satisfy some large enough fragment of ZFC, ?I s M, IMI < b. Let f be a 
strictly increasing function satisfying f(n) > iz for all n, such that every function in 
COO fl M is eventually bounded by c Let a, = 0, a,,, =f(a,). It can easily be 
checked that 

(Va EM n [olW) tl”n (a n [a,, a,,,) #0), 
so 

reaps every set in M. 

For (4) let 93 E [w]” be a maximal independent family. Let ‘?l be the set of all 
(nontrivial) Boolean combinations of 93. Then ]%!I] = l’!J31, and any set reaping %?l 
would contradict the maximality of B. 

For (5), note that a base for an ultrafilter cannot be reaped. Cl 

1.3. Remarks. Martin’s axiom implies that all these cardinals are equal to c, in 
fact many consequences of MA are already implied by certain relations between 
these cardinals. (See [6,12].) 

Given the above relations (3)-(6) (that are proved in ZFC), the question arises 
whether this list is complete. The most general question in this direction is: 

(A) Given a set {b, r, i, . . .} of cardinals satisfying the appropriate relations 
(i.e., b s r s i, etc.), is there a model in which b = b, r = r, i = i, . . . ? 

A less ambitious list of questions is given by the following scheme: 
(B) Forwhichx#yin{b,r,...}doesZFCprovex<y? 
Adding Nz many random reals (with countable support, or with the measure 

algebra) to a model of GCH will generate a model in which r = i = u = K2 and 
5 = b = b = Ki, and adding tc2 many Cohen reals will generate a model in which 
b=i=u=r=K,and5=b=K,.In[3] is shown that 5 = b = i = Kz A b = u = X1 is 
consistent. Adding K1 many random reals to a model of b = c will make 5 = Ki 
and leave b = c. 

These models show that 1.2(3)-(6) (plus the trivial consequences, like b s u) is 
a complete list of relations that can occur in (B), except for possibly u = r and 
udi.’ 

In this paper we will give positive answers to several instances of question (A), 
and we will show in particular that u = r does not follow from ZFC. All the 

’ Note added in proof. Recently the second author has established Con(i < u). 
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models we produce will satisfy c = &, so that the cardinals considered will all be 

in Pi, W. 
The strategy for making u = K2 is as follows: Start with a model V, of 

ZFC+ GCH, and construct an increasing chain of models using a countable 
support iteration Q = (P,, QE: c~ < w2) of proper forcing notions Qn. Letting 
V, = V”, we have to ensure that all ultrafilters D in V, (for cy < 02) are ‘killed’ in 
some model V, ((Y -C/3 < w,), i.e., we have to add a new set x E [o]” II (V, - V,) 
such that neither x nor w --x will contain a set in D. 

To get V,, k r = K1, we will try to ensure 

V, k “[a~]~ n V, cannot be reaped” 

for all (Y < w2. It will be sufficient to have, for all a: < 02, 

V, k “there is a D E V,, D c [o]“’ II V,, that generates an ultrafilter in 
[o]” II V,,” 

because a base for an ultrafilter cannot be reaped. 
So we are looking for a class of forcing notions {Q,: D an ultrafilter}, such that 
(1) QD kills D, but 
(2) QD kills only a ‘small’ set of ultrafilters, where ‘small’ can refer to any 

<K,-closed ideal of ultrafilters. 
Many well-known forcing notions (such as Cohen forcing) do not satisfy the 

second demand, as they kill all ultrafilters of the ground model. Other forcing 
notions (such as Sacks forcing) do not kill any ultrafilter at all, or can only kill 
ultrafilters of a certain type (e.g., the forcing in [3] cannot kill P-points). 

For technical reasons, we will concentrate on the set of Ramsey ultrafilters; a 
set of ultrafilters will be ‘small’ if it contains at most rC1 many Ramsey ultrafilters, 
i.e., we will work with forcing notions Q, that kill at most K, many Ramsey 
ultrafilters. (Note that there are K2 many Ramsey ultrafilters in the ground 
model.) 

1.4. Theorem. ZFC k Con(ZFC)--, Con(ZFC + r = X1 < K2 = u = i = G = b = c) A 
Con(ZFC+G=b=r=Ni<K,=u=i=c). 

The proof is due to the second author. 

1.5. Contents of the paper. In Section 2 we will postulate properties for a class of 
forcing notions {Q,: Z an ideal on w} and show that a certain iteration of these 
forcing notions yields a model for r = X, and u = K2. In Section 3 we describe Q, 
and prove some basic properties of it. In Section 4 we prove a general partition 
lemma in the spirit of the classical theorems of Hindman [8], Baumgartner [l] and 
Carlson and Simpson [4,5]. In Section 5 we apply the result of Section 4 to show 
that Q, kills only few Ramsey ultrafilters. In Section 6 we describe how the 
iteration in 2.4 can be modified to ensure either 5 = b = i = H2 or s = b = K, and 
i = K2. 
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2. The model 

2.1. Notation. (a) In this paper, ‘ideal’ will mean “an ideal (on o) that contains 
all finite sets”. 

(b) If Z E p(o) (such that w cannot be covered by a finite union of elements 
from I), then let Z denote the ideal generated by Z, similarly for filters. 

(c) If Z, I’ are ideals, then I’ is called a ‘quotient’ of I, if there is a function 
f E ow such that I’ =f*(Z) =df {A c o: f-‘(A) E Z} (or I’ c Z in the Rudin-Keisler 
order). (Note that by (a), f-‘(n) E Z for all n.) 

(d) Z* is the filter dual to the ideal I, I+ = ‘@B(w) - I. 

(e) V(o)lZ = V(w)lZ* is the quotient of ‘$3(o) modulo the equivalence 
relation A - B c, (A - B) U (B - A) E I. 

(f) ForAso,o-AAZ+,Z+AistheidealgeneratedbyZU{A}. 

2.2. Lemma. Assume that 2”” = K,, 2N1 = Hz. For every ideal Z (on w) there exists 
a forcing notion Qt with the following properties : 

(1) Q1 ada!s a real x, E w such that for every y E I+ rl V 

~n,“lxI~Yl= I( W-x,)flyl=K,“. 

(2) For every maximal ideal J that is dual to a Ramsey ultrafilter: if ka, “J is not 

maximal”, then there is a quotient I’ of Z such that I’ E J. 

(3) QI is proper, IQ4 = HI- 
(4) Q, is o”-bounding. 

This lemma will be proved in Sections 3 and 5. 

2.3. Corollary. Under the assumptions of Lemma 2.2, we have: 

(l) 'IQ, -i is not maximal”. 
(2) Fix a sequence ( Di: i < 02) of distinct Ramsey ultrafilters. Zf 

For every I’ s Z there are GK, many maximal ideals extending I’, (*) 

then there is a j < w2 such that 

(vi E (j? %)) ItQ, "pi is an ultrafilter”. 

(Zn particular this is true if Z is maximal.) To show that 2.2(2) implies 2.3(2), note 
that Z has only ~2~ = HI many quotients. 

(3) kQ,2*= 81, 2”= &. 

2.4. Proof of Con@< u) from the lemma. Start with a model V, satisfying 
2% = K, and 2K1 = KZ. Construct a countable support iteration (Z’,, Q=: (Y < w2), 
where for each LY < o2 

It, “Q, = Q,, Z, a maximal ideal on w”. 

(We will write lb, for lb,. V, = V& will be the intermediate model constructed in 

stage LY, and V,, = VP02 will be the final model.) 
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Ramsey ultrajilters and the reaping number 125 

It is easy to see that for each LY < w2 we will have I1,2’” = K,, 2”’ = tc2 (so in the 
final model we will have c < X2). 

Hence in each intermediate model there are only K2 ultrafilters, and using a 
bookkeeping argument we can (by Corollary 2.3(l)) ensure that for each (Y < 02: 

If U E V,, then V,, k 0 is not an ultrafilter. 

By properness, every real of V,, appears in some intermediate model V,, so no 
ultrafilter in V,, can be generated by less than K2 sets, hence 

V,,Lu= c=K,. 

To show V,, k r = HI, it is enough to prove that 

V,, k [co]” fl V, cannot be reaped. 

In V there are K2 many distinct Ramsey ultrafilters {Di: i < K2}. We will show that 
VLX < w2 3, < w2 such that 

V, k “Vj E (ia, 0.1~): rT>i is a (Ramsey) ultrafilter”. 

(It is enough to show that Dj is an ultrafilter, then by 2.2(3) and 2.2(4) and [lo] it 
will follow that Dj is Ramsey.) 

We can take i. = 0, and for limit ordinals 6 it follows from [3] that we can let 
is = sup{i a: cy< S}. Applying Corollary 2.3(3) to (4: i, < j < w2) in V, we 
get i,,,. (Using the K,-cc of Z’, (see [lo]), we may assume i, E V,.) 

So for each (Y < w2 there is a D E L such that 

V, k b is an ultrafilter. 

But any real r E V,, is in some V,. Since in V, there is an ultrafilter generated by 
sets of V,, there is an x in V, such that r c x or T fl x = 0, so r does not reap 
[WI” f-l v,. 

2.5. Remark. If CH does not hold in the ground model V,, there may be no 
Ramsey ultrafilters in V,. However, we can force Ramsey ultrafilters with a 
u-complete forcing R. Then the above argument shows that in VR*P,2 the family 
v;n [WI”= v,n [w]w cannot be reaped, so again V, n [o]” cannot be reaped 
in Vp”z. 

3. Construction of Q, 

3.1. Definition. If Z is an ideal (on w), an Z-partition is a partition (of w) all of 
whose classes are in 1. 

3.2. Definition. For any ideal Z on w, we will define a forcing Q,: 

(1) Q, is the forcing with conditions of the form p = (h, E; Eo, El, E2,. . .) 
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h is a function with domain o and range E{ +l, -l}, 

(E,E,,E,,...) is an Z-partition of 0. 

(2) If p = (h, E; E,,, El, E2, . . . ), we write hP, Ep, Er for h, E, Ei. 

(3) If p = (h, E; Eo, El, EZ, . . . ) and p’ = (h’, E’; E& E& E;, . . .), then we 
let p’ >p (p’ is stronger than p), if: 

EcE’, 

(E, Eo, E,, Ez, . . .> is a finer partition than (E’, E& E;, . . .) 

(i.e. each Ei is contained in some E,! or in E’), 

hlE=h’IE, 

for all i: h’ 1 Ei E {h ( Ei, -h I Ei} 

(where -h is defined by -h(n) = -(h(n)) for all n), 

(i.e., to make p stronger, you can merge classes in the partition, and/or flip the 
value of h on some of the classes Ei, but not on E). 

A generic set G will define a generic function 

g=lJ{hPIEP:pEG}. 

So a condition p = (h, E; EO, El, Ez, . . . ) forces that h I E E g, and for all i, 

g l Ei E {h l Ei, -h I Ei}. 

3.3. Fact. x =df {n E CO: g(n) = l} satisfies 2.2(l). 

3.4. Definition. For p, q E Ql, define 

p+,q * psqandEP=Eq, 

P 54 c, p<oqand(Vj<<)E~=E~and(Vk<n)keEqUIJE~. 
j=Sn 

(Note that it says “Vj < n”, but in the last clause the union is taken over all ET 
for all j s n. Hence for any condition p E Q, and for any n there is q E Q, such 
that p c,, q, which can be obtained by merging all classes EP, (m > n) that contain 
numbers <n, to obtain Ez.) 

3.5. Fact. Zf p=+,pOs1p1+p2+. -. , then there exists a condition q such that 
Vnp, sq. 

(Proof. Let Eq = Ep, Ez = Ep = EC for j 3 n, hq ) Ez = hPn I Ep.) 
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3.6. Notation. If s : [0, n)+ { +l, -l}, let q =pS be the condition defined by 

Eq=EPUUEf, hqIET=s(i)xhPIEP, for i E [0, n), 
i<n 

Ei” = ET+,, hq 1 Ei” = hP 1 E$,. 

3.7. Lemma. Let p E Q,, a a et-name of an ordinal, n < o. Then there exists a 

condition q , p =s,, q, and a set F of ordinals of size 2”+’ such that 

qItaEF. 

Proof. Assumethatn=O. Letr,==p,r,lka=a,. Letr;=(f,Eq;E;;‘,E;1,... ), 
where f is defined by 

ftn,=[;r-J;l fornEEq-EP, 
9 otherwise. 

Let rz 2 r;, rZ It a = a2, and define 

q=(hr’,EP;E=-EP,E;,E;2 ,... ). 

Then clearly q k a E {a,, (y;?}: Let q’ 3 q force a value to a. Then without loss 
of generality Eq’ z E” 2 Ed = E”. Then either hq’ 2 h’* 1 (EQ - EP) or hq’ 2 

-h’* I (E” - EP). In the first case q’ > r2 and in the second case q’ 2 r,, hence 
q’lka E {a,, 02}. 

Now we can consider the case n > 0. Let s1 , . . . , s2. enumerate “2. Let p. sn p 

and define a sequence p. s,, p, s,, * * * <,,pr as follows. Given pi_, , let ri be a 
+extension of pp-, (see 3.6) forcing a E {ai,,, Lyi.2}, and let 

pi = (h’,, E; EC,, . . . , E,_,, E;, E;, . . .); 

then pi a,, pi_,. Finally, let F = {a,,, , ~r,,~, . . . , cr2-,, , CX~~,~}, and let q = pr. 0 

This lemma easily implies the next theorem. 

3.8. Theorem. Q, is proper and o”-bounding. 

Proof (for w”-bounding. Properness is proved similarly). Let p Itf : w + o. 
Using Lemma 3.7, construct a sequence p $,po S, p, s2p2 s3 . . . and a sequence 
(F,: n < o) of finite sets such that p,, II “f(n) E F,“. By Fact 3.5, there is q, q apn 

for all n. Finally, let g(n) = max F,, then q lkf Sg. 0 

Note that the condition q given by Lemma 3.7 and Fact 3.5 satisfies: 

ifs:n+{+l,-l}, thenq”decidesf In. 

In the next section we will prove a partition theorem that will be used to prove 
the remaining claim. 
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3.9. Main Lemma. Zf J is a maximal Ramsey ideal in V, and no quotient of Z is 
included in J, then J generates a maximal ideal in the extension Vet. 

(For a direct proof of Lemma 3.9, see [9].) 

4. A partition theorem 

4.1. Definition. Let J be an ideal on o. J is a Ramsey ideal, if in the following 
game GJ player ZERO does not have a winning strategy: 

start with A_1 = o; 
in the jth move: 
player ZERO chooses a set Aj GA~_~, Aj E J+; 
then player PLUS chooses an element kj E A,; 
in the end player PLUS wins if {kj: j < o} E J+. 

4.2. Remarks. (1) The ideal of finite sets is trivially Ramsey. 
(2) A maximal ideal Z is Ramsey iff for every f : w - w there exists a set A E I+ 

such that: f 1 A is constant or l-l (iff the dual filter is a Ramsey ultrafilter). 

4.3. Convention. Fix a Ramsey ideal J for this section. (We will show that 
without loss of generality we may assume J is a maximal ideal.) 

Also, fix an ideal I, and assume that for no finite-to-one function f E o”, 
f*(J) zf*(Z). (See Notation 2.1(c).) 

4.4. Definition. (1) A sequence ( y: i < o) of finite pairwise disjoint subsets of 
o is called almost convex iff for all i E o: 

max Wi < max Wi+l, min wi < min Wi+l, 

jJm wi is an ‘interval’ [min w,, w). 

max Wi + 1 < min Wi+2> 

(2) A finite sequence (Wi: i <n) of disjoint sets is called almost convex, if the 
first three conditions above are satisfied (for all indices i for which they make 
sense), and in addition lJi<n Wi is an interval [min wo, max w,-~). 

(3) A (finite or infinite) sequence ( Wi: i < (u) ((u < CO) of finite intervals co is 
called neat, if they are adjacent intervals in the proper order, i.e., max Wi + 1 = 

min Wi+l for all i < cY. 

4.5. Definition. We say that 5% = (W, E) is a word system, iff: 
(a) W is a set of finite partial functions on w with range E { + 1, -1) or some 

other fixed finite set. For f E W we let ar = min dam(f); 
(b) 2 is a partial function from W’” to [W]<O; 

(c) X(fo, * * . ,fn-1) is well-defined whenever (dam(h): i < n ) is almost convex; 

(d) if f E z(fo, . . . , fn-I), then dam(f) = Ui dam(J); 
(e) if 0 = k. < kI < . - - < k,,, fo, . . . , fkp-l E W, X(fo, . . . , f,,_,) well-defined, 
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and for each 1 <p 

g, E ~(f/qY f * * J/c,+,-A 

then 

~(g0, . . . &-I) E -w&~ . * Lf,,-1); 

(f) if %I,. . . ,fn-I) is well-defined, then f0 U. - . Uf,,_l E Z(f,,, . . . ,f,,_l); 

(g) we let -Vh. . . Al) = If E -%, . . . ,L):f 2foU.L>. 

4.6. Remarks. (1) When we apply this theorem, we will use the word system 
Y@* = (W*, E*) given by W* = all partial finite functions from o into { -1, +l} , 

and 

z*(fo,. . . ,fn-J = {f: dam(f) = U dom(fi), vi < nf I dom(&) E (5, -A}). 

(2) We will fk a word system Ti3 for this section. 

4.7. Definition. For 4 E o, let WY be the set of all sequences f = (J: i E w) 

satisfying 

(1) (domU): i C 0) is an almost convex partition of [q, 0); 

(2) 1!5~)=~‘(4~:~,dom(J)=[q,a,,)}~J+. 
I<1 

(Rememberthatuf=dfmindom(f).)For~=(~:i~w),r~w,let~~r=~:i< 
r) and$I[r,w)=(f;::r<i<w)=(fi+,:iEm). 

4.8. Definition. For f, g E WY, let p c g iff for some almost convex partition 
(Wi: i < w) Of W, for all i, gi E Z($: j E Wi)* 

(Similarly for finite sequences f = (fo, . . . ,fn-*), g = (go, . . . , g,-,), we write 
$ ~g if (dom(fo), . . . , dom(f,-J) is almost convex and for some almost convex 
partition (Wi: i Cm) Of [0, n), for all i Cm, gi E E(h: j E Wi).) 

4.9. Fact. (1) s i.s reflexive and transitive. 

(2) Note that if ( Wi: i < w ) and (dj: j < W) are almost convex partitions of w, 

then SO in (Ujew, dj: i < w). 

4.10. Definition. f is neat, if each dam(A) is an interval, i.e., if (dom(f;:): i < w) 

is neat. 

4.11. Remark. The set of neat sequences is dense. 
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4.12. Definition. (1) For f E IV!, define wd(f) (the words below 7) by 

wd(f) = {g: for some 1, g E E(f 1 l), and dam(g) is an interval [q, ufi)}. 

(Note that by 4.7(2), this is, in some sense, a ‘large’ set.) 
(2) Let ZlVT = {g: gf E WY, r E w, g E z(f 1 r), dam(g) an interval} = {wd(f): 

f E WY}. 

4.13. Definition. If f E WY, X c ZWT, we say that X is J-large above f, if: 

for every f’ E W‘j, if f’ a?, then wd(f’) n X # 0. 

4.14. Fact. (1) Zff of’, then wd(f) 2 wd(f’). 
(2) Zf X is J-large above f, f’ >f, then X is J-large above f’. 

(3) X is J-large above f iff X rl wd(f) is. 
(4) Zf X is J-large above f, J G J’, f E Wg., then X is J’-large above f. 

4.15. Fact. Zf X1 U X2 U - . . X, is J-large above f, then there exists f’ >f, such 
that for some 16 d, Xt is J-large above 7’. 

Proof. It is enough to show it for d = 2. If X1 is not J-large above f, then there 
exists a sequence f’ >f such that Xi n wd(f’) = 0. If X2 is not J-large above f’, 
then there exists p 37’ such that X2 rl wd(f”) = 0. But wd(p) G wd(f’), so 
wd@“) rl X = 0, contradiction. Cl 

4.16. Definition. We say that (%3, J) satisfies the finite partition hypothesis (FPH), 
if, whenever X is large above f, 7 E WT, then we can find r, > r, > 0 and 

(go, g’, g’) 2.f I rl, h E 2t.f I [rl, 4) satisfying 
(a) dom(g’ U g’), dom(g2) and dam(h) are adjacent intervals, 
(b) Vg E z_(g”, g’, g’) (g E X and g U h E X). 

(We will show in the next section that this is true for the word system %3*.) 
In the next section we will see that the following lemma is sufficient to prove 

the Main Lemma 3.9. 

4.17. Theorem. Assume J is a Ramsey ideal, Z an ideal, for every finite-to-one 
function f:w+o and for every AfwmodJ, f*(J+A)$f*(Z) (see 2.1), and 
(%$ J) satisfies FPH. Then: iff E W,“, and X is J-large above f, then there exists g 
such that 

(i) f Sg; 

(ii) E(g) 2 {a& i < 0) e J+ 60 dom(g,i U gx+l U g3i+d = [ag,,, ag3i+3)); 
(iii) lJi<o dom(g,,+i) = o (mod I); 
(iv) ifg: E E-(g,i, g3i+l, g3i+2) for all i > 0, then Vj > 0 UiCjgi E X. 

(Note. Without loss of generality q = 0, and f is neat.) 
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4.18. Remarks. (1) We may assume that J is maximal: if J is not maximal, we 
can do the following: without loss of generality CH holds. (Otherwise force CH 
with a u-complete forcing, then no reals are added.) Then we can inductively find 
a s*-decreasing sequence (A,: a: < ml) such that: 

(I) A, $J; 
(II) V~:w--,o3a<o,:f(A, is l-l or constant; 

(III) foreveryAsothereisasuchthatA,E*AorA,c*(o-A); 
(IV) for all finite-to-one f : w + o there is an (Y such that fpl(Am) E I. 

Then J’ = {A G w: 3&A fl A, E Z} is a maximal Ramsey ideal extending J such 
that for no finite-to-one f, f*(J’) zf*(Z). Then X is still J’-large. Now apply the 
theorem for J’, then the resulting sequence g will be in WY, E WY, so it satisfies 
the conclusion of the original theorem. 

(2) Why do we use ‘almost convex’ at all? 
(a) If we use only convex domains (i.e., intervals), we do not know how to 

prove FPH in the case that we need. 
(b) If we waive the almost convexity, then we still have to define the 

connection to the ideal, a connection we have not checked. However, if we omit 
all references to the ideal and replace “ E J+” by “infinite”, then we could prove 
a similar theorem with essentially the same proof. We could have omitted 
“almost convexity”, and instead of Wq have f E W 5 (for t c o finite) meaning 

U dom(f;) = o - r. 
(3) We could relax the condition on the domain of 2, but we have to at least 

assume that (go, g’, g’) E dam(z) in 4.16(b), and we would also like to have that 
the neat sequences are still dense (see Remark 4.11 and also Remark 4.24). 

(4) We could change FPH, and accordingly the theorem. E.g., we can have a 
function zf defined on some convex 7 E IW (and omit fi U.. . Ufn E 

WI,. . . ,fn)). In FPH instead of (b) we would have 

Ef(fiJf(fi,. . f 9 Jwn-l,.o * .)) cx. 

4.19. Proof of Theorem 4.17. To prove Theorem 4.17, we will do the following. 
(A) Define a game G(Z,J) with two players, ZERO and PLUS. 
(B) Prove that ZERO does not have a winning strategy. 

(Cl) Provide ZERO with a strategy, which on the side builds a sequence S. 
(C2) Prove that this strategy is well-defined. 
(D) Prove that any play in which ZERO followed the strategy from C but 

PLUS won, produces a g E W,” satisfying the requirements. 

(A) For any ideals I, J on o, we will define a game G(Z, J). 

4.20. Definition. G(Z, J) is the following game. 
Let k-i = 0. 
In the jth move (j 2 0), player ZERO chooses an integer uj > k,_, , an infinite 

set Bj G [Uj, w), and for each b E Bj a set Kj,b E J+. 

Then player PLUS chooses bj E Bj, k, E Kj,b,. 
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In the end (after o moves), player PLUS wins if 

{k,:j E w} l .Z+ and U [Uj, bj) = w (mod I). 
jeo 

(Note. It cannot hurt ZERO to make Kj,b smaller, so without loss of generality 

Kj.6 G (b, w)*) 

(B) Now assume that the ideals Z and .Z are as in the hypothesis of Theorem 
4.17. Then we can state the following fact. 

4.21. Fact. ZERO does not have a winning strategy in this game. 

Proof. Let (T be a strategy for ZERO. Choose a sequence (Ni: i < o) of finite 
submodels of H((2%)+) and sequences (Ki: i < o), (mi: i < IX) of natural 
numbers such that: 

(a) No contains I, J, a, and all the (finitely many) functions we may need later 
on (see the following remark); 

(b) Ni G Ni+r; 
(C) Ni II 0 = mi; 

(d) if h E Ni, h a function, x1, . . . , X, EN;, (x1, . . . , x,) e dam(h), all xi 
distinct, then h(x,, . . . , x,) E Ni+r; 

(e) ??Z<Ki<mi+r; 
(f) {Ki: i E O} EJ+; 

(g) KiEn{A:AEJ+,AEw}. 
This can easily be done playing the ‘Ramsey game’ for .Z (see Definition 
4.1). 0 (Fact 4.21) 

Remark. We may assume 
(h) if A E Ni n [w]~, then A fl [mi, mi+l) # 8; 

(we only have to put the function F(A, k) = min{i E A: i > k} into N,.) 
Without loss of generality {KSi+j: i E w} E .I+. Consider the function 

defined by 

f(n) = i c, msiSn <m5i+5. 

By assumption on J and I, we can find a set u G w, such that 

,I? rrn5i? m5i+5) E J+, U [msi, msi+s) = w (mod 0. 
i6u 

f EOW 

Let u = { cu!: I< w}, in increasing order. Without loss of generality a(, > 0. Note 
that { K~~,+~: I< o} E .Z+, as .Z+ is a filter. 

We will define a play of the game G(Z, J) in which ZERO uses her strategy. 
By induction we will preserve the fact that everything chosen in the first j - 1 

moves (j 3 1) belongs to Nsn,_,++ 
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In the jth move, player ZERO uses her strategy o to choose Uj, Bj, 

(Kj,b: b E Bj), all in Ns~~_~+~. By the remark above, PLUS can choose a bj in 

[~q, msa,+r) n Bj, SO [Uj, bj) 2 [5aj_, + 5, 5&j). AS Kj.6, E Nsaj+2, we can let 

kj = K5aj+3 E n {A: A E J+, A E N,,+,} G Kj,,,. 

Clearly everything chosen so far is in N5a,+4 (as kj < n~~,,.+~), so we have 
completed the induction step. At the end of the game we have 

and 
{kj:j E O} = {~5a~+3:j E O} EJ+ 

U ["j, bj) 2 ,g fm5nj+57 

jem 
ms,+,) 2 U [m5i, m5i+5) = 0 (mod 0, 

i$u 

so player PLUS wins this play, and o was not a winning strategy. 

(Cl) We will define a strategy for G(Z, J). 

4.22. Definition. Assuming that X is J-large above f E WY, f neat, define a 

strategy as follows. 
Let f-’ =f, X_, =X. (Remember that by the rules of the game, k-, = 0.) In 

move j, player ZERO will define aj, Bj, (Kj,b: b E Bj). On the side, ZERO will 

also define f’ E W?, Xj c wdp), (g3j, g3j+r, g3j+z). 
In the jth move (j E w), player ZERO chooses an integer aj > kj-1, an infinite 

set Bj, and defines, for each b E Bj, a set Kj,b E J+. 
Kj,b is the set of k satisfying: there are functions g3j, g3j+lr g3j+2, an integer rj, 

and a sequence F such that 

(l) (g3j, g3j+l9 g3j+Z.) a_fj’-1 I rii 
(2) dom(g3j U g3j+l) and dom(g,j+,) are intervals with union = [kj-1, k); 
(3) ~ ~~-’ ) [Tj, W); 

(4) [aj, b) c dombj+l); 

t5) 2-(g3j, g3j+l9 g3j+J is well-defined and EXj-1; 
(6) the set 

Xj = {h E wdp): vg E z-(g3j, g3j+l, g3j+2) g U h E X,-l> 

is J-large above p. 
(Note that Kj.6 decreases as b increases. Also note that without loss of 

generality all f’ are neat.) 
We will prove below that it is always possible to choose uj such that for 

infinitely many b’s the set Kj,b is in J+. 
Then player PLUS chooses bj E Bj, kj E Kj,b, (and thus implicitly f’, g3j, etc.) 
(Note. To be precise, player ZERO really chooses uj, Bj, and a function 6 

maPPing each (b, k) (b E Bj, k E Xj,b) to a tuple (gy,b,k, g3j+l,b,k, g3j+2,b.k, Xj.b.kr 

f 
-j*b*k, rj,b.k). By selecting kj and bj player PLUS implicitly selects Xi = Xj,b,,k,, 
etc.) 
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(C2) We have to prove that this strategy is always well-defined, i.e., that it is 
always possible to choose Uj and Bj as required (i.e., there is ai such that 
{b: Kj,b EJ+} is infinite). 

4.23. Fact. Let f E WY, X J-large above f. Then we can find functions go*, g:, g:, 

integers I* and q *, a sequence f * E WY* and set X* E wd(f *) such that 

(4 (go*, gl*, gz*) sf I l*; 
(b) dom(gz Ug:) and dom(g,*) are intervals whose union is [q, q*); 
(c) j 1 [I*, 0) sf* E WJ’; 

(d) X* is J-large abovef*; 

(e) if h E X*, g E Z_(gz, gf, gz), then g E X and g U h E X*; (go*, gt, gz) E 
dam(z), (g, h) E dam(2). 

Proof. We use the game from the definition of “J is a Ramsey ideal”. We shall 
describe a strategy for player ZERO. Without loss of generality X G wd(f). 

Let k-, = q, f-’ =f In move j player ZERO on the side chooses gj, rj, p such 
that 

(i) a$= kj-l; 
(ii) p’-’ 1 [rj, w) SF’; 

(iii) gj E JZ(p-’ 1 Tj), go = 0; 
(iv) for all (go, g’, g’) 2 (gl, . . . , gj) such that dom(g’U g’) is an interval 

(hence also dom(g2)): if z_(g”, g’, g’) G X and well-defined, then there is no h 

satisfying 

h E wd(f’), if g E z-(go, g’, g’), then g U h E X. 

Then ZERO lets Aj = Ev). PLUS has to choose kj E Aj. 
Note. It is not clear whether player ZERO can follow this strategy, i.e., she may 

be stuck sometimes. In this case she just gives up, and PLUS wins immediately. 
(We will show in fact this is the only way for PLUS to win.) 

This strategy is not a winning strategy (as the additional option of giving up is 
no advantage for player ZERO). So there is a play in which PLUS wins. But if 
the play lasts w moves, then PLUS has produced {kj: j E W} E J+, SO g = (gi: i < 
o) E WY, and g sf But then X is J-large above g, so by FPH we can find a j and 
go, g’, g2 contradicting (iv). 

So for some j player ZERO is stuck in the jth step. The choice of 5 was 
certainly possible (in fact dictated by the value of kj-1). But she found that for all 
p e WY-l, if 7 SF’-’ 1 [q, co) and gj E 2v-l ) q), then there are (go, g’, g’) 2 

(go, . . . ) gj) in dam(z), dom(g’ U g’) and dom(g2) are intervals, and h E wd(p) 
such that 

Vg E z_(g”, g’, g2): g E X and g U h E Xi, (g, h) E dam(2). 

For each possible (go, g’, g’), consider the set 

Z go,g,,gz = {h E wd(p-l 1 [q, co]): (*)}. 

(*) 
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AS dom(g’ U g’ U g”) = [q, kj) is a fixed finite set, there are only finitely many 

such sets Z~,O,~I,~Z) and their union is J-large above fj-’ 1 [Tj, co). Hence we can 
find some (gz,g:,gz) and a sequence f*, p’-‘sf*, such that Z,~,~;,~; is large 
above j*. 

This is as required (letting X* = Zpt,g,,g;), so Fact 4.23 is proved. Cl (Fact 

4.23) 

4.24. Remark. We could change the definition of a word system 4.5 by only 
requiring z(fo, . . . ,fn_J to be defined whenever (dom(f(i)): i < n) is neat. Then 
we could still prove Fact 4.23. If J is the ideal of finite sets, we could use Fact 4.23 
to prove that the neat sequences are dense by inductively constructing a neat 
sequence above f 

Now Fact 4.23 almost proved (C2), i.e., that the strategy from (Cl) is 
well-defined. We only have to strengthen Fact 4.23 to the next fact. 

4.25. Fact. Let f E WY, X J-large above f. Let ES E(f), E E J+, and let 
G : w+ w be a function satisfying Vi, i < G(i). Then we can find functions g:, g:, 
g;, integers l* and q * , a sequence f* and a set X* such that (a)-(e) of Fact 4.23 

hold, and in addition 

(f) q* EE; 
(g) for some i, [i, G(i)] c dom(gr). 

Proof. Let B E J+, BsE and iEB+G(i)<min(B-{O,... ,i}). (Such a B 
can be found using the property that J is Ramsey.) 

Let O=ro<rl<.** be such that B = {a,,,: I E o}. Now replace f by j’, where 
f; E z(f ) [r!, r,+l)) and apply Fact 4.23. Cl (Fact 4.25) 

4.26. Conclusion. Now we can show that the strategy of (C) is well-defined: 
consider the situation at the jth move. For each a E [kj_,, o) let u, = u,,~ = 
(6: Kj,b E J’}. (Remember that Kj,b was defined by the strategy in step (C).) We 
have to show that for some a, u, is infinite. If not, define 

G(a) = max({a} U u,) + 2. 

Apply Fact 4.25 to G. But then G(a) E u, (by definition of u,), a contradiction. 
This finishes the proof of (C2). 

(D) The strategy described in (C) cannot be a winning strategy. Hence there 
exists a play in which ZERO follows her strategy but PLUS wins. It is easy to see 
that the sequence g = (g,,, g,, . . . ) defined by this play will satisfy the require- 
ments of Theorem 4.17: Assume that g: E z_(gxi, g.. ?,+I, g3i+z), for all i <j. Then 
by Definition 4.22(5) we get that gj_, E X,_,. Using (6) and the definition of the 
Xi’s we get for I = j - 2, . . . , 0 that lJl<i<jgl E XI-,, so eventually lJicjggj E X. 
So we finish. 0 
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5. Proof of Lemma 3.9 

In order to apply the result of the previous section to the proof of the Main 
Lemma 3.9 from Section 3, we first have to show that whenever J is a maximal 
Ramsey ideal, then (B*, J) satisfies FPH. 

5.1. Lemma (Letting 2% = %3*, see Remark 4.6). Zf X is J-large f E WY, then for 
some j’ 3f and some r with afi E E(f ‘), 

{g E wd(f’ 1 [r, w)): for some e, # e, in .Y-(f ) r), e, U g E X and e, U g E X} 

is J-large abovef’ 1 [r, w). 

Proof. Without loss of generality f is neat. We will try to build by induction 
(playing the Ramsey game on the side) a sequence h = (hi: i < o ) >f, hi E 
E(f 1 [ri, ri+l)) such that for each i 

((u) there is at most one e E z_(h 1 i) such that e U hi E X; 

(p) there is at most one e E E_(h I i) such that e U (-hi) E X. 

Case 1: Assume the induction gets stuck in some stage i. Then we have 
wd(f 1 [ri, w)) = Z- U Z,, where 

Z+ = {h E wd(j 1 [ri, 0)): f or some e,, # e,, e, U h E X, e, U h E X}, 

Z_ = {h E wd(f I [ri;., CO)): f or some e. # ei, e. U (-h) E X, e, U (-h) E X}. 

One of these sets is J-large above some f’ 2f As Z- = {-g: g E Z,}, we are 
done. 

Case 2: Assume that the induction succeeds. Then we have found a sequence 
6 >f in W‘j such that 

if 1 E o, g E {h,, -h,}, then for at most one e E 2_(7 1 I) is e U g E X. 

Now we can easily build by induction (playing the Ramsey game on the side) a 
sequence A’ 3 6 such that for each r, wd(h’ I r) fl X = 0, so wd(h’) rl X = 0. 0 

5.2. Corollary (m = !B*). Zf X is J-large above f E Wg, then for some r E o, 
some f’ *f and some e. # e, in E_(f I r) and some f’ >f ( [r, w) the set 

{g:gcwd(f’),e,UgEX,e,UgEX} 

is large above f’. 

Proof. Fix r as in the conclusion of Lemma 5.1. There are only finitely many 
possible pairs (eo, 1 e ). So we can use the previous claim and then apply Fact 
4.15. cl 

5.3. Lemma. Zf X is J-large above f, f neat, then for some hI, h2 E X, h, is a 
proper initial segment of hz. 
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Proof. Assume otherwise. Let &,E wd(f) nX, say hoe J?(f 1 ro). Then no 
extension of ho is in X. Let hi E X(j 1 [r,,, rl)) be such that r, > r. and 

if some extension on (-ho) is in X n wd(f 1 [ro, co)), then -(ho U h,) E X. 

Let r, > r,, h2 l f ( [rl, r2) arbitrary. Let 

f’= (hoUh$Jh2,frz,.frz+1,. . ->. 

Then f’zj Take any g E wd(f’) IIX. Then either g 1 hoU hl U h2 or g 2 
-(ho U hl U hJ. But then in the first case ho has an extension in X and in the 
second case -ho has an extension in X, hence by definition -(ho U h,) E X, and 
-(ho U h,) has an extension g in X. So in both cases we reach a contradiction. 0 

Putting the last two claims together we get FPH. Let e,#e,, g, h, r, be such 
that 

g, g U h E w4.f I b-7 m)), 

eoUg,e,Ug,eoUgUh,elUgUh~X. 

Now define g’ = e, 1 {i: e. # e,}, and let go and g2 be such that go U g’ U g2 = e, 

and dom(g’ U g’) = [q, max dom(g’)]. It is easy to check that this works. (Note 
that e. and e, agree on dom(fo) U dom(f,_l). This ensures min dom(g’) < 
min dom(g’), etc.) 

5.4. Proof of Lemma 3.9. Let .Z be an ideal dual to a Ramsey ultrafilter D, and 
assume that for no quotient I’ of Z we have .Z 1 I’. Then also for every 
finite-to-one function f,f*(.Z) $f*(Z), and the same is true for every quotient of 
I. Let z be a name for a subset of w. (We will also denote the characteristic 
function of this set by z.) Let p be a condition in Q,. It is enough to find a 
conditionqapandaset TEJsuchthatqIl-tcTorqI~tnT=@ 

Without loss of generality we may assume that for all 12, for all s : [0, n)+ 
{ +l, -l}, ps decides whether Is] is in r. 

As {q E QI: q >p} is naturally isomorphic to Q,,, where I’ is the quotient of Z 
modulo the equivalence relation induced by p, we may without loss of generality 
assume that p is the empty condition, i.e., Ep = 0, Ei = {i}. (Note that I’ has the 
same properties that were initially assumed about I, and the operation p +ps is 
respected by this isomorphism). Also without loss of generality, let hP be the 
function that is constantly equal to 1. (So now ps is the condition with 
Ep” = [0, n), hPs 2 s, and we still have that ps decides whether 131 is in r.) 

Let X= {~:~:[o,n)+{+l, -l}, new}. Then X=XoUX1, where Xi={SE 
X: ps IF ~(1~1) = i}. As X is J-large above any sequence, we can find a sequence f 
such that either X0 or X1 is Z-large above f Without loss of generality, assume 
that Xi is Z-large above f (otherwise replace t by o - z). Find a sequence g as in 
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Theorem 4.17. Now define a condition q as follows: 

Eq = U (domh) U dom(gs+d), 
ieo 

EY = dom(g3i+l), hq = U gj. 
jso 

Note that by (iii) Eq E Z, and each Eq, being a finite set, is also in Z, so this 
definition is legitimate. Then clearly we have q E Q,, q >p. To finish the proof of 
Lemma 3.9, it is (by (ii)) enough to show that for all i 

Assume that this is not true, and take any condition r 2 q that forces ug3, $ t. 
Then without loss of generality E’ a [0, ug3,). 

Let, for 1 <i, g; = h’ I bg3,, g,,,+,). Then as r ag, g; E Wg,,, g31+1, g31+2). Let 
s = lJl<3ig;; then, by the lemma, s E X1, and, by construction, r 2~‘. Hence 
r lk ugs, E r, a contradiction. Cl 

6. Conclusions 

We will finish the proof of Theorem 1.4 by describing how the iteration in 2.4 
can be modified to adjust the values of 5 and i. 

6.1. Proof of Con@ = HI < I$ = n = t = B = b = c). We will do a countable sup- 
port iteration (P,, Q,: (Y < 02), where for even a, Q, = Q,* for some maximal 
Ramsey ideal Z,, and for odd a, Q, is the (first) forcing Q in [3]. This forcing is 
proper, and it adds a new subset of o that is not split by any old infinite set, so we 
will have VW, k 6 = b = i = X2. This forcing Q also does not destroy any P-points, 
so the same arguments as the ones in 2.4 show that V,, k u = K2 A r = K1. 

To show the second part of Theorem 1.4, we first need a few simple facts about 
independent families. 

6.2. Definition. (1) For any infinite family LE c [Xlw (X a countable set), let 

FI(x) = {f: f a finite partial function from X to { + 1, -l}}. 

(2) For f E FI@), let 

X, = n &CA) 
Aedom(f) ’ 

(where A+’ = A, A-’ = (X - A)). 
(There should be an index indicating what the base set X is, but this will always 

be clear from the context.) 
(3) x is independent (on X), if for all f E FI(x), X, is infinite (iff for all 

f E FI(Q, X, f 0). 
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6.3. Definition. If 2E is an independent family, let 

Zx = {A c_ w: Vf 3g zfXg tl A finite} 

={A~w:Vf3g1fX,nA=0}. 

Clearly, Z is an ideal, containing all finite sets. For all f, Xr r# &,. 

6.4. Definition. A maximal independent family is dense, if for every A E Z,; there 
is f E FI(2E) such that X, c A. 

6.5. Definition. If 2E is a maximal independent family, f E FI(Z), then let 
X 1 X, = {A rl X,: A E x - dam(f)}. 

6.6. Lemma. For every maximal independent family x there is f E FI(x) such that 
for every g =, f, X 1 X, is a maximal independent family. 

Proof. Let (fn: n E w) be a maximal family in FI(I) with the properties: 
all fn’s are incompatible; 
3 1 fn is not a maximal independent family. 

(The A-system lemma implies that such a family must indeed have size SO.) 
For each n let A, c Xfe be independent from x 1 X,“. Let A = IJ,, A,. There is a 

function f such that X, rl A is finite (or X, rl (w - A) is finite). f cannot be 
compatible with any fn, otherwise XrUrn n A 3 Xrufn n A,, would be finite (or 
similarly for o - A). 

Now consider x 1 X,. For any g 2 f, J 1 X, must be maximal, since otherwise g 
would be a contradiction to the maximality of (fn: n E o), being incompatible 
with each fn. El 

6.7. Lemma. Zf x is a maximal independent family, and for every f E FI(X), 
X 1 X, is a maximal independent family, then J is dense. 

Proof. Assume A $ &. Then there is an f E FI(J) such that 

Vg 2 f A n X, infinite. 

But as % 1 X, is still maximal, there must be a function g E FI(X), g 2 f, such that 

(O-A)nx,=0. 

Hence X, G A. I7 

6.8. Lemma. Zf 3E is a dense maximal independent family, then ‘@(w)/Z, is ccc. 

Proof. Assume that we have a sequence (Ai: i < CO,) of elements of Z.$ such that 
for all i#j, AiflAjE&. For each i<w 1, let $ E FI(.%) be such that X, GA+ 
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Then for i # j, Xfi n ,X4 E lx, so fi and 5 must be incompatible (see Definition 6.3). 
But FI(X) is ccc, by the A-system lemma. 0 

We will prove Con(ZFC + B = b = c = K1 < Kz = u = i = c) by an interation 
similar to the one in 2.4. 

However, some of the ideals Z, will not be maximal. To show that V, fl [w]” 

cannot be reaped in V,,, we will select a ‘separated’ family of K2 many Ramsey 
ultrafilters in the ground model and show that in every intermediate model ‘most’ 
of them are still ultrafilters. 

Remember that our ground model V, satisfies 2X0 = K1 and 2”’ = K2. The 
following construction takes place in V,. 

6.9. Definition. For each LY < wr, let 

(A,: rl E “~1) 

be a family such that for all r~ E T=deflJa<o,(YW1 

(1) A, E [ml”; 
(2) rj c ~+A,G*A~; 
(3) i #j+ )A,-i n A<jl< 80; 
(4) for all B E [o]” there is some cy < o, such that 

(Vq E “w,)(B z*Atl or B z* (w -A,)); 

(5) for all f : 0 + 0, for some (Y < w1 

(h E “w)(f I A, is constant or l-l). 

Such families can easily be found by induction. (Clearly, (4) and (5) continue to 
hold if we replace “3a < w,” by “3a’ < w1 Va: z= a”‘.) 

6.10. Definition. For ?I E lim T = wlol, let 

D,, = {X c w: 3aA,,, G* X}. 

Then the collection b = (D, : q E lim T) is a collection of K2 many distinct 
Ramsey ultrafilters. 

6.11. Lemma. For any sequence (vi: i < w,) of distinct elements of lim T, there is 

a subsequence (YE: E< ol) = ( qiE: 5 <ml) and a sequence (AE: 5 < 01) of 
almost disjoint sets such that for all 5, A, E D,. 

Proof. Cue 1: (vi: i < 0,) has a limit point 71, i.e., 

Va 3 vi 1 (Y = q 1 (Y and vi # q. 

In this case we can find by induction a sequence (iE: C$ < oI) and an increasing 
sequence ((us: 5 < ol) such that 

rli5 I aE = rl I &E and Vis I ‘YE+~ + v I ~E+I. 
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Then the family 

(A ‘),@E5,1 : E<w*) 

will separate ( DBiE: 5 < oi). 

Case 2: (vi: i < 0,) has no limit point, in particular no vi is a limit point, so 

Vj 3aj Vi (i f j-+ q; ( cYj # qj ( (ui). 

In this case, let Aj =A,, YE = rli, = vs. Cl 

6.12. Lemma. If I is an ideal, @(o)/Z LY ccc, then {II,,: v E T, DV zZ*} is 

countable. 

Proof. Assume not, then by the previous lemma we can find sequences 
(D,i:i<w,), Vi&zZ*, and (Ai: i < ml) such that Ai E Dtli, and i #j-, IAi n 

Ail <X0. But as Dni E I+, (Aill: i < ~1) is an uncountable antichain in q(o)/Z, a 

contradiction. 0 

6.13. Fact. Zf Z is an ideal such that p(o)/Z LY ccc, then for every quotient I’ of I, 

rp(o)/Z’ is ccc. 

(Proof. Let f:W+W, Z’={Acw:f-‘(A)EZ}. Let (A,:a<w,) be an 
uncountable antichain modulo I’. Then (f-‘(A,): CY < ml) is an uncountable 
antichain modulo I. ) 

6.14. Conclusion. If CH holds, and ‘@(o)/Z is ccc, then there are at most K1 
many r~ such that Of extends some quotient of 1. 

6.15. Proof of Con(ZFC + 0 = b = t = RI C Kz = I = i = c). As before, we 
do a countable support iteration (P,, Q,: LY < w2), where each Q, is of the form 
Q,. For even (Y, 

P, It Z, is a maximal ideal on w. 

As before, this will ensure that Pm, II u = K2. 
For odd LY 

P, It-Z, is the ideal I,%-, associated with some dense maximal 
independent family 3, on w. 

From Lemma 2.2(l) it is easy io see that for Z = ZX, Q, II-X is not maximal, so we 
can ensure that PO, II i = HZ. 

Finally, why is r = Xi? Looking at the proof in 2.4, we see that it is enough to 
show that (D,: ?Z E T) satisfies the hypothesis (*) of Corollary 2.3(2). But this 
follows from Lemma 6.12, Fact 6.13 and Lemma 6.8. Cl 
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