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1. I n t r o d u c t i o n  

In section 2 we give a principle true if V = L which is stronger than (>+ (which 

was enough for building Kurepa tree); of course the proof follows proofs of Jensen 

for diamonds. It seems we do not use its full strength--we seem to actually need 

only the cases a(M~) = cf((~) (see 2.1). The principle should be helpful for 

building models on A with El-properties (on A). Also there should be cases 

where we can prove impossibility (by playing with those cofinalities). 

In the third section we apply the principle to construct abelian groups (we 

drop "abelian') .  For a torsion free group G the group Ex t (G ,Z)  is divisible 

and therefore its structure is determined by ranks ~'0(G), vp(G) (the numbers 

of copies of Q and Z(p °°) in the decomposition of the divisible group, where p 

ranges over primes) and yp(G) _~ 2 II°11. By [HHSh91], if V = L and a group G 

is not of the form G1 (D G2, IIGlll < IIGII and G2 free then ~'0(G) = 211all. If A is 

a regular cardinal smaller than the first weakly compact cardinal, Ap ~ A + (for 

p prime), then assuming V = L we construct an abelian torsion free group G 

such that  ~p(G) =/kp for each p, y0(G) =/~+ and IIGII = A. This result can be 

considered as a generalization of a result of Sageev and Shelah which states the 

same for A = ~1 but under the assumption of CH only (see [SgSh 138]; for an 

alternative proof see Eklof and Huber [EH] or Theorem XII.2.10 of [EM]). 

No advanced knowledge of Group Theory is required; constructions of the 

third section are purely combinatorial applications of the principle of the second 

section. On the other hand, no advance tools of Set Theory are used - -  if one 

accepts 2.1, the rest is elementary. 

SET THEORETICAL NOTATION. For a cardinal ~, 7-/(~) is the family of sets with 

transitive closure of cardinality < ~. If e is a set of ordinals then acc (e) denotes 

the set of accumulation points of e (i.e. limits of e) and otp(e) is the order type 

of  e. 

GROUP THEORETICAL NOTATION. P is the set of prime numbers. As all the 

groups we shall deal with are abelian, we omit this adjective. G, H, K denote 

(abelian) groups, @ denotes a direct sum. Z is the additive group of integers. 

Hom(G, H)  is the group of homomorphisms from G to H (with the pointwise 

addition, i.e. (f  + g)(x) = f(x) + g(x)). If f • Hom(G, Z) and p • P then f /pZ 
is the following member of Horn(G, Z/pZ): 

( f  /pZ)(x) = f(x)/pZ (also called f(x) + pZ). 

For a group G and its subset {xn: n • I} C_ G, (x,~: n • I)a denotes the subgroup 

of G generated by {x~: n • I}. 
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HISTORY. The study of the structure of Ext has a long history already. For a 

review of the main results in the area we refer the reader to [EM]. 

The results of this paper were proved in 1986/87 and a preliminary version of 

the paper was ready in 1992. The illness and death of the first author I stopped 

his work on the paper. Later, the second author joined in finishing the paper. 

ACKNOWLEDGEMENT: We would like to thank Paul C. Eklof for helpful 

comments on earlier versions of the paper. 

2. A c o n s t r u c t i o n  p r inc ip le  in L 

THEOREM 2.1 (V=L):  Assume 

(A) A a regular uncountable not weakly compact 2 cardinal. 

(B) S C_ A is stationary. 

(C) /5, Q,/~ are finite pairwise disjoint sequences of predicates and function 

symbols (so a P-model M is (A, pM) = (A , . . . ,  p M , . . .  )). 

(D) Let ~ = ~(P ,  Q,/~) be a first order sentence. 

(E) M ° is a [~-model with universe A. 

(F) E is a club of A such that 6 E E ~ M~d-e-fM°r6 -~ M °. 

(G) For 6 E E U {A} let k~ = {M~: M~ a (P~O)-model expanding M °} and 

for M~ E k~ let k+(M~) = {M~: M~ is a (P~Q~R)-model  expanding M~ 

and satisfying ~ = ~(/5, Q, R)}. Lastly k-~ -- { M~ E k~ : k + ( M~ ) ~ ~) }. 

Then we can find a well ordering <* of 7-/(A +) of order type A +, a sequence 

= (e~ : 6 < A is a singular ordinal ) and functions 3, 92, 98~ (for e < ~) such 

that: 
(a) 

(b) 

(c) 

(d) 

(e) 

The domain of the functions ~ and 92 is U~EE k-~ ; superscript 6 means the 
restriction of the function to k~. 

For ~ E E and M~ E k [  we have: ~(M~) is zero or a limit ordinal < I61 +. 

For 6 E E, ~ is a function with domain {M~ E k-[ : 3(M~) > e), and 
= 

For 5 E E, M~ E k~ we have 92(M 1) E k+(M~). 

For 6 E E and M~ E k ;  we have: (fS~(M 1) : e < 3(M~)) is an in- 

creasing sequence of models, isomorphic to some e/ementary submodels of 

(~/(A+), E, <*) but we do not require it to be an elementary chain nor 

continuous but we do require the following: 

(*) x e fS~c(M~) \ ?8~(M~),y E ~e(M~)  ~ <* 

1 Professor Alan H. Mekler died in 1992. 
2 Can be weakened to the existence of Y (see the proof). 
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(f) For M~ E k [ ,  e < $(M~) the universe of ~ 1 fS~(M~ ) is a transitive set  to 

which 5 belongs. 

(g) ForM~ E k ; f o r ¢ < ~ ( M ~ ) w e h a v e  ~ 1. ~ , (~B~(Md). e __ ()  E fl3¢+1(M~) 

(remember: 3 (M~), if  not zero, is a limit ordinal) and: 

6 1 ,, 

(h) I f  M~ E k ;  then 9~(M~) q~ 5 1 5 1 U{~(M~): ~ < ~(U~)} ~.d M~ e ~o(UJ) 
when 3(M~) > O. 

(i) I f  M~ E k ;  then for some M~ E k + we have: 

( , )  for some regular a <_ ~ (possibly a = O) for every regular 0 < A 

(the most interesting case is: 0 < a < A ~ 0 = a) such that {5 E 

S: cf(5) -- O} is stationary and for s tat ionari ly  3 m a n y  5 E S we have: 

(~) cf(5) = o, 
(~) Mg I5 ~ M~, 
(~) ~(M~ th) = M~ I5, 
(6) [a < A ~ 3 ( i  II5) = a] and [a = A ~ $ (U  I[5) = cf(5)]. 

(j) Suppose M 1 E k~ \ k-~ but M 1 I5 E k~ for 5 E E. If M 3 is an expansion 

of M~ with a finite vocabulary then  4 for some club E'  C_ E we have 

M ~ 5EE'~{E'n(~,M3[5}eU{~( ~[6):e <~(M~[5)}. 

Moreover, if M -< (/-/(A+), 6, <*) is a proper <*-initial segment ,  A c M ,  

M = U~<), Mi where Mi increasing continuous, [[M~[[ < A for i < A 

then  for some club E'  C_ E for every 5 E E' : 

if  j~ is the Mostowski collapse of M~ then 

{E' ;7 5,jh[M6]} e U 6 1 ~ ( i ~  I~) and 

j6[M6] is a proper initia/ segment of 

U ~ S~(u~ I~) 
~<~(M), r~) 

(a/so the order). 

(Remark:  Many M has a tower (B~: e < e*) which collapses to an 

initial segment.) 

3 We can get a club Eo C_ A such that  every 5 E S n Eo is OK. 
4 We can also assign stationary S'  C_ S where M~ was guessed but this is not what 

we need. 
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(k) g is a square, i.e. e~ a cIub of 5 of order type < 6 and 

a E acc (e~) ~ e~ = e~ n ~; 

A/fl de f l  1 if  $(M~) > 0 £: c~ E acc (e~) then .v.c~ = IV1~ [~ -< M~ and $(Mla) > O. 

(1) I f5  • E, a < 5 and 3(M~) > 0 then e~ FI a • ~o(M~) .  

Remark 2.2: The interesting case is when the set S satisfies: 

(a) for every 0 = cf(0) < A, {5 • S: cf(5) = 0} is stationary, 

(/3) S a set of singular ordinals, 

(3') A = #+ ~ S C [# + 1, A) and if A is inaccessible then S is a set of strong 

limit singular cardinals, and 

(6) S does not reflect. 

Proo£" Let Y C_ A be such that  for every a < A the set 

{/3 > a: (nZ[v F1 a], E, Y N a) ~ (L~+, E, Y)} 

is bounded in Is[ + (e.g. Y is a non-reflecting stationary subset of A). 

Let g = (~:  6 < A singular limit ordinal) be as defined by Jensen [Jn]. 

Let <* be the canonical well ordering of L. 

Supose now that  5 • E U {A} and M~ • k~. If 5 < A and M~ • k~- then we 

let 9~(M2) be the <*-first member of k+(M2). Let 

W~ (M~)d-----ef{a > 5 :L~[M2,YN5 ] n k+(M2) = 0 and 

(L~ [M~, Y n 5], • ,  Y n 5) is elementarily equivalent 

to (L~+, E, Y), moreover it is isomorphic to some 

elementary submodel of it (demand 6 = sup(Y N 5))}. 

Let W~(M~) = acc(W2(M~) ). If 5 < A, W~(M2) = 0 then we let ~(M~) = 0. 
Otherwise 

3(M~) ---- cf (W~ (M 1) 5 sup W~(M1) )  

(so we loose at most finitely many members of W~(M~)),  and let 

a6 = a6[M~] C_ W~(M~) n sup W~(M~) 

be unbounded of order type b(M~) and 3" • a~ ~ a~ M 3" • L~[M~,Y  N 5] 

(use the definition of the square in Jensen [Jn] for L[Y n 5] and the ordinal 

s u p ( W ~ ( M ~ ) n s u p W ~ ( M ~ ) ) .  Let ~(M~5 1) be ( L ~ [ M ~ , Y n b ] , E , < * ) w h e r e c ~ i s  

the 6-th member of 16. 
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Let us show that it works, i.e. that the clauses (a)-(l)  are satisfied. 

Clause (a) Directly from the choice. 

Clause (b) By the use of sup W~ (M~). 

Clause (c) Directly from the choice of ~ and $(M~). 

Clause (d) By the choice of ffl(M~). 
Clause (e) Since ~ ( M ~ )  is L.y[M1,yMb] for ~, the ~-th member ofa~ = a~[M~] 

and a,~[M~] is a subset of W~(M~) (see its definition) we are sure 
that  ~ 1 ~e(M~) is OK: they are increasing with s as the ~-th member 

of a~[M~] increases with ~; (*) is satisfied as <* is the canonical well 

ordering of L (or L[Y], in our model not a big difference). 

Clause (f) See the choice of W~ (M~). 

Clause (g) It follows from L.[M~,Y M 5] E ic,+l[M~,Y M 5], the definition of 
5 1 ~e(Md)  (and the presence of a$[M~]), etc. 

Clause (h) It is a consequence of the first clause in the definition of W~ (M~): 

L~[M~, Y M 5] M k+(M~) = 0. 

Clause (i) Let M 2 E k+(M~) be <*-minimal. Define W~,(M~) as above. It is 

bounded in ~+ as M 2 E L~+. Then define W2(M~), a),[M~] as above 

and let ~/* = sup(W2(M~)) (so it is a limit ordinal). Let a = cf(~*). 

Let ~' < A+ be such that 

(L.~,e,M1,y,E,S,M~) -~ (L),+,e,M~,Y,E,S,M~). 

Let n~ = U,<~ Ni, ]]Nii] < ~, (Ni: i < ~) increasing continuous and 
such that  

• {E,S,M~,,M2,y, WI(M~),W2(M~),")'*,a[M1]} E No, 
• Yi -~ (n~, E), 

• ( N j : j < i )  E N i + I .  
Let E'  = {i < ~: N~ M A = i}, 5 E S M E'  and let j~ be the Mostowski 

collapse of N~. Note: j~(<*I N~)=<j*~[N~], etc. Now clearly j~ maps 

M 2 to 9I(M~), W~(M~)to W~(M~), W2(M~)to W~(M,~) and aiMS] 
to aiMS]. If a < ~ then necessarily 

aiM2] =j~[a[M~IMN~] = {j(~3): f~ E a[M~]MN~} = {j(/?): ~ E a[M~]} 

and if a = A then 

aiMS] = j~[a[M 1] N N~] = {j~(~): fl E a[Ml], 
Z is <5-th member of a[M)~]}. 

Similarly we can check (j), (k), (l). This finishes the proof. I 
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Remark 2.3: More generally we can phrase parallels of the squared diamond 

and/or  diamond + . 

Discussion 2.4: What is the point of this principle? 
You can just read the next section to see how it works. Still let us try to 

explain it. Diamonds on A have been very good in helping to build a structure 

M with universe A satisfying some II~ statement (like being Souslin). 

We are given/5. We build here by induction on 5 E S an increasing sequence 

of models M 1 = (5,/5 I 5, (~)  carrying some induction hypothesis. We want to 

have at the end that  there is no /~  such that (~,P,U,~Q%R) ~ ~, so at stage 

we took at 92(M~) as a candidate for the bad phenomena. For ~ < $(M~) (if 

$(M~) = 0 then our life is easier) in ~ + ~ ( M ~ )  we know 

~¢+1 (M3) ~ ~¢k~vzS) is a transitive set of cardinality 5". 

5 1 So we can list all elements of ~ ( M ~ )  ~ 1 in ~se+](M~),i.e. w e h a v e f E ~ e + l ( M ~ )  , 
5 1 f :  5 ) ~ e  (M~) which is one-to-one and onto. From the outside point of view 5 

has small cofinality and by (k)+(1) one can find a sequence (a~: ~ < cf(5)) cofinal 

in 5 and such that every proper initial segment is in ~+I(M~)~ 1 (even in ~0(M~ ~ 1),  

usually even in L~). So we have a fair chance to diagonalize over those sets to 

fulfill the obligation in the inductive construction of (~ ,  while "destroying" the 

possibility of 91(M~). 

But doing it for one e does not suffice. However, if cf($(M~)) -- cf(5) then 

we can do better. We can find f:  5 ) ~a(M~),  one-to-one and onto and such 

~ ( M ~ ) ) .  This that (Va < 5)( f la  ~ ~ ( M ~ ) )  (remember: ~ ( M ~ )  = U e < $ ( M J )  5 1 

5 1 . 5 1 5 1 is possible as (~E(M~). e _< ~) E ~¢+1(M~), so we can choose f~ E ~ + I ( M ~ )  

as the first one-to-one mapping from 5 onto 5 1 ~ + I ( M ~ ) .  So by a demand 

(f~: ~ _< ~} E ~ + I ( M ~ ) .  Now by an easy manipulation we can combine them 

(using ( f~:  ~ < cf(5))). 

In the proof of 3.9 and 3.4, to make vp(G) = £p, we build together with Ga 

also fP'¢ (for ~ < Ap). We need that all non-trivial combinations Y~4<,~ a t f  p'¢* E 
Horn(G, Z/pZ) are not of the form f /pZ.  This could be a typical application of 

the diamond. But we also need that for every f E Hom(G, Z/pZ) there will be 

f '  = ~e<,~a,f  p'¢* and f* E HoE(G,Z)  such that f - f f  = f*/pZ. For this the 

normal thing is to apply <>+ and to choose {at : ~ < n} and f* [G~ by giving them 

to approximations of f .  But the two demands seem to be hard to go together 

without what was said above. 
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3. B u i l d i n g  abe l i an  g r o u p s  

One can think of Ext (G, K) as essentially the family of isomorphism types of 

models (K, H, G, g, h, C)~EKuC such that (in our case K, H, G are abelian groups; 

we will not mention this usually, and) h is an embedding from K into H, g a 

homomorphism from H onto G with the range of h being the kernel of g (i.e. 

0 --+ K h H - ~ G  --+ 0 being exact) up to isomorphism over K U G. Moreover, 

it has a natural additive structure. So Ext (G, K) = 0 if and only if for any 

0 ~ K h H ~ G  --+ 0 as above, the range of h is a direct summand of H. 

We shall not define Ext  (G, Z) fully as below we shall quote theorems charac- 

terizing it in a convenient way in the relevant cases. 

In this section we show how to construct a group G such that  Ext (G, Z) 

satisfies pre-given requirements (within well-known limitations, see below). The 

main tools in the construction are 2.1 and, as a kind of a single step, 3.4 below. 

Definition 3.1: The quantifier (V*i < A) means "for every large enough i < A", 

so this is an abbreviation for "(3j < A)(Vi E (j, A))". 

Definition 3.2: 1. For a sequence ~ = (At : g < n) (n < w) of pairwise dis- 

tinct infinite regular cardinals, I~ is the ideal on Dom (Ix) = YIe<n At (called its 

domain) such that 

A E I5, iff (V*io < Ao)(V*il < A1)-.. (V*i~_1 < A,~-1)[<io,.. . , i~-l) ~ A]. 

2. For any A > N0 we define ~ as the set of ideals of the form I x with A = 

max{At: g < n}. Let ~<~ = I.J~<x ~ .  

LEMMA 3.3: Suppose that A = (At: ~ < n> is a sequence of pairwise distinct 
infinite regular cardinals and ~dec = (A~ : ~ < n> is the re-enumeration of A in the 

decreasing order. Let 7r: [It<n At --+ rIt<n A~e be the canonical bijection (i.e. 

7r(r/)(£0) = r/(el) provided A~o = Art). Then 

A E / ~  ~ 7r[A]e/Xdoc. 

Proof." This is an iterated application of the following observation: 

CLAIM 3.3.1: Let Ao < A1 be regular infinite cardinals, ¢(x, y, 2) be a formula. 

Then 

(V*io < A0)(k/*il < A1)~b(i0,il,~) =:~ (V*il < A1)(V*i0 < Ao)~b(i0,il,~). 

The claim should be clear and so the lemma. | 
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THEOREM 3.4 (V=L): Assume A is a regular cardinal smaller than the first 

uncountable weakly compact cardinal. Suppose that Ik • ~<~, for k < k* < w, 

H is a free group with the free basis 

{x~: t • Dom (Ik) and k < k*}. 

Further, let p E P and let f* • Hom(H, Z) be a homomorphism such that for 

some go ~ k* 

{t • Dom(ho):  f*(xet °) = O} • ho. 

Then there is a free group G, H C G such that [IGI] = A, G / H  is A-free and: 

(ct) there is no f • Horn(G, Z) extending f*, 

(9) ifk' < k*, A • sk, then [k = k' t • A] or k # k ' ) .  is free, 

(7) if  a homomorphism g* • Horn(H, Z) is such that for every k' ~ k* 

{t • Dom (Ik,): g*(x~') ~ O} • Ik, 

and g+ • Hom(G, Z/pZ)  extends g*/pZ, then there exists g • Horn(G, Z) 

such that g /pZ  = g+ and g* C_ g, 

i f  q • P,  h • Horn(H, Z/qZ) is such that for every k' < k* 

{t • Dom(Ik,): h(x~') ~ 0} • Ik,, 

then h can be extended to an element of Hom(G, Z/qZ). 

Proof: Due to Lemma 3.3 it is enough to prove the theorem under the 

assumption that  the ideals Ik are determined by decreasing sequences ~k of reg- 

ulars. The proof is by induction on ,k. To carry out the induction we need the 

existence of stationary non-reflecting sets and ~+ only. However, we will use this 

opportunity to show a simpler application of 2.1 and instead of the diamonds we 

will use our principle. The construction of 3.9, though more complicated, will be 

similar to the one here. 

For k < k* let Ik = Is, k, ~k = (A~: £ < nk), A~ <_ A. Thus Dom(Ik)  = 

He<~k A~ and according to what we noted earlier we assume that the sequences 

~k are decreasing. 

If A = R0 then Aknk = 1: this case is easy and can be concluded from 

[EM], pp. 362-363. However for the sake of the completeness we will sketch the 

construction (skipping only some technical details). The following claim gives us 

slightly more than needed: 
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CLAIM 3.4.1: Suppose that H is a free group with basis {x,~: n E w}, f* E 

Hom(H,Z)  is a homomorphism such that (VN E w)(Sn > N ) ( f * ( x , )  # 0). 

Then there is a free group G D_ H such that G / H  ~ Q and 

1. there is no f E Hom(G, Z) extending f*, 

2. if A C w is infinite and h E Horn(H, Z/qZ) is such that 

Ker(h) ~ (xn: n E A)G, 

then G/(x~ : n ~ A>G is free and h can be extended to a homomorphism 

from G to Z/qZ, 

3. i f  g* E Hom(H,Z)  is such that (3N E w)(Vn > N)(g*(x,~) = O) and 

g+ E Hom(G, Z/pZ) extends g*/pZ, then there is g E Hom(G, Z) such that 

g* C_ g and g/pZ = g+. 

Proof of the Claim: Let A0 = {n E w: f*(xn) 7 £ 0} and let {rn: n E A0} 

enumerate Z. Choose inductively positive integers sn and integers m,~ such that  

(a) mn E {--1,1}, 

(b) if n gt Ao then m~ --- 1, s,~ -- (n + p)!, 

(c) if n E A0 then 

rn + s o ' "  Sn--lmnf*(Xn) + SO''' Sn -2mn- l f* (xn - i )  + ' ' "  + som, f*(x l )  + 

mof*(xo) # O, 

sn = (n +p)!.  Irn + So. . .  Sn_lmnf*(xn) + So"" sn-2mn-l f*(Xn-1)  + " "  + 

soml f* (x l )  + mof*(xo)[. 
Now, let G be the group generated freely by {y,~: n E w} U {xn: n E w} except 

that  

(*) 8nYn+l = y~ + mnXn. 
Note that  the condition (*) implies that for each k > O, n E w 

(**)k Yn = S,~Sn+l"''S.+kyn+k+l - [ 8 n S n + l  " . . .  " S n + k - l m n + k X n T k  ~t_ S n  . . . .  . 

S n + k _ 2 m n + k - l X n + k -  1 -~- . . . -~- S n ? n n + l X n + l  "~- m n X n ] .  

0. G is freely generated by {y~ : n E w} and G / H  TM Q. 

1. There is no f E Horn(G, Z) extending f*. 

Why? By (**)~ the value of f at Y0 determines f(Y~+l) in the way that  is 

excluded by the choice of sn for n E A0 such that f(Yo) = r~ (clause (c)). 

2. If A C_ w is infinite then G/(x~: n ¢ A> is free. 

Why? Let {nk: k 6 w} = A be the increasing enumeration. Let 

Gi = (y,~: hi-1 < n <_ Ui)G, Hi --- (Zn: hi-1 < n < ni>v 

(with a convention that  n-1 = -1 ) .  Then G = 6~)ie~ Gi, Hi -- GiM<xn: n ~ A)G 

and <Xn: u ~ A>G = (~i<o; Hi. The groups Gi/Hi are (freely) generated by 
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y~,/Hi. Hence G/H is free. Extending suitable homomorphisms into Z/qZ 
should be clear now. 

3. If g* E Hom(H,Z)  is such that (3N)(gn > N)(g*(x,~) = 0) and g+ E 

Horn(G, Z/pZ) extends g*/pZ, then there is g E Horn(G, Z) such that g* _C g and 

g/pZ = g+. 
Why? First note that  there is at most one homomorphism g+ E Horn(G, Z/pZ) 

such that  g+ 2 g*/pZ. This is because G/H -~ Q: if g+, g+ E Horn(G, Z/pZ) 

agree on H then g+ - g+ E Hom(G,Z/pZ),  Ker(g + - g+) 2 U and hence 

(g+ - g+)/H E Horn(G/H, Z/pZ). But the only homomorphism of Q into Z/pZ 

is the trivial one. 

Hence it is enough to show that there is an extension g of g* to a member of 

Horn(G, Z) (as then necessarily g/pZ = g+ by the uniqueness). 

Now let N be such that (Yn > N)(g*(xn) -- 0). Define 

g(yn) =0 for n > N, 

g(YN) = -- mNg*(XN), 

g ( y ~ )  = - [ S n S n + l  " ' "  8N- lmNg* (XN)  -I- Sn ' ' "  8N--2mN--lg*(XN--1) -~- ' ' "- [-  

Snmn+lg*(xn+l) + mng*(x,~)] for n < N, 

and extend it to a homomorphism from Hom(G, Z). Clearly this g satisfies g* C g. 

This finishes the proof of the claim. I 

Assume now that  A is smaller than the first weakly compact uncountable car- 

dinal, A > lto and below A the theorem holds. 

We may think that  for some ko _< k* we have 

k < ko ~ A0k<A and ko < k < k* ::v Ako = A. 

Of course we may assume that  ko 

applies directly). 

Recall that  6o < k* is such that 

< k* (otherwise the inductive hypothesis 

{t E Dom (I~o): f*(xt  ~°) = 0} E/ to .  

Let ao be defined as follows: 

if go < ko then ao = 0, 

if k0 < go < k* and nto > 1, then C~o < A is (the first) such that  

~o * go (~7'OL > 0¢0)(~/*~ 1 < .~o) . . .  (V*,/n,o_l < )~.n.to_l)( f (X(~,i 1 ..... i,.to_,) ) :-~ 0), 
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if ko < go < k* and nto = 1, then ao < A is the first ordinal such that  (Vio > 
* ~ £o  o)(f [%o>) ¢ o). 

We may assume that  the group H has universe {2i: i < A}. Moreover, we may 

have an increasing continuous sequence (7~ : a < AI of limit ordinals such that  

N1 {xk: t E Dom(Ik) & k < ko} _C 3`0, ao < 3'o and Ak < 3'0 if ko _< k < k*, 

1 < nk, and 

N2 H~de=fH[{2i: i < 3'~} is the subgroup of H generated by 

k < ko or [ko < k < k* a t(O) < 

For k < k* we define the r e d u c t i o n  /L ed of the ideal Ik by: 

if k < ko then I~ Cd = Ik, 
if ko < k < k* and nk > 1 then fred -- ~k = I(;~ .... ,:~k~k_l)' and 

if ko _< k < k* and nk = 1 then/ fed  = i(~o)- 

Next we define ytk[3'~] (for k < k*, t • Dora (/Led)) as 

xt k if k < ko, 

x ( ~ ) ~  t k  if k o _ < k < k * ,  n k >  1, 

k if k o < k < k * , n k = l .  x(.y~+t(0)) 

It follows from ~ l ,  N2 and the fact that 3'~ are limit ordinals that ytk[3'~] • H~+~ 

for all k < k*, t • Dora (i~¢d). The subgroup generated by these elements 

with some side elements will be the one to which we will apply the inductive 

hypothesis. 

Let E C_ acc ({c~ < ,~ : ~ = 3"a}) be a thin enough club of ,~. By our assumptions 

we find a stationary set S _C E such that 

(or) for every 0 = cf(0) < ~, {~ • S :  cf(~) = 0} is stationary, 

(fl) S a set of singular limit ordinals, 

(3") ,~ = #+ =:. S C [~ + 1, )~) and if ,k is inaccessible then S is a set of strong 

limit singular cardinals, and 

(~) S does not reflect. 

We will use the principle formulated in 2.1 to choose by induction on a < ~ a 

group G~ with the universe 3'~ and extending H~. For this we have to define finite 

vocabularies/5, Q , /~  and a formula ~o. Thus we declare t h a t / 5  is (P0, P1 , . . .  ), 

Po a unary predicate and P1 a unary function symbol, ~) = <Qo,...  ) where Qo 

is a binary function symbol, and (M, ~)M,/~M} ~ ~0 means: 

(a) (M, Q0 M} is a group, P0 M is its subgroup (intension: H), and pM ipM • 

Hom(PoM,Z) (intension: f*) 

[we should use some additional predicates to encode Z, E/pZ,. . .  ], 
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(b) A M encodes a homomorphism f C Hom(M,g)  extending f*. 

Let functions 9I z, ~3~,3 be given by 2.1 for P, Q, R and T as defined above. 

Now, by induction on a < ,k, we choose models M~ (i.e. groups G~, their 

subgroups P0 M1 = Ha and homomorphisms f+ ,  f2) and T~, R~, h(g.,g+ c ) (for 

(g*,g+,C) • Rc~), R q and hZfh,C) (for (h,C) • R q) such that: 
1. (G~: a < ,k) is an increasing continuous sequence of free groups, 

2. P0 M~ = Ha C_ a s ,  a s  is a (free) group on 7,~, 

3. if/3 < a then G,~/G~ is free, 

4. G,~/H,~ is free, 

5. if a ~ S, a < /3 then G~/(G,~ + H~) is a free group with a basis of size 

A 6. if a • S, k' < k*, A • I~ ed then G,~+I/(G,~ + H,~+I ) is free, where HA+I 

is the group generated by all elements xt k such that k < k*, t • Dora (Ik), 

xt k • H~+l but (Vs • Dom (I~,red))(X tk = Yak' [7~] ~ s • A), 

7. f * =  f*[H~. 
8. For a • E let N ~ = ~3~(M~), ~ = b(M~), N/~ = ~3~(M~) for i < 3~- 

Remark: Since the group G~/H~ is free we have M~ • k~.  If 3(M~) = 0 

then N ~ is empty, and below T~ = R~ = 0. 

Assume a • E (so 3'~ = a). Then T~ is the family of all pairs (g*,g+) of 

homomorphisms g* • Hom(H~, Z) n N ~, g+ • Hom(G~, Z/pZ) V~ N ~ such 

that  g*/pZ C_ g+. 
9. R~ is the family of all triples (g*, g+, C) such that: 

(a) C • N ~ is a non-empty closed subset of a C) E,  (g*, g+) • T~,, 
(b) f o r / 3 • C :  (g*[Hz,g+[Gf l ,CAfl )  • R f l ,  

(c) for/3 < 3' in C: h(g*[H~,g+iG~,CN~3 ) C h(g. iH.y,g+iG.y,CnT), 
(d) if/3 • [minC, a)  N E  then for all k' < k*: 

/'red {t e Dora (I~,~d): 9*(Ytk'[7~]) # 0} e *k' • 

Rq~ (for q C P)  is the family of all pairs (h, C) such that: 

(a) C E N ~ is a nonempty closed subset of a V) E, h E Hom(H~, Z/qZ) A 

N ~ , 

(b) f o r / 3 e C :  (hIH~,CM/3) e R ~ ,  

(c) for /3 < "y in C: + C h  + h(h ~H B,CVll3) - -  (h  IH.~ , e v i l )  ' 

(d) if/3 c [min C, a) n E then for all k' < k*: 

' l red {t e Dom(I~ed): h(ykt [7~]) # 0} e -k' • 
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10. If (g*, g+, C) • R~ then h(g.,9+,c ) • Hom(G~, Z)AN ~, h(g.,g+,c)/pZ = g+, 
g* C h(g*,g+,C) and 

/3 E C ~ h(g. [H~,9+ ~G~,Cf3~) ~ h(g.,g+,c); 

if (h, C) • R q then h~h,C ) • Hom(G~, Z/qZ) extends h U U~ee  + hh fH~,Cn~" 
11. If (g*,g+,C) • R~, g~ • Hom(H~+l,Z)  is such that g* C g~ and for every 

k / < k*: 
red * k ~ Tred {t • D o m ( I  k, ): go(Yt [Y~]) # 0} • -k' 

and if g+ • Hom(G~+l,  Z/pZ) is such that g~/pZ C g+, g+ C g+o 
then there is h ~ • Hom(G~+l, Z) extending h(g.,g+,¢) and such that g~ C h', 
h' / p z  = ; 

if (h,C) • R q, ho • Hom(H~+l,Z/qZ) is such that h C_ h0 and for every 
k t < k* 

{t • Dom (i~,~d): h0(yk'[7~]) ¢ 0} • A~ ed 

then there is h' • Hom(G~+l, Z/qZ) extending h~h,C ) U ho. 
12. Assume that a • S and 

9I(M~) = (G~, Ha, f : , . . . ,  f ) ,  

where f E Hom(G~, Z). 

/ f  there is a free group G*, G~ UH~+l  C_ G* such that: IIG*]I = ]I'Y~+ll], 
G* satisfies (2)--(6), (11) (with G* playing the role of G~+I) and 

(.)  there is no g' C Hom(G*, Z) extending f U f*+l 
then Ga+l satisfies (*) too. 

The limit stages of the construction are actually determined by the continuity 

demands of (1), (7). Concerning the requirements (2)--(5) note that (2) is pre- 

served because of (3) at previous stages, (3) is preserved because of (2), (4) is 
kept due to (5) and the fact that the set S is not reflecting, and finally (5) holds 

at the limit because of (4) at previous stages and non-reflection of S (see e.g. 

Proposition IV.1.7 of [EM]). There is some uncertainty in defining h(g*,g+,C) for 

(g*,g+, C) C R~ (for a e E). However it is possible to find a suitable h(g.,g+,c) 
since in the most difficult case when sup C < a, sup C E S we may apply first 

(11) and then (5). Similarly we handle h~h,C ). 
If a ~ S, then we choose a group G~+I _D Ha+l  UG~ such that Ga+I/(H~+I + 

G~) is a free group with a basis of size ]h'~+lli- 

If a E S, then condition (12) of the construction describes G~+I. (We will see 

later that  this condition is not empty, i.e. that there is a group G* as there.) 
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Thus we have carried out the definition and we may put G -- GA ---- U~<~ G~. 

Let us check that  the G satisfies the desired properties (the main point will be 

the requirement (a) of the theorem). 

By (2) and (3) the group G is free of cardinality A (and the set of elements is 

A) and it extends each G~. Due to (4) the quotient G / H  is A-free. 

CLAUSE (a) OF THE ASSERTION. This is a consequence of the condition (12) 

of the construction. Suppose that the homomorphism f* has an extension to a 

homomorphism in Horn(G, Z). This means that 

M 1 =- (G, H, f * , . . . )  • k ; .  

By condition (i) of 2.1 we find a regular cardinal a _< A and 

M 2 = ( G , H , f * , . . . ,  f)  • k +(M 1) and a • S 

such that  ~(M~) -- M~ 2 -~ M 2 and 

cf(a) = ~x) 1 if A -- R2, 

cf(a) ¢ cf(#) if A = It+, It is an uncountable limit cardinal, 

c f ( a ) ~ { i t ,  cf(0)} i f A = i t + ,  # = 0  +, 0 > R 0  

(remember (i)(a)). Look now at the stage a of the construction. 

Before we continue with the proof we give a claim which helps us to apply the 

inductive hypothesis. 

CLAIM 3.4.2: (1) If R _C Hom(G~, Z) U UqEp Hom(G~, Z/qZ), 2 ILRll < Iial] then 

for every/3 E a \ S large enough there is x E G~ such that: 

(a) (Vh • R)(h(x)  = 0), 

(b) x • GZ+I is a member of a basis of  GO+ 1 over HZ+I + GZ. 

(2) Suppose that # < a < #+, # is an uncountable limit cardinal (so we are in 

the case A = #+), R C_ Hom(G~, Z) U Uqep Hom(G~, Z/qZ) and IIRII = It. 
Then for each j3 • (it, a) \ S there exist x j  • G0+ 1 for j < cf(it) such that: 

(a) i f  h • R then the set { j  < cf(it): h(xj)  ~ 0} is bounded in cf(it), 

(b) {xj: j < cf(it)} can be extended to a basis of  GO+ 1 over H~+I + G 0. 

(3) Suppose that 0 + = It < a < It+, R C_ Hom(G~, Z) U Uqep Hom(G~, Z/qZ) ,  

[JR H = It. Then for every 13 • (it, a) \ S there exists a sequence (xj,k: j < 

It, k < cf(0)} C_ G/3+1 such that 

(a) i f h  E R then {(j,k) • # x cf(0): h(xj,k) ~ 0} E I(~,¢f(e)), 

(b) (xj,k : j < It, k < cf(0)) can be extended to a basis of  GO+I over 

Hf~+x q- G 0. 
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(4) Suppose 1"~ 1 < O~ < ~2 (SO A = ~2),  

R C_ Hom(Ga, Z) U U Hom(Ga, Z/qZ), 
qCP 

IIRII = bl 0. Then for each [3 E (~1, o~) \ S there are xe • G~+I (for g < w) 

such that 

(a) if  h • R then the set {g < w: h(xe) 7 £ O} is finite, 

(b) {xe: ~ < w} can be extended to a basis of GZ+I over H~+I + G~. 

Proof of the Claim: (1) Let [30 < a be such that I['YZoI[ > 2lIRll (remember 

a • S C_ E, see the choice of S). Let [3 • a \ S, [3 > [30. Let {y~: ~ < ")'~+1} be a 

free basis of GZ+I over HZ+I + G~ (exists by condition (5) of the construction). If 
R is finite, then considering first [I R I I+ 1 elements of the basis we find a respective 

point x in the group generated by them. If R is infinite, so 211RII = liRZll, then 

we find ~0 < ~1 < ~'~+1 such that (Vh • R)(h(y~o ) = h(y~l)) and we may put 

x = Y~o - Y~I. 
(2) We follow exactly the lines of (1), but first we have to choose an increas- 

ing sequence (Ry: j < cf(#)) such t h a t  Uj<cf( /z)Rj  = R, ]IRj][ < [[RII (and 

hence 2I[RJII < # as # is a limit cardinal). Now if [3 • ( # , a ) \ S  then we find 

(xy: j < cf(#)) C GZ+I which can be extended to a basis of GZ+I over H~+I +G~ 

and such that  (Vh • Rj)(h(xj )  = 0). 

(3) Similarly: first find (Rj,k: j < #, k < cf(0)> such that IIRj,kll < t9, the sequence 

([-Jk<a(0) Ry,k: j < #) is increasing, for each j < # the sequence (Rj,k: k < cf(19)> 

is increasing and [.Jj<, [Jk<cf(0) Rj,k = R. Next follow as in (2). 
(4) Represent R as an increasing (countable) union of finite sets and follow as in 

(2) above. The claim is proved. I 

Now we are going back to the proof of clause (a). The following claim will 

finish it. 

CLAIM 3.4.3: Suppose that a, f , . . .  are as chosen earlier. Then there exists a 

free group G* D H~+I U G~ such that IIG*I[ = II~/~+ll[, G* satisfies the condi- 

tions (2)-(6), (11) of the construction as Ga+I and there is no g' • Hom(G*, Z) 

extending f[G~, t_) f*+l" 

Proof of the Claim: Let R = { h(g.,g+,c): (g*,g+,C) • Ra} U { h(h,C ) . +  • (h,C) • 

R~, q • P}. By clauses (g) and (b) of 2.1 we have IIRII < tlall (of  course  R may 

be empty). Let (ai : i < cf(a)) be an increasing continuous sequence cofinal in 

and disjoint from S (possible by the choice of S). 
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CASE A: a is a strongly limit singular cardinal (so we are in the case when A 

is inaccessible). 

We find an increasing sequence (R~: i < cf(a)/ such that Ui<cf(a) R* = R and 

IIR*II <tlal l .  But in this case we have 

(w < cf( ))(21LR:ll < 

So we may apply Claim 3.4.2(1) to choose by induction on i < cf(a) an increasing 
k* sequence (ji: i < cf(a)/ C_ cf(a) and x~ • G~j++I such that: 

(a) h • R* ~ h(x/k') = O, 

(b) x/k+ is a member of a basis of G~j++I over H~j++I + G~j .  

Since <a~: i < cf(a)> C a \ S is increasing continuous (and cofinal in a) we 

get that  {x/k*: i < cf(a)} can be extended to a basis of G~ over Ha. Now we 
apply the inductive hypothesis to k* + 1, /~ed (for k (k*), I(cf(a)>, the group H* 

generated by 

{ytk[~/a]: k < k*, t  • Dom (I~ed)} U {X/k*: i < cf (a)}  

and the function ( f  U f*+l)IH*. This gives us a group G~ _D H*. Let H '  be 

such that  G ~ + H ~ + t  = H * @ H ' .  Then put G* = G ~ ® H ' .  It satisfies the 

requirements of the claim: condition (3) follows from the presence of the yt k [7~]'s 

part of H* (remember the inductive assumption 3.4(/3)), condition (4) holds due 

to the x/k'. It follows from the fact that the aj~ are cofinal in a (and from the 
k* choice of x i E G~j++I) that (5) is satisfied. Similarly, (11) is a consequence 

of the choice of x/k* and the inductive hypothesis 3.4(7 , 5). Finally clause (6) 
follows from the inductive assumption 3.4(/~) 

CASE B: R0 < a < R1 (so A = R1). 

Thus R is at most countable, so let R = [.Jt<~ Re, where Re are finite increasing 
with ~. Apply 3.4.2(1) to find an increasing sequence (je: ~ < w> C w and 

x~* E G~j++I such that 

(a) h e n +  
(b) x~* is a member of a basis of Go~,+I over H ~ , + I  + G ~ j .  

Proceed as in Case A (so apply the inductive hypothesis to I~ ed (for k < k*) and 

I<~o>)' 

CASE C: c~ E (#, #+) for some limit cardinal # > 1~0 (so A = #+). 
k* Then we have IIRll < tt and by Claim 3.4.2(2) we can choose x~,# e G~++I (for 

i < cf(a), j < cf(#)) such that: 

Sh:314



344 A. MEKLER,  S. SHELAH AND A. ROSLANOWSKI  Isr. J. Math.  

(a) for each h • R for every i < cf(a) the set ( j  < cf(#): h(x~,}) # 0} is 
bounded, 

X k *  . (b) for each i < cf(a) the set { i,j. J < cf(p)} extends to a basis of Ga,+l over 

H~i+l + G~ .  
Now apply the inductive hypothesis for k* + 1, /~ed (for k < k*) and I<¢e(~),cf(,)> 

(remember that  cf(a) # cf(#) in this case). 

CASE D: Ra < a < R2 (so A = R2 and cf(a) = wl). 

Write R as an increasing union [_J~<~ Ri of countable sets. Using 3.4.2(4) 

choose xk*i,t (for i < Wl, g < w) such that 

(a) for each h • R, for every sufficiently large i < wl the set {g < w: h(x~,*e) # 0} 

is finite, 

(b) for each i < Wl the set {xik,~: g < w} can be extended to a basis of G~+I  

over H~,+I + G~i. 

Proceed as above (using i~ed (for k < k*) and I(al,ao)). 

CASE E: a • ( # , t t  +) for some c a r d i n a l # s u c h t h a t # = 0  + > R 1  ( s o A = # + ) .  
k* . cf(a), i < cf(0)) Using Claim 3.4.2(3) we choose a sequence (xt,j, i. l < j < #, 

such that  

(a) for each h • R and for every 1 < cf(a), for every j < # large enough for 

every i < cf(0) large enough, h(xk,~#) = O. 
k* . cf(O)} be extended to a (b) for every l < cf(a) the set {xl,j, i. j < #, i < can 

basis of Gal+l over Ha,+1 + Got. 
Now apply the inductive hypothesis to k* + 1, I~ ~d (k < k*) and I(¢f(~),u,a(0)) 

(remember cf(a) ~ {#, cf(O)} in this case). 

This completes the proof of Claim 3.4.3. | 

It follows from the above claim that at the stage a of the construction we had 

a non-trivial application of the condition (12) "killing" the function f .  This gives 

a contradiction proving the clause (a). 

CLAUSE (~3) OF THE ASSERTION. It follows from conditions (6) and (5) of the 

construction. 

CLAUSE (')') OF THE ASSERTION. Assume that g*, g+ are as there. Then by 

the clause (j) of 2.1 we have a club C C_ E such that for each a • C 

(g* rH~, g+ ran, c n a) • R~. 

Consequently we may use the functions h(g. ~Ha,9+ [G~,,CNa) for a 6 C. 
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CLAUSE (~) OF THE ASSERTION. Like clause (7). I 

Before we state the main result let us recall basic properties of Ext .  First note 

that 

if G is an (abelian) group satisfying G ~ (Va)(px = 0) then G is a vector 

space over Z/pZ. 

Definition 3.5: 1. For a group G and p E P let r,p(G) be the dimension of 

Extp(G,  Z) as a vector space over Z/pZ where 

Extp(G,Z)  = {x E Ext (G,Z) : Ext (G,Z) ~ p x  = 0}. 

2. For a group G let ~0(G) be the rank (=maximal cardinality of an indepen- 

dent subset) of the torsion free group Ext (G, Z ) / t o r (Ex t  (G, Z)) where for 

a group GI: 

t o r ( G ' ) = { x E G ' :  for somen,  0 < n E Z w e h a v e G ' ~ n x = 0 } .  

LEMMA 3.6 (see Fuchs [Fh] or Eklof and Mekler [EM, Ch. XI]]): Let G be an 

abelian torsion-free group. Then: 

1. For p E P,  t/p(G) is the dimension of the vector space 

Horn(G, E / p Z ) / H o m - ( G ,  Z/pE) 

over the field Z/pZ, where Hom-(G,  Z/pz)de=f { f  /p: f E Hom(G, Z)}. 

2. Ext (G, Z) is a divisible group, hence characterized up to isomorphism by 

cardinals ,0(G), ,p(G) (for p E P). 

THEOREM 3.7 (Hiller, Huber, Shelah [HHSh 91]] (V=L)):  If  a group G is not 
free, moreover it is not G1 @ G2 with G2 free, ]lGl[I < [lUll, then r'o(G ) = 2 Ilall. 

Remark 3.8: If G = G~ G G2 and Ge is free then Ext (G, Z) -~ Ext (G1, Z), so 

the demand is reasonable. 

MAIN THEOREM 3.9 (V=L): Suppose that A is an uncountable regular cardinal 

which is smaller than the first weakly compact cardinal. Let Ap < A + for p E P. 

Then there exists a (torsion free) strongly A-free group G such that HGI] = A, 

.p (G)  = ~p, and . o ( g )  = ~+. 

Proof: During the proof we will use consequences of the assumption V = L like 

GCH, the principle proved in 2.1 etc. without recalling the main assumption. 

The construction is much easier if Ap = A + for some p E P and h a = 0 for 

all q # p (remember that Ext ( ( ~ n ~  Gn, Z) = Ylne~ Ext (Gn, Z)). Therefore we 
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assume tha t  we are done with this par t icular  case and we assume tha t  Ap < A 

for all p ~ P.  

We shall build a A-free group G = G~ = [-Jm<~ Gm with universe A (the se- 

quence (Gin: c~ < A)" increasing continuous, Gm a group on an ordinal  3'~ < A 

for a < A). As witnesses for up(G) >_ A; there will be also homomorph i sms  

f~'¢ E H o m ( a ,  Z /pZ)  for ~ < Ap, f~'¢ = Um<a f~P'¢- For the witnesses to work 

we need: 

(*)1 I f p  E P, 0 < n < w, 4 ° < . . .  < ~n-1 < Ap, a~ E { 1 / p Z , . . . ,  (p - 1) /pZ} 

(for • < n), 

then ~ < ~  aef~ '¢~ ~ H o m -  (G, Z /pZ)  

(of course Ee<~ aef f  '¢~ c Uom(a, Z/pZ)). 
This  is equivalent to 

(*)2 there  are no p C P ,  0 < n < w, ¢0 < . . .  < ¢,~-1 < Av ' ae E { 1 / p Z , . . . ,  

( p -  1) /pZ} (for t~ < n) and g E Hom(a, Z) such tha t  g/pZ = Y'~4<,~ a~ff  '¢e" 
We shall also have to take care showing tha t  uv(G ) is not > A v (if Ap < 2 a) and 

for this it suffices to show tha t  {f~'¢ : ~ < Av} generates  H o m ( G , Z / p Z )  over 

H o m - ( G ,  E /pZ) .  For this we shall use the h(~,c) (and T~) below. 

By induct ion on a < A choose an increasing continuous sequence 

( T m : a < l )  C - A s u c h t h a t A p < A = ~ A p + W < 7 0 ,  T m + l = T m + T m .  

For our given A, we want  to use 2.1; we use a club E C_ acc ({a  < ,~: 7m = a})  

thin enough. As V = L we find a s ta t ionary  set S C_ E such that :  

(a)  for every 0 = el(0) < A, {(~ E S: cf(d) = 0} is s tat ionary,  

(fl) S a set of singular limit ordinals, 

(7) A = p+ ~ S C__ [# + 1, A) and if A is inaccessible then S is a set of s t rong 

limit singular cardinals,  and 

(~) S does not reflect. 

Now, t5 is empty,  Q = (Qo,Q1,Q2,Q3,Q4. . . )  where Qo is a b inary  func- 

t ion symbol ,  Q1, Q4 are 3-place ones and Q2, Q3 are binary predicates  and 

(M, QM, ftM) ~ ~o means: 

(a) (M, Qo M } is a group, QM(p, ~, .) is a homomorph i sm from the group to Z/pZ  
with p, ~ variable (it corresponds to fP'¢); also Z, P , . . .  are coded in some 

way (see below), 

(b) /~M codes a counterexample  to (*)2, i.e. p, n, ~ 0 . . .  , ~ , - 1 ,  a o , . . .  , a n - l ,  f ,  

g such t ha t  g E H o m ( M ,  Z), f = 2 e < ~  aef p'¢e = g /pZ • H o m ( M ,  Z /pZ) .  

Let  9 2 ~ , ~ , 3  be as obta ined  in 2.1. Choose a sequence (Am: a < A) such tha t  

Am C_ a for a < A and 

i f A C _ ~ , ~ < A  
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then there is c~ E (fl, (llflll + R0) +) such that A = Ao 

(remember we have GCH). 

We now choose by induction on ct < A the following objects: M 1 (i.e. a group 
t M~ M 1 

Go and homomorphisms fP'¢ (for p E P, ~ E £pN3'~) and QMo, Q3 , Q4 " , . . - ) ,  

T p, R p, h(g,c) (for (g, C) E R p) such that: 

1. Go is a free group with universe "7~, 

2. Go is increasing continuous in ct, 

3. i f f l  < c~,fl ~ S then G~/G~ is a free group of size Ih'~II, 

4. f~,¢ c Hom(Go,g/pg), M 1 is (Go, fP~ '¢) considering fP'¢(x) a function 

with three places (so fP'¢ is not defined for C -> 7o), 

5. if ~ < c~ then f~'¢ C_ fP,¢ (so that f~,¢ is increasing continuous in c~), 

6. if a ~ S then there is a basis Y~ of G~+I over Go such that: 

i fp E P, n < a~, ~0 < . . .  < ~ - 1  < )~p N %  and do,... ,a~-i E Z/pZ 

then for 117~11 members y E Y~, f~+lP'¢e (Y) = ae (for e < n) and f~+l q'¢ (Y) = 0 
if q • P,  ( < Aq M ~/~, (q, ~) ~ {(p, (0) , . . .  , (p, ~ n - 1 ) } .  

7. Let c~ E E, N ~ = ~° (M~) ,  3~ = $(M~), N~ = ~ ( M ~ )  for i < 3o. 

Note: M~ E k 2 by clause (1), the universe of N ° is a transitive set (see (f) 

of 2.1) so ord C'l N ° is an ordinal greater than a (if non-zero). 

Assume a E S (so 7o = a) and Go, (f~'¢: ~ < Ap O a} belong to N% Then 
we choose by induction on ~ E ord N N ° \ (£p  M c~) the function fP'¢ E N ° 

as the <~w-first member of Hom(G~, Z/pZ) (as a vector space over the 

field Z/pZ) which does not depend on {fP,~: ( < ~}. 

Let fP,¢ be defined if and only if ~ < C(P, c~). 

Note: if 3(M 1) = 0 then ~(p, c~) = )~p n c~, N ° is empty, and below Tg = 
R~ = 0. 

8. Tg = {fg'~: Ap n ~ < ~ < ~(p, c~)}. 

9. R p is the family of all pairs (fP'¢, C) such that: 

(a) f~P'~ E T~ p and C E N ° is a closed subset of a M E, 

(b) f o r / ~ • C :  fa  p'~[G z • T ~ a n d C M / ~ • N  z, 

(c) for ~ < 7 in C, h(s~,~iaz,cn~) _C h(l~,~a~,cnT), 
10. if (g,C) E R~ then h(~,c) E Hom(G~,2~) n N ° and h(~,c)/pZ = g and 

U~Ec h(~ta~,cn~) C_ h(~,c), 
11. if (g, C) E R[,  g C_ g' E Hom(Go+~, Z/pZ) 

then there is h' E Hom(Go+~, Z) extending h(~,c) and h'/pZ = g~. 
12. Assume that  a E S, 0 < n < w and 

9I(M~) = (Go, f~ '¢ , . . .  , p , n , ~ ° . . .  , ~n - l , a0 , . . .  , a n - l , f , g } ,  
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where f = ~<~,a~f p'¢~ E Hom(G~,Z/pZ), a~ 6 Z / p Z \ { 0 } ,  f = g/pZ, 
g E Hom(G~, Z). 

If  there is a free group H, Go _C H such that: for every q c P, 4 < Aq M y~ 

the homomorphism fq'¢ can be extended to a member of Horn(H, E/qZ), 
and the quotient H/Gz is free for /3 C (a \ S), ]IHII = [17~+llI, and H 
satisfies (11) (with H playing the role of G~+I) and there are some fP'¢ 

f P'¢ ~ such that for f '  - satisfying (4), (5) (with H as G~+I and f.P'¢ as o~+12 

~e<n atf p'¢ E Horn(H, Z/pZ) we have: 
(*) -~(3g')[g C g' C Hom(H,Z) & g'/pZ = f'] 

then H = G~+I, f ' =  ~t<n at.fP~*l satisfy (*) too; 

13. if ApeP Ap -- 0 (so (12) is an empty demand), a E S, and there is a group 

H such that  G~ C H and for each 13 E c~ \ S the quotient H/Gz is free, 

and IIHII = I1~/~+111, and it satisfies (11) (with H playing the role of G~+I) 
and H/G~ is not free 

then G~+I/G,~ is not free. 
1 M 1 14. QM~, Q3 ~ c -),~ x "),~ are such that for each/3 < "ya we have: 

A n = {i < ~,~: M~ ~ Q2(/3,i)} and 
if fl is limit then {i < % :  M~ ~ Q3(/3, i)} is a cofinal subset 

of/3 of the order type cf(/3). 

QM: is such that if 4, ~ < 7~, N41I = II¢ll then the function 

M 1 
Q4 ~ (¢, ¢, ") t<: ¢ > ¢ 

M 1. M 1 1 
is one-to-one and onto. We require that Q2 ~, Q3 ~ and QM~ are increasing 
with a,  of course. 

The conditions (6), (12), (13) and (14) fully describe what happens at successor 

stages of the construction. Limit cases are determined by the continuity demands 

(2) and (5). Note that the demands (1), (3) are preserved at the limit stages as 

the set S is not reflecting (see e.g. [EM, Proposition IV.1.7]). Hence there is no 

problem to carry out the definition and let G = G~ = U~<~ G~ (though it is not 

so immediate that  G is not free!). 

Some of the desired properties are clear: 

(®)1 G is a group of cardinality A (and the set of elements is A) extending 

each G~ 

(by (1)+(2)), 

(®)2 G is A-free and even strongly A-free 

(by (1) each G~ is free so G is A-free; by (3) if/3 E i \ S, 13 < a < A then G~/Gf~ 
is free, so G is strongly A-free, see e.g. [EM, pp. 87-88]). 
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Let fP'¢ = f~'¢ = (.J~<~ f~'¢ for p E P,  ~ < )~p. 
(®)3 fP'¢ E Hom(G,X/pX) (extending each fP'¢ for a < A) 

(by (4)+(5)). Before checking the main properties of G let us note the following 

two facts (which explain the condition (14) of the construction). 

CLAIM 3 . 9 . 1 : I f 5  • E ,  ~(M~) > 0 and E ( 5, II/~]] < [15[[ then ~o(~;) C N *. 

Proof of the Claim: By the clauses (f), (h) of 2.1 and condition (14) of the 

construction we have Ai • No ~ for all i • (n, I]~l]+). By the choice of the sequence 

(Ai: i  < A) we are done. I 

CLAIM 3.9.2: If  5 • E,  3(M~) > 0 then there is an increasing cofinal in 5 

sequence (/3~: i < cf(5)) such that for every i* < of(5) we have 

(13~i : i < i*) • N ~. 

Proof of the Claim: By the clauses (k), (1) of 2.1 we have a club e~ C_ 5 such 

that otp(e~) < 5 and for each a < 5 the intersection e~ A a is in N ~. The set 

b*d~=f{i < 7~: M2 ~ Q3(otp(e~),i)} is an increasing cofinal subset of otp(e~) of 

the order type cf(5) = cf(otp(e~)). It follows from the condition (h) of 2.1 that  

b* • N ~. But with ea and b* in hand we may easily build (fl~: i < cf(5)> as 

required. I 

Now comes the main point: 

(®)4 i f p  • P, 0 < n < w, ~o < ... < ~n-1 < )~p, ao , . . . , an -1  • Z / p Z \ { 0 } ,  

f = E~<n a t f  p'¢* • Hom(a ,  Z/pZ) 
then f ~t Hom-(G,  Z/pZ). 

Why (®)4 ? 
Assume that  (®)4 fails, so there are p C P ,  ~o < . . .  < ~,~-1, ao , . . .  ,an-1 E 

Z /pZ  \ { 0 }  and g • Horn(G, Z) with f = ~ < ~  a t f  p,ff = g/pZ. Let 

M 2 = ( G , f p ' ¢ , . . . , p , n , ~ ° , . . . , ~ - l , a o , . . . , a ~ - l , f , g ) ,  M ~ = M 2 [ 5 .  

By 2.1 condition (i) without loss of generality (i.e. possibly replacing 

by some other 

p ,n ,~° , . . .  , ~ - l , a 0 , . . .  , a n - l , f , g  

* * ~ 0  . ~ n * -  1 * * 
p ,n  , % , . . . , ~ .  , a o , . . . , a n . _ l , f * , g *  

with the same properties) we have: the set 

s*d=ef{5 E S: fft(M~) = M~ and M 2 -< M 2 and 

3(M~) = cf(5) or $(M~) = 0} 
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is stationary. (Just applying (i) choose 0 = a when 0 < a < A and take arbitrary 

regular 9 < A in other cases.) Choose 5 • S*. Remember that S* C S, so e.g. 

(~ = 7~, cf(5) < 5 and 
= p+ ~ 5 • [p + 1, A) and 

if A is inaccessible then 5 is a strongly limit singular cardinal. 

Let us first consider the case 3(M~) ¢ 0 (so cf(5) -- 3(M~)). To show (®4) we 

will need the following technical but useful claims. 

CLAIM 3.9.3: If R • N ~, R C Hom(G~,Z)UUqepHom(G~,Z/qZ),  211Rll < []5I [ 

(SO 2 211Rll _~ ~) then for every/3 • 5 \ S large enough there is x • G~ such that: 

(a) h • R ~ h(x) = O, 

(b) x • G~+I, moreover GZ ® (Zx) is a direct summand orGy+l ,  

(c) g(~) # 0. 

Proof of the Claim: First assume that R is infinite, so 211nil = ]IRZ]]. 

As 211Rll < ]]51 ] clearly there are x • G~ \{0} satisfying (a). If x satisfies 

(a)+(c), x • GZ and/3 • 5 \ S large enough then we can find y • GZ+I which 

is a member of a basis of G~+I over G~ and which satisfies (a) and g(y) = O. 

Then the element x + y satisfies (b) (and (a), (c)). So it suffices to find x • G~ 

satisfying (a)+(c). If this fails then for every xl, x2 • G~ we have 

[ A  h(Xl) : h(x2)] :==k g(xl) =g(x2). 
hER 

So there is a function F: nZ ---+ Z such that g(x) = F ( . . . ,  h (x) , . . .  )heR- Take 

i < $(M~) such that  R E N~. Then N~+ 1 ~ ]]RI] _< Nhl] (remember 2.1(f, g)) 

and necessarily N/5+1 ~ [[RI[ < [151[ (as []R[I < [[(~][ in V). Applying 2.1(h) we 

get that  QM~ E N~+ 1 and therefore N~+ 1 ~ ]]R]] = ~0, where no = [[R[[ (in 

V). Let nl = 2 ~° (so ~1 < [I5[[). Then, by 3.9.1, we get T'(n0) _C N~+ 1 and 

N~+ 1 ~ [[t%Z × Z[I = nl. Again by 3.9.1, we get P(nl)  C_ N~+ 1. But this implies 

that  7)(~°Z x Z) C N~+I and P ( R z  × Z) C_ N~+,. In particular F E N ~. Since 

{G~, R} E N ~ (G~ by clause (h) of 2.1, R by the assumption) we conclude that 

g E N ~ - -  a contradiction to condition (h) of 2.1. The case when R is finite is 

much easier. We start as above, but getting x E G~ with (a)+(c) we give purely 

algebraical arguments. The claim is proved. I 

CLAIM 3.9.4: (1) Suppose that cf(~) :fi cf(#) < /z < 6 < #+ (so we are in the 

case A = ~+), R E N~, R C_ Hom(G~,Z)U UqepHom(G~,Z/qZ) ,  i < ~(M~) 

arid N~ ~ Ilnll  - -  ~.  Then for each sut~ciently large ~ • (~, 5) \ 5; t h e r e  exist 
xj  • G~+I for j < cf(#) such that: 
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(a) if h • R then the set {j < cf(#): h(xj) ¢ 0} is bounded in cf(#), 
(b) G~ ® (zj: j < cf(p))az+~ is a direct summand of Gz+l (and so of 

G~), 
(c) ~(~j) -¢ 0 for all j < cf(.).  

(2) In (1), i f  we change the assumptions to: 

cf(5) = 0 + =/~ < 5 < p+, [[R]I = 0 

then the assertion holds true after replacing cf(#) by cf(0) (so xj are being 
chosen for j < cf(0)). 

(3) Suppose that cf(5) ¢ cf(0), cf(5) < 0 + = # < 5 < #+, R • N~, R C_ 

Hom(a6 , z )  U Uqel" Hom(a6,Z/qZ),  i <  $(M~) and N/~ ~ [IRI[ = #. Then 
for sut~cientty large/3 • (#, 5) \ S there exists a sequence (xj,k: j < #, k < 

cf(O)) C_ G~+I such that 

(a) i f h  • R then {(j,k) • • x of(0): h(xj,k) ¢ 0} • I(,,~f(o)), 
(b) G~ ® (Xj,k: j < #, k < cf(0)}a~+~ is a direct summand of G~+l, 
(c) g(xj,k) 7 ~ 0 for all j < #, k < el(0). 

Proof of  the Claim: (1) We follow exactly the lines of the proof of 3.9.3, but 

first we have to choose an increasing sequence (Ry: j < cf(#)) • N/~ such that 
Uj<d( , )  Rj = R, ]IRjl I < IIRI[ (and hence 211n,]l < # as # is a limit cardinal). To 

find the Rj use condition (14) of the construction (and Q3, Q4)- Then use 3.9.3 

to find 30 • (#, 5) such that there are x~ • G~0 (for j < el(#)) with 

(Vh • Rj)(h(x;)  = 0) and g(x;) 7~ 0 

(remember that cf(6) ¢ cf(#)). Now if/3 E (/30, 5) \ S then we find a sequence 
(yj : j < of(#)) c_ G~+I which can be extended to a basis of G~+I over G~ and 
such that for all j < el(p) 

(Vh e Rj)(h(yj) = 0) and g(yj) = O. 

Put  xj = yj + x~. 
(2) Similarly (note that if R e N~, IIRII = 0 then N/~ ~ IIRII = 0). 

(3) Similarly: first find (Rj,k: j < #, k < cf(0)} e N/~ such that l]Rj,kl] < O, 

the sequence ([-Jk<cf(0)Rj,k: j < #) is increasing, for each j < # the sequence 

(Rj,k: k < cf(0)) is increasing and Uj<~ Uk<cf(0) Rj,k = R. Next follow as in (1). 
| 

Now we are going to finish the proof of (@)4 (in the case 3(M~) ¢ 0). Note that 

by (@)3, fP'¢e [G~ = f~'(~, so we can try to apply condition (12). But condition 
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(12) says "help only those who can help themselves". More specifically we have 

to prove that  there are H, f ' ,  f~_~ as required there (in particular (*)) and then 

by (12), g [G~+I gives the desired contradiction. But this is done by the following 

claim. 

CLAIM 3.9.5: Suppose that 5, g , . . .  are as chosen earlier. Then there exists a 

free group H such that G~ C_ H, H/G~ is free for/3 • 5 \ S, []H][ -- [[511 , the 

homomorphism g cannot be extended to a homomorphism g' • Horn(H, Z) and 

(a) for every h E Hom(G~, Z) N N ~ and h + • Hom(H, Z/pZ) such that h /pZ c 

h + there is h* • Horn(H, Z) with h C_ h* and h*/pZ = h+; 

(/3) if  q • P,  ~ < Aq n 5 then f~'¢ extends to an element of Horn(H, Z/qZ). 

Proof of the Claim: Let us recall that $(M~) = cf(5). For e < 3(M~) let 

Re = ~ ( M  1~ j rh (Hom(G~, Z) U Uqep Hom(G~,Z/qZ)) and let (f~: e < 3(M~)) 

be a sequence of functions such that for each e < $(M~) we have: 

~ o n t o ~  5 
f~:o >/te and ( f¢: (_<e)  eN$+ 1 

(see clauses (e) and (g) of 2.1). Let (/3~: i < cf(5)) be an increasing sequence 

with limit 5 such that/30 ~ > cf(5) and (/3~: i < i*) E N a for all i* < cf(5) (see 

Claim 3.9.2). Finally for i < cf(5) let 

R*de-£f l r -- t~(¢) :  ¢ < ~ ~ e < i}. 

Then R* are increasing with i and 

URn= U R, 
i<¢f(~) ~<~(M~) 

and for each i* < cf(5) the sequence (R*: i < i*) belongs to N~. (for some 
~i. < $(M~)). Moreover N~,. ~ IIR*II < I1  11 for each i < i*. 

Let (a~: i < cf(5)) be an increasing continuous sequence cofinal in 5 and 

disjoint from S (possible by the choice of S). 

CASE A: 5 is a strongly limit singular cardinal. 

In this case we have 
(Vi < cf(5))(2 IIR;II < 5). 

Thus we may apply Claim 3.9.3 and choose by induction on i < cf(5) an increasing 

sequence (ji: i < cf(5)} C cf(5) and x~ • Ga~,+ 1 such that: 

(a) h • R* ~ h(x~) = 0; 
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(b) Gc~ ® (Zx~) is a direct summand of G~; 
Ji 

(c) g(x ) # o. 
Since (a/5: i < cf(6)} C_ 6 \  S is increasing continuous (and cofinal in 6) we 

get tha t  the subgroup Ha = {x~: i < cf(6))c~ is a direct summand of G~, say 

G~ = H~ ® H~ (and {x~: i < cf(5)} is a free basis of H~). Let  I = {A C_ cf(5): A 

is bounded} and apply 3.4 for cf(6), g, p, I and H~ and get the respective free 

group H ~ D H~ ( H ' A G ~  = Ha). We claim that  the group H = H ' ® H ~  is 

as required. For this, first note  tha t  i f /3 E 5 \ S, a 5- > /3, A = [0, Jio) then 
3 i o  

H'/ix~i: i • A) is free and hence H/G~ °' is free. But  Ga~,o/Gz is free so we 

conclude tha t  H/Gz is free• 

As g cannot  be extended to a member  of Hom(H ' ,  Z) it has no extension in 

H o m ( H , Z )  Suppose now that  h • Hom(G~,Z)  n N  ~, so h • R~" for some 
• $0 

i0 < cf(5). Let  h + • H o m ( H , Z / p Z )  extend h/pZ. Since for all i >_ i0 we 

have h(x~i) = 0, we may apply clause (3') of 3.4 to get a suitable lifting h* • 

Hom(H,  Z) of h +. Similarly, we use 3.4(6) to show tha t  f~'~ can be extended 

onto H ( remember  f~'~ • N~). 

CASE B: 6 • (#, #+)  for some cardinal # such tha t  cf(#) = cf(6) < #. 

By condit ion (14) of the construct ion and the use of Q3, Q4 we have that ,  

lett ing a = cf(6), for each i < cf(5) 

This allows us to build R** such tha t  

i < j < cf(6) ~ R~* C_ R~* E N ~, 

U R**-- U R* and ]IR**II<#.  
i<cf(6) i<cf(5) 

Now we can continue as in the previous case. 

CASE C: 5 E (p, #+)  for some cardinal number  # such tha t  cf(6) ¢ cf(/~) < #. 

By Claim 3.9.4(1) we can choose x~,j (for i < el(d), j < cf(#))  such that :  

(a) for each h E R~, for every j < el(#) large enough h(xf, j) = 0; 

x z c f (5 ) , j  < cf(~)} is a free basis of a direct summand  of G~, (b) { i < 
moreover  for some increasing sequence (ji: i < cf(5)} C cf(5), for each 

x ~ • i* c f (~) , j  free basis of a i* < cf(/~), the family { i,j. _< i < < cf(tt)} is a 

subgroup H C_ G~ such tha t  G ~  • H is a direct summand  of G~; 
3i* 

(c) g(x ,j) # 0. 
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Let 

I = I(cf(~),¢f(u)) = {A C_ cf(5) × cf(#): (V*i < cf(5))(V*j < c f (# ) ) ( ( i , j )  ~t A)}. 

Again apply 3.4 (with A there  standing for cf(5) + cf(#)).  

CASE D: 5 E (# ,#+)  for some cardinal number  # such tha t  cf(5) = # = cf(#) 

is inaccessible. 

Similar to Case B. 

CASE E: 5 E (# ,#+)  for some cardinal number  # such tha t  # = 0 + = cf(5). 

First  find an increasing sequence (R**: i < 0 + ) such tha t  R** e N ~, [Ji<0+ R** 

= [Ji<cf(a) R* and IIR**I] _~ 0. Then  apply Claim 3.9.4(2) to choose a sequence 

(x~,j: i < c f ( a ) , j  < cf(0)) similarly as in case C. 

CASE F: 5 E (# ,#+)  for some cardinal p such tha t  cf(5) < # = 0 +, cf(5) 

cf(O). 

Using Claim 3.9.4(3) we choose an increasing sequence (ji: i < cf(5)) C_ cf(5) 

and a sequence (x~,j, k . ~  • i < cf(5), j < #, k < cf(0)) such. that  

(a) for each h E R'z, for every j < # large enough for every n < cf(0) large 

enough, h(x~,j,k) ----- 0; 

(b) ~ • cf(5), #, n a a {x~,j, k. i < j < < cf(0)} is free basis of direct summand  of 

G~; moreover for each i* < cf(5) the set 

i* cf(~), j < #, {x~,j,k: < i < k < cf(0)} 

is a free basis of a subgroup H C G~ such tha t  G ~  @ H  is a direct 
Ji* 

summand  of G~; 

(c) g(x~,~,k) ~ 0. 
Let I ---- I(cf(5),t,,cf(0)) and apply 3.4. 

CASE G: (~ E (# ,#+)  for some cardinal # such tha t  # -- 0 +, cf(~) -- cf(0). 

This  is similar to case F though we have to modify the application of 3.4. First  

we choose increasing sequences (Ri*;: j < it) C N ~ (for i < cf(5)) such tha t  

• * U ** * 
[IR~,~ll < it, R~,j = R~ and 

J<t~ 

((Ri*~-: j < it): i < i*) e N ~ for each i* < cf(5). 

• **" cf(O)) (for i cf(5) cf(O), Then  we choose increasing s e q u e n c e s  (Ri,j, k . k < < : 

j < #) such tha t  

IIRi*,~,*kll < O, U R*,~,*k -= R*,*j and 
k<cf(0) 
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({R~,~,*k: j < #, k < cf(0)): i < i*) E N ~. 

Now, for g < cf(0) = cf(6), j < ,  put R+e = Ui,k<e R~',;,*k' Note that  R+e E g 5 
and IiR+el] < 0. Moreover if h E Ui<cf(6) R~ then (V*j < #)(V*g < cf(6)) 

(h E R+e). Next, as in the proof of 3.9.4 we choose x~,e, Yj,e such that  

(Vh E R+t)(h(x~,e) = h(vj,~) = 0), g(x;,t) ¢ O, g(vj,e) = O, 
• r def . ¢ x . 
lI Pj,e = mm~a~ o : xj,e E G~e~ ° } then g < go and 

{Yj,t: Pj,g =/3} C__ G~+I can be extended to a basis of Gz+a over GZ. 

Then we put xj,~ = x~, e + Yj,e (for j < p, g < cf(5)) and we apply 3.4 as earlier. 

CASE H: 5 E (#,#+)  for some inaccessible cardinal # such that of(5) < of(#) 
--~#. 

This is similar to case C. 

This completes the proof of Claim 3.9.5. I 

The case 3(M~) = 0 is much easier and can be done similarly. We do not 

have N 6 and we have to take care of extending homomorphisras f~'¢ only. We 

basically follow the lines of the previous case, but proving the suitable variants 

of 3.9.3, 3.9.4 instead of the fact that 9 q{ N 6 we use clause (6) of the inductive 

construction. 

This completes the proof of (®)4- 

To finish the proof of the theorem we have to show 

(@)5 if p E P,  f E Hom(G,Z/pZ)  then there are n < w, ~0, . . .  , ~ - 1  < ,~p, 

ao, . . .  ,a,~-i E Z /pZ  such that f -  ~e<~ aef  p,¢~ E H o m - ( G , Z / p Z )  (i.e. 
the difference can be lifted to a homomorphism to Z). 

For this we inductively define a sequence (f~: ~ < ~(.)) C_ Horn(G, Z/pZ) by: 

f¢ is the <*-first member of the vect6r space Horn(G, Z/pZ) over the field 

Z/pZ  which does not depend on 

{fP'¢: ~ < Ap} U {f¢: ~ < ~}. 

(So ~(*) is the mmximal length of a sequence with the property stated above.) It 

is enough to show that all the homomorphisms f~ (for ~ < ~(*)) can be lifted to 

homomorphisms f~ E Horn(G, Z). But by (®)4 we know that M 1 E k~ \ k ; ,  so 

we may apply (j). Thus we have a club C C_ E such that for each 6 E C: 

{CM6,(f¢I6:  ~ < 6)} E N 6. 

Applying the "moreover" part of (j) of 2.1 we may make use of conditions (8), 

(9) of the construction. (Remember that  in (7) the sequence (f~,~: Ap M a < ~ < 

¢(p, a)} has the same definition as our sequence (f~: ¢ < ¢(.)).) t 
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Remark  3.10: The main theorem 3.9 can be proved for all regular cardinals 
which are not weakly compact.  This requires some changes in the construction 

(and 3.4). 
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