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Introduction

Though our focus is extending classification theory in various directions,
there is here material which, I think, will interest researchers in quite
different directions: general topology, Boolean algebras, set theory {mainly

on coding sets) monadic logic and the theory of modules.

The only paper dealing directly with first order theories is a) of the Notes.
A long time ago, in solving a problem of Keisler, we showed that if a (say
countably first order) theory T, has only homogeneous models in one A > 8y
then this occurs in every u > Min{)\,zs";. However this was done for sequence
homogeneous models and here we prove the parallel theorem for rnodel

homogeneous models. !

In 2) we continue the classification of theories over a predicate. Here
amalgamation properties over finite diagrams of models play a prominent
part, and the combinatorics involving the non-siructure theorems becomes
much harder. Hence we do it by forcing. We also restrict ourselves to
theories without two-cardinal models. This will be continued and the
classification (for countable theories in a convenient set theory) will be com-

pleted in a paper together with Brad Hart.

Another generalization is the classification of first-order 7' under any

first-order definable quantifiers. We know much on this by previous works of

! Some further light is thrown on the proof by the following theorem.
Th: It 1 is countable superstable unidimensional, then one of the following occurs:
(1)} / is categorieal in every uncountable cardinal
(2) 1 has the mexzimal number of models in every unecountable cardinals
(3) The number of medels of 5—' of power Su
Min §2* 2% '}
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Baldwin together with the author and of the author. An important case left
open in the latter are the pairs {7,9™") {monadic logic) for T unstable; it was
known that if some monadic expansion of 7 has the independence property
the pair was "complicated” e.g. has Hanf numbers like second-order logic.
Here we prove that the other pairs in this case, are all similar and have

smaller Hanf numbers.

A more basic question is whether we can classify generalized quantifiers
which are definable in stronger logics. For this we deal with the
quantification on a family K of relations over a fix universe U, closed under
isomorphism. Surprisingly, we get a reasonable picture when we classify
them under the suitable equivalence relation of binterpretability or
biiexpressability; essentially, equivalence relations are enough and they are
well understood. Also a nice surprise is the use of techniques from

classification of first-order theories.

Next let us turn to non-structure results. For infinitary languages we
show that for singular cardinals, the infinitary logic not only does not provide

us with Scott sentences, we even do not have a nice dichotomy for no ().

We use a development of the non-structure techniques to get Boolean
algebras with few endomorphisms in most cardinals {in fact, satisfying the

countable chain condition.)

Other results on Boolean algebras (or, essentially equivalently, on com-
pact spaces) are on the possible number of ideals. Those numbers, though
they do not actually have to be powers, have to satisfy strong {such) condi-
tions. We also obtain strong restrictions on the cofinalities on the cardinal
invariants s (X),z (X),h (2).

Many times non-structure theorems have required set theoretic investi-
gations, as e.g. in “classification of non elementary classes I the non-

saturatedness of a natural ideals is used. We prove here e.g. that the ideal of



non-stationary subsets of @, is not R,-dense, assuming WCH (in (a) of the
Notes).

Zwicker has recently introduced stationary coding. His reason was gen-
eralizing the theory of usual stationary sets, to stationary subsets of Pg(A). It
seems reasonable that such sets could be used in uniformizing and
strengthening non-structure theorems, but existence theorems were lacking.
In the two papers dealing with stationary codings we get various existence
theorems. Mainly for this we deal again with the club filter of A* or P (A*)
concentrating on the 'wrong’ cofinality getting non A*-saturatedness and gen-
eralizations. In e) of the Notes we prove in ZFC existence of weak variants of
squares. Two other papers deal with modules. In one we prove {in ZFC) the
existence of a non-standard uniserial module over some uniserial domains.
This was a serious problem in the manuscript of Fuchs and Salce and many
theorems were easier for standard such models. In the other (b) of the Notes)
we investigate when abelian groups can be represented as the union of few

free ones. lasily one note deals with finite models.
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CLASSIFYING GENERALIZED QUANTIFIERS

Abstract : Finding a universe ] we prove that any quantifier ranging on a
family of n-place relations over [/ is bi-expressible with a quantifier ranging
over a family of equivalence relations, provided that V=/[. Most of the analysis
is carried assuming ZFC only and for a stronger equivalence relation, also we

find independence results in the other direction.

Notation :

1) b~4¢ means 6_=< bi:i<'n,> ,6=< ci:i<n>, and: a) b;€4 iff c;€4, b) b€A
implies b;=c;, c) b;=b, iff ¢;=c;.
2) For a set A of ¢(Z) ( ¢ a formula, T a finite sequence of variables including
all variables occurring freely in ¢),

tpalb A M)={p(Z.a): (x.¥)€A, aCA and M E¢[b.a]}
We omit M when its identity is clear, and when M =(]{R) write R instead of M.
Replacing A by bs means A={g(Z):¢ atomic or negation of atomic formulaj. We
write ¢ instead {¢}, and A will be always finite.
3) ST (A, M)={tp (5, A, M):b CH,L(b)=m]

Introeduction
In [Sh3] we gave a complete classification of a class of second order

quantifiers: those which are first-order definable (see below an exact



definition). We find that for infinite models up to a very strong notion of
equivalence, biinterpretability, there are only four such quantifiers: first

order, monadic, one-to-one partial functions, and second-order.

Our aim here is to see what occurs if we remove the restriction that
the quanlifier is first order definable. As we do not want to replace this by a
specific J[-definable ([-some logic) we restrict ourselves to a fix infinite
universe 1/ If we then want to restrict ourselves to J{-definable quantifiers, we

will be able to remove the restriction to a fix universe 7/

Let us now make some conventions and definitions.

0.1 convention : 1) {/will be a fix infinite universe

2) K will denote a family of n-place relation over If, (for a
natural number n =n (X)), closed under isomorphism, i.e. if Ry, Kz are n-
place relations on {f, (If R,) = (I R;) then R, € K iff By € K.

3) Let K denote a finite sequence of such K's.

R= kgl <e(B)), K =K, 1 <UE))

4) Dom E = yia: FR(a)} , n=n{k) il R is an n-place relation
{or predicate; we shall not strictly distinguish).

0.2 Definition : For any K 3g {or @) denote a second order quantifier,
intended to vary on members of K. More exactly, L(3g,, - -, 3 ) is defined
like the first order logic but we have for each I = 1, m (infinitely many) vari-
ables R which serve as n(K;)-place predicates, and we can form (IgR)¢ for a
formula ¢. Defining satisfaction, we look only at models with universe I/ and
F(y, R)e(R, - - ) iff for some R%eKy, (RO, - ).

Remark : Note that quantifiers depending on parameters are not allowed. e.g.
on automorphisms; on such quantifiers see {Sh4], {Sh5], [Sh8].
0.3 Definition : We say that K (or Q) is /- definable { [-a logic) if there is a
formula @(R)eL, R the only free variable of ¢, and is appropriate, i.e. an
n (K)-place predicate, such that for any n-place relation R on {f

(U R Ee(R) iff ReK

0.4 Definition : We say that 3y, <;,,3x, (Jg, is interpretable in 3y, ) iff for
some first-order formula ¥ (Z, S)=0 (zq, " ', Tp(x,)-1» S0~ > Sp—1) » { €ach

5; an n{Ky)-place predicate) the following holds:



(*) for every R,€K; there are Sg ---,S,_;€K; such that
U So. -+ Sm—t) E(VE)NRU(Z)=0(Z, S, -+, Smi)]

Remark : We can define EKiég,{,; I, similarly, by letting ¢ € L. but we have no
need.
A weaker notion is
0.5 Definition : 1) We say that 3g<,,, 3g, (I, is expressible by 3, ) if there is
a formula 9(Z, Sy, - - - ,5p1) in the logic L{dg,) such that:
(*) for every R;€K,, there are Sy - -,Sp-1€K; such that
U So, -+, Sp—y) E(VE)R(Z)=8(z, So. - -+, Spp_y)] -

R) We say that 3y, <g,.,3,, (g, is invariantly expressible by Zg,) if there is
a formula ¥(Z,Sg, -+, Spp—1) in the logic L(3g,) such that:

(*) for every R, € K, there are Sg, . ..,Sp_; € K such that for every K3
which extends K, letting ¥ is  when we replace dg, by AK3:

USe ... Sp-y) EVZ)R(Z) =9 (Z,Sg, ..., Sp-1)]
0.6 Definition : 1) We say 3y, =,,3g, (dg,, 3, are biinterpratable) if Jg<;,dg,
and Jg, <i0; A, -
R) We say dg, Zexpdk, ( Ig, Ix, are biexpressible) if g <., Ax and xS ik,
Similarly for =g.; : Ig,=ipesdg, ( 3g,dk, are invariantly biexpressible) if

EK,Sinez?‘Kz and ngsinezaK s

k&

3) We can define 3y, Spufdg,, - -, dg J as in Def. 0.4, but Sp, -, €U K , we
i=1

let 3z stand for § Jg, - ,dg ] where K=<Ko, - ',Kk_1> ; we define

Ipt Sypfpe i Tpa<ydp2 for each 1 ) we also define expressible , invariantly

expressible, biinterpratable and (invariantly) biexpressible similarly.

0.7 Notation : 1) It R is an  7ny-place relation  let

n=1

E Ri = idoﬁ T Ad—-n__._l:dl(zﬁl;.
1=0

n—1 n—1 ]
2)Let 2K =1{ ) R K€k, forl<n}.
1=0 1=0

3) 3 stand for 3 where K={R,: (If B2 R - - -)}.



08 Lemma : 1) < ,.=<. . and <, p are partial guasi orders, hence =,;, =.....
exp @re equivalence relations.
2) Ap g g, implies Ig <., Ip which impliesdg <., 3p

3) dp , and dg are biinterpratable if K=} K; or K:UIQ (n(K;) constant in the
i i

second case).
0.9 Lemma : 1) If K, , K, are [ -definable (i.e. each K ; is) and Ig, Zexp Ig,

then we can recursively attach to every formula in I(JKl) an equivalent for-
mula in .,l'(:{]—{).

2) If K, , K, are [ definable, 1y dg, then the set of valid S “dg)-

R Sexp
sentences in recursive in the set of valid I(BKZ) -seniences.

Remark : The need of " J[-definable " is clearly necessary. Though at first
glance the conclusions of 0.9 may seem the natural definition of interprat-
able, I think reflection will lead us to see it isn't.

0.10 Definition : 1) We say that 3 <;,, 3¢ for a family of pairs (K,, K3), uni-
formly, if the formulas 9, (L<I(K})) depend on the
n(Ky,), n(Ky;), (i<L{K}), j<L(Kz)) only. (Clearly if we have only finitely many
candidates for ¥; , it does not matter).

2) We use similar notions for Sy, <inez +Zint: Zexpr Zinez-

§1 On some specific quantifiers.

1.1 Definition : 1) Let A" = {Aclf |4 |=x<|lf~4 |}

2) but we write @F*°" for 3 g, and similarly for the other quantifiers defined

below,

3) Kx™! = {f: f is a partial one-to-one function.
[Dom (f )| =A< |lf~Dom (f )—Rang (f)}.

4) K33, = {£:F is an equivalence relation on some Aclf with A equivalence
classes, each of power u, and |I/—4] = ||}

5) For At=u, we let

K;‘f » ={F:E is an equivalence relation, every equivalence class of & has
power <u , for each k<u, EF has exactly A equivalence classes of
power k, and |1/~Dom (£)|= ||}



6) K32, ={E'F is an equivalence relation, with A equivalence classes, each of
power <u and |I/~Dom E|=|1f1}.
7) KE™ = UK, KZ'= UKy and K&<u = UK u and
<A

<A friey
*eq — *e
K Alp T U K x.g,u.
X<A
xXt=a

of course, KQ , = U K. K3 = KX, KB, = K4 o
XA
Remark : Of course, always |Dom £ |<!1f].
1.2 Claim : Let A=y. All results are uniform.
1) Q0" =4y QP and QW™ < Q™ . QP is dp for some R ; and
1<n£n =int Q??qu
R) 7! =iy Q4G QLT =iny Q2" L and @F™ =iy Q45 @A77 is3p for some R
cand QL =g @8,

1.3 Claim : Let A=y, u=«, all results are uniform.

1) @55, <int Q%% =int 9L <o+ and @B ¢y <int 9% <«

RYIEA2p , 3%, =it @B <u -

3) Ix=imu@B if (VReK) |Dom R|<A] (when A is infinite, for A finite
[Dom R|™®) < (A—1)? is needed).
4) Q8 <u St 19, <, 1<k} U for some I , A=), /\ uK; or A<Rorx; >1ru<k;
or u<NgAA=x;ak;>1 or A <N¥g A <¥g {but in the last three cases the interpre-
tation is not uniform.)

Proof : Left to the reader.

1.4 Lemma : The following holds uniformly:

1) Q% <inex Q%% if A=x , p=8, and x<H

2) 953 \ Sinex Q%%, if A=2*, and u=8,

3) Qéil Zinex Qeg\,ﬁo Zinez Q?)\,Z for )‘>sa

4) Qéil Sinez Qg,()\ Zinex Qe&,z for A:sa

Remark : 1) Clearly in (1) we get biinterpretability.

2) Because of the uniformity e.g. (2) implies QZ?‘,Q Zines @A if AD2H, =R, .
Proof : Repeat the proofs in [Sh1], [Sh2].

1.5 Lemma : 1) For any K consisting of equivalence relations for some
n A, l<n), 3 =4 (0B, <, L<n ]



2) For any mn, A, u(l<n) for some equivalence relation £,

Ip Sint iQi‘{l’m cl<nd.

Remark : This lemma enables us to concentrate on analyzing quantifiers of

the form 35 .

1.6 Lemma: For infinite cardinals Au.x.60 @%% Sines 3% W ik Sexp on 7

XEAAKSpor xte<AaAx+ g =2#

Proof: The first condition implies the second trivially the third implies the
first by 1.3(1) (if x<Aarc=p) 1.4010), ((f x + = A28 1.4(2) (if 2= X, k=< A
and x < 2¥). Now we assume the second is exemplified by Sy, . .. ,Sp—1 € K33,
and suppose E € K39 is definable by an L(Q%%,)-formula (with Sq, ..., Spn1
the only non logical symbols, w.l.o.g. the elements were absorbed). The first

case will be A= u. Let E* be the transitive closure of l\/z Sy {with domain
<m

U Dom ;). Then £” is an equivalence relation with < A equivalence classes,
lL<m

each of power =g, hence {J can be represented as the disjoint union of
14

A;(i < a = A) such that 5§, = (5,1 4;). Hence a permutation f is an auto-
i<a

morphism of (I{So,....S,-1) iff for some permutation h of a for each

i ,f 14 is an isomorphism from (4;, Sot4;, ..., Sp-114;) onto

(Aniiy Sot Apgy - - - Sm—1 1 Ari)).

Let 4; = {e;; : j <j; = u} and define E*: a; ;,E%a;,;, iff j1=jz and for
some automorphism f of (USo, ..., Sn-1), F(a4,;) = @4, Clearly E* is an

equivalence relation on {J 4; with = 2¥ equivalence classes, and if B is an
i

E*-equivalence class then every permutation of it can be extended to an
automorphism of ({{Sq, . .., Sm—1). Let B; (1 <y = 2¥) list the E*-equivalence

classes.
Soif @z # y € B;) zFy then (Vz,y € B;) zFy.

Let B' = yih;  (3r #y € B)xFyl, B" =B, B¢ B',|B|>2],
B =yiB,: |B|<=2]. So on B' (Yzy € B*)(zE*y » zBy) i.e. E* refine

E,and so E has < 2% equivalence classes, each of power < |B*| < |U4; | <A
i



Next on B*" , E* refine E: for suppose zFy but -zE'y, let i <y be such that

y € B;, as y € B"" clearly there is ¥y € B,, ~z£"y ,-yFy by a suitable auto-

morphism necessarily zFy but £ is transitive and symmetric contradiction

to the definition of B”. So £t B has =< A equivalence classes each of power

< u. Thirdly on B

(as |B™ | <=2¢ Llastlyonlf—B" ( B” U B™ =1/- U4, E is the equality.
i

ey

,E1 B”™ has <2 equivalence classes each of power =< 2#
By 1.3(4) we finish.

§2 Monadic analysis of dp

Our aim is to interpret @™ in 3, for a maximal A and show that except on A
elements K is trivial. So continuing later the analysis of I, we can instead
analyze {@{*" dp ] where |Dom R;|<A. This is made exact below.
2.1 Definition : For any relation E let
Ao =Ag (R) = Min{{Al: ACl{, and for every sequences
b,celf (of length n(R)) . b™,c implies R[b]=R[c]].
where bA,T iff tpye(b,4,=)=tpys(b,4,=).
Note that A,(E)<|Dom R].

2.2 Theorem : 1) Uniformly Q7% <Sins 3.

R) Uniformly 3 p=:{3 g, @V7%) } for some B;, |Dom R|=A(R), n{R)=n(R).
Proof : 1)

Case I : Ay(R) is an infinite regular cardinal.

Let BR™ =:< R[":L<'m> denote a sequence of n{R)-place predicates or relations,
(UR)=(E) , and A=A(R™) denote a set of formulas of the form @{(Z,F™)
closed under permuting the variables and identifying them. Let k =k (A(E), )
be the minimal natural number such that:

(*) there is a formula ¢=¢@(Z 7 ,F)eA with L(Z)=L(F) =k, and sequence
a,l(@)=L(g) such that for every AClf |A|<A,(R) there are sequences b,c of
length k , such that ¢(b,&)r~@(€,a@,F) but b=,¢.

Let £ (A{F™)) be the minimal £ (A(R™ )E™)
By the definition of A,(R), k=n{k), ¢=R(Z) satisfies (*) for & the empty

sequence. By the minimality of £ we can assume that ,¢ are disjoint to 4 ,



and with no repetitions. Clearly as [4|<A,(R)<|lf] , If infinite, for any such
Ab,c we can find &, (l=0,2k) such that b,=b,by =¢ and b;,b,,, differ at
exactly one coordinate each b; disjoint to 4 and without repetition. So
w.l.o.g. in (*) b=<b>~d,c=<c>~d (and d~<b,c> is disjoint to 4 and with no
repetition, and let F=<z>"Z, so ¢={z,2,7}.) Possibly Z is emply ( i.e. k=1)
and then our conclusion is immediate as {b:Fel[b,Z]] and {c:E-¢(c,a)] has
power =X, (R).

By the choice of k=k (AR) for every e€lf there is A, Clf |4, |<X,(R).e€4,
such that for every d &, dp (d,,d; of length k—1) p(e ,d,@.F)=¢(e,dp,a k).
Now we define by induction on I, for 1=0,n(R)—1 a set of formulas A;=4;(£})
where R :< Ry i <2£> :

A,(R,)= the closure of {R, ,(z,, " - ,x,-1)} under permuting and identifying
the variables.

A, (R, ;)= the closure of
{V2)e(z.2. R 10 - Byyyot)=0(2 2 By g, 0 Bygpotygtg)]:

P(2.2,Ry o - By )EM(R)ULP(Z Ry 00 )T Ry JEA ()
under permuting and identifying the variables.
Now we shall prove by induction on [ that
(**)k (A (B))sn—L.
For 1=0, as we have mentioned above, this follows from the definition of
A, (R).
So we assume {**); and prove (**);,;. As (*); holds there are relations
Rt (i<2h), (YRH)2(R) and k(8 (R))=k(8,(R,).F) , where E= R*:i<2!y, and
let @, ¢(%.7.R) exemplify (*) for k=k(4A,,,(E,)). If k=1 we finish of course,
otherwise we shall prove that k >k (A;4,(R,4,)) ; this suffices of course.
Now for every y=v(w,v,R)eA,(R), L (@)<k, and @€lf there is a set AW,C?// of
power  <Ayg(R) such that: if ENA”E 1(B)=l{e)=l(mw)—l(a) then
Ev¥ib.a R, ]=¥[c.@,K]. We can assume aACA, -
Now we-define by induction on a < Ag{F) &4 b, ¢, as follows. First let

A2=FU Jﬂ’*<bﬁ,cp> ya  , and AaZU{AW’d:ECAg, 1{a)<k and yeA,(F)]. Now
<a

by the discussion after (*) there is Ea"<ba,ca> disjoint to A4, and without
repetitions, such that Fg[bg.dgsa@ |A~¢[cady, @ ]



What are the truth values t, g of gp[ba,gﬁ,d”} and s, g of qa{ca,cfﬂ,d'} ? Clearly
if a=g then t,g is truth s,z is false. If a>B, then we should remember that
A%a’-d'gAa, hence ba,caQ‘Aw‘g’,\a-. Hence t.aﬁ:tg' =sa)ﬁ=s§'. If a<f then let
Wz z.7,.R)=¢(z,Z,7,F), and remembering that Ay <o >ma"CApAs co>g” and
d, is disjoint to A, it is clear that t, g=ts, 54 =54

As we can replace <§a’“<ﬁa,ca>:a<?\g(}?)> by any subsequence of length
Ao(R) wlo.g. tr=t* t7=t~ and s;=s for every a<Aq(R) we can assume t* is
truth (otherwise interchange ¢ and -~¢ , b, and ¢, in the rest).

Now let A be the following permutation of If : h{C3q4+1)=C3a42: 1 (€ 3042)7C30+1
and h{c)=c for any other element. Next, let for 2'=i<2!*! Rri=h (E”;"zl) and
let B =X Rii<z!*1y, B'=C By i <2 ). Now

() ¥(2.9. R .)=(Vz)[p(z 2.9 R)=¢(z,2,5,E")] belong to A ,((F ).

(b) f:w(igﬂ‘(i',}?“l) for B<Aq(E). This is equivalent to saying that A maps
feclf ’=<p[eﬂgﬂ,d'.}_?]i into itself ( as hA~!=h ). i.e. we should prove
Eele ,533,5',]—?] implies ¢[h (e),czwﬁ',f?l]. If e=h{e) this is trivial. Otherwise,.
e=Cga4qs, 1€41,2) ; and h(e)=cggyz4) : If F=a this follows from
S3a+i,38=S3a+(3—i),g=t" (as 3a+i, 3a+{3—1)>38) ; if B<a this follows from
S3a+4,38=S3a+(3—1),3=S { as Sa+i, 3a+(3—1)<3H).

(¢) }=—-'¢{<§3p+1,6',]_?] for B<Ay(R) Just substitute z=cgg4p for the (Vz) in ¢'s
definition.

(d) The sequences {dg:B<Ag(R)} are pairwise disjoint. This is because for
7<8, ESQAEQAG.

Now {a), (b), (c), {(d) together show that k{A{F ;). F,1)<k Hence
k(A (B ))<k=n—1 (or k=1 and then h (A, ((F )=k {(A)(E])). So we have
done the induction step in proving (**).

Now (*#),(g)-1 show that for a', B ((Ur)=IR)) and ¢(z,¥.R) , the powers
of {celf Eglc.&" F]} and of {celf E-¢[c.a’ E]} are at least Ag(R) , and we get

the required interpretation.

Case Il : Ao(R)<|Y| ( and in particular Ag(R) finite )

Let Aclf be a set of power Ay(R), such that b~,¢ implies R[b]=R[c]. Asf is
infinite, we can find distinct d,€lf~A4 (i<n(R)?). Define (i=< d;i<n (}?)2>,
¢ (z.d,R)=/\ {3y, . . .. Yp—1) [ the elements yg, . .., Yp—1.2 are pairwise dis-

tinct and if the elements ygq, ... . Yg—1, @m, £ are pairwise distinet then
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ez, Yo - - - »Z/k—ﬂﬁﬁo(dm’yev RN T p=p{zg, - . .. 2 .R)

is an atomic formula in L(R)(so k+1=n(R))and m<n(R)? m .k are natural
numbers J. By the <choice of A4,z¢4A=> -¢'(z,d), hence
B={zelf U’ [z,d]} is a subset of A. Clearly @T¥7 <Az (uniformly) hence it
suffices to prove | B|=As(R) which follows from

(*) if b2pge then R[b]=R[c]

for this it suffices to prove:

(*+) if p(z,R)eL(R) is atomic, b,€ are sequences of length ¢ (% )=n (F) without
repetition then b2yz¢ implies (b, R)=¢(c¢.R).

Let b~¢4,b~C, be sequences from {f, without repetition, b CB,64,6; disjoint to

B ; by the transitivity of = , wlo.g. €; is disjoint to d, so for some
i, <d¢,d,;+1, c ,d¢+k,,1> {(where k=Ll{€gy)) is disjoint to &4 {and obviously to
€4)-

Now we shall prove that for every atomic
o(Z.9.0),1(z)=k, L{g)=L(B) }:¢(6L,§,r}zga{<di ,,,,, >,5,R) thus finishing. For

this we define ¢ ,, (m=k) such that each ¢, ,, is with no repetitions, disjoint
to B, b,¢; o=Cy, Crk =< di, ... 1di+k—1>v Ty m+1 € m are distinct in one place
only. By the definition of B ( and ¢ ) for every atomic
¢(Z.7.R), Fe(C) . b, R)=¢(C} 1 41,8 ,F) so we finish easily.

Case II. Ay( /) a singular cardinal.

We fix the relation R; now for every atomic formula ¢(Z,7,R) € L(KX) and
b €lf ¢(z,b,R) define an L(F)-place relation on I let Ay(¢(Z,6),R)) be as
defined as in Def. 2.1. Clearly the number of atomic @{(&,7,F) (with no
dummy variable, £ ~ ¥ C {z; : 1 <m(R)}) is finite, and we can find ¢ and b
such that Ag(¢(Z,b,R)) = Ay(R) and (under this restriction) I(£) is minimal.
Clearly L{Z) > 0 (as 4 = ¢ would serve), if n=1 we finish trivially. So assume

L{EY>1, let ZE=%~<zx> By the choice of ¢,b, for every
¢ Ao{@(Z,6,b,R)) < Ag(R) and let 4, € Ifbe such that

(i) 14| = Aole(Z.c.,b,R)) =< [U|

(ii) d1~y, dzimplies g(d.c,b,R) = ¢(d3.c .0 R)
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So |4, | = Aole(z.c,6,R)) < A(R) = |-

For each ¢, by case II there are an atomic ¥,(z,¥,.R) and d, € {f such
that |{a : Fy.(a.d,.B)}] = Ae(Z.c,b,R)) =4, | ; note there are only
finitely many possible %,’s

Subcase I a: SuE% 14, ] = 2(R).
c

Let Ag(R) = 3] p¢ where £ =cf (A(R)), and each p; is regular < A(H). So
é<c

assume |A; | =pu,;, so by Case II applied to ¢(Z.c;,K) we can interprete
unformly QT and even @Yg) and moreover in this case, we have @; (&<x)
such that u.<|{e€lf [rgle, @; F1}| <Ao(R) (agis dg~a’ for some a ). In par-

ticular we can interprete @QF°". let R=|)d; and £ be the following
¢<c

equivalence relation on I bEc iff for every @cP, ¢[b.@ El=¢l[c.@,F]. Let
<A¢:'i<x> be a list of the equivalence classes of E . If {i:|4;|=2] has power
2Aq(E), we get our conclusion easily; this holds also if there are at least two
A; of power 2Ay(R), or even if %’l{lg)l.A.,;]:KO(R) . By the choice of P the only
case left is [{i: |4 1=11|=M(R). So let az{a<Ay(R)) be pairwise non E-
equivalent a,¢ P. Define a permutation :h(@3a4i)=Q3a4g— for 1=1,2 and
h(e)=e otherwise. Define R, K+ as in case 1 and ¢ (z, P, B)=(V
Tg " Tip) {{(\kPi(z,;)—»gp(x,xo, s Tpp B)=g(z, 2o, Tp_p BY)] Now we
finish: ¢"[ag, P,R]ifl B is divisible by 3 ( for B<Ag(R).

Subcase Il b: | | (4, —{c}| = Ag(R) but not II a.
celY

By case 1l we know A4, is definable (uniformly) from b~<c>. Hence we can
choose for i < Ao(R) c;.e; such that e; € 4,, e; # ¢;, and c;.e; € fcj.e; 1 j <2}

By Hajnal free subset theorem (See [H]) w.l.o.g.
e; € A, iffi =7, and e;,c; do not appear in b.

Let g be the following permutation of {f

glesiv1) = €3i42
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g(esiva) = €4
gle)=e e €lf-fesspesz:i <Ag(R)}
Let By = K, By = g{R), then
¥(z,b,Ro.Ry) ' (VY)[e(7.2.0,Ry)]
is as required.
Case Il ¢ : not I1I a,b.
So for some Bcl |B|<r(R), [c€lf~-B=>4A,-fc}cCB];, wlog.
[c € B=> A, ¢ B].

Let d clf~B, 1(d)=L(Z); now for every set D Clf |D| < Ay(R) there are

di~<c > dy~,<cg> disjoint to DyuBuUd without repetition,

pldy,cq,b,R) = - ¢p(dycpb,R) (by the choice of 9,b). As 4., — {c,} € B,
p(d;c1,b k) = ¢(d.cy,b.R).

and similarly

¢{dscyb R) = ¢(d,cpb,R)
hence

¢(E,C1,5,H) E= (p(&,cz,f;,fe)

We can conclude that ¢(d,z,b,R) divide {f to two subsets each of cardinality
= N R).

Remark: In case III the only wuse of "A{F) singular” Iis

[sug 4. ] < Ay = s%g |4 1 < Ap(R)], but with a little more work we can
€€ C

bound the numbers of copies of & used independently of A.

Proof of 2.2(2) :

If Xo{R)=|U| we choose R;=R and have nothing new to prove. If Ag(R)<|l/], let
¢:i(Z; ¥, B) (i<m)  list  all atomic formulas in L{R), L(Z;)=k; >0,
Hz;) + L(y;)=n(R), and w.l.o.g. k;=n{R)=2>1=0. Let d,;(0<i<2n{R)) be distinct
element of {/~B, B from case 1l above. Of course, we can concentrate on the
case n{k)>1. Let

R1=§<a, . ,a>:aEBgui<a1, . ,an(R)>: ERla,, ... .¢pmla1, ... 8n(r)
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are distinct members of BguK d;ay, ..., ag, dy, - > l=i<m, @y, ...,0;

4

distinet members of ., and for all distinct b, {I<l{z;)) from

B
U-B. Fo a0 L bg ..., 0. R]}

Easily {3, @5 ()} ™" }<indg, and by case Il above Ip < ;4 dp.

§3 The one-to-one function analysis
The aim of this section is similar to the previous one, going one step further,
i.e. we want to analyse 3p, interpreting in it @1~ for a maximal A, hoping that
" the remainder” has domain <A.

3.1 Definition : Let A, = A{®) be Sup {|{tp,s(a.A.R):aclf-A]|: ACIf

3.2 Fact : A (R)=Ay(R)

8.3 Claim : @)} <;,dp uniformly, if the sup is obtained.

Proof : Suppose h is a one-to-one, one place 'partial’ function from {{to ¥/,
with |Dom h |=A,(R). Let AClf be such that {ip,.(a,4,R):a€lf~4} has cardi-
nality A A (R). So we can find a,€l/~4(i<A) such that tpys(a;,4,R) are pair-
wise distinct and wlo.g [Uf{a;i<x}|=|1]. Let h=§< bi,ci> i<A} , wlog.
b;,c; A and we can find F,,F; permutation of Jf which are the identity on 4
such that Fy(a;)=b;, Fy(a;)=c;. (they exist - see Def. 1.1(3).) Let F=F(R),
and Ey=Fo(R) and define the monadic relations
Po=A4, Py={b;:i <A}, Po={e; i <A} (all of power  =Ay(K)) Let
o(z.y Py P, Py, R, Rs) "say” that for every atomic ¢{z,Z,R)eL(R) and
Z€Py, p(z,2,R)=¢(y ,Z,R) and P(x),Pyly) -

3.4 Lemma : There is a set 4 such that
1) A |=5{n(R)+2)n(RK)N(R), furthermore, if the sup is not obtained in the
definition of Ay then |A<A;.

2) Let £4 be the equivalence relation:
tpps(a.4,.R)=tpps (b ,4,R)
If 5=4C and b; Eyc; for all i<l(b) then R(b)=R(€).

Proof : We define by induction on I=n(R)+2 sets 4; such that
[m<l-4,,c4 ] |4 |s5n{R)A(R), and if the sup is not obtained, |4; | <A (R} ;
we shall show that A,,(R)+2 satisfies the requirements of the lemma.

Let Ag=¢
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If 4, is given, we define by induction on i af, 4} such that
1) Ah=4¢
2) Al is increasing, continuous(in 7).
3) afg Al for any i,j.
4) | Al —AlI=R(n(R)-1)
5) If a,B<i, a#p, then tpy(al Al R)#tpys (ah AL R) hence aly #ak.
For some i=i(l) (which is necessarily <A;{R)*) we cannot continue, i.e. A} is
defined but not a} Al,,. Define 4,4, ¥4,y U 4}
i<i(l)

A TA L, Ulati<i(l)} yib: the basic type realized over
AU U Alyufal i<i(l)} by b is realized by <3n(R) elements § .

i<i{l)

So |44 1= 14 ] + 2 (R)-1) ()] + [1Q)] = [A4 [+2n(R)A(R),
and 441 = |4 ] + 2n(B)A(R) + 3n(R)A(R) <5n(R)(L+1)A(R) if the sup
in Deflnition 3.1 is not obtaine the inequality is strict. We prove A=A, (gys2
satisfies the requirements of the lemma. It is easy to see |4 ] is as required
{in demand (1) of 3.4).
Suppose E(b), ~R(¢) and by, Eyc,, for m<n(R) and b=,¢. There are at most
n(R) U's such that b MA4;,,#b N 4; so we choose [ such that b N4;,1C4; and
hence € 4;+1¢4;. Hence we may for simplicity assume:

T N4 +1=b N4, =¢ and b, ¢ are without repetitions.

Let B=4, Uy U Afso /\ by Egc, and |b,,/ Eg|=23n(R). Now we can define

i<il) m<n(R)
de (k=0,...,n(R)), each of length n(R), b=dg, €=d,(g), d; with no repeti-
tions, /\ b, Fpdg,, and |{m:d; ,#drr1mi|<1l. So, as in proof of the
m<n{k) ! ! ’

monadic case, we may assume R(b)a-R(€), b,6 without repetitions,
5=<e>"&, c“=<f>"a.

Notice there is j<i(l) such that e ,a,f- realize the same basic type over 1:SE;)(”A,%
(as, if not, we could let A.f(L)H:A,f([) and a,f(l)=e. ) w.l.o.g. assume R(a},d).
(otherwise use -/ ) and R[e},d] , (otherwise interchange e and f).

3.4 A Claim : We can let A,f(l).,.l:A.,f(i) ua, ailu):f and hence get a contradic-
tion to the definition of i (1).

Proof : Suppose tpys (f Afuye1)=tPos (2. Ak 1) +1)
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%) Py (f Akuy41) 2tPas (F Abu) )=tPos (¢ . ALy ) =tDes (], 4i1)) #tPps (0 Alg))
contr.
fi=j use R{z.,d@).
So we have proved 3.4A, hence 3.4,
3.4B Claim : The sup is obtained in the definition of A;(R)
Proof : Suppose not, by the lemma, we can find A such that |4 |<A;(R) and
(vh.,0)[ i({;‘zg)biEACiAEE({t‘T_)R(S)ER(a)]' Clearly {a/ E, : a € {f~A} has power
< A, then for all B
| {tpys (@, B):a €lf—B}|<|A | +|{tpps (@, B U4 ):a€lf~B}| < A, contradiction.
3.5 Conclusion : {Tp, @™} is bi-interpretable with {QT". @\ 3p, 3z} , where
|Dom R,|<5(n(R)+2)?A,(R), £ an equivalence relation. This is done uni-
formly (i.e., the formulas depend on n () only).
Proof . We've shown  Qlihy<umldp @k} (see  3.3). Let
AlnA=¢, |AY|=]A|=r(R),A as in the lemma 3.4,F;=R{4AA b, Ayatl
includes =Min{3n(R)},|a/ E, |} elements of each E, equivalence class a/ £y.
Now

Rz, . .. 2 iff

(Fyy) - (%(R))(1SQL(R)%EA%’\R1(?))
Sodp=ingd @a; 1 QX" 3R, 35,3
Now 3R,$mti31?»@inum§ by the definition of Ry, g, S {3, Q%" directly, and
Qi1 < {3, Q7°") by 3.3, 3.4B. So {@\1 Q%" Ak, 5] Simldr Q5] and we
finish.

3.5A Remark: Note the @pl, g,| is uniformly interpretable (for fixed n(R))

in @17 including the case A, is finite, so 3.5 holds for it too.

§4 Above the local stability cardinal

We continue our analysis of 3. For notational simplicity we make

4.1 Hypothesis : |Dom R|=A(R) (or, when A(R) is (finite,
|Dom R|=5(n(R)+2)A(R). (and see 3.54).

Also in this section ( as well as in § 5, § 6) we shall not prove the theorems
"uniformly”. This can be done, however we feel it will obscure the understand-

ing by making us to deal with too many parameters. We also delay the
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treatment of the finite cases.

4.2 Definition : An m-type p is called {(=A) -big if it is realized by A pairwise
disjoint sequences; let A-big mean ( =A%)-big. For this section big means
Az = Ag(R)-big ( Az is defined below ).
Let (3®*%)¢(Z,b) mean {g(Z,d@)} is (=A)-big. We define 3*z), (3**%) similarly
[ as -(3=*g), ~(3>*F), respectively.] Let "small” mean just the negation of big.
4.3 Remark : 1) Since we have monadic relations predicates and 1—1 permu-
tations of power |Dom R | available, we can use one F {copies can be achieved
easily).
2) Also, we can code any set of pairwise disjoint n-tuples, or any set of n
-tuples forming a A-system (of power <A;(R)).

4.4 Definition : 1) M is an admissible model if it is an expansion of (I{R) by
countably many monadics relations and permutations of power =A,;{F).

4.5 Definition : A;=X,(/)= least A such that:
1} If M is admissible, A is a {finite) set of formulas, ACH, |4 =X and m<w.
then | ST (4,M)]=A.
2) Qi?xﬁmtjze

4.6 Remark : the case As=A, is uninteresting as we want to prove now that it
suffices to analyze E', |[Dom R'|=A, i.e. for some such R’ and some
equivalence relation #

(R, @3 A dpe) = i dp for some R°, [Dom R'| = Ay(R) So we assume
A2<1Yf]. (but this is not essential).

4.7 Lemma : If M is admissible then there is 4”,|A" {<A; such that:
a) for any @, @ NA”=¢ and finite A the type g=tp,(@,A") is big.
b) For any such q, g is minimal; i.e., there is no @{Z,¥)€A and b such that
both ¢ (£)Ui+e(Z,b)} are big.
¢) For any A,m, the number of such g's is <Ag.

Remark : From c) we shall use only the "sAy".

Proof : We define, by induction on i<Ag, 4;Clf |4; |<Xs, 4; increasing, con-

tinuous, such that for all finite A

0) for every @ € {fand i < A, some @ C 4;,, realizes tp (&, 4;).
1) If gy=tp (@, 4;) is not minimal, then some rpqi(f,gqi) witnesses it for some

¢Q1€A7 EQ1(;'A1+1



17

2) If q;, = tpA(&.4;) is not big, then for some By € A;4q, no sequence b realiz-
ing it is disjoint to B.

Let A=4,, £'Ul4; 1 < Ag}. Now 4.7 will follow from 4.8, 4.9.

4.8 Claim : If 4,,N@=¢ then for any (finite) A for some i<Ay, q;=tp(T,4;) is
minimal and big.

Proof : Clearly gq; is big (for every i < A5, by (R)). If g; is not minimal, take
Pq.€A, by CA; .y witnessing this (by (1)). Wlo.g, ¢4(Z.by)€g,, and
q: Ut —-<pq‘(f,5q‘_)i is realized by the sequences <Ei,£3f<)‘2+> which are pairwise
disjoint.

w.Lo.g. tpA(@; ¢, 4,,) does not depend on £, and call it 7y; clearly 7; is Ag-big.
Also, my#1; for i<j, since ¢g,(%,by)€q14;,,CqrtA;=q,Cry

but -gg(x,by) is satisfied by &, Wlo.g. &,&; , are disjoint when
(i) #(5.¢).

Now we can interpret @37, : we add a predicate 4,, and let zEy iff # codes Z ,
Yy codes ¥ (remember 4.3(2)), and £ and y realize the same A-type over Ay,
F has =\; equivalence classes of power =A,, a contradiction.

4.9 claim : 4,, satisfies a), b) and ¢) of the lemma (4.7).

Proof : Let ¢ = tpa(a@,4%), @ A" = ¢. We know that for some <A, q;=ql4;
is big and minimal, hence is realized by pairwise disjoint ¢ &<AZ.

For every ¢(Z.b)eq, g; Ulp(Z,b)} is big [as g, Ule(z.b)}€q; , for some large
enough j<Ag], hence q; Uf{-¢(Z,b)} is not big. There are <A, such ¢(z,b), so
omitting any tuple realizing any of them from our sequence <EE:§<)\2+> still
leaves Af many, so each realizes ¢ hence q is big.

If g is not minimal, then g; is not minimal, contradiction. If 4.7(c) fails, we
can interpret @37,, by taking A witnessing the fact that c¢) fails and defining £
as before. This finishes lemma 4.7.

4.10 The Symmetry Lemma : There are no ¢(Z,7,2), &,@4,b4g(a,B<A) such
that:

1) for every a,8 < AF, |=go(5a,5,da,(f) and these three sequences are disjoint.
2) For fixed a, b, g(B<AZ) are disjoint.

3) The @,'s are disjoint.

4) ¢(b 4 5.%.d) is not big.

Proof : We can throw away many @,'s , bag's, as long as their number
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remains so w.l.o.g. all the sequence b, g(a,f <AF) are pairwise disjoint. Let
A={g}.

We may assume that for each «, all 5‘,,5 realize the same A-type over
{@,7<aj Ud ( use part (1) of Def. 4.5 to thin the set {&, g:B<AF}). Similarly,
we may assume that To, Tq, realize the same A-type over
{@,y<agnazl Ulb, 7<a;Nay, i<iziyd (use 4.7).

What is the truth value of (p(l;a’ﬂ,d.,,c’f) for o,B,7<A5?

True, if y=a.

False when 7>a (note that we have assumed «,8,7<A; and not «,8,7<AJ ; note
that (b, .%.d) is not big, so only few @, realize it, so no @, realizes it for i>a
(as then all such &;’s realize it).)

If y<« , the answer dees not depend on B.

Let a, code @,, b, g code Ea,ﬂ' For notational simplicity we ignore the coding.
Let P=fa ga<Ayi.

Let zby iff (Vz€P)o(z,2,d)=ply,z.d)).

4.11 Fact : For ay,0g,81,82<Az, bg, gL bg,p, iff a1=ag.

Proof : We have just shown {<=).

Conversely, say o ;<as

#(b g, p,0a,d) is false but @(b g, g,04,d) is true, so (=) is clear.

So we have interpreted Qﬁ‘g’,\a, contradiction, hence we have proven 4.10.

4.12 Lemma : For any admissible ¥ , and any ¢{(z.7), there is an admissible
expansion M* of M, and %(7) such that ¥° E@z)e(z.7) = %(7).

Proof : We define 4;CM i<AJ increasing, continuous, {4;|<As. Take 4g to
witness lemma 4.7.

A; 44 realizes all A-lypes over 4; for all finite A, and <A.,;+1; Ag, . ... A,,> is an
elementary substructure of <M;A o - - - ,A¢> even allowing the quantifier 3=he,
Let E be the equivalence relation on If~4q: =,z iff (VT CAg)(@{z.7)=p(z2.7).
Clearly, every £- equivalence class is represented in each 4;,.1—4;.

We say that (i,7) is a good pair if 1<j and for any @ such that @ M\(4; —4;)=9,
and ¢ €4;—4;, ¢(c,@8)=(3""z }(zFic rp(z,a@)).

4.13 Claim : If there are 14<jo<i1<J 1<« - €Iy <Jn, n>L(F), (4.5;) good, then

n
the lemma holds with M"=(M ,4; A;. ... 4 A;) and 1;:(37)=L/_\o [ if 7 is disjoint



from A4; —4; then there is no ¢ €4, -4, such that ¢(c.y). ]

Proof : Suppose M’ E¥{%). Then for some [, 7 is disjoint to Aj;—4;,, hence
M" | "there is no ¢ €4;,—4; such that ¢(c.7)".

By the definition of a good pair, and as every F-equivalence class is
represented in A_?-z—Aﬁ, and there are =A; E-equivalence classes, clearly
' EEz)p(z 7).

For the converse, suppose M' E(@**z)g(z,7) , and suppose ¥ is disjoint to
Aj;—A; but (Ac€d; —A;)p(c, 7). This contradicts the definition of a good pair.
So we have proved 4.13.

Now we assurmne there are few good pairs (£,j) i.e. there are no i,,,j,, asin 4.13

and get a contradiction, thus finishing the proof of 4.12.
For a club set CcAZ, the following holds:

(*) 6€C,i1<d implies 6>supfj (i,7) is a good pair } if the sup is <A
By the choice of the 4;’s (and see [Sh4], beginning of §2 (or guarantee this in
the 4;’s definition) also e.g. 4.15 is a repetition of this):

(= it{c)~b,CAs banAs=¢. M" Foi(c.b7by)  but M
(@2z)(zEcngy (2,0 ,~8 ), @, is gotten from ¢ by permuting the variables then
for every 8>6 (but B<A$) there is such a b, with 52(\Aﬁzz¢.

Let K be the set of <c>"51 such that ¢(c.b,2) is big {when <c>"51€uA£
this is equivalent to: for arbitrarily large § there is b, as in the antecedent
(above), b;NA4p=9.)

So again by the A4;'s choice, if §€C, 51§A5,0€A5,c€ U A,;=de12+, <c>"51€§(
1<Ad

then (Vﬂ<?\§“)(acl€Axé,)(<c1> ~b,€K nc'e Ag). (This is by a similar hand-
over-hand construction.)

Now if §;<6,€C, (6,,65) not good, we can contradict lemma 4.7, 4.10.

4.14 Lemma : For M" rich enough, for every @(x,,...,Z,4;) there are
¥; ; (i=n, j<k) such that:

n k
DI EY)g(s 7 y) A9 TnEna), then N\ By (onar ).
2) Vzﬁs"zyﬂ,;,j (y.z).
Proof: : It suffices to find ﬂi'j such that
=Ag <Ay

T ey, .. TaY) A p(Ty ’xn+1)"’\i§ (B, (Tner®) AT Y0y 5 (y.2;)], as
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then the formulas @i'j(xn_,_l,:z:.;)A:is"ay'z?i'j(y,x,;) witness the lemma (using
4.12).

We prove by induction on n.

For n=0,1 trivial.

Assume for n, and we shall prove for n+1. We assume M’ is rich enough to
contain the unary predicate A° as in lemma 4.7 and the formulas ¥ as in
lemma 4.12. We shall define n*" =4 and (latter) a sequence of finite sets of for-
mulas

Ay (i=n™), AjCAyyy , pEA,.

Remark : The n*' =4 is somewhat misleading: in a sense it is large com-
pared to n (R) but this is absorbed by some w.l.o.g. below. What is the point in
having those A;? Lemma 4.10 gives us a kind of symmetry (if a depends on b
then b depends on a ). But this is not true if we restrict ourselves to depen-
dency witnessed by a formula from a finite A;. but if we have long enough
increasing sequence of A; for some 1, A;-dependency is equivalent to Ay -
dependency {for those sequences).

So suppose ¢g{a,, ..., 04,0 )AESAaxgo(a 4o« @p41, ) . We want to prove that
some ¥€A,, ~ satisifles 8{c ,a,;)/\:{s"zx@(x,ai) , for some i . Wl.o.g., there are no
repetitions in <a1, Y B s > (If e;=a;, use induction hypothesis on n; if
c=a;, we are done because we could have chosen to have =y €A, ). Wlo.g.,
no a; satisfies any 9(z)€A, ~ such that 3z 9(z)

Similarly for next observation, as then we use the induction hypothesis with

the formuladz (@, ..., @ _1,2 .50, - - -, Qp4q1,C) A
A
(@) elay, . 8 T8y, o B YY)
A
AB(@y, G Z Gy, o Ggg) A2y, L B, 2,8t Bpa) ]

W.lo.g. for no 9€A, ~

(- T U PPN Y PN w0 SIS DU - PO S N
Let@=Cay, ... ,an) %= X(Zy.2)x€h FxX@ ansro ]},
We know that Iskax'q{/i(&',anﬂ,x)A’;&vi(a,anﬂ,c) for i=n'"; we say a, . i-depends
on @ if (@ )(3z)(¥;(& ¥ &)z Y (T, 0p41.2)).
We can assume that for i<n*’, @,,; does not i-depend on @ by putting
¥,(@,y,z) into A;,,. Similarly, [i<n"*=>c¢ does not i-depend on &].

Now by 4.10 (and the assumption, as A, is large enough and the uniformity of
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4.10):

(* for some 9" €A, M ES [ay, ..., Uy 41,C ] and
M EEM 2, 2 ) )9 (Te . ZpaqiC).

If M i=(3>xaf)'¢1(§f,an+1,c) then by (*) the formula

82 (y,2)=(3"22)y,(Z,y 2 ) €A, necessarily satisfied H* | 9% (ap4q.¢) and M° E
(Z{sp‘zy)ﬂ"’ {y.c) hence for some ¥€A3,8(a, .1,C) A (35)‘32 Y9{a,41,2) contradic-
tion. So assume M' F -9%(an..c). Also we can assume that
M EGEE) @y VWalZ,y,c) (otherwise use 4.10 and then the induction
hypothesis on n ) hence

o t:{HﬂZE)(Hy N (Fy.c)r-9%(y.c)], hence there are pairwise disjoint

Ad distinet b,’s, we easily contradict (*); so w.l.o.g. by=b for every a. But
then M'Ey,(@,b.c) (a<r?) implies M E@E™z)y,(£,b,c) contradicting
M E-9%(b,c).

This proves lemma 4.14.
* & %
4.15 Lemma : For any ¢(Z,7) there are 1¥;(z,¥) such that:
1) If 327 (a7 )ap(a,b) then \/ ¥, (b; @)
1

2) :{S&zﬂj(z,d) for every @

Proof : By induction on the length of ¥ and of .

Instead of one ¥ we can produce a finite set. We shall define A;{(i<n*") be
finite, increasing. ¢(Z,7)€l,

Assume Fog[@,b], ¢(@.7) small.

We can make similar assumptions as in the proof of the previous lemma and
define 9, similarly.

Let 5=c~{d)

By the induction hypothesis, for i<n”" there are pairwise disjoint £%(a<i3)
such that 3z, (@ ,6%z).

Say ¥, (@,e%,d%)

if there are AJ distinct d%'s, we get a contradiction because (stzg)gp(d,y_). So

w.log.d®=dP® all a<r}

So (szgw)y’/i_l(d,'w,d) is one of the conjuncis of 9,
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It (Jzkgw)wi(i,w,x) is not small we first define distinct d; (i<AJ) such that
(Hahgw)qbi(i,w,di), so (Hzxgw)wi_l(i,w,d,;) then define ¢*®,d* pairwise dis-
joint for a<Ad such that ¥, _,(@,c%* d;). This shows (3”5 )y,_,(a,7). Contrad-
iction.

I (Hax'gw)'l,bi(d,‘w,:t:) is small, we get the desired conclusion.

4.16 Lemma : Every formula is equivalent to a Boolean combination of for-

mulas of the form:
n
{=\1’l’i(yi,yo) ANYWYor - Y FiYo - Yn) Fe(Yo, - - - ¥Yn)) such that :

Vy:{sxzzﬂi(z Y )AVZHSAEy'ﬂ,; {z,y) and for some ¥#! we have

(Vxg, - - )191(Fj(xo, <)) A (@z)¥l(z) and the F;'s are definable func-
tions.
Proof : Let ¢(zq,....z,), <a1, . ,an> be given. We define n*'<w, a
sequence, increasing, of finite sets of formulas A;{(i=n*"). Let

L={l : a; realizes a non-big formula in A;}.

Ti:{<l,m> 8(ay, 8, )~ 3502 9(z ,a,, ), for some BEA;}.
n™ is chosen big enough so that for some i<j—8-2n(R), j<n™, L=l T,=T;.
Note that T; is an equivalence relation on {l:1=<l<n l¢ ;] when the appropri-
ate 9¥'s from the conclusion of lemmma 4.10 and 4.12 are included in A; 1+1 for
each l;
Since T;=T7;, j>i+8, the necessary witnesses already appear in A;. So T; is an
equivalence relation, as claimed.
Let @=ay~b,~ - - ~b,, where a‘0:< a;:l Eli> and such that @; and a;: appear in
the same Ej iff a;,a,,€@ and <L,ll> eT;
We may assume that for each A there is a predicate 4; as in lemma 4.7and
Ag(x) € Apyq, 50 |AL|=<A; and every complete A, -type over 4; is minimal.
Also, using a few permutations, we have in some admissible expansion of M
the predicates RF such that Ef codes {5{%:&%{1 <A} ., pairwise disjoint
sequences of length L=l(5,’°) such that R¥ contains exactly one code for a
sequence from each complete big type in S}, (4¢), and 8f,€4;,, and it real-

izes a big Ap-type over AU U Elk’{. So we may assume
£<E
RE(z)eAL,q (L=1,...,m). Similarly, we may assume for the functions ¥, map-
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ping sequences of the appropriate length which realize some big type in
n

Sa(4r) satisfying ,Alﬂ'(b,;,bj) [for " (z,y)=\/ {8(z.y)eA, Vaatys(z y)
%,3=

and Yya*%y9(zx,y )} which is in Ag+1] to the unique sequence in RF realizing
the same Ag- type over Ag}, (i.e. (F(Z,) =y) € Bpyq)

This proves lemma 4.186.

4.17 Theorem : @ is bi-interpretable with {@7¥", Q)1 @p @p+] with £ an
equivalence relation, and [Dom R*|=A,.

Proof : By what we already know, we may assume |Dom RE|=X;. We know
R(zy, ..., %y (g)) is equivalent to some Boolean combination of formulas as in
the statement of the previous lemma. There appear there formulas
P9, (x),9;(x,y). Without loss of generality, ang‘gy'éll {y ,x)AVyas)"“xﬂl (y.x).
Let BOZix;\L/ 9 (z)}. Let ﬂl(y,x)=\L/ (% (y .z v, (z,y)]vz=y (so ¥! is sym-

metric but not necessarily transitive.)

On 7/~B° we have the equivalence relation £°= the transitive closure of
3y ,x).

By our assumption, each equivalence class of £° has power <X,

Let  B'=B°Ufz:(3=*y)(|y/ E°|=|x/ E°|)} and let B={zelf~-B!
(3Y) (Y E 2 3™ 2)[91(z 2 vo' (. 2) )}

E'=E%DB?

We want to interpret £' and analyze EX(I{~B°B'). Note that if we want to
"express” our life will be much easier. For each equivalence class C of E! we
do the following:

Casel : There is bo€C such that |{z€lf~B%9(z,b)}|=|C].

Let Do={z €C:x #b,, 9 z,b,)].

Case Il : Not 1, so |C] is singular.

Choose a regular Ap<|C| in such a way that { Vushgu singular ) { VA<u,A
regular ) [ [{C:|Cl=u,C an E'-equivalence class }| ={{C:|Cl=u, A=A, C
an El-equivalence class }].]

This is possible as

M<{C:1Cl=u)] (else CCBY; and choose bpoeC, Do={zxelC:z b9z ,be)}
such that | De|=A,.

Let P={bo:C an E!equivalence class }
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Q=P C an E! equivalence class {.

Wlo.g., Pand @ are predicates of #, as | P|=Ag [ @]sAg

Let yE z iff

Qy) r Q(z) A (V) (P(z)»8Yy ,x)=0z,z)). The E” equivalence classes are
the sets Dg.

E” will serve as the £ mentioned in 4.17, so we have proved Qp <;,; @r. Now
we shall start to prove the other direction (we still have to define K*).
We shall now interpret El.
Take some isomorphic copies of E*, say Ej, £1, such that for each E!-
equivalence class C satisfying |C|=u is singular, £; decomposes C into cf p
equivalence classes, each of power <u; and some EI equivalence class
includes exactly one element from each and is disjoint from all other C’s, and
E§.E] refine E;.
For |C| regular, C is an Ea equivalence class and an E; equivalence class. So
we have interpreted £,
(If A=]1|, it may happen that such a choice of £} and E] is not possible, but
then split {{/into two parts closed under £! and do this on each part.)
Let A={y;. 0, {(z) % (zy) : L}
Let 5=" sk (B, i)

k=1
For each p €5,choose z,, torealize p.

pesS

Let R =RtB,.
Suppose |Cl=u, C an E'-equivalence class. Then E! has =2J equivalence
classes of power u, else € would be contained in B'. So we can use several
copies of E! to code whatever we want on C{for all C’s simultaneously). In par-
ticular, we can have elements of C code sequences from C. We can also inter-
pret the equivalence relation zFy %z and y code sequences realizing the
same A-type over BL."

Use another few copies of FE! together with 1—1 functions of power
A=|Dom R| to interpret the functions F; { for coding F; it is enough to have
Rang (F}) and Er

1

v(@z)[(y code z) ny € Ban (z = Fi(y)vy=F(z)vF (z)=F(y))])

czhRy iff z =y



25

Def. 5.1. So AJ satisfies 5.3A below. So from 5.10, 5.12 it follows that
[A] = A => |ST(4)]| = AF. So AJ satisfies the demands of Ag, hence Ag=<ig.

So there are only two possibilities: Ap=Az or Ag=AF . For this section:
5.3 Hypothesis : Az=AF. Let A=A,
We shall eventually prove that {3z, @7, @31} ( |Dom E|=A ) is bi-
interpretable with %7 = { well orderings of A4 of order type
A lA|=A<!|l/~A|}]. Together with the preceding theorems, this completely
analyzes the case Ay#Ag.
However we want to do this in a sommewhat more general case, so for the rest
of this section:
5.3A Hypothesis : A is regular , A=A and for finite A,m and admissible #, if
ACl{]A|<X, then |ST(4,M)] <A (hence as in 5.2's proof, @i\ & s @r)-
5.4 Definition : We say ¢ is a pure extension of p {(both are m-types) if
T, =c € =>x;=c €p; we write p C,.q. We call p pure if ¢Cp.p.
5.5 Definition : For every admissible M, |4 |<A, p € ST (4,M) we define rank
Rk(p)=< a,ﬁ) (a,B may be «) ( really we should write FkF):

Rlc(p)z( 0,0> if p is realized by some &.

Rlc(p)a( a,7> (0<y<=) if for every B<y, and 4124 such that |[A'|<A, p has
an extension q€ST (41, M) such that Rlc(q)z.-"’:<a,ﬂ> and if a>0,q is a

pure extension of p.

Rk(p)2< a,m> if Ric(p)2< a,7> for every 7.

}?k(p)2<a,0> when a > 0, if for every B<a there are A!DA4, |Al|<A, and

{9125, and gz2,,plorfa=1,9;2p, 92 2p] such that

91.926SF (A1 M), g1#gz, Re(q)2{B.=). Rk(gz)2Bo=).

Now Rlc(p)=<a,,8> iff Rk(p)2<a,ﬁ> and Ji’lc(p)af<a,ﬁ+1>‘
Re(p)= a, =) ifl Bk(p)={ a.B) all B, Rk(p)*{ a+1,0).

Rk (p) =K oo,m) if Rk(p) = a,B) for all a,B.
5.6 Remark : We can show that if Rfc(p)=<a,ﬁ> then ge€{0,=]. Note that
there is no connection between ranks for different A’s.
5.7 Claim: : Fix A m, p,g will be complete A—~m —types.
0) p Cprq =Rk (p)=Rk(q)
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It is easy to interpret K.

The analysis is complete, getting the biinterpretability except that we have
forgotten B3=Dom R—B!\yB2 On B® , E° may have countable equivalence
classes but (Vz 683)(3‘@*"3./ Y@y ,x). We shall deal with the new points only.
First we can define a partition of B® to B3(1=0,1,2,3) such that 94=z,y), z€57
implies y €52, UB2UB+; ( where 1—1,1+1 is computed mod 4 ) [ e.g. choose
zc€C from each E%-equivalence class C (CB% ) and let y€C be in BJ if
d(y.z)=l mod 4 where d{y.z)=Mnlk: there are
Zgo, Zp, Y=2,,2=2, 9(2;,2,4,) for each 1}].

Next for zeB? let A =]y 9 (y.z)}| and w(A)=|{zeB%A,2A} ( for A<Ry. ) We
can assume each wu(A) is 0 or =8;, (and even = AJ ) and note p(A) is decreas-
ing in A, hence eventually constant, say for k<A<R;.

Now we can interprate 3, £ an equivalence relation which for x=k has
exactly pu(A) classes.

For the converse, lel us e.g. interprate ¥;(z,y). It suffices to code for
1<4, S=§<x,y>:61(x,y)/\(x€8;3 ] Note that [|B3| =|B3]>x (by the
definition of B1).

Let F be a one-to-one function from S into Bf’;g, and let £, E; be equivalence
relations. The F-equivalence classes are ia:;UiF(<x,y>):<x,y>ESi, for
z€B73, and the E, equivalence classes are {y{u§F(<x,y>):<x,y>€S§. (we
can assume 55, has the right cardinality as we are dealing with =AJ
equivalence classes hence could have chosen it suitably). Together with

monadic predicates the reconstruction is easy; as well as dealing with the 9¥'s.

§5 In the first stability cardinal

5.1 Definition :

Let Ag=A3{R) be the least A such that
(VACIN(JA |2~ | ST(A, M) |=A

A finite, M admissible,

5.2 Fact @ Agis Agor A

Proof : Clearly Ag=sX;.
Suppose Ag#A;. We cannot interpret Qi},)‘; because otherwise for some admis-

sible M, finite A, ACM, |A|=A5 we would have |Sy{4,M)|=AF, contradiction to
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1) Rk (p)=€0,0) iff Bk (p)={0,0).

2) If p is realized by no A pairwise disjoint m-tuples outside Dom p then
R (p)={1,0) <{ 1,00

3) If p is realized by =A pairwise disjoint outside Dom p m-tuples then
Re(p)={1,=).

Proof : 0) is obvious.

1) Let @ realize p. Suppose ﬁ’k(p)2< O,ﬁ> all B<a. Suppose AlD4 is given,
|A1]<A. then g =tp (@ ,Al) extends p, so Rk (p )2( O,cx>.

2) If p is realized by no A pairwise disjoint m-tuples, let 4! be such any no
sequence disjoint to A'~Dom p realize p, Dom p<A?, and |A'|<A. There is no
92,,P, ¢EST(ALH), hence Rk(q)¥{1.1). So Rk (p)=Rk(g)=<{1,0).

3) Suppose p is realized by =A pairwise disjoint outside Dom p sequences,
pairwise disjoint outside Dom p. We prove Rk(p)2< 1,7) by induction on 7.
7=0: Let @#b realize p. Let A'=Aya b and let q,=tps(@,A!) g,=tpA(b.4Y).
Kasily {q,92} witnesses Fk(p )2( 1,0> .

7>0: Let A1DA4, |AY| <A, B<y. We know | ST (AL, M) | <A

So by Hypothesis 5.3A p has <A extensions in ST (4!,M). Since p is realized by
A pairwise disjoint cutside Dom p sequences, some extension ¢ of p in
ST{A!, M) is realized by A pairwise disjoint sequences, by regularity of A.

By the induction hypothesis, R’Ic(q)z< 1,ﬁ>, as required. This proves the
claim.

5.8 Claim : Assume p €SP (4, M), Rk (p)={ &, ), 0<a<wo, ACB,|B|<\. Then p

has one and only one pure extension g €S (B, M) of the same rank.

: Proof : Take y" so large that

Rk(p1)2<a,7'>=>1{’k(p1)2< a,m> (possible, as there are only set-many
types). We know Rlc(p)2<a,7'+1> so p has a pure extension qeST(B.M)
with Rk(q)a< a,7'>. Hence Hk(q)2<a,w>. If there are two such g, then
Rk {p )2( a+1 ,O> , contradiction.

5.9 Claim : 1) If A>N,, then for any 4 of cardinality less than A, and finite
Am, there is BDA, | B| <A, such that

p €ST(B,M)=> [Fk(p)={ a,=) for some a<e or Fk (pt4)={ =) ]
2) We can do (1) simultaneously for all A.
Proof : 1) Define 4, (n€w) by induction:
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A(}:A.
Suppose A4, has been defined. For each peSP(4,.M) such that
Re{p) <a 7> 7<=, take B DA, |B,|<A such that p has no extension in

(B, . M) of rank <a 7> (ie B, W}tnesses Rk(p)?’<cx,‘r+l> ).

LetAﬂH—Anuui p: P € SE(By. M)}
Let peST (U4, . M). Since Rk(pitdy)=Fkk(pt4d)=Fk{pltdy)= - -, we can find N
n

such that Rl (ptAy)=Fk(ptAye)=""". Suppose n>N and
R (pray)= a7y, y#m.  Be(plA,)=Rk (0Mn_1).An-1CAn_1UBpra, ,=Bpta, ,Chn
SO plByry, , is an extension of pt4,_; of the same rank, contradicting the
definition of B, . So n>N->[RIc(prAn)=< a,m> Jor some a.

Let A* =4,

n
If Rk(prAN);é< oo,oo>, take a<e= such that Rk(prAn)=<(x,m> for every large
enough 7n. pldy has a unique extension qe&ST(4",M) such that
Rk(q)=< a,w>. Also pldy has a unigue extension in ST (4, . M) of rank <a,m>,
but gr4, . p I 4, are such extension for large n.
So pt4, =qt4, for large n, so p=g, so Rk{p)=< cx,co>.

2) Same proof.
5.10 Fact : If sz(p)<< oo,oo> for every peST(4,M), | 4| <A, then Az=<A (hence
w.l.o.g. |Dom R |=A.

Proof : Easy noting A ¢ B => |ST(4)| = | ST(B)].
5.11 Lemma : Suppose for some large enough finite A, for each A-typep inm
variables Fk(p )<< 2,m> . Then,

1) {35, Q0" @47} can be analyzed as before (in §4, with A for AF), and
{3, Q0™ N = @™, @171 35,3 5] for some equivalence relation E, and
relation B, {Dom R'| <A
or 2) {3z, @47 is bi-interpretable with {Q¥°™, Q%% §, some k.
or 3) fER,Q,}I‘li is bi-interpretable with {3535, £ an equivalence relation
[Dom B | <A=NR,.

Proof : Notice that if p€Si{(4,M) has rank < l,M>, then p is minimal big.
We shall determine A later.

Let A® be as in the previous (of 5.9), so the rank of any A-type in one variable
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over A’ is either <O,m> or <1,oo>. (It A=8; we can still get this by Konig
Lemma and 5.7(1).

Let P ={p €SAm(A',M):RIc(p)=< 1,w> J, K = |Prm | and & = Kpy(+) where m(*)
is large enough with respect to A let /9: U pm. We can interpret @¢Z » -

m=m(*)
in fact, for m=1, the equivalence relation of realizing the same A-type over
A® with domain {a:a realizes some p€f,, , a€Dom (R)}, is an equivalence
relation of this form. For m>1, remember we can code sets of <A pairwise dis-
joint sequences so we can interpret g% .
Define 4;(i<A) continuous, increasing, such that:
1) Ag=4". _
R) 4;4+124; YU B, where B, is defined as before.
P

3) [4; <A for i<
4) Dom (R)= 4; (see 5.10).

A<A
We know that every p €l9m has a unique pure extension p[’:]ESZ" (4;,M) of the
same rank. We shall show that every pure p €S (4;.M) is of this form, pro-
vided that Rank (p}=< l,oo) .
if prace P, then it has rank <O,w> , so
Rk (p)<Rk (prAg)= 0,m» < 1,m» =Rk (p), contradiction.
If prtdg=q Q/Qm but p #g[*, then for some geql*l, ~pep. But by Def. 5.5, p qlt
exemplify Fk(g)=(2,0), contradiction.
This proves every p of rank < 1,oo> in ST (4;,M) is gl*] for some gef,,.
We assume for a while:
Hypothesis A :(Vi)(3j>i)(@m = m(*))(3p, € ST(4;.M)) [ Rk (_p,;)2< 1,oo> and p;

A -splits over 4; | ( A;2A to be determined.)

where we define: p €ST(4,M) A;-splits over BCA if there are b,6CA real-
izing the same A;-type over B and there is €A such that
p(z.b)ep, ~p(Z,0)ep.
Clearly for all 1, p,;=qi£f} for some j = j;, and some qiep {(when we restrict
ourselves to A-types in one variable.) As I/Qm(.)|<)\, we may assume all g, are
the same, g=q,, and q is pure. For notational simplicity, let j;=i+1.
For each 1, let @;CA;,,—A; realize ql*) and b;,0;C4;,; be such that
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@ (z.,b;), ~¢;(x,c;)eqli*1] We may assume all the ¢;(Z,9) are the same,
@ =¢. Now (@, bg)r-9(T,bg) holds whenever a>f (as &, realizes
q[“lzq[5+1322¢(f,58), -9(Z,05)}) and @(T4.bg)n-9(T,4Cp) fails if a<f when we
choose A, appropriately, namely, when we ensure 55 and €p realize the same
{9(7:z)}-type over Ag where ¥(7.Z)=¢(Z.7)..

So some formula well-orders {@,~b,~Cq:a<A}. There is a subset of power A
which is a A-system, {as A is regular = 8;) so we can code the elements of that
subset (with a few permutations) by elements of # and thus interpret @y°™¢
50 [QEh, QYT =i @R, @1 7S

To see Qr<iyf %%, Q¥ 4, for simplicity we show that this holds when R is
binary. { |Dom F|=A, of course ). With a well-order and a set we code an
equivalence relation F whose equivalence classes are 4;,,—4;. Recall
le/ﬁm(,):. On each E-equivalence class C, we can code {by more well order-
ings) E1 C and for every qﬁp and a € C we have to say whether g realizes g
and whether R(z,a)eql**!]  We can do this with §%% and @¥°™. So we have
proved the desired conclusion {(5.11(2)).

So we finish the case Hypothesis A holds, so assume
Hypothesis B : Hypothesis A is false.
By relabelling and taking 4; for some large i as our 4, we can assume no
ql*] A -splits over 4. (for every g € D).
Now we ask:
If AgCACAj are as above, &,CA,, b,CA,, asClf-45, boclf—Az,
P2=tpa(@2,A3)2p 1=tpp(@1,41)
92=tpa,(b2,42)2q1=tpa(b.4,).
Rip(p1)=Fks(p2), Fkalg)=Fkys(g2).
Must tpa(@;~b 3 4,)=tp (@270 1,4,)?
(Caution: Unlike first order types, the answer may depend on the specific &;,b;
used and not just the types they realize.)
If the answer is yes, (for every A, for some Aq for every 4,,4;5), then we can
essentially copy the analysis { in § 4 ) of reducing from |Dom R|=A; to

|[Dom F|=A; and get the desired conclusion (5.11(1) if AN, or 5.11(3) if
A=8),
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If the answer is no {for some A, for every Ag), then by inductively choosing
counter- examples, thinning to a A-system, and coding via permutations, we
can interpret @%°™ and, as before, we get {Qp, Qi1 }=4s{ Q5% @¥°"*}. This

proves lemma 5.11.

Now we are reduced to the case that Rlc(p)=< m,w> for some p or
Kk (p)2< 2,0> for some A-type p in one variable.

5.12 Lemma : For no p €S (4,M) is Bk (p)=C w0y ,(|4|<A).

Proof : We assume Rk(p)=< m,m> and reach a contradiction by interpreting
o5

5.13 Definition : Suppose (by adding dummy variable) that A is a (finite) set
of formulas of the form ¢(Z,§) (with a fixed §¥) and p is a A-type in the
sequence of variables . Let A° be the set of formulas obtained by reversing
the role of £ and 7; i.e. a A®-type would consist of formulas ¢{a@.7).

5.13A Fact I p=tppl@,A), Re(p )=< oo,eo> , then for some
B2A, |B|<A, q=tpA(61,B)2p,_p, Rk (q)=< oo,oo> and g A%-splits over 4.

Proof : Choose Bg2A4,| Byl <A such that every A°-type over A realized in ¥ is
realized in By.

We take po€ST(Bo, M) , Po2prP, Rk(po)=< oo,m>. So there exists ¢(Z,b) such
that both pgUfe(Z,b)] and poU{~9(Z,6)} can be completed to A-types of rank
().

So there is €CBg, tp e (€,4)=tp pe(b ,A).

Without loss of generality, ¢(Z,C)ep,.

So poUle(z,0)-@(z,b)} can be completed to a A -type rank <°°,°°> which A°-
splits over 4 (and is a pure extension of pg ).

5.13B Fact : We can interpret %%, .

Proof : Take 4;,(i<A) as in lemma the proof of 5.11.

For each i, take p;=tp(@;,.4;) to have rank <w,m> and w.l.o.g. is pure. By fact
5.13A we can take b;,¢ such that tpae(b;.4;)=tps(;.4;) and
P, Ulp:(.5;), -9, (%,¢;)} has a pure completion of rank < m,m>.

So for some ¥;(Z,d;) both p; Ulw;:(Z,b;), ~9;(Z,6;),+¥;(X.d;)} have completions
of rank <m,m> .

Let @, be pairwise disjoint, a},N4;=¢ (a<i, 1=0,1) , a), realize

P Utei(Z,5;), -9 (Z,5,)} and y; (@l ,,d;) iff L=0.
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Without loss of generality, tf,;"!;i*f:‘i*&ia Ch;yq. for a < |4;,4]; wlog.,
@;=¢. ¥;=% do not depend on i. W.l.o.g., b,~¢;~d; M4; is constant, {if A>8;, by
applying Fodor’s theorem Lo F(i)= at least j such that 4; ﬂ(l;i"éi"@}céj; and
then using that there are A-many 1 but less than A-many finite sequences
from 4;; if A=N;, by the A-system lemma and renaming.) W.log. , &f,a is dis-
joint to b, ~g; ~d;.

We can interpret P={b,~¢;~d;; i<A} since we have arranged that they form a
A-system.

Let f be the permutation

(@ )=a;]'7" , f is the identity elsewhere.

When does ¢(d‘f,a,5j)/\-.gp(d,f.a,t:“j)/\['oll(a'f’a,c—fj)s-'n//(f (Ef,a),gj)] hold? For i=j,
the formula is true by inspection.

For i<j, the answer is no, as B-j,ch realize the same A°-type over 4; Dc‘i,f,a.

For i>j, the answer is no; since Et_jg:Ai, and Ef,a,f (E,f,a) realize p; which is a
complete A-type over 4;, contrary to the third conjunct.

So we can interpret F with domain idi?a: a<i<Al, di?,ﬁlE d.i‘:,aa =4711=1z.
(using P and f to do so, remember 4.3(2)).

But Fisin @§% .

5.13C Fact : We can interpret ¥°™¢.

Proof : By Fact 5.13B we can interprete an equivalence relation F with
equivalence classes A4;,1—4;.

Let E; be the equivalence relation on finite sequences of suitable length m
from A; 4

@, &, iff @,,@, realize the same A°-type over 4;.

We can code {J E;=E' by fact 5.13B, since |4;41—4; |<A.

i<
Let zed; =4 y€4;1—4;.
If j<i,
Bz, y)E " I by, ... b€y, ..., Cp,2} are in the same E-equivalence class
and bE'c then (VZ such that zlEy),,/,;);(“’(f'b e bm)=e(Z,cq, .. Ep))
holds."”

Obviously if j < 1, ¥(z,y) holds.
If j>i, py Ulw;(Z.5;), ~¢;(Z.¢;)] has a completion of rank <m,m>, so w.l.o.g. it

is realized in 4;4,—4;, so ¥(z,y) fails.
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This proves Fact 5.13C.

5.13D Fact : We can interpret €5%.

Proof : We can find  Z; ;,F; jCA; 014, (i<3) such  that
tp A% 5. A) =D A5 5. 4i), tP ATy 5, Aia 1) #ED A(F 5. Aiey) for all 1< <A

(we can take them to realize p; \J{+¥;(Z,.d;)} from the proof of 5.134).
In fact there are |4;| such pairwise disjoini pairs.

So, w.l.o.g., T ;. %, 7, Ui, 5 Fing. are all disjoint for (i1, 1)#(iz.j2). Since we can
interpret @¥°"¢, we can interpret the equivalence relation %;, ; B%;, ;, iff 1,=1.
S50 we have proved 5.13D, hence 5.12.

5.14 Lemma : Fornop (and A) Rk(p)>< 2,m> ).

Proof : We know (Vp)(]?lc(’p)<< oo,oo>). If the lemma fails we shall interpret
R%Y getting a contradiction. By Def. 5.5 we can findp Fk(p) = <2,00>.

We can define A4 (i<A), 4; increasing continucus as in 5.11's prooi,
|4; 1 <A, po€ ST (Aq), Rk (po)=X2.%): p=pi ST (4) Po Cpsv Rk (ps) = <Rio>,
PiCpr G EST (A 41), FE (g)=C 1=, 8; ;CAje1 — 4, 1Pl 5,4;)2prq; has rank
< 1,m>, and ¢;(Z,b;)€q;, ~9;,(Z,b;)€p;4;. Wlo.g. the <5,;:i<)\> form a A-
system. And even @, ;, b, are pairwise disjoint outside some 5"

If for every i for some j, p&j] A°-split over A;, we can easily interpret @¥°r¢.
Otherwise we can easily interpret first @3%,, with which we can code
{A; 114 1 <A} and relation over the A4;,,—4;; so we can again code Qwora,
{really the first case occurs as for every 1 €A, there are 1 <j; <ja <A,
tp ac(b; . 4;) = tp e (b, 4;) In both cases we finish as in 5.13D.

Now 5.11, 5.12, 5.14 give a complete analysis of the case Ay#Aj

* & *

During our investigations, we came across the following quantifier:

5.14A Definition : Let K¥°"¢={R:R a two place relation, { Dom 7,k ) is a well
ordering of order-type «].

5.15 Claim : 1) If a<g then Q¥ <Q¥°™.

2) Q%% <|a| <mt@2°® for infinite a (hence @1 =Q¥™).

3) Q% < Q¥ ( A>k2Hy are cardinals).

4) For A singular Q¥ =,,,0%% .

5) If @ = A® then Q5% < Q¥ord.

Proof : Easy (for (4) use 6.4).
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5.16 Lemma : 1) If X is regular, ©<u<A, u<2%, then §%, <., (¥, g3}

R) If A is regular k<p<X, u<3, () then Q% <., {QY"? Q2% }

3) Assume a <A Aa =B < A(at+l), A regular, lal = x. Then
QF =it (Y%, Q)

Proof : 1) Let S={6<A:d divisible by &}, and let F be an equivalence relation
on S with =u equivalence classes each of power A (we shall define and inter-
pret him). As the number of models (k,<,P) is 2%, we can find PCA such that:

(*) for 8,,6,€5,6,E 0, if for every i<k, 6 +1€P<>0,+1€P.
Now let Eq be i( 61+'L,62+'i>: 8,€5, 6,65, 1<k}. Easily we can interpret £ by
<,P and F, all interpretable by {QY¢, @99, 3.
2) By induction on n.
3) Easy.

5.17 Lemma : 1) @y ¥ in:@¥°™ for A regular.
R) QU F it O, Q2% § for A,k regular, A=k>8g and u=3,(k).

n
Proof : 1) We can prove that if l/\l(Q?WdR)(Vf)[R(f)ERL ()], then the model

n
M=(yDom R, By, ..., ,R,) can be represented as », ¥; where:
=1 i<A

(A) each #; is a model of power <A.

{B) the | M;} are pairwise disjoint

(C) the meaning of M=} M; is that if @ CM;()i(1)< - <i(k), we can com-
i<A

pute the basic type of &~ - - - ~&, in ¥ from the basic types of &; in M) {not

depending on the particular i(l)’s.)

Now by Feferman-Vaught theorem the conclusion follows.

2) Like {1); but for formulas to depth n, we use the F.V. theorem for formulas

of L of (quantifier) depth =n.

5.18 Lemma : @Y=, Q%%

Proof : Clearly @™%=, Q%% (in fact Q§°"¢<;,:95% ). Ordinal addition on A

gives a pairing function, and on a subset of cardinality A, and we can define

addition as we can quantify over one-to-one functions.
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§6 Below the first Stability cardinal

Hypolhesis : We now assume A=A;=Ag.

We try to approach A from below. Wlo.g |Dom R|=A, and we analyze
{3z.@x7 1.

6.1 Construction : Let ¥ be admissible, rich enough, A finite large enough.

We define by induction on i;
d:a,“fa (L':O 1 agi), ¢;(2,97.,2,b;), ¥;(z,¢;) such that, for

A, =§d} fa ]a, cj a<j<i,l <2}
a) ¢; Y €A.
b) ¢;(Z£,7,2,b;) is not realized in A; or at least by no &, "a’l ”El'j,a (i>7>a).
c) %(-’5 Z,0;) > (¥, (2.8 -9, (9 .5,)).
d) &, dtla realize the same A-type over 4;.
e) go,;(a,; « Tia Gy q by) for all a<i.
f) all the sequences §d3 a’ﬂﬁa aly: a<j=i} are pairwise disjoint.

Continue until 1", when the process breaks down.
Let x= card (i"), 4%=4;- so |A%}=x if x is infinite |4%] <22 if x is finite.
6.2 Claim 1) We can interpret @3, if x is infinite.
2) We can interpret Q5 ¢, if x is ﬁmte, x;=x/ 2"
Proof : 1) If y is regular, we can make the parameters (b;~&;) into a A-system
and proceed as in fact 5.13B previously.

So suppose £=cf x<x= 3, X;. £<x; all;

i<e
We can find a subsequence of <5f‘6,;:i <'L°> of length « which is a A-system,
and with it interpret an equivalence relation £ with k equivalence classes of
arbitrarily large powers less than y.
For each i, there is a set S;Cx;¥, of cardinality x* such that <5j"63-: jES?;) is
a A-system. Let &; be the heart of this A-system.
There is TCk, | 7'|=x, such that <§i: i€T> is a A-system with heart 2.
Let 7, €85; for each 1.
By hand over hand thinning of each S; we may assume b "€, Mb g ~C1CE if
acS,ales;,i#j.
We may assume S;\S;=¢ for i#j,1,7€T. Let i(a) be the unique %, such that



36

a€S;. By permutations, we can code {&;: 1€T] and {b,"Cy—8;(q) ' ®€S; } and
{6, ~c, €Ty

We need to code the equivalence relation E'. b,°C, ;) E' bg~Cg e iff
i(a)=t(g).

By our reduction, this can be accomplished if we can do it for singletons
rather than sequences. This we can do, with the equivalence relation F.

2) Left to the reader (really we need just that x; as a function of x diverge to
8o)

6.3 Conclusion : ysA.

6.4 Claim : 1) If x is singular, @2 =;,,@%%, .

R) Q5% =mt @37y if A>x, x singular.

3) If x is finite then QF 2xs 2 Sint ey Sint 933

Proof : 1) Now we know @¥c, <in; @%% . Let us do the other inequality. Say &
is the following equivalence relation on f(i,j>: i<j<x}:

iy E kLY ifi j=L; clearly E€Qed,, .

Let <X¢3 ?L<1c> be as before, and let E1€Q§?<x be an equivalence relation on
§< G,j): 0<j <x} with x equivalence classes each equivalence class unbounded
in x of power less than x.

2B y=3z'ay Y z'Ex n y'RBy »r 2'E,y') is an equivalence relation with x classes
of power x.

2) Similarly.

3) Easy.

6.5 Claim : At least one of the following occurs (if x finite, we should use
3n(R) x) (4% etc are from 6.1):

(1) For no m<m (A),l(z)=m p(Z,7)eA,@ (finite) and pure p e SPT(A% M), are
both p Yi+e(Z.8)] realized by x pairwise disjoint sequences.

(2) For no ¢(z,g)eA and @ is ¢(%£,8) realized by no bc4% but
@z)[¢(Z,€) A 2 NA=9).

Proof : Suppose @{Z,0)peST(4°% M) exemplify (1) fail, i.e. there are
&k (1<2,a<i") realizing p, pairwise disjoint and disjoint to 4° (as p is pure)
such that Ee(al,b) iff 1=0.

Suppose further that %(%.¢) exemplify (2) fail i.e. there are d (a<3n{R)i"),
pairwise disjoint and disjoint to 4° such that Fy[d,.¢] and -(3ZCA)Y(Z.C).
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We now can, by thinning, have Ela ,d {a <1%) which are pairwise disjoint.
However ~we could have chosen al,=al, ( I<2a<i® ),
bi»=b, ¢;»=p(Z.b), d; o=d 4, ¥;-=9¥(2.C;), €;-=C, contradicting the choice of i".
6.6 Lemma : Suppose that 6.5(1) holds, and let Al={a¢ A*: tp(a,4y) is real-
ized by exactly one element }.

AR=f-A% AL

Then

1) If A°CB, p=tp,(a@,A% M) then the number of ¢ €SP (B, M) extending p is at
most |B| {or = x |B|™®)|A| when x is finite).

2) 1S B (B M) |<|SEHAOM) | +|B]| (or =S} (A% M) x|A| | B|™D if x is finite).

3) A<2X and A=|SF™®) (40 |M|)| for x infinite.

Proof : 1) Immediate from 6.5(1): let B be infinite (24% and suppose,
tp p(@,, B) (a < | B|*) are distinct and

(*) 2, {a < | B|*) realizes p.

Wlog @ga=8} ~a', where @ C B, @} N B =¢, and the @ (a < |B}")

are pairwise disjcint. As 6.5(1) holds, for every €. one of the sets {a < {B|™:
E¥(a,c)], la<|B|l*: E -~ ¥(@,8)] has cardinality < . Now we get contrad-
iction to (*).

2) Follows from (1), as w.l.0.g. we can count pure types only.

3) Clearly |SF™&) (B, M)|<2X for B of power =2X. This is closely related to the
definition of A3=A but there is a difference: # and A are here fixed. Bul we
could have repeat §4 , §5 for a fix larged enough A M {with A depending on
n{R) and not on R). If A is regular use §5 with hypothesis 5.3A, for A singular
8.2, 6.4. (alternatively repeat this section for any A).

6.7 Lemma : Suppose 6.5(2), and that A is closed under permuting the vari-
ables.

(1) There is A1,A4% AL |At|<|SF™B) (49, )| m(A) , such that for every B
extending A!, and b disjoint to B, {of length = m(A)) tp(b,B) does not A-split
over A°.

2) A< | SEMB) (41 1) |

3) A=RX when y is infinite.

Proof : 1) Immediate.

2) Follows from (1), as in 6.6 (as by (1) every pure p € SF™@®)(B) is
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determined by p t 4%)
3) By (1), (2) it suffices to prove that if A%CEH, |B|=2X, m=m(A) then
|ST(B,M)|<2X. Suppose B,m form a counterexample. Then for some
gCB.p(Z,7,8)€A, ISf(p(f;g’E);(B,M)|>2X , and we choose an example with
minimal [(Z~F) and so there are b; disjoint te B, for i<(29* with
ip W(i;ﬂ.é)}(g’;’B'M) distinet, L(b;)=L(Z), and w.l.o.g. tp(b;,A%)=p for a fixed p.
If for some i#j, there are @,{(a<x) pairwise disjoint, disjoint to 4° such that
@(b;, @, )n~9(b;.a,), we get contradiction to 6.5(2).

So for every j>0 there is B;CB,|B;| < x such that if @aCB-h; UA® then
¢(Z,@)epo<=>p(z.d)€p;. The number of possible B; is <|B|<X so wlo.g.
B;=B; for j>0. But now let {gu(Z,¥4.€4):a<x} be the formulas we get from
@(Z.7,€) by substituting one member of ¥ by a member of 4°B,. Clearly
0<i<j implies ></xtp B, M)#tp

(Ej,B,M). Hence for some

$a(Z ;yméu)'(&i ?a(Z:9 .Ba)

a |S éu)(B’M) [>2X, contradicting the minimality of L{(Z~F).

$alZ Ja,
6.8 Theorem : There is a function f:w-w, diverging to infinity such that:

if x=x(®) is finite, then for some R’ and equivalence relation FE,
{3r, @x " =mildp-3g), n=|Dom R"| finite, and Q§fn) 7 (n)<indr-

Proof : Combine the previous lemmas.

By 6.8 or 8.7 there is A1, with |A!| not too large than x, such that every pure
peSF™B (41 M) has no two explictely contradicting x-big extensions. Now as
in §5, we can apply §4 to get dp=,,{3p-dz} with |Dom R*| not too large than
| 42].

As for @8%,) 7 (n)Smndd g, use 6.2(2).

6.9 Claim : We can interpret 7% if x is infinite.

Proof : We are done if x is singular by 6.2, 8.4. So we assume x is regular. If
| S§™(8) (4, M) | <x whenever |4 |<x, we repeat the case A;=A$ with A, replaced
by x everywhere.

So we assume «=|A|<x, | S} (4™ M) |=x. Now |SE(AY, M) |=yx, for some A! of
cardinality <x, and some admissible M! [ as if tpA(@;,4)€ST(4,M) are distinct
(i<x), then w.lo.g. {@;} form a A-system. We can expand 4 to include its
heart and use permutations to get distinct elements of S (41, M) ]

Since A is finite, there is ¢(z,¥) such that |S¢, (4%, #)|=x.

Let m= length (7).



39

Let /=f{@cAl:p(z.@) belongs to at least x types p€S{, (4" M), and ~¢(z,a)
belongs to at least x types peS{, (41, M)}

Let Sy(N)=tp Nite(z,.a@) : @elfpeS (AL M)}

Note that |S,(/)|=x, as follows:

Let F:5,(4%M')>5,(]) be the obvious projection.

It |Sg(I)|<x, we take g€S5,(I) with >x pre-images p; (i<x), p;#p;, so each,
except possibility one contains a formula which belongs to fewer than x of the
p;. But there are fewer that x-many formulas in all, contradiction.

Also note that for every @€l: |{p €S, (I):¢(z.@)€p}|=x and

[P eS,(D): ~p(z.@)ep ] |2x.

(otherwise the pre-image under F of a set of size <x would have cardinality
=x, but we just showed any q€5,(/) can have only <x elements in its pre-
image).

On 7, define the following equivalence relation E:

abb iff |{peS,(I):p(z.@)ep=p(z,6)gp}|<x.

Let JC7 be a set of representatives and G:S,(/)»S,(J/) the natural map.

6.10 Fact : |G"Yg)]|<xfor any q.

Proof : Suppose G(p;)=g and p;#p; for i<j<x. For each i, take b,€l, such
that (¢(z,0,)€p;) <> (9(z,b;) € Dy41)-

Let @;eJ, @; Eb;.

Since |J|=|I|=|A!|<x, there are @', and & , such that § = {i:@;=a@  and
b;=b"} has cardinality =y, so @ £b". W.lo.g., p(z,a")€q.

For all i <x,¢(z,@ )ep; and @ Eb  so for all but fewer than x ordinals
i€S, o(xz,b )ep;. Similarly, for all but < y ordinals i € S, @(£,6") € py4y. S0
for some i € S, p(x,b") € p, and @(Z,6") € p;4,, but b° =b; contradiction.
So 6.10 holds.

Thus | S¢,(J) |2x.
We define B; (i<x) by induction; such that
1) B; is disjoint from 41y U ;.
i<t
2) |B; | =k < x (remember |J| < || < |A}|™ = k).
3) No two elements of U B; realize the same S;,(J,Ml) type. (Possible, as
j<i

FuB; I<x=|Sg(N)1).
j<i
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4) If @#b and a@,beJ, then for some admissible c €5;, ¢(c,a)=-¢{c,b) (possi-
ble, as | J|<«=|5; | and the choice of J).

Since @3% <@k, We can interpret an equivalence relation £ ! relation with
equivalence classes the B;’s. Also, since |J|<=k, we can code sequences from J
by single elements.

Let <C«;,a5 a<m> enumerate B;, and {&, : a < £} enumerate J.

With equivalence relations from @%%, we can code pairs from B; by elements
of B;, so with a monadic predicate we can interpret

Q=§< Ci,a»ci,ﬂ>5 p(c; 0.8g)}. Now we can interpret S=§< ci,a,d,,): i<y, a<k} by

the formula 0(z,7)= zc YB;, ageda (Vz)(zE'z>{p(z,7)=Q(z,x))).
[ 2.9

Suppose R=2<d€1 ,d§>: £<x} is a binary relation on (B. Let
i<x
Pl={cg o p(dL,a,) €<x, a<k} for1=1,2.
2
Now <b1,bz> eR iff @zrcyUB;)(Vy EI/El)L/_\l

(yeP' iff @zel)({y.z)ecSnp(bl 2))).

(We are coding b’ by the {p}-type it realizes over J. Even though b! might
be in some other 5, ,the code is on level B£ for bt in the £th pair of R).
So @3 <int@r-
6.10 Remark : So we have proved that if in (IfR) for some
A.p=|S (A, M)|>]|A|=k=8; (k minimal) then @5, >,.{3p. Q7. ]
8.11 Theorem : Suppose x is infinite. Then
1) 2p=ins{ 5% 25 3p )
Where Z is an equivalence relation, {Dom A, |=2X
2) Also for some M and (finite) A, there are 49,41, |A%|=x, | ST (40, M) |=|41].
| SEM (AL M) |=|Dom R,].

Proof : Combine the previous proofs.

§7 Summing Positive Results.

7.1 Theorem : If V=L, then any R is uniformly invariantly bi-expressible with
Qg, where E is some equivalence relation, or with {@§*¥™ 3p §, Dom P, finite.
Proof : Clearly Az=A,<2X is the only remaining case. We can find 4 such that
[4]=x. | S (A1M)i=x+,Q§?xémﬂR. ( A={ atomic and negated atomic formulas
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in the language of #} {and is finite).

We shall show that we can express Q;‘i"’d.

On A we can interpret the structure <LX,€> . For every a, tps(e.A,M) can be
viewed as a subset of L.
We express an ordering

a=b if (3 well-founded f) [ LE "I am an L, for some a" and [ extends

(as <Lx' €>
already interpreted) and the subsets of L, which a and b represent
appear in
|o£L| and the subset representing a occurs earlier].

=< is a well-founded linear quasi-ordering.

Use a monadic predicate to pick out one element from each of the induced
equivalence classes, This gives us a well-ordering of order-type x*. By 5.18 we
finish. Q.E.D.

7.2 Conclusion : {(V=L) for every K either for some family E of equivalence
relation, dg,dg are uniformly invariantly bi-expressible or for some finite fam-
ily Ky of finite relations and A, 34 {@%" 3k, ] are uniformly invariantly bi-
expressible (if we omit uniformly we can omit the second case.)

Remark : On analysing E see 1.5.

x x o

For some x we can close the gap (x,A) more easily, so such x are impossible.
7.3 Lemma : Suppose M is admissible. And for some finite Am and
A JA|=x, | ST(A)I=p>x

and BCA , [|B|<x => |ST(B)|=«k], x < £ < p and x is singular,

Then 1) {35, Q%% . @5cr x 1St Q5du

) If 8g<cf x , 27 X<y, pregular, then {3, @28, }<;,, QW™

Remark : For (1) note that if cf x=8;, then Q% <., @,

Proof : We can interpret in (an admissible expansion of) #, a tree T of power
x, with ¢f x levels, and u branches {5;:i<u} (of order type cf x).

If g is regular, we can assume that z€B; => |{j:x€8;}|=p so each B; can be
coded by a set #W; of length c¢fy branches, as its limit, with
[1 #j = B, N B; = ¢] and (1) follows.

If u is singular, we can similarly code @, «, and finish (1) by 6.4.
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For (2) we can consider {5;:1<uj as a set of function in «% X, which are pair-
wise eventually distinct. By [Sh 7] for some ultrafilier D over ¢f x and /Cu,
{B;:iel} is well ordered by <.

§8 Complementary Independence Results

8.1 Lemma : Suppose A=AM>8,, u>A, and P is the forcing for adding u func-

tions Fj:A-2 (i<u) (equivalently a function F:uxA-2, F(i,a)=F;(a) by condi-

tions of power <A) . Let for Sq¢u, B be the following partial order <g on
~g

A2US:z<y iff (Ta<A)(y€%2ny =zta) v (a<A)(z€®2ny €Saz cFy) (so RS is

defined in V¥ ). We let for z€8 and a<h, xl‘a=d’efF,;ra ; for x an ordinal € 5,

let zra=< —l> .

Then Q¥+ ,.,@p (we assume {a| *>2=]/for some ordinal a such that SC a).

Prool : Suppose not, then for some p € P and first order ¢(z v ,¢,H Rs),

pllp " € a finite sequence of elements of U,P=< H: L<n'> a finite
~ ~
sequence of permutations of {{ and {(m,y> :ga(x,y,c,ﬁ,}?s)} is a well ordering
of order-type A* and w.l.o.g. {_H'l'”l:l <ni={Hl<n"}"
~ ~

As P satisfies the A*-chain condition, there is Sy € V, Soclf.|Sg|=<A such that

plFp "“*2US,is closed under H for i<n® "

~

Let ¥=({{ R, H, ... ,H _ ). For notational simplicity let {{=*>2yS. Let
~ ~s ™o ~Tn

K={I.] a model of the form ([/|,.f,....fL-_,), each f, a permutation of
7}, and I has no proper {non empty) submodel }.
Clearly, K€V, and each [/ € K as cardinalily = 8g.
We let K'CK be a set of representatives of the isomorphism types, and
IeK! => |I|<¥; hence K'eV. In V¥ we define, for each /€K
(a) we call (xt:t €[> a component if H(2,)=2 zy).
(b) A[=f< 7t €[>: 7, €2 for every t€], and there are function G;:/-Ifi <A¥)
with pairwise disjoint ranges, such that =n; = G({)rl(n:) and 4}+(V
teDI/N G KEN=H (G
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Note that J{=*>2S) is partitioned into components. { z,y are in the same

components iff z=z,, y=2, and A v 2,,.,=H(2,,) for some k and

m<k L<n
(zm 0<m <Ic>).

So in V¥ there is S, |S;1=A, ¥2¢S, and for every z€lf—S,, its component
<:z:t: t€f> is disjoint to {f~S;, and for every a<A, <xtm: t€]> €A,
So again as P satisfies the A*- chain condition, we can assume S,€V, and that
forcing  of <F;:i€,5‘1> also  determines <A1:1€K1> . So let
V1=V[<F;:i€81>}, P2  the quotient forcing (which 1is just forcing
<f’ : 'i,ey,—Sl> by approximations of power <A.)

!
Notice that in order to know in V[ G?] that Fe¢[z.y] (which holds), (z,y€S) it
is not enough to know <xra,yra> for large enough a, though it is enough to
know p,€G for some large enough p,;€P? which force it! VI[G?]). A simple
example is Y{zy)=[Hy{z)=y]. But something similar and more general
holds.
Fact : 1) If ¥ is a formula from L, o, <xtf:t E[£> for € < ¢, distinct com-
ponents disjoint to S5,, and ¥ is a countable sequence from Sl,(IEe:K‘)
Evl - zf . Gl e fort €1 £ < &

then for some a<A:

(%) if zfelf-5,, <ztf:t €f£> distinct components and zfla=zfta then
Fyl 28 vg]gqo,te[;'
2) We could also have assumed that for any such ¥, [E(E<€0) and 7, the P-

name

Ty <Ipt<to> = i(nf)t €Iy, € < & for AY pairwise distinct components,
{ooogti t€;€>,

Byl xtf'i, C -?7]£<£o.t€fe

and for some 7, z£1y=nf for every t €/ ¢<&,,i <A™}
depend only on < Fi ESI>
~

Proof: For 2) close S; A or just§¥, times, and if <n§ tt el < €o> is not in
Tylp:-e<g) but Eyl---zf .. g) of 1y =nf for every t € [€ < § then
fzf tel, e<&lnsS #¢
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Now we can prove by induction on the depth of % (in V') that the fact is forced

(ie. “‘pg}

From the fact, and the Tarski-Vaught criterion we can conclude (in V¥) that if

Siclhclf. U, closed under H(i<n’), then Mt is an L, ,,- elementary sub-

model of M. By increasing S, further we get that this holds for any f,cl/

extending S, and closed under H{I<n").

Now if @¥"¢=,,Qp then we can find I€K Y€L, ,FCS;, and distinct com-

ponents < Xkt §[> disjoint to Sy such  that for £,E<AT,

MEY( - zé..xf 7)) iff £<¢.

Now, for some &<A™, for every £€(£0,A%) and a<A for arbitrarily large ¢<At,
frcx =z o Using the fact, the contradiction is easy.

8.2 Lemma : 1) In 8.1if §,S'CH, [S—S![>A, then3p o g .

R) If k<A, in 8.1 we can get QW fa, , Qff) o} and even

Irs=intlR . Qi )

3) If k<A, in 8.1 we get Q5% .+ mfz_&,Q"?g/‘ .

Proof : 1) Similar.

2) We use L .+ instead L, ,,, and & permutations H;(i<k) (instead n"), and

repeal the previous proofs - but any EEK‘@M can be defined by an L+ g+

formula using suitable k& permutations.

3) Similar proof.

8.3 Lemma : (G.CH.}) If A>N, is regular u=A* we can build <F;:?J<,u,> as

required in 8.1, 8.2 without forcing.

Proof : See [3h 6], 2.1.

The following lemma shows that we cannot prove 8.2 without some set-

theoretic hypothesis.

8.4 Lemma : Suppose VEx=x<Xa x<iacf A=A , then for some y-complete
forcing notion P of power A%X, satisfying the x*— c.c., |Fp"" 2%= X", and

1) lbp "if SR, cf |S|#A, Ks as in 8.1, then 7% 5| Sint{dr, @55 3"

2) in VP, x(R)=x;<A5(R) implies A3(R)=x*=A.

Proof : We let P be the limit of the x-support iteration <Pi’-€£:i<)\> where

Q €V™ is defined as follows:
~Y
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let (A2)" ={f% a<(2)7"} and

g, ={F,A):F a function from a subset of ¥*2 of power <Y, into x, AC(X) VF‘,
|A|<x, and for B,y€A & < x, if fhla=f%ta, then fhla€Dom Fi,

(F,A)=(Fa,A2) YF F{CFs,A1CA, and if v are in 4; and
[BEA ny€A ) A a<x A fta S LtanB<y
~f Stag Dom F1=>Fa(f jra)<Fa(fira)].
8.6 Conjecture : It is consistent with Z F C that every Iy is biinterpratable

with some 3g, E a family of equivalence classes.

8.7 Question: Prove it is consistent with ZFC that some 3g is not bi-

expressible with any 3y I a family of equivalence classes.
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Classification over a Predicate I

§1 Introduction and preliminary facts.

Let T be a fixed complete first-order theory, and P € L(T) be a fixed

monadic predicate.

Question: Describe the structure of M | 7 knowing M1 P.
When (Vz) -~ P(z) € T, this is a problem addressed [Sh 1], [Sh 4].

If Yx P(xz) € T, there is an extremely strong structure theory. Gaif-
man dealt with the case "# has few (<|P¥|) automorphisms over P¥ " and

gels a representation theorem.

But for us the maximal siructureness will be

"M is prime and even primary over P¥".

This is parallel to the case "7 categorical in A'; but this is stronger:
remember that by Loewenheim Skolem Theorem T (if non- trivial) has
models in all A= |7] + 8, So the exact parallel will be "||# |}, ¥t P deter-
mine M"”, or at least "dim (M,P), Mt P determine M.” If we are inlerested
in the "categoricity theorem” (= uniqueness) we can restrict oneself to the

case!

1.0 Hypothesis : (VM | T)(|P¥] = ||M]]) and even @y € TV M E ¥)
(1P¥| = ||M]]) (to avoid having to deal with the possibility that 7 is
uncountable, and (VM) | T)[|P¥| = ||M}]] because of Chang’s two cardinal
theorem failing for all A= |7|). The last condition is equivalent to:
[N<MET PY¥cN=N=H].
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We add * to the theorems assumings Hypothesis 1.0 {in our main conclu-

sion here we shall do.)

This means that generally from P¥ we cannot reconstruct M, not even its

power,

We have start to deal with the problem in [Sh 2], but reading of it is not
required {see there on other works on the subject of Gaifman Hodges and Pil-

lay).

Section 3-4 are given almost as they were lectured in the seminar,
hence are less formal but are more detailed and repetitious then usual. We
do not try to save on set theoretic assumptions. In [Sh 1] the following

classification is discussed.

superstable
stable ~ Wgo—unstable
unstable| superstable |(only for categories o—stable

of models -‘0f countable theories)

This corresponds to, roughly:

foreveryp € S(4):

stability => each p I ¢ is definable

superstability => p is almost definable over some finite 5 € 4
By-stability => p definable over some finite B ¢ A.

We expect that the classification will be {(this) X & with @ levels of complexity.
Each time, for the unstable case, a non-structure theorem for | T'|*-saturated
models, and for the unsuperstable T a non-structure theorem for N,-
saturated models. Only in the stable case we can continue teo the next level.
In fact it seemed that in order to get non-structure from unsuperstability
we need first stability for all levels. We expect that the solution will be long,
involving many branches. We concentrate on the stable/unstable dichotomy
and quite saturated models. We shall use in "non-structure”™ proofs
hypothesis like G.CH, V = L freely. f we do not do this we maybe forced

to look at diagrams we get at approximation of less comfortable cofinalities;
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if the properiies are distinct the picture will be even more elaboborate. Let

us explain more the expected classification.
n =- 1.Is every relation on P¥ definable in M, also definable in M tP¥?
1.1 Hypothesis: We assume, yes and even:

"every formula is equivalent (by T) to an atomic relation.” {see [Sh 2})

n =0 1f ¥ is saturated, ||#]| =A > |T],is ¥ determined by M I P? Its

isomorphism type, yes but its isomorphism type over M I P not necessarily.

1.2 Hypothesis : For every @ € ¥ | T and ¢, p = tp(@,P¥) is definable
{i.e. for some ¥, and ¢ € P¥; Vb € P¥[p(z,b) € p <> ¥,(b,c)]. (see [Sh 2])

1.3 Theorem : If M is saturated, ||M || = A > |T]|, then ¥ is A-prime over
P¥ among the A saturated models, and is even A-primary over it (i.e.
M| =fa; i <a}, tp(a; P¥ ) fa;i <j}) is A-solated for A regular; this

proves uniqueness over P¥).

This is a weak structure theorem.
Proof: Note:

1.4 Facl: For every c € M E T, tp(c,P¥) is |T|*-isolated, in fact if
M < N, then tp (¢.P¥) | tp (g,PV).

This follows from Hypothesis 1.2: for every ¢ there are ¥,,¢, ('gl/q, does not
depend on €, only on £(¢),c, CP) such that:

(Vg € P)le(c.¥) = v,(7.€,)]

So the formula @,(%,c,) = (V¥ C P)e(Z.9) = ¥,(¥.C4)] is satisfied by €,
its parameters are from P¥, so ®,(*x‘,6¢) etp(e,P¥) and easily
8,(z.c,) I tp¢(6,PM). Hence,

C tp(c,.PY)
So tp(e,P¥) is | T'| *-isolated.

If M <N, then N | @,(¢.c,) hence
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to{(c, N
(8,(z.¢,)p € L;g}j;c{a&
but {0,(z,,):¢ € L} C tp(c,PY).

Proof of the Theorem 1.3: Let |M| = {a;:i <A}. As A > |T|, by the fact
for j <A t;p((ai,i $j>.PM) is isolated by a subset of power < |T| + |j| <A
{taking union on all finite subsequences). Hence ip (aj,PM Ule, 1 <jl)is A
isolated. So M is A-primary over P¥ etc. (see [Sh 1], Ch. IV).

1.5 Notation: Let [8 be a very saturated model on 7T; we restrict our-

selves to "small” elementary submodels of it. {see [Sh 1], Ch. I, §1).

1.6 Definition : 4 ¢ [5 is complete if Bt (4 n P) <B¢t P@ and for every
@ € A and ¢ there is €, , CA N P such that E ®¢(d,€¢|d) (@, as previously).
An equivalent formulation is: for every formula ¢{(Z,5y) and b €4, if
E@z ¢ P) ¢(z,b) thenforsome @ C 4 N P, F¢la,b].

Hence if M N PE C A C M, then 4 is complete.

1.7 Remark: 1) If 4,7 are countable, this means (by the omitting type

theorem ):
AMACMHMAM P=4A N P)

2)if A M P is A-saturated, A = |A| this means the same.

1.8 Definition : S.(4) = {tp(a,A):A ya complete, @ NP =¢} Of
course 4 complete, and let SI*A) ={p € Ss(4d)p =tp(&,4).L(@) =m}.

1.9 Explanation: We are reconstructing M from P¥. It is reasonable to
try to do this using intermediate 4, P¥ ¢ A ¢ M but then the types in which

we may be interested in realizing are only those from 5.(4).

1.10 Explanation: From where comes the w levels of the classification?
We try to reconstruct M from P¥ (e.g. in the case of categoricity). We let
HMIl = Ao let M = y M;, ¥; increase continuously, {{#;|] = {T|+ |i{. This

1<Ag
can be decomposed to Ay problems of:

"reconstruct M;,, over P¥ \y M;"
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By Hypothesis 1.2 (see Fact) tps (M., P () M) b tpo (Mg, PE U M), s0 we
have the reconstruction problem of M; ., over pHin \J M;. We can decompose
the diagram again, decreasing the power while increasing the diagram to 2"
sets. This is similar to [Sh 3] (and [ Sh 4] XII §5, but therc only the good cases

occur). Note that if we allow | P¥| < || # || an extra complication arises.

If we have "good” behaviour for one power, every n, we can prove it for all
larger powers. For each m we look at =n-dimensional diagram
A= Ay (A, <P¥ it 0¢ w, 4, <[Bif 0 € w), and ask about |SI4). If we

won
get stability (i.e. |STH4)| =< |4|!T]), we can define (n+1)-diagrams [as we like

to have that #p.{4,.4,) is determined by tpe(Ay. Ay yu

ness we deal with them mainly when stability for n-diagrams was already

), and get some unique-

proved, and 1.0 help simplifying]. If e.g. for every n the parallel of Ny
stability holds, we would be able to prove “M is prime over PY”. From insta-
bility we will try to get non-structure theorems. We shall deal with ranks

corresponding to stability {unstability .)

1.11 Definition : For every complete set 4, for A, A; (sets of formulas
p(Z)) we define F = RP{p ,A;,A,0) (we sometimes omit 4).
[the rank measure how close we are to:
P has a perfect set #¢ of extensions in S7(4)
A, is for "many extension”

Asisfor "4 ( Z is complete™.]
We now define by induction when £ = «.
DE=—1<=pt \/ Py
g<r(z)
2) R=0<=>R#-1<>p Ul-Plzg):¢ <2(z) is finitely
satisfiable.
N RE=6 (6limit) <> R =1forevery i <46.

4) B = a+1 <= for every finite ¢ C p and cardinals u,x where [a
odd => u=0] , [a even =k =0] and u + k <A, and for every formula
@(Z.,9;%;) € Ay and b; € A (i < k) there are A;—m —types r;(j < u) pairwise
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explicitly contradictories and d; € PIB M A(i = k), such that:
RE™( qur;ul(Vz, € Plley(Z.5,.2;) = ¥,(2;.d;)i <kl]l, Al =z«
1.12 Remark: It does not matter whether we fix <'¢1¢:§o € L> or just

asked for "some suitable %,

1.13 Definition : If X is a category of complete A C [® and some embed-
dings f:4 > [5, then we can define F for K rather than for A4, allowing in the
definition to replace A by K-extension { i.e. the r; but not d; can be found
there].

1.14 Claim: If Bt 4 can be expanded to an Bg-saturated model, and A.A;
are finite, then ET{(p,A;,As8p) is finite or «=. {We make explicit the dependency
on A4).

Proof: By compactness. (similarly to [Sh 1], ch. 1T §2)

§2 Ranks and non-structure for n=1,2.

2.1 Remark: We concentrate on the case A;,Ap,A finite, this lead to the
"stable/unstable” dichotomy.
Of course the rank has obvicus monotonicity and the finite character proper-

ties.

2.2 Claim: For every finite m A Az A,n and ¢{(Z.7) there is a formula

8(7) such that for any complete 4 anda € 4
RMe(z,a),AL0:,0) =n  iff Bra Eeola)
Proof: By induction on n.

2.3 Definition : 1) We say p is A;-big {for 4) if 4 is complete and
RPp A As,2) = o for ever finite Ap

2) A is unstable if for some finite Ay, {% = 2] is Ay-big for 4.
2.4 Lemma : Suppose 4 is complete and stable. Then |ST(4)| < [4[!7].

Proof : For every p € S(4) we can find a complete g, Cp, of cardinal-
ity < |T| such that for every finite Aj,Ay: Ry(p.A1,A5.2) = Bq,.0,42,2). 1f
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[sTa)] > [A]IT],

then for some finite A;, {p 1 A;: p € SIA4)] has power > |4|!T] there are
BCA,|B|<|T| , q and p.p; €ST™4) for i< (|A}'T)* such that
dp, = gp € S™(B) hence p; 1 B=p I B, and the p; I A; are pairwise distinct.

The rest is easy noting:
2.5 Fact: If 4 is complete, p € S.{4), then B, {p,A;,A;,2) is = or is even.

2.8 Lemma : If |4] = A, 4 complete, B 4 saturated, 4 unstable, then
[S™4)| =2
In fact: there is a finite A, such that |{p 1 A; 1 p € STM{4)}] =21

Proof: There is A; such that EPZ = £ ,A{,A5.2) >n for every finite A
and n. We define by induction on a < A for every n € *2 an m-type p, over A
such that:

(1) [pyl <8+ j2(m)|*
(R) for every finite Ay Ef*(p,.A;.822) =
(4) If @« = B+1, v € #2 then for some ¢ € A}, € € 4,9(Z,C) € Pp~co> and

~p(Z.C) € pymci>
(5) For every formula ¢(Z.,8,2), @ € 4, for some a, for every n € %2, for

somef € A NP (V2 CP)(9(Z,8,2) =9,(2,C)) €py

For a = 0, a limit no problem.
How to satisfy (4)?:

As A, is finite we can code it by one formula (see [Sh 1] II 2.1); so let
A ={p(F,5)}. What are the demands on £&? Write Z for ¢
{RT(q Ulp(Z,2)Y,A,,A2.2) = n: for finite g Cp any tand any finite Agn}

(where tis false or truth, i = o pf¥se = o)

By claim 2.2 each demand is first order in Bra As Br4 is saturated,
lp,| <A={4], it is enough to show any finitely many demands are
satisfiable. By monotonicity in rank just ome is enough; say
RPMq Uie(Z.2)414,,A5,2) = n. But R*(q,....) = n+2 and use this.
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A similar proof works for (5).

2.7 Remark: Now there are theorems which give us for unstable 4 and
u=|T|and = A, |STHA)| >u= 4]
But we shall be "easy” on the non-structure side, as this is not our main con-

cern in these notes.

2.8 Question: Is some (= every) model stable?
Meanwhile we assume no and gel some non-structure theorems, then we will

assume yes and continue.
2.9 Note: We shall observe that: no = (@# E T)(|#]| > |P¥])

2.10 Theorem : Suppose that for some models ¥ ¢ N, cardinal g, and
finite Ay, PY ¢ M, || M || < . |{ippfa,M): @ € N}| = pu*.
¥ |Ti<a= )\“,0 x 2* < 2* and then there are 2\ non-isomorphic models .

of T of power A%, with the same restriction to 2.

Proof : Expand N to have enough set theory and get N*, let @¥" = M. Let
N¢s be a saturated model of Th{N*) of power A.
We define by induction on a < A* N, , I', (for 5 € ®2) such that :

(1) N, is saturated of power A, elementarily equivalent to N¥, T,
a family of =< A types omitted by N, moreover no one has a support over N,

in the sense of [Sh 5] { for carrying this we need OA)'

() For B<¢(n); Nypg<Ny TpgCTy PY = pNe  and even
QM = @Ne,

(3) For a=g+1, v € 82, there is a Aj—m-type over PY® realized by

Ny~co> and belonging to I'y~cqs.

For the continuation of the process in the limit we have to have more
induction hypothesis as in the paper above; in the case a = g+1, v € 2 N,
has a A-saturated extension in which A* A, —m-types complete over e are
realized. So there is one p, with no support <A over Ny So let

Fymci> =Ty UP L. Ny~co» realizes p,, (we can get also the dual demand).
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So, let for 7 € M2: Ny = U Nypg. Over QN they are pairwise non-isomorphic;
@

as 2 < 2%, 22 of them are not isomorphic (even over ¢) {easily, by [Sh 1, 1.2]
and Ngt Pl = N<>rPN<> is the same.

Remark: We can eliminate the use of <> » by forgetting I'; by demanding
that for a = 8 + 1, v € P2 there is a A,—m —type p over PYe which Nopago> real-
ize it whereas Ny~.;, "says” it is omitted (and you can demand that you can

interchange them.)
2.11 Remark: We can replace A-saturated by A-compact.

2.12 Theorem: Suppose that some model is unstable, but the hypothesis
of the last theorem fails.
If |T|=A= 7\0‘,<> {6<A*:cr (5)=a)s then the conclusion of the last theorem
holds.

Remark: We can replace diamond by weak diamonds.

Proof : We define by induction on a for every n € ®2 a model N, such
that:

(1) N, is A-saturated when £(7) is a successor or cf (£(n)) = A

() 1Ny | = A(1+L(m))

(3) Nypg < Ny, PM = ple
Let <<n5,v5,F5>: 8 <At cf 6 =A, A? divides 6(A? is ordinal exponeniation)>
be a <>-sequence i.e. Fg:6 >0, my# vs €92 and for every n # v € ¥ 2, and

function FA* > A* for some (in fact a stationary set of)
d: <n6,ua,F5> = (nré,md,Frd); so /" maps 6 to 4.

(4) For each 6, there is a type ¢ over N,, which is realized in Ny ~co> and
also in Ny~¢1> but Fg(g) is not realized in any A- saturated extension NY of
Nyg<on OF Npyneys with PN'= ple,

If we succeed; there will be no problem.

For a = 0, a limit : no problem.
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o = §+1 B successor : Over N, there is a A;-big p € SI(N,). Let it be realized
by &, N,|C is complete, hence (as Bt PN is A-saturated of power A) there are
{for e =0,1) A-saturated N,.., for power A, such  that

N,UC € Nymgey, PYree> = pv,

a=g+1,cf B<AN Np={)Np, is a complete set with P saturated (see
7<f

below); hence we can find Ny~ 5 2 N, saturated with the same P. We use
Jreely:
2.13 Claim: If 4 is complete, Bt (4 N P) A-saturated, |4]| =A[ and

| 7] <A =AM, then we can find N,PY ¢ 4 ¢ N [and N is A- saturated]. (like
the proof of the unstability Lemmma 2.6, but simpler).

The next case is:

a=8+1,cf B=A and wlog. (N,,,ud,F6> is defined. We define by induction
on i a model N* of power A, N® = N,,,, N7 < N* for j <i, P = PY and there is
€; € N;4; such that tp, (¢;,N°) is not realized in N*. We define as long as we
can fori < At,

If we can continue for i < A* we get the hypothesis of the previous theorem:.
As for limits we have no problem, there is a last NY, w.l.o.g. (by 2.13) it is A-
saturated. Let Ny~ce5 = N for e =0,1. Now | STH{Ngp) | > A, [N| < A, so for

some gg € STH{N,,), Fis(qs) is not realized in N¥". Choose Nps~<e> to realize g4
(possible as g4 € ST™(N,,) not just € S™(N,,)). For p€ 28\ {vsms] you have

more frecdom. (We could have made the situation symmetric).

* * *

So we have shown non-structure when some M is unstable. Let us relist

our hypothesis:

T complete, P one place predicate
n = -1 Hypothesis A=1.1: every formula is equivalent to a relation

n = 0 Hypothesis B=1.2: For every @ €[5, tp (E!?,P@) is definable
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n = 1 Hypothesis C: For every M,|ST{M)| < || M |]'T].
Note: For every M by B,ip.{#,P¥) |- tp.(M,PE)‘ The next stage is:
n = 2 Question D: Is every My P¥ stable, where Mo < My <52

2.14 Theorem : Suppose the answer to question D 1is yes,
AX=AA> |T| =R, If M is A-saturated of power A*, then over P¥ there is a
A-prime model
(Soif (YN E T{(|N] = |P}]) then M is A -prime over P¥)

2.15 Remark: Really: A< < A* A > | T is enough.
Proof: If |P¥| = A use the previous theorem 1.3.
Let P¥ = |\ 4, increasing continuous, Bt 4; 48t P¥ <[B1 P and for i =0,

i<t
and i successor => [B1 4; is A-saturated.

We define by inducton on 1 models M;, increasing continuous,
M, PE = 4;, such that

(*) for every ¢ € M, tp{(c,M; U A;4+q1) is Aisolated
(**) Mg, M; . are A-saturated, || #; || = A.

{***) tp (T, Aq) is A-isolated for € € My

Why is this enough?
Let Mg=f{cpa <A} M \M =fcy AM1+)=a<A(l+i+1)}, maybe with

repeatitions.

Now tp.({cg: 8= a},Ag) is A-isolated (as union of < Ja|* + 8 such types) but
tp«(fcp.B < &}, Ag) | tp«(fcp.B = a},P¥) so the latter is A-isolated too; hence
tpe(c o, PY fcg - B<al) is A-isolated. Also for (1+i)A=a< (1+i+1)A
tp(c,,P% fcg.f < ai) is A- isolated by:

2.18 Fact: If 4 {j @ is complete, then
tp(@.4) b tp(@.4 y P)
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Proof of Fact 2.16: For every b € A, tp(a~b,ANP) tp(
hence tp (a@,{4 N P@) ub) k- tp(ﬁ,P('g U b), taking unions over all
get the fact.

d
b €A we

We know tp.({cg(1+i)A < B < af, M| J4;41) is A-isolated and
ipe(feg : (14N = B < o My Uderr) Ftps (o g (140N < B = af M UPY)
by the Fact.

Hence the latter is A-isolated, hence tp(c,, fcg{l+i)A=g<a] Y ¥ UPH¥)y is
A-isolated, but this is tp(cg,fcg: < ajUPH). So tpleafeg:B<a} U PH) is

A-isolated for every a < A%, and this is enough.

We still have to define #;

For 1= 10, as Aj is complete A-saturated of power A, there is M, PM":AO,

My  A-saturated and we know M satisfies (***) necessarily.

Note:

2.17 Fact: If B is complete, A = A2 > || 7], !B (B (\PB) is A- saturated,
| B| = A, then there is a A-saturated N D> B,N N P[g =B N PE

For i+1: As M; (J 4;4, is complete, and its intersection with PIE is (4; 44, which
is) A-saturated, clearly by 2.17 there is N; 2 M; U 4;41.N;, A-saturated
P NN, =44, We define by induction on a<Acge€ N such that
tp(co My U 4isy U fcgf <af) is Aisolated. By standard bookkeeping it is
enough to prove that if p{z,) is a type over #; {J A4 Ulcg: B < af of power

< Xk then it has a A-isolated extension { over this set).

By the induction hypothesis there is a type
q(zp: <) Ctp.(cpf <o), B Uhis)
of power < A such that g(zg: 8 < a) |- tp. (<05,B < a>,M£ U4 +1). Replace in
P(zg) the cg’s by x5 and get p'(zg: = a). So p' U ¢ is finitely satisfiable (in
N;) and of power < A and is over M;(J4;4,- Let {(gy,A?,Ag):'y < |la] + |T]} be
the list of all triples (§,A1,4;); ¥ C {zg: = a is finite and Ay,A; € L(T) are
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finite.

We define by induction on 7 a type 7, in N; over M; {J 4;4, where 7, is
increasing of cardinality <A, 7,4 =7,Ur7(¥,), 77 finite over M;J4;4,, the
union consistent and R(r7(%,),A;,A;2) is minimal where the rank is for
M; 4,4, (minimality: under the constraints required). As M;|J4;,, is stable
and as 4;4; is A-saturated, Ny(\P = 4;,,, we can extend 75417 to r’ so that
its domain is a set C C4;, UM, and 7ty € SPC) for any finite
¥ Clzg: B <aj of length m. Simply let <cp B = cx> be a sequence in N, real-
izing 7 |qj4|7); NOW choose Cg € Ay so that Yd C fcpg : < ajyDom 7 g4 7|
tp (d,PM) = tp(d,4;4,) is definable over Cy and let C = CoyDom 74147
r = tp((c'ﬂ D B< cx>,C).

By the definition of #( - - ), 2.5, and as for no A,
{(Vn) (V finite Ap) RAtMUMt(f: z , A;,A,2) = n, clearly r has a unique complete

extension over 4;,,yM; (using the construction of r1).

So we have finished proving 2.14.

2.18 Theorem : Suppose the answer (to Question D) is no, A= AX > [ T].
Let @ be Lhe forcing of adding A* Cohen subsets to A. Then for some
4 <PB A=

|lg "there are 22" A-saturated models #,P¥ = A, || M}| = A*, pairwise non-

isomorphic over A."

2.19 Remark: We can replace forcing by appropriate diamonds and get

such models. Note that the answers to all our questions so far are absolute.

Proof : By assumption:

»

e N
There is a triple: P¥ M® < N® whose union, PY |y M, is unstable. We

cpV
can prove that there are many such triples. But for us it is enough to do the
following. We define (in V) by induction on i < A* 4; such that 4; is strictly
increasing, continuous, |4;| =A, [Br4; <Br P , 4g4;,, are A-saturated
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and when cf i=x (B14;,,.4)=(C1 PY . P¥) and when cf i € §0,1,A}
(Br4,,,.4;) is A-saturated.

For ¢+ = 0,1 limit : no problem.
1+, 1 successor or ¢f i < A: easy.

cf i =x Br 4, is A a saturated of power A by the induction-assumption.
i (ER PN’,PM‘) has the A- saturated model of power A say (4,4%), the A% part
is saturated of power A and has the theory of B P, hence is isomorphic to 4;.

We can identify them and choose 4;,; as 4%.

Now for any sequence <r¢ i1 <Atef v;=)\> =7 of Cohen subsets of A we

describe how to build a A-saturated model M, of T with P = U 4

Before this:

2.20 Fact: If ¥ is a A-saturated model of T, ||M]|] = A M N PlB = 4,
ef i =A; then M (4 4;,, is a A-saturated model of Th{H#" UPN’), and even
(M U Ager, A M, Ayyy) is a A-saturated model of Th(#M" PN, P¥" M* PN
(same argument as before plus use of 1.3).

We shall define M, = \y M. . depends on 711 only, M,,,'i nN FE =4,

Pon* .1’ i

M, is A-saturated. So in SI™(M,,J4;4,) there is a perfect set

F i+l

homeomorphic to *2; we can (see 2.6) choose a tree {p,:7n € *>2} of types

Py € STCGN) G increasing with 7, py~co» » Py~c1> €xplicitely contradictory,

Cly € My ;. U Aiyq has power <£(n) +8;

and (Ve € M, U 4ia1) Q) (Ype2®) [c e O]

Now 7; define a branch 7; € *2 and we demand that M; 4y Tealizes (JPy,re We
i<

can carry this as under our hypothesis since:

Fact A: tp(M,P¥) | tp. (#,P5)

Fact B: If 4 is complete, |A] = A, 4 N P saturated of power A then
(IN 2 A){Nis A-saturaledand NP =4 N Pl

Now, if we add to A AY Cohen subsets, there is no problem to define 75 ( for
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ECAtFEe Vand<<(S(E),gE> CECAY E e V> from V such that:
Tp € Vlr; 1 j € S(E) €AY,
Tg(i) = Ty ) where gg : AY > S(E) is one to one and gp € V.

Ey# E;=>{t <A*:cf 1 =X, rg (1) does not appear as 7g(j)] is station-

ary

[Basy, as there are S¢ € {i <A*icf © = A} for £ < A" stationary pairwise
disjoint]

Suppose f, a @-name, is forced to be an isomorphism. As the forcing

satisfies At-cc there is a club D ¢ A*, D € V such that :

f maps M,,,E onto Mfgg.i fori €D and f ran,i does not depend on 7 (1)

ot
(in fact depend only on the generic sets {F;(j):7<i} U {r : 7 does not appear
in 7g,.7g,}). Choose i € D,cf i =X, 7g (i) does not appear in this 7z, Let
V¥ =Vlr; ir; £rp(i)]. Now f 1 M, ,

; is in the universe V*, as well as the tree

of types we have for MFE , after Fact 2.20. But in M‘?’g {i+1) there is a type
iy 1

realized which ¢ V¥, a contradiction.

§3 Introducing n-dimensional diagrams and on uniform local atomicity

3.1 Remark: In our non-structure theorems we prove something like: If
..., and A is special e.g. A = put =2~ | 0,‘ and <> {6<n:cy 6 = uf then over some
AcC PlE |41 = A, there are 2* models M with P¥ = 4 pairwise non-isomorphic
over it. This excludes e.g. singular cardinals even if V = L. However in the
cases we have dealt with we can really get 2*" non-isomorphic models
M, P% = 4 (non-isomorphic over it) with lA] = x for any x > A. Just iterate
taking ultraproduct for D an ultrafilter over w. So when our proof rests on
omitting types of power u, p > 8; this does not change much. For e.g. u = Ng,

we have to use indiscernibles instead; we shall return to this.
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3.2. Let Pn) = fwyw C {0,1,...,n—1}}

Pn)y=pPn)-inj=tw:wci{o1, . .. ,n-1}]
We shall deal with 7 ¢ fAn) closed under subsets, mainly with /9(77.), p‘(n)
and with (A, /)-system <A$: s € I> A = Z|4, | such that

0 s => 4, < P2
Des => A, < 5
AsP = As\qop As M A = 4 Nt
and more.
We first deal with small n; for such systems we may ask about stability ( of
U A4s), and existence (of M, PY ¢ \(y A, € M)

sel sel
* &k

Note that:
for f}((}) we gel nothing

for FX0) we have just Ag which is < P!B (iie. 4 C P@ and B Ag < B P[g).

P(1) = {4}
sp (1) = §¢.10}

So a J{1)-system is <A{o]:<4¢>
Agpy 8 model
Agits P-part

a P~(1)-system is just Ay < PIB and the existence-problem is IH(PH¥ = Ag). The
stability just asks on S.(4) when A4 < P[g

n=2: A /-)(2)-system is ‘<A¢,A[0;),Au¢),Aw'”> .

For /9'(2) we have dealt with stability and existence. In this case automat-
ically ip. (A{(B}’Agé) }" D {Aiﬁi*Aili)'

n = 3: We have a cube, we add the demand
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(Ag1p.44) < (Ag1234421)-

We shall assume that 7 absolutely has no two cardinal model (i.e. 1.0} (not

always we shall use it).

3.3 Claim % If PY ¢ A ¢ M, A stable (and complete), then M is locally
atomic over A that is Vb € M,fp (b ,A4) is locally isolated which means that for
every ¢ = ¢(%,2), there is ¥(Z.@) € tp(b,4), ¥(Zz.@) |-tp,(b,A)] and even
uniformly so (i.e. ¥ depends on ¢ only and not on b, though @ may still
depend on b).

Proof : First assume (#M,4) is saturated of power A. Then (see 3.4(2)) we
can find N.PY CA CN, |N| ={a; :i <A} tp(a;,4 Yla;j <1i}) is Adsolated,
hence we can embed N into M over A, by 1.6 the embedding is onto 4, hence
w.lo.g. N =M. So for every b € M,tp(b,A) is Aisolated. For some q C tp(b,A4),
lgl <Xqg Ftp(b.,4). For every ¢ = ¢(%,7) let

=gz )ua(®z) U le(Z27),-9(21.79), /\ yg € Aj
2<2(g)

(we have a predicate for A4). Now I' is not realized in M, because if
Z,>b,,Z,» by, 7 > d realized it thend C 4 and

g1 =q{Z)yUle(Z,d)] is consistent (b, realized it)

g, =¢q(Z) U {-¢(z,d)} is consistent (b, realized it)

contradicting "q | tp(b,4)."

So this holds if we replace ¢ by some finite ¢’ € ¢ hence by some for-
mula ¥, g(Z.6,) € tp {b,4). So

‘!"@,5(515%5) Ftp,(b,4), and F 1{’,,5(5,5%5)
Similarly we can deduce the uniformity from the | 7| ¥-saturativity.

3.3A Notation: 1) Let l.a. stand for locally atomie, u.l.a. stand for uni-

formly locally atomic.

2) Let Ag, C means that if p(Z,Z) € L,
ceC,aed, B Eg[c,a]thenthereist € 4 such that B [ ¢[c,a].

3.4 Claim: 1)* If A is complete, unstable and | T|*-saturated, then
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over A there is an m-type p of power < |7| with no | 7| *-isolated extension.
2)f A is complete stable, A-saturated and A > | 7|, then

{(a) for every m-type p over 4 of cardinality < A there is an m-type
g over A,p Cq, |g—p | =< |T|, ¢ has a unique extension in S™(4) and it is
in ST*(A).

{b) over A there is a primary model N, so necessarily

Nmpgzn}’{g.

3)*If A is complete, 4 N P@ is A-saturated and P¥ C 4 ¢ M then M is

A-saturated.
Remark: We use "absolutely no two cardinal model” for 1) and 3)

3.5 Claim: Suppose A is complete, A ¢ B and C(;Flg. then
Ac, BycC.

Proof: Let @ € 4, b € B, ¢ € €, and suppose E ¢[c.b.@].

Let (7.%)=(3zp2y. - )elzezy, ... . F.2) A /Q\ P(zg)], so clearly

[ 9[6,@], hence for some b € 4 E¥[b.@]. As A is complete, and @,b € 4
clearly for some cg,cq, ..., € 4, Eglcg.cy,....0.@]

This proves 4 ¢, B yC.

3.6 Claim: If tp(b,4) is locally isclated, 4 ¢, B then tp(b,4) + tp(d,B).
IfAisla [ulalover 4,4 ¢, Bthen4'isla [ula]over4 y B.

Proof: Easy.

§4 On /=(3)- systerns and /-(3) non- structure when there are unstable
/9‘ (3)- systems.

4.1 Definition : We define what is a /(3)-system. It is
S=<ASZS‘ 6/9‘(3)> such that :

1) A¢,A“},A$2§,A“’2g < @ rP
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2) The rest are < 3
3) 4 N P = As 10y
4) AS M At = Asﬂt

5) (Ag2p Ay > (Agipdg)

8) Aygy,0p is uniformly locally atomic over Ay U Agoy and

Ajgz 01 Is uniformly locally atomic over Az U Ao

Now 8) follows by previous hypothesis, for T absolutely with no two cardi-

nal model, (see 3.3). We say S is stable if | 4 is stable. S has the existence

s

property if (3M 2 Y4, )PY < 4.
5 S

4.2 Fact: Being a [/7(3)-system depends on the first theory only [of
( U As. A5 sep)] (because we have u.l.a. notjustla.).
sep(3)

¥..Question: Is there unstable /9’ (3)-system?

4.3 Theorem* : Suppose <As' ‘s € /9’(3)> is unstable, A = A* > | T} and
@ is the forcing of adding A**-Cohen subsets to A( and oA = At 2M = A**) and
u = At Then in V9 there are 22" non isomorphic models of 7T of power
with the same P of power u. [If e.g. u = u then we can have A-saturated

models).

4.3A Remark: We do not try here to eliminate the set theory. We are

more interested to show the dividing line is right.

4.4 Claim: Suppose for £ =0,1 <As£ ] eP‘(&‘)) is a P‘(S)-system,
<ASQ:S € /9({12§)> is saturated of power A > | T|, <ASZ '8 € /9(21,2§>, (¢ =0,1)
are elementarily equivalent and Asp‘ is saturated of power A when 0 € s. Then

the two systems are isomorphic.

Proof : Obviously there is an isomorphism g from <As° 18 € /9(21,2¥)>
onto <A31:s Ep(il,2§)> . Now we know (see 1.3) thal: as Ai%; is saturated of
power A, it is unique over Agy N = Ag. So we can extend g rAg to a iso-

morphism gy from Afy onto Ady. Now (by 1.6 2.18) we know that
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tp. (Af%; ,Ag) - tp.(Aizo; PIB) hence  ip. (Ai%i Ag) F o (A!%] :A{Ql,zg) hence
9°%¥g, U g is an elementary mapping. We know {by condition 6 of Definition
4.1) that Afzz,ol is u.l.a over A{%; U AIQO!' hence it is A-atomic over it, so as il is
A-saturated it is unique over Afy ) Afy. Hence g%t (4 U Afy) can be
extended to an isomorphism g; from 40, onto Aoy As we know
tp (Ao Agzy) }—fpt(Azo,zi,Pg) also tpe(Agozy Agey)) b t0e(Ago2) Agr,zy) hence
tpe (Ago 2y Ay U Agey) 0 (Ao Agiay U Ajoy) [note Ag ) Udgop € Agogy] so
necessarily g! gfgl U g% is an elementary mapping. Now Aﬁm is also A-prime
over Ay i) Ay so again there is an isomorphism g, extending
gl (4f; U Afy) to an isomorphism from Af o onto A¢ o). So it suffices to
prove that g, \|yg' is an elementary mapping. As Aﬁm is u.l.a. over
A%g U Ai%% it suffices to prove tpe (Af%,u, Aﬁ; U Afzog)
(o th(A;%,u’ Aiﬁl,zl U Azﬁo,z;),

for this, by 3.5 (and see 3.3A) it suffices to prove:
() afyuafy < Al U Ay

Let ¢, € 42, b, € AsZU{ZR for s =¢,§0}, {1} be such  that

Eel. . 6. 55,...,)36‘&(2}. We shall show that there are c‘; €As€, ( for
s € /9“(2)) such that | :p[...,é's’,_,.,gs,...]SEP.(Z). As we have already proved that

tp. (Ai%.zl A {%; U A,Qz!) [ tp*(A&,zi,Alzl’zl U Ai%l)’ w.l.o.g. for some P, ¥,
a) B 91(04.6413.64.611.b404]
D) B E VT, Y1327 513 2 10i((¥1(T g0 ZiiZ 11y Tp Tpop) > Y2 9T 7 103))
c)B E (VY s.ZgTi0p) [V2(U6F4.T50)) > @F50))8 (T s Y j0}.Z - F503)]
d) B EVTg 73T 10126 F 1y Zo) V1V g Ty T T g3 Egoph
Y 9Y 03T Z10)) > T T 13T 10T T 13T pop) ]

So in fact we have shown that w.l.o.g. €y is empty [replace ¢ by ¥, (a) is the
assumption; so suppose E; EAg, 6{1; GA,QI; and I:'&l[E;,Ei”, b4.0413.b04]
hence by (b), }=¢2[€;,5¢,bwi] and (¢) E@F0) ﬁ(ﬁ;&,g‘mg, by by and as
A,%, <[B for some 550! €A,Qo;, Fﬂ[é;,ﬁiog, bg.bioy), and by (d) we finish].
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Then we can eliminate the use of byg; as tpA(Em;,PIE) is isolated by some for-
mula in tp(l;m,A‘#) (for A a finite set of formulas). At last we know that
(Ag1p.44) < (A1 21 412))-

In fact we have prove

4.5 Claim :If (As:s € /9‘(3)> is P7(3)-system, and <As :s €/9({1,2§> is

A-saturated then S is A-saturated.

Proof of 4.3: The Hypothesis 4.3: There is a /27(3)-system <As':s 6/9'(3)>
such that |y Ag unstable.

s

Assumptions: A = AA > | 7|, 22 = A*, 22" =\

We first define 4;(i < A**) increasing continuous, 4; <BIP, |4;| =A%, 4,
w.l.o.g. a set of ordinals < A** [cf (i) € {0,1,AY]} => 4, is saturated]. For
each j < A*tcf(j) =A% .1 =j+1 we define A% ,AJ for a < A* such that:

AL CAG Al = 1ALl =N U AL =4, U Ah=4
a\*t a<\*
(A% .4%) is an elementary chain (increasing-continuous) in «
(A%, A1) = (A} A}) and
[ef (@) = A => (4441 . 404185 .4%) = (A1 21,42 451} Ag), and is saturated.]
We do it by induction on 1,
For i =0, or ilimit: no problem.

i=j+1, ef j:# A*: no problem

i=j+1, cf j = A*: no real problem. First we define by induction on a,

(4%.A%) = (A§yy.43) a  continuous  increasing (in a) chain;
[cf acf0,1,A] => (4%,47) is saturated], so that |y (4%,4%) will be saturated:
a<at

for a =0, or a limit or a =8 + 1, ¢f (B) # XA no problem arise and take

care of the saturation of the union

a=gB+1,cf B =X Let (A“'Z;,A!Z],AM,A‘#) be a saturated model of power A
of the theory of (Af;2;.4121.4113.4¢)- So (4(13.44) and (A},4%) are saturated
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models of the same power and theory; hence isomorphic, so w.l.o.g. equal and

iet
Ay = Ay AL = Ay

Now (J A} is a saturated model of the theory of 43( = the theory of 4%)
a<it

and has power A*, so it is isomorphic to 4; and w.l.o.g. they are equal. So we
have defined 4;.

Now we define by induction on i < A**

M, <&, such that:
a) M; N PtB = A;, M; increasing continuous.
b) M; is A-constructible over 4;,
cywhencf 1 € {0,1,AY} J#; is A-saturated and
d) if j <1 then ¥; is A-atomic over M; U 4;;

We will define the M;’s in some forcing extension V¥ of V: but @ is A-
complete: so (when ¢f i € {0,1,A*}) M, is isomorphic over 4, to some M, € V
[as over A; there is in ¥ a A-prime model ¥, in fact a A-primary one and this
property is still true in V?. This property is also satisfied by M; over 4;; so
they are isomorphic: use the uniqueness of the A-primary model (see [Sh 1],
Ch. 11, §5).

Specifically, @ will be "adding A**-Cohen subsets of A, <'r°‘:a < ?\+> ". For
every sequence FF = <ri’ﬂzi <Attt a< 7\+> {where for some
h €V, 7, o =7*4%) h one to one) we shall define a model # 7. For a while we

suppress the superscript 7.

Case I 1 = 0: by the proof of the existence of a A-primary model over
any A-saturated 4 <[B1 P, 4| = A* (see 2.14).

Case II: i limit: The only problematic point is "M; is A-constructible over

A;, and M; is A-atomic over M; \y 4; for j <i". Let j <1, every € € M,
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belongs

to Mg for some £, j < € <1, so by the induction hypothesis ip (¢, 4 UM;) is A-
isolated , but M; \y 4, {J € is compete hence tp(€,4¢UM;) I tp(c.A; UHM;) so
the latter is A-isolated too. So M; is A-atomic over M; \) 4;.

Now each M; (j <1) is A-constructible over 4;, hence over 4;. So (see [Sh

11V §3] M; = U Mj o | M all =X M, 4 increasing continuous in a and #; is
a<At

A-constructible hence A-atomic over A; \y M; 5 and even over 4; U M; 4 Let

S&X

1= (Y Wa |Wal <A W, increasing continuous, W, with no last element. Let
a<i*t

No= U M, soclearly || Ngll <A Let
jeHa

CO = ia < >\+: V] < g < Wa, Mz,a [ Mj = Mj,a;
Clearly Cy is a closed unbounded subset of AY.

Now for every j < £ <1, M, is A-atomic over M; \y 4¢ hence (as usual)
over M; \J 4;, and for every ¢ € M there is a(¢,j) < A* such that
tp(C. M) oy U (Me,a(c,j) NAg) b tp(e.M; () 4) (are A-isolated). Clearly
Cr={a€CoVe(Vj £ € Wy)[j <€EnT € Mgq > alC.j) <al} is closed
unbounded. It suffices to prove that for every a € €3, Ngy41 is A-atomic over
N4 U 4; (hence A-constructible). (as we know Ny is A-atomic over N;). First
we prove that for every j € W, M; is A-atomic over N, U 4;; let d e M; ti'len
as a € Cy, tp(d . M; 4 U 4;) is A-atomic hence tp (d,M; o U 4;) is A-atomic, so it
suffices to prove tp(d,M; o U 4) Ftp(d.c Y Mj 4 U 4;) for every € € N,. For
any such €, as W, has no last element, for some § € € Mg, j <§ € Wy Now
a(t,j) < a, hence
tp (€. M) qz. 5y U (Mg ey NAY) Hip (e M; U 4) as d € M;, this implies
tp(C.Mjq U A;) Fip(C. M 0 U4 U d) and by symmetry we get the conclu-

sion. So we have proved that M; is A-atomic over N U A;, hence Y M;is A-
jeHa
atomic over N, U 4;, but ) M; is Mgypp, and so we have proved it if
j € Wa
sup(W,) = 1. Now if ¢ Z'sup W, < i, then remember that we had proved that M,

is A-atomic over M, |J 4;; as we have just proved that M, is A-atomic over
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Ng U 4;, together we get that M; is A-atomic over N, (J 4;.
Caselll:i =j + 1,ef 7 <At

As Mj is A-constructible over A;, we can find Mj,a, and 4; 4 for a < AY such
that, M; = U M;, where M

a<at e
WM ol =X M; Aatomic over M;, U 4; (hence over M;, U 4;), and

is increasing continuous (in a)

|4l A, A= U 44 A increasing continuous in a, and
a<it

(4i,aMj adja) < (4 M;,4;) where A; =4 q N A; =M;q N 4;, and when
cf a€{0,1.0. (4;q4;,) is A-saturated, also when cf a € {0,1,A],
(4,0 Mj oA a) <1p, (A M; A7)

We define by induction on a, M;, such that 4;, U Mo <C M,
pla = A q lcf a € 10,1\ - M; 4 is A-saturated] , ¥, 4 increasing continuous
in &, and #; 5 is A-atomic over M; o \J M; o and also over 4; 5 \J #;. For the

last demand note that

(*) when cf a € {017}, as (4; oM adj o) <1, (4 M;,4;) it suffices to
prove that M; 5 is A-atomic over 4; o \J #;

So for a = 0 it is easy, by the last sentence, for a-limit there is no prob-
lem. For a =g + 1, over 4; o | M; o there is a A-atomic A-saturated model
M; . but why M; g € M; ,? As the previous is A-atomic over 4; o \J #; o ([prove

it as you have proved (*} and for g limit we use Mg= {y M,,;) and as
7<B
W #; 6]l <A, clearly M;g is A- constructible over A;, U M; , and we can

embed it into M; 4, over 4; 4 \J M; o and so by renaming we can finish.

So M; ¥ M; o is A-atomic over M; U 4; (hence over M, (J 4; for £ <1
a<At

(see [Sh 1] ch. IV §3]) and is A-saturated. We still have to show that it is A-
constructible over A;. For this it suffices to prove ¥ ,,, is A-atomic over
M; o \U 4j a+1 Which we could have guaranteed this easily in the construction.
More exactly, M; 441 i5 a A-saturated model of cardinality A extending

M 0 U 4ja+r; Now if T' is a set of < A types over M; o (U 4 q41 €ach with no
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support of power <A (i.e. no type g over M, U Aj artr (consistent),
lg] <A, ¢ -p where p is the type from I'), then there is a A-saturated
M 24 o U Mj g4, M omitting every p € I Now the other demands on #; 444
are of the form: omits some type; and to prove those types have no support
< A, it suffices to find a (A-saturated M, M D A; 4 \J M 441) omitting such a
type for each p € I separately.

CaseIV:i =j+1,cf j = At

We act exactly as in Case III, with one additional feature. When
a=f+1,cf =AM we demand

(**) o Miao Mj g 4 Aj o Ao Ajog)

= CAjozy Afoy Aoy Afrey Afey Afyy Ap )
[Remember 4; ,.4; (7 < At) were defined in the first part of the proof, so that
the relevant part of (**) holds. We then can define M; (7 = 0), A-saturated of
power X, #; , N PIE =4; ., and M; 44y is  A-atomic over 4; 441 U M, by 2.14

w.lo.g. M; = M;, Now we defined by induction on 7, ¥;,, A-atomic over
4

M; ., U4, Clearly there is a A-saturated model of cardinality A elemen-
tarily equivalent to <A;o,2;, A{o,“, A{O; A {1,2;,14 ;2;, Ai‘ll ,A¢>, and by 4.4 it is
iSOI}'lOI'phiC to <Mj,aﬂMi,a' Mj,ﬂ’A‘L,a’ Aj,a'A‘l:,ﬂ’Aj,ﬁ> SO (**) hOldS]

So the left system is unstable so by 3.5 there is an m-type p over it of
power <A with no A-isolated extension over M \y Mk U 4%, so in the con-
struction we have a perfect (i.e. homeomorphic to M) set of possibilities an we
use 7; g to decide {except here we do not use the Cohen sets, though once

used we may continue to use it).

The non isomorphism is as in previous proofs.

Remark: We could simplify the proof of 4.3 by a more extensive use of
0.1.

§5 General system and relevant symmetry.
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We change slightly the thing we analyze - we shall analyze "the possible

re

existence of a A-prime model over any 4 < . Remember

Hypothesis: Every formula is equivalent to a relation.

In this section we shall deal with systems of the following kind:

5.1 Definition : A [-system is S = <A$:s € I> {{ = I(S)) where

1) for some n =n{l) =n(8), /9(21, B A S R Qp(n), I close
under subsets
2) 4 M 4 zAsnt

3)a)if 0 s, then 4, <BrP ,b)if0cs 4 <[B

4)
<AS s e P, ,n—2§)> <<Asu!n_” s e i, n—2§)> are both sys-

tems {so the definition is by induction on n).

5)if 0 € s, 4 isula over (U 4;.
tcs

Remark: This is useful when no two cardinal models exist.

5.2 Definition : 1) A system Sis stable if (y ASis
s€I(S)

2) A system has the existence property if there is M,
P¥ cyAScH.

11
3) The I-goodness holds if every I-system is stable.
4) n"(T) is sup {n+1 : P(n)-goodness holds} (so n”*(7) < w).

5) n"(T) is sup {n+1: every P (n)-system has the atomicity

property }.
where

6) <As: s €[> has the atomicity property if for every |T|*-
saturated <As+:s € [) E(As:s € ]>, and m-type p over {J 4;" of cardinality

sel
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< |T| , hasa |T|*-isolated extension over (J 4.
sel

5.3 Lemma : 1) Being an /-system depends only on its first order theory.

2} Having the atomicity property (for an /-system) depends only

on its first order theory.

3) If <As:s € I> is a system, n{T)>0, then so are
{4 s €1 A Pr(d)-1)) and
<Asuzn(1)—1; cs ytn(H-yel, (n(H-1) ¢ S>~

43 If J C I satisfies (1) of 5.1 then <As:s € J> is a J-system.

5)* If every model is stable (i.e., |SPAM)| =< [|M]||!T)) then
n*(T) =n**(T), in fact stability and atomicity of [ (n)-systems are
equivalent. {see 3.4(2)(a)). (Without 0.1 we get: stability implies atomicity.)

5.4 Lemnma : For any system <As: s € [>, (n =n(D):
a) if 0€s &f then tp.{4s, U 4¢) - tpe(4s, U4t € [,s¢ t}); moreover
tcs
for every ¢(Z,§) and ¢ €4, for some 'g(/,,,(f,bvq,,c) € tp{e, |y 4),
tcs

'¢¢(:f,5¢,5) Fitp(c,ul4:t € Is & t}).

b) U 4 & U A, in fact: for b, € 4,(t € I) such that | ¢(...b,...) we
(n—l)]g’s sel
s<

can find by € A;_gn_qy, such that [(n—1) & t => b," = b;], and Fe(.. b ...).

Proof : The proof is by simultaneous induction on |/] {for all systems
and both a) and b)). The proof is splitted to cases.

Proof of a):

Case 1: Thereist €/,s Ct.

Then we can reduce the problem to one on /¥ ¢/ and use the induction
hypothesis. Soifnot Case 1 {f:f € I s & t{=TI—{s}.

Case2:notCase tand(n—1) ¢ s.
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Let € € Ay, ¢(Z,¥) be a formula.

let J=ftel{n—-1)& t], then by the induction hypothesis [as
{7l < |4 yin—1}| = |7}, because fn—1} & J, (and In—1} € ], as [ is downward
closed and n =n(l)}. Note that n—1>0 as n—1¢ s,0€s] for some
Vo 8y) € 11 (s, Ue), Vgl By ) - 1P4(. U )
8

ics
ted
So for no d ey 4. ]:(35)[10’,(5,5%5) A@(Z,d)] A @z)]
t#s
tes

';94,(1'5,5%5) ~ - @¢(z,d)]. Applying the induction hypothesis to /—{s} (for (b)) we
see that 4t € J—{s}} ¢; U4t € I-{s}}. So also in Y{4;: t € I-{s}] we
cannot find d as above. So 1"4’(5'526.6) b tp (e, Ul4s it € I={s}]), as required.

Case 3: Not 1 nor 2 and there is v ,a maximal member of I,

Devw #s,(n—1) & v. Sowv,s are C- incomparable.

By using the induction hypothesis for /—{vi,s and case 2 for [,v we see
that

tp (A, U4:) Fitp(A,, Ut €1, #v,5%)
tcs

tp. (A, UA) Ftpa (4, uldpt €1t #v])
tCv

Together we get the first close of (a). As for the second: we can treat our sys-
tem as an |/|-sorted model, find a | T|*-saturated elementary extension, so
also there we get the first close of (a). By saturativity we get the ¥, and note

that its property is preserve by elementary equivalence.

Case 4: For some t €/,0¢ tandt 0] & I

Let Jo=lvel:0o& vl Jy=twel:0¢ v, v |y {0} €7},
Je=fv el :0evi. We shall prove that
tp( U A4y, U 4u) Fito( U Ay, U A4Ay) (by[Sh 1, ch. IV §2 §3], this suffices

wESg ued uES; wu€sy

for the first phrase of (a),) then proceed as in Case 3.
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For each v €J; as tp.{4,, U 4,) is ula by the induction

hypothesis U 4y S U4, v & ch u € Jy U J4d, hence by 3.5
Uy
U4 G U, v € u,uwell], together we get
(&
1if.p:}(A,, U 4) Ftp(A, U4, ;v &€ w,u €1}). By [Sh 1, IV 3.3] this gives
Uy
tp(U 4, U 4) Fip(U 4, U 4).
veESy ue; vES, weESy

Case &: not cases 1,2,3,4.

So (n—1) € s [as not Case 2] and (V¢ € I)(t yin—1} ), [if t is a coun-
terexample, as [/ is downward closed w.lo.g ¢ is maximal in /; as
tyin—1} & Iclearlyt € s,n—1¢ ¢, by “not case 4" t | {0} € I hence by
t's maximality 0€t, and we get Case 3, contradiction]. So
I=Jylt yn—1}:it € J} where J =t € Ii{n—1) & I}. We apply the induc-
tion hypothesis to <A$U£‘n—1§: s € J>, s — fn—1} {remember 5.3(3}) so

tpe(As, Ul4s 1t Cs,(n—1) € t]) Ftpe(ds, Ulds:t #s,s—in—1{})
hence the first close of (a} follows (by Ax VII of [Sh 1, ch IV §1]) and we prove

{(a) as in the Case 3.

Proof of (b) of 5.4: Now we prove {(b) of 5.4, Let J = { € [:{n—1) & t].

First replace our system by a | T|*-saturated one. Then by increasing the
b, to sequences of length < |7|* we can assume for each s € [ if 0 € s then
tp(bs, U by) | tp (b, Ulds:t € I,s ¢ t}). Now we define the b, . If (n—1) & s
tcs

let b} = b,. Next choose <55+:s €/ 0¢ s,(n—1) € s>, so that b5 € 4s_gn_y
and in the model <Asuin—1;5s e P, ... ,n—2})> it realizes over
Ulbs: s 6/5'({1, ...,n—2}} the same type as <Es:s €el0¢g [(n-1) € s>
{possible by {4) of Definition 5.1). For the others, define by induction on
[s].6s" such that tp( -~ ~b;~ - - )ies =P (- - ~bf~ - )ics, and simultane-

ously prove that the mapping b, - b," defined so far is elementary (for =,

5.5 Conclusion: 1)* Suppose A = A* > | T|, and <Asg:s € I> is a system,
(ASZ:O g s € I> is A-saturated, each 4f is A-saturate and of power A and
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<ASO:O &5 € I> = (Asle g s € ]>. Then the two systems are isomorphic.
2} If in (1) we do not assume 1.0, we need (Asg,c )ceu&z is A-saturated
ics
whenOes € [.

5.6 Conclusion: 1) If <As:s € [> is an I-system, /9(21, ..oam—1)cJ T
then {J 4, isu.l.a. over {y 4.

sef sed

2y <Aszs € I> is an I-system, then fors € 7, 4, N P‘g = A _q01-

§6 A proof of the existence property.
6.0 Hypothesis: n""(7) = w.

6.1 Theorem * : Suppose T is countable and <A3: s €P‘(n)> is a sys-

tem satisfying:
4
(Moes e P(n) = 4 is I‘; - constructible over (4.
0 tCcs

[4
Then there is a model M Fs -constructible over |} 4, u.l.a. over it, and
0 g

P¥ ¢ U4 . So the existence property holds for such systems.
8

Proof : The proof is broken to some claims.

14 14
62 Claimm: If A ¢, C, B is Fﬂ -constructible over 4, then B is Fﬂ-
G ]

constructible over C (by the same sequence), tp.(8,4) | tp.(B,C), and
A U B C C.

Proof : See [Sh 1, Ch. XII].

£
6.3 Claim * If M is Fﬁ -constructible over (Y4, ¢ M, <As:s 6/9‘(72,)>

k]

is a system fthen M is u.l.a. over 4.
g

Proof : W.lo.g. (by easy set theory) for some A> |UA4s| +|T],
g
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A=A s0 let <As’: s 6/9'(n)> be a saturated elementary exiension of
<As s € p‘(n)> By 6.2 tp.(M,JA,) is A-isolated so there is a A-primary N,
s

M U U4, CN. Hence N is ul.a over | 4; see 3.3 and we finish by the next
§
Fact (6.4).

6.4 Fact: If 4 < C, and B is ul.a. over C, tp,{B,A) I tp.(B,C) then B is

u.l.a. over 4 (witnessed in the same way).
Remark: Note that we assume 4 < C,i.e. B14 < C 118, not just 4 ¢; C.

Proof : let b€ B,¢e€l, then for some wlp(f,fw,g)etp(g,c)
Vo(£.6,5) Ftp,(6,C). As tp.(B.A) | tp.(B.C) there is 9(z,8) € tp,(5,4),
9(Z &) }—%(5,6%5), So

E(VE)8(z.c, 5) > ¥yl(2., 5)] A
(Vg € ONVE)Wp(Z.cpp) » ¢(2.9)) vVE)(YulZe 5) » - ¢(Z,7))]

so there is 5;,5 € A with those properties.
6.5 Claim: If <As:s 6/9‘(n)> is a system, satisfying (*) {from 86.1)
A=Y |4s| > | 7| then we can define <As"‘: s € p‘(n)> {a < A) such that
s

(1) Z14>] = laf +|T|

(2) <As‘*: s Ep'('n,)> < <As: s 6/9'(n)>
(3) <As°‘:s € p'(n)> is increasing continuous in a.

(4) <As“: sepP(n )> is a  system, as well as
<As“:s €P‘(n+1),s # 10, ... ,n—l%) { where Al iy = ASY for s Ep‘(n)),

satisfying (*) in both cases.
Proof : Kasy. [Sh 1, ch. IV, §3]
Proof of 6.1: We prove it by induction on A=Y} |4 | (for all n simultane-
§

ously).
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Fasily of the three properties demanded of M in 6.1 the first implies the
second (by 6.3) and the third (apply u.l.a. for the formula z=y). Remember T

is countable.

Case 1: A = R,

So A ¥y A, is countable. By Hypothesis 6.0, easily for every ¢(Z,&)

&5
g €A, Fize(za), and ¢(F,y) there is #(Fa,) ,6,€4, and
F@z)le(z.@a) »9(2.8,)] and ¥(Z.@,) | tp,(€.4) for some €. [otherwise
replace <As 8 €/Q‘(n)> by an elementarily equivalent |7T|*-saturated sys-

tem and get contradiction to 5.2(8)]. So we can define by induction on n,

enlzg ..., Tp,G,), @, € A such that @z, ..., 2, )en{xg - - ., z,.8,), EV
To - Tpat) Pneil@o - o Tpsts Fps) 2 PnlZo .. . .2, 8,)) and for every
Y=v%x, . ...%,;¥) for some k>n and cg4...,c, (Er,. - Zg)
730 € F Z,, 0 ) tp((co, C ,cn>A) ton{zg ... 2y, 8, ) m <w} is com-

plete over 4 (in {z,: n < @}) and is the complete diagram over A of a model

[
as required { remember Ax VII (of [Sh 1, Ch. IV. §1]. holds for FN )
g

Case 2: A > | T|.

Define A&(a < A) by 6.5. We now define by induction on «, a model #,, so

{4
that M, is FS -constructible over y A& U A4S C M, also if a is limit
N s s
4
Mg= U Mg, and a=8+1 M, is F;.; -constructible over (Jj A& J Mg We
g<a o s

should prove for each a, that <As“ Y E p“(n+1)> is a system where
A2 = Mg, this follows by 6.5(4) and noting M, is u.l.a. over {42 :s € P (n)}
by 6.3.

6.6 Theorem * : Suppose 7 is countable. If ¥,N are 8;-saturated, with
Mt P =Nt P then M,N are isomorphic over P#. ( by 3.4(3) the ¥;-saturation
of M1t P implies that of ¥).

|4 t
Proof : Over P¥ there is a Fs primary model #%, so M* is FN -primary
o 1
t
and FN -prime. So it can be elementarily embedded into M over P¥ hence its
1
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image is equal to M. Similarly for N.

This theorem is made more interesting by the following (not using 6.0

anymore):
6.7 Fact: Assume for every M, P¥ is stable.

If there are Mg < M,P¥ ¢ My # M, then for every A= |T| + |6] we can find
M and a; € M(i < &8) such that :

()i #j =>a;#a,, [|M]|| =x=|PH]
(b)fori <j itp(a;,P" U faga<i]) =tp(a;, P¥ U faga <i}).

{c) moreover for every b € M there is 1(b) < &§ such that: if 1(b) =1 < j,
tp(a; P2 b U faga <i}) = tp(ag,P¥ b U faga <))

Proof : W.l.o.g. My is A*-saturated. Let a € M;—M, and define by induc-

tion on © <8, N; < My, [|N; || = A and e, such that YN; U {a;:j <1} € N; and
F<i
a; € My realizes tp{a,N;). By claim 216 {(or 1.4) UWN .fa;i < 8] are as
i<s
required.

6.8 Lemma : 1) Under the assumption of 6.7, if the conclusion of 6.1
holds then when |T] < A < p there is a model #*,{|#" || = |P¥"| = p, so that
there are a;{(i < 8) as there ( for #*) when § = Abut not when A <cf § = pu.

2) If 1.0 fails, A regular 2* = A*, then we can find #, a;(i < A) as
in 8.7, P¥ is saturated, ||#|] = || P¥|] = A*.

Proof : 1) Let M ,a,(i <A) be as there, choose 4,.P¥ e 4 <[P,

[4
JA] = A and let M be F!# -constructible over M |y 4. By the P¥’s stability,

0
a;{i < A) has the property in #* too. Suppose <c,£:?', < 6) has the property (in
M, i.e. a),b),c) of 6.7) tooand A < cf . By [Sh 1 Ch IV §3] we can find N < #°,
M C N |INY| = A, N closed enough { under history of the construction and the

function b -» Ci5)Ci > G

¢
+1), So that M" is FN -constructible over N | A, and

4]

<a,.i:a.i€N> has the property in N and cf (supf{i:a; € N}) > |T|. Then
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tp (@ guppizaeny: vV U 4) is not 8- isolated, contradiction.

2) Left to the reader.

§7 Manipulations with systems for an arbitrary theory.

7.0 Discussion: We are dealing with several kinds of /-systems, so we shall
use the name "/—x —system”, z a latin letter to differentiate. For Definition

5.1 we use z=a and say it is for 8 or for 7.
7.1 Definition: We call S = <As:s € [> an /—b ~system for T if:

1) for some n =n(l) =n(S), I ¢ PAn), I & Pn—-1), I closed under sub-

sets.
2) (As: syn—llelin-1¢ s> <<Asu§n—1]: syin—leln—-1¢ s>
3) each 4 is a model of 7.
4) <As:s € J) isa I-system when J = {s € I:(n—-1) & s}.

5) If n—1etel then
AN n-1tgsell) ¢ Yyl : n—-1¢s el s yifn—1j €l

7.2 Fact: 1) For Sto be an /—b —system for T depends on its first order
theory only.

2) If <As:s € I> is an [—b—system then A; N 4; = 4, for any

st el

Proof: 1) Check.

2) Prove it by induction on n. If n—1 ¢ s|yt-trivial using condi-
tion 4). f n—1€snt, by condition (4) and the induction hypothesis
As_fn-1) N At—fn-1y = A t—_fn—1; and use condition (2). f n—1€sn-1¢
thens Nt =(s—{n—1 N ¢, and again 4s_gr_1y N 4 = s ¢ DY condition (4),
and by () As_gn—13 =45 N (U {4y : v Uin—1] € [, n—1 # I{, and we finish by
(5).
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7.3 Fact: <As: s € ﬂn)> is a pPn)-b-system for [BrP if
<As_1: sefPn+1)0¢g s> is a JX{1, ... ,n})—a—system (for an integer k& let
s—k ={i—k :1 € k} s+k is defined similarly.)

7.4 Fact: If n >0, <As:s E/O(n)> is a P(n)—b—system for T and for
s € PAn-1) B, = (A(s+1)U)o;’AS+1) then <Bs:s 6P(n—l)> is a
Pn—1)—b —system for T, = Th (Agey.4g)

Proof: We prove it by induction on n

n=1: so An-1) = JX0) = {4}, so <Bs:s € p(n—1)> consistent of one model, of

T, of course:
n+1:
Condition: 1) is trivial.
Condition: 2) We should prove
{Bys € Pn—1)) < <Bsu!n_1;:s € Pin-1)»

{looking what 7 is).

This is equivalent to

<<A(s+1)U{0]'AS+1>:S €p("—1)> <<<A(s+1)U{0,n§'A(s+1)U(n§>:S eP(n—1)>

which is equivalent to

<As:s 6/9(77,)> < <ASU§M:S E/Q(n)>
which holds as (As:s € /9(n+1)> is a /9(77,+1)—b —systemn.

Condition: 3) we know <AS: s E/Q(n)> is ‘a JXn)—b—system hence by
the induction hypothesis for s € p(n—l), (A(s+1)ufo{'A(S+1)) = (A4op.4¢)- As we

have proved condition 2), for s € p(n—l) By < B i.e.

Vin—1
(A(S+I)U[0;’AS+1) = (A(s+1)U§O.n—1} 'A(s+1)u$n—1 {), so the condition holds for

s U {n—1} whens € An—1).

So it holds for every s € JXn), as required.
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Condition: 4) Easy.
Condition 8): Obvious, (by 8) for <As :s € p(n+i)> ).

7.5 Lemma: 1) Suppose <Ms:s ep(n)> is a fAn)—b—system for T,
A=%11M1l, x> | T|. Then we can find <Ms'a 8 Ep(n)) {a <A) such that:
5

(i) <Ms,a55 ep(n)> <<Ms.:s €/9(n)>
(ii) ”Ms,a” = |T‘ + |al.
(iii) Let for a < A*;s € PAn),

Msa — Msav San‘nf — Msa+1

Then <Ms"‘:s € P(n-l-l)) is a An +1)—b —system for T.

2) 1t { Hy:s € Pn)) is k-saturated (Ya < A)[ |a|<F <A, 2171 < A
then we can demand <Ms,a55 € p(n)> is k-saturated when c¢f a € {0,1} or
cf a=k, but then || M , |l < (|T| + |a|)<* (if we ask just for k-compact then
UM o1l = (UT] + |a])<=

(2a) We can even demand this for each I € [Xn) separately.

3) f A=«* k=x%>|T| and { M, :s € Pn)) is saturated,
then we can also demand <M3"‘:s € /9(7?,+1)> is saturated when cf a & [Np.k).
(but || M o |l = k) We can, except for some unbounded non stationary subset

determine its theory as that of <N$:s € p(n +1)> a p(n-l-l)—b —system, pro-
vided that { Ny:s € Pn)Y = M5 € Pn)).

Proof: 1) Easy, 2) Easy, 3) See proofs in §4.

7.6 Lemma: Suppose A =A<A and 2\ =A*+1 for ¢ <n. Suppose
<A_::s EP(n)) is a fg(n)——b —system for 7. Let J =Jy, “/{nm a sequence of
ordinals of length =n 7(¢) < A*n—2)

Then we can define models #, ,(n€ J, t € P2 (m))) of T such that:

(i) M, ¢ is a model of T of power At(m—€m) it is saturated provided that
(ve<e(nicf n(e) € (0,13 v g et].
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(i) ifp € J,t € Pe(n)) and £(n) < n, then
a) Myt = U HMpyrcingit < A —£m)

b) if n~<8> € J & limit then Mp-csns = U Myrcive
i<d

c) va‘(i),z‘uﬂ(n) = Mpcir1>-
(iii) for each n € J,S" ‘f—f’( Myt € A2 (n))> is a JXL(n))—b —system.

(iv) if (V€ <2(n))[cf n(€) € §0,1,A*™®)}] then S, is saturated and its
theory is that of  45:s € (e (17))).

Proof: We prove it by induction on n for all possible T, <A;:s € /9(n)>
For each m >0 we define by induction on a < A*"™ the models M, ¢ and
Mye(n(0) <a,) nedi EP(!Z (n)), such that when ¢f a € §0,1,AHn=1y, Megs,g
is a saturated, of cardinality A** ™D M, E T, Mig»gy is saturated,

<M<a>:a<)\+n> an elementary chain, for a limit, Mias= U M gy, for
8<a

a =B+ 1 Measg = Meps (1)

For a limit or zero - no problem. For a =g + 1, c¢f B & {0,1,AY» D}, we let
Mca> g1y be a saturated elementary extension of Mg, of power A*("=1) and
then use 7.5 (2a). For a = 8 + 1,=0 for M, there is no problem and then
use 7.5. For a=g+1, c¢f B {1, At} M gs 4 is saturated. We use the
induction hypothesis for n—1, and T, from 7.4 (starting there with
<As':s 6/9(n)>). Getting (M} M2:) m € Jxpn-1. So Mgs 4 is a model of T of
power A*(®~D. saturated hence = M g,4 so wlog it is M, let
Mia>e=Mis = Megsiop » Mea > ~nit—jop—1 is M, it 0 & ¢, and is Mg ¢—jop-1 if
0et.

7.7. Lemma. Suppose AM> |T|, 22" =a**l for ¢ <n and
<As':s € /O(n)> a An)—b—system for T . Let

WAy =18 <Atcf 6 =2} WHX) = §6+1:6 € W(N), and
N = WA Uy TR

Jan= {1 : 11 a sequence of ordinals of length =n, 7{¢) < Arn—£),
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[e+1<2(n) =>n(e) e W (A —ED]
$n={n€Jyp foreveryL+1 <2(n) n(L) € w(atn—0)y.
Dn = 0 € [y picf (n(e(n)-1)) € w*AHE@-D).
Then we can define models M,(n € J),) of T such that:
(i) M,, is a model of T of power At =€)
(i) if 5 € Jy, then M, is saturated.
(iii) if 5 € J, , is not maximal then
i < =D Mymcis < Mymgjni My = L;;M,,A(D; for & limit Mp~cs> =iL<)aM,r<,;>.
(iv) For each wne€J%, we define a /9(2 (n))—b —system ST
S = Mt € Xem)Y . MS = My q) where £(v(n,t)) = € (n) and
7n(2) if 2<e(n) ¢gt

v(n,t)(e) =
n@)+1 if £ <C(n) €€t

We shall want:

(iv) It § € Jy,,S7 is saturated and ={ 45:s € (¢ (7)))>'

Proof: Like 7.8, only simpler.

§8 The structure theory we can still get whenk <n**(7)

8.1 Claim: If 4 ¢ C, and B is Ff{-constructible over 4, then B is Ff-
constructible over C (by the same construction) and tp.(B,4) +tp(B,C).

Proof: See [Sh 1, Ch. XI].

Remark: 1) A c} C if every m-type of power < A over 4 realized in C is

realized in 4.

2) The same holds for C§, but we ignore this distinction (important for
A=|[T}).
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3) Remember M is A-compact if every m-type over M of power <A,

finitely satisfiable in # is realized in M.
8.2 Claim*: If # is Fi-constructible over |J4; € M, <As:s € p‘(n)> a A
3
compact P7(n)—a —system and n < n**(T) then M is u.l.a. over 4.

Proof: W.lo.g. for some upu>T|A|+|T|, p=u¥ and let
<As':s CP‘('n)) be a p-compact elementary extension of <As s Cp'(n)>
which has power u. As <A$:s Ep‘(n)> is A-compact clearly 4s < U 4, (in

s

case of saturation instead compactness - even Cj) so by 8.1 M is Fi-

constructible over |J4,, so tp (M, JAs) I tp (M, A,) hence there is a p-
s 5 S

primary model N over |y 4,, M C N. We know (see 3.3) N is u.l.a. over |J4,. So

s L3
for every € € M and ¢ there isa ¢ = ¢(z.,b) € tp(¢,U4s). ¥ tpq,(c_,UAs'). But
5
we know tp (€, J4s) F tp (€, UA,) hence for some ¥ € tp(c,yds) ? ¢ So
5 s 5

P etp(c,Uds) s tp¢(6,UAs(°))‘ We get M is l.a. over (4. But we want u.la.
s

This follows from 6.4.

8.3 Claim*: Let S = <As:s € [> be an /—a —system and A > |T|. S is A-
saturated if <As:s el n P, ... ,n(])—1§)> is A-saturated and each
M(s € I, 0€ 5) is A-saturated.

Proof: => trivial.

<—: We prove it by induction on |/|. Let p =p (x,, ..., Z,,_1) be an m-type
over S. |Dom p|<A and p is finitely satisfiable in S. If
I =/9({1, .. ..,n(I)—1}) this is trivial. Otherwise choose £ € I, 0 € £, t maximal,
andlet J = I-§{t} W.lo.g.

g€ Ai— U4y, . Zp_q € 44— UAs,
sct sct

T, & A— U4, . .., Ty €4 —UAlChp.
sct sct

As 4; is ul.a. over Y4 (and 5.1) there is ¥(Z,5) € L(T) such that for every

sct
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a € A~ 4, for some b e UA,, Evla.b] and

sct st

y(z,b) | {z #ee € Ul4s:s € J} (this in B, so w.log. ¥ is atomic, we shall
not mention such things). So p U W (zo¥s): ToC Uds. (¥

seJ
z € Y4 )(~y9(z,99)] is finitely satisfiable in S. So wlog. for € <k
seJ
@) [¥(ze7)g € UdsnlVz € U4)-v(z.7)]€p. Now let
s&ed s€J
9=z, ... Ty 2L =z, ,xm_1>, and
pl=pulvz uIAs)[vJ(f",f)Ew(f,m)] AN C Uds o€ l]
SE sCt

Let p? be the closure of p! under conjunctions. Let p3 = {(az%) 59 € p?}.

By the induction hypothesis p? is realized say by z! » El,glp - 5¢ for g € L
(you may argue that p2 has | T{ variable not some m’ < w, but A-compactness
implies this). Now we can find @° realizing §'¢/¢(3_:O,5¢):99 € L}. Still we do not

1

know that @"a' realizes p - it may contain formulas which are not atomic.

But our conclusion follows from:

8.4 Claim: Let <As:s € [> be an /—a —system, 0 € £ € I, t maximal. Let
<'¢¢:¢ € L> wittness the ul.a. of 4; over (J 4,
sct
dldfe 4, o't € 4, U ks, Ev,cb02) b € U4,
sct sct scd

~~-,5$~--,¢72)=tp(---,bq§ <. dY) then in <As:s €]> the sequences

tl~d! &2~ d® realizes the same type.

—~~

Proof: Again as in the previous claim; then some automorphism of
<A;i € J> take d! to d® and bj to bZ. Then there is an automorphism of N
embedding it taking ¢! to g2,

8.5 Claim: Suppose <As:s € p‘(n)> is an /—a —system, A-compact, and
w=El41 > 7).

Then we can find <As“:s € /f"(n)> {a < u) such that
(1) 147 <p, it p=x* |A7] =x,

() <As"‘:s ep“(n)> <<Aszs Ep‘(n)>
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(3) If JcCpP(n), <As:s€J> is A-compact (Va < u) [|a|<* <u]
then <As°‘+1:s € J> is A-compact (also for a =— 1).

(4) If Ay is A-constructible over |J4; then there is an F§-

tcs
construction <a§,Bf:i < ,u,> of A over (JA4; such that for each a for some
itcs

j(a),
AF— QAT = tafd <j(a)], (Vi <j(a)Bf € UAS

tcs tcs

Proof: Easy (for (4) see [Sh 1 Ch IV §3]

8.6 Claim * A complete set A is stable iff it has the atomicity property
provided.

Proof: W.l.o.g. A is saturated of power u, u = u<# > | T|. Now easily sta-
bility implies atomicity. So assume atomicity for 4, so there is ¥, A-primary
over A . Let (M,A)=(M,A) be saturated of power u, so wlog A=A and
M < M. By the hypothesis 1.0 M = ' . Hence M is atomic over 4, so by the
saturation M is u.l.a. over A. Also for every p € SI(4) there is a A-saturated

M >4 0pPT realizing p, but as again w.l.o.g. M = M, p is A-isolated, hence
a

FN -isolated. From here atomicity is easy.
0

8.7 Lemma: Suppose |T| < A = AN, A = A++1 tor g < k4n.

1)* In the definition of an /—a —system we can omit "4, is ul.a.

over | JA4; for s € 1,0 € s” when |s | <n™ (7).
tcs

2Qn (7)) =n"" (D).

3) 1If for =1,2 <Aszzs € 1> is a JPr(n)—a-system,
<ASQ+1 s+l € I> is saturated of power u with first order theory not depending
onf, n{I)<n"(T) th,en<AsQ:s €[> = <Aszzs € [>.

D* If E+n <n* (D), <As:s Ep'(n)> and P (n)—a-system,

n-1] 1S A- saturated then over (JA; there is a A-primary
s

.....
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Proof: 1) By 3.3,
2) See 8.6.

3) We prove by induction on n (similar proof occurs previoulsy) we
start with an isomorphism from <A51+1 s +1€f> onto <A52+1 s +1 EI) and
extend it step by step. For this we have to prove 4;(0 €t €/} is u-primary over
U 4, for this it suffices to prove it is u.l.a. over |J4;, which follows by 3.3 if

scCt st
we have proved 2).
4) We prove it by induction on k. For k =0, 4, is stable, so
k)

there is a A-primary model over it but

8.8 Claim: If A is complete, 4 N PIE is A- compact, p € ST(4) is A-
isolated then p € S*{(4).

For k+1: Use 8.5 to get 42(a < A***1D_ Now we define by induction on a,Afn)
so that

(i) Ag(n) is A-primary over {4l:s € P(n)].
{ii) A&:l) is A-primary over {AZ*ls € (n)] U Afiny-
(iil) A%n) = UAZn)-
a<d
{iv) Afny is ula. over y{Afs € )} and is a model,

V) Ay NPE =4y (and  1pe(Afn).Ulh:s € P}
Fitpe{Afgm). U {4 s €/7(n)}). The induction step (for a ) is by the induc-
tion hypothesis for k (as |42*!| =A**) and 7.7 for « successor, and

remember 7.5(3).

§9 Non structure when n'"(7) < w and there is no two cardinal model

9.0 Hypothesis : PY ¢ ¥ <N => M = N; every formula is equivalent to
a relation (for 7).

9.1 Main Theorem : Suppose A = A\, 22 = A*+ for ¢ < n ¥n**(T), @
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is the forcing of adding A*" Cohen subset to V say <rn:7) € J;'\,n> . (see 7.7).

Then in V¥ there are 2™ model #;, || ¥; || = | P#| = A*" which pair-
wise are not isomorphic over P¥; really we can make || 3; || = | P®] = p, for

any g = A",

Proof : Let {4, s Ep'(n)> be an J/—a—system which is unstable.
Working in V let A4,(n €Jyn) be as in 7.7 [4, standing for M,
<AS+1 s € Pin— l)> for <A s €P{n— 1))) and Th (Br P) for T]. Define a
well ordering <* on J;\n n<'v iff n=vii(n) or
(@)n1¢ =vreZan€) <v{g)]. For A CJy,4 €V, we now define for each

7 by induction on <* a model Nﬁ such that
Nt PB =4, NA<E
(i)if ne J;'\'n is not maximal then
(2 <j => Nigis < Na~gis]  for & limit  Njagss = U‘,N ~<i> and
i<
Ng = UNgegis'
%
(iii) if s € £ € € (n)) then Ny, )€ Nty
{(iv) The construction of <N,,:1) <’ 1/> is done in V[< roym < V,n€A>],

{(where by renaming assume § odd the sets <r.,, nE J;“n>, r, a function
from A to {0,11.

There are no particular problems (especially if you have read §4).
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Existence of Endo-Rigid Boolean Algebras

In [Sh 2] we answering a question of Monk have explicated the notion of "a
Boolean algebra with no endomorphisms except the ones induced by
ultrafilters on it” (see §2 here) and prove the existence of one with character
density Np, assuming first <>;g1 and then only CH. The idea was that if A is an
endomorphism of B, not among the "trivial’ ones, then there are pairwise dis-
joint d, € B with h(d,) ¢ d,. Then we can, for some S € w, add an element z
such that d, =z forn € 5,z N d, =0 for n ¢ S while forbidding a solution
for fy nNhid,)=h{d,}:neSlyly nNkhid,)=0:n & S}. Further
analysis showed that the point is that we are omitting positive quantifier free
types. Continuing this Monk succeeds to prove in ZFC the existence of such

Boolean algebras of cardinality M and density character Mo In his proof he

{a) replaces some uses of the countable density character by the 8;-

chain condition

{b) generally it is hard to omit < Mo many types but because of the spe-
cial character of the types and models involve, using 28 almost digjoint sub-

sets of w, he succeeds in doing this

{¢) for another step in the proof {ensuring indecomposability - see
Definition 2.1) he (and independently by Nyikos) find it is in fact easier to do
this when for every countabe I € B there is x € B free over it.

The question of the existence of such Boolean algebras in other cardinali-
ties remains open {See [DMR] and a preliminary list of problems for the hand-
book of Boolean Algebras by Monk).

We shall prove (in ZFC) the existence of such B of density character A and

cardinality 2 whenever A> NV, We then conclude answers to some other
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questions from Monk’'s list, (combine 3.1 with 2.5). We use a combinatorial

method from [Sh 3], [Sh 4], it is represented in section 1.

In {Sh 1], [Sh 8] {and [Sh 7]) the author offers the opinion that the com-
binatorial proofs of [Sh 1], Ch. VIII (applied there for general first order
theories) should be useful for proving the existence of many non-isomorphic,
and/or pairwise non-embeddable structure which has few {(or no) automor-
phism or endomorphism or direct decomposition etc. As an illumination in
[Sh 8] a rigid Boolean algebra in every A > 8y was constructed. The combina-
torics we used here relay on [Sh 1], Ch. VIII 2.6 and it amounts to building a
model of power Ao omitting countable types along the way, the method is
proved in ZFC, nevertheless it has features of the diamond. It has been used
also in Gobel and Corner [CG] and Gobel and Shelah [GS1], [GS2]. See more on
the method and on refinements of it in [Sh 4] and [Sh 3] and mainly [Sh 5].

§1 The combinatorial principle
Content: lLet A > « be fixed infinite cardinal.

We shall deal with the case ¢f A >Ny, Ao = A*, and usually & = Ng.

Let L be a set of function symbols, each with < & places, of power < A. Let #/]
be the L-algebra freely generated by T% =>A( = {5 a sequence < w of
ordinals < A) {We could have as well considered T as a set of urele-
ments, and let %] be the family H {T) of sets hereditarily of cardinality
= i build from the urelements]. Fornp e T U ®A let orco{n) = {n{i):i < 2{(y)}{,
for a sequence 73 = <’ni:i < ﬁ> let orco (@) = orco(my), for a = 7(7) € W let
i<8
orco{n) = orco(3]) and orco (( a1 < ﬁ>) = (yorco{a,), and similarly for a set.
i<g

1.2 Explanation: We shall let By be the Boolean Algebra freely gen-

erated by {n:n € T}, B its completion and we can interprete B§ as a subset

of #] (each a € B§ has the form {J T, where T, is'a Boolean combination of
n<e

members of T, so as we have in L ¥gplace function symbols there is no
problem). As the 7 € T may be over-used we replaced them for this purpose by
z, (e.g. let F € L be amonadic function symbol, z, = F(n)).
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Our desired Boolean Algebra B will be a subalgebra of B§ containing Hg.
1.3 Definition :

1) Let L, be fixed vocabularies (= signatures), |L,| = &, L, € L, 4. (with
each predicate function symbol finitary for simplicity, let P, € L, ,,—L, be

monadic predicates.

2) Let S, be the family of sets (or sequences) of the form
$(f ¢, Ng):2 < n] satisfying

a) fg:%= k> Tis a tree embedding i.c.
{i) f g is length preserving i.e. 1, f¢{n) have the same length.
(ii) f ¢ is order preserving i.c. forpuv €%=% 5 < viff fo(n) < fo¥).
b) fesrextend fg (when+1=<n)
¢) Ng is an Ly -model of power = «,|Ng| € |W]|, where Ly C Ly.
d) Lgs1 M Lg = Lg and Ng I Ly extends Ny

€) if Py € Lyyq. then Pof= |N,, | whenm <€ <n and

f) Rang (f¢) — U Rang (f,,) is included in [Ng|= U |Nml.
{4

m< m<£

3) Let 5, be the family of pairs (f,N) such that for some
(fe.Ng){€ < w) the following holds:

(i) §(f g.Ng):2 < n} belongs to 5}, forn < w.

(i) f=UfeN=uUuDN. i e. INl = U [N, ]
|2 n<e n<ae
LIN) = UL(N,), and NTL(N,) = U Nyt L(N,)
n n<m«<a

4) For any (f ,N) € 5, let (fn N,) be as above (it is easy to show that
(fn.N,) is uniquely determined - notice d),e) in (2),) so for (f *,N%) we get
(fr' )

5) Let 3}, = H{{fn.Np): for some (fg, Ng)(€ <) {(fg.Ng)k =nj€ f;‘n and
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we adopt conventions of 4).

8) A branch of Rang {f) or of f (for f as in (3)) is just € ®X\ such
that for everyn < w, 1 n € Rang {f ).

1.4 Explanation of our Intended Plan (of Constructing e.g the Boolean
Algebra)

We will be given W = {f * N):a < a{*)}, so that every branch 5 of f¢
converge to some ¢{a), {(a) non-decreasing (in ). We have a f{ree object
generated by T {( By in our case) and by induction on a we define B,
increasing continuous, such that Bg,, is an extension of By, @4 € Bayey—By4
{usually B,y is generated by B, and a,, and a, is in the completion of
By). Every element will depend on few (=) members of T, and a,
"depends” in a peculiar way: the set Y, T on which it “depends” is
YY) U Y: where Y§ is bounded below ¢(a) (i.e. Y2 € #>¢ for some ¢ < ¢(a))

and Y} is a branch of f % or something similar. See more in 1.8.

1.5 Definition of the Game: We define for W ¢ 5, a game Gm (W), which

lasts w-moves.
In the n-th move:

Player I: Choose f,,, a tree-embedding of "®k into "=, extending ) fg.
g<n

such that Rang (f,)— U Rang (f¢) is disjoint to |y |Ng| ; then
g<n g<n

player Il chooses N, such that {(fg,Ng):l =n} €.

In the end player Twinsif { U fn, U Ng) € W.
n<w n <w
1.6 Remark: We shall be interested in W such that player 1 wins {or at
least does not lose) the game, but W is "thin”. Sometimes we need a
strengthening of the second player in two respects: he can force {in the n-th
move) Rang (fr4+,) — Rang (f,) to be outside a "small” set, and in the zero

move he can determine an arbitrary initial segment of the play.

1.7 Definition : We define, for W ¢ 5,, a game Gm'(W) which lasts w-
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moves.

In the zero move

player I choose fq a tree embedding of °=k to ™A (but there is only

one choice).

player I choosesk <wand §{(fo,Ng)l <k} €%, and X, C T, | Xo| <A

In the n-th move, n > O

player I chooses frun, a tree embedding of *+M)=g into *+™)=x, with
Range frin— U Rang fgdisjeintto U Ng U U Xg-
g<k+n Z<k+n Z<n
player II choose Ng,, such that §(fg.Ng)€ <k+n}e,, and
X, T, | X, ] <A

1.8 Remark: What do we want from W?: First that by adding an element
(to By) for each (f ,N) we can "kill” every undesirable endomorphism, for this
it has to encounter every possible endomorphism, and this will be served by
"W a barrier”. For this W =5} is 0.K. but we also want ¥ to be thin enough so
that various demands will have small interaction, for this disjointness and

more are demanded.

1.6 Definition : 1) We call W ¢ 9, a strong barrier if player I wins in

Gm (W) and even Gm/(W) {(which just means he has a winning strategy.)

2) We call W a barrier if player Il does not win in Gm (W) and even does

not win in Gm'(#).

3) We call ¥ disjoint if for any distinct (f¢,N¢) € W (€ = 1,2), fland f2

has no common branch.

1.7 The Existence Theorem : 1) If Ao = A*, cf A >R, then there is a

strong disjoint barrier.

2) Suppose AN = A, cf A >R Then there is

W={{f N :a<a"}c, and a function ¢: a” » A such that:
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(a) W is a strong disjoint barrier, moreover for every stationary
SCid<A: cf 6=8] {(fAN%:a<a’, &(a) € S} is a disjoint barrier.

(e) cf (¢(a)) =8gfora<a’.
(d) Every branch of f%is an increasing sequence converging to ¢(a).

(e) If 7 is a sequence from T (of any length 7 < k%), 7{(Z) a term,
2(z) =yand 7(7) € N*thennp C N* N T.

(N If &a) =¢(B), a+ < B < «" and 7 is a branch of ffthenntk ¢ N

for some k£ < w.

(g) If A = A* we can demand: if 7 is a branch of f* and 75tk € Nf for
all k < w (where a,8 < a") then N® ¢ N (and even NZ e NP if W= H +(T).)

§2 Preliminaries on Boolean Algebras

We review here some easy material from [Sh 2].

2.1 Definition : 1) For any endomorphism h of a Boolean Algebra B, let
Fx Ker(h) = {z,yzgh(z,) =0, and h(y) =y for everyy = z5}.

Fx Ker(h)=§{x € B: in B/ Ex Ker(h), below z/ Fr Ker(h), there are

only finitely many elements].

2) A Boolean Algebra is endo-rigid if for every endomorphism h of
B, B/ Ex Ker(h) is finite (equivalently: 15 € Ex Ker'(h)).

3) A Boolean algebra is indecomposable if there are no two disjoint ideal
Iy, Iy of B, each with no maximal member which generate a maximal ideal

(faguayag € lya, € 1)),

4) A Boolean algebra B is 8;-compact if for pairwise disjoint

d, € B(n <w)forsomez € B, x Ndopse1 =0, 7 Ndg, = doyp.

2.2 Lemmma : 1) A Boolean algebra B is endo-rigid if every endomor-
phism of B is the endomorphism of some scheme (see Definition 2.3
below).
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2) A Boolean algebra B is endo-rigid and indecomposable if every
endeomorphism of Fis the endomorphism of some simple scheme { see Def
2.3 below).

2.3 Definition : (1) A scheme of an endomorphism of B consists of a
partition aga ,bg, ..., by, €4, ... ,Cp ¢ of 1, maximal nonprincipal ideal Iy
below by for £ <m, nonprincipal disjoint ideals /§,7§ below ¢y which gen-
erates a maximal ideal below ¢y for £ <m, a number k¥ <7, and a partition
bo, . by, Chu o Cmy Of @gUbgl - U bg_;. We assume also that
[k4+m >0 =>0a,=0], [(n—k)+m >0=>a, =0] and except in those cases

there are no zero elements in the partition.
{2) the scheme is simple if m = 0.

{3) The endomorphism of the scheme is the unique endomorphism
7:B » B such that:

(i) Tt =0whenz <agorz € I3, <k, orz 6[8,@ <m.

(ii) 7 =z whenz <a,orz € [pk < <norz €l},L <m.
(iii) T(bg) = by when € <k.

(iv) T(bg) =bg |y bg whenk <€ <n.

(v) T{cg) =cg |y cg whenf <m.

24 Claim: If A is an endomorphism of a Boolean Algebra B,and
B/ Ex Ker(h) is infinite then there are pairwise disjoint d, € B(n < w) such
that h(d,} € d,. By easy manipulation we can assume that h{d,) N dp+1 # 0,

and if B satisfies the c.c.c. then {d,:n < w} is a maximal antichain.

2.5 Lemma : 1) Every endo-rigid Boolean Algebra B is Hopfian and and
dual Hopfian. Even B + B is Hopfian (and dual Hopfian) but not rigid.

Proof : FEasy to check using 2.2, 2.3.
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§3 The Construction.

3.1 Main Theorem : Suppose A >R,. Then there is a B.A. (Boolean Alge-
bra) B such that:

1) B satisfies the c.c.c.
2) B has power )\N", and density character A.
3) B is endo-rigid and indecomposable.

Proof: We concentrate on the case cf (A)=#8; (on the case
cf A=8; see [Sh 5, §2, §3]) we shall use Theorem 1.3, and let
W ={(f*N%):a < «}, the function ¢, W and T =9>A be as there.

Stage A: Let By be the B.A. freely generated by {z,n €T}, let z,, =2,
and B be its completion. For 4 ¢ B§ let <A>B§ be the Boolean subalgebra
A generates. As Hj satisfles the c.c.c every element of B§ can be represented
as a countable union of members of By, so w.lo.g B§ W Wesayz ¢ B§ is
based on J C ®’A if it is based on {z, v € J} [i.e. X = (J ¥,, each ¥y, is in the

n

subalgebra generated by {z,: v € J}{] and let d{z) be the minimal such /. We
shall now define by induction on a < a*, the truth value of "ax €J ", Ny and
members a,.b2, e df T2 of  H§ such  that letting
Ba={Bo, ;i <ai€lyg:

1) 14 is a branch of Rang (f @),n, # ng for B < a.

2)if a € J, then for some ¢ < &{a):
aq. = (13 N d,2) where <d,$,f:m < co) is a maximal antichain of non
m
zero elements (of B§) yd(a,g) C®%¢ 172 € <xp Nat™m S pp€ T> gy and
T V4,5 >0 "

3) if aed,bZdfe NS, 272 € N* (hence each is based on

fz, v € “>Av e NY), and b2Nb,E =0 forn # m.
4)forp<a, BE€J, Bpomitpg=fr NbF=cy: n <wi

Remark: Many times we shall write <a<a’ or w Ca <a’ intead

peand, wcand.
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Before we carry the construction note:

3.2 Crucial Fact: For any = € B, there are k£ < ¢, and ag < <ay
such that {{ag) = ¢(ay) = &ag) = - - = ¢(ag) = ¢, z is based on {z v € “%¢ or
v €g_(~r,‘:f), for some £ =k, m < o}, but for some & < ¢, and for no m < w and
£ €§0,... . k}isz based on {z, My, ' m & v € “A}.

Stage B. Let us carry the construction. For § < Aw ¢ o let

Iew =fywve®E  or ve ydrh)
m<w
yew
We let a € J iff |N%| € Ba.N* =(B§ t |N*|,h,) where h, is an endomorphism
of B§ I |{N®| (hence maps NZ into N for n €< w) and there are d,5 € N§ for
m<w di#0,d% NdFf =0 form # £, such that for some £ < ¢(a) each d,5
is based on “?¢, and there are a branch 7, of Rang {(f %) and 72 € N*(m < w)

as in 1), 2) above, such that if we add |y (75 N dF) to By, each pg(f < a) is

n<w
still omitted as well as {2 MR (d2) = h (dENTR) :m < w} and <d,g :m < co>
is a maximal antichain.
If a€J we choose n%*d2 1%, satisfying the above and let bg = h,(dg),

Cm = haldg N T

The Boolean algebra B is B,-. We shall investigate it and eventually prove
it is endo-rigid {(in 3.11) and indecomposable {in 3.12) {(3.1{(1), 3.1(2) are

trivial).
Note also

3.3 Fact: 1) For v € ®>A, z, is free over {z,:n € “>A,n # v} hence also

over the subalgebra of B of those elements based on {x":n € %> A n # v

) For every branch n of f® such that 7 # g for < a.& < {(a);
and finite w Ca fthere is k such that {p:prk €p €T} is disjoint to
P Y UINNT: Bew, 3+2g“$ al yuld(th n <w,B € wi.

From 3.2 we can conclude:

3.4 Fact: If £ < ¢(B),8 < a, I C T finite then every element of B,, based
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onl (> ¢isin By
3.5 Notation: 1) Let B¢ be the set of @ € B§ supported by ©>¢
R)Fora € B§, € <Aletprz)=nfa € Btz =<ai
3) For £ < Rlet e(€) = Min{y:&(y) > &),
4) For ¥ < a” let Beys = <E:z,,1:7; € 9N U {zg B < 7§> B
5) For I C“>A, w C o, let B(/,w) = <§x.,, me i YlzgBew n J§>,
8) For £ < Alet By =<£x.,’ cmE 9TE Y fzg: ¢(B) = 8>B§-
3.8 Fact: 1) B¢ is a complete Boolean subalgebra of B§.
) pre(z) is well defined for x € B§.
3) if &g < &1 <A, z € Bf then pre(pre(r)) = prelz).

4) I E<AwCT is finite then for the function
Pren(z) =Ny € <B‘ Uiz, ve w{> cz <y} is well defined.

8.7 Fact: 1) For z € B,-, ¢ <A, the element pr/z) belong to
<BE Uz, V€w§>.

R) For ¢ € B,», £ <A, w C “>(¢+1), the element prg,,(z) belongs
to B(%%¢w).

Proof: 1) We prove this for z € B,, by induction on « {for all £).
Note that pr  zg) = UPT(zg).
2<n Z<n

Casei:a = 0, or even (VB8 < a) [¢(B) < £].

Easy; if z=7(aq, ... ,0q 1, Ty, . .., z, ) where T is a Boolean term,
ag € Blgp, vg € A —%*¢ ; by the remarks above wlog z= N 7y,
£<n+m

Tg €{ag,1—ag} when € <n, 74 € {z

ven17%y, } whenn <€ <n +m, and the

sequence <xu°, N ,xvﬂ_1> is with no  repetition,then clearly

pre(z) = N ¢ € By
2<n
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Case ii: o limit.

Trivial as B, = U Bg.
B<a

Caseilita =8+ 1.

By the induction hypothesis wlo.g. ¢ & Bg As 2 € B, there are disjoint
eo.€1.85 € Bg such that = egiyle Nag) U (ez—ag). It suflices to prove that
pre(eg), preles M ap), preles—ag) € By, the first is trivial and wlo.g. we
concentrate on the second. There are §; < ¢(f) and k¥ < w such that e, is
based on J E¥>x — {p: ngk < p €°>Ajand each df(n < w) is based on *>¢&,
By Case i, we can assume £ < &(f) hence w.l.o.g. € < £, and by the induction
hypothesis and 3.6(3) it suffices to prove prgle;Nag) € By Wlosg
e;Nda =0 for m<k and now clearly prgleinag)=e; as
preles Ndn N TR) =e; Ndy for m =2k | (because d,e, are based on J,

o>, C J and T2 is based on ®>A — J and is > 0).
2) Same proof.
3.8 Lemma : Suppose /,w satisfles:

(7w 1€°A, w Ca, [ is closed under initial segments, and for every

a<aotif /> {(notm € 1) then 72 .d,2 are based on [ and belong to B{({,w).
m<e

Then for any countable C C B,- there is a projection from <B(I,w),C> B
onto B(I,w).

Proof : We can easily find /{*),w(*) such that w cw(*) ca’,
Jw(*)—w| <8, ICI{*C®A |I(*)-I]| <8y and if a€w(*)—w, then
T2.d% € B(I(*),w(*)). Let w(*)—w = {ag:f < w}, and we define by induction
on £ a natural number kg < w, such that the sets {v €®>\: v appears is Tl
for some m > kg} are pairwise disjoint and disjoint to /. Now we can exitend
the identity on B(/,w) to a projection hg from B{I(*),w) onto B(/,w) such
that if £ < w,m > kg, then ho(Toln dpf) = 0. Now we can define by induction
on o € (w(*)—w) Y{O,A} a projection h, from B{I(*},w y (w(*) N a)) onto
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B(l,w) extending hg for § < a (and B € (w(*)~w) Y {0}). For a =0 we have
defined, for a = A we get the conclusien, and in limit stages takes the union.

In successive stages there is no problem by the choice of hg, and the ky's.)

3.9 Claim: If B is an uncountable subalgebra of B, then there is an
antichain {d,m <w} C B andfornoz € B, z Ndy, =0, 2 N dgpy4y = d, for

every n provided that

(*) no one countable I C “>\A is a support for every e € 5
Proof : We now define by induction on a < wy,d ./, such that:
(i) Ip € ®> A is countable.

(ii) U g € I5 and for a limit, equality holds.
fi<a

(iii) d 4 € B is supported by /44, but not by /.
There is no problem in this.

By (iii) for each a there are TS € <a,,,:11 € ]a>Bg,
Tl1Z € <a,,:17 € [a+1—]a>% such that TinTi=0  dnti=d,

SN Ti=<1-d,

By Fodour's lemma w.l.o.g. 7 = 79 (i.e. does not depend on a). For each «

there is n{a) < w such that
T2€.<a":7) € [am"‘(“)a)\> 5 ,'r,,ll,’r,f€< Ayt € (Igs1— 1) m“(“)z)\> B

Again by renaming wlog n(a)=n(*) for every a. Let for

n<wd®=d,—\y dg, ™" =7 N 76 N TA, soecasilyd™ € B, <d"":'n. < w>
g<n g<n.

is an antichain, ™" <d®™ and 7" € <an:'r; € M”*A) p3- Suppose z €F
z€Baxnd® =0, z nd¥* 1 =¢g3*  Hence for n<w, z NT"=0,
z 7Tl =2m* But by 3.8 (for 7=70R27), there is such z in
<a,,:1; € “(')2)\> p5» an easy contradiction.

So we have proven that for every 8;-compact B C H,+, some countable
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I C ®>A\ support every z € 5.
3.10 Claim: No infinite subalgebra B of B,- is X;-compact.

Proof : Suppose there is such B , and let £ be minimal such that there
is such B C Brgy

Part I: if (*) a) B C B, isN-compact and infinite and
b) B' C B[E]’
then

¢) for every ¢< ¢ and z € B—{y:{z € B' : z <y} is finite}, there is
z,€B.x;<z suchthatfornoy € By, ¥y Nz =21

So assume H, satisfies a) and b) but they fail ¢) for ¢ < £ and z € B, where
fy:y = z,y € B is infinite. So for every z € B, there is g(z) € B¢ such that
g{z) Nz =2z Nz (use z;=2z N z). Let B% be the subalgebra of By gen-
erated by fg(z)z € B}]. Clearly {y € Biysz]=1{t nz:ite€B*. Let
z" = prz), (it is in Big by 3.7(1)) and let
Bt ={t nx":t € B*} y {t y(l—=z"):t € B*]. Clearly B® is a subalgebra of
B, and 1—z" is an atom of B®;B® is infinite as there are in B’ distinct
z, <z, so g{z,)€B* hence g{z,)Nnz €B® as =z=<z' and
mzm =g(z,) Nz #9(zn) Nz] clearly
[n#m =>g(z,) Nz" #9(z,) Nz"]. We shall prove that B® is §,-compact,
thus contradicting the choice of & Let d, € B® be pairwise disjoint, and we
want to find t € B®, t Mdo, =0, t M dopsy = dopyy (for n <w). Clearly
wlog d, <z° (as 1-z° is an atom of B®). So d, =t, Nz  for some
t, € B*, hence easily t, Yx €H so for some z, €85, z,<z and

t, VT =2, NZT =2,. S0z, =g(z,) Nz.Forn #m,

Tn NIm = (taNZ) N EnNZ) = (EN27) N (ErNZT) = dpNdy =0
As B' is 8;-compact there is ¥y € B, ¥ N Za, =0, ¥ N\ ZTant1 = Tonsy NOW

g(y).dp.t, belongsto Bgyand (as 2, =z <z'):

D9y Nday Nz=9W) Nty NT =
gY) N ZTon NT =Y NZTz NT =0
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(ii) GW) NAape1 NT =9W) NtgnaiNZT =gY) N Toper NT =

Y NZTone1NT = Tape1NE o1 NT = oy NE-

Now by the definition of z* =prz), [T € Bjgr T Na=0=> 1Nz’ = 0]
(as 1-7 € B¢, * < 1—7) hence by (i) (for 7 = g (y) N dzpn):

(ii) g(y) Ndap Nz" =0

Also by the definition of 27 = pr(z):
T T € Bpgj A TINT = ToNZ =D TiNZ = TpN\T°

(as 71—73 € B,z < 1—(1,—73)) hence by (ii)
(V) 9@W) Ndansr N2 =dapey Nz

But d,=<z', so from (iii) and (iv) @) nNz") Nda =0
(@) Nz") Ndansy =danyy, and g(y) € B* hence g(y) Na’ € B°. So B® is
¥i-compact this contradicts the minimality of £, so we finish Part L.

Part II: if B! is 8;-compact B! C B? B?= < Bty fz§> then B? is N;-

commpact.

The proof is straightforward. [If d, € B® are pairwise disjoint, let
d, =(d} nz) Uy (d2-=2) for some d,).d? e B. Now wlog d, ndL=0 for

n #m - otherwise replace then by d; — U dgl; Similarly d,2 iy 4,2 =0, for
g<n

n # m So there are y‘Z € B, yﬂ N dzgn =0, yﬁ N dzznﬂ = d«zgn,,_l = d§n+1, and
(y!' N z) U (y®—2) is the solution.]

Part IIL. £ cannot be a successor ordinal.
Proof: Let B satisfy (*).

Suppose £ = ¢+1, and by 3.9 there is a countable / € ®>§ which support every
a € B. wlo.g. Iis closed under initial segments and & = }/~°>¢| is minimal.
Now Part | can be applied with (Bm,fa,;:n € w§>35, for any finite w C 7 of
power <k instead Bg (using 3.7(2) instead 3.7(1)). So by applying Part I {to
(B[ﬂ,ia,,’ ‘mEw ;>BS) we can add to its conclusion:
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d) for ewery finite w Cc/ , |w| < |I-9>¢] and z € B for which
fy € B:y <z} is infinite, there is z,€ B,z;<zr such that for no

Yy €<Bm U{an:new»%,y Ne =x;.

Now [—®>¢ is infinite [otherwise let 5" = (B'U{an:n € [»"”{}> 55 casily it
is infinite and ®;-compact by Part I and then we apply Part 1 : for
I —9%¢=1{ng, ..., M} and for u € {0, ... . k—1}, let z, N {Zp 2 €ujn
{1—2,,:2 <k, & ujsozx, €B,1=lzy:uci0.. . k-1}}, hence for

some u, {y € B" 'y < =z,} is infinite; {,z,, contradict the conclusion of Part 1.

As B is N;-compact, for any z € B such that {y € By = z} is infinite, z
can be splitted in B to two elements satisfying the same ie. z =z' | z%
' nz?=0, {yeB:y=z% is infinite for the € =12 Let
I —9>¢ = {5g:€ < w}, so we can find pairwise disjoint e, € B, {y € B :y <e,}
is infinite; now by d) above for each n we can find d, ,dg, 4y, such that
en =dop U danet. Bop NEopsy =0 and that for _na
y € <B[§] Ulay, : ¢ <'n§> ¥ N (dap Udons1) = donsr. As B is ¥i-compact
there is y € B such that ¥ N (dop Udzns1) = danss for every n. So for non

y € Bl U fage: € <ni) .

As y € B clearly y € Bl¢41), but ¥ is based on “>¢ | {a,, € <] so by
3.7%) y € <B[¢] U lag:2< “’;>st hence by Stage B for some n |,
y € <B[<} U tay L < ni>86, contradiction toy My {dzn U dape1) = dg,’;{_l‘

Part IV: Let 7, satisfy (*) of Part 1. By 3.9 for some countable I C ¢,
every b € B is based on /. By Part III £ is not a successor ordinal, so neces-

sarily cf (£) =Ry, let Fi(B) ={x € B:{y € B :y <z} is finite]. Next we shall

show:

(**) for some finite w C {¥: &(y) = €} and 2 € B—Fi(B) for everyy <z'
from B, for some z € < U B Ulega € w§>35, z Nz =y
(<t

Suppose {**) fail, and we define by induction n < @, z,,%,, . W, such that :

(iz, € B,
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(i) 1—-y 2, € Fi(H)

i<n
(iii) w, C {y: &(y) = £} is finite.
(iv) w, € wy 4y
(V) Yp < TpYn € B.

{vi) for no 2 €< UBg U laga €wn§>8§ is2 N Zp =Yn-
{<¢

Forn =0 1¢ Fi(B).

For every m let w, be a finite subset of {7:{(y) = £} extending (y wy,
Z<n

such that for every £ <n , zgp,yg e( UBg U lagac wn§>55. Then as
143

1—\y z; € Fi(B), and as B is 8;-compact, there is z, < 1—-yz; , z, € B,
2<n i<n

1-yz; ¢ Fi(F) and z, & Fi(B). Now as (**) fails, w,,#, does not satisfy the
Z=n

requirements on w,z" in (**), so there is y,, € B , ¥, <%, such that for no

z e< U Brg U laga ewn{>35 sz M2, = Yn.
(<€

As B isN;-compact, for some z* € B, 2" Nz, =y, foreveryn.Asz" € B
for some finite w* C &(§), z° €< UBlg U laga e w*{>58, As w’ is finite,
{<¢

for some n(*) <w, w' N (U w,) € Wy ey Let ¢ < € be such that: d(d) € 9>¢

n<w

for a € wy sy U w', n<w and z,.Y, € <B[ﬂ U {ega e wn(.)H;) gy for
n=n{*+1and 2" €<B{{] U lega €w'§>Bg. By 3.8 we can easily get a

contradiction to (vi). So (¥*) holds.

m
Let tg, ...ty € By be such that QU tg=1 and (V€ =m)(Va€w)
=]

[tg<ayv tg M aqg=0]. There is an £ <m such that {y Ntgy <z’ and

y € B} is infinite. It is clear {(by Part II) that B = <B’,tg> 5 is Nj-compact:

also z°' Ntge B -Fi(B"). Now if ye B ,y<z" Nty then for some

yeBy=y nNnig and w.l.o.g. y =<z, so for some

z e U Bgulega e w;>55 z V2" =y hence z N (z' Ntg) =y, and by
{<¢
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the choice of tg, for some z' €y Biep the equation
{<¢
2 N (' Nnte) =2 N (=" N ty) =y holds.

So B”, 2" ¥x* Nty satisfy the requirements in (*). Now we use (c) of

Part L Ascf (§) =8, let £ = |y ¢,, and we define by induction on n < @,2,,,%,

n<w

such that :

"

()z, € B, z,<z

(ii)z* — U z; € Fi(B")

Z<n
(iii) yp € B, yp <2,

(iv) forno 2z € Bg. 1 2 N Ty = Yn-
As B"isNj-compact, for some 2° € B",2° N z, =y, for eachn.

Now as B",z'" satisfy (**), for some 2" € B 2" ne"=2" Nnz". So
{<¢
for some n 2" € By, j, contradicting (iv) above. Thus we have finished the

proof of 3.9.
3.11 Claim: B,- is endo-rigid.

Proof: Suppose h is as counterexample, i.e.h is an endomorphism of
B,+-but B,-/ Ez Ker(h)isinfinite, and we shall get a contradiction.

Clearly if for some a, N® = (|N*|,h 1 N%), h maps N° ( B,- into itself and
« € J (see Stage B) then h(a,) realizes the type p,, contradiction (by stage A,
B, omits p,.) So we shall try to find such a which satisfy the requirements in
Stage B for belonging to J. We assume N®=(|N%|, h,), [N®| C B,
ho,=ht N* h, maps N® n B, onto itself, and N§ contains some elements we
need and somewhat more {see latter). As ¥ is a barrier this is possible. We
then will choose 7, an w-branch of f¢ , distinct from 7g for g <a [if
8+ Mo < & this follows, the rest exclude < 2 branches of f & but there are
Mo such branches], a maximal antichain <dn n < co> of By, d, € N§, and
Tw € N® in {z,: 707 <V ET g, and let b, =h(d,), 0 =h(dy NTa),
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Pa=tx Nb, =c, :n<w}, and a,= |y (d, N T,) € B§. All should have

n<o

superscript d,7 (where d = <d.n n < a)>, T =<'rn n < w)) but we usually

omit them or write a [T.d], p.[T.4] etc.

The choice of d,7 {and 7, which is determined by 7) is done by listing the
demands on them (see Stage B) and showing a solution exists. The only prob-

lematic one is (a) (omitting p g for B < a) and we partition it to three cases :
(D &(B) < ¢(a) or ¢(B) = ¢(a), B + < a,
(I ¢(B) = ¢(a), B < a < g2
(1) B = a.

We shall prove that every 7,d are OK. for (I), that for any family
{atnt 7)1 < 23°§ (n a branch of f% etc.) with pairwise distinct 7*’s, all
except < Zal) many are 0.K. for instance of (II}, and that there is a family of
oMo triples (d,n,7) satisfying (III) with pairwise distinct ®*'s. This clearly

suffices.
Case I ¢(B) < ¢(a) or &(B) = &a),B + Moz a

Suppose some z € <Ba,aa[?,8?}>gg realizes pg. Clearly there is a parti-
tion (ez:ﬂ < 4) of 1 (in Bg,) such that z = egUleNealT.d] )Ules—a[T.d]).
Choose ¢<¢(a) large enough and finite w Ca so  that

[¢(B) < &la) => &) < €], dn.haldy) b, are based on {z,:v € “¢] (for n < )
and cf(¢ < w),eq.eq,ezeg are based on J={w €T :n 1 k £ v}, where k <o
also satisfies such that nga(k) > £ 7,1 & & Npg.

We claim:

(*) thereism < w suchthat b8 n (e,ye,) — U d, #0.
n<k

For suppose (*) fail, then as e [fd]lN(U dp) € By wlog.
n<k
(ejues) N U 4, = 0 (otherwise let
nsk
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eg =eg Uley NaT.d] N Udy)Ulean U dp—a,[7.d])

n<k n<k

e; =e;—Jad,,
nsk

e} =ep— U dy)
nsk
so if z realizes pg then so does eg, but ey € B, contradicting an induction
hypothesis . So (*) holds.

Now as <dn:n <ca> is a maximal antichain in B, for some € <w,

den{bfnleyes— Uy d,)) # 0. Necessarily £ >k. So for some €€ {1,2],

nsk
dg N bl ne,#0. As z realizes pg.z N(dg N bdL Ne)=denctne,
which is based on J. But we know that z N (dgnbfne,) is
de N oh Neinaa[T.dl=de N oL NeinTe (if e=1) or
denbfnen(1-a,[7.d]) = dg N bENexN1—Tg (if £=2). As dg N bENe, # 0
is based on J, € > k,n,(k) > & T4 is free over J, (see Fact 3.3(2)) necessarily
z N {(dgnbdL Ne,) is not based on J, contradiction.

CaseH:ﬁ<a<ﬁ+2n°‘

We shall prove that if nQ,T‘Q are appropriate ( for € =1,2) and ! #7n?

then pg cannot be realized in both <Bu,a, [?Q,J]>Ba.

As there is a perfect set of appropriate i's it will suffice to prove that for
each w-branch 7n of Rang {f®) for some appropriate ¥ (Ba,a?>38 omit
P a = Pal7.d] which will be in done in Case 11

Note that [§ =fe € B,: for some z=<e for every n
z Nbg Ne=cg Mejisanideal

The details are easy.

CaseIll: B = a.

This case is splitted into several subcases. Let 7, be any w-branch of
f® . My # g whenever B < a <+ 2% Let I' = Y{d(h(z)) : 2 € B,}. We shall
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assume |I"] =8y, => [" C N§, so in this case p, is omilted by By, or B,- iff
it iz omitted by B, {(by 3.7(1)). As accomplishing our aim is easier we shall

ignore this case (work as in Il 4 and use quite arbitrary pg.

Subcase III 1.: For some p' €T, and a' € B,—Fx Ker'(h) for every
p.p <peTforsomerTe <xn:p <ne 'I‘>35, e’ #0=h{Tna").

As we are interested not in (f® N?%) itself, but in k, by using Gm'(W),
w.l.o.g. p* € Range (f%). By 3.9 (for Rang (h), which by assumption, is infinite)
and easy manipulations (see 2.4 and {Sh 2]) there is a maximal antichain
<dn:n <co> of B, such that for no z € B,, z N h(dy,) =h(dy,) and
z N h(dopyy) = 0. Wlog {d,in < 0w} ¢ N§.

It suffices to prove the conclusion for any w-branch n, of
Range (f%).p" <na & {ng: B <a}. We define by induction on n, 7, € N,
Ty € <x,’:7;am < "l>55: Tn # 0,1 and h{Ts,) = 1,Lh(Tap41) = 0. {possible by the

assumption of subcase IIl 1), so we finish this subcase.

Subcase Il 2. For some a’ € B, th(z)—a':x € B. ,z <a'}isinfinite.

Clearly B®* =th(z)—a": z€Ba,z<a’} Yyl —(h(z)—a’):
z € Bge, ¢ < a,} is a subalgebra of B,- (with @” an atom). By assumption (of
this subcase) B? is infinite. So by 3.9 there are e, € B%, pairwise disjoint, and

~@z € By) N\ (z=ey, nz M eg,,1=0). As 2’ is an atom of B% w.lo.g.
n

e, <1 —a”, hence there is d, < a’ (in B,-), such that h(d,) =e,. Clearly
h{d,—\ d,)=e, — Ueg =¢e, ,sowlog thed, are pairwise disjoint. So by
g<n g<n
easy manipulation for some <dn n < w> the following holds:
(ii) < d,mn < w> is a maximal antichain of B,».
(iii) fornoz = 1—a”, 2 N\ A(dapsz)—2" = h(dap4a)—a”,

z N h(dape)—a’ =0
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We can assume that d,, h{d,) € N§&.

Let 7° = <'r7‘2:n < m> be a suitable sequence, (for our 7,) then so are
7 = <1‘-£:n < w>, for £ < 4 where

1 . 1 P ¢ .
Ton = 1=T3n, Ton+1 = Ton+

2 — 40 2 — 0 .
Ton = Ton, Ton+1 = 1= Ton+ns
3 — 0 3 — 10
Ton = 17 Ton  Tin+1 = 1 Ton4y

Suppose for each € < 4, in <Ba,aa[?’z,cﬂ>ﬂs there is an element yQ
which satisfies %% nh(dD—a’ =h(zfNnd,)—a" for 1=n <w Wlog.
y?<1-a” = dg hence y% € B,. Now (¥°Uy?!) n (WPUy?) € B, contradict (iii)

above.

Subcase Il 3. For some a’ € By-—Ex Ker'(h), and p* €T, for every
p,p <peT there is T € <xv:p SV E T> B such that

ritne*) nae' =1ne’.

Clearly the function ' : By-ta” = B,-ta” defined by h'(z) =h(z) n e’
is an endomorphism; W.l.o.g. the assumption of subcase III 2 fail hence
{h(z)—a” iz <a”} is finite, hence the range of h' is infinite (as
a® & Er Ker'(h), so by 2.4 there is x <a"’ such that h{(z) na"—z # 0; we
know that d(z) is countable, hence for some p . p" <p” €T and
fvip”’ < v €T is disjoint to d(e”) U d(z) N d(h(z)). Now by the hypothesis
of subcase Il 3 we can easily find 7,, € <x,,:p" Qv E 'I'> By » With pairwise dis-

jointd(m,)andh(t,Na") e’ =7, na’. So

h{t,Nz)N(a"~z) =
h(r,na" ) nz)nle'—z)=h(t,Nna") nhiz) N (a"—=z) =
(h(tpne’) ne’) nkhiz) na'—z)=(t,Nne’) nhz)n(a’"~z) =
=1, Nhiz) N (a'—=2) =7, N (h(z) Na’—=)
It is #0 [as d(1,) N{@(z)Ud(r()Ud(a")) = ¢) and A(z) Na'~z # 0,

T, 20)], and for different n we get different values. So
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{hiy nNz) N (e"—z):z € By, is infinite. Hence {h(yNz)—z;y € By} is

infinite, leading to the assumption of Subcase III 2 {with z here for a” there).

Subcase III. 4. For some p* €T, and a* € B,- — Ezx Ker'(h) for every

TE <xV:p' {ve T>Bg h(tnae*) na’ isbasedon frp" € veT}.

Wlog. the hypothesis of subcase 1 1 fail, hence
thitne') 1€ <x,, ptQve T> g5} is infinite. As also w.l.o.g. the hypothesis

of subcase Il 2 fail we get (h(tna')ne’:7€ (x,, pt <ve T>Bg; is
infinite. So by 3.9 we we can find d, € <2:V:p' qve T>Bf, such that
<dn_.n < w> is a maximal antichains in B§, and there is no z € H-,

z h(da) =h(dz,), 2 N h(dgps) =0, anddg = 1-a’.

As before we can assume p* € Rang (") and d,, € N§ for n < @. We sup-

pose 71, € {ng: B < a}is an w-branch of f%,p" < N,
For any  suitable 7, if y[7.d]e€ <Ba,aa{?,§]> p;  satisfies
Th E(:z:v:p' SvE T>Bg and y{7.d] nh{d,) =h{T,Nd,), (for every n)

then by 3.3 we easily get y[7,d] € B,, and then get contradiction by trying

four T's, as in subcase 112

Subcase Ill. 5. There are p* € T and atomless countable subalgebra
Y ¢ B,- and pairwise disjoint ¢y € Y(€ < @) such that for every ¢ and

pgElp:p’ <peT] for some 74 € <x,:pg SveE T> g the following holds: for
no z € B§ is dizyCivpg €4 veT and
z N h(cg) N ecg—Te=h(cgNTe) Nce—Te

Let < d, n< m> be a maximal antichain of B~ such that d,, =cg,.

So wlog. YyUld, n<w}]cNg&p" €Rang (f*) (using Gm'(W)), and
even p° < 7, and each N2 is closed under the functions k and pg » 74 (impli-

cit in the assumption of the subcase).

We can now choose by induction onn, T, € N,
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Ty =<x,,:77arn <}V€T>B§
such that

(*) (a) for even n, for no z € B§ based on v tn L veTl is
zNr{dn)Ndn = Tn =R (A NTaINEn — Th.

Why is this sufficient? We let d=d,mn < w>, and T ={1,n <wy. So
assume some ¥F[T.d]¢€ <Ba,aa[’f‘,&}>5§ realizes p,[7,d], ie. satisfies
y[T.dl nh(d,) =h(d,NT,) for every n. As y[T.d] € <Ba,aa[7_-,cf]>55 for
some pairwise disjoint eg[7,d ],e,[7,.d ],e[7.d] € By,

y[r.d] =eo7.dly (e,[1.d] N ealT.d]) U (eT.d]—aql7.d]).
For some m(*) <o, d(ey7.d]) yd(e,[7.d]) Ud(ey[7.d]) is disjoint to
frmm (*) < v €T} (see 3.3(2)).

Now we compute forn even > m(*):
z Zh (A NTR) N Bp—Tn =

=y[7.d] nh{d,) N d,—7, (by the choice of y[7,d])

= (eo[T.dule [T.d] N ag[T.d]) U (ex[T.d]-a[T.d]))Nh(d, ) Ndp—Ty =
= (eo[T.d Nk (dn) Ndrn —T2) V(e [T.d]Na[T.d ) N (dp)Ndy — 75) U
Ulea[T.d]—aq[T.d)Nh{dy) Ndy — Ty)

But e [T.d]l N d, =71, N d, hence
(es[T.2]Maa[T.d)Ndn = (e1[T.d]NT)Nn
(eolT.d]-a,[7.d])Nd,, = (ep[7.d]-T)Ndy
Hence
z = (eg[T.d]Nh(d,) Ny —7,) Ule [T.dINTR) N (AR ) Ndy — 70 ) U
((92[7,5]—’Tn)ﬂh(dn)ﬁdn _T'n.)
But the second term is zero and in the third the first —7,, is redundant, so

z = (eo[?-&] r\h’(dn)ndn_Tn)U(eznh(dn)mdn_Tn) =
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= (eolT.@Tue[T.d)NA(dy ) Ndy — Ty
We can conclude
(eofT.dlueT.d)NA(dy) N —Tn = (A NTR)NEn—Tn
contradicting the choice of 1.
To finish Case 11l (hence the proof of 3(10) we need only

Why the five subcases exhaust all possibilities?
Suppose none of 111 1-5 occurs. By not subcase IIl 1 for some p° € T,
a) h(1) # 0 for every T € <:z:,,:pD <ne T> 55
Let Y be the <xpoh st < m> ps- As Y is countable, for some 1(*) <A,

fv 00 ~ <i(*)> < v € T} is disjoint to Uid{(y) Ud(h(y)):y € Y}. As "not sub-
case 111 5" for some p!, p0 ~ <?,( ‘}) < pleT, and

(b) there are no pairwise disjoint non zero cg € Y(£ < w), such that for

every pd.p! < pd € T for some 1y € <xu:pd <ve T> g the following holds:

(fornoz € B, d{z) C {vipd € v €T} and
zNh{cg) Meg—Tg = h(cgNTg) N cg—Tg
Clearly
c) uld(y) yd(h(y)):y € Y}is disjoint to {v: pl <v €T
let Z=1{c € ¥: for some plpl<plecTfornote <x,‘,:p1 <veE T>55 does
(*) of (b) hold (with ¢, T instead cp,Tg)}.

By (b) among any ¥g pairwise disjoint members of ¥, at least one belong to Z.
It is quite easy to define y, €Z((n<w) such that

[yp € Ex Ker*(h) => y, € Ex Ker(h)], [m <n =y, N¥Ym =0], and for
every y € Y0} for somen,y N{(Uye) # 0 or ¥, =y. So (by the choice of
Z<n



115

Y) <yn n < co> is a maximal antichain of B§. We shall show ¥y, € Ex Ker(h);
fix n for a while, and suppose y,, & Bz Ker(h), and let pl,p! < p} €T be such

that forno7 € <x,, cpp <VE T> z; does (*) of (b) hold.

Now for each T € <zv:p,{ Sve T> B as Yn € Z, clearly [as () of (b) fail
for vy, 7 (and pl)] for some z,€B§, d(z,)Clv:pig veT] and

Zy NV R WUn) N Yn—T = h{y, N\T)NYn — 7. Applying the failure of (*) of (b) for
Y, 1—T.0L we get z,€ BY, diz)Civ:pl € vet] and

Tz N h(Yn) N yn—(1-7) = h(Yp N(1—T)) MY —(1—T); note that
h{y, NT) < h{y,), and A{y, N{1-7)) = A (yn)—h{y, NT). By these equations
and as Yy, h(y,),z,,x5 are based on {v:pl € v €T} (by (c) and their choice

resp.) clearly for some partition of 1,eJ,e{,ef.ef € B, based on
fvpl! 4 veT}

(1) R(TNVYR) MY = ef Ue T NT) U (e —T).

Now for any 1,0 € <x,,:p,{ S vE T> , easily (as h is an endomorphism):

(i) A ((TUO) NYn) Y =(h (TNYR) NYR) N (RIONYR) N Yn)-
(iil) A (7o) NYn) Yn =R (T(Yn) NYn) U (R (0NYR) NYR)-
We can apply (i) to 7,0 and also to T(\o,T o, and substitute in (ii) (iii).

We get that

(a) el Nef =0ifd(r)ynd(o) =0, T0€ <x,,:p1 Sve T> g (otherwise
substitute (i) in (ii) and intersect with eJnef) and get
(r((tno) Nym) Ned Nef)= (eI-TIN(ef—0) =ef N 7§ N(TYo). and
by the assumptions on the d(eJ), d(ef).d(7).d (o) we get
(R (TN NYn) N Yn) N(einef) e
< fzr:d(z)cfv:pL <veTiyU (T(‘\a)>35 contradiction to (i) for oT).
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So let {1*:41 <&} be maximal such that d(r;) are pairwise disjoint
e{‘ #0, and 7 € <a:v : p,} v €T>Ba, then a < w,, and we can choose p,%

such that:
pl<pZeT, and[‘re:<::,,:p,% <V€'r>B6 = e =0].

Next we can get

B)eTned =0(ifd(t)Nd(o) =0, and 1,0 € <x,,:p.,% Sve T>Bs)'
The proof is similar to that of (a), using TNo.

As B§ satisfies the 8;-c.c. we can find §7%11 < w} C (::,,:p,% <veE T>B§, such
that (in B3) e; # yeg' = yted:m € {2, p2 <v ET) z} for £ =0,1. We can
i<w -

find p3,p% < ps €T, such that d(r¥) is disjoint to {v:pS <v € T}. So for
- L<w -

every T € <ar:,,:p,3L Sve T>88’ el <e} (by the choice of e}), and eJ nef =0
fori < w (by (B)) hence ey ne] = 0, hence
(7) ed =eg—ej.
Similarly
(8)e] =ei—ej.

Now we can prove that ef =ef when d(7)Nnd(o)=0,
7,0 € <x,,:p.,3t SVeE T>55, (repeat the proof of {«) intersecting with e7 —e ¥ or
with ef—ef). By the transitivity of equality ef =ef when
T,0 € <x,, pS<tve T> g Solet ey € B,- be the common value, so

(D RTNY)NYn =edUle; NT) for 7 e z,p3 <v €Ty g ;anded <y,—ey,

Leteg=y,—€4, 50y, =eglye;, egn e =0

soed <egforevery €z, p3 <:v€T>B§.



As y, & Fx Ker®(h), at least one of the elements, ege, is not in
Ex Ker®(h). As not subcase III 2, for ¢ = 1,2 the homomorphism gg from
Bartegto Byt {1—eyp), gg{z) = h(z)—ey (for z = e,) has a finite range. Hence

for some ideal Jof B§ y,/ Jis a finite union of atoms and

for every re z,pd < v € 'i‘> NI

for = 0,1 R{TN\Yn) Neg=h{(TNeg) Neg

hence h(rNeg)neg = (e§UleI NT)) Neg
So (for r€{ 2, : p3 <V€T>55 SW)F

h(tNeg) Neo=eg
h(tney) Ne; =T1Ne,

If e, & Er Ker®(h), we get contradiction to "not subcase III 3" [use pg for

p’ there, now for any p, p3<peT choose pairwise disjoint
Tg € <x,, pSVE T>Bg for ¢ < @ now by the choice of J for at least one

2,19 € T so 1y is as required there]. So assume ey & Fz Ker'(h) and get con-

tradiction to "not subcase 111 4" [for some £ <M < © Z,3~c05~Tp3ncn> IS ID 3.

use po =~ <a>, ey N (% p3~ce> T pg~cn>) for p°,a” with « large enough].

So for each m,y, € Ex Ker'(h) (the y, were chosen after (b)) hence
Yn € Ex Ker(h), (by their choice) so let y, =¥, U¥a (both in B ),
R{yd) =0, h(z)=z for z =y, z € B,-. Let I €T be a countable set such
that d{y2),.d(y,d) c I, and for z € B,». d{h(z—y,)NYn) €I (by "not subcase

ITT 2", for each n we have only finitely many elements of this form).

We can easily show that for every z € B,+ for some a € B§ based on /,
h(z) —x =a—zx, [as <yn n < w> is a maximal antichain in Bg-, for this it
suffices to show that for every m < w there is a, € B, a, =y, such that
(hiz)—z) Ny, =a,~—zx; But (hz)~2) N\ Yn is the union of
(h{xNy,) —2) Y, which is =zero as (Vz=y,)h(z)=2z and of
(h(z—yp)—2) VY, which we know is based as wanted] So
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hz)=efulef Nz)ylei—2)

where each eg is based on 7, <e£ 2 < 8> pairwise disjoint eg € H§. Asin the
analysis above of h{z N\Y,) M ¥, possibly increasing I, applied to z € B- with
&

a{z) "I =0, we get e =0,e% =ey. If e, & Fx Ker’{h) we get contradiction
to "not subcase 11 3.". So 1—e,; & £z Ker'(h) and apply "not subcase 111 4."

So we finish the proof of 3.11; so B~ is endo-rigid.
3.12 Lemma : 7, is indecomposable.

Proof : Suppose K, K are disjoint ideals of B,-, each with no maximal
members, which generate a maximal ideal of B, For £ = 1,2 let fd,f:ﬁ < wl
be a maximal antichain ¢ Kp (they are countable as B,- satisfles the c.c.c,,
and may be chosen infinite as Ky # {0}, B,- is atomless). Let X be the ideal
Ky U K generates.

Now, e.g. for some ¢ <A, §d.2:€ <2n <w}cC Brg. Clearly @y € K or
1—a ¢ € K. For notational simplicity assume acpy € K. So @ = bobl,
b¥ € Kp. Now pré(bz) € Blg and is disjoint to each dnl“z, ( as b% and is,
df € Bgp), so by the maximality of fd,}_gzn < wi, pr£(bg) is disjoint to every
member of K;_g. As KoUKy generate a maximal ideal, clearly pr;(b’z) € Ky
[otherwise pr;(bz) =1—c! |y c? for some cl € K, c? € K,, and then ¢l ig

necessarily a maximal member of K;_g, so K;_g is principal contradiction].

2
Sopre(b?) U preg(b®) < 1but 1 =prylacs) = U pre(b?) contradiction.
£2=0

8
3.13 Theorem : In 3.1 we can get 2* ’such B. A. such that any homomor-

phism from one to the other has finite range.

Proof : Left to the reader (see [Sh 4, 3 ]).
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On the no{M) for M of singular power

Abstract: We prove that for A singular of cofinality & > ¥, if (V
@ < A)uf < A then for some model M, M = (M,E¥), R a two place predicate,
WMl =X and no(M) = {N/~:N=_,M ||N]| = A} is quite arbitrary e.g. any
4 < A and A* ( hence 23).

See [Sh 5] for the back ground: where the result were proved for ¥ with
relations with infinitely many places. By the present paper the only problem
left, if we assume V = L, is whether no (#) = A, may happen for M of cardinal-

ity A for A singular.

§1 Omn - systems of groups.

1.1 Definition : A -systermn will mean here a model of the form

A= < Ga,hi’j>isj<y where
a<ly

(i) G; is a group with the unit e; = e® = ;4 , the G,'s are pairwise
disjoint.

(ii) h; ; is a homomorphism from G; into G; wheni < j.

(iii) hy

iz @ hia.ia = h,.,',h.,‘,a when 29 =< 12 =13 < 7

(iv) h; ; is the identity. (so we sometimes ignore them).

We denote y-systems by _{/ and for a system _4 we write G, = GAy =94

Ly :h,,;jg. Let JI_4Il = 211G ll. We omit the _{d when there is no danger of
1<K

confusion.

Let y =94 for B=<7y let _Jdrg= <Géd:h(,§'>isj<p,a<,a- The really interesting

case is y = limit.
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1.2 Definition : For a y-system A let
Gridh=ta= <a.;,j:i =7 < 7>:a,;'j € Gy, a,, = e®andifa=<=B=<¢e <ythen

Qge ™ h‘a.B(a'ﬂ,a) 2.8
LetarBp=<a;;i=sj<By.
13 Definition : For a = <a,;:i < 'y> € 1;[ Gy, let fact
<&

(a) = {ai,j:i <ji< 7> where a;; = h,;!j(aj)_l a,. Let Fact
(D = }ifact(a)a € 1G4,

1.4 Claim: The mapping a -» fact(a) is from EI G; into Gr(_4). So fact
18K
(A is a subset of Gr(_4).
Proof : Trivially a, ; € G;,a;,; = ¢;, andif a < < ¢,
h’u,ﬁ(aﬁ,e) 2 a’u,ﬂ = (h'u,ﬁ(h'ﬂ,s(a’e)_l)hn,ﬂ(aﬂ))(hn,ﬁ(aﬂ)_l ° a’a) =
(ha,ﬂhﬁ,t)(aa)-laa = h’a.::{as)—laa:aa,s'

1.5 Definition : 1) Gs(d=taeGr( 4 : for every B<y4
{ay i <j <7y € Fact (A1 y)}. 2

2) We define a relation &, on Gr(_{) (let y=74%: a=~ b if for some
<g,;:‘i < 7> € if([/G,;’d, for every i <j <7 b;; = hy;(g;) 7 a; 5 95
We shall say that <g¢:i < 7‘) exemnplify a® 4B.
3) _dis called smooth if for every limit B <7, Gr{ At B) = Fact (A1 B).
1.6. Claim: For a y-system _4
1) ™ ,is an equivalence relation on Gr(_4) (hence also on Gs ).
2)Ifabe Gr(d), p<y?andam bthenbl B~ fgb!B.

3) For a€ Gr{_{): a€ Fact(_4) iff aN/Ae{":?l <j <7—/0> (where e is
the unit of G79.

2 Really ng/ﬁz_j)c'fr(/d), sita=0a;j:1<j <7y €Gr( A menap:i<By
S ;

witness @ [ [3 < but we shall not use this.
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4)Forabe Gr(_{),ifa=  bthenac Gs(_4) <> b e Gs(_4).

Proof: 1) Let us check the properties.
reflexivity fora€ Gr(_4{), a=~ Ja: <e(4i j< 7> exemplify this

symmetry: suppose a® ;b and <gi:’i < 7> exemplify this, so for every
i<j <7y, by ; = Ry ;(95) ey 95, hence hy (gj)h,;.jg,;‘l =a, but
hy (971 = (R ;(g;))" (s h;; is a homomorphism from G; into G;). So (for
everyi <j <)
a;; = (hy ;{97 ) 1 bs ;{95 so <g[1:z’ < 7> exemplify b ® 4a.

transitivity: suppose a® b, b™ ,c and <g,;0:11 < 7> ,<gil:i < 7> exem-
plify them (resp.) So for i <j <7, b;; = hy (@) a;; g0 and ¢y ; = hy ;(gH 7!
b, ; 9i', substituting we get

¢y = by j(g) M hy 5 (90) Pay ;9094 =
(P j () hy (@) tay ;(9lgsh) =
hy i (9 9,7 a; 5 (909:Y)

So <gf°gilzi < 7> exemplify a & yc.

2) If <g,;:i < 7> exemplify a®,b then <gi:i < ﬂ> exemplify

3) Because <g,;:’é < 7> exemplify <e{":‘£ <j< 'y> ®4a i
a;; =hy; (g}»)_lgi {for every 1 <j<7y) ie. iff <g,; 11 < 7> exemplify
a € Fact(_4).

4) By 3) c€ Gs(_{) iff for everyﬁ<7-/é, crﬁ%/;< eAi<j <ﬁ>, and by
A forg<ylar g %~ 4br B, hence (as R g is as an equivalence relation)

alg Nj<ez/":i =j< ﬁ> ifibrg R&,(e(d:i <j< ﬁ> and the result follows.

1.7 Definition : For a 7y-system _4. let no'(_4) be the cardinality of
Gs (A ~ 4(i.e. the number of non ® yequivalent a € Gs .

1.8 Lernma : Suppose _4./ are y-systems,.

(i) H; is a homomorphism from G4 onto G{'-r",
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(i) fori <j <7, H o hd =hf - H,

(iii) for every B <7, a,b € Fuct(_41 B), satisfying H;(a; ;) = H;(b; ;)
fort < j < ., a member gf,,b € G/ are defined for i < § such that :
a) ifi < a < Bthen g, pa = ghb-
b) b, ; = hA(9dy) e, ghp fori <j < B
Then no* (_4J) < no* ().

Proof: We define a function H with domain Gr{(4) : H(a)=
H(< a; ;1 <j < 7>) = <H,-(a,;,j):'£ <7i< 7>. By (ii) we can check that H is into
Gr (£3). We shall show later

(*) fora,b € Gr(_{), as ;biff H(a) S, H(b).

Applying this to _{dtg (for B<7y) and noting that H (e =ef
H(<em/4.'é <j < ﬁ>) = <e¢3:i <j< ﬁ> we see that for a € Gr(_4), g < 7.

[at B € Fact(_A4rt B) iff H(a)t € Gs(£)]. So by (*) H induces a one to one
map from Gs(_4)/ = yinto Gs(B)/ ™y sone” (L <= n”(£).

Proof of (*): First suppose a & ,b and let <g.;:i < 7> exemplify this. So
foreveryi <j <7y

b, ; = {,%(9;)‘1 ;59
applying H; we get Hy(b; ;) = Hy(h:4(g;) ™) Hy(ay ;) Hi(g:)
Now by (ii) H; (hi§(9;)7") = (HAhy 5 (9,07 = (h&(H;(g;)) 7" so
Hi(b; ;) = h{’%‘(Hj (gj))_ll—lé(ai,j)Hi(gi)
So < Hi(g;):1 < 7) exemplify that H(a) gy H(b).

Next suppose H(a) ®p H(b) and let <g{:i <7> exemplify it. As H; is a
homomorphism from Gg? onto G# there are g; € G4 such that H;{g;) =g;
(for i < 7). Now Hy(b; ;) = hf5(9;)  Hylay ;) gi = h{(H;(9;))  H;(ay ;) Hi(9:)

= Hy(hii(9;) )V Hy(a, ;) Hi(g;) = Hi(hifi(g;) e, ;9:)
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Let us define ¢ € Gr(_4) by Cij = bﬁd(gi)_l a; ;9;- It is easy to check that ¢
really belongs to Gr(_4) and<gi:i < 7> exemplify a ® 4 ¢, and the above equa-
tion shows that H(b) = H(c), and by (iii) this implies b® 4c ((g’l;,'c:i < 7>
exemplify that). Together a® 4b.

So we have proved (*) hence 1.8,

1.9 Claim: If in 1.8 in addition:
(iv) H* is a homomorphism from G£into G4
(v) H; o H* is the identity (on G£)
(vi) Rl o H = H¥ e hd fori < j < 7.
Then no* (L4 =n" (/).

Proof : We define a function HY with domain
Gr():H*(a) = <Hi+(ai'j):i <3< 7>‘ By (vi) H*(a) is always in Gr(_4). Clearly
H o H* is the identity on Gr (), so let {ct:¢ <no” ()} be pairwise non Ny
equivalent members of Gs(£), and let af = H*(cf) € Gr(_4). So H(a%) =cft.
From the proof of 1.8 we know that: a¢ € Gs(_{) because cf € Gs(f), and for
£ <& <no(B)—afal are non ~ requivalent (because cf,cf are non =g
equivalent). So no*(_4) = no* () hence we finish (by 1.8).

1.10 Claim: For a y-system of abelian groups.

1) Gr(_4) here is the same as Gr{_{) from [Sh 5], Definition 3.4 (except

that here we do not put the group structure.
2) Fact {_{) here is the same (set) as Fact (_4) from [Sh 5] Definition 3.5 .
3) For a,b € Gr(_4), a~ ,4b, iff (in [Sh 5] notation), a—b € Fact (_4).
4) Gs (_4{) here is the same as Gs (_{) from [Sh 5] Definition 3.7(1).

5) no*(_J) here is the same as the cardinality of E'(_{) (from [Sh 5]
Definition 3.7(2)).

Proof : Straightforward.



125

1.11 Conclusion: For every regular & >Ny and u, for some k-system, A,

14l < u*, and mo" (L) = .

1.12 Claim : Suppose _4 is a y-system, 7 limit and for £ =1,2
a? = <a,f'j:1', <j < 7> belongs to Gs{(_4).

Suppose further S € ¥ is unbounded in ¥ and a,,fj = a,;z,j when 1,5 € S. Then
al ™ ,a

Proof: For every B < 7.8 = 1,2, af1 (B+1) € Fact(_{1 (8+1)) hence there
is gg = <gig'3:i < ﬂ> € iEﬂGﬂ such that a,fj = (hﬁ‘}(gjg'ﬂ)_l) g%#  when

i=j=B Fora<ylet g{a) = Min{pa=< B e S}
We want to find g; € G4 (i < 7) such that af; = h; ;(g;)7'a}; g;.

Nowfor€ =1,2,ifi = &(i)<j

af; = hilay @k ) aleq) =
hidiy (s s(afe) ™ adoren) ol =
riflafen) ™ oy (lye) 2swm)
[apply twice Definition 1.2 first for 1,£(1) , 7 standing for «,B,&, and second for
£{i),e{7) standing for a,8,2].

Now if i=<j=<g(i), applying twice this equation {remembering
afane) = 2fanen):
afy = by j(afe)) i) (@n)e)) e =
hy j(afey) Rk (@le)em)) @
=Ry j(afeny)) ™t (Rajlafegy) @y (@ileq))™) afeqy =
i j((@fe)) ™t aftegy)ad(adeq) ) aPq)) =
= i,j((ajl.e(j))'"l aj'g,e(j))"l %%j ((ail,e(i))_l a’iz,e(i))
This suggests to show that <(ai1'£(i))”“1 afeiyit < lc> exemplify a!® ,a° as
required. The missing case is 1 <j <7y j <&(i); so £(1) = &(j) and so we

should prove afy = hy 5 ((ae;)) 0o ) 7104l ((@ee)) ™ 2oy
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This is equivalent to h,t,j(aﬁe(j)) aiz’j (a.i,e(i))‘l =
hy j(ajt,;y) @5l (a'e)) " Applying twice the equation from Definition 1.2
this is equivalent to aZ.;)(afq))™

= 1,
finish.

o) (@iley)) T As 2(2) = 2(j) we

§2 On 7 systems of automorphisms
For this section we make the assumption.

2.1 Assumption: ¥ is an L-model, P, € I, monadic predicate, PH(i <)
are pairwise disjoint and |M| = (yP¥ For such M let M =1 y P¥ for

1<y isa
a < 7.

2.2 Definition : 1) Let k¥ be the class of L-models N such that
N= yPNand N8l = N1 (P} is isomorphic to M) for every g < 7.
i<y is8

2) Let G be the group of automorphisms of Ml

3) Let hf; (for i <j <) be the following function with domain
GE: hit(g) =g ME]

4) Let _Ad=_4¥ = <G{,’,h{%~:a <yi<j< 7>. (i.e. as long as M is con-
stant we can omit M).
2.3 Fact: 1) h{% is a homomorphism from Gj—M into G

2) _ is a y-system.
Proof : Immediate.

2.4 Definition: 1) We call g= <gi‘j:i =j < 7> a representafion of
N € k¥ if there are isomorphism f; from Mt (JP¥ onto Nt PN (fori<7)

st
such that g; ; = (f;7 1t N@) o g,

&ex1

2) For g, ;{1 < 7) as above we say that <f,;:'i. < 7> exemplify g being a
representation of N.

2.5 Fact: Every N € K¥ has a representation.
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Proof : By the definition of KM (definition. 2.2(1)) there are f, as

required.
2.6 Fact: If g is a representation of N (N € K¥) then g € Gr(_4{).

Proof : Let <f,;:’i, < 7> exemplify g € Gr(_{) is a representation of M.
For each i £, as f; is an isomorphism from MUT onto NLI] clearly fj_l is an
isomorphism from NU! onto MU, hence fj"l t N1 is an isomorphism from N
onto M clearly (fFitr Ny o f. is an isomorphism from M onto MU so it
belongs to G¥. So 9ij € G

Easily g; ; is the unit of GH.

We can now check thatfori <j<fg<a, g;g= h{f’j(gj,p) ° g;,4 ; remember-
ing the definition of h,f:’j this means that

(g Ny o fo=((f g NN o 7)1 4By o (f 7N o 1,
or equivalent by, for every z € #l*],
Falefilz))=rg* f; £ fi(2)
which is obvious.
2.7 Fact: Let g” be a representation of N(cK™). Then g € Gr(_4) is also a
representation of N iff g & , g°
Proof : First suppose that g° N ,g and let <1c,;:?l <7> € I GH exem-
1<y
plify this (see Definition. 1.2). So g;; = h,f?j(kj)‘lgfjki {for i<j<7v). Let
(f,ézi < 7) exemplify g¥ being a representation of N (see Definition. 2.4(2)).
So 94,?3’ = (f_?-_lfN{ﬂ) a f; . and we get
Gig = hi ) o (fFUNED o fiok; =
(ijMM o hiti(le;)) Vo (5 o ky)
[Note that (fer[’;])'"1 = fj“er[”]; we would like to show that <f.,;oic¢:i < 'y>
exemplify g; ; is a representation of N. Clearly f;ok; is an isomorphism from

M1 onto NI). The above equality will be the only missing information pro-
vided that we shall show that
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fer[i]"h'i,j(kj) = (f k)t /i

which is easy.

Second suppose g € Gr{_{) is a representation of N and we shall prove

that g™ 4 g

Let { £ 24 < 7) exemplify g° being a representation of N and { f;:1 < 7>

exemplify g being a representation of N (see Definition. 2.4(2)). So

g = (FaNth"te g 0

gi; = (FHNEDTo 1y
(fori<j <7). Let k; & f.71f 9 (for i < ). As f;.f 0 are isomorphism from #M{*]
onto Nl clearly k; is an automorphism of M[*l ie. it belongs to GH Now
f&=f:k; hence

g2 =(f LU Lo f O = ((F oy M) o (£ 0 hy) =
= (kg MUNT o (f M) "o fy 0 ke =
(kjt M) o g, 5ok,

But easily k; t M1t = R (k,), so <Ic.£:'i. < 7> exemplify g & ,g°.

Fact 2.8: Suppose the models N;,N, € K¥ has representations g!,g?
respectively, then N, £ N, iff g! Njgz,

Proof : Let <f,;Q:i < 7> exemplify "ge is a representation of Ng' for
¢ =12Sogl=(fMi) e rffore =12 i<j<y.

First assume N!,N? are isomorphic, and let H be an isomorphism from N!
onto N2 For each © <7, Ht N[l is an isomorphism from N[*! onto N,
hence k; Z(f2)~1(H 1 NE1)f! is an isomorphism from M1 onto M) ie.
k; € G So for every i,f# = (HIN[1) o £l o k7!, and let # #H 1 NI (so for
i<j.H = H rN{”‘)]). Nowfori<j <7.

9'1;2,3' = (sz PN e f 2=
= (Hy o fih oMM o (B0 £ o k) =
= (Hy o(f MUY o (gt M) ™) o (B o f i o BT =
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= ([cij{"]) o (fjlfM[’;])"'l o f:['i,—l ° [11, a f’il o ki'“l =
= (gt o (M) o £l o kTt = (ki tHE)) o gyl ok

So <Ici"1:i < 7> exemplify g' ® , g°.

Second, assume g!® ,g° and let this be exemplified by <1c{'1:i <7>.
Define

Hy=ffok o (fH?

It is easy to check that H; is an isomorphism from N;ﬂ for i <7y and
H,; ='ﬁ} P MU, fori < j <. So U H; is an isomorphism from N, onto Nj.
i<y

2.9 Lemma : If g is a representation of N € K¥ then g € Gs (_4J).

Proof : Suppose not so for some B<7y, gty Fact(4dty) so
gr7,< efi=j < ;3> are not ® Ag-equivalent. Apply 2.8 to M8 instead M
{and ng,(e,;"’:’i <jJ <;§'>, N LBy, and get that NIB) HIBl are not iso-
morphic contradicting N € K¥,

2.10 Lernma : Every g € Gs (_{) represents some N € K™,
Proof : We define by induction j
(a) an L-model N;, such that N; 2l and N; © Njfori=<j.

(b) an isomorphism f; from MUl onto N

;, such that for 1=j,
gi; = (FyrHH) o f;.

For j =0, j successor there is no problem. For j limit 4N is isomorphic to
i<j

UM = iy PH by 2.8, and multiplied by some k € dut (Mt | P;) it will be

i<j i< i<j

as required.

2.11 Conclusion: The numbers of non-isomorphic N € k¥ is equal to

|Gs (/= 4.
Proof : By 2.5-2.10.

2.12 Lemma : If the following conditions hold, then every N € K¥ is
L. y-equivalent to M.
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a) Every function F of M are 1-place, amd for z € M*], Fi(z) € J7{3)

b) for any relation R of # for somen < wand i <7:
n
M F(Vzlv'”vxn)[}?(xl ----- zn) 42/:\1 P,,;(.’Eg):[

c) if i<j <7 g eGH g a partial automorphism of MUl Dom (g*)
closed under the function of M, and g {y g is a partial automorphism of #
and Dom ( g*) isin _{, (see below) then g |y g° an be extended to an automor-
phism of #1791,

d) 9 is a family of subsets of M.[i <j = 4 ¢ \91] b closed under finite
unions, and [4 ¢H, |4] <a=> 4 € y 4]
1<y

Proof: Easy.

§3 Constructing the model.
3.1 Main Theorem : Suppose
(Je=cf(A) <Axand (Vu < A {(uz<® < A).

(i) £ is a k-system, and |GF| < Afori < k.

Then there is a model M (with relations and functions of finitely

many places only) of cardinality A such that no (M) = no* (£).

3.1A Remarks: W.l.o.g. M = (|#],R¥) for some two- place relation R.
(see [Sh 5], 1.4)

Notation: For 4 € ¥, let cly(4) be the closure of 4 under the functions
of M.

Proof : By 1.12 w.l.o.g. for j < « limit, hfjﬂ is onto G_,,‘g, and if x € Gf,
z # ef then for some i < j, hf(z) # ef By 1.12 wlo.g. Gf is trivial (=fef}).
Let L ={F;,F;;.:1<j <k} {R1i <k}, P(i <x) monadic predicates, Fj;

one place function symbols, R; three place predicate. Let A= )} Ay,
1<K
ASE =0 <A A > (B Af + |GA1)F)*S. We shall now define by induction on
i<t
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J <& M;,G; H; HY, R (i < §) such that :
(A) (1) M; is an L-model,

(A) (R) H; is the disjoint union of Pn;M’(‘i < j) and PiM’ = (M AF?)  when

i<j, P =¢pwhenk>i=j

(A) (3) F’f{ﬂ is a 1-place function from Pg’ into Pf’ {and not defined oth-
erwise) for a < § < k.

(A) (4) for any R; RLM’ is a {three place) relation on P,

(A) (5) fori < j, My = My 1 (UPLY).

241

(B) (1) G; is the group of automorphism of M; if j is a successor ordinal,
otherwise G; =tk € Aut(M;): for some a € ng for every 1i<j,
Hy(k 1 M;) = hy ;(a)}, (see below on H;)

(B) (2) H; is a homomorphism from G; onto Gf.

(B) (3) fori <j, k € G;, h&(H;(k)) = Hy(k t };).

(B) (4) G; has cardinality = A\}?.

(B) (5) H;* is a homomorphism from Gf into G;, Hy = H* is the identity
(on Gf) and for i < j,a € G;, Hi*(a)r M; = H¥(hf5(a)).

(C) (1) P is a family of subsets of (A Af®) (wheni < j).

(C)(RitAde P i <a<j, thencly(4) N AL AF?) € pa.

(C) (B fori <a <y, /Q,fg.:/Q;;‘l

(C) (5) every g € G;4y maps any 4 € P? to a member of /9.3

(C) (8) P is closed under union of <k, (i.e if Ag € Pf for £ < &<k then

£<¢

(C) (7) every subset of (A; A%) of power = ||M;]] is included in some
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member of /.

(D) (1) For i<j let @ ={ACHM;: for a<i, AgAg?) CA and for
a€[t,j), 4 N AAL?) € PR and 4 = cly (A)).

(D) () 1fi <j, kok,€ G, . A€ QJ, kgk, are equal on (UPY) n A then
ol '3 1 0:"1 Ula

a<i

(kgtA) Ukt U Pf’) can be extended to an automorphism & of ¥;.

a<i
Moreover, if @ € Gf, b{{”j(a,) = Hi(k ' M;) then we can demand H;(k) = a.

Clearly it suffices to carry the construction by induction, as then
¥y M; is as required by the previous Lemmas (i.e. by 2.12 every N € Ky is
J<K
L, 3-equivalent to it {and clearly [N =oa M => N €Kyl so
no (W) ={N/=2: N € Kyl. But 2.11 this number is equal to
no* (M) =1Gs(R)/ ~gy | where 3 =&Y (see Definition 2.2(4)). By 1.9 this
number is no *{f5). But £ was chosen so that it is u.)

Casel: j = 0.
Nothing to do.
Case II: j is limit.
In this case let M; = | M;, and there is no problem to check all the condi-
e
tions. Note that in (D)(Z)lwi can easily prove the second sentence.

Case III: j + 1 (assuming we have defined for j).

We shall define by induction on £ < )\j*z, a group G; ¢ , an ordinal a(¢), an
action of the group G; ¢ on M; U (A; a(€) and H; ¢ P{ ¢ F§ ;. k¢ such that

(i) for ¢ <& G;¢ is a subgroup of G;; and the action of g € G;¢ on
M; U (A;,a()) is extended too, and for k € Gj ¢ k I M; € G;.

(ii) a(§) € ()\]7"1,)\]'-"2) and «{§) is increasing and continuous.
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{<E

(iv) H; ¢ is a homomorphism from G; ; onto G

(v) Fg’j is a one-place function from (A, a(£)) into PZ’ increasing and

continuous in £.

(viy Pi, is a family of subsets of (A;.a(£)) such that
ABT & rE (2):a < j,z € Ajeg) for each 4 ePiy i<j.

(vii)if A € Pi,, g € G theng(A) e P,

(viii) /QJ,E is closed under union of = k members and it is increasing with
¢andifcf ¢>kthenPi, =y P,
{<£
(ix) we can choose for every a(£) an increasing sequence Bf(e <Af)

such that (A;,.a(€)) = y BE, and B} has cardinality = A;. We shall guarantee
E<Af

that for any € <Af*, e <Afi<j and 4 € @f for some £, £ < ¢ < )\fz, and
Bepi,. Bt cB.

(x) if kok €Gjp A€Q] kok, are equal on 4, ac€ G’ﬂ-l ’
hfi(a) = Hy(k t8;) then (kgA)U (EyH;) can be extended in some
G le<E¢ <A tok, H (k) =a.

(xi) K% is a three place relation on (Aj,a(€)), increasing with £, but for
¢ <& RE= RO (0,a(0).

(xii) each g € G; ¢ preserves R' and F§ ;.

(xiii) if cf & =A}, then R(a(¢)— —) define on (A; a(£)) a well-ordering [so
if g € Gj ¢.¢ > ¢ g maps (A;,a(€)) on itself then, g 1 (A; a(¢)) is determined by
g(a(&)].

(xiv) no a # B € (A;,a(¢)) realize the same quantifiers free, Ry-type over
(A;,A}). (So together with (xiii) we have a strict control over the automor-

phism of M; ).
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There is no problem to carry the induction on € hence on j, hence to
finish the proof of 3.1.
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Non standard uniserial module over a uniserial domain exists

QOur aim is to prove:

Theorem: (ZFC) There exist a non standard uniserial modules over

some uniserial domain (see 12).

The paper is self contained. Tt uses forcing - this can be eliminated
easily but for me this has no point. QOur example is in 8; - we can
replace it by any regular x > 8, The problem appears in the version of a
book of Fuchs and Salce on modules over uniserial domains in existence in
April 1984.. An answer in the other direction would have simplified the sub-

ject, and I think, make unnecessary several proofs and distinctions.

I thank Silvana Bazzoni, Elizabetta Martinez and Claudia Mettel for going
our of their way to tell me the problem during a dinner at the conference in
Udine, to Fuch’s for mentioning it and to Salce for impressing upon me the

importance of solving it.

Subsequently Fuchs continues this work, investigating for which uniserial

R there are such modules.

0. Definition and Notation: 1) Let R denote a uniserial domain, i.e., no zero
divisors and [d(F) = {I: I an ideal of R} is linearly ordered by inclusion.
Let @ = @ be the field quotient. Let a,b,c.r,s denote member of K, z,y,2
denote members of an KE-module, M,N denote F-modules. Let @ | b mean a
divides b.

2) An R-module is called standard if it is a homomorphic image of an R-

submodule of @ (which is trivially an R-module) and M # 0.
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3) An R-module is uniserial if its family of submodules is linearly

ordered. {So we are assuming ¥ itself is uniserial.)

OA Remark: Any standard A-module is uniserial,

This is well known.

1. Fact: Let M be a uniserial R-module; if x € ¥, ax # 0 then for every
beR{(b#0):bxr=0if(b/a){az) # Cand a divides b in k.

Proof: if in R alb let b =ca s0
br =0 <= caxr =0<>(b/a){az) =0. So it suffices to prove a | b assum-
ing bx =0, but if @ does not divide b, & divides ¢ so a =db, so

azr = dbx = d = 0 contradicting, an assumption.

2. Definjtion : 1) We call <aﬁw-:i <j < 6> an [-representation of M

(for # a uniserial module over a uniserial domain &) if:
(i) ] is an ideal of B, # .
(11) (7,1“']' € R, G,.,',,j # 0.
(iii) for a < B <y <8, 84, Qaplpgy € Aoyl

(iv) there are z; € #{i <) such that # is generated by {z;:1 <8}, and:
I = i'f' < R,”l"ﬂ&'o = O;, a*'ijxj =z

2) We call (aw;:i <j< 6> an /- representation for R) if (i),{ii),(ii)
above holds.

3. Claim:: Every uniserial F-module # has an [-representation ( for

some ideal [ of F).

Proof : Easy. Choose by induction on i, z; € #{# 0) z; not in the sub-
module generated by {xj J <1i}. Say & is the first for which x5 is not defined.
Clearly & exists and is <||M||*. For i <j, as z; ¢ Fr;, by uniseriality
z; € Bz; so for some @a;; €R, =z;,=0;;2;. Now for a<f<7y<§$,
Qayly =Tq = 0ugTg = Qqg(Cg,Ty). So (@qyCapglgo), =0 As
2g,T, = Zg # 0, we finish by Fact 1.
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Remark: Clearly 6 > 0 for M # 0, and if § is a successor ordinal then
M is standard.

4. Claim: 1) If <a,;’j:i <jJ <6> is an /- representation for A then
some XK-module ¥ is /-represented by <a,w-:i <j< 6>.

2) Moreover M is unique up to isomorphism and is uniserial

Proof: Let M be an R-module generated freely by {z;:1 < 8] except the

relations:
(@) rzg=0(forr € 1)
(b) z;~—a,; jx; =0fori < j< 4.

2) The uniqueness is trivial, so we shall prove that # constructed in (

1) is uniserial. It is easy to see that {(by the relations (b)).
(*) for everyy € M for somei < 6,7 €R:y =7rx;.

Now suppose K is a submodule of M,K # M, and we shall prove that for
some ¢ <8, K C Rzy. This suffices [ if K, K; are submodules of #, if Ky =M
or K, = M they are comparable so we finish; if KK, # M there are £,,§, < §
such that X, C Rr, K, C Rz, let & = Max {£,.£21, so K. K, are K- submodules
of Rzg, which is uniserial by OA, hence K, € K, or Kp C K]

As K# M for some § x;e’ K. Assume K & Rxs, so for some y € X,
y & Rrg By (*) above for some ¢{ <8 and 7 € R, y =7z, Now £ < ¢ [other-
wise Yy =7rzs € Rx, C Bz contradiction to the choice of y]; Asy #0r #£0,
andage # 0, in R 7 divides ag¢or ag, divides 7 (or both).

If ag, divides r, then
Yy = TI{ = (7‘/ aflf)(at‘xt) = (7'/ aé,t)a:f € th
contradiction to the choice of y.

If r divides a g ¢ then
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Te=0geTe=(Qge/T)TZ, € R(rzy) = Ry C K
contradiction to the choice of £

So K ¢ Rxg. We previously show that this (i.e. for every R-submodule K of
M. K C Rz for some §) suffice.

5. Lemma : A uniserial FK-module with [-representation
<a,z-,j:?l <j< 6> is standard iff for some ¢; € B{i < §) foreveryi < j < &:
—1 C ~1

C,
(i) =— — 4 el
Qi Qg /0

(ii) ¢t € R, i.e., each c; is a unit.
5A. Remark: We can replace is (i),(iii), ¢;~! by ¢;,¢;7! by c;.

Proof : Tirst suppose that there are such ¢;(i <48). Let
J; =(1/a,;)R € @ and define a function from J; into # by

Fi{((1/agy)r) =re;zy for r € R
Clearly f; is a homomorphism from one F-module to ancther.
it is onto A, as ¢; is invertible in #.
We shall prove that
(*)fori<j<d f,Cf;
This suflice as then | f; is a homomorphism from yJ; onto M. For

i< ]
proving (*) it suflfices to prove:

(**) f:(1/agq) = f;(1/ag,)

First 1/ a4, € Dom (f;). [this is equivalent to 1/aq; € R(1/ay;) which
is equivalent to ag; € Hag;, if this fails then by the uniseriality of #, for

some s € K which isnot aunit, ag; =5 ag; so

ag; (1-s@; ;) = ag;—Qg,0;; € ag;/
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as K has no zero divisors, l-sa, ; € /; ass is not aunit sk is a proper

3
ideal, but 1 =sa; ; + (1-se; ;) € sk +/, but sk ¢ [ or I ¢ sR, so necessarily
I CsR,1 €7 but then z,5=0 contradiction]. Second, we can coenfirm (*¥)

remember we have shown aboveay; € Rag; henceag;/ag; € R):

FillZags) = Fi{{ag;/ 2g:)(17aq;)) = (ag;/ 2g4) ¢;Z;

Till/ ag;) =z = cy0, 52;

So it is enough to show that,

Qg ;
J
(—~c;—a,; ;c;)xz; =0
@ J IO
equivalently {see Fact 1):
Qg4
)
-Gy =0, ;€ € Qg i)
ag; ? J Y
equivalently
c c;

i _ > e/
Qo;  @oj/ Q

Multiplying by c;c;”! we get (i) of the hypothesis , i.e., the demand holds
{Note that for a unit c,c/ = I).

We have proved the "if" part of Lemma 5.

For the only "if" part suppose J is an E-submodule of @, f;J/ » M an onto
homomorphism. Wlog f(l)=zpso R CDom f,1¢& Ker f =1 For every i,
let z; = f(y;) ys €J. If y; € R(17ay;) let for some r € R, y; =7/ ay;, then
@g:Y; =7  hence  f(r)=[f(agy;) =agif (¥:) = g% =25=f(1), so
f{(1—r)=0hence 1—r € I, hence r~! € R [otherwise Fr ¢ R, so Br \y R(1—r)
is a proper ideal contradiction]. So [y; € R(1/ay;) => L/ ay; € Ry;]. As
Y;.1/80; € @, § a uniserial R-module this implies 1/ ¢, € Ry,;, so for some

c; €R, 1/ay; =c;y;. Asy; € Jclearly 1/a,; € J. Now
o= (1) =f(eo:i(1/agy)) =aoif(1/ag;) = agiciT; = c2g
=agif (cys) = agqc f (Yy)
so {1—c;)zy = 0 hence 1-¢; € I, so as in an argument above ¢; is a unit except

when /=R which is excluded.
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So 1/ @g; =¢;Y;, ¢; € £ a unit. By (iii} of Definition 2 with G,i,j here

standing for a,f,7 there, 1 — 0% e[ so {(when I # R) a iff—-’-l—ai,j is a
@o; %o
g4 ,
unit of X, as a;; € R this implies ;—9-’]— =a;;/a € FE. Now
0%

0=f(0)=f(/ag;—1/ag;) = f(1/ag;)—f{(ag;/a0:) 1/ ag;) =

flegy)—(ag; 7 a0)f (c;y;) =

Cixi_(ae,j/ agli)ijj ZCia,;,jxj ——(GIQ’J'/ ac,i)ijj =

(ciay;—{(ag;/ agq)c;)z;
hence [c;a; j~[(agj/ agi)cj]/ ag; € I and we can finish.
For a while we make

8. Assumption: ¥ is a non-standard model of Th(Z) of power ¥; not N~

like, M = y M,, M; <M M, increasing continuous, each #; countable, p € ¥
i(@l

aprime B = Rfis{a/bia,b € M, ¥ "p does not divide b"}./

Let @ 2 R be the field of quotients of K.

Fasily K is a uniserial domain. Let b be a member of M. let
<d(a):a < w1> be a sequence of members of M increasing, d{(a)<b,
bp € My d{a) € Mgyq. Let §; be the field of quotientsof #;,, B, = E N &.

Clearly we can find M as above, and then b ,d{a).
7. Definition : Let 7 = {c € R: p®|c}, it is an ideal.

We define a set P; its members have the form:
<a,i,j:i <jiecu,je u>
such that

(i) v afinite subset of 0,0 € u.

(ii) fora < § <y all in u,
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a — aQ
( _a,-z_a_;a_»_._fﬂ_) e
¥4

(iii) @4 is divisible by p¢#)=¢(® but not by p¢#~¢D*+! in R (exponen-
tiation in M).

(iv) a5 ; € Fj4q
{we write ay; =aj;, w =u” wherer= <ai’j: 1 <j, 1€, j € u>]
We stipulate a; ; = 1. The order of P is natural.

8. Fact: If r:<a,§:’i.<j€u">€P, § <wy; then there Iis
qr <g € PEcul.

Proof : If Eecu” let q =p, otherwise suppose
19< - <ig<E<igy < Ly, wT =g, L, im}, (remember i5=10) and let
a,-”j = a{’J

We now define q:

ud =u" g
a; ; ifi <jieu”, jeu”
af; = a1 OO it i e iy, dg) =
o, NI
¥ Y

We shall now check that g € P.
Properties (i), (iii) and (iv) of Definition 7 are easy, so let us check ( ii)).
Soleta < B<ybeinu’.

Case A:a = &,

aly —als 2py _

a 8'7

(by the third case in the definition of ad;).
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~d{a)-d(ie)) _, —{d{a)—d (?iz))ap .

a"f"zu »70'7;23"241}) igs 1,50”:&’59“}9

QO.?

Ligigay Cigry Yig 8287
d{ay—-d{i
P (a)~d (ig) Qg

€l

Because the left term is in F (by (iil) of Definition 7 for p) and the right
term is in / (by (ii) of Definition 7 for p).

Case B: g = ¢£.
G’Z,'r — aZ,Ba%,"/ _
a.g'v
d{f)—d (i) —(2{B)—d (ie))
Coy ~ (g Nigy1,yPig,i00sP )
a
0,7
Lary Caig®ipienPigay _
Q5,9
a'a,'Y aiz.i2+xa‘iz+1,7
PP
Oy 0,7
Qg @iy Qipy Qigigs1Viges7
— = Qg F Qg — )
o,y g
Qoy @y 2o,y 29,
Cay % a, g%y Ligr Ligigs Ligary €]
- T a,lg ~
G,O’.’ a‘O,'y

as the first term is in 7 {(by (ii) of Definition 7 for p) and the second term is in

I as a members of ] times a4 ;, € K so as / is an ideal it belongs to 1.

Case C:y = £

L L R AL
- G M 26
_ Yaig " 2aplpi, e

29,ig

CaseD: a8,y # £.
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Trivial.
So we have proved q € P. Easily p =< q,§ € 49, so we finish.
9. Main Fact: Suppose ug < uy < uy (all finite subsets of w;, not empty
for simplicity, * < v meansVa € u VB € v a < §) non empty, and
rfeP for £ =012,
u”’ =ug, ut = Ug | Uy, ur = Ug | Us

0=yl 70> !
Let g = Min ugforf =1,2, andc,,c, € K are units of K.

Then we can findr € P ,rl<+r r2=r, such that

i €z & I

a’&& G‘G,Ez/ azl.fz
Let ¢p = Mazx ugy.
10. Subfact: We can find an element a of & such that

(@) pt%9&Y) Gividesa but pt&—2&I*H goes not divides e (in ).

Qg — Qe
(ﬂ) 0:82 - 081 € [
ahe,
€1 Ca
() " " " g1
ajg ade/ (2} ¢,2)

(0) a € Mg,y
Proof: We shall choose some t € [ ( Mg, and let
2 2
—_— a’{'.o’éa “‘QE’Eat
g = ke A
7y
Lok

Now t € I guarantees (B) (just substitute and compute, and you shall
get t) and t € Mg, guarantee (6) (as ¢,{g=< € and use (iv) from 7). Also

(a) is immediate: aaz‘a is divisible by p®®#) hence agf&t is divisible by
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pd(&)_d(mﬂ, but a’g’& is not; so a’és,& —a}f&t is divisible by pd(éa)"d({”) but not

by p2€=3&* (5ing (iii) of Definition 7 on ag;{l we finish.

We are left with (), it means now

TZ 7-2
cy o L, %% T 204t
SL - T2 gp (Moo
20, 20,¢, Q&0

this is equivalent to:

rl r2 i re
Cy _ C22f,8,% ¢80 + Cza'fl.('na’o.fzt

(") g I

r 1 7-2 7-1 .,-E r 1
Qo 20.6%¢0.8, 20.8% 808,

If for £ = 0 (*) holds, we finish, so we can assume

1 T
c C1a% ¢ Q8
s 1 bidi Loks ¢ I, so {*) is then equivalent to

LAV £
20,62 80,81

c20%,6,05 C20f,¢
(*) —=——2t ¢ [ e, —"-t¢g]

r2 gl rl
Q0,62 ¢0.8 T

By applying (iii) of Definition 7 to all a;;'s appearing in (*)’ and
remembering that for a unit ¢ of X ¢/ =7 and ¢ € R is a unit iff p does not
divide ¢ for R, (¥}’ is equivalent to

'LZ:G)—d(&)pd(éa)t 77
P &)pd(fx)-d(fo)

("""t € Ibut

which means ¢ € I but t/pd“‘)_d(t") & I, which is easily accomplished by
choosing t =p? € M,

Now we define r:

1 2
w =uT o yul =g Yug U U
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1
a;; if i, eu™ (a)

af; = \al} if 4,7 eu’t (b)
if 1=u, je€uy {c)

Oy, @ Qg s

(remember ag, ., = 1)

Again condition (i) + (iii) + (iv) are easy. Let us try {(ii}.
So a < §< .

Case A a € ug B €Uy, 7€ us.

LS N r2 a7t o7l 7?2
Coay 2apglpy _ Lay ~ 2ap?84% %ty

= mod [
0/0,7 ao’.,
1"2 -r2 . rl rl re
Qa7  2a 20 Ctay
2
ag.y
7-2 _ -’-1 rl
gr? Late Yaplead
£27 2
aT
0,7
1-2 -’-2 2 _ rl rl
_%87%¢t %at:"%ap 28092
re r2
a9,y 20t
al . al’
L2706 | . .
Now — T 1sa unit, so we can forget it
7
QG’,Y
2 _art o7l ro . rz . rt rt
Cat,  2apl882 _ CatPéoke Tap?B.02
re r
20.¢, 2o,
rroart N &, Tt 2
Now (agg@phe¢, ) -~ = (@56, %0¢: ) > mod [ holds
20, a0.£
1 1 1 1
G,Lpa;’{ _aa' a’"' (IO
[as - fo_ ok 0 mod L holds, which hold by using twice

20,6 2ok, 2

(ii) of Definition 7, and computing power of p in the left side].
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So

N Rt e N I ST
Lo, b2 80tz Ta,p2p.6,2 _ T o602 0.6 "L a, &0 (0,642

7 r
g, 2p.¢

2
R

Q0.
the "€" holds by (B8) above. So we finish Case A.

CaseB:a,f€uy, 7€ us

ooy - rt e . rt oyt re
Qay~Qapglpy  Z2ati® Téy "2a 2842 Lty _
aj T2
Oy G,O,.,

N Y X7 ]
ao,.,
by computing power of p this term belongs to [ iff

afy ol

,rl _ -,-1 rl
Lot 2o p?pe, cr

rl
ag.¢,

which holds.

Case C:a€uy B.7€u,

r r rl eyl rz oyl
Qay " Lagdpy Laf@® Qpyy a2 T, 828,y
k
QG‘.,, (ZQ..I
re r2
R i
=ag ol lerl
NS a
('8 4

Case D: {a,B,7} Cug ) uqor fo,B,7) Cugy | us.

Trivial.
11. Conclusion: If & C P is generic over V then in the new universal

V{G] over R there is a non standard uniserial B-module.

Proof : We can deal with [-representation. Let for i <j <w; a;; be

al; whenr € G,{i,5} cu”, this is well defined as:

(A) a; ; has at most one value as G is directed.
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(B) a; ; has at least one value [as by Fact B the sets {r € P11 € u"§,
{r € P: j € u™} are dense subsets of P, hence their intersection is. As G is
generic, G is not disjoint to this intersection.] Now  easily
<a.é,j:i <j< w1> is an I- representation (over R). Why it represents a non

standard uniserial module? Otherwise (letting @  be the name for a; ;

N?:’j
defines above) there are P-name ¢ and r € P such that
~i
c- C.
€) » |lp" 9*1, is a unit of P, and a'% - ?a € ] for every

~04  ~0,f ~ig
1 < ] < ml” .
As R consists of members of V, there are fori < wy, 7, € P, r <7; and ¢;! € P

7; |lp ¢ = ¢;l. Now using Fodor Lemma and Fact 9 we get a contradiction.
~

Originally we have then replaced forcing by Ogl, but it is better to have:

12. Theorem : (ZFC}): There is a uniserial non standard module over

some uniserial domain.

Proof : If we look carefully at the proof of this we can see that we

have proved (and we shall prove):

(a) in V[G], for every limit ordinal 8 < w; and unit ¢ € R, for every

large enough i <4. —%  isnot I-equivalent to any member of Fy.
Qos/ s

13. Observation: If —S—— + /¢ fz+lx € Mg} and 1 <j <6 then
ags/ Ais
c
——————+ [ ¢ {x+]: = € My}
(10’5/ aj,é i 4

Proof : Suppose —C =zt tel,ze Mg. Then
o6/ 255

a, a; 0,
C =c 7,8 =c 1.4 7.8
ags/ ;s a5 o5

= nod |

c — —
ai'j(-a—'()—;/—(’l;) = ai.j(x +t) = a,.w-x + a.,;.jt
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Now a;;x € My (as a;; € Mjy, C Mgz € Bg), and a;;t €l (as

i,
a,; € B, t ).

(]

Proof of (a): Suppose r € P,

r |lp" 8 <w;is alimit ordinal, ¢ a unit of K and § , ¢, contradict {a)".

By Fact 8 w.log. § €u”. Now let ug=u" N4, uy=u"-6 0=

g,
72 =7, and find u,,7; so that the assumptions of 9 holds (uy # ¢ as & € up,
ug# ¢ as 0 € uy). Let ¢; = ¢. We repeat the proof of 9 but in () of 10 replace

c
Cpbycand ¢ /by ¢ I+ Mg, , and drop a—l—— i.e. we use
0.&

(7)) 2 I+ H;
aa-fz/ (GZDQCL)

As we demand a € Mgy, and can assume My,, is quite large compared to Mg,
(though countable) there is no problem. [lLet e; € F (i < w;) be distinct
units, e;—e; not divisible by P then for i #£ g

T T
Cc ag! C a,!
—T&—’(:— (pbe;) — —-:—E—"{—’ (p®e;) ¢ I, as Ms is countable, for some 1
Lz Cee
T
€ %6 b .
————(p°e;) & I + M5 For being able to repeat the argument in Mg, it
ait
$o0.&1
is enough that in Mg,,; there is a "finite” set to which every z € M,
"belongs”, which is easy. Alternatively change the forcing as to allow us
to choose a € M, so that the forcing fail the 8;-c.c. but is still proper see {Sh
2], Ch. 111.] So we find 7.

c
r<rlepP, ———— @ +M;
ri ri
aps/ 25

Contradiction, so (a) holds. Note also

14. Observation: If M, (a < w,), b,d(a)(a < @,) are as in 6, a; ; satisfies

( a) above, then <a,i'j:i <j< ml> is an /- representation of a non standard
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uniserial module,

Proof: Suppose <ci:i <wl> exemplify the contrary. For a closed

unbounded subset C of wy forevery 6 € C

?:<é"——>CiEM5

C; .
So —— € Mg for i <8, hence ———— + [ € {z+I:xz € M4]. Contradicting
2o, 2o/ 0y 5

(a). So 14 holds.

Now the statement: there are #;(i < w,) b,d(a) as in 6 and e, ; satisfying
(a), can be expressed by a countable theory T in L{aa) {(note that we do not

mind to replace w; by a linear order K of power ¥; such that K = y K, K

i<y

increasing continuous each K; countable (Vz € K;)(Vy € K;41—K;) (z <y) and
K; has a least upper bound). L{aa) was introduced in Shelah [Sh 1], and
thoroughly investigated in Barwise Kaufman and Makkai [BKM]. By the com-
pleteness theorem for L{aa) {see [BKM]) the answer to "does T has a model”

is absolute. As it has a model in V[G] it has one in V.

15 Remark: We can replace 8; by any uncountable regular uncountable
x. Let H(¥3) be the family of sets of hereditary power <N, and B be (H®,),€)
expanded by (individual constants for) M R Q.1 <Mi: i< co1>,
<d(i): 1 < ml>, b and <a.m~: 1<j < co1>. Now we can define by induction on
a < k? [B, such that:

1) [8, is a model of power & elementarily equivalent to [5.
2) B, (a <3 is a continuous elementarily chain.
3) For every a there is ¥, € (8, such that:

(a) Bas1 E "y, is a countable set”.

(b) foreveryz € B, Bpari E"z €y

(¢) if a has cofinality & and a < g < k? then @F E 'z € y,", implies
zeld,.
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Let B = y [B,, 2, € B,,, be such that B_,, E"z,is sup(ye N @1)"-
a<s?
There is no problem to do this (e.g. use saturated models, possible as we
can construct the models say in L), see Mekler and Shelah [M Sh]. Now use
MR I é%’j: B E"i<j< w?) or equivalently <a§: a<lfg< 1c> with

Mg = = Note that we could replace &% by xu if cf u=Rq
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Remarks on the numbers of ideals of Boolean algebra

and open sets of a topology

Abstract: We prove that the cardinals g which may be the number of
ideals of an infinite Boolean algebras are restricted: u = y,s" and if £=<pis
strong limit then w<*= u. Similar results hold for the number of open sets of
a compact space ( we need w(z)<¥(®) = 2<§(®))  We also prove that if pw=3,
is the number of open subsets of a Hausdorff space X,u < ;,Ls“ then OF exists,
(in fact, the consequences of the covering lemma on cardinal arithmetic are
violated). We also prove that if the spread u of a Hausdorff space X satisfies
u >35{cf w) that the sup is obtained. For regular spaces u > 2°7 # is enough.

Similarly for 3{X) and A (X).

§0 Introduction.

We deal with some problems on Boolean algebras and their parallel
on topological spaces. The problems are: what can be the number of ideals
[open sets], and is the spread (and related cardinals) necessarily obtained
(remember it is defined as a supremum.) Compare with the well known
result that the cellularity (= first « for which the «- chain condition holds)
is regular. We shall use freely the duality between a Boolean algebra and its

space of ultrafilters. Recall
0.1 Definition : For a topological space X:

1) s{X) =supfld|: 4 is a discrete subspace} +#¥y (note that 4 is a
discrete subspace if A ={y,;:1 < a} and for some open subsets u;(i < a),
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2) z(X) = supf|4: 4 = {y,;: i < a}, and for some open u; {i < a),
i=j =Dy, €u; =>1i275] +8,

3) h(X) =supi|d|: 4 = {y,;: 1 <a} for some open u;(i < a),

4) §(X),2(X),b(X) are defined similarly with |4 |* instead |4].

5) For a Boolean algebra B ,p(B) is ¢{X) where X is the space of
ultrafilters of 5.

On the problem of the attainment of the supremum when the cofinality
is®; see Hajnal and Juhasz [HJ 1], Juhasz [J1], Shelah [Sh 3] 1.1 (p. 252)
and then Kunen and Roitman [KR].

On a counterexample for higher cofinalities see Roitman [R] and lately
Juhaz and Shelah [JSh]. On the number of open subsets see Hajnal and
Juhasz [ HJ2] and Juhasz [J2]; the author observed in fall 1977 (see [Sh 6] for
the main consequence) that by having a specific cardinal exponentiation
function we can get from counterexample to the attainment of the
spread when the cofinality is &, a Hausdorfl space X with o(X)* > o (X) (this
extra demand on the set theory has caused no trouble). This connected our
two problems. The author had withdrawn another announcement of [Sh 8]:
o(X)=o0 (X)N" for X a Lindelof space.

This work is written in the order it was conceived.

§1 The numbers of ideals of a Boolean Algebra

1.1 Theorem: lLet B be an infinite Boolean Algebra, (F) the set of
ideals of B, id (B) its power. Then id (B) = id (B)™.

Proof:  Suppose not, A= Minik o> Wd(B)}, so cf A=N
A=<id(B) <A Now A>2% as id(B)=2% so A=A, Ay <Ansr <A,
n

A, =A:°. We define by induction on n.,a, € B, a, Nag=0 for £ <n,

Wd(Bta,)=N,, id(BN{1— ag) = A. We should fail for some n, so w.l.o.g. for
£<n
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no a € B, Wd{Bra)=A,id{B1{l-a)= A W.log. n =0, S0
J=ta € Bid(Bta)=< Ao} is a maximal ideal. Now | B| < A (otherwise |5| = A,
each countable subset of 7 generates an ideal, there are = X'° > id(B) such

countable subsets, and each ideal of B of this form has power = Ag hence has

at most >\§° = Ag < A countable subsets. Contradiction). So W.lo.g. |B| < Ag.
Now BYB)={TeldB)Ig Rc yYUeHd(B)l—acl] has power
a€Td
= M d(Bra)=|B| +2
a€d

So % B) has power =X, Also KYB) ={J € Id(B):I ¢ but for some
a € B~/ there is no b <a,b € J-7} has power =2Ay (for each such a,]
INnBra)y=9n(Bra), and for In{(Btr{1—-a)) we have
<id(B1 (1-a)) <A, possibilities. So [d*(B) ¥ 1d(B)—-/d%B)—Id(B) has cardi-
nality id (B). For each I€ Id3(B) choose by induction on i,e; € J~7 such that
a; Na; €1 for j <a, and let al = <a,;:i < a> be the resulting maximal

sequence. Note that:

§{(B) = Min{u: there are no a; € B{i < u), a; not in the ideal generated by
{aj j #1 { i R

and let
& = Min {u: there are no u pairwise disjoint non zero elements of 2.

Clearly k < §(B), and for u< §(B), 2#=<id(B) so 2¥F < id(B). It is
known that cf §(B) >R, so (2<sBNNe = 2<8(B) hence 2B < A and w.lo.g.
2B < A, Now easily if a’ =g’ = <ai:i < a>, I n(Bra,)=J n{(Bla,) for
i <a, then I=J (if eg. I &€ J, choose z € [—J, then z is a good candidate as
a, for J). We shall prove for each @ that {/:I € [d?(B),a’ = @} <= A" for fixed
AT <A By the argument above this is equal to
RO (B?a,;):i>:1€ Hd® al =g}| which is < H(Jzz < (x>:J,; ¢ PBrla;, an
ideal, a; M a; € J; for j #1}|. Let p; = |{J:J C Bt a; an ideal (so a; & J) and
for j #1, a; M a; € J{|. So the number is < iEIap,i. Fasily iI{Iap.i =< 1d (B}, and

i < Ag but by cardinal arithmetic ( I1 p.i)s" = II uy; (or II w; = Ag) [you can
i<a i<a i<a
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see in 2.11], so Il p; < A. By more cardinal arithmetic (see 2.11) there is a
i<a

bound A" as required.

So necessarily |{@/:./ € ld3(B)}| = A. Now each @’ has length < §(B) so
A< |B|<SB) and as cf §(B) >N, cf A=8g clearly there is u < §(B),
[B|# =X Let ® = Maz{rx,u*}. So # is regular ¥ < §(B), B satisfies the ¥9-c.c.
and |B|<® 2 A and 2<® < 2<5B)< A, So |B| <P > 2<% Let x = Minf{x:x<*= |B|},
then x> 2<% x¥ = |B|® = A and (Vu < x)u<® < x. By [Sh 1] 4.4 B has a sub-
set of power x no one in the ideal generated by the others. So x < §(B)} so
X < id(B), but 2X = ¥ > A 502X > Ao s id (B) contradiction.

§2 On the number of open sets

2.1 Notation: 1) X is an infinite Hausdorfi space, T the family of
open subsets of X, any Y C X is equipped with the induced topology i.e
¥ =7(Y) ={U n Y:U € X}. Bwill denote a base of X.

2)Let o{X) =|7]l,(andfor Y Cc X, o (V)= {U N Y:U € 1}}.

3) §(X) ={|A]* A a discrete subspace of X, (i.e. (4,74) is a discrete

space .
4) B is a strong base of X if for every y € X, there is v, such that

yeverandly eucvuer=v e H

We shall assume in 2.3, 2.4
2.2 Hypothesis: We assume A is an infinite cardinal, ¢f A =¥,
(Vi) Rg=pu<Ar- y,s“ < A) and at least one of the following holds:
Mx=o(X) <A x=2a
(M x=o(X) <A y=a+,

(Il x=0(X) < ?s.g", X =A, and X is strongly Hausdorfl {which means:

for every infinite A CX there are p, € 4 and pairwise disjoint
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U, €T.p, € U, ).

2.2A Explanation: We shall want to get a contradiction or at least get

information on how an example like that looks like.

So we allow to replace X by X' if y<o(X") < AV is still satisfied; but

we shall use this for open X* only.

2.3 Claim: Assume 2.2.

1) A > 2% and we can find A, A, =)\:° <M <AA= YA,
n<w
2) W.lo.g. there are no disjoint open sets u,v{€T) such that
o{u)=yx o(w)=A (and even no open disjoint w,v such that o{u)=y,
o{v)=Agy) land even no open u,v such that o{u—v)=yx, o{v—u)=Ag but

then we pass to a non-open subspace.]

3) Wlo.g every point y has an open number u, (so ¥ € u, € 7) such
that o(u,) <A

4) o(X) = 2<%, hence if cf §(X)>8, then A>2<¥Y and wlog.
Ag > 25,

5) if {X|=35 then |X| <A (and wlog |X| <Ay similarly
[X| =22 = |X|*<0o(X)).

Proof : 1) If every y € X is isolated, X has 21Xl open subsets, but X is
infinite so o{X) = Bo 1p y*® € X is not isolated we define by induction on
N, U, €7 and y, such that : ¥y €u,, Y, €Vp. Uy NVn =¢, and
Upypp CUp, Upgr CU,. (choose yy € Xy, #Yy" then choose voug if u, is
defined, choose ¥y, € u, —{y "} and then wu,, ,,V, 4+, using "X is Hausdorfl".) So

fu, n < wl are open non  empty pairwise disjeint  hence
o(X)= |f Yun:S cwl| =%
nes

In any case o(X)ZZ““ but )\SO(X)N")o(X) hence O(X)>2s°, but
o{X) <A™, so M <A < AN
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so {Vu < A} #85 < A) hence (Vu< }\),us" < A hence we can find A, as

required.
2) Let uy =X, define by induction onn, 1 <n < w, u,,v, such that
(i) w, € T,v, € T; usually we demand they are disjoint.
(i) vy gy © Up Upay C U,

(iil) o{vp—up— Uvg) = A,
g<n

(iv) 0 (Uy —Vp— U?}Q) =X
Z<n

If we succeed, then wg are open, v,— U vg C (v, ~u,— |JVg) hence
L#n Z<n

0(vp— | JVg) = A,, so by Fact 2.3A below o (X) = Il A, = No > 0{X) contrad-
Lw»n n <o
iction.

28AFact i) Ifv, € ttheno(X)= 11 o{v,— (U vg).
n <& C»n

ii) fv; € 7(1 < &) then o(X) = T o(v;— ;).
i<a j#i
Proof : i) Let m, =o(v,~ |Yvg) and let vf* € 7(i < u,) be such that
C#n

PN (v,— Y vg)i <u,}] are pairwise distinct. If pe I u, let
£#n n<ae

v

p= U @gm) Mve) Clearly vy€ 7 and if p#ve I;I Hy, then for some
n<w

n<e

k.p(k) #v(k), hence Ve N (U= U vg) =vhey N (we— U ve)
C+k 2+k
#vEe) N (Ve— Uve) =v, N (W= U vg) hence Yy # Uy So
L#k Lk

o{X)=|r|= II u, asrequired.
n<w
(ii) Similarly.

We return to the proof of 2.3.

(3) Let Y=yUlv € mo{v) <A}]. If in X—Y there is a non isolated point
y", then the proof is as in 1) (with y, € X=Y). If every point of X-Y is
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isolated then: o(X-Y) =2X-Yl As o(X) is infinite easily o(X) =0(Y) or
0(X) = o(X—Y). The latter is impossible as (2!X~Y)Ro = 21X-Y| pecause it is
infinite.
(4) Ty, €v, €7, Yy € vy, for i <a, 1 #j <a, then { Yv;:S Cai is a
i€S
family of 2!l distinet open subsets of X, so o(X) = 2lal, By the definition of
§(X), o(X) = 2<¢X)_ The second phrase is by cardinal arithmetic.

(58) Assume |X| = A For any countable A ¢ X, the closure of 4 is a
closed subset of X of power =2, The number of 4 is IXIN" > 1X| =2,,and for
any such A4; |{B:B € X countable, the closure of B is the closure of 4} has

power =2, so we finish.

2.4 Claim: Assume 2.2. 1) W.log.
(*) for every y € X for some vy, € 7,y € vy, 0(v,) < A,

except possibly when: Hypothesis (1), holds (and not I or 1II) and {In) )\.2‘ > A
{hence )\:’ =o(X)).

2) |X| < Asowlog |X| <Ayso X has strong base of power < Ag.

Remark: So if A=23;, then (w.l.o.g.) Ag> 35 Ap= )\:", )\g‘ > A9, so of
exist so the conclusion of {J2, 4.7, p. 97] holds.

Proof : 1) Let ¥, = ytverow)=<A,} By23@B)X =y ¥,. If for somen
o0(Y,) = x we can replace X by ¥,. So assume 0{(Y,,) < x. Hence ¥, # X. If X is
strongly Hausdorff choose y, € XY, . As X = U V,, Yp € Yur, fynin < 0} is

n<w

infinite. By the definition of strongly Hausdorff applied to {y,:n < @] there
are distinct n(k) < , and U € T.Yp (k) € Uk, <uk:1c < m) pairwise disjoint. So
o{ug) = M), (85 Ynp) €we) and o(X)=lo(u) = T Mgy = A > 0(x)

contr.

So we have dealt with Hypothesis I11.
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Next assume Hypothesis I, so

Yoo(Yp)= BIA=ALYy

n<w n<w

So the following fact is sufficient.

2.4A Fact: If Z, C X is open (for n < @) },0(Z,) + 8y < 0(|JZy) then
n n
Ra _ - N,
O(U-Z'n.) _O(UZn) "(“O"'EO(Zn))
n 3
Proof : Let 9 =8q + }0(Z,).

We define a tree T with @ levels. Now T,, the n’'th level, will be
flun)u ¢ yZpgu €71}, the order will be: (un)=<(wm) iff

g<n
nsmu=v N(UZg) As Uy is open (as well as | Zg).
Z<n g<n C<w
|Tgl =0(\yZg)= Y 0(Zg)=4¥, and o( U Zg) is the number of w-branches of
£<n g<n C<w

T,soitis >9=)3|7,|. Butin that case it is well known that the number of

w-branches of T is 198", as required. So we have proved 2.4A.

We are left with case I, and assume that for each =, )\2‘ <A; let
C= {('13:‘)*:13 < A}, ¢(Y) =0(Y), and apply 2.5A below, we get a contradiction.

Proof of 2.4(2): Let for y € X v, € 7,y €vy,0(vy) <Ay Suppose
|X| > Ad. Clearly o{v,) = |v,| so |v,| < Ag. By Hajnal free subset theorem
(see [ J1]) there is Y C X,|Y]| = |X| such that (Vy #2 € Y)(y & v,). So
Y] <§(X), so o(X)=2lYl =2X1  contradiction. So [X|=<Ag, then
{u Nv,w €1y € X] is a strong basis of X of power < AJ + Ag. Renaming we
finish.

We can abstract from the proof of Kunen and Roitman [KJ] (or see [J2]),
the following theorem. See 4.4(2), or 3.2A(R) for a simpler proof of 2.5(1))

even weakening {(iv)to: X# |y u foreachn.
p(u)<r,

2.5 Lemma : 1) Suppose cf A =8y <A, A= )} Ay Ay <A, X a topological

n<w

space, and ¢ is a function from subsets of X to cardinals, satisfying:
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(1) ¢(4) = p(AUB) = ¢(4) + ¢(B).
(i) @(X) = A
(iii) for an unbounded family C of cardinals < A:

®if 9 € C, 4 € X(i <2%) and ¢(4;) < ¥ then p(U4;) < 3.
(i) el U uw)<A
e(u)<,

Then there are open sets u,, C X such that ¢(u, — Jug) = A, forn <w.
Z#n

2<w
2) We can replace @ by @, + @&, where:
B, if <A,,:7} €@ 2> is a partition of X, and (4{4,m{k) = 0} is open for each
k<wdeC and B C X, ¢(B)=1, then for some no-where dense set K C 92,

BNy Ad)="
neK

and

@, ifA4, € X, 8 € C.p(4,) <Btheng( (y4,) <3

n<w
3) If X is strongly Hausdorff, (i), (ii) suffice.
Proof : 1) We shall use (i) freely.

Case I (Y} < Awhere ¥ = ylvv € 1,9(w)< Al

So ¢(X—Y) = A: if X—Y has a non isolated point ¥ *, then we can define dis-
tinct y, €X—Y,—{y*} and pairwise disjoint u,,Y, € Un € T, . ¥  not in the

closure of u,. So as y, € ¥, ¢(u,) = A > A, and u, =u,— |Jug. So the u,’s
g<n

are as required. So X-Y is a discrete space hence o{X—-Y) = 21X-Y1 put

0(X—Y) = A, contradiction.

So we can assume g(Y) = A, sow.log X =7Yie,

(*yfor eachy € X for somev,y € v € 1,9(v) <A
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Case H: For every open ¥ € X,¢(Y) = A and 8 < A, and <vy Y € }’> satis-
fyingy € v, € Ttherearep € Y, openu,p € u Cv, andopen Z C 7, e{Z)= A
and v?0, a neighborhood of =z, for z € Z such that: for every z,, € Z,
plu—y vz?‘)->—'19~

nSw
We define by induction on n,1=7n < w, p,,u,.y,. ¥, and <v;‘:y € Yn>
such that

(1), CX (V)= A Yy € Y,, Yis open.

(R) for y € Y,,, v is an open neighborhood of y, v} *! C v}
B) Wy =N, Fpyy >V,

(4) Pr € Un €7, O = p(un) < By, Un O,

(5) for every zg € Y, (£ < w) p(up,~ U v},)=8,.
<o
For n = 0 we stipulate Yy = X, vy € Yy) an open number of y with g(vg)
minimal and 9 =23; + Aq.

Suppose Yn,<v;}:y € Yn> as defined. Choose ¥,4; <A such that
Tpi1 > Ap, Opyr > Vg, @(ug) when 0 <€ < n+1. Next apply the hypothesis of
the case to %,, and ¥, and <v§‘:y € Yn>, so there are p =pn41 € Yn,
U = Uy, ¥ = Ypaq, and <v;"°:z € Yn+}> such that:

.0
Yoe1 € Yo #{Yns) =X Py €up e Cvg ., zevPPer, and for

z2g € Yp4i(€ < @), 90(’U'n+1_QU 'U;L,z'o) =z Bp
<w

We let v+ =020 vl
Easily everything is o.k. Now in the end, as ug C vg, for £ <m, and by (85)
forn

?(u’n_ U uﬂ) = p(u,— U ”;g) =4,
@on g>n

Asfor € < mn.p{ug) <9, clearly
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p{u, — | ug) = B¥,, as required.
C#n

Case III: Not Cases LII.

So (*) holds, and there are open Y CX,p(Y)=A, ©¥<A and
(vy:y € Y> Y €vy, €7, witnessing the failure of Case II. Wlog X=Y7,
Vel yeucylucen)=e(u)2p(v,) If p(v,) =9, by (iii) @ :

(*%) if P EUET, u C vy, then e(fz € 1! for some
v € T,z €v,p(v nu) <9}) <A [ if this fails p,u,Z = {v: (v N u) <A} and
<'uz°: z € Z> where z € v0, @(v0 M 1) <A, exemplify Z,% do not witness the

failure the assumption of Case II}.
Define by induction on n,p,f € Y,u,f' €71, for ¢ = 1,2 and 9, such that:
(D pfewtul nul=¢ uwlcu,
(R)8 <98, € C,8,21,,9,,,>7,.7.

(3) v, < ¢(’u.,3),¢(u,?) <Vp 41
(4) for every open neighborhood v of pk, if m <n:
p(ul ) =9

For » =0 choose 85 € C,8;> Ag+ ¥ then choose p! #p? in Y such that
p(v,g) =9 (possible by assumption (iv)) and then  choose
uf erpf ceuf gvpg,uol Nnu§ =¢. For n+l, choose first ¥, € C,Bpyy
larger than ﬂn,)\nﬂ,:p(ug), o p(w?) for € = 1,2 (remember (¥). Now we
should choose p,l,,.p,2,;, such that @(vpe, ) = Fp 4y, and for each £ =n, (4)
holds. Each demand excludes a set in {4:¢(4) <A}, (note that
Ulvp:o(v,) <9} satisfies this by assumption (iv)) so there are distinct
Prs1.Pfe1 as required, and now choose disjoint wu,l,; 1,2, such that
Per €ulyy Ypkiy

Defineforn € 92, A, = N ui N N (X—u,).
7(n)=0 n{n)=1
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We define by induction on n < w, 1, .k, ,m,, such that
(a) mp, € 92
(b)n =k, <my <kpyy <Mpyy
(e) for € <m,mglk,) = ng(my,)
(d) elug, Nug, NA,) =T

For n=0 let k, =0m, =1, now @(u muﬁn)aﬁh by condition (4)
above. Then there is 7, is required in (4) by @. For n.> 0 we first can find &,

m,, as required in { b),(¢) and then 7,, as above.

Now let u, =ud M uzZ . So now by (¢) ug N4, =¢ for £ >m, so

U= U U, N %, 24, hence

g>n

plu,— Jug) =13, as glug) <9, forl <n, g(u,— | up) =9, so we finish.
g>n 2#n

2) Similar proof - instead %, N u,?,m we use finite such intersection and

strenglhen (4) accordingly (and {n,,] is replaced by a no where dense set.)

Remark: If in 2.5(1) we weaken (iv) to @(X—tu: e(u) <A i) =Ax, by
changing ¢ so to satisfy (iv).

2.6 Lemma: 1) Suppose X is a Hausdorfl space, B a basis for X and
o(v) < Ag for v € B. Suppose further that 2<% < ¢(X), A, < 0(X) and for no

€ < §(X), (Ag)* = 0(X). Then [§}<§(X) >0 (X).

2) Under Hypothesis 2.2, if {*) of 2.4 holds, cf §{(X) > 8, and Bis a basis
for X then | B|<¥%0 2 6 (X) (so for some x and ¥ : x<? > o (X) = (y + 2<%) + @),

3) If X is a Hausdorfl space 3;<0{X)< o (X)s" then for some
T {(x +2%)*" < o(X) < x<%.

2.6A Remark: The conclusion in 2.6(3) implies 0¥ exists by the covering

lemma, and similarly much more.
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We first prove some facts, where B is a base of a Hausdorff space X and

o{v)= Ay forv € B

2.7 Definition : 1) We say v = <'v.¢:2'. < a> is good for u (where u,v; € 1)
if

(Dvi—u # ¢
(ii) v; € B (hence v; € T)
(iif) fori # j <a,v; Nv; Cu.

2) We say ¥ is maximally good for u if ¥ is good for u but
fornowv € Bis 7~<v> good for u.

2.8 Observation: 1) For every u € T there ¥ maximally good for it.
2) If <’u,;:71 < (X> is good for u, then & < §(X).
Proof : 1) Immediate.

2) By (i) of Definition 2.7(1)) there is y; € v;—u. Now y; € v;—u € T, and
1#j] =>y; € v; (astheny; €v; N v; —u.)

29 Fact: Let G = §<U,;:i < (X>i v, € B, v; & Ylv;ij <a,j #1ii |
1) If 7 is good for some u then ¥ € G.

2) For each 7 = <vi:i < ¢x> € G the following two sets has the same
power:

Py = {u:v is maximaly good for u}.
@y = {<Ji:i < a>: U winvy) € Jg oy, (so J; # v;) and J; is open §.
i
Proof : 1) Immediate.

2) We define H, a function with domain Pv:H(u)z<Ui(\u:i <a>.
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Clearly H{u) € §,. Now H is one to one: if H(u;) = H(uy) but u; # u, then

w.log u; & uz choose y € u;—~uy then choose v € By € v Cu,;. Soy wit-

ness v & uy and for i<awv NvCu; (as v Cu;) but v Ny Cyy,
Uy YV =Ux N\ Y; SO also v Ny, € Uy We conclude that v contradicts the

maximality of 7 {as good for ug). So H is one Lo one.

Now for any <.l,;:i < cx> € Gy, J % J; is an open set and easily
i<a
vy MY €k CJ for i#jJ N =4 and v; € J. So ¥ is good for J. Let
u® = Ylu:7 is good for u,u N v; = J;} Easily ¥ is maximally good for u"* and
Hu') = i <a).

2.10 Fact: For 7 € G, for some ul, = I uf and pi<
My l Cy | i(Q(v)“v Hy

Proof: Let pl = |{Jem Uly; Nv;) €J vl Clearly Bk <o(v;), but
J#i
v; € ?so ;1.;; = Ag. By the definition of @,1&;| = I;[ p.g.

2.11 Observation: By cardinal arithmetic:

kL
DI p= I<I M; then u =QH1(XQ)"(Q), where n < @,, xg < supfp;:t < ai,
< m
7
YeE) = |al. Also (Vi <a)lxe >ps >x001 2> 6(2)=cf xgl and
g=1

x(2) = i - p = xg, and (Vm)[Xp, < Xg =DXm < #l}]

2) In 1) if p > u; for each %, u infinite then g ° = u; in fact u = x * for

somex=< Y Ro=<k=<jal.
1 <ax

3) Suppose x=2%, then Iy, a<s,u;<x for each i <a but
i<a

IT u; > x} is finite.

i<a
4) If x = 2°5(s = 8;) then for some ¥ <s : x® = x°.

Remark: In particular, in 8) {A%: 29 <A} is finite. When I visited
Budapest (in April 84 ) I learned that this already appeared explicitly in the
Hungarian book of Hajnal on Set Theory.
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Proof: 1) We define xg by inductionon € ,x; > x> - - - . Let x; = szlp,u%b
A

If xg is defined and is a successor cardinal, let xg = (xg+1)" If x¢ is defined,
x¢=1lletn =¢.

If x¢ > 0 is a limit cardinal, let xg,; be the minimal x < xg,x = 1 such that for
every X', if x < x* < xg then

() Jti<ax<p; < xgd| = |4 <ax” < py = xe}l.
Now x exists as< i <o x<pu; =x)l:x< xg> is a decreasing sequence.

n
Clearly for some € xg =1, so € =n. Now Il u, = ng s Xee1 < 1y = Xel
i<a =

(remember p; # 0, and we can ignore u; = 1).

By (*), T{asixe1 < 1y < Xe} = xE©, where 1(€) = |fi:xgs1 < i < xe} |-
The last phrase is easy too.

2) Basy.

3) By 2) if .gui‘zx, i =x.ax<s then for some ¥=<yxk=<|al,
Lo

9= 11 p;, so =y*<(Ilu)* =3 =98 hence TIpu;=x" where
i<a i<a i<a

x < |a]. So it suffices to prove §x*:x < s} is finite. Suppose x*) are distinct

for n <w, where for each n «(n)<s. Wlog «{n)<gn+1). Let

Xn = Min {u:pu=™) = ¥, so easily:
(i) for each n, X5 = Xn41-

(if) 3™ = x=).

By {i) w.lo.g. <xn: n < m> is constant; as we have assumed
x*™): n < w} are distinet, by (ii) {x5™): n < @} are distinct.

But (Vo < x,)0%™) < x,,, hence (Vo < xo)(Vn < @) (65") < o), and clearly
o (k) = (1), s0 xE™) = x5 0) = 5§70

tradiction.

. But x=") = y5(n) are distinct, con-
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43 Follows from 3).

Proof of 2.6(1): Suppose |B|<§(X)<O(X). By 2.8(1), 2.9(1),

T = {P; 7 € G}, hence o(X) = < B 1P| By 29(2) o(X)< 3] | gy, and
veG gl

by 2.8(2), |G| = |B|<$™). So to get a contradiction it suffices to prove that
sup{|@,| : 7 € G} <o(X). By 2.10, |@,] = g[( )“’17 where pt <A (as v; € B by
an assumption) and £ () < §(X) (by 2.8(2).) W.Lo.g. (Vi)(uf > 1).

Now by 2.11, for some natural number of n {7} and cardinals Hygg = A and

k(D,2)<2(7) <&§(X), for {€ <n):

n (V)
11 = 11 (i )9

so if g, is infinite, &, = QMQI (“;(g,z))'
=in 7

But (u, )“(‘7*@ = A implies (u,; Q)“(ﬁ'e) =Af70 g0 | &5 | = Ap, implies that
for some lc('u) =2(9), |G;1 =Af =) But ¢(7) < §(X).

So we have proved: if |@;| = Ay then [@,| = A§ £(#) where k(v) < §(X). But
we have assumed (Ag)*") #o0(X) and we know @y | = | Py | =0(X), so
necessarily |@;| =X => @] <o(X). But Ag<o(X) so [g;] <o(X). The
same  argument gives, sup{l@;|:7 € G} =sup[{rg} U A £ <F(X),
AF <o(X)}] but by 2.11 this is AF®, for some x(0) < §(X) hence this

supremum is < 0 (X), which we have shown is enough for 2.6(2).

Proof of 2.6(2): We use freely 2.3, 2.4. So (w.l.o.g.) |X| < Ap,X has a
strong base B,|B| < Ag, 0 (v) < Agfor v € B, and 25&) < o (X). As cf §(X) >R,

(2<S)No = 2<S) hence 29N <A hence wlog. 2@ <A, So all the
assumptions of 2.8( 1) hold, hence |B|<*¥) >q(X) as required. The last

phrase holds if we choose x =18l ¥ = §(X). Note
(x+2)*=(|8] + 2N+ A ¥ < o (X) (as )\0 = Ag also (AF™™ = A¢™) and

o(X) < | B|<S(),
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Proof of 2.6(3): Now X satisfy / from Hypothesis 2.2. If (*) of 2.4 holds we
finish by 2.6(2). Otherwise by 2.4 for some n )\:’ > A, hence )\7:;1 > 0(X), hence
An > 35 {as 0{X) = 3,). Remember )\:" = A,. Let x = A,, ¥ =3¢, they satisfy the

required conclusion.

A corollary of [Sh 1] 4.4 is

2.12 Observation: If £ is in infinite Boolean algebra then
IBI<§(X) < 2<§(E).

Proof: Let k& be the cellularity of B, so & is regular, >N8g,k < §(B), and
let A=Min{AA<®= |B|}; as « is regular (A®)<f = A< If A > 2<% then (V
1 <A) u® <A, and by [Sh 1] 4.4, A < §(B) so 22 = A%* > | B|, hence
'B | <$(X) « (|B ]A)<§(E) < ((2)\))\)<§(B) - 2<§(B)

If A=R2<%, then |B|=<2%,; remember k=5§(B) now if «=75(B), then
| B|<8(B) = p<8(8) as x =§(B) is regular; and  if k < §(B),
IB l <8$(B) « (2‘:) <&(B) - 2<§(E)‘

2.13 Conclusion: 1} If B is a Boolean algebra, id.(B)s" =1id(B).

2) If X is locally compact Hausdorff space then ¢ (X)ﬂ" =o{X).

Proof : 1) Let X be the space of ultrafilters of B, considering B as a
basis. So id(B) = 0(X). By 2.6(2) {note X is strongly Hausdorfl) o {X) < o(X)s"
implies | B|<¥(8) > ¢ (X), but o (X) = 2<¥(X) = 2<¥(B) contradicting 2.12.

2) We need the parallel of 2.12, which is proved by translating the proof
of [Sh]4.2, 4.4 to topology, which is done in 2.14 below.

2.14 Lemma : Let X be a locally compact Hausdorfl compact space with

cellularity «.

1) I (V8 < u){(9<F < u) (so 2<f < u} and every basis of X consisting of

regular open sets has power = u then §(X) = u.

2) If u is regular, X has a subspace Y whose topology is a refinement of
A
2.

Note: Theorem 2.14 was prooved by F. Argyros and A. Tsarpaleas indepen-
dently of [sh].
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Proof: The proof are like [Sh ] 4,2, 4.4; we concentrate on 2.14(2), so &
is regular {anyhow we shall use only this part). Here @ denote the closure of
u. Really it is a repetition of [Sh 1] with one change; use of compactness for a
family of sets u&—u—é

2) Let B be such a base. W.log. (Vu € E)[ﬁ is compact] (otherwise
replace B by fu e B:4is compact}). Let x = (22")* |H(x) the family of sets of

hereditary power < yx. We define by induction on i < u, N, < (H{)),€), such
that Be N;, |INI]l < w, (N} j $i> € Njy1.N; < N; for j<i and every
sequence of < x member of N; belong to N; when 7 is a successor ordinal.

(hence when cf i =«). For each i <pu, let B ={u € N;: u regular open,
~Y

Zcompact]i.

As |B | < u by a hypothesis it is not a basis of X, hence there are in N4,
o~
p; € Xul € B, p; € uf, such that for nov € 8, p; €v Ccu. We can find for
~1
¢ <3, uie € B, such that p; €uig, u}“ (;ut-g. Restrict ourselves to case
~i+1

cf 1=k

Let Jiz[],;e] be a maximal family of pairwise disjoint open sets

u € B,u cuf [u nuf =¢]. So JEIE, are subsets of N; of power < k (as & is
~e

the cellularity of X) hence Jig,Ii‘Z € N;. Let Aie = X—U—Iei, s0 A,iz is open,
belongs to N; (non empty ) uf € Af (as X—uf is closed, ULf ¢ X—uf) and
there is no open {(non empty) v C A,;z—'u,,;e, v € N;. Also A,iﬁ € N;. Let Biz = UJ,-IQ,
so B,;Z C u,;e,B,;e is open belongs to N; and there is no open v < uiQ—B,;ﬁ, v €N
By Fodour's Lemma there are A% B% such that S ={ii <, cf i<k
A,ie = AQ,B,;Q:BQ for ¢ = 0,1,2] is stationary. It is enough to prove

(*) for disjoint finite w(1),w(2) C S,

N uid U ug
acw(1) Bew(2)
As then for any non empty w C S, i?jg ——ué:a cw,f € S—w} is a family of
closed sets, the intersection of any finitely many is non empty and u—ﬁ is com-

pact for a € w, so there is g,, in the intersection. So {((q[al,ug):a € s} exem-
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plify §(X)>pu, and if S={§&: i<u} , let H:*2->X be define by
H(M) = Qyg, 45 ni) = 03 Uteyy then ¥ = {H(n): p € *2] is as required.

Let RO(X) be the Boolean Algebra of regular open subsets of X. So in
RO(X) we identify u € 1(X) with int{&) (and so the operations are changed
accordingly). So RO(X) is complete, in RO(X) 1 4; =int({J4;) ic. the

i<a i<a
interior of Y4 M4 =i( n 4;). So KO(X) satisfies the x-chain condition
i<a  i<a i<a

and RO(X) N N; is a complete subalgebra.

So in RO(X), Af is minimal such that 4% € N;, uf c Af and Bf is maximal
such that Bf c uf, BE e N,

Proof of (*): We shall work in RO(X) and prove by induction on
n = |w()] + |w(@)];.

(M*ROXVE N uwie U w}fuyBl
acw(1) aew(2)
When n is zero the statement is obvious. Let a = Max {({w(1)yw(2)) and
Maz{(w (1) yw(2) —fa)) =B < a.

By the induction hypothesisv = u? - U @ U Blis #0 (in RO(X)).
yew(l) yew(2)
rFEa T#+a
Clearly v € B, and if (* fails then v c Bl =8B! ( if acw(2)) or
~a

¢=v N A2 =v N A% (if « € w(1)). In both cases a contradiction follows.
2.18 Conclusion: For locally compact X, w (X)<F@) < 2<5(0),

Proof : Suppose w (X)<SW) > 2<5(X) et y = Min {u<* > w(X)}{, where k is
the cellularity of X. Clearly x < §(X),p = w(X), and (Vx < w){x<* <) (as
(X*)<* = x<*, x  being regular). So by 2.17  u<&X) but
[w(X) ]| <FE) < (u<e)<EW) < [, SE) g (2<)<EW) < 2<5&)  contradiction. [if we

want to use only the part of 2.17 actually prove, note that
a) g = §(X) is singular (by the previous argument).

b) i @ is not  strong  limit, let ©®<u=2® so
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;:w(‘)()<§{X} < (“<:)<§(X) - “<§(X) < (21’)(5’(){) = 2<5(X) contradiction;

¢} if g is strong limit singular §(X) = u is impossible (see [ J2] or 3.4.]).

§3 Nice ecardinal functions on a topological space.

3.1 Definition : 1) ¢ is nice for X if ¢ is a function from subsets of the

topological space X to cardinals satisfying
(i) p(4) = (AUB) = ¢(A) + ¢(B) + ¥y ( i.e. monotonicity and subad-
ditivity)
2) We call ¢ (x.u)-complete provided that if 4, C X, ¢(4;) <xfori<pu

then ¢( U 4) < x.
i<

Let C{g.pu) = {x: @ is (x.44)-complete].

3) We call ¢ (<Au)-complete, if for arbitrarily large x < A,p is (x,1)-
complete.
4) Let Ch, be the function from X to cardinals
Ch,y) = Minfep(u)y € v € T7(X)}
3.1A Remark: 1) We can replace i < u by i < a < g and made suitable

changes later.

2) In our applications we can restrict the domain of ¢ to the Boolean
Algebra generated by 7{X) and even more, e.g. in 3.2 to simple combinations

of the ’Uféké'{.
3) We can change the definition of ( < A,u)-complete to

(%) if 4, € X(1 <), Sup ¢(4;) < Athen (U 4;) <A
t<p LX47
without changing our subsequence use. [we then will use: if ¢{4,) < x; for

a < pthen ¢ U Aa) < Xis1)
- 2473

3.2 Lemma : Suppose A is singular of cofinality ¥, A= )X, X <A,
i<B
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¥ < Aand p =35(9)  or even u = 3,(3,(9)) I
(i) @ is nice for X.
(iii) X, = {y € X:Ch,(y) = x;} has cardinality = ufori <.
{iil) @ is (<A,u)-complete.

Then there are open u; € X(i < ¥) such that
¢(’Un"“’Uluj) =X
jrt
Remark: If |{y € X:Ch ,(y) = x;}| < g it essentially follows from {x;.2)-
completeness that @(X, ) =X where X, = Ulv € 7(X):p(v) < x}. Otherwise
¢(X—X,) = X by additivity, but o(X—X, ) <Ti{p(ly})y € X=X, ] so by (x;.1)-
completeness for some Yy € X, ¢({y}) = x; which is impossible for the

instances which interest us.

Proof: W.lo.g. x; € C, C ¥ C(p.) M A. Choose dinstinct Yi ¢ € X—X,, for
1 <8, E<

Let uf (i <0,{#{<pu) be open sets such that y;g€u; ¢, and
u?:.f,{ n ui"é = ¢ NOW

(*) for every i < 9,£(0) < £(1) < ¢(R) < u, there is T = ; gy £(1),¢(2) Such that :

(8) € U g(1).£(0) M %i,8(1),£(2)
) if Pl e X—Ujpe:j <9, £#¢<p,

[Pl<s, and z € A then o(NA)=x;
Aep Aep
If (%) fail, (for ,£(0).£(1),£(2)) then for every =z € wy gi)g0) M Ui g(1).£(2)

some [7 contradicts (b). So there are PJ; ¢ T' (i < a), Pl <9, ol N A) <x.
A€p

and U N4 2%gne0 N%enee As a< |F?=p®=p by the (u.p)-
i<a A€p,

completeness {as ¢{ N 4) < x;):
A€
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elus gy e N gye@) = 1 ol N 4) <x
1< A€

But yi,f(l) € ’u’i,.f(l),f(()) M ui,é(l),E(Z)’ Yi.g(1) 4 Xx{, contradiction. So (*) holds
and let x; ¢g) ¢(1).¢(2) exemplify it. Now define a five place function F on
tys gt <O &< pl ifi #j <8 £0) < £(1) <&(2) <p, ¢(0) < (1) <

F(Yi 400y Yi.801)Y4.£2)Y5.400) Y5 .4(1)

is O if 2; g0),£01).£(2) € %j.¢(0).¢(1) @nd is 1 otherwise.

By Erdos Rado if p = 34(¢)* and [Sh 2] if u = 3,(3,(9)*)* (see remark 3.18
below) there are £(1,£) (i <49, ¢ < 3)suchthat fori #j <:

F(Yi 4,0 Ys,86,1) Vi £60.2)Y5,6G.0)- Y5 4G 1) =
F(Y5 20,00 Y5 86.1) Yi £6.2) Y5661 Y566 2)
(and &(1,0) < &(i,1) < £(1,2))

We can conclude that

T £(1.0).£(,1).£G.2) € U5 £(7,1).4(7.,0) 1 %5 ,£(5.1).€G 2)
(because u; g ¢ M U ¢ = ¢ for & # ).

Let us =1 46.1).66.0) N %iG.0).£6.2) S0 Tig(i,0),86.1.46.2) € W~ U, and by
VK i

the choice of ; ¢(; 0).¢(i.1).66.2) % clearly g{u;—Uu;) = x;, as required.
i

3.2A Remark: 1) The demand on u is (see [Sh 2] Definition 1) to be able
to use that <(p.),,> have <(3),,> -cannonization for §<2;3>%,<3;2>2], but
really §<2;3>5,<3;2>%}.

Really we can define F for any five tuples from {y; ¢ 1 <3, £ < g}, and it
is enough to find &(i2)<u, a{i,€)<v¥ (for 2 <V, £ <3) such that
9= Sgg (Zggg afi,2})), [k #m => £(ik) #¢&(i,m)]andfori <j < ¥,

1

F(ya(i,o),f(i,o)’ya(i.1).{('&,1)»ya(i.2),£(i,2)' ya(j.o),f(j,o)rya(j,l),f(j,1))
= FY a(4,0).£6.00Y a(i,1),£6.1)Y a(i,2),£6.2)0Y a5 1).6G.1)Y al§ 2).£0,2))

2) If ¥ >R, is weakly compact, u = 2% is ok, in fact we can use just
iyi'oi 1 < 'Iy; by 32A(l)
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3.2B Remark: How do we apply [Sh 2] in the proof of 3.2? By the compo-
sitioin claim [Sh 2, Claim 5, p. 349} it is enough to prove that:

(a) <(32('-"2(73)+)+),;> has a <(32(19)*+)),,>-canonization for
{(2:3)3, (3:2)5).

(b) <(32(19)++},,> has a < ((2")*)9> -canonization for {(2;1)%] really even
for §{2;1)a,6h3-

(c) <((2"’)+)19> has a ((3),,> -canonization for {(1)Je}.

Now (c) is trivial, and (a) we get by e.g. applying [Sh 2, 8(B), p. 248] twice;
Now to get (b) (and even for f(z;l);z(f)f) we apply [Sh 2, 8(F)] with
S =9, Ag =3(I)*, ke = (2%)*, and check the condition.

3.3 Theorem : 1} If w=35(cf MY <A, or p=3,3:{(cf M ' <A Xisa
Hausdorff space, with spread A, then the supremum is obtained, i.e., §(X) # A.

2) The same apply to h(Y),z(X).

Proof : Suppose X is a Hausdorfl space, §(X)=A. Let A= 3, x;,

i<cf A
X <AOEcf A, let |4 =x;, 4; discrete wlog. X= () 4 and let
i<?
@(A) = |A}, and let C be the family of regular cardinals < A but > u. Now (i},
(ii1) are immediate. If (ii) fail for x, by Hajnal free subset theorem the spread

is A. Otherwise we can find by lemma 3.2 open % (i <cf A), |u;—Uu; | = x;
i#i
w.l.o.g. each x; is regular >cf A, so for each 1 for some oy <cf A,
(u;— ;) N Ag, has power x;. The rest is easy too.
j#i

3.4 Lemma: Suppose « is a strong limit cardinal, X an infinite Hausdorff
space, o{X)=k. I o{(X)*>o(X) then for some Y CX and
x| XI=x=x*<e(X),|X-Y| <k7Y open, o(YY=0o{(X),Y =
Utv € To(v) < x}, so Y has a strong base of power x.

Proof: For & =R, this is trivial; if & is strongly inaccessible then x is
the limit of strong limit singular cardinals, and it suffice to prove it for each
of them [let for o < x
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Xo = Minfy X—fu € 7: o(u) < x} has cardinality < o}.

Zeg=1y €X: Cho(y) =2 x,} (=X—Ulu e7:0(u) <x})

so when o increases x; decrease, (and x, is well defined: x, < o(X)); so for
some 0(0) < £, Xg = Xq(0) hence Z, = Z 40y whenever o(0) = o < k. W.lLo.g. a(0)
is strong limit singular; checking the definition of xg.xc= Xo(o) (as
Cho(z) =k for z € Zg) For every strong limit singular o, 0(0) < ¢ < «,
as 3.4 is assumed to be proved for it, there are x,Y as required; clearly (by
the "Min" in the definition of x,) X =Xe=x=Xx%% so xJ°<o(X). As
o(X)=k>0,k strong limit regular, clearly o(X)=x=> 2, hence
0{X) > %%, so either x5 < (2<)<* =2<F < g(X) or by 2.11. x<* = xZ for some
o < k, hence x5° < 0 (X). Now x = xX* is as required (if |X| > x use Hajnal free

subset theorem.)]

So w.log. xis a strong limit singular cardinal. Let X be a counterexam-
ple, L.e. 0 (X)<F > 0 (X).

Let A=Mn{A: AN =20(X)}, so A*=0(X)*>0(X), and A=o(X). Also
[6<kx<A=>x"<Alandcf A=k let ¥ =cf A so¥<k but 9 is regular
so? < k, and also u ¥'35(¥)* is < &, hence (Vo < k)o* < A.

We define the function ¢:
9{4) = |{u NA4:u is an open subset of X}|.
The family C of cardinals will be §{(x*)*:x < Al.

Now we want to apply the lemma 3.2. Its conclusion clearly suffice by 2.3A
(ii) . Now "¢ is nice for X" and "¢ is ( < A,u)-complete” are immediate. So (ii)
necessarily fail for some x <A So Y = fv:o(v) < x}] satisfies |X—Y]| < u,
hence o(Y) =o(X) [as 0(X—Y)=2* <k =<0{(X)]. Also |[Y]| <A [otherwise by
Hajnal free subset theorem , §(X) = §(Y) > A, hence o(X) = 2*, but 2* > o (X)
so o(X) = 2* hence o(X)®=0(X) contr]. So ¥ {(as a subspace) has a strong
base gof power <y + | X| <A,

3.5 Conclusion: If X is Hausdorfl space, & strong limit cardinal o (X) = «,
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0(X)<* > o (X), then for every base Bof X |B| <) = o (X).

Proof : See 3.3, and apply 2.6 to the space Y.

3.6 Conclusion: 1) If B is a Boolean Algebra , « strong limit and |B| =2«
then id (B)<* = id (B).

2) If X is locally compact Hausdorfl space, « strong limit, then
0 (X)<* = o (X).

Proof : 1) By 3.5 applied to the space of ultrafilters of B5,
|B|<(®) = o(X). By 212 |B|<®) =2<B) and clearly 2@ <o (X), so
| B|<8¥(B) = 2<8(B) = o(X). Now cf §(X)=« by 3.4 {as §(X)=35(u)* whenever
u < k), hence (2<5(¥)) <k = 2<8(X) A5 id (B) = o (X) we finish.

2) By 3.5 | B] S > o (X) for every base B, but by 2.18 w (X)<¥(0 < 2<5(0),
As 2 < o (X) we get 20 =5 (X), as §(X) = k (remember k strong limit,

0(X)=«) by 3. 4cf §(X)= k hence (2<X))<x = 2<8(X)

Remark: If you want to apply only the part of 2.18, 2.17 actually proved,

separate the case A is strong limit in 3.4.

§4 Further consequences.

4.1 Claim: Let B be a Boolean Algebra , x a cardinal, and we define by
induction on 1, ideals L = IX(B) increasing continuous:
=10}, L=tz e B:id({B/ L) {x/[)) <x3} where x; is choose as a

minimal cardinal < x such that [, # ;.

1) For some 7 =7(*) =1(B) < |B|¥,1,(+) is defined but not x,(s) (nor
Ly(s)+1)-

2) B = Iy or for every z € B—I,), id ((B/ L) 1 (b/ L)) = x-

3) The number of ideals J C I ) of B has the form 3 uE® where
a<f

B= BB u, <x,cla)<5(B).



176

This follows from:

4.2 Claim: For a Hausdorff space X with a base A and cardinal ¥,

define by induction on i u; = uX(X) :
Ug = ¢

Uiy = U v v € B ,o{v—u;) <x;} where x; <A is minimal such that

Ugyq # Uy Ug = U"Un’ {so u,; is increasing continuous.)
i<
1) For some 7{*) = »XX) < |X|*, (and 7(*) < [w(X)|*) u () is defined

but not Uos)yy and for everyy €X—u ), (Vo) (y €v € 7 > 0 (v —uys)) = x)

R)  oluywy) if >|B|<*X) has the form Zy.,‘;(“) where
~ a<f

B=|BI<$B) [u, <x, orp,=xx(a)=cf x] and k(a) < §(X).
Proof : Like 2.6.

For every © € u.(+) choose by induction on 1, ¥;, such that:
(v; Ny Cuforj<i.

(ii)v, € u,v; € B

(iif) v; Cugqy) for some a(i) < y(*) but for no B < a(i) and v Cuy, is
v' g u, v Cugandv € 7.

So let B be first such that vg is not defined. By (iii) for each ¢ < 8 a{i) is
successor ordinal and YUg()-1 NV CU. As in 2.6 ¥ = <'uj:j < ﬁ> s U MY Yy

determine u, the number of u corresponding to ¥ is Hp 0 (Vi U g1)—1— U V)

i< At
each multiplicant is =o(y;)=2x; <y, f<5§(X) and the number of ¥ is
< |B|<s()

4.3 Remark: At least for compact spaces, this gives heavy restrictions
on the relevant cardinals.
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Let By=xy<--- <k, list the cardinals « such that 2* < 0(X), and for
some A=Alk], k=cf A, and A*>o{X)>A but (Vx<A) [x*<A] so
0(X)® =0(X) <0o(X)™ (if there is no such x we have no problem). As
Akg] =A[x,] implies x, =&y, and [k, < x5 = A([k,]) > A([xp])], clearly n
is finite and trivially each kg is regular and let for € =1,n,
Ag = Minfh: A" = o (X)]; but Alkg] = Mg (as Algg]* = 0(X))) and Afxg] < Ag (as
(Vx < x[eg]) [X* < A[xgl]), so Alegl =Ag. Hence cf Ag=kg, Ag> Ay > " > Ay,
(Vx < Ag)[X™ < Ag]. Moreover (for € < n) (Vx < Ag)(x<**' < Ag) [first suppose
X<A kg=<D<kKg,,, if x*=x; then x?2A%2A"=0(X), wlog x is
minimal with this property, so x* = o(X) > 2°*' > 2% hence x > 2%. Clearly (V
E<x)(u®<o(X)) hence (Vu<xy){u®<x), and cf(x)<® ( otherwise
=3 lal?<x<Ag=<o(X) contr.). So cf x<% < kg4, and by x's minimal-

aly
ity (V< x)(usf X= u® <yx). Lastly cf x> kg [otherwise x? = x/ X< ¥ < Ay
contradicting the assumption of ¥]. So ¥ € {xo, ...,K,}, contr. Secondly

suppose x<**' > Ay, for some x < Ag, as ¥ < kgy; => 2% < Ag, by 2.11 for some

<K@y

V< kg, X0 =X and we get the first case].

Lel Ay = Minfy 2X=20(X){ and K,y = Cf Aueq SO0 A4 = A, hence, as
above) (Vx < A, ) (V8 < A1) [x® < A,]. By the proof of 3.4 35(xg)* = kg4, (for
€ <n), otherwise using A,,kp,u = 35(kg)* we get contradiction. If A, ,q is
singular, <2x: x < )\n+1> is not eventually constant [as then
(AX < Apyq)2X = 2X01], 2P < 6 (X), (2Pnu)Enr = oA 5 (X)), so
Mkn1] = 2, 50 Ay = Mgy hence 2ggen)(o) 2 0(X), 0(X) < = 0 (X). T Apay
is regular, then (VO < Ap4q) (Vx <20 [x? < A,] hence 25(k,) = Ayyy, SO We

get the same conclusion.

4.4 Lemma: Suppose X is a Hausdorff space, A a singular cardinal,

Y=cf A= Y x.x: <A p<Aand (i), (ii), (iii) of 3.2 holds { for ¢).
i<®

1) If o =35(8)% (or even Y, 33{0)*%) then there are open sets u;(i <¥)
o<Y
such that g(u; —u;) = x;.
i»i

2) If X = yYfu:o(u) <A}, g as in 1) then there are open sets u; such
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that p{u;— 1 %) = x;.
g#i
3) If u=34(2%%)*, ¢ is ( < xp.u)-complete, then there are u,;(i <) such
that g(u;—uy) = xo (so X, x;(0 <% <), are irrelevant).
j#i
Remarks: 1) Part 1) of the lemma is suitable to deal with Boolean alge-
bras, part 2) with existence of {z,: a < A} such that for every a < A for some
U, Za€u N{zg: <N Clzg: B=ai.
Proof: 1) We repeat the proof of 3.2, for p =3,{89)*, but cannot use the

partition relation used there, but we can use a weaker one. We choose by
induction on j <4, £(j,0) < &(7,2) < €{j,R) < p such that fori < j:

F(Yi ¢6,0) Yi£.1)Yi.66.2) Y5 .00 Y5.66.1)) =
FyYs g6.0p Yi.66.1) Yi.66.,20Y5.6G.1) Yi.66.2)
This is clearly possible by the assumption on u.
Y

We can COHClude that, lettlng ’u"i. = u‘i,t(i,l),f(i,o) r\ u";,f(i,l),f(i,z) then

Ty £(4,0),6(1,1),£(1,2) € Wy~ Uy, so we can get the desired conclusion.
i>i

2) In the proof of 1) we can take care that for every i <8, £ 2 £ < p,
Uy ¢ ¢ satisfies 0(u; ¢ ¢) <A; hence we shall get o(%;) <A. So by thinning the

sequence <ui: 1< 19> caso(u )= x;, A = sug X; We can assume:
i<
[P <j =>o(u;) <yl

As ¢ is (<x;.u)-complete, ¥ < u, necessarily o ({J u;) < X;- Hence
i<j

of{u;— u;) =o{{u;— U %;)—U ’“j) =X
J#i j<i j<i

as required.

3) Really the proof is as in 3.2, but we use (for o =2, & finite large
enough, note u =3,(c<%)*; is 0.K. in 4.5):

4.5 Observation: If F is a S-place function from p to o, =292
B ()] ¥=RE g5 (3)2 [eg p>3,(¥27) =35(0°%+K) k= (2°9)* +¥],
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k- (3)3 [eg. p>3,(292°) =2,(0<P+€D) = (29* or x is finite large
enough] then, there are distinct £(7,£){( < %, > 3) such that, fori # j:
F(&(i,0),8(:,1),€(1,2),6(5.0).£(5,1)) =
F(€(2,0).€(:.1),8(2,2).£(7,1).£(7 )
Remark: We can get of course more general theorem.
Proof : We choose by induction on i<¥, Y; cu, |Y | <cltl*s 48, ¥,

increasing and all "types” of cardinality < |i]* + x* realized in u are realized

in Y4, Let Y= |y Y;. Now we can find distinct £ (€) € u—Y for £ <« such
i<y
that for every £4,€1,€5 € | Y; there are c,(£s.€,,€2).¢2(£.£1) such that
i<y

(*)g forevery & <m <k F(&y.&,.€2.8(€).6"(m)) = ¢ (&0.61.6p
(*)p and for every £ <m <n <k F(£(£). £ (m),£ (k)& &) =caléo &) -

Why we can do this? We want to apply the partition relation pu - (x).?,
for this we have to check what is the number of " colours”, clearly it is

< 2RIV 1P+ 1Y 7 g Boretle® D)y o Ny we choose by induction on i <,

£(1,2),€ < & such that :
(i) £(7,0),£(1,2),£(1,2) are distinct.
(ii) £(i.2) € V1= Y5
(iii)

F(£(5,0),£(7.1).6(j 2). £(1.£),£(:,m)) = F(£(7,0),£(j,1),£(j.,2).£"(€).£"(m)), when
J <i,and € m <k.

(iv) F(£(2.€1).8(1.£2).6(1.L3).£(7.24).£(J L5)) =

FE (€1).6(£2).6 (£3),6(7.£ 4).6(G £5))
whenj <1i,¢,< - <k.

There is no problem in doing this:

For each i <9, as k£ » (3)2 there are £4(1) < €,(1) < £(i) < « such that:
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F(£7(0),67(1),€°(R),£(1.£4(2)).£(2.£,(2))) =
F(E7(0),67(1),€(2),6(1.21(1)),£(4.,£ (1))

Now £(i,m) = £(1,€,,(1)) (i <¥,m < 3) are as reequired.

4.4A Remark: Assume (i), (ii), (iii) of 3.2. We try to decrease p. let
Zi=ly € X: Ch{y)=x;}, so |Z]=2p, and let X =ylup(u)<A. If
| X=Xy | < p then necessarily |Z; N X¢,| = p, so we can continue as in 4.4(2).
So we assume |X—X, | =y and let y; € X—X, (£ < ) be distinct. Choose for
£ <{, open disjoint sets ug, Uy, such that Y, € uUgs, Ye € Uge As in 3.2's
proof we can choose for distinct £(0),£(1),€(2) < u,
T4 £(0).£(0.62) € Y(1).£0) N ¥E(1).42) such that: for every
Pclugez—uge £2<ul, [Pl =9,

(%5 ¢0) 60,62 € N e = e(Ne)=x]
acp acp

We need the parallel of 4.5 for ¥ functions simultaneously or, what is
equivalent, the range of F has cardinality 2%, so o = 2%, and we get pu = 35(9)*

but this is not interesting.

§5 When the spread is obtained and how helpful is regularity of the space

5.1 Lemma : 1) Suppose X is a regular (i.e. T3) topological space, B a

base of X, A= Y x;, B <x; <A g = (2°)* and
i<P

(i) @ is nice for X,

(ii) for every (closed) Y € X with ¢{Y)= A and % <, there are
Ya € Y{a <), Chyy(ya) = x; and {y ca < pf is a discrete set,

(iii) p is (<A, u)-complete.

Then for some w; € B (i <), ¢(ui“qu) = Xi-
~ FE

2) Instead u = (2%)* it suffices that g = u? > 2% (and (i), (ii), (iii)).

3) We can replace (ii) above by



181

(ii)’ for each 1 < ¥ there are u, € Bla<u) such that:
(Vg:u > 2%)Ea # B)g(a) = g (B) A ¢l (ua—zg) N V) = x:].

or

(ii)" there are U Yo € Ug € B, such that: Ch (Y o) = x; and

(Vg:u-» 2%)Ea # B)[g(a) = g(B) nya & ugl.

Proof : 1) W.lo.g. ¢ is (x;,u)-complete for i < ¥. We first try to choose a
family K of open subsets of X, {or even C H), and a ¥ € X such that:

(A) K] =17 =™

(B) if w is the union of < ¥ members of K, p(X—u) = A and i < ¥ then
there is a sequence <ya,v3,v; a< (2")") such that: yg€ Y—u,
[ya€vg <> a=8], viv}ek, yacvlcvlcvl, and (Vv er(X))

[Ya€v » plv—u) = x].
It is easy to find such K,Y (by (ii)). Let fori <1,

ZAK) ¥z € X: if up€ K(a<®), and u, € {ugX—u,} and z € uy for

each a < ¥ then ¢{ N ’Ulf,(‘)) =y,
a<d

By the proof of 3.2 for each © < ¥ there is 2; € Z;(K). Now we choose by

induction on i,x;,u4; such that:
(a) u, € K, z; € Z;(K),
(b)z; € uy, (Ve < i)z, & uynz; € U,),
(e)z, & u; wheni < & <9¥.

Suppose z;,u; are defined for j <4. We want to apply (B) to Uu,, now for

i<i
each ¢, if 1 <& <®¥ then p(X—yUu;)2x, as {u;1j <ijJ CK, 2, & Uu; and
j<i i<i
Z, € Z,(K). Hence ¢(X—yu;)=A So by (B) above there Iis

j<i
(y,wg,v‘}l:a < (2")*) as mentioned there. By cardinality consideration, for
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some o # f,

vy N (fz5:0 <BJULY;0 <i) =vf N (125 <83 Uly;d <id)

So u; ®vJ—v g is open, is disjoint to {2;:5 <8} Uly;:7 <1}, and y, belongs
toit (as ya & v v§ Cv4). As (by (B)) (Vv € Ty €v = 0(v—Uyy) = x:],

j<i

clearly @(u;—1Ju;) = x;, hence (as in 3.2) there is z; € Z;(K) N (u;—Yu;). So
i<i i<

we succeed in the induction. In the end as u; € K, z; € Z;(K) N (u;—Uy,;)

J#t
clearly g(u;— (J ;) = x;, so we finish.
J#i
2),3) Similar.

52 Lemma : Suppose X is a Hausdorff space, A= ¥} x;, X: <A and
i<d
B =35(8)%, Ba base for X, and

(i) ¢ is nice for X.

{ii} for every (closed) Y € X,p(Y) = A, and i < ¥ there are at least u
points y € ¥ with Ch 4y(y) = x;.

(1ii) ¢ is { <A, u)-complete.

Then for some u; € B,(i <) o{u;— Y %) =X
~ F#i

Proof : Like the previous one, replacing (B) by (B)’, (C)’ {D)"

(B)' if % is the union of < members of K,p(X—w)= A and ¢ <9 then
there are 3;(9)* points ¥y € Y—u such that (Vv € 7(X))(y € v -» p(v—u) = x;].

(Cyify;#yz€ Ythenforsomeu,v € K,y, € w,ys€v,u N\v = ¢.
(D} K is closed under finite intersections.

Then having defined u;,z;(j<%) and shown ¢(X—{Ju;) = A, we can find distinct
i<i
Ya €Y — U u{a <35(8)*) such  that Ch.X_Uu](ya) >y;. We  let
F<i i<t
A =1z <8} U x5 <1}, Iq = v NA:y€vEK], so for some a # B < 2,(89)",
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Iq=1g and using (C) there is wu; € K, such that y, €w;, obviously

ANnu =¢. As Ya € Uy o(u,—UYy) = X;, hence there is
j<i
z; € Zi(K) N (uy—uUy,).
J<i

We may remember:
5.3 Fact : 1) Suppose £ =«k<F, x = 3 x;, X; increasing continuous

i<®

Then for some forcing notion P:
a) P is k-complete satisfying the £*-chain condition.

b) In V¥ there is a topological space X with a basis of clopen sets

such that A(X) = £(X) = §(X) = x, o(X) = 2% and | X| = x.
<9

2) In fact we can get that X is the dual of a Boolean algebra and there is
no set of pairwise incomparable members of the Boolean algebra, of cardinal-

ity x.

Proof: Let p € P be a set of < xk alomic conditions with no two contrad-

ictory ones, where an atomic condition is a € Ug Or a (*4 Ug, where a,f < Xx,

and @ €[x;.X;41) => B < ;v B=av B2 x;,,.

Two conditions are contradictory if they have the form a € uga ¢ ug.

The order is inclusion.
Now (a) is obvious.
In V¥ we define:
uf = fa < A:a € ug belong to some p € g{

On x we define a topological space X: by having Euf;:ﬁ < x} be a basis of clopen
sets.
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The rest is easy too.

2) Similar (just asin [Sh 9] 4.4) . i.e. let P = §{B,W): B a Boolean alge-
bra of cardinality < & generated by {z; :1 € W}, W a subset of x of cardinality
<&, and if ag ...,&, are distinct members of W N [x.x'%) then

n
BEFz, ¢ QU Z g,
=1

5.4 Conclusion: 1) If X is Hausdorff §(X) is singular of cofinality ¥ then

cf { §(X)) < 2% [repeat the proof of 3.3 but instead of 3.2 use 5.1 remember-
ing cf (2%) > k.
2) If X is regular {i.e. T3) 5(X) singular of cofinality ¥ then

cf (§(X)) < 2% [repeat the proof of 2.3 but instead of 3.2 use 5.2 remembering
cf (2%) > 8]

3) Both results are best possible in the sense of complementary con-
sistency results. {see [JSh] and 5.3).

4) We can replace above s by 2 or .

5.5 Lemma : Suppose A is singular of cofinality 8, A = 3}, x;, X3 <A, and
1<?

£ = 0. Assume further (for a topological space X and function ¢):
(i) @ is nice for X.
(ii) v € X: Cho(y) = x;} has power = u, for i < 9.
(iil) ¢ is { < A, up)-complete.

1) If X is Hausdorfl, pg = uy = 3} 3o(x)*, then for some u,; € 7(X) (for
<3

i < ¥) for each i,p(u; — U ;) = x;.
j<i
R) If X is regular, po = pu, = ¥, (25)* then for some u; € 7(X) (for
k<9

1 <) foreachi @{u;—Uu;) 2 x;.
i<i

Remark: The proofs are similar to those of 5.1, 5.2.
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Proof : 1) W.l.o.g. ¢ is {x;.4g)-complete for each i. We define X,1"

{A) K is a family of open subsets of X of power < ug.

{B) Y is a subset of X of power < .

(C) there are uq distinct y € Y such that Ch,(y) = x;.

{D) for any distinct ¥,y € Y for some disjoint u,us € K, ¥ € 1, and
Yz €U

{E) K is closed under finite unions of intersections

There is no problem to carry this definition. Let Z;(K) = {z € X: if for

J<® a; CX a; € KvX-a; €K, and z €a; then p{ Na;)=x3 Now we
i<
choose by induction on i < ¥, z; and u; such that :

(a) u.i' € K, .’ti € Z‘(K‘)
(b) x; € u.,;,(Vj < 'L) (.’Ei 4 uj)
Suppose we have defined z;,u; for j <1.

By (C) above there are distinct y% € Y for a < pg, with Ch,(ys) = x;- By (E)
above there are, for a# B uUgg€ Kgyy, such that yh € ub g, and
ubpg Nuha =¢. Now as gy > (3)% for some a < f < 7 < ug:

ufx,p Ntz <4 :ufg,«, N ({z;:5 <i})
As u%,a M ufx,p = ¢, clearly u; :’U,ip'a ﬂu%,., is disjoint to ij:j <1}, Also

y}', Eu}",,a r\u%‘.,, so ¢(u;) = x;, hence as in the proof of 3.2 there is
z; €u; M Z(K). In the end z; witnesses @(u;—Ju;)=x; as z; €y, (V
>t
7>z & uy).
2) Similarly (remembering the proof of 5.2).
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The Existence of Coding Sets.

Lately Zwicker (see [Z]), generalizing theorems on regular k& {(and the
filter of 3, generated by the closed unbounded subsets) to PN (and
(X)) find that many times we can generalize if we restrict ourselves to a
coding subset of /9“()\). He shows existence for k super-compact, (see Solo-

vay [So] and Menas [M]) and Stanley and Vellman ( independently) show

+

existence for A = &% assuming a suitable morass exists.

During the meeting in Colorado, I heard about this (and the two other
variants) and prove some existence theorems mainly that: for £ > 8, regu-
lar there is a coding set for /9«{)\)‘ We present here somewhat improved

versions written in Aug 83 announed in [Sh 2]. Here is a summary.

More information will appear in "More on Stationary Coding".

Definition : (1) We call S a weak (k,A)-stationary coding set {(or weak
{x,A)-SC or (k,A)-WSC) if S is a stationary subset of /9«::(7\) =fa CA: |4]| <«
and for no a #binS,a Ne=b Nk,adh.

() We call § a (x,A)-stationary coding set (or (k,A)-SC) if S is a sta-
tionary subset of P (A), and for some one-to-one function h :S —A, for

everya,b € S, [a #bra Ccb = h(a)eb].

(3) We call S a strong {(k,A)-stationary coding set (or strong {(x,A)-SC
or {&,A)-CD) if for h(a) = sup{a}, (2) holds.

The simplest cases of our results are:

Theorem A: If K = 8,,,,, then there is a (k,£*")-WSC (on e.g. x*@+) we

could have weaker results.) (see (19).)



189

Theorem B: 1) If £ is an ineffable cardinal (or just <>{a“<,,wmaccessi_
w
bie}): € <A =ASF and A # ()59 (Silver’s relation) (see 11). then there is a

(x,A)-SC
2YHA> Kk >Ny, 0 {5<r: of 8<x) then there is a (k,A)-CD (see 7).

3 A>N,, 03, S CcA (V6€ S)cf 6 =8; S does not reflect in any a of
cofinality 8, then there is an (8;,A)-CD (see 7).

Theorem C: If 9% =1, A <9t #) «=9* and in «*/ 0y there is an

increasing sequence of length «* + 1, then there is a {k,A)-WSC (see (13).

For Theorem 1 we use:

Theorem D: If D is a normal fine filter on P (A), £ = p* A regular
and fa € P (A) i cf (supa) # cf u} € D then D is not A*-saturated.

By Lemma 20, and later result of Foreman, Magidor and Shelah [FMS], it
is consistent then that there is no (8;8;)-WSC.

1 Notation: « will be a regular uncountable cardinal, A a cardinal

=k, u,x infinite cardinals, D a fine normal filter on some /9“(14).
2 Definition : 1) /9<#(A) = {a : a a subset of 4 of power < ui.

2) A filter Don P (A) is fine if for z € A {a 1 a € P (4), © € A belong
to D We say Dis finer if for b € P (4), fa : a € a, a € P ()} belongs to D

3) A filter Don P (4) is normal if for any C, € Dfor z € A) the set

iCL ‘a 6,9(:(14)’ a € N Cz;

TEQ

belongs to 2

4) D (4) is the minimal finer normal filter on PelA) (if |4l =k itis

trivial) (normal include k-complete).

38 Fact: 1) The set of ordinals <« belong to Dlx) so D(x) can be
identified with the filter of 2 of closed unbounded subsets of «.

2) If Dis a (fine normal) filter on P¢(4), F a function from Pa,4)
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to D then the set {a :a € P (4) and for every w € Pla), a 2 F(w)}
belongs to H

3) D(4) is the filter of closed unbounded subsets of P¢(4), hence
¢ & D(A).

4 Definition : 1) S ¢ P, (4) is called I stationary if P (4)-S & D 1f
D= D.(A) (and the identity of 4,k is clear) we omit 2.

2) 51,52 are Dralmost disjoint if (Pe(4)=S; N Sg) € D.

3) We say Dis u-saturated if there are no u Jrstationary pairwise
Dalmost disjoint subsets of U D

5 Main Definition : Let ) be a filter on P (A) and S C P () is D

stationary.

1) S is a weak stationary coding set (WSC) if a,b €5, a #b,
a NMk=>b Mk impliesa ¢ b.

2) S is a stationary coding set (SC) if there is a one-to-one function h
from S into A such that: [e € Sab eSaa #baraa cb = h{a)eb]; We call

h a witness.

3) S is a strong stationary coding set (CD) if the function h(a) = sup(a)

is a witness (for its being a stationary coding set).

4) We shall say S is a DWSCif S # ¢ mod D and similarly for SC, CD;
we may also say: for &), there is a WSC; when D= :25,()\) we may write («,A)
instead of 2

6 Fact: 1) For (k) there is a strong stationary coding set (k
itselft).

2) A strong stationary ccding set is a stationary coding set, and a sta-

tionary coding set is a weak stationary coding set {for any fixed 2.

3) If Ais a singular, Da fine normal filter on P (A) then there is no

strong stationary coding set for D.
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4) If 2 < A < A%%, ) afine normal filter on P (A) then there is no SC
for .

Proof : 3) Suppose S is a DCD, and let € € A be closed unbounded of
cardinality < A. Clearly S; ={a € P{(A): @ N ¢ is unbounded in a}j € D
hence Sy =fa € S:supa €c U {A}} # ¢ mod D, but |S5| <A so we get con-

tradiction to "PDis fine".

4) If S is such a set, if h witnesses its being SC then it shows [S| <A,
but  every a€f,(A) is a subset of some b €S hence
A< 1P N =3 b)) <|S]| - 2% < A contradiction.

bes

7 Claim: Suppose A >k is regular, D=D(A), T CA is stationary, (V
deT)[ef 6<k], and <> ¢ holds. Suppose also: k£ >8; or for some normal
filter D over N8, for every increasing continuous h : wq > A,
{i <6:h(i) g T} €D Then thereis a CD for D

7A Remark: Really («x,A)-CD for A > « is a weak form of <> {6<A < cf d<xi-
In fact if (£,A)-CD exists, A = A > 2<€ then ) sex: oy & < ¢ hOldS.

Proof: We know that Jy ={4 CA: <>)\_A does not hold} is a normal
(fine) filter on A. As <> 7 holds, T # ¢ mod Jy, hence for some ¥ <k,
To={6€T cf 6=vl#¢mod Dy So <> r, holds hence there are
<M5 16 € TO> , Ms a model with universe § and 8y functions such that or every
model M with universe A and 8; functions {6 € Ty: M I § = M4} is stationary.

Now we define by induction on § € T, a set 45 € 6 such that:
(a) Ay is closed under the functions of M},
{b) sup 45 = 4.
(e) 145] <.
(d)if 8, € 6 (N To, Ay, € Ag then 8, € A
{This clearly suffices). We can even strengthen (d) to

(d') if 6, € Ty M 6 is in the closure of A5 then &6, € 4g.
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If &k >8,; let ¢ <k be regular cardinal such that ¢ # ¥, (¢ =8}, and then
define by induction on ¢ < o, a set Ag ¢ &, such that Ag has cardinality < «, is
increasing with £, the closure of Ag under the functions of Mzis C Agﬂ and
also every accumulation point of A§ which is < disin Af,; and sup(4§) = 4.

Then %Ag . £ < 0} is as required. The case £ =R, is similar.

The following (8,9) is a variant of Silver [Si].

8 Definition: 1) Si(x,A) means that for every algebra M with universe
A and countably many functions there are isomorphic subalgebras M,, M, of

power <, M) C Mg, My # Mgand M, & = My M £ = an ordinal.

2) For Da fine normal filter on P (A), Si(D) [SSi(D)] means that for
every T€D [T # ¢mod D) and M above we can find M, M, as above
M, eT MyeT.

3) The negation of Si(kA), Si(5),S5(J) are denoted by
N Si(k,\), NSL(D),NSSi(k,\) NSSi (D) resp.

9 Fact: 1) If Si{k,A) and A <A’ then Si(k,A").
2) If Si(D) then Si(DA))

3) The first A= k for which Si{x,A) holds, is a strongly inacessible car-

dinal.
4) SiSD(A)) is equivalent to Si(x,A).

5) If Si(3) then there is a minimal normal J) extending ) for which
SSi(D).

10 Claim: 1) Suppose <>‘ and N Si(k,A), then there is a WSC for
DAA).

2) fin 1), T is a set of strongly inaccessible cardinals (hence K is
Mahlo), O 7 and A = A€ then there is a SC for .

3) Suppose Dis a normal fine filter on Pe(A), Do = {4 Cx: fa € Pe(A):
a Nk €A} ey (solyis necessarily a normal filter on k). Suppose further
<> () which means: there is (A,;: 6< /c> such that for every 4 Ck,
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{6<K:4N06=As #mod Iy If NGi{D) then there is a HWSC; and when in
addition {9 < « : ¥ strongly inaccessible} # mod Y then there is a D-CD.

Proof : 1) Let T C x be stationary such that <> r holds. There is an alge-
bra M with countably many functions exemplifying NSi(Xk,\)). As 0 7, We
can find models M, (a € T) such that:

i) M, is an algebra with countably many functions, and universe

Yo A=Y <K

ii) if <N,, 1< IC> is an increasing continuous sequence of algebras

with countably many functions, ||N;}] < x, and & € (U N; then for stationary
1<K

many i € T, N;,M; are isomorphic over 1.

Let S* = {a € Pee(X) : M1 a is isomorphic to Ng e

S*isaWSC, infactifae S*, b € §%, a cb (buta #b)thene Nk <b N«

where e e € T'}. Now

2) Straightforward, let A be any one-to-one function from /9“(}\) into
X, then S™ =faef, A:a NnkeT, la] < |la N« and (v
bYbcCanlbl<a ne->h(b)ca)]#¢mod DA Now also
S* N S* # ¢ mod D(X) and S* M S** is a strong stationary coding set.

3) Left to the reader.

11 Conclusion: If ¥ is an ineffable cardinal (see e.g. [ KM]),
N Si{D(N)) and A = A<F then there is a SC for D(A).

Proof : It is known that for ineffable x, 0;, holds, moreover <> 7
where T = {u <« : u strongly inaccessible}. By 10(2) we finish.

12 Observation : The following properties for a succesor cardinal £ and

stationary T ¢ & are equivalent:

i) in &/ (D + T) there is an increasing sequence sequence
{ga/ (DAT) :a<k*y and g/ (D+T) such that g/ (DetT) € g/ (Dt T)

for every a < «*.

ii) there is g :k >k such that for any well-ordering <' of
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g fae T:{a<"ta)has order-type <g{a)} is stationary.

iii) there is g :x -« such that the set {a € Pefc?) :a Nk€eT,
(a, < t @) has order-type exactly g (a n«)} is stationary.

iv) Sfor any cardinal ml=su<c such that v
e Tef 6 <punrld|#<k], cardinal A >k and subsets P, C A{i < u), there
are functions g; : £ = & (i < u), such that the set

fa :a € /9<K(A}, a N« an ordinal from 7 and for 1 < u the order type
ofa N Fjis gi(a N )}

is stationary.

Proof: Trivially (iv) => (iii). Next we show (iii) = (ii): if g exemplify
(iii), <" a well ordering of &, then for some «, £ < & < &%, («,<) is isomorphic
to («,<"), and let A be such an isomorphism. Let a + 1 = {J @, a; increasing

i<k

continuous, |a;| <k, so for some closed unbounded C Ck, (V€ C)
[as N« =06, and h is isomorphism from a4 onto (8, <*t48)]. If (ii) fail (for
this g, for this <) we can assume (Vj € C n T)[(8, <"1 8) has order type
>g{a), but then fa e P (k*):a+1€a,a N (atl) is ag for some & € C}

belongs to (k") contradicting the choice of g.

Now we show (ii) => (i), let for a € (k,&*), <, be a well ordering of « of

order type «, and let g,(i) £ "order type of (i ,<, 1 1)", the checking is easy.

Now if (i) holds for g, g {a < £*), also (ii) holds for g: let <, be any well
ordering of x of order type a (for k< a <«?%), g, :x > & be defined by
9afi) = "the order type of (i,<411)", for a < k let g, (i) =14; we can proved

by induction on a < x* that g5/ D, < g o/ D, so (ii) is clear.

Lastly assume (ii) holds for g, w<x (Vo€ T)[cf 6> un |8|F<k],
P, ¢ A{i < p) and we shall prove (iv) (for those F;(i <u)). Let for 6 €T
(wlo.g. |g(8)] =|8]), hg be a one-to-one function from & onto g(8). For any
sequence f§ = <ﬁj 173 < ,u,> of ordinals < &, we define function 9g; KK by
gy,j(i) =hy(B;). If <gh < u,> is not as required then there is a
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Cy € H(A) such that (Ve € Cg)@j <wp) e NF; has order-type
*9p; (2 N )] Let {B% : £ < «} list all such sequences B, then

C=faepP, N if t€a Nk then a € Cge and if B; <a MK for j<u
then for some ¢ < @ (\m,3€=<ﬁj:j<u>§

is in DA). But S=fa € PeX) e Nk €T, and the order-type of a is
<g(a N x)} is Dstationary, so there is a” € S ) C. Let ] = order-type of
F; Ma, so necessarily ,83-'<g(a M x), hence for some B; <o Nk

PorelBi) = Bj: now we get contradiction to a” € CLpy 5 <u)

Remark: At least (i) <= (ii) is well known.

12A Remark: We can omit the assumption "& successor” if we add in (i),
(ii), (iii) g{a) < @ + |a|*, andin (iv) g;{a) <w + |a|*.

13 Claim: Suppose (i) of Fact 12 holds so « is a successor; or at least (i)
of 12A holds. Suppose further that A = k%% (i.e. K =8g, A = 8g,,) and ja|* <«
(Vy < k) 712! < k. Then there is a WSC for D (A).

Proof : Clearly we can find g;{i € «) as in 12 (iv) replacing g by a, and

F; by ;.

Let M =(\f.,9) f a two place function such that for every i <A,
i={f(i.4):j <lil}, andforj < |i], g(4.f(i.5)) =7, and S = {a : @ € Peg(N),
a closed under f and g, @ N « an ordinal, and for every i < &, the order type
of a M k* is g;{e N x)}. By 12 (iv) S is D(A)-stationary. Suppose a # b are
inS,anke=bnkanda Cb. Weknow(asa,b € S,a Nk =b M k) that for
eachi < a, a M «*, b N x* has the same order type. Now we prove by induc-
tion on i that @ y«* =b M «*. For i = 0 this is given; for i limit by the
induction hypothesis; fori =j +1:a  x** is unbounded in b N x* as they
have the same order type, now apply the functions f,g under which a,b are

closed (anda M &*7 =b M «*7). For i = a we get the desired conclusion.

14 Lemma : 1) If x = u*, D a fine normal filter on P (A), A regular
fa :cf (sup a)# cf (u)} € 2 then Dis not A*-saturated (see Definition 4(3).).
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2) PecN) —fa 1 cf (sup @) #cf w} # Dis enough in 14(1).

Proof: 1) Let P be the set of Jstationary sets ordered by inverse inclu-
sion. Suppose D is A*-saturated, so P satisfies the A*-Chain condition. We
shall prove that A% is a cardinal of V¥, all V-cardinals < « are VZ- cardinals,
VP E"|A| =m, cf A#cf u”, thus contradicting [Sh 1], XIII 4.9, p. 440. The
following facts fulfilling the above, are folklore at least for A = &, and straight-

forward generalization generally.

Fact A: For every P-name a of an ordinal < a', there is a function
g : Pwc(d) » a*, such that [@ #¢ra’ <A=>g(a)€a], and (GP - the P-
name of the generic set) |}p"a is the wunique a such that

fe :g(a)=al € S?P”.

Proof : Let <S£ 1< ﬁ> be a maximal antichain of P such that for each
i for some ay, 5; |Fp "a =«;". Now |B]| =X (by the A*-chain condition) so
w.lo.g. B=A, (we allow S; = ¢) so fori # j, ¥ P (A) - S N S; belong to
D Let € =fa € P (N): for every i €ala; <A=> a; €], and for every
i#j€a,ac S

By the normality of Dcedh

Define a partial function A on C:hf{a)=4 if a € 5;,i€a. By C's

definition A has at most one value.

If S¥C —Dom h is Dstationary then remember
S NS €PN —fa:i€a}, soS contradict the "< S i< (X> is a maximal
antichain’. So h is defined on some C' € ), and is as required (it does not
matter how we complete it on P (A —{¢}, as long as a’=<A
a#z¢=>h{a)eca.

Fact B: Forcing by P does not collapse any ¥ < k.

Proof : Let S € P, S |}p" ¥ is collapsed”. Choose minimal ¥, so ¥ is

regular in V and ( maybe changing S) for some regular o < 9:
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IFp"f is a function from ¢ to 9"
S |Fp"f has an unbounded range".

W.lo.g. for each i <1, we apply Fact A (with " =89 <A) on the P-name
F(i) and get g;. For every a € P (A) — {¢}, as (in V) ¥ is regular > o, clearly

g(a) =supfg;(a):1 < a} is an ordinal <¥. As D is ¥*-complete and fine,
fa:vce}e’D and as Rang(g;) ¢ ¥ and D is normal clearly for some
¥<9, S ={a €S5:g(a) =7} is Dstationary; trivially

S* Ilp" Rang fCo"
contradiction.

Fact C: S |}p" cf (x) =9¥" if x is a regular cardinal <A, S € P, and
SciaePeN):®=cf (sup(a nX

For every @ € S let <ﬂ(a,i) i1 <19> be an increasing sequence of ordi-
nals from a N x with limit sup(a N x). We know by s normality that for
every i <9, and S ¢S, S €P, for some S” ¢§,S" € P, and B(a,i) is con-
stant fora € S".

Let 8 be the unique ordinal g such that {a : f{a i) = B} € GP (this is a P-
~i <

name). So S|lp"f isanordinal <kand B < B fori<j <8.”
~Y

~g e
Also we shall show that S |Fp"{f :1 <#} is unbounded below x (hence
~

Sl cf(x)=v9" and we shall finish). This holds because for every
S e€P(SCS) and B<x wlog (Va €S)(Be€a), and so for every a € S
there is i, < ¥ such that g{a.,i;) > B, and the function i; has a constant

value j on some Dstationary S” ¢ S and S” | "B > B". So we finish.
~j

Remark: This is essentially Ulam argument for ":b@, is not N4

saturated”.

Fact D: |[}p” the power of Ais u”. It is enough to prove that every regu-
lar x,c <= x=<AX is collapsed. As the number of possible c¢f (suple N x)) is
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= {8 .9 <k}| = |8 :¥=<pu<x}| <«kwecan use Fact C.

FactE: |}p" ¢f A#cf u".

By a hypothesis Sp={a € Pe(N) :cf (supa) #cf ul €D is in D As
fcf supa 1 a € 8] € {9 : 9 < u} has power <k for every S € P, for some ¥,
S=faeSNnSycf(supa) =13} # ¢ mod D As S¢S,  necessarily
W #cf pu By Fact C Sy |lFp"cf A=2" and by Fact C, (cfu)’ = (cf ;.I,)VP so
Sy |lkp''cf A#p* . Hence S |#F"cf A=cf u".

As S € P was arbitarily |Fp" ¢f w # c¢f AX". So we finish the proof of 1.14.
2) Trivial by 14(1).

15 Definition : For # a set of regular cardinals < &, let D¥.(4) be the
minimal (fine normal) filter on [P, (4), such that for every well ordering <’
of 4 the following set belongs to )

S(<")=5¥(<" 4)=¢a EPQ(A): if e W, = =<x.é 1 <y,> is an <'-
increasing but bounded (in (4,<”) but not necessarily in a) and z; € ¢ then

the limit of & belong to a {.

Remark: 1) We can ask only that each D¥(4) is included; the

difference is small,
R) DX (4) may be trivial, i.e. ¢ € DL(A).

16 Fact: For every S € 2DZ(A) there is a function & ; /9<30(A) > Peel4)

and well orderings <, of 4 for z € 4 such that S includes:

On(G,<") ={a € P l4): for every w €}f§o(a),0(w) C a and for every
z €4, acSY< 4

17 Fact: If A=k, ¥ is a set of regular cardinals <k, ¥ <k is regular,
¥ ¢ Wthen ¢ & DE(A).

Proof : Let G, < (z € 4) be as in 16.
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It suffices to prove that {a : (Vz <a)lea € Gn(G,<;)} # ¢. We define by
induction on i < ¥, a set a; € P (4).

Let Ay = iOf

Fori limit a;, = (Ja,.
j<i

For 4 =3+1, let o;=qa; Y UiGw) w (-:/9“(&:;)} Uty for some
z € a;, y is an accurnulation point of @; in (4,<;)}, the last part contributes
=Ny + |e; | elements as each < is well ordering.

Now | J @, is as required.

i<o
18 Lemma : Suppose W | {¥#} is a set of regular cardinals <k, 9 & W,

the set S is a WSC for DFUM(A) (which is not trivial), and DIV + 5 is
not A*-saturated. Then there is a WSC set for DA (AY).

Proof : Let <Sa ta < )\*’) exemplify DIV + 5 is not A*-saturated,
and w.lo.g. 5, €5 foreach a.

W.log. let when A = a <A*, g, be a one-to-one function from a onto A, let

for a set @ and function h, h"{a) = th(z) : 2z € a}.

We now define for every a € T ¥ {8 : A< 8 < A* and cf B = #} a subset S*
of Pce(a) such that:

(i) 5% is stationary for :Z)é‘/‘um(a)'
(i) {gala) :a € SH C S,

(iii) each a € S% is an unbounded subset of a and (Ve € 5%)

(e NA=g,(a)anda Nk €x).
(iviifa#b e yiSP.pe T, <ajanda Nx=b nrthena ¢ b.

If we succeed then S* = |y S%is as required. As T is stationary (in A*),
ac?

BeT>cf(B)Z W, by (i) and 16 easily S* is DL (AP-stationary. The other
requirement for being a WSC of DZ (A*) follows by iv).
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So we concentrate on the induction step.

Let S§& =fa € Pela) 1 gqla) € Sod and Sf ={a € Pegla) : gala) €5},

clearly S& C S& and both are clearly D¥U¥ (a)-stationary.

Now the set

Cc®=f{a € P la): @ Nk an ordinal < &, every accumulation point § < a of a,
d<a,cf € W {¥)] belong to @, a is closed under gﬁ,g‘,_l for

g €a Y f{a}, and a is unbounded in «}

belong to DEVM(a). s S, N Sg is not Drumi\)-stationary by (ii) easily for
B<a,BecT SPNnfa nB:a e S is not De(B)-stationary hence S n Sh-=

is not °(2)“:(}3)—stationary where
S8 =fa € Pfa)  a N B € SF.
Hence
St=fa €Pla):a €S a€C® and (VBea)a ¢ S*B}

in DY (a)-stationary. We shall show that ( iv) holds, thus finishing. [(ii) holds
as S* ¢ S§, (iii) as S* C C%).

If a,b e yYiSB:B<a, €T} this is by the induction hypothesis. If
a,b € 5% then (remembering a,b € C%), a NA=gala) N A

b NA=g.(b) NA hence we use the assumption "S, in a WSC for DEFVEI(N\)"
and S*CS& Now ae€S*beSP B<aacb is impossible as a is

unbounded in «.

We are left with the care a € S8, b € 5%, 8 <a, and assume a Cb; as
supa =8 and cf =0 € W ( {¥] clearly € b. But by the definition of
St Beb=>b¢ S =>bnBg SP, hence b NB#a. But as
beCr Beb clearly b e Sf;soa cb NP a#b g are both in SE,
and then g" (a), g" (b N B) will contradict 'S is a WSC".

19 Conclusion; If £ > 8, ,k successor then there is a WSC for 2 (x*").
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Proof : By 18 and 14. Let k = u*, let a =0, if cf w=8,,, and a be n oth-
erwise. So in both cases (as k>N,), B

of u# Mg ... Nainl)

n

asn <k, and W, is regular and

Letfor0<¢ <=n We={9:9 < k0 regular } — Ra o . Baegl

Note that ﬂ)!:(;c*'z) is a proper (fine normal) ideal as ¥§;<«x, Rg¢ W,
W Ciu: u<k and wis regular] also for each £ < n it is not k2~ saturated:
by 14 as k is a successor and ¢f u € W (otherwise by inspecting the definition

of W, clearly cf p=R8,, hence a=0 so hence c¢f w=¥8,,, hence
cf 1 >sa+ﬂ)-

Now we prove by induction on £ =n that there is a WSC set Sy for
P (x*?) with cf (sup a) =Raeg fora € Sp. For€=0S5={d<k:cf 6 =Ny} is
0.K. and for £ =m + 1 use 18 with W™ R_,g.c* standing W,9,A. [on the

problematic assumption "DXY™(A) + 5,, is not A*-saturated”; this holds by
14 ascf(supa) =8,,, fora € 5, B, #cf was 0=<m <n. We still have
to show cf (sup a) =8y for @ € Sy, but this holds by the construction in 18].

So we get the result for€ =n.
20 Lermma: Suppose
(i) Jy is £*-saturated.

(ii) every D (x*)-stationary set S is reflected i.e., for some
a <&t S N Pecla) is Defa)-stationary.

Then there is no WSC set S for D (k).

Remark: Later the assumptions were proved consistent for £ =8, in
Foreman Magidor and Shelah [FMS].

Proof : Suppose S is a counterexample, let g (a < k*) be a one-tc-one

function from & + a onto x and let S, = {ga.(a) e € S, a € P (a)}.

By (i) for some a{*) < &t , k + o(*) = a(*) and for every a,a(*) < a < &,
and stationary S* C S, for some y <a(*): S* NS, # ¢ mod D () Now
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S® ¥la € S a(*) € a} is D (c*)- stationary (as S — S% is not). So by (ii) for
some a, a{*)<a<k* and S =5° NP (a) is Dla)-stationary; by the
choice of a(*) there are a € 5%, y <a(*) such that a Ny €S, < .S But
a N7y ca, {not equal as a(*) € a because a € S*) and we get contradiction
to S is W3C".

21 Lemma : Suppose A - (k)3 then there is a fine normal filter 2 on
Pcc(A) for which there is no WSC.

Proof : For every model M with universe A and <&k functions let
G{(M) =1{A4 : A a submodel of M, and some expansion of 4 is generated of a

sequence of length a of indiscernible w £ a < k.
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Monadic Logic: Hanf Numbers!

Abstract

This is part of the classification developed in Baldwin Shelah [BSh]. The
paper is divided into two parts. In part I we show that (7., 2™) =/ (T, mon)
iff the Hanf number for the theory 7T in monadic logic is smaller than the
Hanf number of second order logic.

For this we deal with partition relations for models of 7. The main
result is that if 7 does not have the independence property even after
expanding by monadic predicates (or equivalently (T, 2™¥) =/ (T, mon))

then: 3,,,(N)* = 5 (ANF% In Part Il we analyze such T getting a decomposi-
tion theorem like that in [BSh] (but weaker) (This is needed in part 1.)

Part 1
§1 Preliminaries

We review here some relevant facts and definitions.

1.1. Convention:

T will be a fix complete theory, € a %-saturated model of 7, % large
enough (see [Sh1] 1 §1); M, N denote elementary submodels of € of power
<K, A,B,C subsets of such M, a,b.c,d elements of €, @.,b,5.d finite
sequences, and [,/ denote linear orders. A monadic expansion of M is
expansion by monadic predicates; a finite expansion is one by finitely many
relations. When dealing with finite monadic expansions of €, we may mean
a k-saturated one, or any such expansion. We shall not specify, because if
Mc €, M* a finite expansion of M, then we can expand € to €, an

¥ I thank Rami Gromberg for many corrections.
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elementary extension of M* which is k-saturated.

This paper has two parts, the major one in part [, but in order to prove an
important property of decomposition of models (see claim 12.4(1)) we need
a property of types which is lemma 2.3 of Part II. The sole contribution of
part II to I is the proof of this lemma.

We quote from [BSh] 1.2, 1.3:

1.2. Definition:
We say (7., 2™) < (T, mon) if in some monadic expansion of €, there is

an infinite set on which a pairing function is defined. (a pairing function on
A is a one-to-one function from 4 X A onto 4).

1.3. Theorem:

1) II 7 has the independence property {(see [Shl] II §) then
(Tw, 2™) = (T, mon). Hence, (7., 2™) = (T, mon) iff some finite monadic
expansion of a model of T has the independence property.

2) If in some finite monadic expansion of € for some infinite sets
{a, -t €1, tby : t € J{ and formula @, for any t € I, s € J there is d such

that (Vvu 1) (vv €J) [e(a,,b,.d) €= t=u as=v] then
(T.,2™) < (7T,mon).

We quote from [Shi] VII §4:
1.4. Definition:

1) We say p is finitely satisfiable in 4 if every finite subset of p is real-
ized by elements of 4

2) For an ultrafilter D on 74, and set B, we define

Av(D,B) = $ol...,xy, . . ., b)ies 1 b € B and the set

{{ag:teld: F ¢l..a. ... Bl belong D]

1.5. Lemma:

1) Av(D,B) is a complete type in the variables {z; : t €} over B, fin-
itely satisfiable in A; of course B ¢ C == Av(D,B) ¢ Av(D,C)

2) If p is finitely satisfiable in 4, p a set of formulas in the variables

fz, :t €|, then for some ultrafilter D on A, and some set B
p C Av(D,B).
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3) If p is finitely satisfiable in 4 then p does not split over 4 (i.e., if b,6
realize the same type over 4 then for no ¢, ¢(Z,b), -¢(Z,6) €p)

4) If p is an m-type over B finitely satisfiable in A4, then it can be
extended to p' € S™ () finitely satisfiable in 4,

5) If p,q e U SM™(C) are finitely satisfiable in A, B ¢ C, and every
m<w

m-type over 4 realized in C is realized in B, thenp [B=q [[B == p=gq

8) If tpJ(Cy,AUB) is finitely satisfiable in 4, and tp.(C,,AUBU{y) is fin-
itely satisfiable in AUC, then tp (CquC,4AUB) is finitely satisfiable in 4.
1.6. Observation:

If every p € U S™(4;) is realized in 4, (hence 45 C 4,) tp{DUC,A,UB)

m

and &p (D,4,VC) are finitely satisfiable in Ay then tp (D,4,0BuUC) is finitely
satisfiable in Ag
Proof: W.lo.g D = d;by 1.5(4) there is d’ realizing tp(d,4,uC) such that
tp(d!,4,UBUC) is finitely satisfiable in Ag (remember that tp(d,4,uC) is
finitely satisfiable in 4g). By 1.5(6) tp.(Cud! 4,UB) is finitely satisfiable in
Aq.
So tpJCudt 4,UB), tp.{Cud,A,UB) are both finitely satisfiable in 4, and
their restriction to A4, are equal. By 1.5(5) they are equal. Hence
tp(d',4,UBUC) = tp(d,A,UBUC). As tp(d!,4,UBUC) is finitely satisfiable in
Ag, necessarily tp(d,4,UBUC) is finitely satisfiable in Aq.
1.6A Remark: We can weaken the hypothesis by restricting ourselves to
p € \i S™{A4g) realized in 4, v B.

m<w

§2 A Weak Decomposition Theorem

Hypothesis: (T,,,2™*) =/ (T,mon).
Notation: Let 7,J be linear ordering
2.1. Definition:
1) Wesaythat 4 = { 4, :¢ €[) is a partial decomposition of M over N

iff : the A4;'s are pairwise disjoint subsets of M and for every t €1,
tp {4, gtAsUN) is finitely satisfiable in N {but not necessarily N ¢ M).
5

2) A is a decomposition of M over N, if it is a partial decomposition of
Mover Nand M = U 4, .
tel
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2.2. Definition:

For partial decomposition {(4;:tel}, (B :te€J) of M over N we
say {4 te€ly s (B :ted> if IC J and for every t €I, 4 C B;; we
say (At el =" (B :teJ)ifl[=Jandforeveryt €/, 4 C B;.

2.3. Claim:

1) For every < -increasing sequence of partial decompositions of ¥ over
N there is a least upper bound {(similarly for < %)

2) If {4 :t €I} is a partial decomposition of M over N, I C J, and for
t e Jd, welet 4 = pthen (4, : 1 €J) is a partial decomposition of ¥ over
N
Proof: Immediate
2.4. Claim:

1) Suppose {4 :t €[> is a partial decomposition of ¥ over N and
¢ € M. Then for some (B;:teJ) = (4 :tel> (a partial decomposi-
tion of # over N), ¢ € U B,

tel

2) If ] is a well-ordering with last element then wlog /= J

Proof:

1) Wlo.g. ¢ ztU[At, Let 7; be a maximal initial segment of 7 {i.e.,
€

(vtely) (vsel) (s<t = s e€l)] such that tp(c, Y A, UN) is finitely
€l

satisfiable in N (there is such [;, as I; = ¢ satisfies the demand, and by the
finitary character of the demand). By 2.3 () wlog [, =f{sel:s < t"
for some t*€ /. Now we let / = [, and let B, be A if t+ # t°, and 4; U {c} if
t = t*. We now check Def 2.1 (1). The main non-obvious point is why for ¢,
t* < t €], tp.B,, sgtBsuN) is finitely satisfiable in N. If not then for some

beB =4, adc &()tBs —f{c} = utAs, tp{b.@auiclUN) is not finitely satisfi-
s s<

able in N. However we know that tp(b,@UN) is finitely satisfiable in N {as
{ A; 15 €1) is a partial decomposition of ¥ over N). Also tp(c ,SL<J£AS UN) is

not finitely satisfiable in &N (by the choice of /;, as maximal, as t > t* and
as w.l.o.g. we add t* only if needed), hence w.l.o.g. #p{c.@UN) is not finitely
satisfiable in N. Hence, tp(b ~<c>, @UN) is not finitely satisfiable in N.
Together, N,&,b,c contradict Lemma 11 2.3. For £ = #*, we should prove for

bed.,ac Ut B, = U A that ip(b ~<c>, Nud) is finitely satisfieable in
s<t* s<t*
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N. Suppose this fails. As {4y : s&€/ ) is a partial decomposition of ¥ over
N, clearly tp(b , Nua) is finitely satisfiable in N. By II 2.3 and the last two
facts tp(b (@ ~<c¢>) UN) is finitely satisfiable in N. By the choice of t*
tp(c , Nug@) is finitely satisfiable in N. By 1.5 (8) and the last two facts,
tp(b ~<c>, Nua) is finitely satisfiable in N, contradiction

2) Either there is t* as required or [; = [, and then choose * as last.

2.5. Conclusion:

1) Suppose {4; :t € ) is a partial decomposition of # over N. Then
there is a decomposition { Byt € J> = {4 1t €[> of M over N

2) If I={a+1,<) then wlog. =1 also
fted . B# gl= [t el: 4 # ¢
Proof: Immediate by 2.3(1), 2.4

Remember that (see [Sh1]) Ded,.()A) is the first regular cardinal y, such
that every linear order of power A has strictly less than u Dedekind cuts.
2.6. Lemma:

1) Suppose {4; :t €1} is a decomposition of # over N. Then we can
find relations P}, (a< Ay < Ded, (||N|| +|[T[), 7< |T|, hence
Ay = 2HINIT+ITH such that:

a) Py, is an n-place relation on M.
b) if y<|T], n < », and a# g then P, NPTz = ¢ and koJlPZ/‘A =

U ™A
td(t)

¢) for a finite sequence b from any 4; let a.,(l;), n(b) be the unique n
and a such that & € PJ,; then if £, < - - < {,, b, €4 then we
can compute the type of b; ~ - - ~b, from (n(by): m =1, n)},
and (a_r(l;m):m =1, n), fory< |T|
2) So as Ded.(|T])= (8T)* we can use just |T| predicates when
|N| = | T}, and we waive the disjointness of the P} ’s.

Proof:

1) For any set A, N ¢ 4, and formula ¢ the number of p € ST (4) fin-
itely satisfiable in N is < Ded,.{] [N]|) (see [Sh2, p.202], slightly improving
a result of Poizat, which suffice for (2) (alternatively use a < 22'”))

Let N, be such that N ¢ Ny, N, is (||N]||+|T})*-saturated and we shall
show that w.l.o.g.
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(#)) foreacht €1, b € 4, tp(b N, U Ut 4 ) is finitely satisfiable in N
s<

For each t € [let 4 = (bl :w € I(t)], let b® = (b :v €I{t)) and by 1.5(2)
we can choose an ultrafilter D, on [N such that:

tp(bf, Nu U A) = Av(D,,Nu U 4)

s<i s<t
It suffice to us that for any £(0) < - - - < t(n)el
() tp (B, N U B = aw(Dy(ny, Nu U DY)
i<n l<n

For any finite set w ¢ [ we define g, = q,, ({z, ¢ €N} ), a complete type
over NuU {y bf by induction on |w|. For w = ¢ itis tp.(N N), if w # ¢ let

tew
w = {£(0), ..., t(n)},n = 0, £(0) < - - <it(n), and we define it by
(%) if {ec:ceNy ) realizes qy _gs(n)), we can find (b’ 1 vel(t(n))} realiz-
ing A (Dy(ny, NU U 4yVie, 1 c€Ny]) and let F be an automorphism of C

p<n
F the identiy on NU ) 4, F(b',) = bt for wel{t(n)). Now
l<mn
Quw = tp(\/_F(ec):CEN1>,NU UAt)
tew

It is easy to prove that for w, C wy( C 7 finite) gy, C Gy, (by induction
on {wj|) and obviously gq,, is finitely satisfied. Hence ufg,, : w ¢ [ finite]
is finitely satisfiable, hence realized by some {e’, :ceN,;}». We can use
fe', : c€Ny} instead Ny and then (*) holds.

Let {¢3{Z,9) : 7 < |T|{ be a list of the formulas ¢(Z,7), L(Z) = n, and Ep;fa:
a< Ay} be a list of {tp(db,N;) ¢ b, ¢ as above}, lastly b € P}, iff
b€y n(4).n=L(b) andtp(B.N) | g = Pl

2) Obvious from (1).

§3 Partition relations for theories

3.1. Definition:

1} A = (WP mean that for every model M of T of power A, there are dis-
tinct elements a; (i < ) such that {a;:%1 <u> is an n-indiscernible
sequence in M.

2) A (,u,);rneans that for every model # of T and a; € M(i< A) there

isI'c A |I] = wsuchthat {@; :1 €]} is an n-indiscernible sequence.
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3) A2 (WFY% A2 (WY are defined similarly.
3.2. Discussion

This definition was suggested by R. Grossberg and the author during the
winter of 1980/1, but we still know little. We can rephrase [Shi] I 2.8 as,

e.g.: if T is stable, A = AlTl then A* - (A*)§% We cannot hope for results
on T without the strict order property (see [Shi] 11§4) or even for simple T

{see [Sh2l.) The reason is as foilows: suppose A )5 ¢, and let F be a func-
tion from fw :w < A, |w]| < ¥y} to {0,1} exemplifying it, let L consist of the
predicates R, (n place ) P, (monadic) for n<w, and let 7 be the model

completion of {{ Vz)(z=2)} in this language. We define an L-model M with
universe {a, ; : <, 1< A} such that:

(i) forw ¢ A, |w]l=mn, {a,;:icw > € R¥iff F(w)= 0.
(ii) for every m.,i for some k, for every m>k a, ; € Py, iff m is divisi-
ble by the n®* prime.
m
I (VY- Yn) (32) [ 2 5% % np (Byy - yp)] belong to T,

quantifier free, but K., P, do not appear in ¢ and
@y 8y, €{a,;:n<k, i<}, then there is b € {a, ; : 1<A] such
that Felb.ay, ... ,a,]

This is quite easy, M is a model of T {(by T’s definition and (iii),) and ¥
exemplify A )59 We can similarly deal with A () .
Now 7 is simple, and in fact very close to 7;,,;. This leads naturally to:

3.3. Conjecture:

If T does not have the independence property, then for every u for some
AN ()59 or even 3, (it [ T]) = (W)F°
3.4. Lemma:

Suppose (T,,,2™) =¥ (T, mon), then

3c.7+1 ()\+|T|)+ _)s ()\)?m.

Proof: Wlog A> |T], let uw= 3,47, 4= {a;:1< (297, for i # J
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a; # a; € M, and M is a model of T.
3.5. Fact:

At least one of the following occurs for 4 = {a,:1 <(B9Y*} ¢ H,
Al = (9™
(i) There is an indiscernible sequence of length (2%)* of distinct
members of A (in the same length)
(ii) There is k, and @; € *A(i < u) and @ such that M F e[g;.a;] iff
1< 7;
Proof: Repeat the proof of [Sh1]12.12. Let 4; =/ {a; : j < i}
Let §= {6< (29" ¢f 6> i}, clearly S is a stationary subset of {(2¥)*. For
each 6€ S and formula ¢ choose if possible a subset By, C A4 Bg, of cardi-
nality <u such that: ¢p (as4,) does not split over By, [i.e., if o= ¢(z.7),
b, ¢ sequences from A4; of length L(¥) realizing the same type over By,
then  glagb] = ¢asc]] Let S, = {6€ S: By, is defined].
Case a: For each ¢ for some closed unbounded € ¢ (29*, CnS=Cn S,
Then there is a closed unbounded C ¢ (2%9% such that for every ¢,
CnS=CnS5, For each §€ C NS choose By By a subset of 45 of power u
including k(: B, such that for each ¢, and n < w, every n-type over B, , real-

ized in A; is realized in Bs (possible as |Bs,| < u, u strong limit). Now by
Fodor’'s lemma for some stationary S*C € n S, for all 6€S% Bs { Bsy
€ L(T) >, tp(as By are the same. Continue as [Sh1]12.12.

Case b: For some ¢, S —S, is a stationary subset of (24)*

So there is §€ S-S, such that for every B € A, |B| < u thereis a< ¢

such that a, realizes tp{asB). Sc choose by induction on 1<
b;, €;, d; € Asas follows:

(a) b, €, realizes the same type over U b; ~c; ~<d;>
i<i
and '= ‘F[a'd: Ea] = - (P[Cld, Ea]
(wlog. [ ¢lasb,]nr-dascal)

(8 d; realizes tp{ay j\ji (b; ~¢; ~<d;>)ub; ~¢

By the choice of § this is possible and {b; ~€; ~<d;>: 1< ) is as
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required.
3.6. Fact:
If d; € M are distinct for i < (2M*.
B,= {diyi<a), B = {di< (2N},
then at least one of the following occurs:
(i) for some y < (RM* and k < «, {tp(d,B,): d a sequence of length
k from Bl has power (2M)*
(ii) (i) does not occur but for some ¢ = ¢(x,¥) for a stationary set of
6< (2M*, cf 6> Nand tp(ds By split over B, for every a< &
(iii) for some stationary S ¢ (2M*, (d, :1 € S} is an indiscernible
sequence
Proof: Again asin [Sh1]12.12 (or 3.5 above)
Remark: In the proofs of 3.5, 3.6 we have not used the hypothesis of 3.4.

Continualion of the proof of 3.4:

Clearly if 3.5(i) holds, we finish, so w.l.o.g. 3.5(ii) holds. By Erdos-Rado
theorem, for every m,n<w there is I= I, Cu |, =300,
{d; 11 € I, ,»} is an m-indiscernible sequence. By the proof of [BSh] VIII 1.3,
there is a formula 8! such that for any m there are I, C (29,
|Z,| = 3,(A)*, and a finite monadic expansion €* of € such that (for some
distinct al*(1 € ,)):

(vi,j € )€ el (alal) iff i< j]

Note that al* belongs to our original A. We now can deal with
fa,' 11 €1} only. Wlog [I,=@", C€=C* al=a and denote
B,= {a; :i<7. Applying 3.6 to €*, A' = {a; : i< (2")*], if our conclusion
fails then one of the following two cases occurs.

Case I: there are y< (@M* and b, € A{a< (2M*) such that tp(b,B,) are
distinet (for distinct a's).

Wlo.g l(b,) = k for every . Next we show that w.l.o.g. k = 1, other-
wise choose an example with minimal k (possibly replacing € by a finite
monadic expansion). W.lo.g. the b, form a A-system hence by k's
minimality are disjoined. If k> 1, let b, = €,~<d,>; w.lo.g. for some
¢ = ¢(Z,y;Z), the types tp (b, B,) are distinct.
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Clearly if for some o {fp(dgB,uC,): B< (2M*] has power >2* we get
contradiction to k’'s minimality, hence w.l.o.g. a< < (28M*, o< (2M)* implies
tp (Eg<dg>.B,) # tp (C,<d,>,B,). Similarly wlo.g a<g<(2N*, o< (2M*
implies tp (€ g<dg>,B,) # tp (€< dx> ,B,). W.lo.g for every fthere is no
B'< B such that Cg~< dg> satisfies this. W.l.o.g. for some monadic predicate
PP = {dg B< (2N}, so dgis defined from ¢, so we can decrease k.

An  alternative way to do it is as follows. let b,=
{ B0y - - Yi(ak—) ) » WLog i(a0)< - <i(ak-1), and as the b,'s are
pairwise disjoint, wl.o.g a< i{ak-1) < 1(8,0) fora< £
We may expand € by P, = 1@ (am): a< (2M)*], and using the order defined by
8! on {a; : i <{2M)*] we can define the functions Qi(a0) > i(am) HENCE can
code b, by a;(4,0)-

So there are y< (8M)* and b, € A! (a< (2M)*), and ¢ such that tp (b & B,)
are distinct for distinct o's, and w.l.o.g. 7 is minimal. First assume
¢= ¢{z,y). Also w.lo.g for every 7, < y< a< (2M*, there are (2M)* g's
such that ] tp(bpB,) = tpbgB,). Hence for any n we can find
Y% < 71 < < 72, and o< (RN* for n € 272 such that 73, < 7% 7 < @, and
form = 2n,n, v e N2

1 b0y By) = P (b, By ) iff nlm = v m .
Expand € by:

E= §b%:n€2”‘8, m/;n(n(zm) = 0vn(2m+1) = 0)}
@, = {b,, m=nj

@y = §b72m“:m<'n§

P= B, .

Let (remembering 8 defines the order on {a, : © < (RN)*}):
Wz y) £ R(x) A Qx(y) n @z, y DIR(z1) ~ @iy ) A
A (YY) Qa(y2) A 0N (y2y) > 0 (yay)] A
alz, x, realizes the same ¢-type over
{z € P :8'(z,y)] but not over

fz € P:ol(zy)}]
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It is easy to see that:
F ylbga,,,. ] off nEm+l) =1

Together with compactness this shows that some finite monadic expan-
sion of € has the independence property, contradiction.

We still have to deal with the case ¢ = ¢(z,¥), L(F)>1. Let 1{(F) = m let
<* be the lexicographic order on ™(B,), (based on 8!): so ™B,= {dy
Q@ <Yy}, @< 'Bgiff < B< 7,. We then let y'< 7, be minimal such that
{lolz,ag): B< 7", Eolbydg)): 7< a< (2N*] has power (2Y)*. Now again
necessarily 7" is limit and we can find 75 < 7, < - - < 7" and 7' < «, < (2M)*
for n € 2 which are eventually zero such that

ﬂ{)‘ Qa[ba,,'a'ﬁ] = fb,,a5 iff nll=v[L

Our only problem is to code {&@,,:l <« by monadic predicates, which is easy
applying Ramsey theorm on the @,,’s and using the order on 5.
Case II: For some finite ¢ €€ and some 7 < (2M*, {tp(b,B,u €): b < AY}
has power {(2M)*
Like case L
Case III:  Note case II.
We shall prove
(¥ if e €C, W (& 6§< (2M*, cf 6> A} is stationary, then for
some closed unbounded U ¢ (8M)*, and function f,
Dom f = UnW, f{a) < a for a€ Un W, and for each 7 the
sequence { tp(an€ Ulag B< a f(f=7) fl=7) Iis
increasing.
Now it suffice to prove (*). As then we define by induction on n X, and
fort € K,, Wy, Us, f¢, €; such that:
(a) Kg= {<0>), Wegs = WC {8< (RN* ¢f 8> A}, €.g> is the empty
sequence.

(b) for t € K, &; €C is a sequence of length n, and if a; < ag - - - <oy
are in W, then

tp({“aﬁﬁaaﬁ_i ----- aa2~a'a,> , 207:7< a7 € Wt;)

tp(Cs, fa, 7 < a7 € W)



214

(¢) K, is a family of sequences of length n of ordinals < (2*)*

(d) for t € K,, U; is a closed unbounded subset of (2M)*, f, a function
with domain Up 0 Wy, fi(al<a

(e) Kpoyi={n~<¥: nek, ve€Rang(f,) for some t €K,} and
Wpacys = ta€ Wy a€ Upand f,(a) = 7
Forn = 0-no problem, for n+1: for each W,(n € K,) apply (*) (with ¢ = ¢,).
Now Ko, W,€,(n€ Kp) are defined.

If w,c, are defined we can define f,, U, by applying (*), then define
Woncys Cnacys (¥ € Rang(f,)) by (d). If we do this for every n€ K,, we can
define K .1 by (e).

For every 6€ W.,, we can define by induction on |l < «, 7, € K}, such
that o, = m41 ML, 6€ W, and Fangn, < 6and the n;, are unique but maybe
for some L, 62 U, hence nf.; is not defined. Let &(d) = w be such that nf is
defined iff { < &8). If {6 &) < w] is stationary, we get contradiction by
Fodor lemma. If W*= {§: &(8) = w} is stationary, then %08 = sup WLy < 6

<w
for 6€ W* (as ¢f 6> A) hence for some stationary W! < W* ¥(d) is constant

on Wl As (2= 22 wlo.g mf= m for every € Wl Now 0 W, is station-
5]

aryand by (b} {a; :1 € l(\ W > is an indiscernible sequence.
<w

Proof of {*): For notational simplicity let € = & For every ¢ = o(z,¥),
and y< (2M*, type p € Sy ?"}fp‘p(ai,[??): y< i< (2M*] and natural
number n we define when ik (p) = n:

Forn = 0-always.

For n = 2m+1, Rk(p) = n iff there is B, ¥ < B< (2M* and distinct
P1p2 € S§ extending p with Rk (p).Fk (p3) = 2m..

For nn = 2m+2, Hk(p)= n iff for every 8, v< 8< (28" there is
p; € 5§ extending p with Rk:‘p(pl) = 2m+1.

If there are p,¢ such that Rlcq,(p) > n for every n < «, the proof is as in
case I. Suppose not, then for every p € U S¢ let Rk (p) be the maximal n
such that Fk (p) = n. Clearly !

{(*)py = py(bothin &ﬁ) Sg) implies Rk (p1) = K, (p2)

Now for every € Wy = {i < (2M*: cf i > A}, and «, there is ¥(6p) < ésuch
that:
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AHoy) = < =2 Rk (tp (asBysq)) =
Rk (tp [asB,))

Let #(8) = u(b,¢) so y(6) < 6 As we can use several f's {by coding) we
can restrict ozrselves to some stationary W; C W, such that for some ¥*
(vée W) A9 = ¥

As not case Il similarly w.l.o.g. for somep (vée W,) [tp (a.é,B?,‘) =pl

Clearly Fk,(p I'¢) is not even, hence is odd, (for every ¢). Suppose
Y < 8 < &in Wy, tplag.Bs) € tp(ag, Bs), then for some gand a < §,a> »*
and both ip fags,B,) # tp (a4, B,) have the same rank (Fk,(3) as p, con-
tradiction.

§4 From indiscernibles to finitely satisfiable and Hanf numbers
4.1. Lermma:

Suppose {a; :t €/} is an indiscernible sequence (/ infinite). Then we
can find a model N of power T such that for every ¢t €/,
tp(a;, Nu fag : s<t}) is finitely satisfiable in N.

Proof: LetlIc J, t(n)eJ —I, (vtel)[t < t{(n+1) <t(n)].

Let {a; :t €} ¢ Mc €, and let M* be an expansion of M by Skolem

functions (so M* is an L*model, L ¢ L*). By Ramsey theorem and the com-

pactness theorem, there is a model MY of the theory of M and
b, € M* (t € J) such that:

() forevery ¢z, ....z,) €L, ands;< - - <s, €Jif
M Edbs,. ... bg ]then for some t,< - - - <t, €],
HEdlas, ..., .
Clearly for every s;< - <sp €J, t,< ---<t, €] the L-types of
{bsp ... bs, > in M and {a;, ....q » in M are equal, hence w.l.o.g. the

L-reduct of M* is an elementary submodel of € and @, = b; for t € . Lastly
let N ¢ € be the model whose universe is the Skolem hull of ébt(n} T <l
in M*, and a; ¥/ b, also for t € J.

So let t €] and we should prove that tp;(a;, Nulag: s<t,s€l}) is fin-
itely satisfiable in N. Llet deWVN, ty< ;< ---<t,=tel, g¢pel,
Clglby by ..., 0,d] so for some L*term % and k<ug,
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d = Hbyy - ... byry). As (b :t €} is indiscernible in M*, and
M+}:¢[bt“a btn*i’ ey bto, :%(bt(O)’ e bt{k))] ciearly
MY E @by e, - bepd]

As by(k+1) € N, we finish.

4.2. Conclusion:

If A =2 ()79 M a model of power A, then for some N of power |T|, ¥
has a decomposition {4; : 1 <a) over N, 4; # ¢ a € {pu+l)
Proof: Immediate by 2.5, 4.1.

Remember o[’o‘f,';\ is the set of sentences of o['m)\ with quantifier depth
< 6

4.3. Theorem:
Suppose {T.,2™) =/ (T, mon).
1} For limit ordinal § and every A the Hanf numbers of the logic IQ‘ZYA,
w1y for models of T expanded by < | T] monadic predicates, and
Mg for linear well ordering expanded by = | T} monadic predicates,
satisfies 3 (1) = 3 (1)
2) The Lowenheim and Hanf number of IS,')\, for well ordering
expanded by = | 7| monadic predicates, are equal; so if A,a are definable in

second order logic, then those numbers are smaller than the Hanf number
of 2™ order logic.

Proof: 1) By 2.6, 4.2 this is reduced to a problem on monadic theory of sum
of  models, for  complete proof see  [Sh4]. However  if

(va){a< 82> a+a< 8),3;> |T| there are no problems.
2) See [BSh].
Now by 4.3 and 3.4:

4.4. Conclusion:

For T as above.

1) The Hanf number of L, (mon) for models of 7T is strictly smaller
than the Hanf number of second order logic.
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2) Even in L, we cannot interpret a pairing function on arbitrarily
large sets in-models of T.

Part I
Hypothesis: (7., 2"%) </ (7, mon)
§1 On a rude equivalence relation
1.1. Context:
Let My be a fixed model (¢ €)My < M, C €, and in M, every type over M,
(with < w variables) is realized. The case ||Myl| = | 7], ||#,}} = 21T} will

suffice. We let & be an elementary extension of My, which is the model we
want to analyze: and we assume Ip .(Z?,MQ is finitely satisfiable in My (and

R c .
We usually suppress members of My when used as individual constants.

We further let I be a «-saturated dense linear order, «> 217l and we can
find elementary raaping f;{t €7) such that Dom f; = g, fe P Mg= the
identity, and for some ultrafilter D on © #y, tpJ(f:(B), M, U utfs(lg)) is

s<

Av (D, My :ths([b’))) (see for definition 1 1.4, 1.5).
s

We denote by [’?t the image of s by f¢.

For a €8 let a, = f,(a), {ay, o ooay e = (felay), .. felag) >,
0 €1/, fy= the identify.
1.1A Remark:

Exceptin 2.1, 2.3, we use just the indiscernibility of the ﬂgt’s,
1.2. Definition:

1) On £ = /30, we define a relation Fg
aEgb iff in some monadic finite expansion of € the set

{<ag,b,>t €[} is first order definable.

2) Fora efd, 0d(a) hold if in some monadic finite expansion of € the
set {<ay,a.>:t €1, s €[, t<s] isfirst order definable.

1.3. Claim:

1) Epis an equivalence relation

2) aFEyb implies 0d{a) ¢ = 0d(b)
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Proof: Easy
1.3. Claim
It a* ¢ b, /Eq C /g(k =1,n) and by /Eg# b, /Eg for k # m then:

(i) tp(&tllﬁiéA- -+ G4, M,)isthe same forall ty, ..., ¢, €/
n-1
(ii) tp(@™, M, U kU @*) is finitely satisfiable in Mg
=1

(iii) if a™ = b~¢, tp(€, M, Ub) is finitely satisfiable in M, then
_n-
tp(c, M, U b kgl ay ) is finitely satisfiable in Mn.

Proof: Clearly (ii) follows from (i) (just choose ¢, > ¢4, ..., ,t,4 in (i)] and
also (iii) follows by 1 1.8 from (ii).

So let us prove (i), and we prove it by induction on n and then on
k=mn, restricting ourselves to G 2T A such that
1§, ..., ty}] = n—% (for k = n we get the conclusions)

Suppose we have prove it forn' < n andforn'=n, k' < k.

1.3A Fact:

By replacing € by a monadic finite expansion we can replace &™ by a
singleton <a™>. Replacing € by a finite monadic expansion €* does not
preserve the properties of Mgy M, \/[?5: s € I>. However we can w.lo.g.
assume that (£ : s € ) is indiscernible over M, in €*. We could here
also use L(€*)-formulas only of the form ¢( - - ,z, - ,F(z,) ) where
¢ € L(€), F, are definable in €* and maps each £ into itself and commute
with the functions f,.

1.4. Notation:

For non-decreasing sequences {sy, ..., Sp o, {ty, ...ty from I, we
say that (s, ..., Sp > isclosedto {t ..., t, > if
gither (a) t{ < - - < to, S = trs1 Sme1 = tm, Sy = £ fori # m, m+1, for

somem , 1=sm=<n

or{f)forsomel=<l<m=n

ty= =< s T St < tgpas s iy, by < 8y < e

and (vi) [l=isnnri#m 2> s =4¢].
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We shall prove:

1.5. Fact:

¥ {sqy....5,> is closed to {ty ....%, >, both non-decreasing
sequences from 7, |{t; 11 = 1, n}| = n-k, then tp((atll, cosal ), M=
tp((ad, ... ,aZ > M)

This suffice for proving 1.3 as any equivalence relation £ on
F(ty, oo, t,> t,el, |it; 1= 1, nil=nk|
satisfying the following has just one class:
(a) if 5 is closed to £ both non decreasing then § £ ¢
(b) if {s5¢ ..., Sp ) B {Sps1 .. S2p ) and (Vi,j€[1.2n]) [s;<5; = ¢;< ¢]
..... DN A S S

Proof of the Fact 1.5:

Note that 1.4(a) occurs only when k = 0, and 1.4(8) occurs only when
k>0

Case A: k=0

So there is a formula ¢ with parameters from
Mivlad, .., aj} aft? ..., aft}, such that F¢laf, aitl] but
F -¢laf,,. ai*']. So clearly (by the indiscernibility of
(Z;)t ct €l> over M) there is a formula ¢ with parameters
from € such that for any s < ¢t in [ E¢lal, af*!] n-¢[af, al*l]
and w.l.o.g. E¢lal al*l].

Adding monadic predicates Pt = fa}:t €1,
Pitl = {af*l: t € [}, we easily find that:

8(z.y) = plz.y) n PH(z) A PP Uy) n(vz) [Pz)rz <Pz 2 ~¢(z y)]

define {<al al*'> :s €[}, where

z <tz (vy) [P Uy)rgplzy) 2 elzy)laz # 2z A Pz)n PHz).

Now @ contradict the non Ej-equivalence of a¥, a**l.
Case B: k>0
So there is a formula ¢ with parameters from

Myvilaed, . et o**, .., al} such that:

tmer ?
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(@) Felaf, ... ot all]
(0) F~glaf,....afn7, off]

by the induction hypothesis on k, from (a) it follows
{c)forany vy, ..., v, €t €l ;, <t<t, 41,

not all of them equal E¢la), .. .. a ]

By(b),ast, = - - = £,,

(dyforanywv €t € t <t<t,, .}
E-dal, ... am]
Using the indiscernibility of (£, : t € I} over M, there is a for-
mula ¢ (with parameters from €) such that (c), (d) holds for any
vy, ..., Yy €1 not all equal, and for any v € [ respectively.
Expanding € by P* = {a}:t € I}, we find that the formula

m

8(z.y) = Pt(x) ’\Plﬂ(y) A3z, zZp)l A Pi(zi) A =p(Z Y 2 42 0 Zn)]

1=1+2

define the set {<af af*' > :t €] of pairs, contradicting the
non Fg-equivalence of at, at*l.
§2 Extending a pair of finitely satisfiable
We continue to use the context of §1 (of part II)
2.1. Claim:
ifa, b ek then tp(a-b, M) = tp(@;~by, M,) for some (every) s < t € [
iff tp(b, M, u @) is finitely satisfiable in Mg
Proof: Easy
2.2. Lemma:
There arenos < t €/, @, b €5 and ¢ €€ and formula ¢ with parame-

ters from M, such that:
(a) Eglc, @, b;]

(0) F -~#ec, a;, by ] foreveryt, > t (in 1)

(¢) E-dc,ag, b;] foreverys, < s (in])
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(d) a-b isincluded in one Ey-equivalence class .

Proof: By (d) and 1.3A, replacing € by a monadic finite expansion w.l.o.g.
@ = <a>,b = <b>. By Ramsey theorem and compactness we can assume

that if (v ....vpm >, (% ..., %, >, are increasing sequences from /,
(3k) (v = u = 5), (k) (9 = w, = t) then

(B, By > HMute}) =

tp({ By By > Myuic)).

By II. 1.3A, wlo.g. € has predicates for {a;:¢t €}, {b, : £ €}, and
{<ay, by>:t €I]. We shall try to use ¢ for coding {s,ti {i.e., {a;,b;}), which
contradict (7, ,2"*) < (T,mon) (see I. 1.3(2) ).

Case A: not 0d{a)

Subcase Al: Foranywv €l,s < v <t, Eglc, a,, b;].

Then we can fix ¢, and define {<a,, b, > : v<u<t} asin the proof of 1.5
Case A and then define {<a,, a,> : v<u €]}, contradicting nol 0d {(a}.

Subcase A2: Not Al but foranyv €/, ifv > t,then [E¢lc, a,, b;]

Similar contradiction: fix s, and using the function {< a,, b,> v €[}
define {<b,, b,> :s<v<u>}.
Subcase A3: Forwv €/,if s < v < t then E¢lc,aq, by
like subcase Al (interchanging ¢ and b)

Subcase A4: Note A3 butifv €[, v < s then [E¢[c,ag, b,]
like A2 (interchanging @ and b)

Subcase AS: Not Al1-A4

Here ¢ code the pair <ag, ;> : @ is unique for ¢ such that s # £ and
¢(c. ag, b;) (by not A1, A2). By symmetry (i.e., as not A3, A4) ¢ is unique for
s, by the indiscernibility we have over ¢ and as I is dense this shows that c
determine <s, t>, so we get the contradiction to the hypothesis of Part II.
Case B: 0d(a)

Let o{z,y,2) says all the relevant things on <a,b,c> : z €ia, : v €1},
yeib,:vell, olzy.z), -¢(z,zy) where z'<z [ie, (Iv<u)
(x'=aynz=a,)] and -¢(z.z,y) where y'<y J[ie, (Fv<u)
{(y = by ay' = b,)l and the amount of ¢{z,~-)-indiscernibility of
{<a,, b,> v €I} over {¢} which holds.
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Clearly Eeolag.b;.c]

It suffices to prove that
(#) Ifelagk)y, byeyclfor k=1, 2thens(1) = s(R), t(1) = £(2).

By symmetry we can assume £(1) < £(2) (if £(2) < ¢(1) interchange the
order, if t(2) = (1) neccessarily s(1) # s(2) and invert the order). Below
u,v denote elements of /.

Suppose s{2)<u<wv, we can find u,v, t(l) <u,<v,; such that
s{2) <uq, w<t(2) <=> u,<t(2), u=1t(2) <=> u,=t(2),
v<t(2) <==> v <t(R2), and v=¢t(R) <=> v,=£(R).

As Eelag(z), bi(z). ¢, it follows that

(1) glc,ay,, b,) = ¢(c,ay,b,)

Now choose ug> vy > (), as F6[ag(y),bs().c |, clearly

() ¢ Gy By) = ple .0y, b,,)

By transitivitiy of =

(iii) the truth value of ¢(c,a, b, ) is the same for all v>u> s(2).

Now (iii) is a property of ¢ and s(2), and it fails for any s'<s(2) as
izgo[as(g), byzc] but ~¢lasz).b,.c] when v > (2); so as(2) is definable

from c, and'then we can easily define be(2), and so get the desired contrac-
tion.

2.3. Lemma:
Ifa, b, ceC tp(b, Myu @) is finitely satisfiable in M, then:
tp(b~<c>, My U a) is finitely satisfiable in M, or

tp(b, My U @~<c¢>) is finitely satisfiable in M,

Proof: Suppose @, b, ¢ form a counterexample. W.l.o.g. &£ is [ 1Mol |*-
saturated. Choose @' e # realizing tp(a@, My), then choose b' such that
tp(@'~b’, My) = tp(@a~b, My). Then choose b" realizing tp(b’, My U &') such
that tp (b, M, U @') is finitely satisfiable in Mo now tp(@'~b", M,) is finitely
satisfiable in Mg, so we could have chosen 4{;", D such that@' %" ¢ £

Now choose ¢’ € 8 such that tp(a'~b"~c'>, My) = tp(@b-~<c'>, My);
hypothesis 2.2 (d) may fail for &', ", ¢’, but by 1.3 (iii) we get it by replac-
ing @, 5" by &' n(c'/Eg), b" N (c/Ey).
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We can choose ¢, such that ¢c"'~a’';~b";, c~@-b realizes the same type
over Mg, and tp.fc”} wu §/,>7v cs=w=t], Muu B, v <s]) is finitely
satisfiable in My We can furthermore assume as in the proof of 1. 2.6 that
for v >t tp.(ls’v, u:)v zgu ufe" u M) is finitely satisfiable in M, so

tp.f L;’t[;)v,Mlu ut/.;)u U fc'}) is finitely satisfiable in M;. Now @'y, b', ¢”
v us

satisfies (a) (b) (c¢) (d) of 2.2 if @, b, ¢ where a counterexample to 2.2, where
s < t €] Soby2.2we have proved 2.3.
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More on Stationary Coding

We here continue our investigations in [Sh1] on stationary coding sets
(introduced and investigated by Zwicker [Z]) making some improvements
and additions.

The various claims are not so connected. They include:

A Ifx= % A= Afthen thereis a («* A")-stationary coding (see 23)

B If A= AV is regular, S C {6< A*: ¢f 6= 8y is stationary but does not
reflect then there is an (8;,A*)-stationary coding (see 24, 25)

C 1t A= A then O (:bs (A*)) (see 28); for more on diamonds see 13, 14,
1

15.

D We note that Martin Maximum implies that “there is no (8{,A)-weak sta-
tionary coding for every A" and we show that statement for A = 8; when
2“" = Mg, (see 3). We note also that for « first inaccessible, strong stationary
coding may not exist (see 4).

E We also give an elementary presentation of "a normal fine filter on A (or
/9<,c()\)) concentrating on the wrong cofinality is not At-saturated” (see

6,7.8). O (:b) has an even stronger conclusion (see 17).

F On strong stationary coding see 18.

1. Notation:

1) If <* | a well order the set a let ofp (a, <*) be the order type. If e is a
set of ordinals, < * the usual order then we write otp (a).
Let ord be the class of ordinal.

2) H¢ (o) is
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ta:la|<kandforeveryn andzx,, .
if x1€x2€.x3~-'€xn€a,
then zis an ordinal < aor

a set of power < ¢}

H, (0) is written H{x).
3} Observe that |H (o) = {2+«|<* when «is regular.

4) For =i let £ = /37“ be a subset of H. (A) of power A such that for
some M*, M*< . (H((2MN*), €), ke M* ||M'||= A A€M, A< M and
B = M*'nH (N, hence

(i) if A" = xthen & = H N
(%) if A€ > Abutthereis® ¢ Ho (N,
1Bi=n, (vaef  A)(@Ebel)(acb)

then R satisfies this

5) Let cd,, be a one-to-one function from l:?,m onto A, and let ded g, be its
inverse
Let ded*(e) = {ded(z): z€a]

6) Let Dg (8 an uncountable regular cardinal), be the filter generated by
the closed unbounded subsets of 9, :bgb is the filter of co-bounded subsets

of 8.

7) For f,.g:I»ord, f< g means{tel: f(£)<g(t)eD, frdD<g /D
D

has the same meaning
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8) If D is an ¥,-complete filter on a set [, f:/-» ord then the D-rank of J is
denoted by Rk (f :Z)) is an ordinal. We define it by defining by induction on
awhen Rk (f D) = «:

Re(f D)= aiff a = Ui{B+1 : < & and for some g/:b‘(f/:b, Fie (g D) = a}

9) f Dom f = 6 aregular uncountable cardinal, let Fk(f) = Rk(f x,fb;"),

10) For O a fine normal filter on F( (4), B ¢ 4 let

Do = tanB:aeli: Ied

D B is a fine normal filter on /9< «B)

2. Lemma:

1) The following are equivalent for a regular uncountable « and station-
ary T C «
(i)  there are function g {a<«*),g from x to « such that (Vi< k)
g(i) < ®g+ i) and g /D, < gﬁ/,ﬁz}x for a < < k* and g/:bxﬁga/:z},c
(v) for any cardinal u such that {(vée T) [cf & u /A |8]% k], cardinal A > «
and subsets F; € A {i < y) there are functions g; 1 ¢ » « {1 < @) such that
the following set is stationary {i.e., # ¢ mod $<K(}\))
fa €p<,c(?\) : ank is an ordinal and for 7 < u the order type of ankF; is
g9:(ank), and if ¢ is an accumulation point of a,
ef dAcf(ank) then 6€ al
2) Assume (i) of 1) holds (for «,7), A= %% |a|* < k¥ and (Vy< «)
[|7112! < k). If T is a set of inaccessibles (not necessarily strong limit) then
there is a {«,A) —stationary coding.

2.A Remark:

Lemma 2 (1) says that in [Sh1] 12, 12A we can add condition (v) to the
four equivalent conditions. Lemma 2 (2) says we can strengthen [Shi] 13
{which uses the same assumption and deduce the existence of a (x,A)-weak
stationary coding (with no additional condition on 7)).

Proof:

1) We use [Sh1] 12A which has the same proof of [Sh1]12. Now (v) here
implies (iv) there trivially. The proof there of (ii)==> (iv) gives (ii)==> {v).
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2) Like the proof of [Sh1]13.

3. Fact:

1o oMoy, Ny then there is a stationary 5 < Scy,(82) which does not
reflect, i.e, S # ¢mod :bgno(&z) but for every o< 8¥; {(but = 8;),
SN Sey, () = ¢mod :Z)ﬁnu((x)

2) f Sc fa:ac k" ankanordinal, |a| <«} € S¢ (c") is a station-
ary set which does not reflect « regular uncountable, then for some
Ce :bs olk¥), € N Sisaweak (k«")-stationary coding for («,k*)

Proof:

1) Let for an ordinal %, h; be a one to one function from |i] onto 2. In
V'E L[ {h;:1 < > ] there are at most 8 countable subsets of wd (and
/=87, 8 =8 [V E'a € Son,(8)" =2 V E"a € Scn,(82)]). But it is
known that every (¢ :Z)SHO(HE) has power = Moy No. So
S%fa:ac Sen,(82), @ € V'] is # ¢mod '%s&o(so)- But for every o< 8;
using h, there is C, E.:bsgo(a), Cy € V' (each member of C, has the form
tho{i) i < &8 for some 6< wy). So .S does not reflect.

2) Let S C S le™) be # ¢mod D (k*), but
S0 S fa) = ¢gmoddD, (o) when k= a< x*. Let hg be a one to one func-
tion from [B| onto B When «< a< «* let a= U a2 a2 increasing con-

i<k
tinuous in 1, ¢ € S. (Possible by the choice of 5). Let Cyo= i < w: h,
maps 1 onto af so C, is a club of x. Let gy x —»« be defined by
gli) = Min(C, —1).
Let £" = {a € S.{«*): a is closed under h,, hs' and g, and @ N« is an ordi-
nall

Cbviously C* E:bsgu(&g). SoSnC%is# ¢gmod :bsso(/c*').

Suppose (*) a.b € SNC", a C b, anw,;=bnNnw,; a#b, and we shall
get a contradiction.

Let d=ank=bnrx I a€anb, a=k then ana= {h{i):
1< 8 =bnk We know b —% ¢ let 8= Min (b-¢); by the previous sen-
tence @ C By hence a = b nB Now as b is closed by gg clearly 6€ Cg,
hence {using h, and the definition of Cﬁ) a = af, soa ¢ 5, contradiction.
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So (#) is impossible hence S N C*is a weak («,«)-stationary coding.
Remark: The proof is similar to some proofs in [FMS].

4. Fact:

It is consistent that e.g. the first inaccessible cardinal A, is a strong
limit and for no (regular uncountable) ¥ < A, a strong («, A)-stationary cod-
ing exists (assuming the consistency of suitable large cardinals)

Proof: Woodin constructs a model of set theory in which the first inaccessi-
ble A is strong limit and (/}\ fail. By [Shi] 74 for x < A, strong {(KA)-
stationary coding does not exists.

Why 74 holds? By the known (folk?) proof that club implies diamond i.e.
4.A Fact: (= 7A of [Sh1])
If there is a strong (x,A)-stationary coding, <A, A=AS*> 2<% then

N
Mo nef 5 il
Proof: As A = AM let {4; 1 i <A} be a list of all bounded subset of x. Let

fas: 665} be a strong (x A)-stationary coding, for some stationary S ¢
< Nefé<k] € A 0= supas and |ag|<r Let Ps= iik.e}bA,,; :b C al, so for
€S, /96 is a family of < 2°F subsets of 6 Now we shall prove that
(P(S: 6€ S > satisfies

(9)for X C 4, {& X Xﬂ&pg is a stationary subset of A.
For let h: A » A be defined by

h{i)= Min {j : 4, N1 =X N1}

So for stationarily many &s, ag; is closed under h hence
Xné= y (Xni)= U 4= U4, 7€a, ycRang(hla)] €Py  as

i€, i€,
2<% < Awe are finished by a Theorem of Kunen.

5. Lemma:

1) It is consistent (in fact follows from the axiom from Foreman Magidor
and Shelah [FMS] Martin Maximum) that: for no A > 8, is there an (8;, A)-
weak stationary coding
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2) It suffice to assume that :wa is ¥g-saturated, and for every stationary

Sc PN, 4eP g SaPs(A) 2 mod Dy, (4) # ¢
mod $<32(?\)‘

Proof:

1) We prove 1) by 2), the assumptions of 2) holds by [FMS], and for 2) we
may repeat {Shi1] 20.
Alternatively assume S is a weak (8;,A)-stationary coding, let I; be the fam-
ily of T C w; such that: there is an increasing continuous sequence
{ a;1i<w; > of countable subsets of A satisfying:
{i<w;iifi € Tthen @ beS) [1 = a;Nnw;C bC a;]] contains a club C.
For Telylet {a;{T):i<w; >, C{T) be witnesses. Now /; is a normal ideal on
w{, hence modulo the non-stationary ideal on w, has a maximal member 7*
{as :baa is Ng-saturated).
If T*" = w, (or just contains a club), then

St =tbeP N @)L Ui (T = a(T)ai (T
J< o

and b ¢ 1 a;(7")}
F<ey

is a club of /90;1(7\), and any member of S*n S contradict the assumption
"S is a weak (®;,A)-stationary coding”, but such an element exists.

If w-T"is stationary, S; = tb €S5: b n [ U a;(T")] = a;(T*) for some

F<ay

i € T*} cannot be stationary otherwise by the second hypothesis of 5(2) we
get contradiction to the maximalety of T°. So for some €,§Z><sl()\)}
CnSi=¢
Let Cp= (b e Py, (N): b ¢ jé)w‘aj(T'), and

b N ﬂ[<u a;(T*] is a;(7”) for some i < w].
J< ey
Clearly (g €fb<gl(>\). Hence C;nCyce :Z)<N1()\) hence there is
belCinCanS As b € C; we know b € 54, and as b € C; for some 1 <
bn [<U a;{T%)] = a;(T"), b # a;(T"). This implies as b ¢ 5; by the defini-
§<uy
tion of S; that i € T*, hence thereisa; € 5, 0;,{T") nw; € a € a;(7T"). As by
the choice of b andi b Nnw, € a;(T") C b, q;(T") # b we get a,b contradict-
ing "S is a weak (8;,A)-stationary coding".
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We give an elementary (i.e. with no forcing) presentation of the proof of
[Shi] 14.

6. Theorem:

1f 2 is a fine normal filter on / = fa ¢ A:cf(supa)#cflalil, and Ais
regular then there are functions f,; for 1 <A™ such that: Dom f; = 7,
fila) €@ andfori # j, fe €/: fi(a)= f;(a)l = quonS
Proof: We can find 4;(1 < A%) such that:

(*) 4; is a subset of A, unbounded in A, and for j < i, 4 N A; is bounded
in A
[just let 4;(i<A) be pairwise disjoint subsets of A of power A, and then
define 4; (A1 < A*) by induction on %: for each i let {j :j < 1} be
{Ja:a< M, and let 4; = §7§ - B< Al where 72‘ = Min (Ajﬂ - v 5‘47',1) .} it exists

a <
as [4;,04;,] < Mor a < g].

Let for i < A%, g; : 1= X be such that {4; —g;(j) : § < i} are pairwise dis-
joint. Let f; be a strictly increasing function from A onto 4; (for i < A*)
hence f;{a) 2 a So (; = {a : a is closed under f;] belongs to . For each
aelleta = {22 . a< |all.

Now for each @ € C;, @ n 4; is unbounded is a, {by the definition of ()
so for some oy{a) < |a|, 4 n{z2:a< {a)] is unbounded in a (as
cf(sup a)# cf |a|).

Next for © < A* let h; be a one-to-one function from A onto AU{j : j < i}
and define by induction on 4:

CGl=facCiuUn: a closed under by , B3, anxel
a n Aclosed under f; , f;7,
@ closed under g, , {(jeaorj=1)

andforj €a, a n{jur) € Gt}

Clearly G;'M\ = fannaeCl] is in 2D, and for each a € I there is at most one
a' € ¢ satisfying a'nA = @ , namely h;* " (a).
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Now we define for 1 < A% a function d; with domain /.

{ogla) otp(fjehy (@) ag(a) = ou(a)] ), if Ay’ (a)or=a
hi“(a)ECil

Min a otherwise

Now we shall finish by showing:

A: for iy # ig fa €] :d;{a) = d;(a)] = ¢ mod D

B: for a €17, {d;{a): i< A%} has cardinality < a

Why this suffice? As for each a €/ we can find a one-to-one function ey,

from {d;(a): i < A*] into a and now use the A* functions
( eq (difa)): i < A" )

Proof of A: Wlo.g. i, < iyand A=< 1, for notational simplicity. Clearly

RE=f{ael: h, (a)eCl, i,€h; " (a) (henceh;  (a)= hy " (a)ni, €l

belongs to . Let a be in it, and d;{a) = di(a). Clearly d;(a)# Min a
hence by the first coordinale in d;{(a), a; (@) = oy,(a). Now {£€h; > (a):
aa) = oy, (a)} is an initial segment of {£€h;, (a): afa) = o fa)] (as
a € i) and a proper one (as i, belong to the latter but not the former). As
the ordinals are well ordered, their order types are not equal. That means
that the second coordinate in the d;(a), d;(a) are distinct. So
d;(a) # d;{a)is true for i;# 1, a€R, as required.
Proof of B: As the number of possible o;{a) is < |a |, and the number of
order types of well orderings of power < |a | is |a] it suffice to prove:

(%) for i<A*, aeCl, the setw = {j €a : a;(a nA) = og{anA)} has power
<la]
Why (*) holds? Because for j € u the set

ANz a< og{ani)i

is unbound in anNXA

but A; N\g;(j) is bounded in @aNA (as a is closed under g;)
hence
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r F{AN () Nz a< og{ani)
is an unbounded subset of @ N A, hence non empty.
But {r;: j€a, aj(am)\) = gz(@anA) > is a sequence of pairwise disjoint
subsets of {22 : a < o;(@nA)} (by the choice of g;). As they are non empty

their numberis= {22 : a< oy (@nN)l] < |a|.

7. Claim:

Let 2D be a fine normal filter on 7 ¢ /2. ()\), A singular and (va € )
(la|= c¢f Aa cf la| # cf A acf A=suplcf Ana)) and
Re(lal D) < |al*

Then there are functions f; for i < A*, Dom f; = /, (vae € )[f;(a)<a]
and fori#j {a €7: fy(a) = f;(a)] = ¢mod D

P f: Let o=cf A, A= X XA, h A lar, Z A< A< A f < o

roo et o f R ¢, eac ¢ regular E<<‘$ ¢ or ¢
We can find for 4 < A" functions 4; from o to A, 526)\5 < A (9 < A¢such that
<
fori < 7 < A* there is £é< o such that

¢ (< o= A< 4@

Let again a = {z%:a<la|}, so for each i1 < A*, a €] if Range 4; is
unbounded in a then for some oy{a) < a, (Range 4;) n{zl o< oy(a)} is
unbounded in @ (and o;(a) = Min a otherwise).

Now for 1 < A* we define a function d; with domain 7 (h;- a one-to-one
function from A onto i U A):

(as(a), otpfi €hy () i ay(a) = (@)} if @ = e (@) N,
(vee{ancf A))A(Jea
3 and{Vvj €a)
di(a) = a = h;* (a) NA
Min a otherwise

We finish as in 6.
7A Remark:

1) Really we use Rk(|a |,:b§°) < Jal|* (where o= cf A) just to get, that
for every (< |a| for some ¢ < |a|*
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(*) thereareno f; : o > (fori < &, [1<j == fi <pg f;]
We should observe that for @ € I, o n o has order type ¢

Note that if for each ¢< |a| there is such £ then £(*) = <<L1Jalétis <la|*
and work for all ¢s.

Similar remark apply to 8.

8. Claim:
Suppose k= 0= ¢f A< A,
¢ faef of la|# c¢f (sup (@ N a)), and Fe(la],
,%g;(sup(ana)))s fa|* when cf (sup a) > ¥ and
la |79 = |a| when cf (sup @) = Ngi,

and D a normal fine filter on /.

Then there are for i < At functions f; : I»A, fi(a)€e and for i#]
fa €I fi{a)=f;(a)] = ¢mod D.
Proof: Let 4;, A;be as in the proof of 7, @ = {x% :a< |a|}. Let hy be a one-
to-one function from A onto AU{j : j < i}. For each i the set (! #fa e/ a
is closed under 4;, and (Range 4;) Nna is unbounded in a, h* {e)nrh=a
and a € C} for j € hy"{(a) and cf (sup a) = cf (sup (ang))} belongs to D,
and for acC! let oy(a)<|a| be minimal such that
(Range 4;) N {z% : a < o;(a)} is unbounded in @. We then let

(agla), otply :j €hy(a)  ayla) = ay(@)}y fa € Gl
& (a) =

Min a otherwise

and we proceed as in the proof of 8, 7 (and see 7A).
9. Definition:

1) For x < A, k regular, and a model N with universe |N| which is an ordi-
nal <k, two place relation Rllvg Ré" a three place relation Eév and a partial
one place function FN (if one of them is not memtioned this means it is
empty), let (see notation 1(5)):

TeA(N) = (o €PN ded (a) N A= a,
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and there are b, {(for s € | N|} such that:

(i) b, ¢ a, a= sngS’ b, €ded’ " {a) {equivalently
cdy\(bs) €a)

(ii)  sREYt implies by C b,

(iii) st implies cd,\(bs) € by

{iv) for each ¢, cdi<a cd, \(bs)>: x € N,
RY (a, s, t)} € b,

(v) fort €Dom#F¥, |b,| = F(¢)
2) For K a family of models N, T, (K) = e T aN)
[

3) NgO = (8) (so R{ Ry Rs F are empty)

Nel = {8,<) {so Ry HsF are empty)
Neg = (N,<,<}) (so RsF are emply)
N93 - (9,< < ’RS) where Rﬁ = E< aoy> Lo y <9§ (SO Fis empty)

We now show that [Sh1] 13 (and 12) is applicable sometimes. (see 2, 2A
above for what they say). This is when £ = Ain 10.

10. Claim:

Suppose « = u* < A, 8 regular, 8y < 8 < 1, and Rk (u*, Q);b) = u* Then
there is a function g from 7 = T;c,)\(N;} to k& such that for every well order-
ing <*of &

fa eP V) otp(a<?) < gla)) 2 T mod DN
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11. Remark:

1) We can use other N's, but then have to change accordingly the filter by
which we define the rank.

2) In [Sh2] various sufficient conditions for R/c(,qu,:Z);b) = ut are given:
(Whencf u# 0):

(vo< w[c®= y
and

"u> 2% and pu=< (suplo: ® = )"

4) As for ae€T {B:8< g(a)l has power u and C' = fa 6/9<,C()\):
la| = € :b<,c()\), we can deduce that:

If the conclusion of 10 holds for 7 then there are functions g; : T- XA (for
i < AY) g(a) € @ such that fori#j {acT: g;(a) = g;(a)l = ¢mod EZ)QC()\)
Proof of 10: For each well ordering < * of X let
<= {acf (N:toreachica, cd (i) " A< a and
otp (cd, (i) N A, <*) < otp(a)]
It is clearly closed unbounded, ie., belongs to $<K(A), Now if
ac T(Nel) NCI<®], let {(by:a< 8> witness "a € T" (ie, iz€a,

ia=cdeby) e B\ a= ub, b
! ’ a<8

otp(b; ,< ") < otp(a) for each a. So clearly it suffices to prove:

« 18 increasing in «), so

12. Fact:
If @ is regular cardinal, Ng < 8 < u, 8 # ¢cf u and Fk (M+,:be"b) = u* then
for every ¢ < u* there is &< wh such that: if ¢= UeAi’ 4; increasing, then
i<

for some i < 0 otp(4;) = ¢

Proof:

Suppose ofp (4;) < £ fori < @, A increasing, and ¢{= 1;39 A;. Define for y < ¢
a function A, : - ¢ by: h (1) = otp(4;ny). So each h, is a function from e to
ordinals, and for B< y (Vi < @) [hg(i) = h(i)], moreover for some j < @
BeA; hence (Vi) [j< i< 8>hgli)< h(i)]. This clearly implies
Ri( & Zb;b)z & but Rk ( ¢, ib;") < ut
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13. Definition
For k< A, « regular, 2D a normal fine filter on / € /9<,c(?\),

0 (D) means that there are (4, a€l), A, C a,such thatfor
every A C A fa €7: 4na = Ay} # ¢mod D

2y O "(:b) means that there are (/9 caely, /Oa a family of
= {a[ subsets of @, such that for every 4 ¢ A fa €] Ana e/f’ag

ed

3) We replace D by I when D is the filter generated by the family of
closed unbounded subsets of /. We write /, D instead of D + I,

14. Remark:
We implicitly assume [ # ¢ mod ﬂ)< M),

15. Fact:
1) For/C J C /9<,C(>\) :Z)l C :.bz normal fine filter on /9<,c()\)
1) 0D = O Do)
i) QD) => O (D)
i) O (DatD) = O (Dy+J)
iv) QMDD = O (Det)
(remember D (N)+7 < D for any fine normal filter on I)
2) Suppose & < A = ASK,
T = {a: for some®, a € T,C,,\(N;), la|®= |a|
ora € T,C,Q\(Nel), andcfla| #6(vo< |a])o®=< |a]
or (Ix,00) (RX= Aar=x* Alal<?=lalr (V7<)
[ef (any™ ) < oln a < o)}
Suppose further T # ¢mod :Z)<,C()\)v Then (T, :Z) 23]

Proof: By straightforward generalization of the proof for the case A = «, due
to Kunen for 1, (i.e., 1(ii), the rest being trivial) Gregory and Shelah for 2)
(see e.g. [Sh3]). le. for 1)(ii), suppose (/9,, ‘a €/9<,C()\)> exemplifies

O (:b + J). Let /9 {A® .1 €a)]. Let < , > be a pairing function on A,
and for eachi < A\, e € /9<,c(>\) let
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Bl =fa:aca, <ai> €AY

So B C a;;is (B a eP N> a O (D ,)-sequence for some i? If yes
we finish, if not let B* ¢ A exemplify thisi.e.,

Ct=taecfP N: Bina » B} €D,
Hence

C=1ta €p<,€()\): (vi €a)a € C*, and a is closed under < , >} ed

and let

A= f{<ai> s a€ B .

So for some a €, Ana 6/9@ hence for some 1 € A, Ana = A¥ hence
Bina = B} contradiction.

16. Remark:

We can enlarge T in 15(2) to:
the setof a €/9<K(?\) satisfying:
(*) there is a family H of = |a| functions from a to a such that: for any
h:a-»a, forsomeb C a, hb € Handa C ,;E,,d‘:dw(i)

Now 15(2) can be combined with (15(ii) and):

17. Observation:

1f 3D is a fine normal filter on P . (A), and O (D) holds, then: there are
J, € PN for a < 2* such that:

J,# ¢mod D, Ja N Jg= pmod D for a# B
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18. Conclusion:

Suppose A = A% 6 < k, « regular, A regular, and there is a strong («,A)-
statienary coding set S§° such that (vaeS") [cf(supa)=86] and
O (D (A)+S?). Then there are S, C {6< X cf 6= 6} for a < 2 each sta-
tionary, the intersection of any two non-stationary (any normal filter D on
A will satisfy this if {supa:ae € S* # ¢mod D and O (:Z)’+S’) where
D= D+ifa - supacd} 4 D).

19. Conclusion:

Te< o= A k=t (2= py thenfor T = T,C’;\(Neo}, T # ¢mod D (N) and
O AT, D).

Remark: This is closely related to [Sh6], [Sh7], (see particularly last
section of [Sh7]) which continues [Sh4] VIII 2.6.

Proof: By 15(2).

20. Lemma:
1) Suppose 8< K< x= A , TcC /9<X+(7\), T# ¢mod ‘:bx*(}\)‘
O (T, :Z}X+(}\)) and foreacha € 7, x ¢ a and:

(1) @b Ca)[lb]| < rra= yded,.,(a)]

aeb

Then we «can find T7,¢C P (N}, T,# ¢mod :b,c(A) such that
O (T4, D (N) holds.

2) Suppose in addition that for @ € T:

(i) (vec ¢ a)[lc] <k~ cdy+y(c)ea)
Then we can demand 7, € Tlc,x(Nes)

Proof: 1) Asin the proof of elaim 7 in [Sh1].

As O (T4, ':bx*()‘))* we can find { M, : a € T > such that ¥, is a model with
universe ¢ and countably many (finitary) functions, and for every model ¥
with universe A and countably many functions f{a:M, = ¥ |}
# ¢pmod D, (N)
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For a € T we can find b, ¢ a, |b,| < k such that b, is closed under the
functions of M, and a C ub ded,s (o). By the last condition, and as
achy, ’

le €a == ded,vy(a) € a] clearly [a;# a;==> b, # b, | We define
Np, = Mg ' by, andlet T = {b, 1 a € 7). So Ny(beTy) is well defined. Now
D e Pl

(iiy T, # ¢mod :Z),C(X) [if M is a model with universe A and countably many
functions, for some a € T M, = ¥ | a, so b, is closed under the functions
of M and b, € T,

(iii) For every model M with universe A and countably many functions, for
some b € Ty, Ny = M [ b. [same proof as in (ii)]. Hence & (74, D)
holds.

2) Easy from the proof of 1), choosing b, in T,C}A(N;)

21. Lemma:
Suppose :251 is a fine normal filter on f?<x(>\1), = Ay <A Let D be the

normal fine filter on /9< A) generated by

{a 6/9“(7\): ani €S} 5edD,}. Suppose further that T; € /9<,c(>\1),

T, # ¢mod D, , O (T, and T, isa (k) -weak stationary coding.

Lastly suppose NSi{«,A) holds (see [Sh1] Def.8) or at least: for some algebra
M will universe A and countably many functions, # has no isomorphic but
distinct subalgebras ¥, C My, My n A = Mo X €T

Then there is a (1,A)-weak stationary coding set 7, for which (T:Z))
holds.

Proof: Just like 10 of [Shi].

Remark: We can combine 21 or 22 with 23 or 24, getting existence for many
cardinals.

22. Lemma:

Suppose in the previous lemma, x is a strongly Mahlo cardinal, T is a
(#,Aq}-stationary coding. Suppose further that if b € @ are in T then for
every subset ¢ of a of power < |b |, cd,\(c) €a. Then /9<,C(7\) has a (©,A)-
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stationary coding.

23. Lemma:

1) Suppose 8g< £ < A, k£ is regular, A= A and (Vo< k) M <, {(hence
Mo ¢ ).
Then there is a {k,A\")-stationary coding set T.
2) Also we can have () (T, :.b,c()\))
3) Suppose that A%< A", 231 is a normal fine filter on /9<,c()\], T e &1, 7t

has cardinality A, and

(@) (vaeT)(vbca)l[lo] =8, cd.,(b)€a]

Let 2D be the minimal normal fine filter on D A*) such that
D FA= Q)l. Then for some D-stationary T, (D + Y PA= :231, and 7 is a
stationary coding set.

4) For 3)if A = }\ﬁ‘, A<f= A" and for some Ty C /9<,C(>\)
|Tol = An(vacP N)(3b € To)[acb]
then :bmc(}\) + T is as required where
T={a €/Q<,C()\): there are b, €7, (1< ) increasing a = U by,
a = Andcd, (@), cd, (b)) €aj
Proof:

1) Let PN =1 i<i(®], i(®= A", and let for 1< i(%)
S; € S*= {6< W' cf 6= 8] be pairwise disjoint stationary subsets of A*,
S*=usS,. Forée ‘<&'}( )S,; let 1(8) be the unique 7 such that §€ 5.

T 1< 1i*

Let f.g be such that: f,g two place functions from At to AY, for i < A*,
1= {y<iy = {f )<l andforj< [i|<At g(i.f(i.7)) = j.

23.A. Observation:

If a €p<,c()\+) is closed under f and g, w ¢ a is unbounded in a and
a N A= b, then o is totally determined by w and i, and we write a = g;[w].
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Let for d€ 5
g = ta €p<,c()\+) csupa =6, anA=b;, aclosed under {f and g,
and for any bound countable w ¢ o , with supw € S*,

Cdrc,k*(“i(sup w) [w]) € CL%

=y Ts
&S5

r= gy ™
i<i(®)

23.B. Observation:

Ifccdd#cande,d e Tthencd, ,{c)ed

Proof: Let d A= b;, ¢ " A= b;, wC c a countable subset of ¢ with
supw = supc (w exists as for each a € T, cf(supa) = ¥y).) As ¢ € T,
¢ NA=bj necessarily supw €.5;. If 2 = j thend NA=c¢ NAand w is an
unbounded subset of both so d = ¢ = g;[w] contradiction. So assume
i# j, 8o necessarily supw # supa hence supw < supa hence
a.,;(supw)[w] = ¢ but as d € T by the definition of the ng’s we know that
@i (sup witW)) € d. Socd, ,{c) € d.

23.C. Observation: T # ¢mod :Z),C(,\)

Proof: By Rubin and Shelah [RS]. (see proof of 24 after 24A)
Continuation of the proof of 23.

The observations above finishes the proof of 23(1).
2) We let {(b;,M;):4 < i(#)] list all pairs (b,M), where b € (N,
M= (oM A¥), oM < k, AM ¢ o We use {b;: 1 < i(*)} as above and for a € 7,
supa €Ty, let 4, = (£ € A: otp(ang) € A™] Now (4,.a € T} is a wittness

for (7, D).
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3) Same proof.

4) Left to the reader.

24. Lemma:
Suppose 8y < £ < A, « regular, S*C {6< A*: cf 6= 8y, and D is a nor-
mal fine filter on /9<,C()\) such that:
(i) Ar= (A7
(ii) there is Y* € 2 of power A
(ili)if A< a< X*, and Q)a is the unique normal fine filter on « such
that :Z)a Pa= D then:
fa E/’Q<,C(O() :thereisde S'na—a

such that §= sup {(6na)l = ¢mod D,

(iv)2<*=< A
Let :bl be the minimal normal fine filter on

P<. (3 suchthat D, Pra=D

Then there is T C /9<,C(>\+), such that 7 is a (x,A%)-stationary coding,
(Di+T)Pa=Dand O (T.D)
Proof: Let {{(b;,#;):1 < i(*)} (where i(*) € {A\A*]) list the pairs (b,M),
beY, M= (oM aM), o < k, A ¢ oM (by (i) this is possible). Let S; ¢ S*
(for i < i(*)) be pairwise disjoint stationary subsets of A*, S* = U( ) 5. For
i<i(s
6€ 5" let i(6) be the unique i < i(*) such that §€ .S5;. Let f, g be two-place
functions on A* such that for i < A* i = {f(i,7):7 < |i|} and for § < |i|
gla.f(i.j)=j. Let Co= {a 6/906(?\*): a closed under f and g and z+1]
For w ¢ A* countable with supw € 5* let set [w] be the closure of
W U by qupw)under f and g. Fori < i(*), §€ S let
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Ts % {a 6/9“(}\*) isupe =6, a NA= by
a isaclosedunder f andg ,
and for any bounded countable
w ¢ a:if supw € 5* (and

setfw]lnx=» ) then cd,, (set [w]) €a |

1{(sup w)

ey T
oS,
For a € T* let h, be the unique order preserving function from a onto the
ordinal otp(a) (= the ordertype of a). Let 4, = {j € a : hy(j) e 4™ so Ag

is a subset of a.

Te o

1< i{*)

24A. Observation: If ¢ C d, ¢ # d both are in T then cd,,+(c) € d
As in the previous proof (i.e., see 23A).

Now let # be an algebra with universe AT and countably many functions
including f,g and 4 ¢ A*, andlet Y ¢ P (N), Y # ¢mod D. We shall find
a€T,anA€Y and a is a subalgebra of ¥ such that 4 na = 4,. This will
prove T # ¢mod Dy, (D, + T) Pa=Dand & (7.D.MN).

We imitate Rubin and Shelah [RSh]: We define a game g which lasts @
moves. In the n'® move player I chooses a, 5/9”(7\) and then player /I
chooses an ordinal «,, which satisfies:

(I) (i) a, is a subalgebra of #

(it) a, NAEY

(#i) @, N0y = @uy when n > 0

(iv) thereisnodc(supa,)n S*—a,, 6= sup(a, NJ)
(Ir) () o, > supa,, o, > Aandwhen n > 0, a, > 0,4

The game is determined being closed. If player I has a winning strategy, ag
his first move, let by = a4 and simulate a play {a,, &, :n < @) in which

player I uses his winning strategy and U «, € S;. Now a %/ k<1 a, isin T
n<w
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and is a subalgebra of #¥. What about 4, = Ana? For each a < «, B C awe
define a game g((x,B), similar to g but player I also choose in his n** move

D, v oh, < hy, and (Vvae€a,)
men

(a€ A = h, () € B). If for some o B player / has a winning strategy, we

an order preserving A,

have no problem. If not then {(as the games are closed hence determined)

player /I has a winning strategy F, g for g(aB) foreach a < ¢, B ¢ a Now

we define a strategy for player Il in G:

Flag, ... a,) = V{Fap(ag hg ag, by, ..., hy)+l for Ll mn, by a
function from a,
into a, a< k,
Bc o

Clearly this gives a legal move for player /I, and in the end we can
define a= ofp( U a,), B = jotp(énua,) €é€A4An U a,l, and define
m<w m n<w

hpp @ Qpy = a by by (7) = olp{ynC,,) and get contradiction.

So it is enough to prove that player [ wins Q’, or equivalently that player
Il has no winning strategy. So suppose F is a winning strategy. Now by
assumption (ii) of 24 wlog Y] = rand(by 24 (iv)) e nk:a €¥i|< A
Now let for {< xw M, be an elementary submodel of H((2")*, €) to which
S D, M, F, Y belongs, {1:i<N € My, { Mgé< ¢ € Mey, |1M|] = A Let
Be= sup (M, nA*) = Min (A" M), and let = %Bf So M, is increasing.

Choose a c (U MINAY, anieY and a N {Bpmsg £<i} = {Bemss
&KW

¢cankl, a is closed under f.g, and there is no 6¢& 5" nf—a,
6= sup (end). (This demand "@anAEY”’ restrict ourselves to a positive set
mod .ibﬂ, the rest to a member of :bﬁ (the last demand by {iii) of 24) so
there is such a.)

As anieY, clearly for each ¢ anAeMy, and as an {Bepmig € <kf =
{Bem+g € <k, £€ai, and ankeM,, (by the restriction on Y) and f,g€M, and
(Mg ¢< km+(supe N a)) € My, (as for sup (k na) < a) clearly we get
aNM ym+1)sM(m+1)- Now we can simulate a play of the game in which
player Il uses his winning strategy F, whereas player [ choose
@, = aNMymyq) By what we say above Flag, ... .,¢,) € My(n+1) hence
Fag, ... ,8,) < Bgm+1), S0 actually player [ wins the play, contradiction.
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25. Conclusion:

Suppose « is regular >Rg, A= A%, and S C {6< A*: of 6= Ry} is sta-
tionary, but for no § < A" of cofinality « is S*nd stationary in 8 Then, there
is a (k,A%)—stationary coding 7 ¢ T, ,+ (V&) and even (> (7, :Z),C()\)) holds.

26. Remark:

1) When does such a S* exist? 1t follows from the existence of square on
{6<A*: ¢f 6< x}, which -0# implies holds when x© < A {and even for many
€ = N's (see Magidor's work).

2) We can weaken the non-reflection asin 7 of [Sh1].

27. Claim:

In 24 if we do not require & (T, :Z)l) then we can omit (i) and {(iv).
We can deduce from the proof of 24 also:

28. Lemma:

1) O (Dew,(A%)) when A = Ao
2) It D is normal fine filter on /9<sl(?\+), ':2)1 is the minimal normal fine
filter on p<sl(}\+) such that %1 [\ A= 3) and A = )\No then \//\ (:bl)
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On normal ideals and Boolean Algebras

In [Sh 1] 3.1 we prove: If £ is a Boolean algebra of power £*.k = <%, and
£ satisfies the k-chain condition then # — {0} is the union of & ultrafilters
( why not "# of power A**"? see [Sh 3] mainly 2.4, p.245). We here replace
"x-chain condition” by a weaker condition we introduce here (x-SD, (see
Definition 1), which says that for almost all & c & of power x, £ < £ (for
the right interpretation of almost).

The other theorem (8) is that 2% < 2 implies &), (the club filter on w,),
cannot be Ry- dense. We then observe we cannot improve this to
[2""(2‘*"=>:b‘,.,l not Mo-saturated] as by Forman Magidor Shelah [FMS], a
universe V, V|=":Z)n1 is Ro-saturated understructibly under c.c.c. forcing' was
obtained and discuss the large cardinal needed. For proving Theorem 6 we
use normal filters connected with variants of the weak diamonds (see Devlin
Shelah [DS], Shelah [Sh 2]) and prove a more general such theorem. Com-
pare with a recent result of Woodin: from ADR + "8 regular” he gets the con-
sistency of "&,l + X is N;-dense” for some stationary X C wy. The conception
of this work is closely connected with Forman Magidor and Shelah [FMS], and
also Shelah and Woodin [SW], and [Sh 5]; it was done subsequently to most of
{FMS].

Notation: fXA) = {4: 4 C A}, it is a Boolean algebra and we sometimes
say A instead of P(‘A). £ denotes a Boolean algebra; the filter E ¢ & gen-
erated is <E>g={z € [ there are n<w, z,€£,...,z, € E such that
n
N zg<z} itis proper if0 ¢ <E>p ; an ultrafilter is a maximal proper
i=1
filter. Let £ < £ means £, is a subalgebra of £, and every maximal

antichain of #; is a maximal antichain of £, or what is equivalent: for
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every z €5 #0  there is y ey #0 such that (v
zeB)0<z=y »z Nz #0] Let £ < f> means that £, is subalgebra
of o and §z € By fy €y Nz =0} is dense in £} is dense below no
AR S Z?l,z # 0.

For a regular A >Ry let 2y be the filter (on JXA)) generated by the
closed unbounded subsets of A. For 7 an ideal of £let £/ 7 be the quo-
tient algebra, similarly we define £/ 2 Da (proper) filter on £

1 Definition : Let & be a Boolean algebra of cardinality ¥, £= B

a<ct

#, increasing continuous, each £, of cardinality <x. We say Kis «-SD if
fa:if cf a=cf x then £, < &£} belong to B+ We say £ is almost &£-SD if
fa:cf a=cf cand B, < £} # ¢ mod ﬂ)ﬂ. We say £is almost x-WSD if for
some stationary Scia cf a=cf ki, for every
i<jli€eSjes=F <" £)] Wesay £is k-WSD if we can choose an S
above such that S (yfa:cf a#cf €} € D).

1A Remark: 1) We can define naturally £-SD, £-WSD for £ of cardinality
> k*, see the proof of Theorem 2 and Claim 3.

2) if & = <%, [ satisfies the x-chain condition, & has cardiality &* then
£ is x-SD.

2. Theorem : If £ is x-SD, & = k< then £ — {0} is the union of «,

ultrafilters.

Proof : Let £= {y B, F; increasing continuous, #; of cardinality
a<c*

As © =«k<*, and as we can replace £ by any extension satisfying the
same conditions, w.l.o.g. #£is closed under unions of < k elements.

Let S ={i <k*:1=0,1is a successor ordinal or i is a limit ordinal with

cofinality &}.

By renaming the £; we can assume;
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(a) ifi € S then £; < £ and £ is ( < k)-complete, i.e. if a<x, a, €B;

for y < a, then (J @, € £; (where | @, is taken in £).
7.a 7L

Let x = (2)* and w.lo.g. £ € H(x). Now for each y € By #0 we
define by induction on n < w, an elementary submodel N¥ of (H(x).€) such
that :

My eM. B i<e*) ey
(ii) N¥ has cardinality < & but N¥ N « is an ordinal.

(iii) N¥ < N¥., and N¥ € N¥,, (remember N¥ € H(x)).

Now for every z,y € £y # 0, natural number n and ordinal a € S N MY

we define
Gi{zy)=yla €B,:a € NY and (Vb € B)[0<b=<a »b Nz #0]

Let vy € £m < w we define by induction on n,m =n <o a set /%"'m of
terms T = 7{t):

prm=te
k
Pprim = {Gﬁ(zﬂ Tey): a€SNNY, k <wandforl =1,...,k, 7 € P™
=1
2A Fact: For 1(f) GP;;""" and z € N¥, 7(z) is define naturally and it
belongs to N¥, andif 7(t) = G271(- - ) then 7(z) € B,

2B Fact; 1) Foranyy € £, m=n <w, z € N¥ N =z ;éOand'rEp;"m

the element 7(2) is not zero.

RYifm=n,k <w 1e(t) € Prmandfor € <k, zg€ N, N 2zg #0 and

N zg # 0then My 7(zg) # 0.
<k <k

Proof ; Clearly 1) follows from 2). We prove 2) by induction on n.

When n = m, necessarily 7¢(t) =t and there is no problem.
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When n >m, let 7p(t) = G%, ' ( N 7Tgs(t).y) (where ag € NY_; N S) so
i<i(€)
Tg,:(t) € ﬁy"“l’m. Let zg; = 7g;(2g), so zg; € N} ™!, (by Fact 2A) and by the
induction hypothesis on n, 2z % n zg; #0 and clearly z € N¥_; N £
i<i(€)
€<k

Clearly G ' (z,y) =< Gl (}z) 7g:(2¢),y) for each €. So it suffices to prove
i<i
that N 02;1 (z,y) Wlog. ag> a;> - >a,_,, and we define by induction on
2 <k

€ <k, an element sg of £ N N7 ™! as follows:
(a) sg =2,
(b)sgs1 € By, N N¥_; is such that;
(Vb € B )[0<b <50,y b nysg # 0]

We can find such sg, € £,, as ,, < £, and we can choose it in N}~! as sg,ag
and <¢f3a fa < ;c+> belong to N}7!, and N}~! is an elementary submodel of
(H(x),€).

7
We can prove that wheni <j <k, (Vb € B, )[0<b=<s; »b n  sg#0]
g=i
This is done by induction on j; when j =4 this is trivial. When j§ > 1, let
b €fh,,0<b=s; by the choice of s;,b ys;_; #0, 50 0<b s,y <5;4

and clearly b nys;_; €4,

Xy_y?

so by the induction hypothesis on j,

J
N sg#0.

i1
(d Ns;_) N N sg#0butbd <s;s0b
@1 g=i

Hence n sg#0, and also {when 0=<i<k) that (v
g<k

b 6/,?0‘1)[0 <b=<s; »>b Ns; #0], now for i =0 s; = 2z, hence by definition of

Ga(2y). clearly s; = G37H(2,y). S0 0# N sg= N G (2.y). so we have
<k <k

proved the induction step for n > m, hence Fact 2B:

2CFact;Ifa€ U NY,a€ S,y € B8,y # 0, Dan ultrafilter on £,, and

n<w

F=i’r(y):1*€/9;’mforsomemsn <wjandT' N B, D
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then DY (T N Baei}) generates a proper filter.
Proof : Immediate, because :
2D Fact: When m <n < w, {1(y) : v €Py"'m; cirly):y € Pg'oi,

Proof: This can be proved by induction on n: for n =m >0 choose
ag> > Ay in S My N¥ such that y €/?am and define 7¢ € Pg'f’ by induc-

tionon€ = m: Ty =Ty, Tgey = ng (1¢.¥); the other cases are trivial.

-1

Continuation of the proof of Theorem 2:

Let EY be any ultrafilter of £ N ( U NJ) which includes {T(y) : 7 ep;'""

n<w
for some m =n < w}; by Fact 2B,2D it is proper. The rest of the proof is as in

[Sh 1] 3.1. By Engelking and Karlowicz [EK] there are functions f,: & » & {for
£ <«*) such that for every distinct £4(B <o < %) and 7g<k (B < Bg) for
some & < K,ﬁ/(\p fé(s) = 75 Let gg: &% -» « be defined by: gglé) = I eB).

(¢]

Let £yyy be generated by £ U fyf : B <x} (and wlog £ =101}, and
w.lo.g. <<y§,£,ﬁ> <kt B < IC> belongs to every N¥). Let <Y.$ Ty <7>
list all subsets of {y§ : B < &} of cardinality < «. We define by induction on
£ < k* for each B < « an ultrafilter Df of £ such that:

(A) D is increasing continuous in £.

(B) if :bﬁ U Ygfi(ﬁ) generates a proper filter then ibé U Yg‘i(p) C :Z}§+1,

Clearly this can be done and each 2 = Jf" is a (proper) ultrafilter of £.
Now if yely#0 then for each teSn(y M)

n<w
(By N E a<xd) U (B NB) generates By, N Beyy, [as B U tyd a <«
generates By, Bee NY, tyf: B <k} eNY, and £, € N for every n such
that a € N¥], so there is § < k£ such that for every § € Y Nj ., gg(é) = 7¢ and

n<w

by Fact 2C, Ey € Dy

3 Claim; 1) In Theorem 2 we can replace &* by 2% (its proof is written so
that the changes are minimal, but the set {yé : 8 < g} should still have
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cardinality «.

2) In Theorem 2 (and Claim 3(1)) we really get that for every Y ¢ & of
cardinality < « which generates a proper filter, for some 8 <k, Y C :Z)p (define
NY.Pp™ for any such Y, now Fact 2A, 2B have the same proof, and Fact 2C
should be modified by having '={r{y):y €Y, 1€ va"‘, m=<n <ol

4. Remark: We can go beyond 2%, see [Sh 4], Lemma 4.

5. Observation: Suppose A >8, is regular, 22 =A* | an ideal on
A B=pPAN)sI1. Suppose £= y ;. £, increasing continuous. #; of power

<At
< A. Suppose further Sp={§ <A*:cf ¢ =A, [5’5 < £9) is stationary. Then some
forcing notion & of power A*, forcing by it does not add new subsets of A, (so
all relevant properties of I, are preserved), and in V9, Sg | (£ <AY:cf € <A}

contains a closed unbounded set.

This help us to show the consistency of "/9()\)/1 is the union of A
ultrafilters” for a suitable ideal /.

Proof : The well known @ = {f : f and increasing continuous function
from some a+1 <A*toA*, [B<a and cf (a) = A => f(a) € Sgl}.

* * *

6. Theorem : If 2% < 2™ then ., is not ¥,-dense (which means the
Boolean algebra Xw,)/ 2, is not §;-dense.)

This will follow from Conclusion 14.

7. Definition ; A Boolean algebra £ is A-dense if there is B¢ &, |B| <A
which isdense i.e, (Vz e [z # 0> (3y € B)(0 <y = z)].

Note in this connection the following two observations.

8. Observation: By [FMS] we can obtain a universe of set theory [start-
ing with a model of ZFC + 'k is supercompact') in which ), is 8-saturated
and this is preserved by forcing satisfying the R{-chain condition, so if we add

e.g. 3,, Cohen reals, still ﬂ)@l is Ng-saturate but Mo = 2, <3441 = M
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We may be interested in using smaller large cardinals:

8A. Observation: 1) It is consistent with ZFC that Mo < Miput :ba, is No-

saturated if we assume the consistency of ZFC + "& is a suitable hypermeasur-
able as in [SW].”

2) If in V, is a normal filter on w,, and J)is ¥,-saturated.
¢ is the forcing of adding A-Cchen reals, then in Ve,

a) D=4 €V?: 4 Cw, and (3B € ) B C A} is Ny-saturated normal
filter [so 5D =(,§Z§m)v =D =(:Z)m1) W]

b) (2“")"0 =(A+ so)ﬂ" { the second term is computed in ¥).
&I VQ —_— 31 . .
e) (™) = (A +8)"" ( the second term is computed in V.)

Proof : 1) By 2), starting with a universe of set theory in which 2, is
R,-saturated, from Shelah and Woodin [SW] .

Note that if in V, 3, 4,{k) >3, (k)**, & is supercompact, and P a forcing
notion of cardinality x, such that in VP k= Nz,ﬂ)&,l 8,-saturated; choose in (2)

A =3,,(x), then in VP (Moj+a < 2N
2) Straightforward.

Suppose @ ={f : f a finite function from A to {0,1}}, and q € @,
q fFe” <S Y B m2> is a counterexample: Let for a<w, SJ ={6<w;:
~a

thereisq,¢g=<qg €@,¢ |[F" 8€S "}, andfor § € S choose g € @, ¢ <q§,
~o
gf IF"d6e€S ", (so <<q§‘ : 8 € SS) T < w2> is in V) Clearly
~e

58 # ¢ mod D, hence for each a < wp for some ky<w,
Se = {6 € SJ :Dom gf has cardinality ko] # ¢ mod 2D hence for some k& ,
W ={a<ws: kg <k} has cardinality 8,. Let m be a natural number such

that m > (3)Ze.

As D is Bj-saturated there are distinct ay,...,a, € ¥ suc that

5% 51 ad F 5 t distinet
= N Sgp # Mo or every €S or some istine
g=1
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£2(1),2(R)ef1,...,mj, q:”(",qg“(z’, are compatible. Hence there are distinct

2(1),£(2) € {1,...,m] such that {§ €w;: 8 € S, and g™ g% are compati-
ble}] # ¢ mod H Now it is easy to show that for some ¢,q Cqg € @,

g IF{6eS:qsu ygs® e Ggi # mod D contradiction.

Remark: The inaccessible f needed in 8A(8) is {x : x strongly inaccessi-

ble with Pry{x)} is stationary is not in the weak compactness ideal) ":wa is

indestructible by ®,-c.c. forcing big hyperinaccessible like in"

9. Observation: If J) is a normal filter on a regular u >84,2# = u* then

the following are equivalent:
(a) Dis p-dense.

(b) there are normal filters D G<w, D, and

[A#¢pmod D=>4e y D]
(247

(c) for every 4; C A, 4; # ¢ mod D for i < u*, there is S Ccu*,|S| = ut,
such that for any distinct i{a) € S (a < A} the diagonal intersection of
Aila <A) (e ¥y <A:7€ N Ayn) )is# ¢ mad D

a<y

Proof : (a) => (b). Suppose {4;/D: i < u} is a dense subset of PJA)/ D
Let (for i <), B YD+ A, =X A X U (A—4) €D, then the Jy’s exem-
plify that (b) holds.

(b) => (c): Let (i < u) exemplify ( b), and let 4; C u , 4; # ¢ mod D for
i < u*. For each i <u* for some y(i)<u*, 4; € ﬂ),(,;). So for some 7
S = {1 :y{i) = 7} has power u*. Clearly {7({) : 1 € S} is as required.

(¢) => (a): Assume (a) fails. Let §4 Cu:4 # ¢ mod P} be listed as
fA4,: a <ut] Asfor £ < u* {4, a < £} cannot exemplify "Dis u-dense” there
is a(€) < u* such that for no B < ¢, Ay € Ag mod D. By (c) there is S ¢ u* of
cardinality pu* such that for any a; € S (i <u*), {7y <A:7 € 4gq,) for every
i<y}#z¢pmod D Let for ¢<u* B, be the diagonal intersection of
iAa(E) : £ < &), Note that Bg is not uniquely determined as a set (it depends on
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the enumeration of ¢) but mod P (and even mod ) it is uniquely deter-
mined. Clearly {; < {g => By, 2 By, mod . Now necessarily for some ¢&(*) for
every { ={(*) (but < pu*), By = Bysy mod B as otherwise there is an increas-
ing sequence ¢(i) for i <pu*, such that By # Bygy mod D so
§Bei+1) — Bewy - & < w*) show Dis not u*-saturated and clearly contradict ( c)

which we are assuming.

Now as Bye) # ¢ mod D for some p(*) < ut, By(+y =Ay+)- Choose
B <u* B>y(*),B>¢(*). So by the choice of &(*) By = Bgsymod D but
by the choice of Bgyy, Bgyy C Agpy mod D hence Bysy € Aggy mod D vut
Beey = Ays) 50 Ayey € Agg) mod D But remember the choice of £(g), as

B >7(*)it implies A ey € Ay mod D Contradiction.

7+
10. Definition: 1) For a regular uncountable A and u < 2 let

@ >

(a) Dom (A,u) = {f : f a function with domain a — {A} for some ordi-

nal a <A f(n) < u, for n € ¥ a — {A}, where A is the emply sequence.
(b) Domn ¥*(A,u) = {f : f afunction from > — {A} to ui.
(c) Let I , be the set of 4 € A such that :

for some function F from Dom {A,u) to §0,1}, for every h : 4 - {0,1}] there is
f € Dom *(A,u) such that for some C € ), (V6 € A N C)[n(d) = F(f 1 6)].

- 2) For A,u as above and function /' from Dom (A,u) to {0,1] let [{ﬂ be
the set of A € A such that ; for every B € A4, there is f € Dom (A,u) such that
for some C € By

(YoeC)seB iff F(f16)=1]

3) For A,u, F as above let J§, be the normal ideal on A which £, gen-

erates.

Remark: This is close by related with the weak diamond, see Devlin and
Shelah [SD} and Shelah [Sh, Ch. XIV, §1].

11. Lemma : 1) I, , is a normal ideal on A (but it may be P(A)) and we
could have in the definition of Dom (A,u) replace ®> a by a .



256

R)U <A 25=2% u=pur<2r u< A (ie. pw <R, ,, where A=8,) (or

even a weaker restriction) then A ¢ I, ,,.

3) . €Ip €y and Iy, = UL, - F a function from Dom (A,u) to

{0,143

4) For every function F:Dom (A u) > §0,1}, there is a function
F* : Dom (A,u) = §0,1} such that

=15, =I5,
5) For any function F : Dom (A,u) » §0,1}, forevery C€ D, A—C € [,

Proof : Part 1) is straightforward. For 2) see [Sh 2, Ch. XIV §1]. Now (3),
(58) are trivial and for (4), note that in Definition 10(2) we demand (V
deC)[6eB=>F(ft3d=1] and not just v
seCNnNAeB<=F(f1rd8=1]

12. Lemma : Suppose A is regular and uncountable, u < 2* and A ¢ Ip

Then for no Fis J§ , p-dense, A*-saturated.

Proof : Suppose F is a counterexample and let {4,/ J{“ :1 < ul be a
dense subset of AN/ J{, We now define a function H from
Dom {Au) = Ui{f : f a function from some ©>§ — {A] into u where 8 < A} to
£0,14.

Suppose 6 < A is limit, f : (®?8 — {A}) » u, for v € ¥>8 let f, be the func-
tion from ©%6 — {A} to {0,1} defined by f,(n) = f (v~n). We define H(f) by

Cases!

Case I For some a, < 8, F'(f ¢cgap>) =1 -

Then we let H(f), be F(f <1 44>) for the minimal such a,f (lexicographi-
cally).

Case II: Not Case [, but for some a < &, 6 € A 45

Then H(f) = f (<£3,a>) for the minimal such a.
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Case III: Not Case I nor II.

Then H(f )} = 0.
Iff:9%a —§{A} > i, a not limit, let H(f) = 0.

Now we get contradiction by Fact 12A below (as A & I, ,, /), is normal and
J{{“ C [X,p,)'

12AFact: A € ]{{#.

Let B € A and we shall find f € Dom *(A,u) such that for some C € 2, (V
se€C)de Biff H(f 18) =1].

Let /Qg: {4; 11 < p} be a maximal subset satisfying:
(a) foreverya # b € Pa nb € J§, (ie PisJf{,- disjeint.)

(b) forevery a € P, a € Bmod J{, ora N B = ¢ mod J},,.

As F is a counterexample, /9()\)/ J{.u is A*-saturated hence IPI < A, so let
P= {4y @ <a(*)}, a(*) <A. We shall assume a(*) = A (the other case is

easier). Let B be the diagonal union of the Ay le- IB<A:BE Y Ay} 50
a<f

clearly ag®A—RB" € J{“. For cach a <A let a4, be Ayg— B if
Ayay € B mod J{, and Ay N B if Ay N B=¢mod J{,. Soin any case
a, € J{#, so there are sets aag€l{,. (for B<A) such that

Ca =7 <AIYE U Ogniep} AS Qgpg € [{M there are functions faa'p J ,}'p from
: B<y
©>X — {A} to u, such that for some C, g € Dy

(Vo€ Capllb€a,g M B<>F(flgtd) =1]
(Vo€ Capllb€agg<> F(flgtd)=1]

Now we can define f° : (> A —{A}) » pu

T (<0.a.8>~n)=fQg(m)

Fi(<iap>)=fap(n)
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f.(<2,01>) =1 if 6¢ Ai{a)’
Fr(g3,0>) =1 if 8¢ AyqCBmodly,

fim)=o0 otherwise.

1t is easy to check that {§: H(f "1 8) = 1 <= 6 € B} belong to . As B was
any subset of A this shows A € 1{{“ but /ff, € I u A & Iy, contradiction.

13. Conclusion: Suppose A is regular uncountable and A& [ , (see
11(1)). Then ), is not p-dense, A*-saturated.

Proof: As ), is A*t-saturated, and I\, @ normal ideal on A, it is known
that for every appropriate F, for some Y(F) C A Y(F) # ¢ mod Iy and J§,
=4 cn (Y(F)=4) U A-Y(F) € 1y} and so J{, is p-dense A*-saturated

too contradicting 12.

14. Coneclusion: If A =«%2*> 25 u=pu < Hin{22 A < 2* then Dy

cannot be A*-saturated, u-dense.

Proof : By 13 and 11(2) (so we could get a little more).
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A note on k-freeness of abelian groups

Introduction: Lately Foreman proved that the assertion (*), below
follows from some axioms (speaking on the N,, seemingly of consistency
strength like the determinancy axioms), and {*), consistent if some large

cardinal axioms {~ there is a huge cardinal) are consistent.

{*), every 8, free abelian group of power 8, is the union N, free sub-

groups.
Let in this note a group mean an abelian group.

We consider mainly some variants (which his proofs easily gives); give
some sufficient conditions in ZFC, and find the consistency strength for

n =2 which is Mahlo, and prove the consistency of {*), using super compact

cardinals.
1. Definition : 1) P{Ax)% if G is Afree of power A,
G = |G, |G| <A,G; increasing continuous then {i:G/ G; not x-free} is not
<A
stationary.

2) Let P*(A,k) mean that every A-free group of power A is k-freely

represented ( see 2(4)).

2. Definition : 1) A group G is (u,k)-coverable if we can find Hy(a < u),
free pure subgroups of G, such that: for every 4 € G of power <k, for

some a, A C H,.

2) We define "weakly (u,x)-coverable” similarly if omitting the “pur-

13

ity”.

3) G is {u.x)-freely represented if it has a (u,k) free representation i.e.
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(Gi:i <i(‘)>, G; increasing continuous, Gy = {04, Gy+) = G, and G4,/ G; is -
free of power =< u. {(k-free means: every subgroup of rank < « is free, so &

may be finite).

3. Lemma : If G; is increasing continuous, Gysy = G, Gg = {0}, <A then
G is {u,k)-coverable provided that:

{*) there are sequences <H.i,€ CE< p.> of pure subgroups of G;,; such that
(a) H,  + G;/ G, is a free and a pure subgroup of G;,,/ G;.
€ i (2 141 1
{(b)if 4 € G,]A| < k then for some set S C i(*), and ¢ such that:

(@) AC Y Hgand

ie§
(B) (Vi<j)[i€5nj€S>Hj,n Gy CHy+ Gland
(7)) (Vj € S) (Vi <j)[Hj ¢ N (Gyy—G) # ¢ » 1 € S].

Proof: Define K; ¢ by induction on i < i(*):
Kog =10}, Kse= U K,

1<é

&4‘1,{ is &,f + &,f if fi@,f M G‘i - }C‘:-f’ and Kb.f otherwise.

Easily by (a) of (*) K;(+)¢ is a pure subgroup of G. Now we should prove: for
every A C G, if |A[<«k, then (3¢ < u)A C K¢ Let S.¢ be as in (b) of (*) (for
the set A}. We prove by induction oni € S that:

(i) Hyg N Gy € Ky g
(ii) Hi¢ CKiyy¢

For 1 =0, everything is trivial as G; = {0}; when we arrive to 1, if (i), fail,
choose j <=4 minimal such that H; ¢ ny G; € Kj 4 necessarily j is successor,
so Hy e N {G;—Gj_;) # ¢ so by (*) (b) () (j—1) € S. By the minimality of j,
Hy ¢ N Gj_1 € Kj_¢and as by (B) of (b) Hy ¢ N G(j—1)e1 € Hj_1 ¢+ Gj_4, by the
choice of K ¢ = Kj_1)y1&. H; ¢NG; C K; ¢, contradicting the choice of j. Now

we can prove (ii).
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So {Ky ¢ € < uj exemplify G is (u,k)-coverable.

4. Lemma: If G is (u,k)-freely representable, & > 8y, and P (u) has a

stationary subset S of power u! (see below) then G is (u!,k)-coverable.

Proof: We use Lemma 3.

Let < G;i < i(*)> be a (u,k)-free representation of G, and let L; € G;qq
be such that Gy,; = G; + L;, {I; a pure subgroup of Gi,) and |L;| = u (but
maybe G; Ny L; # {0}]). Let g; be a one-to-one mapping from u onto ;.

Let § = isgé < u'l, be an enumeration of § in increasing order, and H; ¢
be the subgroup of G;4y (of L; in fact) generate by {g;(2):x € s¢}. We can finish
as:

®<Hi,t35 < p.> (i<i(*)) satisfies (*)
(apply second sentence of 5(2)). Remember:
5. Definition : 1) P (A) = {s:s C 4,|s| < «}.

2)S ¢ /9<,C(A) is stationary, if for every < & {finitary) functions from 4

to A, some s € S is closed under all of them.

Note:if B 24,y < k, f; is an n; -place function from B to B for i <7, and
from each a € B,g9, is a one-to-one map from A onto some B, C B, then for

some s € P (B) closed under the f;'s, s A€S and for every
ac€s, s N\ By=1lgalz)zr €(s nA4j).

6. Fact: 1) If x is regular, u = £*™ then P (1) has a stationary subset
of power u.

2) Pee(p) has a stationary set of power p<F.

7. Lemma : If k=< pu, /9“(;1.) has no stationary subset of power u then

0f exist, there is an inner model with a measurable cardinal B, etc.
Proof: By [Sh 3] Ch. X1l

8. Lemma: Suppose ||G|| = A, G has a (u,k)-free representation, & = Ng,
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2# > A. Then G is (u,k)-coverable.

Proof : Let < Gt =< i *)) be a (u,k)-representation of G,
Li Gl il =, Gy =G +L; , I, a pure subgroup of Gy Let
<H.,;?€ £ < y.> be a list of all pure subgroups of L; of finite rank.

let g;:u—-»pu {1 <i(*) be functions such that for every distinct
iy, .. 0p(m <) and €&, ... &, <p for some a<u g (a) =§ for £ =1,m
(exists by Engelking and Karlowiz [EX] as w.l.o.g. [i(*)]| = || G || = 2#.)

lLet Hi?a = 'i?g‘(a)'

Now apply 3 to <<Hi,a:a < ,u,> 1 <i(')>.

9. Lemma : Suppose ||G{] = A< 2", G has a (u,k)-free representation,

K <8y Then G is (u.x)-coverable.

Proof : Like 8 but G;,; = L; and we restrict ourselves to H = Hfé dis-
joint to G; (more exactly, H% n G, = {0}).

We prove by induction on i, that for 4 € G;,|4]| <k, the (*) (b} of
Lemma {3) holds. For 4 =04 limit - no problem. For i+1: let
A =fagl < |A|}, wlo.g. ayg belong to the pure closure of < Gi@g .., Q»Q_1>
iff € =2m. We first define by inductionon € <m, bg € G4, Cg € G;.

(i) tbo+ G;, ... ,bp + G;} is independent, and generates a pure sub-

group of G;,,/ G; (of course by+G; is not torsion).

(ii} ag € <bo, ... bg by, cQ> ¢ (= the subgroup generated by then).

As m =< |4] <k in the £-stage, G¢+1/< Gi g - -, ag_1> is (k—€)-free, so
there is a maximal integer my dividing ag + < G;.bg, . .., bQ_.1>, and let by
be such that ngbp—ay € < Gibg, . .. ,bg_1>, So for some
ngo - Mgg—y i Ggngbgingobg+ -t ngg_1bg y € G, and call it cg.

Now we define form <€ < |4],cg such that

(iti) ag € o . - ., cg)
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Arriving to £, for some my # 0 mgag € < Gy.ag, ... ,ag__1>, hence
mpagtG; € <ao+Gv, R ,ag_1+Gi> C <bO+G-, - ,bm_1+G,;>, but the latter
is pure so or some Ngg, ..., Ng oy, QptG; € <b0+Gi, c ,bm_1+Gi>, so for
some Moo, Mg m—1 the following equation holds

de
ﬂ,z-ng’obo—..._'nz,m_lbm :fCi € G,;.
Now use then induction hypothesis on {cg,cq, - - §.

10. Fact: If P(A,x), A = u* then every A-free group of power A is (@0}~

represented.

The following is a (strong) converse to 4,8,9 (so under suitable condition

{p,x)-coverable = weakly (u,x)-coverable.)

11. Lemma : 1) Suppose A = u*, |G| = A and G is (u,x)-coverable then
G is (u,x)-freely represented.

2) Then k > ¥y ¢ weakly (u,c)-coverable is enough.

Proof: 1) Let |G| = A& (i.e., the universe = the set of elements of G, is

A), G=uy Hg each Hg is a free pure subgroup of G, and (V
E<u

A CGH|Al <k (3E)A C Hel.

Let G =\ G;, Gy increasing continuous, [|Gl] <A and let S =§ <A
G/ G; is not k-free}, we assume S is stationary and will arrive at contradiction
thus finishing. For i € 5, let I; be a pure subgroup of G of rank < x, such
that L, +G;/ L; not free. Let A; C L; be such that [4;] < x, and L;+G; is the
pure closure of < Gy UA1>‘

So for every i€S for some §(1)<pA; C Heyy So for some
£ 7 =i € 5&(1) = &} is stationary. Let N be an elementary submodel of an
appropriate expansion of G, with universal |G| =71 € T. We shall prove
that: (the pure closure of G;\J4; in G)/ G; = pure closure of (H¢NG;) U4; in
He/ HeN\Gi

This suffices. So it suffices to show.
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ki3
(*)if @y, ...,a, €4, 0<k <w, b €G, b+Ym%a, is divisible by k

i=1

(in G), then we can find such b € H, n G; divisible by k even in H.

Proof of (*): As N is an elementary submodel, b € N as b € G, =1 we
can find ag € He \ N = H;  G; such that b+¥m%ay is divisible by k (in G
and even in G;). Now let b' = 0-Ymfa; € H, n G;, and divisibility is in H,
using: He € G purely.

2) Just take care that 4; = I; , L;,G; + I, and G ; will be pure sub-
groups of G.

We now restrict ourselves for a while to A =8, u =N,
12. Lemma : The following are equivalent.
A) P(NgNy)
B) every Nj-free group of power Njis (8;8;)-coverable.
C) every Ny-free group of power 8, is (8,,2)-coverable.

D)If S € §6:6 <8zcf & =Ny} is stationary. Az € & (is countable for § € S
then there is a stationary 7 CX; and f:7 » S one-to-one such that

f¢ € T4y 5y € U Af(p) is stationary.
{<¢

Proof : (A) => (B) by 10, 4+6(1).
(B) = (C) trivial
(C) = (D). We prove ~(D) = -(C).

Let {44:6 € S} be a counterexample to (D). Let 45 = {asgnn < @}. Let G
be freely generated by z,(n € “>8;), y5,(n < @,6 € S) except the relations
(letting ng = < 50251 " >)

P Ysn+1™ yé,n'—xngfn

(p a fixed prime but you can make it a natural number = 1 depending on

8,n) Tasily G is not (8,2)-freely represented and by 1) we get a contradiction.
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(D) = (A): See [Sh 2] for much more
13 Theorem : {D) is equi consistent with Mahlo.,
Proof : See Harrington Shelah [H Sh].

14. Lemma: We can move the cardinals in 11, e.g. let g =u<®, & > §

then the following are equivalent.
(A)" P(u* k).
(B) every u*-free group of power u* is {u,k)-coverable.
(C)' every ut-free group of power u' is weakly {u,«)-coverable.

(D) for some vregular x,?V <«+¥;, there are a stationary
Scid<urcf §=0], and A45CS6 of order type OxSup 45=34,
As= \UAgi.4s: <Agj fori <j otop (Asq) = X, such that for every i < u* we

i<B
can find pairwise disjoint Bs C As, such that (@<%)@<Xj € 45,)j & Bs (f
x =8, (D} can be replaced by "4 of order type @ , |45—Bs| <8y".

The consistency strength, for u regular is as in 13.

Proof: As in [Sh 2].

However.
15 Observation: Suppose Ag< A, @n)A < A" Ais regular, and

(A) for every x, A<x"=A, every {y¥")-free group of power x* is x-freely
represented (i.e P{x*,x).

(B) every Ag-free group of power Agis {(u,k)-freely represented.

Then every A-free group of cardinality A is (u,k)- freely represented.

Proof: By induction on A. For A = Ag this is (B) for A a successor cardi-
nal use {(A).
Remark. We can phrase similar things for A= Ad% but then for A

singular every A-free group of power A will by free be [Sh 1] so this is not an
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interesting case.
The consistency strength is much higher by Magidor [Ma].

Now by 14 and 15 and known set theory we can get positive results e.g.

(using ¥, for simplicity).

16 Theorem: 1) Suppose 2<n <w and P{8,,18,) holds when
1=m <m. Then every B, -free group of cardinality B, is (8 8;)-freely
represented hence in (8,8,)-coverable.

2) From the consistency of {n—1) supercompact cardinals we can get

n—1
the consistency of /\ P, .1 8,,) and G.CH. [¥; <%, < - <k, are super-
m=1

compact, w.l.o.g. satisfying Laver's conclusion [L], and use Levi collapse to

make kg to Bg (€ = 1,n) and use Baumgartner [B] argument.]

Note

17. Leroma : 1) Let U be an abelian group, and let
F= i(A,B):<A U B> G/<B> ¢ is {u,k)-representedj.

Then (in the context of [Sh 1], §1, or [Sh 2] §1 the following axioms holds)
with x there standing for u here: I, II1, IV, VI, VIL

18. Lemma: 1) If G is {u,x)-coverable then G is {u,x)-represented.
2) If k > 8y weakly (u.x)-coverable suffice.

Proof: We can prove this by induction on [JG||. I ||G]] = u this is
trivial. For || G || > p a singular cardinal use the compactness theorem of [Sh
1] (where Lemma 17 shows the assumption holds. For ]|G]| > u a regular
cardinal repeats the proof of 11.

19 Conclusion: Suppose k >R, and 7 (u) has a stationary subset of
cardinality u.

For any group G, G is (u.x)-represented yf G is (u,x)-coverable if G is

weakly (u,xk)-coverable.
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Proof: The first implies the secod by Lemmma 4, the second implies the
third trivially, the third implies the first by Lemmma 18.
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On countable theories with models - homogeneous models only

1. Theorem : Suppose every model of 7 of power A is model homo-
geneous and A> |T| and 7T is countable. Then A= A{7) (= Lhe first cardi-
nality in which T is stable), T is superstable, unidimensicnal and every

mode! of 7 of power u > A(T) is model homogeneous.
Proof : We known that (see [Sh 2]):

(*) if M M; are models homogeneous model of T of power A and
IN/RN <M N = |T|} ={N/®~N <M, ||N| =|T]} then ¥, & H,.

By {Sh 1], Ch. VIII, 4.2. if T is not superstable T has non-isomorphic

models of power A which contradict (*).

Suppose T is stable but not unidimensional. By V. 2.10 T has an Ff‘”r
saturated model M of cardinality > (2\)*, with a maximal indiscernible set
1¢ M of power k.(T). Let ¢ € I(so ¢ € M), I; ZI-{c} and let N < M be Fiy+
primary over {41 and Ny < N be F¢ (p-primary over ;. By [Sh 1]11IV 4.18 IV,
is isomorphic to N by an isomorphism f mapping I, onto 1, and clearly # omit
Av(l, Uy D), Ny omit Av(l,ylL;). So clearly we cannot extend f to an elemen-
tary mapping f° from N into M (as then f'(¢) realizes Av(LUl)). So if
A > ||N]| we can finish {see below). Let N* be such that N* <M, ||N"|| = |T]

and:
(N N;AN' FHN" AN)INNE)<{(MN.f 1 €)

and 1< N* (possible as |1} = k,(T) =8g = |T|). Again f t (N° \ N,) cannot be
extended to an elementary mapping f* from N' ny N, into ¥ (as then f*(c)
realizes Av (L YI)). So # is not | T|*-model homogeneous and || #]] = A, so we
can find M*N* <M* <M, ||#*|] =X and M* contradicts a hypothesis . So T

is unidimensional.
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The proof that A>A(T) is similar (# will be FZ pprime over
LI} = x,(T), so ||#}] = A7), Imaximal in #).

If T has the otop, we get contradiction as in the case of unsuperstable 7.

T cannot have the dop as it is unidimensional.

Now note:

2. Lemma: If 7 is superstable unidimensional (or even just with no
M.p.@ such that 8;=< [p{M.@)| < ||#]]|) and with the (<= A>)-existence pro-

t
perty, then (see {Sh 1] Ch. XI §2), ( FH ,C;) satisfies Ax. A4-6, B1-8, C1*, C2,
0
¢
C3*, D2™%, E1, E2* A( T, .C;) = |T].
o

Proof: Suppose ¥ is not model homogeneous, |[# |} > A(T) and we shall
get a contradiction thus finishing. Clearly # is not saturated, hence by [Sh 1]
IX 1.8 T is not R, stable, [condition (3) fail hence {8) with A,u there standing
for A, | T| here, now M is easily not g*-model homogeneous.] So A(T) = Mo pg
M is not model homogeneous there are u < || M ||, Mg< M, <M, M° <M f an
isomorphism from M, onto M® which cannot be extended to an elementary
embedding of M, into M and || M| = u. By [Sh 1] 2.6(2), and Lemma 2, M, has

t
an ( I‘; , C)-decomposition (N,,:'r; € {<>,<i>i1i < ad),N,, countable, and it
0
t
can be extended to an ( I‘;‘ ,&)-decomposition (N,,;'q €§<>,<i>1 < a1§> of M,
14

1N,

t
il =8g. Clearly <N.;;‘:7; € §{<>,<i>1 < a°§> is an { FR ,C)-decomposition
o

t

of M° when Ny = f(Ny) and it can be extended to an ( FS ,C)-decomposition
]

of M : <N,,+:1) € {<>,<i>,11 < ;S’) i, Hg 1] =8,

We can define by induction on a,ap=<a<a a model
My oMo =My, Mygye is prime over Myq \J Negs (it exists as T has the

(<=,2)-existence property), and for limit 8, Mos= J My, We then can
apsa < &

iry to define by induction on a,ay=< a < a,;, an elementary embedding f, of
Moo into M, f, extending f and fg when ap< g <a. If f,, is defined this
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contradicts the choice of My, M, M f. So for some a , [ is defined but f ., is
not, and (by renaming) W.lo.g a = ay a; = ag+ 1. By the (<=,2)-existence
property there is no N! realizing f (tp+(N q.5.N¢y)), which is independent
over (M f (N)).

Choose N <M |IN|| =|T], [Nl UINS|T U [ Negyl €N, f  maps
N N My onto N Ny MY, tp.(N, M) does not fork over N (y Mg, tp.(N,H%) does
not fork over M% "\ NN ny My < M. As || M }] > AL w.log tp(Ng 4. NE) is
constant for i <u* and {Ng it <wp*] is independent over
(M, UMY YN, NE).

If Asu* let M) be prime over N |y (JNqay4 (exists by the (<=,2)-
i<A
existence property). So wlog. M, <M, and we shall show that M, is not
| T{*-model homogeneous, thus getiing a contradiction hence every mode! of
T of power > A{T) is model homogeneocus thus finishing the proof . The non
|7|*-model homogeneity of M, is exemplified by My N N, ¥, n N,and
f 1 (MgNN). For this it suffices to prove that f (¢p+ (N¢a,» MoNNV)) is not real-
ized in M,, so suppose N* realizes it, N*<M,. So N* <M. Easily
tp. (N*, M \UM® JN) does not fork over N, (as M, is atomic over N {y U Ngoai)
i<A

and we have chosen N such that ¢p,(N,M°) does not fork over #° N so by 1
0.1, tp.(N* |y N,H° does not fork over M® N\ N, so tp.(N*, % does not fork
over M° M\ N. So N* realizes over M° the stationarization of
S (&P« (Negys N N My)) so we can show that it realizes f (fpe(Nq,».HMg)), con-

tradiction.

If A= p* we can "lengthen” {Ng ,;:t < u*} and the proof is similar.
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Cn decomposable sentences for finite models

Saharon Shelah

A Definition : Suppose ¥ = ¥(P,§) (i.e. ¥ is first order depending on
the predicates P = <PQ:(7, <n>, Q= <QQ:Q <n>, If the truth value of
(A,P.@) F¥(P,@) depend on the isomorphism types of (4,P) and (4,8) only,
we call Y(P,§) decomposable.

If this holds for all finite models we call ¥(P,@) finitely decomposable.

Let Ky = §(4,9); 3P such that (4,P.@) E ¥}

B. Claim: If ¥(P,d) is decomposable then there are ¥o(P), ¥%(@) such
that we can compute the truth value of (4,P,@) E¥¢ from the truth
values of (4,P) F 94(P) and (4.9) k 9%(9).

Proof : Use saturated models.

C. Conclusion: If (P, ) is decomposable then there are
9, (@)(m <mg) such that each K} = {M € Ky llM]l =A} is the class of
models of 9,,(§) where m depends on A (and is the same for all infinite

cardinals).

1. Example: We deal with models with universe n ={0,1,...,n—1},
{n < w arbitrary).

We shall find sentences ¥{(P,@),¢{P) (not depending on n) such that

1) the truth value of {n,P.®) F ¥%(P,@) depend on the isomorphism
type of (n,P) and (n,8) only

2) ¥(P.@) - ¢(P)
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3) in each finite power ¢(P) has a unique model.

4) For n<a (quite large), the set
K, ={(n,Q): @P)[(n.P.@) E¥(P.Q)1}

is not definable (among models of the right signature and power n) by any

first order sentence of size = 2%°vn (and even such quantifier depth.)

Remark: We do not try to improve the bounds appearing here, clearly
n(1/2+8) suffices (for any positive &).

2. Construction: Let ¢(P) just say that (n,P) is a model (n,+,%,0,1,<)
satisfying the reasonable rules of arithmetic (addition , product) (but not
necessarily the standard ones). Let ¥ = (@) be such that

(A4,Q0,01,Q2.93.F1,Fo,+.X,0,1) Ev¥y iff @0691.92 are monadic relations
which form a partition of 4, @5 a monadic relation, @5 € &, also e%(+' X )
hold, F; F; are one place function from &; onto @3. (so Fg(z) is undefined for
z & @), and:

(Vz €@s)[z=F1(z) = Fy(z)]
(Vz.y € @[z =y=(Fa(z)=F1(y) » Fa(z) = Fa(y))]
(Ve.y € @3) (32 € @) Filz) =z Faz) =y]

Let K, ={M:|IM]|l =n, M E9, |Q¥|'° < |Q,| and | Q4| is even] (we can

replace "even” by anything reasonable.

Before we shall define a ¢, such that K, = K’i‘, we have to deal with

3. Question: If (n,P) E ¢(P), @ € M, can we define (by a short formula)
|@] in (n,P,Q), i.e. we want as formula ¥(z,P,Q) such that:
(n,P) E@(P), @ cn =>(n,P.Q) F(Vz) [|lyy <z}|=|Q| =9(z.P.9)]

The following approximation (and more) for this appeared in Deneberg

Gurevich and Shelah [2], and is included for completeness.

4. Fact: There is a formula ¥(z,P,Q) such that for every n and P, if
(n,P) E¢(P)and @ C n then (n.P,Q) E @z)¥(zx,P,Q) and F¥(z.P,Q) implies

1@l = llyy <z}l =|QI%Inn|? + 10
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Proof : Let ¥4(z,P,@) says that z is the first prime number such that
for every y 2z € @ : y # =z mod z (all arithmetic statements are inter-
preted by P).

Let (n,P) be for notational simplicity the usual arithmetic. So clearly
there is at most one such z and | Q| < z. Suppose that T < n and for every
prime |@|<p |Q]=<p =T, thereisapairy # 2 € @ so thatp dividesy—=.

Then 4 = TI (z—y)is divisible by B = II{p:p prime, |[§| <=p < T}. Hence
yz.z>§Q
B=<A;but 4 < 'n,“‘”a, whereas B = |@|™, where 7 is the number of primes in (
|@1.7), Soel@Flnn=pnlQI*> |@|T/n T=1Q1/1n(Q) = (¢ TInIQI/In T)e=19] hence

[1@%Inn + |Q|=T1In|Q|/InT
Henceife.g. T = |Q|?(In n)? ,n > 10 we get contradiction.

5. Fact: In 4) we can also define a one to one function from € into
{v:y <z}, and then we can do the same analysis on the image, replacing n by

fy:y <z}) (or even if you want, T = | @|3(ln n)?); so we get a new bound
1@l = [lyy <z =|QI*(In T)?

Soif e.g. | @] =3vVInn, we can find a one Lo one map from & onto an ini-
tial segment: as by the previous analysis w.lo.g @ c?/Inn, the funcion
g: @ >n,qg(z)=|{y € @y <z}| isrepresnted in (n,P).

6. Fact: There is a formula 9{z,y,P,&) such that if (n,P,@) E ¢(P,8),
@(P) A Po(P,Q), then ¥(z,y,P,Q) defines an isomorphism from (@s,+,X, - -)

onto an initial segment of (n,P).

Proof : By (5) we can do this for large enough initial segment, of power
k =VInn ; then we know that in a model of finite arithmetic, 2% is definable
as well as the representation of every € < 2% by a subset of & (using binary

representation). Doing it twice we finish.

7. The sentence ¥: So we have to describe the sentence ¥ such that
K, = K} for every finite m. It will be the conjunction of ¢(P), ¥4(&) and

another sentence which we describe what it says, rather than write it down.
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So let M =(A,P,@) Evs(@)r¢(P), |A| =n. For simplicity we ignore the
case some @y is empty. W.log (4,P) is the standard model. All considera-

tions are uniform in the sense they do not dependon n.

By (8) we can define the number |&;] hence the numbers
[@ol +1@¢] =n—]@s|. By (4) we can define an z such that:

@0l =z = |Q,1%2(Inn)?

We can also define the number Inn. We recall that |@,] is a perfect square
(by the functions Fg,F;). So there is a number y <n,y® = |@,|. Can we
define y in M?

It satisfies:

(N n—]@zl —y?<z = (n—|Qz|—y?3(n n)?

We have already defined all numbers appearing here (by suitable formulas)
except ¥ . So it sufices to show that (*) has a unique solution when ¥ € X, (as
then we can define it and write our demand on | @] which is n—|@,|—y?); if

however there are two solutions, then ¥ ¢ K,).

Now if M € K, | Q5] < |@,| and y, # y, are solutions, we get a contrad-

iction or ¥ < {In n)'% but then we can define | ;| directly.
8. Non definability of X, :

It is well known that two models of the theory of equality of power >n
satisfies the same first order sentence of quantifiers depth n. So by the Fefer-
man Vaught theorem (see [CK]), if M1 Qa=N1@Q, M@, =NI@, and

[@F| = |Q¥| + 1, (and M,N are finite) then M,N, satisfy the same first order
sentences of quantifier depth < |@) |, but M€ Y K, <> N& U K,.
n<a n.w

So we finish.
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Remarks on Squares.

The combinatorial principle square {and some variants) was introduced
by Jensen [J]. We have been interested in deriving weak forms of it from
ZFC, plus possibly restrictions on cardinal arithmetic, see [Sh 1], [Sh 2],
Magidor and Shelah [MS] and Abraham, Shelah and Solovay [ASS}. The mod-
est remarks appearing here were first intented to appear in [ASS]. I thank

Shai Ben-David for deleting inaccurances here.

Convention: A will be a fixed regular uncountable cardinal, § vary on

limit ordinals.
1. Definition : 1) We call C = < Cs:6¢ S> a square {or S-square) if:
(i) § € A is a stationary set.
(ii) for 6 € S, Cy is a closed unbounded subset of 6.

(iii) if 9 is a limit point of Cs where (6 €.5) then y€ S and
Cy=Csn 7

2) We say there is a diamond on C for x where C = < Cg: 6 € S>
is a square, if there are Ag ¢ 6 for § € § such that for every 4 C A:

{6 € S: Cs has order type = y and for every limit point ¥ of Cs 1 {6},

ANny=A43

It may be interesting to note that we can find square sequences on some

S from cardinality hypothesis only.

2. Lemma : 1) Suppose A =pu* u<X=u. Then we can find S (¢ < u)
such that :
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a) U Sg={0<A:cf 6<xi
E<p

b) for each ¢ < u, there is an Sg-square sequence <Ci 1€ S£> (so
C; € S¢for each i, otp (C;) < x).
2) Suppose A = ut*, u singular, (VO < w)[9<X < uj.

Then we can find S (¢ < p) such that :

a)U Se=6<Ah:cf §<x.cf §#cf up—S"(A). (S'(A)the bad set,
£<p
see [Sh 1]) and called it S*.

b) for each ¢ < wthere is a weak { < x)-square sequence < CE: i€ S£>
c)if 6 € Sgcf 6 <cf uthen C§f N S*c S,

d) if §€ S* cf 6>cf p then there are & <uly <cf u), such that
Cs* = Cf . and CP NSt U Sy,
7

Proof : 1) By Engelking and Karlowicz [EK] there are functions
fi 14 = pfor i <2 such that for any distinct 7, < 2¥(y < ¥' <x) and &, < u,
for some ¢ <p, f;(¢) = ¢, (for y <77). For each 6 < p* let <Bg CE< p,> be
a list of all subsets of 6 of power < x {possible as u = u<X). Now define a
function gg:u* » u, by gi) = f;({).

Now for each ¢ < p we define S¢

(*) S¢ is the set of limit ordinals 6 < u of cofinality < x such that

Bg‘st(,,) is a closed unbounded subset of 8, moreover for each accumulation

point 7 of Bf‘(a), Bls) = Bgag(é) nr

Clealy for every 7,0 as in (*) 7€ S; So condition b) is satisfied:
<B§6«:{5) 18 € S<> exemplify it.

Why condition a) holds? 1If 6§ <A, cf 8 <x, let Cs be a closed unbounded
subset of it of cardinality <x. Let for y € Cs U {83, &, <u be such that
Bl = Cs M 7 (possible by the choice of <BZ CE< u>). So by the choice of
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the functions f;, there is ¢ < u such that for every y € C5 U {6}.F,({) =&,
hence g.(7)= &, So easily 6 € 5.

2) Left to the reader (just see what proof of the theorem from [EK

gives).

2. Conclusion: If for simplicity G.C.H., x regular, u > x" A > ut* then
there is a x-square S with diamond on it. (see [ASS])

3. Question: Let A =pu* u regular, <>{6<A:cf s=u) a@nd assume G.C.H.

Is there a pu-square with diamond on it.

4. Lemmma: Let A be regular uncountable cardinal, £ a set of regular
cardinals <A, such that |R| <A, and (Vk € R) «* <A Then we can find
Sl € R) such that :

a) S, is a stationary subsets of A.

b) forevery § € S5, ¢f 8 =«.

c)if 8 € S, k1 # k3 then S, N6 is not stationary in 4.
Remark: In (d) only the case k3 < &, is relevant.

Proof : For every x choose pairwise disjoint stationary subsets
{S(ki) i <A} of {§<A:cf & =x}, such that «,i < Min S(x,i) (exists by
Solovay [So]). Suppose the lemma fails Now we define by induction on £ <A,
k¢€ S and (st k< K¢ K€ R>, and y(£,c) 7§ such that

(i) S§ ¢ S(k,7§) forx e ke N E)(ie k<Kgpk€ER
(ii) 7§ # y¢ for ¢ < € (when both are defined).

(iii) if 9<0<kp k€R, g€ RS€SE then S§ M & is not stationary in

(iv) the set Ty={6:8eyliS{kgi):i ¢ {75‘: ¢<€l, and no
Sflke R N “E) is stationary in &} is not stationary and so disjoint to some
club C¢ of A
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There is no problem is the definition: for each £ we define 7§, S§ by
indunction on & € E. 1f it impossible to choose S§ then the set defined in (iv)
for ¥ cannot be stationary {as then the lemma’s conclusion holds - remember
xi < Min S{k.i) and by Fodour Lemma for some 7y, S{k,y) T is stationary
and we could have choose Sff = S(kg7) NT. 7&=7. but we have assumed

this is impossible.

Now as |R| < A for some «,, A = {£ <A : k¢ = k,] has power A, and choose
BCA,|B|=«k}so|B| <A Let B=1{f, :e<k*}andso ¢ =& <A Hence
-4

thereis y <A suchthaty & {7§, :¢ < ¢}, and thereis 6 € S(ke.7) N N cée.

e<xg

Working carefully with the choice of c¥ we see that for each & <xF

Sn{uy Sf' ) is stationay in 8. So an ordinal of cofinality &, has &7 pairwise
k<K,

disjoint stationary subsets, contradiction.
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