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Abstract This article continues Rosłanowski and Shelah (Int J Math Math Sci
28:63–82, 2001; Quaderni di Matematica 17:195–239, 2006; Israel J Math 159:109–
174, 2007; 2011; Notre Dame J Formal Logic 52:113–147, 2011) and we introduce
here a new property of (<λ)-strategically complete forcing notions which implies that
their λ-support iterations do not collapse λ+ (for a strongly inaccessible cardinal λ).
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1 Introduction

The systematic studies of iterations with uncountable supports which do not collapse
cardinals were intensified with articles Shelah [13,14]. Those works started the devel-
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604 A. Rosłanowski, S. Shelah

opment of a theory parallel to that of “proper forcing in CS iterations”, but the drawback
there was that the corresponding properties were more like those in the case of “not
adding new reals in CS iterations of proper forcings”. If we want to investigate cardinal
characteristics associated with λλ (in a manner it was done for cardinal characteristics
of the continuum), we naturally are interested in iterating forcing notions which do
add new elements of λλ. The study of λ-support iterations of such forcing notions (for
an uncountable cardinal λ) has a quite long history already. For instance, Kanamori
[6] considered iterations of λ-Sacks forcing notion (similar to the forcing Q2,Ē ; see
Definition 3.7 and Remark 3.8) and he proved that under some circumstances these
iterations preserve λ+. Fusion properties of iterations of other tree-like forcing notions
were used in Friedman and Zdomskyy [4] and Friedman et al. [3]. In particular, they
showed that λ-support iterations of a close relative of Q2

λ from Definition 3.1 do not
collapse λ+. Several conditions ensuring that λ+ is not collapsed in λ-support itera-
tions were introduced in a series of previous works Rosłanowski and Shelah [8–12].
Also Eisworth [2] introduced a condition of this type. Each of those conditions was
meant to be applicable to some natural forcing notions adding a new member of λλ

without adding new elements of <λλ. In some sense, they explained why the relevant
forcings can be iterated (without collapsing cardinals).

In the present paper we introduce semi-pure properness (Definition 2.3) and we
show that for an inaccessible cardinal λ, λ-support iterations of semi-purely proper
forcing notions are proper in the standard sense (Theorem 2.7). The cases of successor
λ and/or weakly inaccessible λ will be treated in a subsequent paper [7].

The semi-pure properness is designed to cover the forcing notion Q2
λ mentioned

above (and its relatives given in 3.1, 3.7), but we hope it is much more general.
This property has a flavor of fuzzy properness over quasi-diamonds of [10, Definition
A.3.6] and even more so of being reasonably merry of [11, Definition 6.3]. There is
also some similarity with pure B∗-boundedness of [11, Definition 2.2]. However, the
exact relationships between these and other properness conditions are not clear.

While there are some similarities between conditions studied so far, we are far
from the state that was achieved for CS iterations and the concept of properness. The
considered properties are (unfortunatelly) tailored to fit particular forcing notions and
they do not provide any satisfactory general framework covering all examples. The
search for the “right” notion of λ-propernes is still far from being completed.

Basic definitions concerning strategically complete forcing notions, their iterations
and trees of conditions are reminded in the further part of the Introduction. In the
second section of the paper we prove our Iteration Theorem 2.7 and in the following
section we present the forcing notions to which this theorem applies. Some special
properties of and relationships between the forcings from the third section are inves-
tigated in the fourth section.

1.1 Notation

Our notation is rather standard and compatible with that of classical textbooks (like
Jech [5]). However, in forcing we keep the older convention that a stronger condition
is the larger one.
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More about λ-support iterations 605

(1) Ordinal numbers will be denoted be the lower case initial letters of the Greek
alphabet (α, β, γ, δ . . .) and also by i, j (with possible sub- and superscripts).
Cardinal numbers will be called κ, λ; λ will be always assumed to be a regular
uncountable cardinal such that λ<λ = λ; in most instances λ is even assumed
to be strongly inaccessible.
Also, χ will denote a sufficiently large regular cardinal; H(χ) is the family of
all sets hereditarily of size less than χ . Moreover, we fix a well ordering <∗

χ of
H(χ).

(2) We will consider several games of two players. One player will be called Generic
or Complete or just COM, and we will refer to this player as “she”. Her opponent
will be called Antigeneric or Incomplete or just INC and will be referred to as “he”.

(3) For a forcing notion P, all P-names for objects in the extension via P will be
denoted with a tilde below (e.g., τ˜ , X˜ ), and G˜ P will stand for the canonical P-
name for the generic filter in P. The weakest element of P will be denoted by ∅P

(and we will always assume that there is one, and that there is no other condition
equivalent to it).
By “λ-support iterations” we mean iterations in which domains of conditions are
of size ≤ λ. However, on some occasions we will pretend that conditions in a
λ-support iteration Q̄ = 〈Pζ , Q

˜ ζ : ζ < ζ ∗〉 are total functions on ζ ∗ and for
p ∈ lim(Q̄) and α ∈ ζ ∗\dom(p) we will let p(α) = ∅̃Q

˜ α
.

(4) A filter on λ is a non-empty family of subsets of λ closed under supersets and inter-
sections and do not containing ∅. A filter is (< λ)-complete if it is closed under
intersections of <λ members. (Note: we do allow principal filters or even {λ}.)
For a filter D on λ, the family of all D-positive subsets of λ is called D+. (So
A ∈ D+ if and only if A ⊆ λ and A ∩ B 
= ∅ for all B ∈ D.) By a normal filter
on λ we mean proper uniform filter closed under diagonal intersections.

(5) By a sequence we mean a function whose domain is a set of ordinals. For two
sequences η, ν we write ν � η whenever ν is a proper initial segment of η, and
ν � η when either ν � η or ν = η. The length of a sequence η is the order type
of its domain and it is denoted by lh(η).

(6) A tree is a �-downward closed set of sequences. A complete λ-tree is a tree
T ⊆ <λλ such that every �-chain of size less than λ has an �-bound in T and
for each η ∈ T there is ν ∈ T such that η � ν.
Let T ⊆ <λλ be a tree. For η ∈ T we let

succT (η) = {α < λ : η〈α〉 ∈ T } and (T )η = {ν ∈ T : ν � η or η � ν}.

We also let root(T ) be the shortest η ∈ T such that |succT (η)| > 1 and
limλ(T ) = {η ∈ λλ : (∀α < λ)(η�α ∈ T )}.

1.2 Background on trees of conditions

Definition 1.1 Let P be a forcing notion.

(1) For an ordinal γ and a condition r ∈ P, let �
γ
0 (P, r) be the following game of

two players, Complete and Incomplete:
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606 A. Rosłanowski, S. Shelah

the game lasts at most γ moves and during a play the players construct a
sequence 〈(pi , qi ) : i < γ 〉 of pairs of conditions from P in such a way
that

(∀ j < i < γ )(r ≤ p j ≤ q j ≤ pi )

and at the stage i < γ of the game, first Incomplete chooses pi and then
Complete chooses qi .

Complete wins if and only if for every i < γ there are legal moves for both
players.

(2) We say that the forcing notion P is strategically (<γ )-complete (strategically
(≤γ )-complete, respectively) if Complete has a winning strategy in the game
�

γ
0 (P, r) (in the game �

γ+1
0 (P, r), respectively) for each condition r ∈ P.

(3) Let a model N ≺ (H(χ),∈,<∗
χ ) be such that <λN ⊆ N , |N | = λ and P ∈ N .

We say that a condition p ∈ P is (N , P)-generic in the standard sense (or just:
(N , P)-generic) if for every P-name τ˜ ∈ N for an ordinal we have p � “τ˜ ∈ N”.

(4) P is λ-proper in the standard sense (or just: λ-proper) if there is x ∈ H(χ) such
that for every model N ≺ (H(χ),∈,<∗

χ ) satisfying

<λN ⊆ N , |N | = λ and P, x ∈ N ,

and every condition q ∈ N ∩ P there is an (N , P)-generic condition p ∈ P

stronger than q.

Definition 1.2 (Compare [10, Def. A.1.7], see also [9, Def. 2.2])

(1) Let γ be an ordinal, ∅ 
= w ⊆ γ . A (w, 1)γ -tree is a pair T = (T, rk) such that
• rk : T −→ w ∪ {γ },
• if t ∈ T and rk(t) = ε, then t is a sequence 〈(t)ζ : ζ ∈ w ∩ ε〉,
• (T,�) is a tree with root 〈〉 and
• if t ∈ T , then there is t ′ ∈ T such that t � t ′ and rk(t ′) = γ .

(2) If, additionally, T = (T, rk) is such that every chain in T has a �-upper bound
it T , we will call it a standard (w, 1)γ -tree
We will keep the convention that T x

y is (T x
y , rkx

y).

(3) Let Q̄ = 〈Pi , Q
˜ i : i < γ 〉 be a λ-support iteration. A tree of conditions in Q̄ is a

system p̄ = 〈pt : t ∈ T 〉 such that
• (T, rk) is a (w, 1)γ -tree for some w ⊆ γ ,
• pt ∈ Prk(t) for t ∈ T , and
• if s, t ∈ T, s � t , then ps = pt�rk(s).
If, additionally, (T, rk) is a standard tree, then p̄ is called a standard tree of
conditions.

(4) Let p̄0, p̄1 be trees of conditions in Q̄, p̄i = 〈pi
t : t ∈ T 〉. We write p̄0 ≤ p̄1

whenever for each t ∈ T we have p0
t ≤ p1

t .

Note that our standard trees and trees of conditions are a special case of that [10,
Def. A.1.7] when α = 1.
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More about λ-support iterations 607

2 Semi-purity and iterations

In this section we introduce a new property of (<λ)-complete forcing notions: semi-
pure properness. Then we prove that if λ is strongly inaccessible, then λ-support
iterations of semi-pure proper forcing notions are proper in the standard sense (so they
preserve stationarity of relevant sets and do not collapse λ+).

Definition 2.1 Let f : λ −→ λ + 1. A forcing notion with f -complete semi-purity
is a triple (Q,≤, ≤̄pr) such that ≤̄pr = 〈≤α

pr: α < λ〉 and ≤,≤α
pr are transitive and

reflexive (binary) relations on Q satisfying for each α < λ:

(a) ≤α
pr ⊆ ≤,

(b) (Q,≤) is strategically (<λ)-complete and (Q,≤α
pr) is strategically (≤κ)-com-

plete for all infinite cardinals κ < f (α).

If (Q,≤, ≤̄pr) is a forcing notion with semi-purity, then all our forcing terms (like
“forces”, “name”, etc) refer to (Q,≤). The relations ≤α

pr have an auxiliary character
only and if we want to refer to them we add “α-purely” (so “stronger” refers to ≤ and
“α-purely stronger” refers to ≤α

pr).

Remark 2.2 Note that unlike in [11, Definition 2.1], in semi-purity we do not require
any kind of pure decidability.

Definition 2.3 Let f : λ −→ λ + 1 and let (Q,≤, ≤̄pr) be a forcing notion with
f -complete semi-purity. Suppose that D is a normal filter on λ (e.g., the club filter).

(1) A sequence Ȳ = 〈Yα : α < λ〉 is called an indexing sequence whenever ∅ 
=
Yα ⊆ αλ and |Yα| < λ for each α < λ.

(2) For an indexing sequence Ȳ , a system q̄ = 〈qα,η : α < λ & η ∈ Yα〉 ⊆ Q

and a condition p ∈ Q we define a game �aux
Ȳ

(p, q̄, Q,≤, ≤̄pr, D) between
two players, COM and INC as follows. A play of �aux

Ȳ
(p, q̄, Q,≤, ≤̄pr, D)

lasts λ steps during which the players choose successive terms of a sequence
〈(rα, Aα, ηα, r ′

α) : α < λ〉. These terms are chosen so that
(a) rα, r ′

α ∈ Q, Aα ∈ D, ηα ∈ αλ and for α < β < λ:

p = r0 ≤ rα ≤ r ′
α ≤ rβ and Aβ ⊆ Aα and ηα � ηβ,

(b) at a stage α of the play, first COM chooses (rα, Aα, ηα) and then INC picks
r ′
α ≥ rα .

At the end, COM wins the play 〈(rα, Aα, ηα, r ′
α) : α < λ〉 if and only if both

players had always legal moves (so the play really lasted λ steps) and
(�) if γ ∈ �

α<λ

Aα is limit, then ηγ ∈ Yγ and qγ,ηγ ≤γ
pr rγ .

(3) If COM has a winning strategy in �aux
Ȳ

(p, q̄, Q,≤, ≤̄pr, D) then we say that the
condition p is aux-generic over q̄, D.

(4) Let Ȳ be an indexing sequence and p ∈ Q. A game �main
Ȳ

(p, Q,≤, ≤̄pr, D)

between two players, Generic and Antigeneric, is defined as follows. A play of
the game lasts λ steps during which the players construct a sequence 〈 p̄α, q̄α :
α < λ〉. At stage α < λ of the play, first Generic chooses a system p̄α = 〈pα,η :
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608 A. Rosłanowski, S. Shelah

η ∈ Yα〉 of pairwise incompatible conditions from Q. Then Antigeneric answers
by picking a system q̄α = 〈qα,η : η ∈ Yα〉 of conditions from Q satisfying

pα,η ≤α
pr qα,η for all η ∈ Yα.

At the end, Generic wins the play 〈 p̄α, q̄α : α < λ〉 if and only if, letting
q̄ = 〈qα,η : α < λ & η ∈ Yα〉,
[(�)] there is an aux-generic condition p∗ ≥ p over q̄, D.

(5) A forcing notion Q is f -semi-purely proper over an indexing sequence Ȳ and
a filter D if for some sequence ≤̄pr of binary relations on Q, (Q,≤, ≤̄pr) is a
forcing with the f -complete semi-purity and for every p ∈ Q Generic has a
winning strategy in �main

Ȳ
(p, Q,≤, ≤̄pr, D). We then say that the sequence ≤̄pr

witnesses the semi-pure properness of Q.
(6) If D is the club filter on λ, then we omit it and we write �main

Ȳ
(p, Q,≤, ≤̄pr)

etc. If ≤α
pr=≤pr for all α < λ, then we write ≤pr instead of ≤̄pr, like in

�main
Ȳ

(p, Q,≤,≤pr). If f (α) = λ for all α, then we write λ instead of f (in
phrases like λ-complete semi-purity etc).

Observation 2.4 If f, g : λ −→ λ + 1 and f ≤ g, then “g-semi-purely proper”
implies “ f -semi-purely proper”.

The proof of the following proposition may be considered as an introduction to the
more complicated and general proof of Theorem 2.7 dealing with the iterations.

Proposition 2.5 Assume that f : λ −→ λ + 1, ω + α < f (α) for α < λ and D is a
normal filter on λ. Let Ȳ = 〈Yα : α < λ〉 be an indexing sequence. If a forcing notion
Q is f -semi-purely proper over Ȳ , D, then it is λ-proper in the standard sense.

Proof Let ≤̄pr be a sequence witnessing the semi-pure properness of Q. Assume
N ≺ (H(χ),∈,<∗

χ ) satisfies

<λN ⊆ N , |N | = λ and (Q,≤, ≤̄pr), Ȳ , D . . . ∈ N .

Let p ∈ N ∩ Q. Fix a winning strategy st ∈ N of Generic in �main
Ȳ

(p, Q,≤, ≤̄pr, D)

and pick a list 〈τ˜ α : α < λ〉 of all Q-names for ordinals from N .
Consider a play of �main

Ȳ
(p, Q,≤, ≤̄pr, D) in which Generic uses st and Antigen-

eric chooses his answers as follows. At stage α < λ of the play, after Generic played
p̄α = 〈pα,η : η ∈ Yα〉, Antigeneric picks the <∗

χ -first sequence q̄α = 〈qα,η : η ∈ Yα〉
such that for each η ∈ Yα:

(∗)η pα,η ≤α
pr qα,η,

(∗∗)η if β < α and there is a condition q α-purely stronger than qα,η and forcing a
value to τ˜ β , then qα,η already forces a value to τ˜ β .

Note that since (Q,≤α
pr) is strategically (≤|α|)-complete, there are conditions q ∈ Q

satisfying (∗)η + (∗∗)η. One checks inductively that p̄α, q̄α ∈ N for all α < λ

(remember st ∈ N and the choice of “the <∗
χ -first”). The play 〈 p̄α, q̄α : α < λ〉 is

won by Generic, so there is a condition p∗ ≥ p which is aux-generic over q̄ = 〈qα,η :
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More about λ-support iterations 609

α < λ & η ∈ Yα〉 and D. We claim that p∗ is (N , Q)-generic. So suppose towards
contradiction that p+ ≥ p∗, p+ � τ˜ β = ζ, β < λ but ζ /∈ N . Consider a play
〈(rα, Aα, ηα, r ′

α) : α < λ〉 of �aux
Ȳ

(p∗, q̄, Q,≤, ≤̄pr, D) in which COM follows her
winning strategy and INC plays:

• r ′
0 = p+, and for α > 0 he lets r ′

α = rα .

Let γ ∈ �
α<λ

Aα be a limit ordinal greater than β. Since the play was won by COM,

we have ηγ ∈ Yγ and qγ,ηγ ≤γ
pr rγ . Since p+ ≤ rγ , we know that rγ � τ˜ β = ζ and

hence (by (∗∗)ηγ ) qγ,ηγ � τ˜ β = ζ . However, qγ,ηγ ∈ N , contradicting ζ /∈ N . ��
Lemma 2.6 Assume that λ is a regular uncountable cardinal, f : λ −→ λ + 1 and
Q̄ = 〈Pξ , Q

˜ ξ : ξ < γ 〉 is a λ-support iteration such that for every ξ < λ:

�Pξ
“(Q

˜ ξ ,≤, ≤̄pr) is a forcing notion with f − complete semi-purity”.

Let T = (T, rk) be a standard (w, 1)γ -tree, w ∈ [γ ]<λ, and let p̄ = 〈pt : t ∈ T 〉 be a
tree of conditions in Pγ . Suppose that α < λ and ϒ is a set of Pγ -names for ordinals
such that |T | · |ϒ | < f (α). Then there exists a tree of conditions q̄ = 〈qt : t ∈ T 〉
such that

(�)1 p̄ ≤ q̄ and if t ∈ T, ξ ∈ w ∩ rk(t), then qt�ξ �Pξ
pt (ξ) ≤α

pr qt (ξ), and
(�)2 if τ˜ ∈ ϒ, t ∈ T, rk(t) = γ and there is a condition q ∈ Pγ such that

• qt ≤ q, and q�ξ �Pξ
qt (ξ) ≤α

pr q(ξ) for all ξ ∈ w, and
• q forces a value to τ˜ ,

then qt forces a value to τ˜ .

Proof Let κ = |T | · |ϒ | < f (α) (and we may assume κ is infinite as otherwise
arguments are trivial). Let ≤pr

w be a binary relation on Pγ defined by
p ≤pr

w q if and only if
p ≤Pγ

q and for each ξ ∈ w, q�ξ �Pξ
p(ξ) ≤α

pr q(ξ).

The relation ≤pr
w is extended to trees of conditions in the natural way.

For ξ∈γ \w let st˜
0
ξ be a Pξ -name for a wining strategy of Complete in �κ+1

0

(
(Q
˜ ξ ,≤),

∅̃Q

˜ ξ

)
such that it instructs her to play ∅̃Q

˜ ξ
as long as Incomplete plays ∅̃Q

˜ ξ
. For ξ ∈ w

let st˜
1
ξ be a name for a similar strategy for the game �κ+1

0

(
(Q
˜ ξ ,≤α

pr), ∅̃Q

˜ ξ

)
.

Let 〈(ti , τ˜ i ) : i < κ〉 list all members of {t ∈ T : rk(t) = γ } × ϒ (with possible
repetitions). By induction on i ≤ κ we choose trees of conditions q̄i = 〈qi

t : t ∈ T 〉
and r̄ i = 〈r i

t : t ∈ T 〉 such that

(α) p̄ ≤pr
w q̄0, q̄ i ≤pr

w r̄ i ≤pr
w q̄ j ≤pr

w r̄ j for i < j ≤ κ ,
(β) for each t ∈ T, j ≤ κ and ξ ∈ rk(t) \ w,

q j
t �ξ �Pξ

“the sequence 〈(qi
t (ξ), r i

t (ξ) : i ≤ j〉 is a legal partial play of
�κ+1

0

(
(Q
˜ ξ ,≤), ∅̃Q

˜ ξ

)
in which Complete follows st˜

0
ξ ”,

(γ ) for each t ∈ T, j ≤ κ and ξ ∈ rk(t) ∩ w,

q j
t �ξ �Pξ

“the sequence 〈(qi
t (ξ), r i

t (ξ) : i ≤ j〉 is a legal partial play of
�κ+1

0

(
(Q
˜ ξ ,≤α

pr), ∅̃Q

˜ ξ

)
in which Complete follows st˜

1
ξ ”,
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610 A. Rosłanowski, S. Shelah

(δ) for each i < κ , if there is a condition q ∈ Pγ such that
(a) qi

ti ≤pr
w q, and

(b) q forces a value to τ˜ i ,
then already qi

ti forces the value to τ˜ i .

So suppose we have defined q̄ j , r̄ j for j < i . Stipulating r̄−1 = p̄, tκ = t0, and
τ˜ κ = τ˜ 0 we ask if there is a condition q ∈ Pγ such that r j

ti ≤pr
w q for all j < i which

forces a value to τ˜ i . If there are such conditions, let qi
ti be one of them. Otherwise let

qi
ti be any ≤pr

w -bound to {r j
ti : j < i} [there is such a bound by (β) + (γ )]. Then for

t ∈ T \{ti } define qi
t so that letting s = t ∩ ti :

• if ξ < rk(s), then qi
t (ξ) = qi

ti (ξ),
• if rk(s) ≤ ξ < rk(t), ξ /∈ w, then qi

t (ξ) is the <∗
χ -first Pξ -name such that

qi
t �ξ �Pξ

“qi
t (ξ)is a ≤ − upper bound to {r j

t (ξ) : j < i}”,

• if rk(s) ≤ ξ < rk(t), ξ ∈ w, then qi
t (ξ) is the <∗

χ -first Pξ -name such that

qi
t �ξ �Pξ

“qi
t (ξ)is a ≤α

pr −upper bound to{r j
t (ξ) : j < i}”.

It should be clear that the above demands correctly define a tree of conditions q̄i =
〈qi

t : t ∈ T 〉 (note the choice of “the <∗
χ -first names”). Finally, we choose r̄ i so that

(the respective instances of) conditions (β) + (γ ) are satisfied. To ensure we end up
with a tree of conditions, at each coordinate we choose “the <∗

χ -first names for the
answers given by the respective strategies”.

After the inductive process is completed, put q̄ = q̄κ . ��
Theorem 2.7 Assume that λ is a strongly inaccessible cardinal, f : λ −→ λ+ 1 and
κ̄ = 〈κα : α < λ〉 is a sequence of infinite cardinals such that (κα)|α| < f (α) for all
α < λ, and suppose also that D is a normal filter on λ. For ξ < γ let Ȳ ξ = 〈Y ξ

α :
α < λ〉 be an indexing sequence such that |Y ξ

α | ≤ κα . Let Q̄ = 〈Pξ , Q
˜ ξ : ξ < γ 〉 be a

λ-support iteration such that

�Pξ
“Q
˜ ξ is f − semi-purely proper overȲ ξ , DVPξ

”

for every ξ < γ (where DVPξ
is the normal filter on λ generated in VPξ by D).

Then Pγ = lim(Q̄) is λ-proper in the standard sense.

Proof The proof is very similar to that of [11, Theorem 2.7].
Abusing our notation, the names for the forcing relation and a witness for the semi-

pure properness of Q
˜ ξ will be denoted ≤ and ≤̄pr = 〈≤α

pr: α < λ〉, respectively.

For each ξ < γ let st˜
0
ξ be the <∗

χ -first Pξ -name for a winning strategy of Complete

in �λ
0(Q

˜ ξ , ∅̃Q

˜ ξ
) such that it instructs Complete to play ∅̃Q

˜ ξ
as long as her opponent

plays ∅̃Q

˜ ξ
.
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More about λ-support iterations 611

Let N ≺ (H(χ),∈,<∗
χ ) be such that <λN ⊆ N , |N | = λ and Q̄, D, 〈Ȳ ξ , (Q

˜ ξ
,

≤, ≤̄pr) : ξ < γ 〉, . . . ∈ N . Let p ∈ N ∩ Pγ and let 〈τ˜ α : α < λ〉 list all Pγ -names
for ordinals from N . Note that if ξ ∈ γ ∩ N , then st˜

0
ξ ∈ N .

By induction on δ < λ we will choose

(⊗)δ Tδ, wδ, r−
δ , rδ, p̄δ∗, q̄δ∗ and p̄

˜ δ,ξ , q̄
˜ δ,ξ , st˜ ξ for ξ ∈ N ∩ γ

so that the following demands are satisfied.

(∗)0 All objects listed in (⊗)δ belong to N . After stage δ < λ of the construction,
these objects are known for δ and ξ ∈ wδ .

(∗)1 r−
δ , rδ ∈ Pγ , r−

0 (0) = r0(0) = p(0), wδ ⊆ γ, |wδ| = |δ + 1|, w0 =
{0}, wδ ⊆ wδ+1, and if δ is limit then wδ = ⋃

α<δ wα , and

⋃

α<λ

dom(rα) =
⋃

α<λ

wα = N ∩ γ.

(∗)2 For each α < δ < λ we have
(∀ξ ∈ wα+1

)(
rα(ξ) = rδ(ξ)

)
and p ≤ r−

α ≤
rα ≤ r−

δ ≤ rδ .
(∗)3 If ξ ∈ (γ \ wδ) ∩ N , then

rδ�ξ � “the sequence 〈r−
α (ξ), rα(ξ) : α ≤ δ〉 is a legal partial play of

�λ
0

(
Q
˜ ξ , ∅̃Q

˜ ξ

)
in which Complete follows st˜

0
ξ ”

and if ξ ∈ wδ+1 \ wδ , then st˜ ξ ∈ N is a Pξ -name for a winning strategy of

Generic in �main
Ȳ ξ (rδ(ξ), Q

˜ ξ ,≤, ≤̄pr, DVPξ
). (And st0 ∈ N is a winning strategy

of Generic in �main
Ȳ 0 (p(0), Q0,≤, ≤̄pr, D).)

(∗)4 Tδ = (Tδ, rkδ) is a standard (wδ, 1)γ -tree, Tδ = ⋃
α≤γ

∏
ξ∈wδ∩α Y ξ

δ (so Tδ

consists of all sequences t̄ = 〈tξ : ξ ∈ wδ ∩ α〉 where α ≤ γ and tξ ∈ Y ξ
δ ).

(∗)5 p̄δ∗ = 〈pδ∗,t : t ∈ Tδ〉 and q̄δ∗ = 〈qδ∗,t : t ∈ Tδ〉 are standard trees of conditions,
p̄δ∗ ≤ q̄δ∗ .

(∗)6 For t ∈ Tδ we have that dom(pδ∗,t ) = (
dom(p)∪⋃

α<δ dom(rα)∪wδ

)∩ rkδ(t)
and for each ξ ∈ dom(pδ∗,t )\wδ:

pδ∗,t�ξ �Pξ
“if the set {rα(ξ) : α < δ} ∪ {p(ξ)} has an upper bound in Q

˜ ξ ,

then pδ∗,t (ξ)is such an upper bound”.

(∗)7 For ξ ∈ N ∩ γ, p̄
˜ δ,ξ = 〈p

˜
ξ
δ,η : η ∈ Y ξ

δ 〉 and q̄
˜ δ,ξ = 〈q

˜
ξ
δ,η : η ∈ Y ξ

δ 〉 are

Pξ -names for systems of conditions in Q
˜ ξ indexed by Y ξ

δ .
(∗)8 If ξ ∈ wβ+1 \ wβ, β < λ, then

�Pξ
“〈 p̄

˜ α,ξ , q̄
˜ α,ξ : α < λ〉 is a play of �main

Ȳ ξ (rβ(ξ), Q
˜ ξ ,≤, ≤̄pr, DVPξ

)

in which Generic uses st˜ ξ ”.
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(∗)9 If t ∈ Tδ, rkδ(t) = ξ < γ , then for each η ∈ Y ξ
δ

qδ∗,t �Pξ
“p
˜

ξ
δ,η = pδ∗,t∪{〈ξ,η〉}(ξ) and q

˜
ξ
δ,η = qδ∗,t∪{〈ξ,η〉}(ξ)”.

(∗)10 If t ∈ Tδ, rkδ(t) = γ and α < δ and there is a condition q ∈ Pγ such that
(a) qδ∗,t ≤ q, and
(b) q�ξ �Pξ

qδ∗,t (ξ) ≤δ
pr q(ξ) for all ξ ∈ wδ and

(c) q forces a value to τ˜ α ,
then already the condition qδ∗,t forces the value to τ˜ α .

(∗)11 dom(r−
δ ) = dom(rδ) = ⋃

t∈Tδ
dom(qδ∗,t ) and if t ∈ Tδ, ξ ∈ dom(rδ)∩ rkδ(t)\

wδ , and qδ∗,t�ξ ≤ q ∈ Pξ , rδ�ξ ≤ q, then

q �Pξ
“if the set {rα(ξ) : α < δ} ∪ {qδ∗,t (ξ), p(ξ)} has an upper bound in Q

˜ ξ ,

then r−
δ (ξ)is such an upper bound”.

We start with fixing an increasing continuous sequence 〈wα : α < λ〉 of subsets of
N ∩ γ such that the demands of (∗)1 are satisfied. Now, by induction on δ < λ we
choose the other objects. So assume that we have defined all objects listed in (⊗)α for
α < δ.

To ensure (∗)0, whenever we say “choose an X such that. . .” we mean “choose the
<∗

χ -first X such that. . .”. This convention will guarantee that our choices are from N .
If δ is a successor ordinal and ξ ∈ wδ \ wδ−1, then let st˜ ξ ∈ N be a Pξ -name

for a winning strategy of Generic in �main
Ȳ ξ (rδ−1(ξ), Q

˜ ξ ,≤, ≤̄pr, DVPξ
). We also pick

p̄
˜ α,ξ , q̄

˜ α,ξ for α < δ so that (∗)7 + (∗)8 hold (note that we already know rδ−1(ξ) and
by (∗)2 it is going to be equal to rδ(ξ)).

Clause (∗)4 fully describes Tδ . Note that, by the assumptions on Ȳ , κ̄ ,

(∗)12 |Tδ| ≤ (κδ)
|δ| < f (δ) so also |Tδ| · |δ| < f (δ).

For each ξ ∈ wδ we choose a Pξ -name p̄
˜ δ,ξ such that

�Pξ
“ p̄
˜ δ,ξ = 〈p

˜
ξ
δ,η : η ∈ Y ξ

δ 〉 is given to Generic by st˜ ξ as an answer to

〈 p̄
˜ α,ξ , q̄

˜ α,ξ : α < δ〉 in the game �main
Ȳ ξ (rβ(ξ), Q

˜ ξ ,≤, ≤̄pr, DVPξ
),”

where β < δ is such that ξ ∈ wβ+1 \wβ . (Note that for each ξ ∈ wδ and distinct

η0, η1 ∈ Y ξ
δ we have �Pξ

“the conditions p
˜

ξ
δ,η0

, p
˜

ξ
δ,η1

are incompatible”.) Next we

choose a tree of conditions p̄δ∗ = 〈pδ∗,t : t ∈ Tδ〉 such that for each t ∈ Tδ:

• dom(pδ∗,t ) = (
dom(p) ∪ ⋃

α<δ dom(rα) ∪ wδ

) ∩ rkδ(t) and
• for ξ ∈ dom(pδ∗,t )\wδ, pδ∗,t (ξ) is the <∗

χ -first Pξ -name for a condition in Q
˜ ξ such

that

pδ∗,t�ξ �Pξ
“if the set {rα(ξ) : α < δ} ∪ {p(ξ)} has an upper bound in Q

˜ ξ ,

then pδ∗,t (ξ)is such an upper bound”,
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• pδ∗,t (ξ) = p̄
˜

ξ

δ,(t)ξ
for ξ ∈ dom(pδ∗,t ) ∩ wδ .

Because of (∗)12 we may use Lemma 2.6 to pick a tree of conditions q̄δ∗ = 〈qδ∗,t : t ∈
Tδ〉 such that

• p̄δ∗ ≤ q̄δ∗ ,
• if t ∈ Tδ, ξ ∈ wδ ∩ rkδ(t), then qδ∗,t�ξ �Pξ

pδ∗,t (ξ) ≤δ
pr qδ∗,t (ξ),

• if t ∈ Tδ, rkδ(t) = γ and α < δ and there is a condition q ∈ Pγ such that
(a) qδ∗,t ≤ q, and
(b) q�ξ �Pξ

qδ∗,t (ξ) ≤δ
pr q(ξ) for all ξ ∈ wδ and

(c) q forces a value to τ˜ α ,
then qδ∗,t forces a value to τ˜ α .

Note that if ξ ∈ wδ, t ∈ Tδ, rkδ(t) = ξ and η0, η1 ∈ Y ξ
δ are distinct, then

qδ∗,t �Pξ
“the conditionsqδ∗,t∪{〈ξ,η0〉}(ξ), qδ∗,t∪{〈ξ,η1〉}(ξ)are incompatible”.

Therefore we may choose Pξ -names q
˜

ξ
δ,η (for ξ ∈ wδ) such that

• �Pξ
“q̄
˜ δ,ξ = 〈q

˜
ξ
δ,η : η ∈ Y ξ

δ 〉 is a system of conditions in Q
˜ ξ indexed by Y ξ

δ ”,

• �Pξ
“(∀η ∈ Y ξ

δ )(p
˜

ξ
δ,η ≤δ

pr q
˜

ξ
δ,η)”,

• if t ∈ Tδ, rkδ(t) > ξ , then qδ
∗,t�ξ �Pξ

qδ∗,t (ξ) = q
˜

ξ

δ,(t)ξ
.

Finally, we define r−
δ , rδ ∈ Pγ so that

dom(r−
δ ) = dom(rδ) =

⋃

t∈Tδ

dom(qδ∗,t )

and

• r−
0 (0) = r0(0) = p(0),

• if ξ ∈ wα+1, α < δ, then r−
δ (ξ) = rδ(ξ) = rα(ξ),

• if ξ ∈ dom(r−
δ )\wδ , then r−

δ (ξ) is the <∗
χ -first Pξ -name for an element of Q

˜ ξ such
that

r−
δ �ξ �Pξ

“r−
δ (ξ) is an upper bound of {rα(ξ) : α < δ} ∪ {p(ξ)} and
if t ∈ Tδ, rkδ(t) > ξ, and qδ∗,t�ξ ∈ G˜ Pξ

and the set
{rα(ξ) : α < δ} ∪ {qδ∗,t (ξ), p(ξ)} has an upper bound in Q

˜ ξ ,

then r−
δ (ξ) is such an upper bound”,

and rδ(ξ) is the <∗
χ -first Pξ -name for an element of Q

˜ ξ such that

rδ�ξ �Pξ
“rδ(ξ) is given to Complete by st˜

0
ξ as the answer to

〈r−
α (ξ), rα(ξ) : α < δ〉〈r−

δ (ξ)〉 in the game �λ
0(Q

˜ ξ , ∅̃Q

˜ ξ
)”.
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It follows from (∗)2 + (∗)3 from the previous stages that r−
δ , rδ are well defined and

p, rα ≤ r−
δ ≤ rδ for α < δ (using induction on ξ ∈ dom(rδ)).

This completes the description of the inductive definition of the objects listed in
(⊗)δ; it should be clear from the construction that demands (∗)0–(∗)11 are satisfied.
For each ξ ∈ wβ+1 \wβ, β < λ, look at the sequence 〈 p̄

˜ δ,ξ , q̄
˜ δ,ξ : δ < λ〉 and use

(∗)8 to choose a Pξ -name q(ξ) for a condition in Q
˜ ξ such that

�Pξ
“q(ξ) ≥ rβ(ξ) is aux-generic over 〈q

˜
ξ
δ,η : δ < λ & η ∈ Y ξ

δ 〉 and DVPξ
”

(if ξ = 0 then q(0) ≥ r0(0) is aux-generic over 〈q0
δ,η : δ < λ & η ∈ Y 0

δ 〉, D). This
determines a condition q ∈ Pγ with dom(q) = N ∩ γ . It follows from (∗)2 that
p ≤ rβ ≤ q for all β < λ.

Let us argue that q is (N , Pγ )-generic. Let τ˜ ∈ N be a Pγ -name for an ordinal, say
τ˜ = τ˜ α∗ , α∗ < λ, and let us show that q � τ˜ ∈ N . So suppose towards contradiction
that q ′ ≥ q, q ′ � τ˜ = ζ, ζ /∈ N . For each ξ ∈ N ∩ γ fix a Pξ -name st˜

+
ξ such that

�Pξ
“st˜

+
ξ is a winning strategy of COM in

�aux
Ȳ ξ

(
q(ξ), 〈q

˜
ξ
δ,η : δ < λ & η ∈ Y ξ

δ 〉, Q
˜ ξ ,≤, ≤̄pr, DVPξ )

”.

Construct inductively a sequence

〈r+
α , r ′

α, ηα(ξ), η
˜ α(ξ), 〈Ai

α(ξ), A˜
i
α(ξ) : i < λ〉, A˜ α(ξ) : α < λ & ξ ∈ N ∩ γ 〉

such that the following demands (∗)13–(∗)15 are satisfied.

(∗)13 r+
α , r ′

α ∈ Pγ , r+
0 = q, r ′

0 ≥ q ′ and r+
β ≤ r ′

β ≤ r+
α for β < α < λ.

(∗)14 For each ξ ∈ N ∩ γ and α < λ we have that ηα(ξ) ∈ αλ, Ai
α(ξ) ∈ D, η

˜ α(ξ)

is a Pξ -name for a member of αλ, A˜
i
α(ξ) is a Pξ -name for a member of D and

A˜ α(ξ) is a Pξ -name for a member of DVPξ
, and

�Pξ
“〈(r+

α (ξ), A˜ α(ξ), η
˜ α(ξ), r ′

α(ξ)) : α < λ〉 is a result of a play of

�aux
Ȳ ξ

(
q(ξ), 〈q

˜
ξ
δ,η : δ < λ & η ∈ Y ξ

δ 〉, Q
˜ ξ ,≤, ≤̄pr, DVPξ )

in which COM follows the strategy st˜
+
ξ ”.

(∗)15 For j, β ≤ α < λ and ξ ∈ wα we have

r ′
α�ξ � “η

˜ α(ξ) = ηα(ξ) & �
i<λ

A˜
i
α(ξ) ⊆ A˜ α(ξ) & A˜

j
β(ξ) = A j

β(ξ)”.

(It should be clear how to carry out the construction; remember Pγ is (<λ)-strategi-
cally complete, so in particular it does not add new members of αλ for α < λ.) Take
a limit ordinal ε > α∗ such that ε ∈ ⋂

ξ∈wε

⋂
i, j<ε Ai

j (ξ). Then, by (∗)13–(∗)15, for
each ξ ∈ wε we have

r+
ε �ξ �Pξ

“ε ∈ �
α<λ

A˜ α(ξ) and η
˜ ε(ξ) =

⋃

α<ε

ηα(ξ) = ηε(ξ) ∈ Y ξ
ε ”
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and consequently, by (∗)14,

(∗)16 r+
ε �ξ �Pξ

“ q
˜

ξ

ε,ηε(ξ) ≤ε
pr r+

ε (ξ)” for each ξ ∈ wε.

Also note that

(∗)17 p ≤ rδ ≤ q ≤ r+
ε for all δ < λ.

Let t ∈ Tε be such that rkε(t) = γ and (t)ξ = ηε(ξ) for ξ ∈ wε. By induction
on ξ ≤ γ, ξ ∈ N , we show that qε∗,t�ξ ≤Pξ

r+
ε �ξ . So let us assume that ξ < γ

and we have shown that qε∗,t�ξ ≤Pξ
r+
ε �ξ . If ξ ∈ wε then by (∗)9 + (∗)16 we have

qε∗,t�(ξ + 1) ≤Pξ+1 r+
ε �(ξ + 1). So assume ξ /∈ wε. Now, by (∗)5, pε∗,t�ξ ≤ r+

ε �ξ , so

r+
ε �ξ �Pξ

“rα(ξ) ≤ pε∗,t (ξ) for all α < ε”

(remember (∗)17 + (∗)6), and hence

r+
ε �ξ �Pξ

“rα(ξ) ≤ qε∗,t (ξ) for all α < ε”.

Consequently, it follows from (∗)11 that

r+
ε �ξ �Pξ

“qε∗,t (ξ) ≤ r−
ε (ξ) ≤ rε(ξ) ≤ r+

ε (ξ)”

and thus qε∗,t�(ξ + 1) ≤Pξ+1 r+
ε �(ξ + 1).

Now, since qε∗,t ≤ r+
ε and (∗)16 holds, we may use the condition (∗)10 to conclude

that qε∗,t �Pγ
τ˜ = ζ (remember q ′ ≤ r+

ε , α∗ < ε) and consequently ζ ∈ N , a
contradiction. ��

Remark 2.8 semi-pure properness is very similar to being reasonably merry of [11,
Section 6]. Despite of some differences in the parameters involved, one may suspect
that the games are essentially the same if ≤δ

pr=≤. This would suggest that semi-pure
properness is a weaker condition than being reasonably merry. However, the index sets
Yδ here are known before the master game starts, while in [11] the index sets Iδ are
decided at the stage δ of the game. This makes our present notion somewhat stronger.
Note that in our proof of the Iteration Theorem 2.7 we really have to know Yδ’s in
advance—we cannot decide names for them and take care of (∗)8 + (∗)9 at the same
time. (This obstacle was not present in the proof of [11, Theorem 6.4] as there we did
not deal with the auxilary relations ≤δ

pr.)
It should be noted that some of the λ-semi-purely proper forcing notions discussed

in the next section (see Proposition 3.6) are not reasonably merry as they do not have
the bounding property of [11, Theorem 6.4(b)].

Problem 2.9 Are there any relationships between semi-pure properness and the prop-
erties introduced in [10, Definition A.3.6], [11, Defnitions 2.2, 6.3]?
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3 The forcings

In this section we will show that our “last forcing standing” Q2
λ and some of its rela-

tives fit the framework of semi-pure properness (so their λ-support iterations preserve
λ+). A slight modification of Q2

λ was used in iterations in Friedman and Zdomskyy [4]
and Friedman et al. [3]. It was called Miller(λ) there and the main difference between
the two forcings is in condition [4, Definition 2.1(vi)].

The filter D from the previous section will be the club filter, so it is not mentioned;
also until Proposition 3.9 the auxiliary relations ≤α

pr do not depend on α, so instead of
≤̄pr we have just ≤pr and f (α) = λ so we write λ instead of f [see Definition 2.3(6)].

For our results we have to assume that λ is strongly inaccessible; the case of suc-
cessor λ remains untreated here (we will deal with it in a subsequent paper).

Definition 3.1 (1) Let Tclub be the family of all complete λ-trees T ⊆ <λλ such that
• if t ∈ T , then |succT (t)| = 1 or succT (t) is a club of λ, and
• (∀t ∈ T )(∃s ∈ T )(t � s & |succT (s)| > 1).

(2) We define a forcing notion Q2
λ as follows:

a condition in Q2
λ is a tree T ∈ Tclub such that

• if 〈ti : i < j〉 ⊆ T is �-increasing, |succT (ti )| > 1 for all i < j and
t = ⋃

i< j ti , then (t ∈ T and) |succT (t)| > 1,

the order ≤ of Q2
λ is the inverse inclusion, i.e., T1 ≤ T2 if and only if T2 ⊆ T1.

(3) Forcings notions Q1
λ, Q3

λ, Q4
λ are defined analogously, but

a condition in Q1
λ is a tree T ∈ Tclub such that for every λ-branch η ∈ limλ(T )

the set {α ∈ λ : |succT (η�α)| > 1} contains a club of λ,
a condition in Q3

λ is a tree T ∈ Tclub such that for some club C ⊆ λ we have

(∀t ∈ T )(lh(t) ∈ C ⇒ |succT (t)| > 1),

a condition in Q4
λ is a tree T ∈ Tclub such that

(∀t ∈ T )(root(T ) � t ⇒ |succT (t)| > 1).

(4) For � = 1, 2, 3, 4 we define a binary relation ≤pr on Q�
λ by

T1 ≤pr T2 if and only if T1 ≤ T2 and root(T1) = root(T2).
(5) Let Q

1,∗
λ consists of all conditions T ∈ Q1

λ such that for each λ-branch η ∈
limλ(T ) the set {α ∈ λ : |succT (η�α)| > 1} is a club of λ.

(6) Let Q
3,∗
λ consists of all conditions T ∈ Q3

λ such that for some club C ⊆ λ we
have
• if t ∈ T and lh(t) ∈ C , then |succT (t)| > 1, and
• if t ∈ T and lh(t) /∈ C , then |succT (t)| = 1.

Observation 3.2 Let T ∈ Tclub. Then T ∈ Q
1,∗
λ if and only if there exists a sequence

〈Fα : α < λ〉 of fronts of T such that

• if α < β < λ, t ∈ Fβ , then there is s ∈ Fα such that s � t ,
• if δ < λ is limit, tα ∈ Fα (for α < δ) are such that tα � tβ whenever α < β < δ,

then
⋃

α<δ tα ∈ Fδ ,
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• for each t ∈ T, |succT (t)| > 1 if and only if t ∈ ⋃
α<λ Fα .

Observation 3.3 Q4
λ ⊆ Q

3,∗
λ ⊆ Q2

λ = Q
1,∗
λ ⊆ Q1

λ and Q
3,∗
λ ⊆ Q3

λ ⊆ Q1
λ, and Q

3,∗
λ

is a dense subforcing of Q3
λ.

Observation 3.4 Let � ∈ {1, 2, 3, 4}.
(1) (Q�

λ,≤,≤pr) is a forcing notion with λ-complete semi-purity.
(2) Moreover, the relations (Q�

λ,≤) and (Q�
λ,≤pr) are (< λ)-complete.

Lemma 3.5 Let 0 < � ≤ 4. Assume that T δ ∈ Q�
λ and Fδ ⊆ T δ (for δ < λ) are such

that

(i) Fδ is a front of T δ, T δ+1 ⊆ T δ , and Fδ ⊆ T δ+1,
(ii) if δ is limit, then T δ = ⋂

i<δ T i and Fδ = {
t ∈ T δ : (∀ξ < δ)(∃i < lh(t))(t�i ∈

Fξ ) and (∀i < lh(t))(∃ξ < δ)(∃ j < lh(ν))(i < j & ν� j ∈ Fξ )
}
,

(iii) (∀t ∈ Fδ+1)(∃s ∈ Fδ)(s � t),
(iv) if t ∈ Fδ and |succT δ (t)| > 1, then |succT δ+1(t)| > 1.

Then S
def= ⋂

δ<λ T δ ∈ Q�
λ.

Proof Plainly, S is a tree closed under unions of �-chains shorter than λ, and by (i)–
(iii) we see that for each t ∈ S there is s ∈ S such that t � s. Hence S is a complete
λ-tree.

Also, for each α < λ we have

(v) Fα is a front of S and for all β ≥ α

{t ∈ S : (∃s ∈ Fα)(t � s)} = {t ∈ Tβ : (∃s ∈ Fα)(t � s)}.

Hence every splitting node in S splits into a club. Suppose now that s ∈ S and let
η ∈ limλ(S) be such that s � η. Since T i ∈ Q1

λ (remember 3.3), the set {α < λ :
|succT i (η�α)| > 1} contains a club (for each i < λ). Also the set {α < λ : η�α ∈ Fα}
is a club (remember (iii)+(ii)). So we may pick a limit ordinal δ < λ such that lh(s) <

δ, η�δ ∈ Fδ and |succT i (η�δ)| > 1 for all i < δ. Then (by (ii)) also |succT δ (η�δ)| > 1
and hence (by (iv)+(iii)+(v)) |succS(η�δ)| > 1 (and s � η�δ). So we may conclude
that S ∈ Tclub. We will argue that S ∈ Q�

λ considering the four possible values of �

separately.

Case � = 1

Suppose η ∈ limλ(S). Then for each δ < λ the set {α < λ : |succT δ (η�α)| > 1}
contains a club and thus the set

A
def= {

α < λ : α is limit and (∀δ < α)(|succT δ (η�α)| > 1) and η�α ∈ Fα

}

contains a club. But if α ∈ A, then also |succT α (η�α)| > 1 and hence |succS(η�α)| > 1
(remember (ii)+(iv)).
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Case � = 2
Suppose that a sequence 〈si : i < j〉 ⊆ S is �-increasing and |succS(si )| > 1 for all
i < j . Let s = ⋃

i< j si and δ = lh(s). Then also |succT δ (si )| > 1 (for all i < j) and
hence |succT δ (s)| > 1. By (v)+(iv)+(iii)+(i) we easily conclude |succS(s)| > 1 (note
that s � t for some t ∈ Fδ).

Case � = 3
Let Cδ ⊆ λ be a club such that

α ∈ Cδ & t ∈ T δ ∩ αλ ⇒ |succT δ (t)| > 1.

Set C = �
δ<λ

Cδ . Then for each limit α ∈ C and t ∈ S∩αλ we have that |succT δ (t)| > 1

for all δ < α, and hence also |succT α (t)| > 1 (by (ii)). Invoking (v)+(iv) we see that
|succS(t)| > 1 whenever t ∈ S, lh(t) ∈ C is limit.

Case � = 4

If root(S) � s ∈ S, then |succT δ (s)| > 1 for all δ < λ and hence |succS(s)| > 1
(remember (v)). ��
Proposition 3.6 Let λ be a strongly inaccessible cardinal, Yδ = δδ for δ < λ and
Ȳ = 〈Yδ : δ < λ〉. Then the forcing notions (Q�

λ,≤,≤pr) for � ∈ {2, 3, 4} are
λ-semi-purely proper over Ȳ .

Proof Let 1 < � ≤ 4, T ∈ Q�
λ. Consider the following strategy st of Generic in the

game �main
Ȳ

(T, Q�
λ,≤,≤pr).

In the course of the play, in addition to her innings 〈Tδ,η : η ∈ Yδ〉, Generic chooses
also sets Aδ ⊆ Yδ and conditions T δ ∈ Q�

λ so that T δ is decided before the stage δ of
the game. Suppose that the two players arrived to a stage δ < λ. If δ = 0 then Generic
lets T 0 = T and if δ is limit, then she puts T δ = ⋂

i<δ T i (in both cases T δ ∈ Q�
λ).

Now Generic determines Aδ and 〈Tδ,η : η ∈ Yδ〉 as follows. She sets Aδ = T δ ∩Yδ and
then she lets 〈Tδ,η : η ∈ Yδ〉 ⊆ Q�

λ be a system of pairwise incompatible conditions
chosen so that

• if η ∈ Aδ then Tδ,η = (T δ)η.

Generic’s inning at this stage is 〈Tδ,η : η ∈ Yδ〉. After this Antigeneric answers with
a system 〈Sδ,η : η ∈ Yδ〉 ⊆ Q�

λ such that Tδ,η ≤pr Sδ,η, and then Generic writes aside

T δ+1 def= {
t ∈ T δ : (∃η ∈ Aδ

)(
η � t & t ∈ Sδ,η

)
or

(∀α ≤ lh(t)
)(

t�α /∈ Aδ

)}
.

It should be clear that T δ+1 is a condition in Q�
λ.

After the play is finished and sequences

〈Tδ,η, Sδ,η : δ < λ & η ∈ Yδ〉 and 〈Aδ, T δ : δ < λ〉

have been constructed, Generic lets

S =
⋂

δ<λ

T δ ⊆ T .
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Claim 3.6.1 S ∈ Q�
λ is aux-generic over S̄ = 〈Sδ,η : δ < λ & η ∈ Yδ〉.

Proof of the Claim First note that the sequence 〈T δ, Fδ = T δ ∩ δλ : δ < λ〉 satisfies
the assumptions of Lemma 3.5 and hence S ∈ Q�

λ.
Now we consider the three possible cases separately.

Case � = 2.

Let us describe a strategy st∗ of COM in the game �aux
Ȳ

(S, S̄, Q2
λ,≤,≤pr). It instructs

COM to play as follows. Aside, COM picks also ordinals ξδ < λ so that after arriving
at a stage δ < λ, when a sequence 〈(Sα, Aα, ηα, S′

α), ξα : α < δ〉 has been already
constructed, she answers with Sδ, Aδ, ηδ (and ξδ) chosen so that the following demands
are satisfied.

(A) S0 = S, ξ0 = lh(root(S)) + 942, A0 = [ξ0, λ) and η0 = 〈〉.
(B) If δ is a successor ordinal, say δ = α + 1, then

ηα � ηδ ∈ S′
α ∩ δλ, ξδ = ξα + sup(ηδ(i) : i < δ) + lh

(
root

(
(S′

α)ηδ

)) + 942,

Aδ = [ξδ, λ) and Sδ = (S′
α)ηδ . (Note: then we will also have ηδ ∈ S′

δ .)
(C) If δ is a limit ordinal, then ηδ = ⋃

α<δ ηα, ξδ = sup(ξα : α < δ) + 942, Aδ =
[ξδ, λ) and Sδ = ⋂

α<δ Sα = ⋂
α<δ S′

α = ⋂
α<δ

(
S′
α

)
ηδ

. (Note: then we will also

have ηδ ∈ S′
δ .)

Note that if 〈(Sα, Aα, ηα, S′
α) : α < λ〉 is a play in which COM follows st∗ and

δ ∈ �
α<λ

Aα is a limit ordinal, then ηδ ∈ Yδ ∩ S and it is a limit of splitting points in

S′
α , so also |succS′

α
(ηδ)| > 1 for all α < δ. Therefore, by (C), ηδ is a splitting node

in Sδ (and in S as well). It follows from the description of the δth move of Generic in
�main

Ȳ
(T, Q2

λ,≤,≤pr), that

(T δ)ηδ ≤pr Sδ,ηδ = (T δ+1)ηδ ≤pr (S)ηδ ≤pr Sδ.

Consequently, st∗ is a winning strategy for COM.

Case � = 3.

The winning strategy st∗ of COM in the game �aux
Ȳ

(S, S̄, Q3
λ,≤,≤pr) is almost exactly

the same as in the previous case. The only difference is that now COM shrinks the
answers S′

α of INC to members of Q
3,∗
λ pretending they were played in the game. The

argument that this is a winning strategy is exactly the same as before (as Q
3,∗
λ ⊆ Q2

λ).

Case � = 4. Similar. ��
The forcing notions considered above can be slightly generalized by allowing the

use of filters other than the club filter on λ. The forcing notions QĒ
E of [11, Definition

1.11] and PĒ
E of [11, Definition 4.2] follow this pattern. However, to apply the itera-

tion theorems of [11] we need to assume that the filter E controlling splittings along
branches is concentrated on a stationary co-stationary set. Therefore the case of E
being the club filter seems to be of a different character. Putting general filters on
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the splitting nodes only and controlling the splitting levels by the club filter leads to
Definition 3.7.

The forcing notion Q2,Ē was studied by Brown and Groszek [1] who described
when this forcing adds a generic of minimal degree.

Definition 3.7 Suppose that Ē = 〈Et : t ∈ <λλ〉 is a system of (<λ)-complete
filters on λ. (These could be principal filters.) We define forcing notions Q�,Ē for
� = 1, 2, 3, 4 as follows:

1. A condition in Q2,Ē is a complete λ-tree T ⊆ <λλ such that
(a) if t ∈ T , then |succT (t)| = 1 or succT (t) ∈ Et , and
(b) (∀t ∈ T )(∃s ∈ T )(t � s & |succT (s)| > 1), and
(c)2 if 〈ti : i < j〉 ⊆ T is �-increasing, |succT (ti )| > 1 for all i < j and

t = ⋃
i< j ti , then (t ∈ T and) |succT (t)| > 1,

the order ≤ of Q2,Ē is the inverse inclusion, i.e., T1 ≤ T2 if and only if T2 ⊆ T1.
2. Forcings notions Q1,Ē , Q3,Ē , Q4,Ē are defined analogously, but the demand (c)2

is replaced by the respective (c)�:
(c)1 for every λ-branch η ∈ limλ(T ) the set {α ∈ λ : |succT (η�α)| > 1} contains

a club of λ,
(c)3 for some club C ⊆ λ we have

(∀t ∈ T )(lh(t) ∈ C ⇒ |succT (t)| > 1),

(c)4 (∀t ∈ T )(root(T ) � t ⇒ |succT (t)| > 1).
3. For � = 1, 2, 3, 4 we define a binary relation ≤pr on Q�,Ē by

T1 ≤pr T2 if and only if T1 ≤ T2 and root(T1) = root(T2).

Remark 3.8 Since in Definition 3.7 we allow the filters Et to be principal, we may
fit some classical forcings into our schema. If Et = {λ} for each t ∈ <λλ, then Q4,Ē

is the λ-Cohen forcing Cλ [see Definition 4.2(1)] and Q2,Ē is the forcing Dλ from
[8, Definition 4.9(b)]. If for each t ∈ <λλ we let Et be the filter of all subsets of
λ including {0, 1}, then the forcing notion Q2,Ē will be equivalent with Kanamori’s
λ-Sacks forcing of [6, Definition 1.1].

Proposition 3.9 Let Ē = 〈Et : t ∈ <λλ〉 be a system of (<λ)-complete filters on λ

and � ∈ {1, 2, 3, 4}.
(1) (Q�,Ē ,≤,≤pr) is a forcing notion with λ-complete semi-purity. Moreover, the

relations (Q�,Ē ,≤) and (Q�,Ē ,≤pr) are (< λ)-complete.
(2) If λ is strongly inaccessible, Yδ = δδ for δ < λ and Ȳ = 〈Yδ : δ < λ〉, then

the forcing notions (Q�,Ē ,≤,≤pr) for � ∈ {2, 3, 4} are λ-semi-purely proper
over Ȳ .

Proof Same as 3.4, 3.6. ��
Close relatives of the forcing notions Q�,Ē were considered in [10, Section B.8]

and [11, Definition 4.6]. The modification now is that we consider trees branching into
less than λ successor nodes (but there are many successors from the point of view of
suitably complete filters).
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Definition 3.10 Assume that

• λ is strongly inaccessible, f : λ −→ λ is a increasing function such that each
f (α) is a regular uncountable cardinal and

∏
ξ<α f (ξ)|α| < f (α) (for α < λ),

• F̄ = 〈Ft : t ∈ ⋃
α<λ

∏
ξ<α f (ξ)〉 where Ft is a < f (α)-complete filter on f (α)

whenever t ∈ ∏
ξ<α f (ξ), α < λ.

1. We define a forcing notion Q1
f,F̄

as follows.

A condition in Q1
f,F̄

is a complete λ-tree T ⊆ ⋃
α<λ

∏
ξ<α f (ξ) such that

(a) for every t ∈ T , either |succT (t)| = 1 or succT (t) ∈ Ft , and
(b) (∀t ∈ T )(∃s ∈ T )(t � s & |succT (s)| > 1), and
(c)1 for every η ∈ limλ(T ) the set {α < λ : succT (η�α) ∈ Fη�α} contains a club

of λ.
The order of Q1

f,F̄
is the reverse inclusion.

2. Forcing notions Q�

f,F̄
for � = 2, 3, 4 are defined similarly, but the demand (c)1 is

replaced by the respective (c)�:
(c)2 if 〈ti : i < j〉 ⊆ T is �-increasing, |succT (ti )| > 1 for all i < j and

t = ⋃
i< j ti , then (t ∈ T and) |succT (t)| > 1,

(c)3 for some club C of λ we have

(∀t ∈ T
)(

lh(t) ∈ C ⇒ succT (T ) ∈ Ft
)
.

(c)4 (∀t ∈ T )(root(T ) � t ⇒ |succT (t)| > 1).
3. For � = 1, 2, 3, 4 and α < λ we define a binary relation ≤α

pr on Q�

f,F̄
by

T1 ≤α
pr T2 if and only if either T1 = T2 or T1 ≤ T2, root(T1) = root(T2) and

lh(root(T2)) ≥ α.

Proposition 3.11 Assume λ, f, F̄ are as in 3.10.

(1) (Q�

f,F̄
,≤, ≤̄pr) is a forcing notion with f -complete semi-purity.

(2) If Yδ = ∏
ξ<δ f (ξ) for δ < λ and Ȳ = 〈Yδ : δ < λ〉, then Ȳ is an indexing

sequence and the forcing notions (Q�

f,F̄
,≤, ≤̄pr) for � ∈ {2, 3, 4} are f -semi-

purely proper over Ȳ .

Proof Similar to 3.4, 3.6. ��
Observation 3.12 Let η ∈ λλ and Yα = {η�α} for α < λ. Suppose that (Q,≤) is
a strategically (≤λ)-complete forcing notion and let ≤α

pr be ≤ (for α < λ). Then Q

is λ-semi-purely proper over 〈Yξ : ξ < λ〉 and the club filter with 〈≤α
pr: α < λ〉

witnessing this.

Corollary 3.13 Let λ be a strongly inaccessible cardinal. Suppose that Ē is as in 3.7
and f, F̄ are as in 3.10. Let Q̄ = 〈Pξ , Q

˜ ξ : ξ < γ 〉 be a λ-support iteration such that
for every ξ < γ the iterand Q

˜ ξ is either strategically (≤λ)-complete, or it is one of

Q2
λ, Q3

λ, Q4
λ, Q2,Ē , Q3,Ē , Q4,Ē , Q2

f,F̄
, Q3

f,F̄
, Q4

f,F̄
. Then Pγ = lim(Q̄) is λ-proper in

the standard sense.
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4 Are Q2
λ, Q1

λ very different?

The forcing notions Q1
λ and Q2

λ appear to be very close. In this section we will show
that, consistently, they are equivalent, but also consistently, they may be different.

Lemma 4.1 Assume T ∈ Tclub and consider (T,�) as a forcing notion. Let η
˜

be a
T -name for the generic λ-branch added by T . Suppose that

�T “the set {α < λ : |succT (η
˜
�α)| > 1} contains a club”.

Then there is T ∗ ⊆ T such that T ∗ ∈ Q2
λ.

Proof Let C˜ be a T -name for a club of λ such that

�T “
(∀α ∈ C˜

)(|succT (η
˜
�α)| > 1

)
”,

and put

S = {
t ∈ T : lh(t) is a limit ordinal and t �T “

(∀α < lh(t)
)(

C˜ ∩ (α, lh(t)) 
= ∅)}”.

One easily verifies that

(i) if t ∈ S, then t �T “lh(t) ∈ C˜ ” and hence |succT (t)| > 1,
(ii) if a sequence 〈tα : α < α∗〉 ⊆ S is �-increasing, α∗ < λ, then

⋃
α<α∗ tα ∈ S,

(iii) (∀t ∈ T )(∃s ∈ S)(t � s).

Consequently we may choose T ∗ ⊆ T so that T ∗ ∈ Tclub and for some fronts Fα of
T ∗ (for α < λ) we have

• Fα ⊆ S, and if α < β < λ, t ∈ Fβ , then for some s ∈ Fα we have s � t ,
• if δ < λ is limit and tα ∈ Fα for α < δ are such that α < β < δ ⇒ tα � tβ , then⋃

α<δ tα ∈ Fδ ,
• |succT ∗(t)| > 1 if and only if t ∈ ⋃

α<λ Fα .

Then also T ∗ ∈ Q
1,∗
λ = Q2

λ (remember Observations 3.2, 3.3). ��
Definition 4.2 (1) The λ-Cohen forcing notion Cλ is defined as follows:

a condition in Cλ is a sequence ν ∈ <λλ,
the order ≤ of Cλ is the extension of sequences (i.e., ν1 ≤ ν2 if and only if
ν1 � ν2).

(2) The axiom Ax+
Cλ

is the following statement:
if S˜ is a Cλ-name and �Cλ

“S˜ is a stationary subset of λ”, and Oα ⊆ Cλ are
open dense sets (for α < λ) then there is a �-directed �-downward closed set
H ⊆ Cλ such that
• H ∩ Oα 
= ∅ for all α < λ, and
• the interpretation S˜ [H ] of the name S˜ is a stationary subset of λ.

Lemma 4.3 Let T ∈ Tclub. Then the following conditions are equivalent:

(a) there is T ∗ ⊆ T such that T ∗ ∈ Q2
λ,
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(b) there is T ∗ ⊆ T such that T ∗ ∈ Tclub and

�Cλ
(∀η ∈ limλ(T

∗))(the set {δ<λ : |succT ∗(η�δ)| > 1} contains a club of λ).

Proof Assume (a). By the (<λ)-completeness of Cλ we see that �Cλ
T ∗ ∈ Q2

λ, and
hence �Cλ

T ∗ ∈ Q1
λ (remember Observation 3.3). Consequently (b) follows.

Now assume (b). Since (T ∗,�) (as a forcing notion) is isomorphic with Cλ we
have

�T ∗ (∀η ∈ limλ(T
∗))(the set {δ<λ : |succT (η�δ)| > 1} contains a club of λ),

so in particular

�T ∗ “the set {δ < λ : |succT (η
˜
�δ)| > 1} contains a club of λ”,

where η
˜

is a T ∗-name for the generic λ-branch. It follows now from Lemma 4.1 that
(a) holds. ��
Proposition 4.4 Assume Ax+

Cλ
. Then Q2

λ is a dense subset of Q1
λ (so the forcing notions

Q1
λ, Q2

λ are equivalent).

Proof Let T ∈ Q1
λ and let us consider (T,�) as a forcing notion. Let S˜ be a T -name

given by

�T S˜ = {δ < λ : |succT (η
˜
�δ)| > 1}

where η
˜

is a T -name for the generic λ-branch. Ask the following question

• Does �T “S˜ contains a club of λ” ?

If the answer is “yes”, then by Lemma 4.1 there is T ∗ ⊆ T such that T ∗ ∈ Q2
λ.

So assume that the answer to our question is “not”. Then there is t ∈ T such that

t �T “λ \ S˜ is stationary”.

Let S˜
′ = {(α̌, s) : s ∈ T and α = lh(s) and |succT (s)| = 1}. Then S˜

′ is a T -name
for a subset of λ and �T S˜

′ = λ \ S˜ . Therefore, t �T “S˜
′ is stationary” and since the

forcing notion T above t is isomorphic with Cλ, we may use the assumption of Ax+
Cλ

to pick a �-directed �-downward closed set H ⊆ T such that t ∈ H and

• H ∩ {s ∈ T : lh(s) > α} 
= ∅ for all α < λ, and
• S˜

′[H ] is stationary in λ.

Then for each α < λ the intersection H ∩ αλ is a singleton, say H ∩ αλ = {ηα}, and

• if α < β then ηα � ηβ , and
• α ∈ S˜

′[H ] if and only if |succT (ηα)| = 1.

Let η = ⋃
α<λ ηα . Then η ∈ limλ(T ) and the set {α < λ : |succT (η�α)| = 1} is

stationary, contradicting T ∈ Q1
λ. ��
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Proposition 4.5 It is consistent that Q2
λ is not dense in Q1

λ.

Proof We will build a (<λ)-strategically complete λ+–cc forcing notion forcing that
Q2

λ is not dense in Q1
λ. It will be obtained by means of a (<λ)-support iteration of

length 2λ. First, we define a forcing notion Q0:
a condition in Q0 is a tree q ⊆ <λλ such that |q| < λ;
the order ≤=≤Q0 of Q0 is defined by
q ≤ q ′ if and only if q ⊆ q ′ and (∀η ∈ q)(|succq(η)| = 1 ⇒ |succq ′(η)| = 1).

Plainly, Q0 is a (<λ)-complete forcing notion of size λ. Let T˜ 0 be a Q0-name such
that �Q0 “T˜ 0 = ⋃

G˜ Q0 ”. Then

�Q0 “T˜ 0 ∈ Tclub and
(∀η ∈ T˜ 0

)(|succT˜ 0(η)| > 1 ⇒ succT˜ 0(η) = λ
)
”.

For a set A ⊆ λ let QA be the forcing notion shooting a club through A. Thus
a condition in QA is a closed bounded set c included in A,
the order ≤=≤QA of QA is defined by
c ≤ c′ if and only if c = c′ ∩ (

max(c) + 1
)
.

Now we inductively define a (<λ)-support iteration Q̄ = 〈Pξ , Q
˜ ξ

: ξ < 2λ〉 and a

sequence 〈A˜ ξ , η˜ ξ : ξ < 2λ〉 so that the following demands are satisfied.

(i) Q0 is the forcing notion defined above, T˜ 0 is the Q0-name for the generic tree
added by Q0.

(ii) Pξ is strategically (<λ)-complete, satisfies λ+–cc and has a dense subset of size
2λ (for each ξ ≤ 2λ).

(iii) η
˜ ξ , A˜ ξ are Pξ -names such that

�Pξ
“η
˜ ξ ∈ limλ(T˜ 0) and A˜ ξ = {α < λ : |succT˜ 0(η˜ ξ �α)| > 1}”.

(iv) �Pξ
“Q
˜ ξ

= QA˜ ξ ”.

(v) If η
˜

is a P2λ -name for a member of limλ(T˜ 0), then for some ξ < 2λ we have
�Pξ

“η
˜

= η
˜ ξ ”.

Clause (ii) will be shown soon, but with it in hand using a bookkeeping device we
can take care of clause (v). Then the iteration Q̄ will be fully determined. So let us
argue for clause (ii) (assuming that the iteration is constructed so that clauses (i), (iii)
and (iv) are satisfied).

For 0 < ξ ≤ 2λ we let P∗
ξ consist of all conditions p ∈ Pξ such that 0 ∈ dom(p)

and for some limit ordinal δ p < λ, for each i ∈ dom(p) \ {0} we have:

(a) p(0) ⊆ ≤δ p+1λ and for some ηp,i ∈ δ p
λ ∩ p(0), p�i �Pi “η˜ i�δ p = ηp,i ”,

(b) p(i) is a closed subset of δ p + 1 (not just a Pi -name) and δ p ∈ p(i),
(c) if β ∈ p(i), then |succp(0)(ηp,i�β)| > 1.

Claim 4.5.1 (1) If p, p′ ∈ P∗
ξ , then p ≤Pξ

p′ if and only if dom(p) ⊆
dom(p′), p(0) ≤Q0 p′(0) and (∀i ∈ dom(p) \ {0})(p(i) = p′(i) ∩ (δ p + 1)).

(2) |P∗
ξ | = λ · |ξ |<λ.
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(3) P∗
ξ is a (<λ)-complete λ+–cc subforcing of Pξ . Moreover, if 〈pα : α < γ 〉 is a

≤Pξ
-increasing sequence of members of P∗

ξ , γ < λ, then there is p ∈ P∗
ξ such

that pα ≤Pξ
p for all α < λ and δ p = sup(δ pα : α < γ ).

(4) P∗
ξ is dense in Pξ . Moreover, for every p ∈ Pξ and α < λ there is q ∈ P∗

ξ such
that p ≤Pξ

q and δq > α.

Proof of the Claim (1), (2), (3) Straightforward. (4) Induction on ξ ∈ (0, 2λ].
Case ξ = ξ0 + 1

Let p ∈ Pξ . Construct inductively a sequence 〈pn : n < ω〉 ⊆ P∗
ξ0

such that for each
n < ω we have

• p�ξ0 ≤Pξ0
pn ≤Pξ0

pn+1 and α < δ pn < δ pn+1 ,
• for some closed set c ⊆ δ p0 we have p0 �Pξ0

“p(ξ0) = c”,

• for some sequence νn ∈ δ pn
λ ∩ pn+1(0) we have pn+1 �Pξ0

“η
˜ ξ0�δ pn = νn”.

(The construction is clearly possible by our inductive hypothesis.) Now we define a
condition q ∈ P∗

ξ . We declare that dom(q) = ⋃
n<ω dom(pn) ∪ {ξ0} and for i ∈

dom(q) \ {0, ξ0} we set ηq,i = ⋃{ηpn ,i : i ∈ dom(pn), n ∈ ω} and we also put
ηq,ξ0 = ⋃

n<ω νn . We define

• δq = supn<ω δ pn , q(0) = ⋃
n<ω pn(0) ∪ {ηq,i , ηq,i

〈0〉, ηq,i
〈1〉 : i ∈ dom(q) \

{0}},
• q(i) = ⋃

n<ω pn(i) ∪ {δq} for i ∈ dom(q) \ {0, ξ0} and
• q(ξ0) = c ∪ {δq}.
One easily verifies that q ∈ P∗

ξ and it is stronger than p.

Case ξ is limit and cf(ξ) < λ

Let p ∈ Pξ . Fix an increasing sequence 〈ξε : ε < cf(ξ)〉 ⊆ ξ cofinal in ξ and then
use the inductive assumption (and properties of an iteration) to choose inductively a
sequence 〈pε : ε < cf(ξ)〉 such that for each ε < ε′ < cf(ξ) we have

pε ∈ P∗
ξε

, α < δ pε < δ pε′ and p�ξε ≤Pξε
pε ≤Pξε

pε′�ξε.

Then define a condition q ∈ P∗
ξ as follows. Declare that dom(q) = ⋃

ε<cf(ξ) dom(pε)

and for i ∈ dom(q) \ {0} set ηq,i = ⋃{ηpε,i : i ∈ dom(pε), ε < cf(ξ)}. Put

• δq = supε<cf(ξ) δ pε ,
• q(0) = ⋃

ε<cf(ξ) pε(0) ∪ {ηq,i , ηq,i
〈0〉, ηq,i

〈1〉 : i ∈ dom(q) \ {0}},
• q(i) = ⋃

ε<cf(ξ) pε(i) ∪ {δq} for i ∈ dom(q) \ {0}.
Case ξ is limit and cf(ξ) ≥ λ

Immediate as then Pξ = ⋃
ζ<ξ Pζ .

It follows from 4.5.1 that the clause (ii) of the construction of the iteration is satis-
fied. In particular, the limit P2λ is strategically (<λ)-complete λ+–cc and has a dense
subset of size 2λ. It should be also clear that �P2λ

“ T˜ 0 ∈ Q1
λ” (remember (iii)–(v)).

Claim 4.5.2 �P2λ
“T˜ 0 contains no tree from Q2

λ”.
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Proof of the Claim Suppose towards contradiction that T˜ is a P2λ -name such that

p �P2λ
“T˜ ∈ Q2

λ and T˜ ⊆ T˜ 0” for some p ∈ P2λ .

Note that, by 4.5.1(3,4),

(∗) if p ≤P2λ
q, ν ∈ <λλ, q �P2λ

ν ∈ T˜ , and κ < λ and ρ
˜ i are P2λ -names for

members of λλ (for i < κ),
then there are q∗ ∈ P∗

2λ and ν∗ ∈ q∗(0) such that q ≤P2λ
q∗, ν � ν∗ and

q∗ �P2λ
“ν∗ ∈ T˜ & |succT˜

(ν∗)| > 1 & (∀i < κ)(ρ
˜ i�lh(ν∗) 
= ν∗)”.

Using (∗) repeatedly ω times we may construct a sequence 〈pn, ν∗
n : n < ω〉 such that

• pn ∈ P∗
2λ , p ≤P2λ

pn ≤P2λ
pn+1, δ pn < δ pn+1 , and

• ν∗
n ∈ <λλ, ν∗

n ∈ pn+1(0), ν∗
n � ν∗

n+1, and

pn+1 �P2λ
“ν∗

n ∈ T˜ & |succT˜
(ν∗

n )| > 1 & (∀i ∈dom(pn)\{0})(η
˜ i�lh(ν∗

n ) 
= ν∗
n )”.

Then we define a condition q ∈ P∗
ξ : we declare that dom(q) = ⋃

n<ω dom(pn) and
for i ∈ dom(q)\{0} we set ηq,i = ⋃{ηpn ,i : i ∈ dom(pn), n ∈ ω}. We also put
ν∗ = ⋃

n<ω ν∗
n , δq = sup

n<ω
δ pn , and then:

• q(0) = ⋃

n<ω

pn(0) ∪ {ηq,i , ηq,i
〈0〉, ηq,i

〈1〉 : i ∈ dom(q)\{0}} ∪ {ν∗, ν∗〈0〉},
• q(i) = ⋃

n<ω pn(i) ∪ {δq} for i ∈ dom(q)\{0}.
Note that ν∗ /∈ {ηq,i�lh(ν∗) : i ∈ dom(q)\ {0}} and lh(ν∗) ≤ δq = lh(ηq,i ) for
i ∈ dom(q) \ {0}. Now we easily check that q ∈ P∗

2λ is stronger than p and it forces
that ν∗ ∈ T˜ is a limit of splitting points of T˜ , but itself it is not a splitting point (even
in T˜ 0). A contradiction with p � T˜ ∈ Q2

λ. ��
Proposition 4.6 Assume that the complete Boolean algebras RO(Q1

λ) and RO(Q2
λ)

are isomorphic. Then Q2
λ is a dense subset of Q1

λ.

Proof Since RO(Q1
λ) and RO(Q2

λ) are isomorphic, we may find Q3−�
λ -names H˜ �, η˜ �

(for � = 1, 2) such that

(�)1 �
Q

�
λ
“H˜ 3−� ⊆ Q3−�

λ is generic over V and η
˜ 3−� ∈ λλ is the corresponding

generic branch”,
(�)2 if G� ⊆ Q�

λ is generic over V and G3−� = H˜ 3−�[G�], then G� = H˜ �[G3−�].
Consider Q1

λ × Q2
λ with the product order and for � = 1, 2 put

R� = {(T1, T2) ∈ Q1
λ × Q2

λ : T� �
Q

�
λ

T3−� ∈ H˜ 3−�}

and R = R1 ∩ R2.

Claim 4.6.1 R is a dense subset of both R1 and R2.
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Proof of the Claim First note that

(�)3 if (T1, T2) ∈ Q1
λ × Q2

λ and T1 �
Q

1
λ

“T2 /∈ H˜ 2”, then there is T ∗
1 ≥ T1 such that

(T ∗
1 , T2) ∈ R1 (and symmetrically when the roles of 1 and 2 are interchanged).

Also,

(�)4 if (T1, T2) ∈ R�, � = 1, 2, then T3−� �
Q

3−�
λ

T� /∈ H˜ �.

[Why? Assume towards contradiction that T3−� �
Q

3−�
λ

T� /∈ H˜ �. Let G� ⊆ Q�
λ be a

generic over V such that T� ∈ G�. Put G3−� = H˜ 3−�[G�]. Then G3−� ⊆ Q3−�
λ is

generic over V and H˜ �[G3−�] = G�. Since (T1, T2) ∈ R� we know T3−� ∈ H˜ 3−�[G�]
and hence (by our assumption towards contradiction) T� /∈ H˜ �[G3−�] = G�, con-
tradicting the choice of G�.]

Now suppose (T1, T2) ∈ R�, � ∈ {1, 2}. Choose inductively a sequence 〈(T n
1 , T n

2 ) :
n < ω〉 such that (T 0

1 , T 0
2 ) = (T1, T2) for all n < ω:

• if n is even, then (T n
1 , T n

2 ) ∈ R�,
• if n is odd, then (T n

1 , T n
2 ) ∈ R3−�,

• (T n
1 , T n

2 ) ≤ (T n+1
1 , T n+1

2 ).

By (�)3 + (�)4 there are no problems with carrying out the inductive process. Put

T ω
1 =

⋂

n<ω

T n
1 and T ω

2 =
⋂

n<ω

T n
2 .

Then T ω
� is the least upper bound of 〈T n

� : n < ω〉 and hence easily (T ω
1 , T ω

2 ) ∈
R, (T1, T2) ≤ (T ω

1 , T ω
2 ).

Claim 4.6.2 Let � ∈ {1, 2}, T ∈ Q�
λ. Then there is T ∗ ≥ T such that for some

ν ∈ <λλ we have

lh(ν) = lh(root(T ∗)) and T ∗ �
Q

�
λ

“ν � η
˜ 3−�”.

Proof of the Claim By induction on α < λ choose a sequence 〈Tα : α < λ〉 so that
for all α < β < λ we have

(�)5 Tα ≤ Tβ, root(Tα) � root(Tβ) and
(�)6 Tα+1 forces a value to η

˜ 3−��lh(root(Tα)), and
(�)7 if α is limit then Tα = ⋂

ξ<α Tξ .

Let η = ⋃
α<λ root(Tα) ∈ λλ. Then η ∈ limλ(Tα) for each α < λ so the sets

{δ < λ : |succTα (η�δ)| > 1} contain clubs (for each α < λ). Consequently we
may pick limit δ < λ such that |succTα (η�δ)| > 1 for all α < δ. Then also, by
(�)7, η�δ = root(Tδ) and clearly (by (�)6) Tδ forces a value to η

˜ 3−��δ.

Claim 4.6.3 Let � ∈ {1, 2}, T ∈ Q�
λ. Then there is T ∗ ≥ T such that for every t ∈ T ∗,

for some ν ∈ <λλ we have

lh(ν) = lh(t) and (T ∗)t �
Q

�
λ

“ν � η
˜ 3−�”.
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Proof of the Claim We choose inductively conditions Tα ∈ Q�
λ and fronts Fα of Tα

so that for all α < β < λ:

(�)8 T0 = T, F0 = {〈〉},
(�)9 Tα ≤ Tβ, Fα ⊆ Tβ and (∀t ∈ Fβ)(∃i < lh(t))(t�i ∈ Fα),

(�)10 if α is limit, then Tα = ⋂
ξ<α Tξ and Fα = {

t ∈ Tα : (∀ξ < α)(∃i <

lh(t))(t�i ∈ Fξ ) and (∀i < lh(t))(∃ξ < α)(∃ j < lh(t))(i < j & t� j ∈ Fξ )
}
,

(�)11 if t ∈ Fα, ζ ∈ succTα (t) then t〈ζ 〉 ∈ Tα+1 and for some s = st,ζ ∈ Fα+1
we have

root
(
(Tα+1)t〈ζ 〉

) = s and (Tα+1)s forces a value to η
˜ 3−��lh(s),

(�)12 Fα+1 = {st,ζ : t ∈ Fα & ζ ∈ succTα (t)} (where st,ζ are determined by (�)11).

It should be clear that the construction is possible (at successor stages use 4.6.2). Set
T ∗ = ⋂

α<λ Tα . By Lemma 3.5 we know that T ∗ ∈ Q�
λ and Fα ⊆ T ∗ are fronts of

T ∗ (for α < λ). Moreover,

(�)13 if s ∈ T ∗ and |succT ∗(s)| > 1, then s ∈ ⋃
α<λ Fα .

It follows from (�)11 +(�)12 +(�)10 that for every t ∈ Fα the condition (T ∗)t forces
a value to η

˜ 3−��lh(t). If t ∈ T ∗ \ ⋃
α<λ Fα , then choose the shortest s ∈ ⋃

α<λ Fα

such that t � s. Then (T ∗)t = (T ∗)s (remember (�)13) and hence in particular the
condition (T ∗)t forces a value to η

˜ 3−��lh(t).

Now suppose that T1 ∈ Q1
λ. Use Claim 4.6.3 to choose a condition T ∗

1 ∈ Q1
λ such

that T1 ≤ T ∗
1 and

(�)
T ∗

1 ,2
14 for every t ∈ T ∗

1 the condition (T ∗
1 )t forces a value to η

˜ 2�lh(t).

Then use Claim 4.6.1 to pick (T ′
1, T ′

2) ∈ R so that T ∗
1 ≤ T ′

1. Note that then also

(�)
T ′

1,2
14 holds. Apply Claim 4.6.3 to T ′

2 and � = 2 to find a condition T ′′
2 ≥ T ′

2 such

that the suitable demand (�)
T ′′

2 ,1
14 holds, and then use Claim 4.6.1 again to choose

(T +
1 , T +

2 ) ∈ R such that T +
1 ≥ T ′

1 and T +
2 ≥ T ′′

2 . Note that then

(�)
T +
� ,3−�

14 for every t ∈ T +
� the condition (T +

� )t forces a value to η
˜ 3−��lh(t).

For � = 1, 2 and t ∈ T +
� let ϕ�(t) ∈ <λλ be such that lh(ϕ�(t)) = lh(t) and

(T +
� )t �“ϕ�(t) � η

˜ 3−�”. Since (T +
1 , T +

2 ) ∈ R we know that

(�)�15 ϕ�(t) ∈ T +
3−� for each t ∈ T +

�

and by (�)2 we also have

(�)16 ϕ1 � ϕ2 is the identity on T +
2 and ϕ2 � ϕ1 is the identity on T +

1 . Moreover,
if t ∈ T +

1 , then ((T +
1 )t , (T

+
2 )ϕ1(t)) ∈ R and

if s ∈ T +
2 , then ((T +

1 )ϕ2(s), (T
+

2 )s) ∈ R.

Thus ϕ� : T +
� −→ T +

3−� is a bijection preserving levels and the extension relation �,
and ϕ1 is the inverse of ϕ2. Consequently, t ∈ T +

� is a splitting of T +
� if and only if

ϕ�(t) is a splitting in T +
3−�. Therefore we may conclude that T +

1 ∈ Q2
λ. ��

Conclusion 4.7 It is consistent that the forcing notions Q1
λ, Q2

λ are not equivalent.

Proof By Propositions 4.5 and 4.6. ��
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