Arch. math. Logik 21 (1980), 1-11

MODELS WITH SECOND ORDER PROPERTIES. III. OMITTING TYPES FOR L(Q)*

Saharon Shelah

Abstract

We generalize Keisler's omitting types theorem for L(Q) in the \aleph_1 -interpretation, to most cases in which Chang's two cardinal theorem applies. As an application we answer positively a question of Magidor and Malitz on the compactness of their logic in cardinalities higher than \aleph_1 .

1. Introduction

L(Q) is the logic obtained from the usual first order logic by adding a quantifier Q. The λ -interpretation of Q is: $Qx\varphi(x)$ iff $|\{x:\varphi(x)\}| \ge \lambda$. Keisler [3] studied the \aleph_1 -interpretation of Q and proved completeness and omitting types theorems for it. If λ is a cardinal such that $\lambda^{<\lambda} = \lambda$, then by Chang's two cardinal theorem [1], Keisler's completeness theorem for the \aleph_1 -interpretation implies the same theorem for the λ^+ -interpretation (for a countable language). But this approach does not yield any omitting types theorem for the λ^+ -interpretation.

To prove his omitting types theorem for the \aleph_1 -interpretation, Keisler built a "strong" model M of T by taking the union of an elementary chain $\langle M_{\alpha}: \alpha < \omega_1 \rangle$ of countable "weak" models of T. He defined what it is for a theory or a model to strongly omit a type p. He showed that if T strongly omits p, then M_0 can be chosen so that it strongly omits p too; moreover if M_{α} strongly omits p, then we can arrange that $M_{\alpha+1}$ does likewise. Since strongly omitting depends on only finite sets of parameters, it survives at limit ordinals and so M strongly omits p.

When we try to replace \aleph_1 by λ^+ in this construction, we have to redefine "strongly omitting" so that it depends on $<\lambda$ parameters instead of finitely many. Things immediately go wrong at limit ordinals of cofinality $<\lambda$. We shall repair the proof by using \diamondsuit_{λ} . This use of \diamondsuit_{λ} , in a construction of length λ^+ , is new.

In fact \diamondsuit is a very weak condition. We show this in Section 6, where we quote and strengthen a theorem of Gregory [2]. When λ is strongly inaccessible, our theorem can be proved without using \diamondsuit_{λ} at all. Assuming GCH, our theorem applies to

^{*} Eingegangen am 14. 4. 1978, Revisionen am 18. 6. 1979.

Saharon Shelah

any λ^+ -interpretation when λ is regular and $\pm \aleph_1$. The result was announced in [5, 6].

I would like to thank the United States–Israel Binational Foundation for partially supporting this research by Grant 1110. I would also like to thank Wilfrid Hodges and Shai Ben-David wholeheartedly. The first version of this paper was written by Ben-David, and based on a lecture and explanation of the author. This was then revised by Hodges into the present form. I also thank Matt Kaufmann and the referee for correcting some errors in the intermediate versions.

2. The Easy Direction

Henceforth λ is a fixed cardinal and T is a complete and consistent theory in L(Q), in a language L of cardinality $\leq \lambda$. To avoid triviality we assume $T \models Qx x = x$. All models will be "weak" models of T (see Keisler [3]). A formula $\varphi(x)$ is small in T iff $T \models \neg Qx\varphi(x)$, and large in T iff $T \models Qx\varphi(x)$; it is small or large in a model M iff it is small or large in the complete diagram of M. A type is a consistent set of formulae; a 1-type with just x free is small iff it contains or implies a small formula. A model M is λ -compact iff M realises every 1-type p over M with $|p| < \lambda$.

A model M is a standard model (for the λ^+ -interpretation) iff (1) M is λ -compact, (2) no small formula is realised by $>\lambda$ elements of M, and (3) every non-small 1-type p over M with $|p| < \lambda$ is realised by $>\lambda$ elements of M.

The symbol (R) will stand for well-ordered infinitary quantifiers of length $<\lambda$, of form

$$Qy_0 \exists \overline{z}_0 Qy_1 \exists \overline{z}_1 \dots Qy_i \exists \overline{z}_i \dots \quad (i < lh(R)),$$

or derived from such a strong by omitting some variables. Here \overline{z}_i is the sequence $z_i^0 z_i^1 \dots z_i^j \dots (j < \lambda)$; the variables z_i^j and y_i will be called the *i*-variables. If p is a set of $<\lambda$ formulae, a *finite approximation* to the infinitary formula $(R) \land p$ is a finite conjunction of formulae in p, together with a large enough finite part of (R) to cover the variables of those formulae. We shall freely write $(R) \land p$ to mean the set of finite approximations. We shall say

$T \vdash (R) \land p$

when T entails every finite approximation to $(R) \wedge p$. Similarly with $M \models (R) \wedge p$; we allow p to contain perhaps infinitely many parameters from M.

When we write $\exists x(R) \land p$ (as in Lemma 1 below), we mean $(R') \land p$ where (R') is $\exists x(R)$; similarly for $Qx(R) \land p$, etc. So $\exists x(R) \land p$ does not necessarily imply that $(R) \land p$ holds for some x, unless we are in a λ -compact structure.

Lemma 1. Let M be a standard model, $|p| < \lambda$, and \overline{b} a sequence of $< \lambda$ elements of M. Then :

(1) $M \models \exists x(R) \land p[\overline{b}]$ iff for some $a \in M$, $M \models (R) \land p[\overline{b}, a]$.

(2) $M \models Qx(R) \land p[\overline{b}]$ iff for some $a \in M$ whose complete type over \overline{b} in M is not small,

$$M \models (R) \land p[\overline{b}, a].$$

Proof. The proof of (1) is immediate from the definitions, using the λ -compactness of M. For (2), assume first that $M \models Qx(R) \land p[\overline{b}]$. Then $(R) \land p$ is a non-small type. Since every non-small type of cardinality $<\lambda$ is realised by at least λ^+ elements of M, there are at least λ^+ elements a such that $M \models (R) \land p[\overline{b}, a]$. Now the language L has at most λ small formulae, even allowing the $<\lambda$ parameters \overline{b} , and each small formula is satisfied by at most λ elements. Hence there is some a which satisfies no small formula with parameters from \overline{b} , such that $M \models (R) \land [\overline{b}, a]$. This proves left-to-right in (2). The converse is immediate. \Box

Let p be a 1-type with x free, and q a type of cardinality $<\lambda$. We call q a support of p over T iff

(1) $T \vdash (R) \exists x \land q$, and

(2) for every $\psi(x) \in p$, $T \not\models (R) \exists x [\land q \land \neg \psi(x)]$,

where (R) is as described above, and covers all the variables free in q. We say q is a support of p over a model M iff the same holds over the complete diagram of M. We say T (or M) strongly omits p iff there is no support of p over T (or M).

Main Theorem (Easy half). If T has a standard model which omits the 1-type p, then T strongly omits p.

Proof. Let M be a standard model of T, and suppose that q is a support of p over T, so that $T \models (R) \exists x \land q$. Since M is a model of T, we have

$$M \models (R) \exists x \land q$$
.

Choosing witnesses inductively according to Lemma 1, we find a sequence b and an element c in M such that $M \models \exists x \land q[\overline{b}]$ and

$$M \models \land q[\bar{b}, c] \,. \tag{1}$$

Let $\psi(x)$ be in p. Then since q is a support of p and T is complete, there is a finite approximation q' of q such that

 $M \not\models (R') \exists x [\land q' \land \neg \psi(x)].$

By Lemma 1 in the other direction, we infer

$$M \not\models [\land q' \land \neg \psi(x)] [\bar{b}, c].$$
⁽²⁾

From (1) and (2) we derive $M \models \psi[c]$, and this shows that c satisfies p. So p is realised in M. \Box

Saharon Shelah

3. The Hard Direction: The Framework

Main Theorem (Hard half). Suppose \diamondsuit_{λ} holds. If T strongly omits p, then T has a standard model which omits p.

The construction of the model will be based quite closely on Keisler [3]. We shall build an elementary chain $\langle M_{\alpha}: \alpha < \lambda^+ \rangle$ of models of T such that

- I. Every M_{α} is λ -compact and of cardinality λ .
- II. For each α , every non-small 1-type of cardinality $<\lambda$ over M_{α} has new elements added to it in cofinally many M_{β} .

Unlike Keisler, we do not require the chain $\langle M_{\alpha}:\alpha < \lambda^{+} \rangle$ to be continuous at limit ordinals. For each α , after $\langle M_{\beta}:\beta < \alpha \rangle$ has been constructed, we shall suppose someone gives us a set of $\leq \lambda$ types $\{p_{i}^{\alpha}:i < \lambda\}$ over $\bigcup_{\beta < \alpha} M_{\beta}$ which are strongly omitted by $\bigcup_{\beta < \alpha} M_{\beta}$ (when $\alpha = 0$, the types are strongly omitted by T). The construction will satisfy:

III. Every type $p_i^{\alpha}(\alpha < \lambda^+; i < \lambda)$ is strongly omitted by $\bigcup_{\alpha < \lambda^+} M_{\alpha}$.

We shall write $M_{<\alpha}$ for $\bigcup_{\beta < \alpha} M_{\beta}$, and M^* for $\bigcup_{\alpha < \lambda^+} M_{\alpha}$. Let us show first that if I.-III. can be guaranteed, then the theorem follows.

Lemma 2. Assume M_{α} is λ -compact, and let $\varphi(x)$ be a small formula over M_{α} . Then M_{α} strongly omits the type

$$\{\varphi(x)\} \cup \{x \neq a : a \in M_a\}.$$

Proof (cf. Keisler [3, Lemma 4.4]). If not, then this type has a support q over M_{x} . So

$$M_{\alpha} \models (R) \exists x \land q,$$

$$M_{\alpha} \not\models (R) \exists x [\land q \land \neg \varphi(x)].$$
(1)

Then for some finite approximation $(R') \exists x \land q'$,

$$M_{\alpha} \models \neg (R') \exists x [\land q' \land \neg \varphi(x)].$$
⁽²⁾

We claim that

$$M_{\alpha} \models (R) \exists x [\land q \land \varphi(x)].$$
(3)

For otherwise there is a finite approximation $(R'')\exists x \land q''$, which can be assumed to include $(R')\exists x \land q'$, such that

$$M_{a} \models \neg (R'') \exists x [\land q'' \land \varphi(x)].$$
⁽⁴⁾

But from (2), (4) and the law $\vdash Qx[\psi \lor \chi] \rightarrow Qx\psi \lor Qx\chi$ (cf. Keisler [3, Lemma 1.9]), we deduce

$$M_{\alpha} \models \neg (R'') \exists x \land q'',$$

which contradicts (1). This proves (3). Now Keisler showed that

$$\vdash (R) \exists x \psi \rightarrow [\exists x (R) \psi \lor Q x \exists \bar{u} \psi]$$

[where \bar{u} are the variables in (R)]; by this and the fact that $\varphi(x)$ is small, (3) implies

$$M_{a} \models \exists x(R) \left[\land q \land \varphi(x) \right].$$

So, since M_{α} is λ -compact, there is $a \in M_{\alpha}$ such that

$$M_a \models (R) \exists x [\land q \land x = a],$$

which contradicts the choice of q. \Box

To prove the theorem, let the p_i^0 be p, and for each α let the $p_i^{\alpha+1}$ be the types described in Lemma 2. Then all these types are strongly omitted by M^* , according to III., and hence omitted by M^* . Let $\varphi(x)$ be small over M^* . Then $\varphi(x)$ is small over some M_{α} . By I. and Lemma 2, M_{α} strongly omits the type p' of an element which satisfies $\varphi(x)$ but is not one of the elements of M_x . So p' is one of the $p_i^{\alpha+1}$ and hence is omitted in M^* . This means that $\varphi(x)$ gains no new elements after M_{α} , and so at most λ elements satisfy it in M^* . By I. and II. it is clear that M^* is a standard model of T, and we are done.

The rest of this section will prove I and II, using $\lambda^{<\lambda} = \lambda$ (which follows from $\langle \rangle_{\lambda}$). We return to III. in Section 4.

To construct the M_{α} , we define their complete diagrams, by induction on α . New constants are needed: for each $\alpha < \lambda^+$, we introduce new constants b_{α} and $c_{\alpha}^j(j < \lambda)$, to be known as the α -constants. Write L as the union of a continuous increasing chain of languages of cardinality $<\lambda$, $L = \bigcup_{i < \lambda} L_i$. For each $\alpha < \lambda^+$, L_i^{α} shall be L_i

enriched with the constants b_{β} and $c_{\beta}^{j}(\beta \leq \alpha; j < i)$. Thus for each α , L_{i}^{α} is continuous increasing in *i*. We write L^{α} for $\bigcup_{i < \lambda} L_{i}^{\alpha}$, $L^{<\alpha}$ for $\bigcup_{\beta < \alpha} L^{\beta}$, and L^{*} for $L^{<\lambda^{+}}$.

We shall define an increasing sequence of theories T^{α} such that each T^{α} is complete and consistent in the language L^{α} , and has an α -constant as witness for each existentially quantified sentence in it. M_{α} will always be the model whose complete diagram is T^{α} , so that we automatically have an elementary chain $\langle M_{\alpha}:\alpha < \lambda^{+} \rangle$. We write $T^{<\alpha}$ for $\bigcup_{\beta < \alpha} T^{\beta}$, except that $T^{<0}$ is T; we write T^{*} for $T^{<\lambda^{+}}$. Each T^{α} will be constructed as the union of an increasing chain, $T^{\alpha} = \bigcup_{i < \lambda} T^{\alpha}_{i}$. We write $T^{\alpha}_{< i}$ for $\bigcup_{i < \lambda} T^{\alpha}_{j}$. We shall impose the condition :

IV. For each $i < \lambda$ and each $\beta < \lambda^+$, $T_i^{\beta} - T^{<\beta}$ has cardinality $< \lambda$.

6

Saharon Shelah

List as $\langle r_{\alpha} : \alpha < \lambda^+ \rangle$ all sets of $<\lambda$ formulae of L^* with just x free, so that each such set occurs cofinally often in the list. This uses $\lambda^{<\lambda} = \lambda$. At each α , if r_{α} is a non-small type over $T^{<\alpha}$ in $L^{<\alpha}$, take T_0^{α} to be $T^{<\alpha} \cup \{\psi(b_{\alpha}) : \psi(x) \in r_{\alpha}\}$; otherwise take T_0^{α} to be $T^{<\alpha}$. In both cases, write Γ_{α} for the set

$$\{\neg \psi(b_n): \psi(x) \in L^{<\alpha} \text{ and } T^{<\alpha} \vdash \neg Qx \psi(x)\}.$$

Lemma 3. Assume $T^{<\alpha}$ is complete and consistent in $L^{<\alpha}$. For every set $\Phi(b_{\alpha}, \overline{c}_{\alpha})$ of sentences of L^{α} , $\Gamma_{\alpha} \cup \Phi(b_{\alpha}, \overline{c}_{\alpha})$ is consistent iff $T^{<\alpha} \vdash Qy \exists \overline{z} \land \Phi(y, \overline{z})$.

Proof. (cf. the proof of Lemma 2.7 in Keisler [3]). \Rightarrow . If $T^{<\alpha} \not\vdash Qy \exists \overline{z} \land \Phi(y, \overline{z})$, then since $T^{<\alpha}$ is complete, there is some finite approximation $Qy \exists \overline{z}' \land \Phi'(y, \overline{z}')$ such that

$$T^{<\alpha} \vdash \neg Q y \exists \overline{z}' \land \Phi'(y, \overline{z}'),$$

so that $\neg \exists \vec{z}' \land \Phi'(b_a, \vec{z}') \in \Gamma_a$. Then $\Gamma_a \cup \Phi(b_a, \vec{c}_a)$ is inconsistent. \Leftarrow . Suppose $\Gamma_a \cup \Phi(b_a, \vec{c}_a)$ is inconsistent. Then there are $\neg \psi(b_a) \in \Gamma_a$ and a finite conjunction $\varphi(b_a, \vec{c}_a)$ of elements of $\Phi(b_a, \vec{c}_a)$, such that $\vdash \varphi(b_a, \vec{c}_a) \rightarrow \psi(b_a)$, and hence

$$\vdash Qy \exists \overline{z} \varphi(y, \overline{z}) \rightarrow Qy \psi(y).$$

Since $T^{<\alpha} \vdash \neg Qy \psi(x)$, we infer that $T^{<\alpha} \vdash \neg Qy \exists \overline{z} \varphi(y, \overline{z})$, which contradicts the right-hand side in the lemma. \Box

Now it is obviously possible to choose the T_{i+1}^{α} so as to build up T^{α} into a complete theory with witnesses, such that M_{α} is λ -compact. This assures I. We shall require:

V. Each T_i^{β} is consistent with Γ_{β} .

By Lemma 3 this is no problem. Then $\Gamma_{\beta} \subseteq T^{\beta}$, so that b_{β} represents a new element of M_{β} . This assures II. Finally there is no difficulty in preserving IV. at successor *i*. The only restrictions we have placed on T_i for *i* a limit ordinal are those in IV. and V. These can be achieved by putting $T_i^{\beta} = T_{< i}^{\beta}$. But in the next section we shall do something different in order to get III. as well.

4. The Hard Direction: Omitting Types

The intuitive idea will be as follows. Suppose at the end of the construction, a type p which was strongly omitted over $M_{<\alpha}$ gains a support $\varphi = (R) \exists x \land q$. We wish to have prevented this. By adding irrelevant parts of T^* , we can assume without loss that φ is complete for some sublanguage of L^* ; so that if $\varphi' = (R')(R) \exists x \land q'(c_{\alpha}, \overline{b_{\alpha}})$ is the result of quantifying out all β -constants ($\beta > \alpha$) in φ , then φ' is just $T^*_{<\delta} - T^{<\alpha}$ for some δ , up to logical equivalence. Then by Lemma 3,

$$T^{<\alpha} \vdash Q y_{\alpha} \exists \overline{z}_{\alpha}(R')(R) \exists x \wedge q'(y_{\alpha}, \overline{z}_{\alpha}).$$

The displayed formula cannot be a support of p over $T^{<\alpha}$, so we can find ψ in p such that

$$T^{<\alpha} \vdash Q y_{\alpha} \exists \overline{z}_{\alpha}(R')(R) \exists x [\land q' \land \neg \psi(x)].$$

At $T^{\alpha}_{<\delta}$ and subsequent $T^{\beta}_{<\delta}$ we use Lemma 3 to remove first $Qy_{\alpha}\exists \overline{z}_{\alpha}$ and then the remainder of (R'), until T^* contains $(R)\exists x[\land q \land \neg \psi(x)]$. This shows that φ is not after all a support of p.

The problem lies in knowing which φ to operate on at each $T^{\alpha}_{<\delta}$. We know of course that φ' is logically equivalent to $T^{\alpha}_{<\delta} - T^{<\alpha}$, but we do not know the appropriate choice of (R'), since this amounts to a prediction of later stages of the construction. We shall use \diamondsuit_{λ} to ensure that we choose the right (R') at least once during the construction of T^{α} . Some elaborate coding is needed to ensure that we tackle the same (R') at the right stage in the construction of subsequent T^{β} .

For each $\alpha < \lambda^+$, fix an enumeration $\langle \alpha_i : i < |\alpha + 1| \rangle$ of the elements of $\alpha + 1$ without repetition, so that $\alpha_0 = \alpha$. For each $j < \lambda$, put $t(\alpha, j) = \{\alpha_i : i < j\}$. Let $L(\alpha, j)$ be the largest sublanguage of L_j such that for every β -constant which occurs in $L(\alpha, j)$, $\beta \in t(\alpha, j)$. We say that the pair (α, j) is *full* iff for each $\beta \in t(\alpha, j)$,

(1)
$$t(\beta, j) = t(\alpha, j) \cap (\beta + 1)$$

(2) $T_{< j}^{\beta} - T^{<\beta}$ is a complete theory in the language $L(\beta, j)$.

Clearly we know whether (α, j) is full as soon as $T^{\alpha}_{< j}$ has been constructed. Also when T^{α} has been constructed, we can define D_{α} to be the set of $j < \lambda$ such that $t(\alpha, j)$ is full.

Lemma 4. For each $\alpha < \lambda^+$, D_{α} is closed unbounded.

Proof. Clear.

Now suppose that for each limit ordinal $\delta < \lambda$, there are given us an infinitary formula $(R_{\delta})\exists x \land q_{\delta}$ in the vocabulary of L, with $|q_{\delta}| < \lambda$, and a pair $\langle h_{\delta}, k_{\delta} \rangle \in \lambda \times \lambda$. The choice of the formulae and the ordinals will be discussed later. For the moment they are given on a plate, and we complete the definition of T^* . The only restriction at this stage is that there is a least ordinal $g_{\delta} < \lambda$ such that every free variable of $(R_{\delta})\exists x \land q_{\delta}$ is an *i*-variable for some $i < g_{\delta}$.

Consider an ordinal $\alpha < \lambda^+$ and a limit ordinal $\delta < \lambda$. Enumerate $t(\alpha, \delta)$ in increasing order as $\langle \beta_i : i \leq e(\alpha, \delta) \rangle$. Writing *e* for $e(\alpha, \delta)$ when α and δ are fixed, we have $\beta_e = \alpha$. For each $m < \lambda$, let (R^m) be the quantifier prefix

$$Qy_m \exists \bar{z}_m \dots Qy_i \exists \bar{z}_i \dots \quad (m \leq i < g_\delta).$$

If $m \ge g_{\delta}$, (\mathbb{R}^m) is empty. For each $m \le e+1$, let q_{δ}^m be q_{δ} with each *i*-variable (i < m) replaced by the corresponding β_i -constant. (y corresponds to b and z to c.) We say that the pair (α, δ) is veridical iff (α, δ) is full and

$$(R^{e+1})(R_{\delta}) \exists x \wedge q^{e+1}_{\delta} = T^{\alpha}_{\delta} - T^{<\alpha}$$

(up to choice of bound variables).

Lemma 5. Assume we have succeeded in constructing $T^{\alpha}_{<\delta}$, and (α, δ) is veridical. Then for every $\beta \in t(\alpha, \delta)$, (β, δ) is veridical.

Proof. It is clear that for every $\beta \in t(\alpha, \delta)$, (β, δ) is full. Since $T^{\alpha}_{<\delta}$ is consistent (by assumption V.), we have

$$T^{\beta}_{<\delta} - T^{<\beta} = (T^{\alpha}_{<\delta} - T^{<\alpha}) \cap L(\beta, \delta).$$

Hence it remains to show that if β is β_i , then

$$(R^{i+1})(R_{\delta})\exists x \wedge q_{\delta}^{i+1} = (T_{<\delta}^{\alpha} - T^{<\alpha}) \cap L(\beta_{i}, \delta).$$

The inclusion \supseteq is immediate. The inclusion \subseteq is proved, for each separate finitary formula on the left, by assumption V and repeated applications of Lemma 3. \Box

We may now define T^{α}_{δ} for limit ordinals δ , assuming that $T^{\alpha}_{<\delta}$ has been defined and that IV. and V. hold so far. There are three cases.

Case 1. (α, δ) is not veridical, or $h_{\delta} > e$. Then put $T_{\delta}^{\alpha} = T_{<\delta}^{\alpha}$. Clearly IV. and V. are preserved.

Case 2. (α, δ) is veridical and $h_{\delta} = e$. Then

$$T^{<\alpha} \vdash (R^e)(R_{\delta}) \exists x \land q^e_{\delta} \tag{1}$$

by Lemma 3, and $p_{k_{\delta}}^{\alpha}$ is a type p' which is strongly omitted over $T^{<\alpha}$. Hence there is some formula $\psi(x) \in p'$ such that

 $T^{<\alpha} \vdash (R^e)(R_{\delta}) \exists x [\land q^e_{\delta} \land \neg \psi(x)].$

Choose such a ψ , call it $\psi_{\alpha,\delta}$, and put

$$T^{\alpha}_{\delta} = T^{\alpha}_{<\delta} \cup (R^{e+1})(R_{\delta}) \exists x [\land q^{e+1}_{\delta} \land \neg \psi_{\alpha,\delta}(x)].$$

IV. clearly remains true. V. holds by (1), Lemma 3 and the veridicality of (α, δ) .

Case 3. (α, δ) is veridical and $h_{\delta} < e$. Let $\langle \beta_i : i \leq e \rangle$ once again be the enumeration of $t(\alpha, \delta)$ in increasing order. We put

$$T^{\alpha}_{\delta} = T^{\alpha}_{<\delta} \cup (R^{e+1})(R_{\delta}) \exists x [\land q^{e+1}_{\delta} \land \neg \psi_{\beta_{h_{\delta}},\delta}(x)].$$

Again IV. holds at T_{δ}^{α} . Now for each i $(h_{\delta} \leq i < e)$, (β_i, δ) is veridical by Lemma 5, and we have

$$T^{\beta_{i}} \vdash (R^{i+1})(R_{\delta}) \exists x [\land q^{i+1}_{\delta} \land \neg \psi_{\beta_{h\delta},\delta}(x)].$$
⁽²⁾

This is by Case 2 at β_i when $i = h_{\delta}$, and by Case 3 when $i > h_{\delta}$. It follows that

$$T^{<\alpha} \vdash (R^e)(R_{\delta}) \exists x [\land q^e_{\delta} \land \neg \psi_{\beta_{h,i},\delta}(x)].$$

(If e is a limit ordinal, consider finite approximations.) Hence V. holds at T_{δ}^{α} by Lemma 3.

This completes the construction. It achieves the following.

Lemma 6. Suppose (α, δ) is veridical; we write $h = h_{\delta}$, $k = k_{\delta}$, etc. If $g = e + 1 \ge h + 1$, then for some $\psi(x) \in p_k^{\beta_n}$, $M^* \models (R_{\delta}) \exists x [\land q_{\delta}^{e+1} \land \neg \psi(x)]$. \Box

It remains only to choose the formulae $(R_{\delta})\exists x \wedge q_{\delta}$ and the pairs $\langle h_{\delta}, k_{\delta} \rangle$ so as to ensure III. For this we use $\langle \rangle_{\lambda}$ in the form which says there is a family $\langle (S_{\delta}: \delta \rightarrow \delta): \delta \rangle \langle \lambda \rangle$ of maps such that if $F: \lambda \rightarrow \lambda$ then $F | \delta = S_{\delta}$ for a stationary set of δ .

Let us say φ is a *diagram* iff φ is an infinitary sentence $(R)\exists x \land q$ for the language of L, in which q is a set of $<\lambda$ finitary formulae and the set $\{i: \text{ an } i\text{-variable occurs}$ free in $q\}$ is an initial segment s of λ ; we write $\text{length}(\varphi) = s$. Since $\lambda^{<\lambda} = \lambda$, we can list as $A^{\gamma} = \langle \varphi^{\gamma}, h^{\gamma}, k^{\gamma}, <^{\gamma} \rangle (\gamma < \lambda)$ all quadruples such that φ^{γ} is a diagram, h^{γ} is an ordinal $< \text{length}(\varphi^{\gamma})$, k^{γ} is an ordinal $<\lambda$, and $<^{\gamma}$ is a map which assigns to each ordinal $i \in \text{length}(\varphi^{\gamma})$ a well-ordering $<_{i}^{\gamma}$ of i + 1.

We say $A^{\gamma} \prec A^{\delta}$ iff there is an order-preserving injection $f: \text{length}(\varphi^{\gamma}) \rightarrow \text{length}(\varphi^{\delta})$ such that

- if f(φ^γ) is φ^γ with each free *i*-variable replaced by the corresponding f(*i*)-variable, then f(φ^γ) ⊆ φ^δ;
- (2) $f(h^{\gamma}) = h^{\gamma}$ and $k^{\gamma} = k^{\delta}$;

(3) each $<_{i}^{\gamma}$ is taken isomorphically to an initial segment of $<_{f(i)}^{\delta}$ by f.

Let δ be a limit ordinal $<\lambda$. If there is an A^{γ} such that for a final segment $\theta_0, \theta_1, \dots$ of δ ,

$$A^{S_{\delta}(\theta_0)} \leq A^{S_{\delta}(\theta_1)} \leq \dots$$

converging to A^{γ} , then clearly A^{γ} is uniquely determined (up to bound variables), and we put

$$(R_{\delta}) \exists x \wedge q_{\delta} = \varphi^{\gamma}, \quad h_{\delta} = h^{\gamma}, \quad k_{\delta} = k^{\gamma}.$$

For other δ , choose $(R_{\delta}) \exists x \land q_{\delta}$, h_{δ} and k_{δ} arbitrarily.

Lemma 7. With the above definitions, III. holds.

Proof. Suppose not; suppose p_k^{β} first gains a support q in M_{α} . Then

$$M_q \models (R) \exists x \land q$$
.

Let E be the set of limit ordinals $\delta \in D_{\alpha}$ such that q lies inside $L(\alpha, \delta)$ and $\beta \in t(\alpha, \delta)$. By Lemma 4, E is closed unbounded. For each $\delta \in E$, listing $t(\alpha, \delta)$ in increasing order as $\langle \beta_i : i \leq e \rangle$, let $F(\delta)$ be γ such that

 φ^{γ} is $(R) \exists x \land [q \cup (T^{\alpha}_{<\delta} - T^{<\alpha})]$ with each β_i -constant replaced by a free occurrence of the corresponding *i*-variable;

$$\beta_{k\gamma} = \beta, \ k^{\gamma} = k;$$

 $<_i^{\gamma}$ orders $t(\beta_i, \delta)$ as in the enumeration of $\beta_i + 1$ fixed near the beginning of this section.

Saharon Shelah

For other $i \in \lambda$, let F(i) be $\cup \{F(\delta) : \delta \in E \cap i\}$. By \diamondsuit_{λ} there is a limit point δ of E such that $F|\delta = S_{\delta}$. Since δ is a limit point of E, it follows that $\varphi^{F(\delta)}$ is $(R_{\delta}) \exists x \land q_{\delta}$ (up to choice of bound variables) and hence that (α, δ) is veridical. We can also verify that $\beta_{h_{\delta}} = \beta$, $k_{\delta} = k$, and $g_{\delta} = e(\alpha, \delta) + 1 \ge h_{\delta} + 1$. Hence by Lemma 6,

$$M^* \models (R_{\delta}) \exists x [\land q_{\delta}^{e+1} \land \neg \psi(x)] \text{ for some } \psi(x) \in p_k^{\beta}.$$

But $q_{\delta}^{e^{+1}}$ includes q, so this implies that q is not after all a support of p_k . This proves the lemma and the theorem. \Box

5. Remarks

1. By Section 6 below, \diamondsuit_{λ} holds for all successor cardinals $\lambda > \aleph_1$ if we assume the GCH. If λ is strongly inaccessible, then the theorem can be proved without the hypothesis of \diamondsuit_{λ} .

2. The proof in fact shows how to omit λ^+ types at the same time. Moreover λ of these types can be added at each stage of the chain, so we don't have to know all the types in advance.

3. Chang's two cardinal theorem $\langle \aleph_1, \aleph_0 \rangle \rightarrow \langle \lambda^+, \lambda \rangle$ is equivalent to "Every theory in L(Q) with a model for the \aleph_1 -interpretation has a model for the λ^+ -interpretation". So the above proof also gives a new proof of Chang's theorem. Unlike Chang, we do not expand the language; so we can get some new results. For example in [6, Theorem 10] we can omit "and (T, W) satisfies Chang's condition". A systematic application of this to e.g. existence theorems for models with few automorphisms will appear elsewhere.

4. In [4], Magidor and Malitz define a family of languages $\{L^n: n < \omega\}$. \mathbb{L}^n is obtained from the usual first order language by adding a new quantifier Q^n . In the κ -interpretation, a model M satisfies $Q^n x_1 \dots x_n \varphi(x_1, \dots, x_n)$ iff there is a set $X \subseteq M$ of cardinality κ such that $M \models \varphi[a_1, \dots, a_n]$ whenever a_1, \dots, a_n are distinct elements of X. Assuming \bigotimes_{ω_1} , Magidor and Malitz prove compactness for the \aleph_1 -interpretation. They ask [4, Problem 3] under what set-theoretic assumptions one can have compactness for the κ -interpretation of \mathbb{Z} . Our method of proof can be used quite straightforwardly to show that \mathbb{Z} is compact in the λ^+ -interpretation whenever $\lambda^{<\lambda} = \lambda$ and $\bigotimes_{\lambda^+}(E)$ holds, where E is the set of limit ordinals $<\lambda^+$ of cofinality λ .

6. \Diamond_i is Not a Strong Demand

Let λ be a regular cardinal and E a stationary subset of λ . Jensen defined :

 $\langle \mathbf{X}^*(E) \rangle$ means there is $\langle W_{\alpha} : \alpha \in E \rangle$ such that except for a bounded set of α , each W_{α} is a family of $\leq |\alpha|$ subsets of α , and for every $X \subseteq \lambda$ there is a closed unbounded $C \subseteq \lambda$ such that $X \cap \alpha \in W_{\alpha}$ for all $\alpha \in C \cap E$.

 $\langle \rangle_{i}(E)$ means there is $\langle S_{\alpha}: \alpha \in E \rangle$ such that $S_{\alpha} \subseteq \alpha$ and for every $X \subseteq \lambda$, $\{\alpha: X \cap \alpha = S_{\alpha}\}$ is stationary in λ .

Kunen (unpublished) showed that $\diamondsuit_{\lambda}^{*}(E)$ implies $\diamondsuit_{\lambda}(E)$, and that if $E_{1} \subseteq E_{2}$ are stationary, then $\diamondsuit_{\lambda}(E_{1})$ implies $\diamondsuit_{\lambda}(E_{2})$ and $\bigtriangledown_{\lambda}^{*}(E_{2})$ implies $\diamondsuit_{\lambda}^{*}(E_{1})$. Write $E(\kappa)$ for the set of all $\alpha < \lambda$ such that $cf\alpha = \kappa$. If $\kappa < \lambda$, then $E(\kappa)$ is a stationary subset of λ .

Theorem. Suppose $\lambda = 2^{\mu} = \mu^+$ and κ is a regular cardinal $< \mu$. Then each of (i), (ii) below implies $\bigotimes_{\lambda}^{*}(E(\kappa))$.

(i) (*Gregory* [2, *Lemma* 2.1]) $\mu^{\kappa} = \mu$.

(ii) μ is singular, cf $\mu \neq \kappa$, and for every $\delta < \mu$, $\delta^{\kappa} < \mu$.

Proof. Let $\langle A_{\alpha}: \alpha < \lambda \rangle$ be a list of all the bounded subsets of λ . (There are λ such subsets as $\lambda = 2^{\mu} = \mu^{+}$.)

(i) For each $\alpha \in E(\kappa)$, let W_{α} be the set of all sets of form $\cup Y$ where $Y \subseteq \mathscr{P}(\alpha) \cap \{A_{\beta} : \beta < \alpha\}$ and $|Y| \leq \kappa$. Given any $X \subseteq \lambda$, let $C = \{\alpha_i : i < \lambda\}$ be defined as follows. α_0 is any

successor ordinal $<\lambda$. For limit δ , put $\alpha_{\delta} = \bigcup_{\beta < \delta} \alpha_{\beta}$. Put α_{i+1} = the least $\alpha > \alpha_i$ such that for some $\gamma < \alpha$, $A = X \cap \alpha_i$.

(ii) For each
$$\alpha \in E(\kappa)$$
, fix an increasing sequence $\langle a_i : i < \kappa \rangle$ cofinal in α . Also fix an

increasing sequence of sets $\langle V_j^{\alpha} : j < \alpha \rangle$ such that $\alpha = \bigcup_{i < \alpha} V_j^{\alpha}$ and each $|V_j^{\alpha}| < \mu$. Let

 W_{α} be the set of all sets of form $\cup Y$ where $|Y| \leq \kappa$ and for some $j < \alpha$, Y is a set of A_{δ} with $\delta \in V_j^{\alpha}$. Given any $X \leq \lambda$, let $f: \lambda \to \lambda$ be such that each $X \cap \alpha = A_{f(\alpha)}$, and let C be the set of $\alpha < \lambda$ such that $\beta < \alpha$ implies $f(\beta) < \alpha$. Then if $\alpha \in C \cap E(\kappa)$, there is j such that V_j^{α} contains κ $f(\alpha_i)$ $(i < \kappa)$, and so $X \cap \alpha = \bigcup \{X \cap \alpha_i : i < \kappa \text{ and } f(\alpha_i) \in V_i^{\alpha}\} \in W_{\alpha}$. \Box

REFERENCES

- [1] Chang, C.C.: A note on the two-cardinal problem. Proc. Am. Math. Soc. 16, 1148–1155 (1965).
- [2] Gregory, J.: Higher Souslin trees and the generalized continuum hypothesis. J. Symb. Logic 41, 663-671 (1976).
- [3] Keisler, H.J.: Logic with the quantifier "there exist uncountably many". Ann. Math. Logic 1, 1-93 (1970).
- [4] Magidor, M., Malitz, J.: Compact extensions of L(Q). Ann. Math. Logic 12, 217–261 (1977).
- [5] Shelah, S.: Models with second order properties. I. Ann. Math. Logic 14, 57-72 (1978).
- [6] Shelah, S.: Models with second order properties. II. Ann. Math. Logic 14, 73-87 (1978).

Saharon Shelah Department of Mathematics Hebrew University Jerusalem Israel