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ABSTRACT 

The main result of this paper is that if V satisfies GCH and ~o~ < ~t < It are 
arbitrary regular cardinals, then in some cardinal preserving forcing extension 
W of V we have ~ <~ = )t = 2~0, It = 2 ~ and there are a hereditarily separable 
X C2 ~ with IX I = 22"°=it and a hereditarily Lindel6f Y C2" with w ( Y ) =  
22-0 = it. So far similar results have only been obtained under the assumption of 
CH. 

In [1] Hajnal and Juh~isz proved the following inequality: if X is a Hausdorff 

space then [ X [ _--- 22"x~. Considering the most important particular case s (X) = No 

this says that a Hausdorff space X of countable spread has cardinality =< 22"°. 

Somewhat later, in [3], they showed that this inequality is - -  at least consistently 

- -  sharp by constructing a generic extension in which CH holds and there is an 
even hereditarily separable (in what follows HS) subspace of 2 ~' that has 
cardinality 2 ~' = 22"°. On the other hand S. Todor~evi6 has recently shown in [9] 

that it is consistent that every Hausdorff space of countable spread be of 
cardinality _--< 2~0; in his model 2 "o = 2",. Thus the natural question, originally 

raised by J. Gerlits, arose whether 2 ~, is the real upper bound for the size of a 

Hausdorff space that has countable spread (or is HS)? These questions were 
explained in detail in [4]. 

There is an analogous (or dual) question concerning Hausdorff spaces that are 

hereditarily Lindel6f (HL, in short). Here there is the classical inequality of de 

Groot: IXI < 2 h(~) for X Hausdorff, in particular IXl =< 2 -0 if X is also HL. Here 
the question is whether the weight of X, for which 2 Ixf is a trivial upper bound, 

could actually be as large as 22"(×'. Here we had the result of Hajnal and Juh~sz 
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from [2] showing again that the answer is consistently "yes",  at least in a model 

satisfying CH, raising again the problem whether 2", is the correct upper bound? 

Let us note here parenthetically that we do not have an analogue of Todor~eviCs 

result here; this is probably because this question is closely related to the 

celebrated, and still unsolved, L space problem. 

The aim of this paper is to answer both of the above questions by constructing 

(consistent) examples of Hausdortt  and 0-dimensional HS (HL) spaces X such 

that IXI = 2  c (w(X)- -2c ) ,  while c = c <c and 2 c are both as large as you wish. 

This shows that in the above inequalities the upper bounds 2 2"x~ (or even 2 2"~x~) 

and 2 2"'~ respectively cannot be replaced with anything better, at least in ZFC. 

Actually the example we construct yields a little stronger result in that the 

spaces obtained will be strongly HS (HL), i.e. all their finite powers will also be 

HS (HL). This approach to the construction has the additional advantage that, 

via passing to the dual, one case immediately yields the other. 

THEOREM 1. Suppose that, in V, to < A < i~ are cardinals and there is a map 

F : # x A --~ A satisfying the following two conditions (*) and (**): 

(*) : I f  n,k  E to, {ae : ~ E tol} C I.t" and {b U be:~:~ tol}Z[A] <~ is a A-system 

with root b and t b~ I = k for each ~ E to~, then there exist ~ < ~1 < to~ such that 

(*1) if v @ b~ and F(a~, v ) E  b U b~ then 

= 

(*2) if i,j < n and r < k then 

F(a~ ,v~)=  F(a~,v~) implies F(a~,v~)= F(a~,~,'~). 

(O f  course, here ae = (a~" i < n) and be = {v~: r < k}, where v~ is the rth element 

of be in its natural increasing order.) 

(**): For every a E [/z]<~ we have 

I{~ E X : t{F(a, v): a E a}l = l a I}1 > to. 

I f  w is the generic extension of V obtained by adding A Cohen reals to V then in 

W there is a strongly HS space X with IX  [ = tz and a strongly HL space Y with 

w(Y)  =/z. 

PROOF. We consider iV as the extension determined by a Cohen generic map 

h :A x A---~2, 

i.e. the notion of forcing used is the set H(A x A) of all finite partial functions 

from A x A to 2 with the extension of functions as the partial order. 
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For any a ~ / z  we define, in W, an element x~ E 2 ~ as follows: 

x~(u) = h ( v , F ( a ,  u)) 

for all u @ 3.. We first show that 

X={xo:4 Eu} 

is as required. 

To see that Ixl consider {a,/3} E [~]2 and any condition p E H()t x )t). 

Applying condition (**) to a = {a,/3} we can choose u E ;~ not mentioned in p 

such that F(a,  u) ~ F(/3, u). Then 

q = p U {((v, F(a,  v)),0), ((1, F(/3, v)), 1)} 

is an extension of p that forces x ~ ( v ) ~  x~(v), hence clearly xo~ x~ in W. 

Now, to see that X is strongly HS we show that for every n E o~ there is no left 

separated subspace in X" of type w,. Since a basic neighborhood of any point 

f E 2 ~ is specified by fixing a finite subset d of )t, more precisely by f [ d ,  we 

consider, in W, maps 

s:w~--->~" and e:wl--->[A]<L 

We want to show that {x,(c): ~ E to~} is not left separated by the neighborhoods 

determined by e(~) for s(~), i.e. that there are s c < r / <  w~ such that 

x ,{c>., D x ~<,o.ir e ( rl ) 

for each i < n. 

A standard A-system and counting argument allows us to assume that 

e ( ~ ) n  e ( 7 / ) = O  if ~ r / .  

Let p E H(A x A) be a condition that forces all this for suitable names g and 

of s and e, respectively. 

For each ~ ~ <o~ we may choose, in V, an extension Pc of p as well as otc E /z"  

and dc E [,~]<= such that 

PcLFs(s c) = ac A ~(s c) =d¢.  

We may assume that for each 

D(pc) = (b U be) 2, 

where {b U b~ : ~ E wl} C [A ]<+ is a A-system with root b, ] bc [ = k for all ~ and 

Pc r b2 = P, r b 2 
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for all ~:, -q G Wl. In particular then Pe and p, are compatible ,  hence we must have 

d~Dd .  = Q  

if ~ / - q .  Thus we may also assume that d~ C be for all ff E ~o,. 

Let  us write oe e = ( a ) :  i < n) and b e = {v): r < k}. For  s ~ E ~o, and r < k we put 

E_~ = {(i,j) ~ n2:F(a~, u;) = F(ee*e, u;)}. 

W.l.o.g. we can assume that 
E;= E', 

holds whenever  ~:,-q E co~ and r < k. 

Let  ~: < rl < oJ~ be chosen satisfying (*) with respect  to this {ae : ~: E ~o,} and 

{b U be:~: ~ ~o,}. We may then define an extension q of p~ U p~ such that if 

F(a ; , v~ ) f f b  O b. then 

• i r r q ( v , , F ( a  ~, v~)) = p,(v~,F(ai, ,  v 0 )  [ = q(v,,F(a'7, v;,))]. 

Since E~ = E' ,  and (*2) hold, this can be done  without any conflict for  different i 

and j. Moreover ,  by (*1) this equali ty is automatical ly valid for  F(a~, #~) @ b U b, 
as well. Consequent ly  we have 

q IFx~ Dxo~ [d~ 

for every  i < n. It is s tandard to show that this implies 

p IF (::ls~ < "q < o9,) (Vi < n) (x~<e),, D xe¢,),,[ ~ 0/)) ,  

hence {x~c~: s ¢ ~ o),} cannot  be left separated.  

Let  us now turn to the dual Y of X, i.e. for u E A we let y, C 2" be specified by 

y~(a)  = x~(v) = h(v,F(a,  v)) 

for each a E/x ,  and 
Y - - { y ~ : u E A } .  

It is known that then Y is strongly H L  (see e.g. [8]), and w ( Y )  = / x  will follow if 

we show that Y is dense in 2". 

To  see this let e E H( /x) ,  p ~ H(A x A) and applying (**) to a = D ( e )  pick 

u E A such that v does not occur  in p and 

] { F ( a , u ) : a  E a}] = [a [. 

We may obviously find an extension q of p which satisfies 

q(v,F(a,  .))  = s (a )  
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for every a ~ a = D ( e ) ,  and then 

qlFe Cyv. 

This clearly shows that Y must be dense in 2". 

Of course, Theorem 1 is only useful if a map F with properties (*) and (**) can 

indeed be constructed for large A and IX. 

The next result serves exactly this purpose. 

THEOREM 2. Suppose that ool < A < Ix are regular cardinals in V such that 

A ~ = A and Ix ~ = Ix. Then there is a notion of  forcing (P, <= ) in V such that V e 

has the same cardinals as V, A ~ = A and 2 ~ = IX hold in V P, moreover there is in 

V ~ a map  F : IX x A ~ A satisfying (*) and (**). 

PROOF. We intend to define P as the set of all fragments of F of size < A, 

hence the elements of P will be all triples of the form 

p = (A,  B , f ) ,  

where A E l # ]  <~, B E[A] <~ and 

f : A  x B ~ B ,  

which satisfy the appropriately restricted version of (*): 

(*)p" If n, k E ~o, {at : ~ E ~o1} C A ° and {b U b~ : ~ E to1} C [B] <~ is a A-system 

with root b and I bt I = k for all ~ C o21, then there are ~ < r / <  to~ such that 

• ~ v ) C b U b ~  then (*l)p if v C b~ and f(ae, 

i i 
= f(o  , , ) ;  

(*2)p: if i , j  < n and r < k then 

_ o / j  r • j r f ( a  ~, v~) - f (  ~, v~) implies f (a  ~, v~) = f (ae ,  v,). 

The partial order -< of extension on P is defined as follows: If p = (AP, BP, f p) 

and q =(A" ,Bq,  f 0) are in P then p -<q  if and only if 

(i) A 2 A", /3 2 B F 2 P ; 
(ii) if a E A O \ A "  and A ~ / Q t h e n t h e r e i s a / 3 C A  q such t h a t f f ( a , v ) =  

fP(fl, v)  for all v E B q ;  

(iii) if v ~ B P \ B  q and {o,,/3}~ [A"] ~ then 

fP(ol, v ) ¢  fP(fl, v). 

It is straightforward to check that < is indeed a partial order• 

Next we show that (P, =< ) is a -closed, more precisely that if 7/is a limit ordinal 

less than a and Pe =(Ae ,  Bt, f e ) ~ P  for ~:E'O are such that ~ < ~ < r t  implies 
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P~>--pothenwithA = U { A ~ : ~ E v } , B = U { B e : ~ / } a n d f = U { f  e : ~ 7 7 }  
we have 

p = ( A , B , f ) E P  

and p <_- pe for all ~ E ~/. The second part of the conclusion being obvious, we 

concentrate on showing that p E P, i.e. that (*)p is valid. If cf(~/)# ~ol this is 

obvious again, hence we may assume that actually ~/= ml. 

Now consider {ae : ~ ~ oJ~} C A" and {b U be : ~ E to1} C [B ]lbl+k" as in (*)p. With 

suitable reindexing if necessary, we may assume that Ao # O, b C Bo and that 

ae E A ~, be C B~ for each ~ E oJ1. 

We may also assume that, for every i < n, the sequence (a~: ~ E ~ol) is either 

constant or one-to-one. 

With an application of Fodor's pressing down lemma we may pass to the case 

in which, using the notation /~e = U {B, : r / <  ~}, we have 

/~, = b, n#, CBo 

for every ~ ~ tot. Of course we may assume that the set {r E k : v~E/~e} is the 

same for all ~ U to~. Let uS put b~= b~\/~,. 

For any limit ordinal ~ E to~ and v E b~ consider the sequence of values 

(f(a~, v): ~ ~ 7/) for some fixed i < n. By the above and by (iii) this sequence is 

either constant or one-to-one. Since b U b, is finite it follows that in the second 

case there is some ordinal ~o(7/) < 7/ such that f(a~, v)~- b U b~ if ~ ( r / ) ~  ~: < r/. 

Hence another pressing down argument allows us to assume that whenever 
! i i i 

< T/, i < n and v E b~ then f(a~, u) E b U b, implies f(ae, v) = f(a~, v), i.e. the 

conclusion of (*l)e holds. 
f(a~, v) - f(a~, v) implies Also, by (iii) again, if ~ < r l  and v ~ b "  then ' - 

ot~, hence the conclusion of (.2)~ holds trivially. Thus we see that it remains 

to check (*)e with /~e replacing be. 
Next, applying (ii), for every ~ ~ to~ and i <  n we may choose an ordinal 

/ 3 ~  Ao such that (/3~= ot~ if ' a , E  Ao and) fo r  every v ~ Be 

f (a~,v)  = f (~ , ,v ) .  

We may then apply (*)~ to {/~e : ~ ~ ~o,} C A ~ and {b U/~e : ~ E w,} C IBo] <° to 

obtain ~ < ~ satisfying (*1)~ o and (.2)~. It is obvious, however, that these ~ and ~/ 
will also satisfy (*l)p and (*)~ as well. 

The next step in our proof is to show that (P, < )  satisfies the A +-antichain 

condition. Since A <~= A, it is straightforward to show that among any Z + 

members of P there are two with the same B and isomorphic over B. 
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Consequently it will suffice to show that if p = (A, B, f) and p'  = (A ', B, f') are 

two conditions with the same B and isomorphic over B then q = 

(A U A ' ,B, f  U f' = g) is in P and q <= p,p'. (By p and p' being isomorphic over 

B w e m e a n t h a t f [ ( A N A ' ) x B = f ' I ( A O A ' ) × B ,  t p A = t p A ' a n d i f a ~ a '  

is the unique order isomorphism of A onto A '  then f(a, u) = f'(a',  u) holds for 

every a E A and u E B.) 

Let us first show that q E P ,  i.e. that (*)q is valid. Thus we consider 

{ae :£ E to~} C(A U A')" and a A-system with root b, {b U be :£ E to~} C [B] tbl÷k. 

W.l.o.g. we may assume that there is an l = k such that for all ~ E to~ 

a ~ E A , ~ , i < l .  

For every ~: E to~ and ] E k\l  let/3~E A be such that a~ = (/3~)' and for i < l we 

simply put/3~ = a~. Now (*)p can be applied to {fie "~: E to1} and {b U be :~ E to~}, 

and it is obvious that if ~ < r/ satisfy (*l)p and (*2)p then they also satisfy (*l)q 

and (*2)q as well. 

To see, e.g., that q =< p note first that (i) and (iii) are trivially satisfied. As for 

(ii), let a ' E  A ' \A ,  then for a E A we have 

g(a', u) = f'(a', u) = f(a, u) = g(a, u) 

for all u E B, i.e. (ii) is also valid. 

Now, for any a E/z  and v E h let us put 

D ~ = { p : a E A  ~} and E ~ = { p : u E B ~ } .  

We claim that both De and Ev are dense in (P, =<). Let us first consider 
p = (A,B, f )  E P and a E /z \A .  We define an extension 

q =(A  U{a} ,B ,g )ED~ 

of p as follows. If A = 0 then g :{a} x B ---> B can be chosen arbitrarily. If there 

is some /3 E A  then we define g D f  for all ( a , u ) E { a } x B  by 

g(a, u) = f(/3, u). 

To see that q E P let us check first that (*), holds. To this end consider 

ae E (A U {a}) n and b U be C B for ~: E to1. If A = O then a ~ = a for all ~ and i 

hence for any ~: < ~7 < to, both (*l)q and (*2)q are trivially valid. If, on the other 

hand, A fi O then replacing every occurrence of a as a ~ with/3 we are back in p 

and it is obvious that if ~ < 77 satisfy (*l)p and (*2)p then they satisfy (*l)q and 

(*2)q as well. It is also obvious that q _-< p. 
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Now assume that p is as above and u E A \B. We then first pick a set H C A \B 

with u E H such that 

IHI=IAI+oJ, 

and then define a function g:A x H ~  H such that if (a, u), (a', u')E A x H 
then g(a ' ,  u) = g(a ' ,  u') implies a = a '  and u = u'. It is clear that such a g exists. 

We claim that 

g=(A, BUH, fUg)  

is in P, hence in E~, and that q = p. 

To see this let {de : ~ E to1} C A" and {b U be : ~ E o91} C [B U H] jbl+k be as in 

(*)q. We may assume that for each i <  n the sequence (a~:s ¢ E too is either 

constant or one-to-one. 

If i <  n is of the latter kind and u Eb~ N H then the sequence 

(g(a~, u): ~ E 7/) is also one-to-one, hence we may assume that g(a~, u) ff b U b~ 

whenever ~ < r/. Thus in this case for any two ~ < rl and u E b~ N H (*l)q is 

valid. Also, if i _- g(ae, u ) g(a~,u) and for s¢<'O and uEbn NH then actually 

a~= a~, and thus, for such a u, (*2)q is also valid. 

We may assume that the set {r E k : u~E be n B} is the same for all ~ E to1. 

Thus if ~ < 77 are chosen in such a way that (*l)p and (*2)p be satisfied for 

{t~e : s ¢ E tOl} and {(b U be) n B :~ E w~}, then (*2)q is also satisfied Finally if 

u E b~ n B then for any i <  n we have f(a~,v)EB, hence f(a~,u)E b U b~ 
i i 

implies f(a~, u) E (b U b~) n B and thus by (*l)p f ( a  e, u) = f(a~, u), showing that 
(*l)q holds. To show that q _-< p, only (iii) requires checking, but it follows 

immediately from the fact that g is one-to-one. 

Now, if G C P is P-generic over V then 

F= U{fP:pEa} 

is a map in V[G] with D(F) =/x x ,~ and R(F)C)t, because both the D,  and E. 

are dense. Moreover, since col < I and P is ,~-closed it is easy to see that 

whenever {at : ~ E w~} C/x" and {b U be : ~ C o)1} C [A ]<~ there is a p ~ G with 

{at :~ E ~o~} C (A p)" and {b U b~ :~: E w,} C [B p ]<~, consequently F satisfies (*). 

To see that F satisfies (**) take any a E [/x]<L Again there is a condition 

p E G with a CA p. Now it follows from (iii) that whenever u E A\B p then 

I l F ( a , . ) :  a E a}l = la I. 

In particular we get that the maps F ( a , - ) :  ,~ ~ A obtained by fixing a E tz in F 

are pairwise distinct, hence l/z I_  -< 2 ~ in V[G]. 
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The A-closedness of P implies that cardinals _-< A are preserved and that 

A <~ = A remains valid in V[G]. The A+-antichain condition implies that the 

cardinals above A stay alive. From IX ~ -- IX it follows that [ P I = # as well, hence 

by counting names one easily gets that 2 ~ _<- tt in V[G]. Thus, in fact, 2 ' =/x. 

This completes the proof of Theorem 2. 

From Theorems 1 and 2 we immediately obtain the following result, which 

corresponds to our claims in the introduction. 

COROLLARY 1. I f  V satisfies GCH and ~ol < A < Ix are arbitrary regular 

cardinals in V then there is a cardinal preserving generic extension W of V in which 

2"" = A = A <~, 2 ~ = 2 2" '̀ = /z  and there exist a strongly HS O-dimensional Haus- 

dorff space X with IX[ = 2 2-" and a strongly HL O-dimensional Hausdorff space Y 

with w (Y) = 2 2"". 

PROOF. Indeed, the notion of forcing to be used is P *  H(A × A), where P is 

as in Theorem 2. It is well-known that 2 N,, = A and 2 2"o=/~ will then be valid in 
W = V e*H(~×~. 

Before we describe another application of the above results we first recall a 

result of Kunen and Roitman in [6], where they proved that if X is Hausdorff 

and c f (g(X))=  1% then actually g ( X ) <  2 N'. 

S. Shelah has recently shown that the following is true in general: if X is 

Hausdortt  then 

g(X)  < 2 2c"`×'' 

i.e. if cf(g(X)) is uncountable then another exponent appears in the upper 

bound. Now, we show that this result is best possible. 

COROLLARY 2. It is consistent with ZFC to have, e.g., 2'~", = N2 = 2",, 2 2"'= 

2 "= = I~,+~ and there is a Hausdorff space X with g (X)  = N~,. 

PROOF. Let us apply Corollary 1 to the case in which a = N2 and /z  = N,o,+l. 

We then have in W the required cardinal arithmetic and a HS subspace S of 2 * 

with I SI = ~,o,. Now, we may apply the methods of [7] (see also [5], 7.4) to S to 

obtain a finer topology on S such that the resulting (obviously Hausdorff) space 

X satisfies ~ ( X ) =  g ( X ) =  ~ , .  

In the above model, when we start with a ground model V satisfying GCH, we 

shall also have 2"° = I,l~,+, whenever 2 < a < o~,. However,  if we start with V in 

which 2 ' '  = N2, 2 "2 = 1%,+, and 2 =< a </3 < (o, implies 

( + )  2"o < 2%, 

Sh:231



364 I. JUH,~SZ AND S. SHELAH Isr. J. Math. 

then we can still apply Theorems 1 and 2 for k = ~2 and/z = ~ol+t to obtain the 

conclusion of Corollary 2. Similarly as in [5], 7.4 it can be shown then that o(X) ,  

the number of open subsets of X, satisfies 

o (X) = 2 <2"'', 

hence, because ( + )  remains valid in the extension, we get c f ( o ( X ) ) =  to, and at 

the same time 2", = ~1: < o(X) .  

To conclude, let us remark that all the results of this paper may be lifted in a 

straightforward manner to obtain, e.g., hereditarily K-separable spaces of 

cardinality 2 2~ and hereditarily K-Lindel6f spaces of weight 2 2- where 2 ~ = k = 

k <~ and 2 a =/.t are arbitrarily prescribed regular cardinals such that K+< k < 
/Z =/Z ~. 

Another result that we mention here without proof is that if CH holds in V 

then a function F: /z  x t o ~  to~ with/x = 2 "1 can be constructed that satisfies (*) 

and (**), hence after adding N~ Cohen reals to V strong HS (resp. HL) spaces of 

size (weight) 2" = 2 2-0 will exist. This conclusion however is not new, because it 

has been known (cf. [4], 2.9) that strong HFD (HFC) spaces of this size (weight) 

exist in such a model. 
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