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MODELS WITH SECOND ORDER PROPERTIES. 
III. O M I T T I N G  TYPES FOR L(Q)* 

Saharon Shelah 

Abstract 

We generalize Keisler's omitting types theorem for L(Q) in the Nt-interpretation, 
to most cases in which Chang's two cardinal theorem applies. As an application 
we answer positively a question of Magidor and Malitz on the compactness of 
their logic in cardinalities higher than N1. 

1. Introduction 

L(Q) is the logic obtained from the usual first order logic by adding a quantifier Q. 
The 2-interpretation of Q is: Qxcp(x) iff l{x :q~(x)}122. Keisler [3] studied the N 1- 
interpretation of Q and proved completeness and omitting types theorems for it. If 
2 is a cardinal such that 2<~=2, then by Chang's two cardinal theorem [1], 
Keisler's completeness theorem for the N l-interpretation implies the same theorem 
for the 2+-interpretation (for a countable language). But this approach does not 
yield any omitting types theorem for the 2+-interpretation. 
To prove his omitting types theorem for the Nl-interpretation, Keisler built a 
"strong" model M of T by taking the union of an elementary chain ( M  s :~ <col)  of 
countable "weak" models of T. He defined what it is for a theory or a model to 
strongly omit a type p. He showed that if T strongly omits p, then M o can be 
chosen so that it strongly omits p too ; moreover if M s strongly omits p, then we 
can arrange that M,+I  does likewise. Since strongly omitting depends on only 
finite sets of parameters, it survives at limit ordinals and so M strongly omits p. 
Thus M omits p. 
When we try to replace N~ by 2 + in this construction, we have to redefine 
"strongly omitting" so that it depends on <2  parameters instead of finitely many. 
Things immediately go wrong at limit ordinals of cofinality < 2. We shall repair 
the proof by using ~z .  This use o f ~ z ,  in a construction of length 2 +, is new. 
In fact <~z is a very weak condition. We show this in Section 6, where we quote and 
strengthen a theorem of Gregory [2]. When 2 is strongly inaccessible, our theorem 
can be proved without using ~ z  at all. Assuming GCH, our theorem applies to 

* Eingegangen am 14. 4. 1978, Revisionen am 18. 6. 1979. 
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any 2+-interpretation when 2 is regular and ~ N  1. The result was announced in [5, 
6]. 
I would like to thank the United States-Israel Binational Foundation for partially 
supporting this research by Grant  1110. I would also like to thank Wilfrid Hodges 
and Shai Ben-David wholeheartedly. The first version of this paper was written by 
Ben-David, and based on a lecture and explanation of the author. This was then 
revised by Hodges into the present form. I also thank Matt  Kaufmann and the 
referee for correcting some errors in the intermediate versions. 

2. The Easy Direction 

Henceforth 2 is a fixed cardinal and T is a complete and consistent theory in L(Q), 
in a language L of cardinality N2. To avoid triviality we assume T~ Qxx =x. All 
models will be "weak" models of T (see Keisler [3]). A formula q~(x) is small in Ti f f  
T~ "-1Qxq~(x), and large in Tif f  TI- Qx~o(x); it is small or large in a model M iff it is 
small or large in the complete diagram of M. A type is a consistent set of formulae; 
a 1-type with just x free is small iff it contains or implies a small formula. A model 
M is 2-compact iff M realises every 1-type p over M with [p[ < 2. 
A model M is a standard model (for the 2+-interpretation) iff (1) M is 2-compact, 
(2) no small formula is realised by >,t. elements of M, and (3) every non-small 
1-type p over M with IPt < 2 is realised by > 2 elements of M. 
The symbol (R) will stand for welt-ordered infinitary quantifiers of length < 4, of 
form 

Qyo3"zoQy1321...Qyi 321... (i < lh(R)), 

or derived from such a strong by omitting some variables. Here 2 i is the sequence 
z°z~...z{...(j < 2) ; the variables zj and yl will be called the i-variables. If p is a set of 
< 4  formulae, a finite approximation to the infinitary formula (R)A p is a finite 
conjunction of formulae in p, together with a large enough finite part o f  (R) to 
cover the variables of those formulae. We shall freely write (R) A p to mean the set 
of finite approximations. We shall say 

r l -  (R) A p 

when T entails every finite approximation to (R)A p. Similarly with MM (R)A p; 
we allow p to contain perhaps infinitely many parameters from M. 
When we write ~x(R)A p (as in Lemma 1 below), we mean (R')A p where (R') is 
3x(R); similarly for Qx(R)A p, etc. So 3x(R)A p does not necessarily imply that 
(R) A p holds for some x, unless we are in a 2-compact structure. 

Lemma 1. Let M be a standard model, ]p] < 2, and 5 a sequence of < 2 elements of M. 
Then : 
(1) M~3x(R)Ap[b] iff for some a~M, M~(R)Ap[5,a]. 
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Models with second order properties. III. 3 

(2) M~Qx(R)Ap[b] iff for some a~M whose complete type over b in M is not 
small, 

M ~  (R) A p[~, a]. 

Proof The proof of (1) is immediate from the definitions, using the 2-compactness 
of m. For (2), assume first that M ~  Qx(R) A p[b]. Then (R) A p is a non-small type. 
Since every non-small type of cardinality < 2 is realised by at least 2 + elements of 
M, there are at least 2 + elements a such that M ~  (R) A p[b, a]. Now the language L 
has at most 2 small formulae, even allowing the < it parameters 5, and each small 
formula is satisfied by at most 2 elements. Hence there is some a which satisfies no 
small formula with parameters from 5, such that M~(R)A [5, a]. This proves left- 
to-right in (2). The converse is immediate. [ ]  

Let p be a 1-type with x free, and q a type of cardinality < 2. We call q a support of 
p over T iff 

(1) T~-(R)3xAq, and 
(2) for every ~p(x)ep, T.Yc-- (R)3x[ A q/x -1 ~p(x)], 

where (R) is as described above, and covers all the variables free in q. We say q is a 
support of p over a model M iff the same holds over the complete diagram of M. 
We say T (or M) strongly omits p iff there is no support of p over T (or M). 

Main Theorem (Easy half). I f  T has a standard model which omits the t-type p, then 
T strongly omits p. 

Proof Let M be a standard model of T, and suppose that q is a support o fp  over T, 
so that T[-(R)~x A q. Since M is a model of T, we have 

M~(R)3xAq.  

Choosing witnesses inductively according to Lemma 1, we find a sequence b and 
an element c in M such that M ~  3x A q[/~] and 

M ~  A q[/~, c]. (1) 

Let tp(x) be in p. Then since q is a support of p and T is complete, there is a finite 
approximation q' of q such that 

M)(=(n')3x[ A q' A -n ~p(x)]. 

By Lemma 1 in the other direction, we infer 

M,f= [ A q' ^ -7 tp(x)] [5, c]. (2) 

From (1) and (2) we derive M~ip[c], and this shows that c satisfies p. So p is 
realised in M. []  
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3. The Hard Direction: The Framework 

Main Theorem (Hard half). Suppose ~ holds. I f  T strongly omits p, then T has a 
standard model which omits p. 

The construction of the model will be based quite closely on Keisler [3]. We shall 
build an elementary chain <M~:a<)~ +) of models of T such that 

I. Every M~ is 2-compact and of cardinality ~. 

II. For each a, every non-small 1-type of cardinality <2 over M~ has new 
elements added to it in cofinally many M~. 

Unlike Keisler, we do not require the chain <M~ :a <,~+> to be continuous at limit 
ordinals. For each e, after <M~:fl<a> has been constructed, we shall suppose 
someone gives us a set of <2  types {p~:i<,t} over U M~ which are strongly 

omitted by , U M ¢  (when c~=0, the types are strongly omitted by T). The 

construction will satisfy: 

III. Every type p~(m<).+ ; i<2) is strongly omitted by U M~. 
:~< 3.+ 

We shall write M<~ for U<M~, and M* for ~<x+~ M~. 

Let us show first that if I.-Iti. can be guaranteed, then the theorem follows. 

Lemma 2. Assume M~ is 2-compact, and let q)(x) be a small formula over M~. Then 
M~ strongly omits the type 

{q)(x)}~{x4~a:aeM~}. 

Proof(cf. Keisler [3, Lemma 4.4-]). If not, then this type has a support q over M~. 
So 

M ~  (R)3x A q, 
(1) 

M~,)(=(R)3x[ A q A -7 q~(x)]. 

Then for some finite approximation (R')3x A q', 

M=~ -~ (R')3x[ A q' ^ -7 ~o(x)]. (2) 

We claim that 

M~(R)~x[  A q A q~(x)]. (3) 

For otherwise there is a finite approximation (R")3x A q", which can be assumed to 
include (R')3x A q', such that 

M ~  -l(R")3x[ A q" n q~(x)]. (4) 
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But from (2), (4) and the law }-Qx[tp v )~]--,Qxtp v Qx)~ (cf. Keisler [3, Lemma 
1.9]), we deduce 

M ~  'n(R")3x A q" , 

which contradicts (1). This proves (3). Now Keisler showed that 

[-(R)3xv2---* [3x(R)~ v Qx3~tp] 

[where ~ are the variables in (R)] ; by this and the fact that ~0(x) is small, (3) implies 

M , ~  3x(R) [ A q A (p(x)]. 

So, since M~ is 2-compact, there is a e M ,  such that 

M ~ ( R ) 3 x [  A q A x = a ] ,  

which contradicts the choice of q. []  

To prove the theorem, let the pO be p, and for each e let the p~+l be the types 
described in Lemma 2. Then all these types are strongly omitted by M*, according 
to III., and hence omitted by M*. Let q~(x) be small over M*. Then cp(x) is small 
over some M~. By I. and Lemma 2, M~ strongly omits the type p' of an element 
which satisfies (p(x) but is not one of the elements of M~. So p' is one of the p~ + 
and hence is omitted in M*. This means that (p(x) gains no new elements after M,, 
and so at most 2 elements satisfy it in M*. By I. and II. it is clear that M* is a 
standard model of T, and we are done. 
The rest of this section will prove I and II, using 2~2= 2 (which follows from ~ ) .  
We return to III. in Section 4. 
To construct the M,, we define their complete diagrams, by induction on e. New 
constants are needed:for  each a < 2 +, we introduce new constants b, and c~(j < 2), 
to be known as the e-constants. Write L as the union of a continuous increasing 
chain of languages of cardinality <2,  L =  U Li- For each e < 2  +, L~ shall be L i 

i < 2  

enriched with the constants bp and c~(B<e ; j <  i). Thus for each e, L~ is continuous 
increasing in i. We write/~ for U LI ~, L ~ for U L~, and L* for L ~z* 

i < 2  ~ < ~  

We shall define an increasing sequence of theories T ~ such that each T ~ is complete 
and consistent in the language L ~, and has an e-constant as witness for each 
existentially quantified sentence in it. M~ will always be the model whose complete 
diagram is T ~, so that we automatically have an elementary chain (M~ :e < 2+). 
We write T <~ for ~ T t~, except that T <° is T; we write T* for T <z÷. Each T ~ will 

be constructed as the union of an increasing chain, T~= ~J 7~. We write T~<~ for 
~) 7~j. We shall impose the condition: 
j< i  

IV. For each i < 2  and each fl<X +, T~ ~ -  T <t~ has cardinality <2. 
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List as (r~:~ < 2 +) all sets of < 2 formulae of L* with just x free, so that each such 
set occurs cofinally often in the list. This uses 2 < x= 2. At each e, if r, is a non-small 
type over T <" in L <', take T~o to be T<~w{~(b,)w(x)sr~} ; otherwise take T~o to be 
T<% In both cases, write F~ for the set 

{ 7 g,(b,): u2(x)e L < ~ and T <'[- --1Qx ~(x)}. 

Lemma 3. Assume T <~ is complete and consistent in 1_,<% For every set 4~(b~, ~) of 
sentences of  lY, F~uc~(b~,'d~) is consistent iff T<~] -- Qy3~ A ~(y, ~). 

Proof. (cf. the proof of Lemma 2.7 in Keisler [3]). 
~ .  If T<%(--Qy3"~A~(y,z-'), then since T <~ is complete, there is some finite 
approximation Qy3F A ~'(y, -~') such that 

T < ~}-- --3 Qy3~' A ~'(y, -~'), 

so that -7 33' A qO'(b~, ~')~ F~. Then F~u4~(b~, "d~) is inconsistent. 
~ .  Suppose F~u~(b~,?~) is inconsistent. Then there are -n~(b~)eF~ and a finite 
conjunction (p(b~, E~) of elements of qS(b~, ?~), such that [- (p(b~, ~)-4 ~p(b~), and hence 

t- Qy3f~p(y, z-') ~ Qy ~(y). 

Since T<~} - 7 Qyw(x), we infer that T<~} - 7Qy3~tp(y, z-), which contradicts the 
right-hand side in the lemma. [ ]  

Now it is obviously possible to choose the 7~÷ ~ so as to build up 7 ~ into a 
complete theory with witnesses, such that M~ is 2-compact. This assures I. We 
shall require : 

V. Each T~ p is consistent with F~. 

By Lemma 3 this is no problem. Then F~ ~ T a, so that ba represents a new element 
of Mp. This assures II. Finally there is no difficulty in preserving IV. at successor i. 
The only restrictions we have placed on T~ for i a limit ordinal are those in IV. and 
V. These can be achieved by putting T~ a = T<~i. But in the next section we shall do 
something different in order to get III. as well. 

4. The Hard Direction: Omitting Types 

The intuitive idea will be as follows. Suppose at the end of the construction, a type 
p which was strongly omitted over M <, gains a support ~p = (R)3x A q. We wish to 
have prevented this. By adding irrelevant parts of T*, we can assume without loss 
that ~p is complete for some sublanguage of L* ; so that if ~p' = (R') (R)~x A q'(% b,) is 
the result of quantifying out all t-constants (fl>~) in ¢p, then ¢p' is just ~ < ~ - T  <~ 
for some 6, up to logical equivalence. Then by Lemma 3, 

T < ~]- Qy~3L(R') (R)3x A q'(y~, L).  
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The displayed formula cannot be a support of p over T <~, so we can find ~p in p 
such that 

T <~[-- Qy~3~(R') (R)3x[ A q' A -7 ~p(x)]. 

At 7~ 0 and subsequent T{~ we use Lemma 3 to remove first Qy~3~ and then the 
remainder of (R'), until T* contains (R)3x[ A q A 7 ~p(x)]. This shows that q~ is not 
after all a support of p. 
The problem lies in knowing which q~ to operate on at each T~0. We know of 
course that ~0' is logically equivalent to ~i~ 0 -  T <~, but we do not know the 
appropriate choice of (R'), since this amounts to a prediction of later stages of the 
construction. We shall use ~ x  to ensure that we choose the right (R') at least once 
during the construction of T ~. Some elaborate coding is needed to ensure that we 
tackle the same (R') at the right stage in the construction of subsequent T £. 
For each c~ < 2 +, fix an enumeration (a i :i < ]e + 1 ]) of the elements of c~ + 1 without 
repetition, so that c% =a.  For  each j <2, put t(a,j)= {cq : i<j}.  Let L(e,j) be the 
largest sublanguage of L~ such that for every fl-constant which occurs in L(a, j), 
/36t(a,j). We say that the pair (a,j) is full iff for each [3st(cqj), 
(1) t(fl, j) = t(o~,j)n(fl + 1), 
(2) T ~ j -  T <p is a complete theory in the language L(fl, j). 
Clearly we know whether (a,j) is full as soon as T~<j has been constructed. Also 
when T ~ has been constructed, we can define D~ to be the set of j <2  such that 
t(cq j) is full. 

Lemma 4. For each a < 2  +, D~ is closed unbounded. 

Proof. Clear. []  

Now suppose that for each limit ordinal 6 < 2, there are given us an infinitary 
formula (R0)3x A q~ in the vocabulary of L, with [q01 < 2, and a pair (h0, k0)s 2 x 2. 
The choice of the formulae and the ordinals will be discussed later. For the 
moment they are given on a plate, and we complete the definition of T*. The only 
restriction at this stage is that there is a least ordinal g0 <2  such that every free 
variable of (Ro)3x A qo is an/-variable for some i<g~. 
Consider an ordinal e < 2  + and a limit ordinal 6<2.  Enumerate t(e,6) in 
increasing order as (fl;:i_< e(a, 6)). Writing e for e(e, 6) when c~ and 6 are fixed, we 
have Be = a- For  each m < 2, let (R m) be the quantifier prefix 

Qym3~r,...Qyi3gi... (m<=i<ga). 

If m > go, (Rm) is empty. For each m < e + 1, let qg' be qo with each/-variable (i < m) 
replaced by the corresponding/3i-constant. (y corresponds to b and z to c.) 
We say that the pair (a, 8) is veridical iff (a, 6) is full and 

(R e + 1) (R0)3x A q~ + 1 = T~ a - T < ~ 

(up to choice of bound variables). 
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Lemma 5. Assume we have succeeded in constructing 7~<~, and (~, 6) is veridical. Then 
for  every flet(~,6), (13,6) is veridicaI. 

Proof  It is clear that for every 13et(e,6), (13,6) is full. Since 2~<~ is consistent (by 
assumption V.), we have 

T~a-  T <p = ( ~ < a -  T<')cTL(fl, ~)" 

Hence it remains to show that if fl is fli, then 

(Ri+ l) (Ra)3x A q~+ 1 = ( ~ <  a - -  T< ¢*)~L(fli, 6 ) .  

The inclusion = is immediate. The inclusion _~ is proved, for each separate finitary 
formula on the left, by assumption V and repeated applications of Lemma 
3. [] 

We may now define 7~ for limit ordinals 6, assuming that ~<~ has been defined and 
that IV. and V. hold so far. There are three cases. 

Case 1. (a,6) is not veridical, or h6>e. Then put 7"~ = ~<~. Clearly IV. and V. are 
preserved. 

Case 2. (a, 6) is veridical and h a = e. Then 

T<~'[ - (RO(R6)3x A q~ (1) 

by Lemma 3, and p~. is a type p' which is strongly omitted over T %  Hence there is 
some formula q2(x)ep' such that 

T < ~ (R e) (Ra)3x[A q~ A ~ uA(x)]. 

Choose such a ~, call it ~p~.o, and put 

T~ = 2~< au(R e+ l) (Ra)3x[ A q~+ l A -t v;,.a(x)]. 

IV. clearly remains true. V. holds by (1), Lemma 3 and the veridicality of (~, 6). 

Case 3. (a, 6) is veridical and h a < e. Let (fli:i < e)  once again be the enumeration of 
t(~, 6) in increasing order. We put 

= ~i~< a w(Re+ l) (Ra)3x [ A q,~+ i ^ -1 ~p~, o(x)]. 

Again IV. holds at T~. Now for each i (h a < i <  e), (fli, 6) is veridical by Lemma 5, 
and we have 

T~,]_ (R i + l) (Ra)3x[ A q~+ i ^ "-1 ~pa,,, a(x)]. (2) 

This is by Case 2 at fll when i=  h~, and by Case 3 when i>  h a. It follows that 

T < ~}-- (R e) (Ra)3x [ A q~ A -'7 ~¢~, ~(x)]. 
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(If e is a limit ordinal, consider finite approximations.) Hence V. holds at 7~ by 
Lemma 3. 
This completes the construction. It achieves the following. 

Lemma 6. Suppose (~, 6) is veridical ; we write h = h~, k = k e, etc. I f  ~ = e + 1 >= h + 1, 
, , , t x~ , ,~  M * ~ ( R e ) 3 x [  Aq~ +~ ^ 7~(x)] .  [ ]  then for  some ~,t ~ e~ , 

It remains only to choose the formulae (R~)3x A qe and the pairs (h~, ke) so as to 
ensure III. For  this we use ~ x  in the form which says there is a family ((S~ :6--+6):6 
< 2 )  of maps such that if F : ) . ~ 2  then Ft6=S~ for a stationary set of 6. 
Let us say rp is a diagram iff (p is an infinitary sentence (R)3x A q for the language of 
L, in which q is a set of < 2  finitary formulae and the set {i: an/-variable occurs 
free in q} is an initial segment s of ,~; we write length(q~) =s. Since X<a=2, we can 
list as A r = (q~r, h ~, k~, < r)  (y < 2) all quadruples such that (pr is a diagram, h r is an 
ordinal < length(or), k r is an ordinal < 2, and < r is a map which assigns to each 
ordinal ielength(~0 r) a well-ordering <~ of i+  1. 
We say Ar-<A ~ iff there is an order-preserving injection f:length(~0Y)-~,length(~o e) 
such that 
(1) if f(rpr) is q~ with each free /-variable replaced by the corresponding f(i)- 

variable, then f(q~r) __c tp e ; 
(2) f ( h  ~) = h r and k r = k ~ ; 
(3) each <~ is taken isomorphically to an initial segment of < io?o by f. 
Let 6 be a limit ordinal < L  If there is an A r such that for a final segment 0 o, 0~, ... 
of 6, 

Z s'(°°) ~ A so(o,).<... 

converging to A r, then clearly A r is uniquely determined (up to bound variables), 
and we put 

(R~)3x A q~ = q)r, he = h'l, ke = k ~" 

For other 6, choose (Re)~x A qe, he and k~ arbitrarily. 

Lemma 7. With the above definitions, III. holds. 

Proof. Suppose not;  suppose p~ first gains a support q in M s. Then 

M ~  (R)3x A q. 

Let E be the set of limit ordinals 6~D~ such that q lies inside L(~, 6) and fl~ t(~, 6). 
By Lemma 4, E is closed unbounded. For each dicE, listing t(~,6) in increasing 
order as ( f l i : i ~ e ) ,  let F(6) be 7 such that 
~o r is (R)~xA [qu(~i~<~-T<~)] with each fli-constant replaced by a free occur- 

rence of the corresponding/-variable; 
/~h~=fl, k r = k ;  

< ~' orders t(fl~, 6) as in the enumeration of fli + 1 fixed near the beginning of this 
section. 
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For other ie 2, let F(i) be u {F(6):$e Eni}.  By ~ x  there is a limit point 6 of E such 
that F[6 = Se. Since 6 is a limit point of E, it follows that ~0 F(e) is (R~)3x A qe (up to 
choice of bound variables) and hence that (~, 6) is veridical. We can also verify that 
/?he =,6, k~ = k, and 9~ = e(~, 6) + i > h e + 1. Hence by Lemma 6, 

m*~(R~)3x[  Aqe~ +1 ^"n~p(x)] for some ~p(x)ep~k . 

But q~+~ includes q, so this implies that q is not after all a support of Pk" This 
proves the lemma and the theorem. []  

5. Remarks 

1. By Section 6 below, @z holds for all successor cardinals 2 > N 1 if we assume the 
GCH. If 2 is strongly inaccessible, then the theorem can be proved without the 
hypothesis of @~. 
2. The proof in fact shows how to omit 2 + types at the same time. Moreover 2 of 
these types can be added at each stage of the chain, so we don't  have to know all 
the types in advance. 
3. Chang's two cardinal theorem ( N 1 , N o ) ~ ( 2 + , 2 )  is equivalent to "Every 
theory in L(Q) with a model for the Nl-interpretation has a model for the 2 +- 
interpretation". So the above proof also gives a new proof of Chang's theorem. 
Unlike Chang, we do not expand the language; so we can get some new results. 
For  example in [6, Theorem 10] we can omit "and (T, W) satisfies Chang's 
condition". A systematic application of this to e.g. existence theorems for models 
with few automorphisms will appear elsewhere. 
4. In [4], Magidor and Matitz define a family of languages {L":n<o)}. /2 is 
obtained from the usual first order language by adding a new quantifier Q". In the 
K-interpretation, a model M satisfies Q"x~...x,qo(x 1 ..... x,) iff there is a set X __c M of 
cardinality tc such that M ~  ~0[at . . . . .  a,] whenever a~ ..... a, are distinct elements of 
X. Assuming ~ ,1 ,  Magidor and Malitz prove compactness for the N 1- 
interpretation. They ask [4, Problem 3] under what set-theoretic assumptions one 
can have compactness for the x-interpretation of g'. Our method of proof can be 
used quite straightforwardly to show that E' is compact in the 2+-interpretation 
whenever 2<~=2 and ~ + ( E )  holds, where E is the set of limit ordinals < 2  + of 
cofinality 2. 

6. ~ z  is Not a Strong Demand 

Let 2 be a regular cardinal and E a stationary subset of 2. Jensen defined : 
<~(E) means there is (W, :ae E> such that except for a bounded set of a, each 
W~ is a family of =<tel subsets of ~, and for every X_c__2 there is a closed 
unbounded C__c2 such that Xncte  V¢~ for all a e C n E .  
~z(E) means there is (S~:cteE> such that S C__a and for every X=c2, 
{a:Xnc~=S~} is stationary in 2. 
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Kunen  (unpublished) showed that ~ ( E )  implies ~z(E) ,  and that  if E 1 C=E z are 
stationary, then ~z(E~) implies ~ ( E 2 )  and (~),]'~(E2) implies (~(E~) .  
Write E0c) for the set of  all a < 2 such that  cfa = ~c. If ~ < 2, then E(~c) is a s tat ionary 
subset of  2. 

Theorem. Suppose 2 = 2" = # +  and ~: is a regular cardinal <#. Then each of(i), (ii) 
below implies Of~(E(~c)). 
(i) (Gregory [2, Lemma 2.1]) #~=~.  

(ii) # is singular, cf# 4: ~, and for every ~ < #, 6 ~ < #. 

Proof Let ( A ~ : a < 2 )  be a list of  all the bounded subsets of 2. (There are 2 such 
subsets as 2=2"=/~+ . )  
(i) For  each aEE(~c), let W~ be the set of all sets of form u Y  where Y__c ~(a)c~{A~ :fl 
<a}  and IYt<~c. Given a n y X ~ 2 ,  let C={cq:i<2} be defined as follows, ao is any 

successor ordinal < 2. For  limit 6, put  ct~ = U c~a. Pu t  cq +i = the least c~ > cq such 
//</~ 

that for some 7 < a ,  A ~ = X n %  
(ii) For  each a e  E(~c), fix an increasing sequence (a  i :i < n )  cofinal in c~. Also fix an 

increasing sequence of sets (V;  :j < c~) such that a = ~ V/~ and each [Vi ~] < p. Let 

W, be the set of all sets of form w Y where [ Y[ < ~c and for some j < c~, Y is a set of A~ 
with 6 s V;. Given any X c__ 2, let f : 2 - ~  2 be such that each X r~c~ = AI(~) , and let C be 
the set o f a < 2  such that fl<ct implies f(fl) <c~. Then ifc~Cc~E(~c), there is j such 
that V 7 contains ~c f(cti) (i<~c), and so Xc~c~=Q){Xc~ei:i<h: and 
f(ai)~ Vj'}~ W,. [ ]  
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