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Abstract

Given a relational structureM and a cardinal A < \M\, let <fix denote the number of
isomorphism types of substructures of M of size A. It is shown that if /i < A are
cardinals, and \M\ is sufficiently larger than A, then 0^ ^ <f)x. A description is also
given for structures with few substructures of given infinite cardinality.

Introduction

In this paper we shall consider relational structures, that is, structures over
languages containing relation symbols but no function or constant symbols. The
word 'structure' will always mean 'relational structure'. Suppose that M is a
structure and that A is a cardinal, and let <f>x denote the number of isomorphism types
of substructures of M of cardinality A. It is well-known that if M is an infinite
structure in a finite language and n < m ^ Ko, then <j)n ^ <f>m. A proof of this using
Ramsey's theorem is due to Pouzet and can be found in [3] and in more detail in [4],
and a linear algebraic proof can be obtained by an easy adaptation of an argument
in Cameron [1] and a different linear algebraic proof appears in [5]. In this paper we
extend this result to infinite cardinals, under certain set-theoretic assumptions,
thereby partially answering a question of Pouzet. We also obtain a structure theorem
(Theorem 4-5) for structures M for which (j>x is small. The work was stimulated by
results of Pouzet and Woodrow[6] on relational structures M with <f>A finite for
infinite A. We thank them for communicating these results, which preceded our
Theorem 45. We remark that results of this kind will not in general hold over
languages with function symbols.

The conjectured answer about the behaviour of the values of <j>x, is that if M is a
structure of cardinality K and /i < A < K, then <pM < (f>A. The example (K, <) shows
that the conjecture cannot be extended all the way to <j)K. In this structure, <f>n = 1
for all n < w, <j)A = A+ for A < K, and <pK = 1. This counter-example leads naturally to
a subsidiary conjecture that any other counter-example will be similar to this one.
The main conjecture is true, if we assume a weak form of GCH, which we call WGCH;
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194 D. MACPHERSON, A. H. MEKLER AND S. SHELAH

namely that for all /i < A, 2? < 2A. We will not prove the full theorem here but instead
will concentrate on the case of regular cardinals. The other case will be dealt with in
a paper by Mekler and Shelah which is in preparation. The case of singular cardinals
is more complicated. The following two theorems are typical of the results we prove
here.

T H E O R E M 4-2. Assume GCH holds. Let M be a structure in a relational language. If
p < fi ^ A < \M\, where p is a regular cardinal, then <f>p ^ (p^.

T H E O R E M 4-4. Assume WGCH holds. Let M be a structure in a relational language. If
/i < A < \M\, where A is a regular cardinal, then <fiM ^ <pA.

Given infinite cardinals fi < A and a sufficiently large structure M, our basic
strategy to show <f> ^ <j)x is as follows: for each substructure A £ M with \A\ = fi, find
a set / ci M of indiscernibles over A with |/| = A, and form the substructure A U / of
size A. I t is possible that this will produce ^ non-isomorphic substructures of
cardinality A. If it does not, then we will analyse the failure and show how to produce
the necessary number of substructures. The method of the proof in Theorem 45 is
analogous.

There remains the difficult question of the existence of the indiscernibles. In the
first version of this paper the first two authors considered structures in a language
of bounded arity and used the Erdos-Rado theorem to produce indiscernibles. This
approach restricted both the languages which could be used and the cardinals to
which the argument could be applied. Shelah supplied the argument which shows,
under some set-theoretic hypotheses, that if the desired indiscernibles do not occur
then ^ ^ 2^ for all /i ^ A.

Before beginning the proof we need to review some facts and definitions. In a
structure M a fi-substructure is a subset of M of cardinality /i endowed with the
restriction of the relations. A /i-set will be a set of size fi. Let A c M. Suppose A is a
set of quantifier-free formulae. An ordered set (J, <) is ^-indiscernible over a set A
i f f o r a n y f o r m u l a <f>(ylt ...,ym,xx, ...,xn)e A a n d a1,...,ameA a n d j 1 < ... <jn a n d
ix < ... < in<= J, (f>(alt..., am,jx,.. .,jn) h o l d s if a n d o n l y if $(ax,...,am,ix,. ..,in) h o l d s .
A set J is totally ^-indiscernible over A if and only if it is A-indiscernible over A under
all orderings of J. When A is the set of all quantifier-free formulas we shall write
'indiscernible' in place of 'A-indiscernible'. The quantifier-free type of a tuple a over
A is the set of quantifier-free formulae with parameters from A which are satisfied by
a. Since all the types we will deal with are quantifier-free, we shall use type to mean
quantifier-free type. Note as well that we shall use type to mean 1-type and will refer
to a type in m variables as an m-type.

A key technical tool in our proof is the following theorem of Hodges, Lachlan and
Shelah [2].

THEOREM. Suppose (J, <) is an infinite set of order indiscernibles over a set A in a
structure of bounded arity. Then exactly one of the following possibilities holds.

(a) J is totally indiscernible.
(b) An ordering (J, -<) is order indiscernible if and only if there are disjoint Y,

Z £ J and ie{l, —1} such that
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The number of infinite substructures 195
(c) There are finite Y,Z <^ J such that, writing J' = J\{Y\J Z), we have

(J, <) = (Y, < [Y) + {J't < [J') + {Z, < \Z),

and an ordering -< of J is indiscernible if and only if there is an is {I, — 1} such that

Here <* denotes < and < - 1 denotes the reverse ordering. In the theorem if the arity
of the language is n, then it is only necessary that |J| ^ max (2n — 3, n + 2) and in case
(c) we can stipulate that \Y U Z\ ^ n. Note as well that in case (c) (J, -<) or its reverse
ordering is isomorphic to (J, <).

1. Language and the number of types

Given a relational structure M, the canonical language for M consists of an m-ary
relation for every (quantifier-free) ra-type. In the language of permutations, the
canonical language consists of the relations which are invariant under all partial
isomorphisms. Since the relations in the original language and in the canonical
language can be defined as an infinitary Boolean combination of relations in the other
language, we are free to view M as a structure in whichever language is convenient.

The following proposition is obvious.

PROPOSITION 1-1. Suppose the canonical language for M has cardinality x- Then
4>n^ X* for a l 1 1 1 -

The size of the canonical language can also be used to give lower bounds for the
number of substructures.

PROPOSITION 1-2. Suppose the canonical language for M has cardinality %. If

No ^ /i < X> then <t>» > X-

Proof. For each relation R in the canonical language choose a substructure AR of
cardinality/* so that for some alt ...,ameA,R(a1, ...,am) holds. Since in any structure
of size /i at most /i ra-types are realized for any m, there are x pairwise non-
isomorphic structures among {AR:R is in the canonical language}.

Using these two propositions we can easily extend the result for finite languages
to every language. The result is probably well-known.

THEOREM 1-3. Suppose M is an infinite structure and n < m ^ Xo. Then <f>n^(j>m-

Proof. First note that <j>n is bounded by the number of w-ary relations in the
canonical language. If this number is finite then the theorem for finite languages
applies. If this number is infinite then <j>n is the number of n-ary relations in the
canonical language. We distinguish two cases. If the number of n-ary relations in the
canonical language is Ko, then applying the finite theorem to finite sublanguages, we
have (f>m > Xo. If the number of w-ary relations is ji an uncountable cardinal, then
Proposition 1-2 implies <j>m ^ /i(= <j>n).

PROPOSITION 1-4. Suppose the canonical language for M has cardinality x and /J- is
infinite. If 2f < %?, then ^ = x*1- If I1 i-s regular and 2<>l < x, then $ ^ x<>l-

Proof. First assume 2^ < xM- Since ^ < ^ , we only have to show that <f>M 5* X1"- For
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196 D. MACPHERSON, A. H. MBKLER AND S. SHELAH

each subset X of the canonical language of cardinality fi, choose Ax of size ji so that
for all ReX there are ax, ...,aneAx so that R(alt ...,an) holds. We say that Ax

realizes X. Notice that each ^4^ is isomorphic to at most 2̂  AY. So there are %?
pairwise non-isomorphic substructures among {Ax: X is a subset of the canonical
language and \X\ = /i}.

Now suppose 2</l < x- Notice that JJP ^ 2<fi for all p < /i. Fix p < u. We now define
a sequence (Aa:a, < xp) of non-isomorphic /^-substructures. Suppose {A^.fi < a) has
been defined. Since {X:|X| = p, X is a subset of the canonical language, and there is
ft < a so that X is realized in A^} has cardinality at most \a\. 2<A, there is Y a subset
of the canonical language of cardinality p so that Y is not in this set. Choose Aa a
/^-substructure which realizes Y.

PROPOSITION 1-5. If /i < A ^ \M\ and <j>x ^ 2A, then 0^ < <j)x.

Proof. Let x be the cardinality of the canonical language of M. We can assume
that A is infinite. If 2X < xx then <px = ^A ^ ^ ^ 0^. Otherwise we have <j>x = 2A =

Next let Sm(B) denote the set of (quantifier-free) w-types realized in M over B.

LEMMA 1*6. Suppose X is a regular uncountable cardinal, Ko < fi ^ A, and there is a
set B so that for some m, \Sm{B)\ ^ A and jdBl < Ar Then ^ $s A*.

Proof. Without loss of generality we can assume m is minimal so that there is a set
C with \Sm(C)\ ^ A, where C is finite if B is finite and \C\ ^ \B\ otherwise. Now choose
a set {pt: i < A} of distinct m-types over B. Next choose c{ realizing pt. Define

Qt = {j < A: there is d realizing pt with d 0 (c( UB) 4= 0}.

By the minimality of m each set Qt has cardinality less than A. Since A is regular and
uncountable, the finest equivalence relation such that each Qt is contained in an
equivalence class, has equivalence classes all of cardinality less than A. So this
equivalence relation has A classes. Hence by passing to a subset of {p(: i < A} we can
assume that each Qt has cardinality 1.

For any X ^ A, let M(X) =B\J{ci: ieX}. By our assumption that \Qf\ = 1, we
have that pt is realized in M(X) if and only if ieX. Hence if X =j= Y then M(X) is not
isomorphic to M{Y) over B. Since /*|B' < M the lemma is proved.

Since the cardinality of the canonical language is the same as the number of types
over the empty set, we have the following result.

THEOREM 1-7. Suppose A is a regular uncountable cardinal and the canonical language
has cardinality at least A. Then for every infinite fi ^ A, we have 0^ ^ A''.

2. Existence of indiscernibles

We begin this section with a result on the number of suborderings of linear
orderings. This result will be needed in the proof of the main theorem of this section
(Theorem 2-4). As well, the method of proof of Theorem 2-3 is a simplified version of
some of the arguments we will use in Theorem 2-4.

LEMMA 2-1. Suppose u is a regular cardinal and (I, <) is an ordered set of cardinality
/i. Then one of the following possibilities holds.
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The number of infinite substructures 197
(i) / contains a subset of order type /i.

(ii) / contains a subset of order type /i*. (If T is a linear order then T* denotes the
reverse order.)

(iii) / contains a dense linear order of cardinality /i.

Proof. Define an equivalence relation = on / by i = j if and only if [i,j] is scattered
(cf. [7], p. 33; a linear order is scattered if it contains no dense linear order). If some
equivalence class has cardinality /i, then that equivalence class is a scattered
subordering of/ of cardinality /i. So by corollary 5.29 of [7], either (i) or (ii) holds.
If no equivalence class has cardinality /i, then / / = is a dense linear ordering of
cardinality /i. By taking a set of representatives for the equivalence classes of = , we
obtain a dense linear subordering of / which has cardinality /i.

In order to apply the next theorem in many contexts, we define the following concept.
Suppose M is a structure of size K and A < K. A set A ^ M is said to be complete for
A if whenever B £ A and \B\ < A then every type over B which is realized in M is
realized in A and if some type over B has at most \A | realizations in M then all the
realizations are in A. The following proposition gives two sufficient conditions for the
existence of complete sets.

PROPOSITION 2*2. Suppose M is a structure of cardinality K and A is a cardinal less
than K.

(a) If A is regular and for every 6 < A there are at most A types realized over any set
of size 6, then every subset of cardinality A is contained in a set of cardinality A which
is complete for A.

(b) Suppose 2<x < K and A is regular. Then either every subset of cardinality A is
contained in a set of size 2<A which is complete for A, or <j>x ^ 2A and if A = /i+ then
tpr^Z" as well.

Proof. Since the proofs of (a) and (b) are similar, we will only prove (b). If over every
set of cardinality less than A, there are at most 2<A types then the complete set can
be built as the union of 2<A sets of cardinality 2<A, where at each stage we add
realizations of all types over all subsets of cardinality less than A.

On the other hand, suppose there is a set B with \B\ < A such that there are at least
(2<A)+ types over B. Let 6 denote (2<A)+. Then

v < A v < A

So A|B| < d\ Also, if A = /*+ then, as /*|B| < 2^ < 6, we have /t|B| < d*. The result now
follows from Lemma 16.

THEOREM 2*3. Suppose L is a dense linear order of cardinality K. Then for every
infinite p < K, L has 2P pairwise non-isomorphic suborderings of cardinality p.

Proof. We first note the following.

Claim 1. Suppose / is a dense linear order and /i is an infinite cardinal. If there is
a sequence of order type /i or /i* in / , then / has 2^ pairwise non-isomorphic suborders
of power /i.

Proof of Claim 1. Let {aa: a < /i} be a strictly increasing sequence in / (the case
8 PSP 109

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100069668
Downloaded from https://www.cambridge.org/core. TU Wien University Library, on 29 Apr 2018 at 16:00:38, subject to the Cambridge Core terms of use,

Sh:318

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100069668
https://www.cambridge.org/core


198 D. MACPHERSON, A. H. MEKLER AND S. SHELAH

where the sequence is decreasing is similar). For each ordinal a, choose Ja £ / a set
of order type Q so that aa< Ja< ax+1. Such a choice is possible, since 7 is a dense
linear order. Fix p < A. For X £ p such that X consists of odd ordinals, let

M(X)={aa:a<p}[) \J Ja.

Notice that, in M(X), {aa: a. < p} is the set of elements which either have a unique
immediate successor or a unique immediate predecessor. It is easy to verify that if
X, Y ^ p consist of odd ordinals and-X =t= Y, thenM(X) is not isomorphic to M(Y). So
the claim is proved.

Since every singular cardinal is a limit of regular cardinals it is enough to prove the
theorem under the assumption that K is regular. By Claim 1, we can assume that L
has no increasing or decreasing sequence of order type K. Define the equivalence
relation = on L by a = b if and only if the interval [a, b] has cardinality less than K.
If some equivalence class has cardinality K then, as K is regular, L has either an
increasing or decreasing sequence of order type K. Hence L/ = has cardinality K. SO
we can assume:

(*) L is a dense linear order of cardinality K and every interval of L has cardinality
K.

I t suffices to show

Claim 2. If a linear order L satisfies (*) then for all cardinals /i < K L has 2^
suborderings of cardinality fi.

Proof of Claim 2. Before we continue notice that if L satisfies (*) then so does every
interval of L. Let K = {ji < /c:2</4 < 2/'}. It suffices to prove the claim just for
elements of K. To see this suppose A ^ K and \£K. Choose (i < A minimal so that
2^ = 2A. Consider any aeL. Let Lx be a subset of ( —oo,a] of cardinality A so that
every interval of Lx has cardinality A. Now choose a maximal set si of pairwise non-
isomorphic suborders of size ft of (a, oo). The suborders Lx +A for Aestf are pairwise
non-isomorphic.

We prove the claim by induction on /ieK. There are two cases to consider.

Case 1. There is B of cardinality less than fi so that L makes at least fi cuts in B.
In this case there are 2^ suborders of cardinality /i which are non-isomorphic over B.
To finish the proof, note that fi ^ 2|B|, since there are at most 2|B| cuts in B. Hence
p\B\ ̂  2lBl < 2P. So we have 2^ pairwise non-isomorphic suborders.

Case 2. Not Case 1. Let A = cf(/i). We first show that there is a sequence of order
type or reverse order type A. Choose an increasing sequence (Bt:i < A) of subsets of
L so that for all i, \Bf\ < ju, and every cut in Bi which L makes is realized in Bi+1.
Choose a$ \j {Bt:i < A}. Now consider a sequence (at:i<X), where ateB(+1 and
makes the same cut in Bt as a does. Without loss of generality we can assume that
either for all i, a( < a or for all i, a < a{. In the first case the sequence is increasing
and in the second the sequence is decreasing. Notice that, by Claim 1, this finishes
the proof in the case where /i is regular.

Now assume that /i is singular. Let fi=*£ii<Afii, where /t( < /i. Since 2^ = IL, < A 2"<,
the 2/i< cannot be eventually constant. It follows that /t is a limit of members of K.
For each odd i, choose by the inductive hypothesis a set stfi of 2<>l pairwise non-
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The number of infinite substructures 199
isomorphic suborders of (at, ai+1) each of cardinality less than fi. For i even choose Lt

a suborder of (ait ai+1) so that \Lt\ = fi and every interval of Li has cardinality fi. For
even i, let s#t = {Lt}. Consider two orders

o — V J

for j = 0,1 where each lities^v Then Co = Ĉ  if and only if for all i, lt 0 = /411. As
2^ = Ui<x2/l'1 the result follows.

The main theorem in this section guarantees the existence of indiscernibles or
maximally many substructures.

THEOREM 2-4. Suppose M is a structure in a relational language and A is an
uncountable regular cardinal so that every set of size A is contained in a set of cardinality
less than \M\ which is complete for A. IfB £ M and \B\ < A then one of the following holds:

(A) there is a set I ^M of indiscernibles of cardinality A over B;
(B) for all /i such that No ^ /i ^ A, M has at least 2f pairwise non-isomorphic

substructures of cardinality /i;
(C) there is an indiscernible sequence of order type A+ over B.

Proof. To begin choose A* so that B^A*^M, \A*\<\M\ and A* is complete
for A. Next choose a*eM\A*. For every ceA* and quantifier-free formula
<j>(y,Xy,..., xn), we define a game GM^^ ^ of length n as follows.

Players I and II play alternately. Player I chooses subsets of A* of cardinality
< A and Player II chooses elements of A*. Further for all i < n— 1, Player I must
choose Ai+1 2 Ai U {aj. Player II is required to choose aieA*\Ai so that ai and a*
realize the same type over At. Player I wins a play of the game if <f>(c,a0, ...,an_x)
holds.

There are actually two suppressed parameters in the description of the game,
namely the structure M and the cardinal A. Later we shall have occasion to refer to
the game for <f>(c, x) in N relative to p, where JV is a substructure of M and p is an
infinite cardinal. More exactly Player I plays subsets of A* D N of cardinality < p and
Player II plays elements of A* f\N.

Clearly, this game is determined. If Player I has a winning strategy for GM ĝ- ̂  we
will denote this fact by \\-<p(c,x). Notice that it is impossible that both lh^(c, x) and
Ih -i (j>(c, x) hold, but it is possible that neither holds. There are two main cases.

Case I. For every quantifier-free <f>(y,xv ...,xn) and ceA either \\-<j)(c,x) or

Fix winning strategies for Player I in all the games for which such strategies exist.
Since A is regular and uncountable, for every C <= A* if \C\ < A then there is C1 such
that C ^ C1 <= A*, |CX| < A and Cl is closed under Player I's winning strategies. That
is for a n y <j> a n d ceC1 so t h a t \\-<p(c,x1, ...,xn) if Ao, a0, A1,a1, ...,At is a p lay of the

game according to Player I's strategy where all the ai are in Cx, then At £ Cl.
If we were only interested in getting indiscernibles of order type A, then we could

finish easily. Namely we could take an increasing sequenceB £ C0,c0,C1,c1, ...,Ca,ca,
... for a < A such that: for all a < fi, Ca\J {cj c: Cp; Ca is closed under Player I's
winning strategies; caeA* and realizes the type of a* over Ca. It is easy to see that
{ca: a. < A} is an indiscernible sequence of order type A over B. The easiest case to
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dispose of occurs when this sequence is actually a set of indiscernibles, i.e. Case l a
occurs.

Case la. For every formula <f>{y,xlt ...,xn) and all ceA* and permutation a,
U-<f>(£,z1,...,xn) if and only if \Y<j>{c,xam, ...,xain)).

In this case we can construct, as above, a set of indiscernibles of cardinality A over
B, i.e. possibility (̂ 4) holds.

Case 16. There is a formula <f> and ceA* so that II"0(5",x1,x2,x3, ...,xn) and
II—• <f>(c,x2,xltx3, ...,xn). (It requires a slight argument to see that this is equivalent
to not Case la.)

The proof in this case is subsumed under the argument in Case II a7. So we delay the
proof until then.

Case I I . Not Case I. Choose <j>{c,xl,...,xn) so that neither 11-^(5",xlt ...,xn) nor
\\--i^>(c,x1 xn) and n is minimal. It is clear that n ^ 2. Also, for every A with
B ^ A £ A* and \A\ < A, there are a,deA*\A realizing the type of a* over A such
t h a t W- <f>{c,a,x2, ...,xn) a n d \\--Kp(c,d,x2, . . . , x n ) .

Case Ila. For every A if B £ A £ A* and \A\ < A then there is aeA*\A realizing
the type of a* over A such that

Further there is dsA*\A realizing the type of a* over A such that

\\-->^>(c,d,x2,...,xn),
\\--><f>(C,x1,d,z3,...,xn).

We choose a sequence {aa:a.< A} of elements of A* so that for all a < /?2 < ...
< /?„ if a is even then

-><j)(c,aa,aPt,...,afin) a n d -> <f>(c, afit, aa, afit afij

and if a is odd then

B,aA,...,aA) and

Suppose now that /i ^ A is an infinite cardinal and X is a subset of fi consisting of
even ordinals. Let

M(X) = c U {ax:oc </i and a is odd} U {aa:ael}.

We shall show that X is an isomorphism invariant ofM(X) over c. For any aeM(X)\c
let aeUif and only if Player I has a winning strategy in the game for <f>(c, a, x2,..., xn)
in M(X) relative to /i. Notice that aa€ U if and only if a. is odd. Define a relation
<x c Ux (M(X)\S) by a <1b if and only if Player I has winning strategies in the
game for <f>(c,a, b,x3,...,xn) and the game for -i<fi(c,b,a,x3,...,xn) inM(X) relative to
fi. Notice aa <xa>a if and only if a. is odd and a < /?. Let < 2 be the relation defined on
M(X)\c to be the unique total order extending <x and satisfying the following: if a,
b eM(X)\c and a 4= b, then a < 2 b if and only if {x: x < x a} £ {x: x < x 6}. It is easy to
reconstruct X from the information given. Since there are 2̂  choices for X, case (B)
holds.
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Case lib. For every A if B £ A £ A* and \A\ < A then there is aeA*\A realizing

the type of a* over A such that

H-(p(c,a,x2, . . . , z n ) ,

Further there is deA*\A realizing the type of a* over A such that

\\-<j>(c,d,x2, . . . , x n ) ,
lh^(c,a;1,d)x3)...,xn).

This case is just like IIa.

Case He. For every A if B <= A £ A* and \A\ < A then there is aeA*\A realizing
the type of a* over A such that

c, a, z 2 , . . . , z j ,
\\-</>(c,xlta,x3,...,xn).

Further there is deA*\A realizing the type of a* over A such that

Ih -> <j>(c, d, x2 xn),

\\--><j)(c,xl,d,x3,...,xn).

We choose a sequence {aa:a. < A} so that if a is even and a < /?2 < ... < /?„ then

0(c, aa, afit,...,afin) and 0(c, a^, aa, aft a^J

and if a is odd and a < /?2 < ... < /?„ then

c,aa,a^,...,afij and -• ^(c,a^,aa,a^,...,afij.
Fix /i < A, and infinite cardinal. For X a subset of the limit ordinals less than ji let
M(X) be the structure consisting of c together with

{ai+lc:k < o), SeX} U {««+*:0 < k < w, S a limit ordinal and 8$X}.

We claim that X is an isomorphism invariant of M(X) over c. First note that we can
partition M(X)\c into two pieces U and F by letting a e U if Player I can win the game
for <j>(c, a, x2,..., xn) in M(X) relative to /i. Notice that aa e U if and only if a is even.
Next for a e U and b e V we can define a < x 6 if and only if Player I has a winning
strategy for the game for (j>(c,a,b,x3,...,xn) in M(X) relative to fi otherwise let
b <!a. It is easy to check that aa<xafi for a and fi of different parity if and only if
a < /?. Finally if we define < 2 on f/UF to be the transitive closure of <x, then
aa<2ap ^ a n d only if a. < /?. Thus < 2 is an ordering of order type /i. For limit ordinals
8, the <Jth element of < 2 is in U if and only if SeX.

Case lid. Not Ila, 116, lie. Let Ar, A2, A3 be subsets of A* which witness
respectively that Cases Ila, 116 and l ie do not hold. Put A = A1[)A2 [)A3. Then
\A\ < A, and by the remark before Case I la we have: for every aeA*\A realizing the
type of a* over A

if IF0(c,a,x2 xn) then W-xfr^x^^x^ ...,xn)
and

if I I - - i 0 ( c , a , < t 2 , . . . , x n ) t h e n \\-<f>(c,xlta,x3, . . . , x n ) .
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Recall that we have promised that the proof in this case will include the proof of Case
16. The proofs will be identical except for a few exceptions which we will note.

For any C ^ A* let

Can (C) = {aeM:a and a* have the same type over C).

Note that by our choice of a* and A* if \C\ < A then |Can (C)| ^ A+. We consider two
subsubcases.

Subsubcase (i). There is some A so that i c f c A*, \C\ < A and Can (C) can be
ordered and partitioned into two sets D0,D1 so that each Dt is order-indiscernible
over B.

We can assume that \D0\ = A+. If Do is a set of total indiscernibles we are done. In
the case where it is not a set of indiscernibles, fix a linear ordering < of Do so that
Do is order-indiscernible with respect to < (by the theorem of [2] which has been
quoted there are a limited number of ways to pick this ordering). Then, by Lemma
2-1, either < contains a sequence of order type A+ (or the reverse order) or it contains
a dense linear ordering of cardinality A+. Furthermore if there is no increasing or
decreasing sequence of order type A+ then for any TO we can find d0,..., dm eD0 so that
the interval from dt to di+1 has cardinality A+ for all i < TO. In this case we can find
a finite set over which we can define the ordering on a subset of Do of cardinality A+.
If we fix a finite set necessary to define the ordering on a dense linear ordering of
cardinality A+ then, by Theorem 2-3, we find that in every infinite power ji < A, there
are 2^ structures no two of which are isomorphic via any map which respects the
finite set. Since there are only u finite subsets of a set of size ji, there are 2^ non-
isomorphic structures. So we have shown that in this subsubcase one of the three
possibilities holds.

Subsubcase (ii). Not Subsubcase (i).
First, note that by Theorem 17 we may assume that the canonical language has

size less than A.
By the compactness theorem if Can (C) cannot be ordered and partitioned into

two sets order-indiscernible over B then there are finite subsets Jc c Can (C) and
Bc £! B and Ac a finite subset of the canonical language so that under no ordering can
Jc be partitioned into two sets Ac-order-indiscernible over Bc. By the choice of A*
there is lc. ^A* f\ Can (C) so that the Ac-type of Ic over Bc is the same as the
Ac-type of Jc over Bc. So there is no ordering of Ic which can be partitioned into
two sets Ac-indiscernible over Bc. Denote the cardinality of Ic by nc. Define
sequences {Ca:a < A} of subsets of A* and {aa+1 :a < A} of points of A* (and also in
case l i d a sequence {da+i:a < A} of points of A*) so that for all a < /?: \Ca\ < A;
B[)c^Ca^Cfi; Ca is closed under Player I's winning strategies; if a is a
l imi t o rd ina l , t h e n Ca\JICa^Cfi; aa+l(da+1)eCa,n{Ca)r\Ca+1; \\-<f>(c,aa+1,x2, ...,xn)

(II- -i <f>(c,da+1,x2, ...,xn))\ and in Case lid, A ^ Co. By the pigeon-hole principle we
can assume for all a, ft thati?Ca = Bc , Aĉ  = Ac , and nc^ = nc . To simplify notation
we will write Ia,B0, A and n0 for Ic ,BC , Ac and nc . By Ramsey's theorem we can
assume that for all limit ordinals 8{at+n: 0 < n < to} (and {ds+n: 0 < n < u>}) are
A-order-indiscernible over Bo.
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For any infinite cardinal /i ^ A and a set of limit ordinals X £ ji, let M(X) be the

substructure whose universe is c L)50 U UaeA./a U Ua</£{aa+1}( U Ua</1{da+1}). To
complete the proof that there are 2̂  models in power /i we will show that X can be
defined in the structure (M(X), c,B0); i.e. X is an isomorphism invariant ofM(X) over

We can partition M(X)\(c U Bo) into two pieces by letting as U if Player I can win
the game for <j>(c, a, x2,..., xn) in M(X) relative to /i and letting a e V if Player I can win
the game for -• <f>(c, a, x2,..., xn) in M(X) relative to /*. The fact that this is a partition
follows from the minimality of n. In case 16, V will be the empty set. From now on
we will just present the proof in case lid. The modifications needed in Case 16, all
consist of simplifying the proof. Define a relation Rv on U by letting aRubii and only
if P l a y e r I c a n w i n t h e g a m e s f o r <j>(c,a,b,xz, ...,xn) a n d -> tf>(c, b, a, x 3 , ...,xn) i n M(X)
relative to /i. Similarly define Rv on V but reversing the use of <f> and -• <j>. By the
assumptions of case lid, iia,beU and there is no SeX with {a, 6} £ Is for some limit
ordinal deX, then aRvb if and only if one of the following possibilities occurs for
some /? < <x:aelp and 6e / a ; aelp and 6 = aa+1; a = afi+1 and bela; or a = a^+1 and
6 = aa+1. Similar comments apply to V and i2v. Let 0 ,̂ be the least congruence on (U,
Rv) so that (U,Ru)/du is well-ordered. Similarly define 6V. Note that the only non-
singleton classes of 8U are subsets of some /,,. Enumerate the classes of dy in
increasing Ru/6u-OTder as {ua:<x < /i}. Also enumerate the classes of 6V in increasing
Ry/dy-order as {v^.a. < /i}. By the construction and our comments it should be clear
that for SeX, Is^Ui<n us+i U Ut < „ vt+{. Also for any limit ordinal S$X, Ui<n us+{

and Ut < „ t;,,+j are both sets of A-order-indiscernibles over Bo. So JC is defined as the
set of limit ordinals so that Ut < „ it,+i U U4 < n vi+i cannot be ordered and partitioned
into two A-order indiscernible sets.

This last case completes the proof of the theorem.

3. Number of substructures with indiscernibles

Suppose now that fi < A < K = \M\ where A, K are infinite. In this section, we will
study the number of substructures if there is a sufficient supply of indiscernibles. We
will assume that if A is any /^.-substructure (i.e. a substructure of cardinality //.) then
either there is a set of total indiscernibles over A of cardinality A or there is a set of
order indiscernibles of order type A+ over A. We can also assume that if a relation is
in our language then any relation which can be obtained by permutation of the
variables or negation is also present in the language. Let s# be a set of ji-
substructures of M so that each /^-substructure of M is isomorphic to exactly one
element of si'. For each A eji/, let IA be a set of order indiscernibles over A of order
type A. Further choose IA to be totally indiscernible if possible. Then let SA = A()IA.

It is useful to keep in mind two examples where A and B are not isomorphic but
SA = SB. Suppose the language of M has a single unary predicate P and |P(M)| = u
and \M\P{M)\ = K. Choose A and B so that \P(A)\ = \P(B)\ = /i but \A\P{A)\ 4=
\B\P{B)\. liIA,IB are chosen to be subsets o{M\P(M), then SA ^ SB. In this example
we cannot get the required A-substructures by varying the cardinality of C\P(C), but
we can by varying the cardinality of P(C). Consider next the case where M is the
ordinal K and < an ordering of order type K. UA and B are initial segments of K and
IA and IB have order type A, then SA and SB will be both isomorphic to A. However
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204 D . M A C P H E B S O N , A. H. M E K L E R AND S. SHELAH

we can get the required number of A-substructures by looking at different order
types. The proof of our main theorem shows that these examples capture all the ways
in which SA might become isomorphic to SB.

LEMMA 3-1. Suppose A is an infinite substructure of M and JX,J2 £ A are such that
for all i, \A\J(\ < \A\ and Jt is order indiscernible over A\Jf. Then there is an ordering
of Jx U J2 so that Jx U J2 is order indiscernible over A\(J1 U J2) and Jx with its ordering
is an interval in the new ordering.

Proof. There are two cases to consider. First consider the case where J2 is a set of
total indiscernibles. Since Jx C\ J2 is infinite, J1 is also a set of total indiscernibles. It
is easy to see that Jx U J2 is totally indiscernible over A\(J1 U J2).

Suppose now that Jx is not a set of total indiscernibles. Let < x denote the ordering
of Jx and let < 2 denote the ordering of J2. Let <f>(xx,x2, ...,xn) be a quantifier-free
formula with parameters from A\J2 such that <f>(ji, •••,jic,jic+i, •••,jn) holds for

Jl <2Jz <2 ••• <2Jn b u t d o e s n o t h o l d f o r 0O'l> •••Jk+l'jk Jn)- W e c l a i m t h a t Jz\Jl
makes at most n cuts in Jl n J2 (in the sense of the ordering < 2). If there are more
than n cuts made in Jx 0 J2 we can find jx <2... <2jk_x <2i <2j <2i' <2jk+2 <2...
<2jn. Here the fa are in J2\JX

 a n d ^he i's are in Jx D J2. So (frij^, •••,jk-i>i>j>jk+i> •••>
jn) holds but <p(jlt •••,jk-i>i'>j>jk+i' •••>Jn) d o e s n o t hold. This contradicts the
indiscernibility oiJ1 over A\JV Now Jx f\ J2 must have the same cardinality as A and
so there is some infinite interval X in J2 consisting of elements of Jx. By Ramsey's
theorem we can find an infinite Y <^X such that either for all y1,y2eY, yx <xy2

implies yx <2y2 or for all y1,y2eY,y1<1 y2 implies y2 <2yx. (It is also possible to use
the theorem in [2].) By reversing the ordering of J2 if necessary we can assume that
the first possibility holds. (This new ordering also orders J2 as a set of indiscernibles.)
Now define an ordering < ' on Jx \J J2 so that xx <' x2 if and only if

xx <xx2 if xx,x2e Jx

xxeJ2\Jx, x2eJx and for some ysY, xx<2y
x2eJ2\Jx, xxeJx and for some yeY, y <2x2

xx<2x2 and x1,x2eJ2\J1.

This makes Jx U J2 into a set of order indiscernibles over A\(JX U J2) with Jx as an
interval.

The following two facts are immediate consequences of Lemma 3-l.

COROLLARY 3-2. Let Aestf. There is a unique J £ SA which is maximal with respect
to being order indiscernible over A\J with \SA\J\ < A.

COROLLARY 3-3. Let J be a maximal set of order indiscernibles such that \SA\J\ < A.
Then there is an ordering of J as a set of order indiscernibles so that IA is an interval of
J and the ordering of J coincides with the ordering of 1A.

We note here a corollary of the lemma which will be used to produce A+

A-substructures.

COROLLARY 3-4. Let fi < A. Suppose A is a fi-set and I is a set of order indiscernibles
over A of order type a < A+ such that fi < \I\. Further suppose that I is not a set of total
indiscernibles over A. There is an ordinal fi < A+ such that if J is a set of well ordered
indiscernibles in A \JI over (A U I)\J then the order type of J < fi.
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Proof. By [2] the order type of J 01 (in the ordering of J) has order type < a + a.

Since |</\/| ^ fi, the order type of J is < a+a + u+.
From the above corollary we immediately obtain that if A is a /i-set, /i < A and /

is a set of order indiscernibles over A of order type A+ then (j>x ^ A+.

THEOREM 3-5. Suppose /i < A < K = \M\. Further suppose that if A is a fi-substructure
of M than either there is a set of total indiscernibles over A of cardinality A or there is a
set of order indiscernibles over A of order type A+. Then <j> ^ </>A.

Proof. Choose p so that fi = Kp. We use the notation above. Define an equivalence
relation = on si by A = B if and only if SA = SB. Let y be the supremum of the
cardinalities of the =-classes. So <j>x-y => (j)^. We will prove the following claim.

Claim (i). If IA is totally indiscernible and \A/ = | > 1, then [A/ = | < |p| + K0 and

(ii) If IA is not totally indiscernible and \A/ = | > 1, then \A/ = | ^ /i+ and A+ < <j>k.
Assume for the moment that we have proved the claim. Then we have shown that

if y > 1, then 0A is infinite and (j>x ^ y. So the inequality 0A.y ^ 0A simplifies to
0A ^ 4>p This is the required conclusion.

Proof of Claim (i). Suppose now that IA and IA are totally indiscernible and
SA = SA . So by Corollary 3-2 there are unique Kt £ Ai and Ji'2.1A a maximal set of
indiscernibles over Kf so that SA( equals the disjoint union of Kt and Jt. Since the
isomorphism of SA with SA carries K1 to K2, the only way that Ax might not be
isomorphic to A2 is for \A1f\ Jx\ =J= |̂ 42 D J2\. So l^ j / = | < |p| + X0 (the number of
cardinals ^ /i). Since one of these cardinals must be less than ft, [K^ = /i. I t suffices
to prove the following.

Subclaim. <j>k ^ |/o| + No.

Proof of subclaim. Hold Jx fixed. For each cardinal S < p, choose X £ Kx so that
\K | = 8. Now choose Hg so that X <^ HS<=^KX and in / / , U Jj no element of X is in the
maximal set of indiscernibles. We can choose Hs so that \Ht\ = S if S is infinite, and
|//J is finite if S is finite. In particular this means that there is a set of non-isomorphic
A-structures consisting of Xo structures of the form Hs U Jx where H3 and S are finite,
together with all structures Ht U «/x where S is an infinite cardinal.

Proof of Claim (ii). If there exists A so that IA is not totally indiscernible then by
the choice of IA for every a < A+ there is a set of indiscernibles over A of order type
a which is not totally indiscernible. So by Corollary 34, 0A ^ A+ (we use here the fact
that successor cardinals are regular).

Suppose that {Aa: a < 8} is the enumeration of an = -class and that each of the Ia

is not totally indiscernible. Here we let/a denote/^ . By Corollary 3-2, we can assume
each SA = K U Ja where Ja is the (unique) maximal set of indiscernibles whose
complement has cardinality < A. Since Ja 2 Ia, we can assume K £ Aa. (Of course we
are making an identification here.) For each a, let < a be an indiscernible ordering of
Ja so that Ja = La+Ia + Ua where the ordering of Ia coincides with <at^a- (Such a
decomposition is possible by Corollary 3-3.) For all a, ft there is an isomorphism from
SA^ to SA . This map takes K onto K and Ja onto Jp. This induces another ordering
of Jp indiscernible over K. By. [2] there are two possibilities:
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(a) there are disjoint Y, Z ^ J^ so that

(Ja, <J * (Z, <fi\Z) + (Y, <fi\Y)
and for any disjoint Ylt Zx c J^ if J^ = Yl + Z1 then Zx + Yx is also an indiscernible
ordering over K;

or
(b) not (a) and (Ja, < J S (J^, <^).

We will prove the following lemma.

LEMMA 3-6. Fix orderings T and a of cardinality /i. Then there are at most /i+ pairs
of orderings (T', O~') SO that T + A + O- = T' + A + O~'.

We complete the proof by analyzing the Cases (a) and (b). In case (b) there is one
subtlety to consider. Why if La+ Ua = Lp+Up does the order isomorphism induce an
isomorphism from Aa to Ap ? The isomorphism from Ja to Jp is order preserving on
an infinite set and extends to an isomorphism from SA to SA which fixes K
pointwise; hence the order isomorphism La + Ua = Lp+ Up extends to an isomorphism
from Aa to Ap. Using Lemma 36 we see that there are at most ji+ ordinals a for which
Ja is isomorphic to an ordering obtained by Case (b). Suppose now that Ja cannot be
obtained as in Case (b) and Y and Z are as in Case (a). There are three possibilities
for the position of the cut which Y makes in Jp. Assume it occurs in Lp. So Ja S
V+X+Up+Y where Y+V = Lp. The order Ja has a unique first cut C with the
property that there are A elements to the left of the cut. Hence V+ A = La + A and
Up+ Y ^ Ua. Hence Ufi+Lp + A = Ufi + Y+ V+ A ^ Ua+La + A. In the other cases we
can also show that Up+Lp + A. ^ Ua+La + A. Suppose now that p p
Since we are not in case (b) these are also sets of indiscernibles. So the map which
extends the isomorphism from K to K by taking U^+L^ onto Up+Lp is an
isomorphism of Aa with A p. This is a contradiction as a 4= /?• So there can be at most
/i+ a's obtained by Case (a). Hence S < /i+.

Proof (of Lemma 3*6). In this case we must have <x = a' and T + A = T' + A. Since any
isomorphism takes T to an initial segment of r' + A and \T\ ^ /i, there is an ordinal
a < ju,+ such that either T + a = T' or T' + a = T. Clearly there are at most /i+ orderings
T' such that for some a < /i+, r + a. = T'. For the other possibility, let /„ be any well
ordered end segment of T. For any n, let/n + 1 be a well ordered end segment properly
containing/„ if one exists. Otherwise, let/n+1 = /„. Notice that any well ordered end
segment of r is contained in some /„. So for any isomorphism from T' + a to T, there
must be an n so that a is taken to an end segment of /„. Of course r' is taken onto
the complement. Since /„ is well ordered with order type < fi+ there are only /i
possibilities for the end segment. Hence there are only /i possibilities for J' .

Remark. I t is curious to note that we have proved a weak version of the result for
finite substructures. If we increase two non-isomorphic finite substructures of the
same size by adding on sufficiently large sets of indiscernibles then the resulting
structures cannot be isomorphic. Hence, if M is an infinite structure in a finite
relational language then for all m < Ko there is N < Ko so that for all k, if N ^ k ^
No then <f>m ^ <j>k. (Here we can use Ramsey's theorem to provide the indiscernibles.)
If the collection JZ/ of w-substructures is chosen carefully, N can be taken to be TO+ 1.
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This line of argument is close to the proof due to Pouzet (sketched on p. 310 of [4])
that if m, n ^ Ko with m <n, and M is a relational structure over a finite language
with domain infinite or finite and large relative to n, then <j>m < 0n.

4. Conclusions

The results in the previous sections give a great deal of information about the
possible behaviour of the sequence (^:/* < \M\). Under various cardinal arithmetic
hypotheses, it can be deduced that (parts of) the sequence is non-decreasing. We will
state some of these conclusions here, although we will not capture the full force of
what has been proved in the previous sections.

THEOREM 4 1 . Suppose M is a structure in a relational language and A is a regular
cardinal such that 2<A < \M\. Then for all p < /i ^ A, (j>p ^ ^ .

Proof. By Theorem 13 we can assume that p is infinite. We prove the result
by induction on A. By the induction hypothesis we only have to consider the values
u = A and /i = y, if A = y+. By Lemma 22 (b) either every subset of cardinality A is
contained in a set of cardinality 2<A which is complete for A or <f>A ^ 2A (and <j>y ^ 2r).
In the latter case, we have (see Proposition 1-5), that <f>p ^ 0^. In the first case,
Theorems 24 and 35 imply the theorem.

THEOREM 4-2. Assume GCH holds. Let M be a structure in a relational language. If
p < /i < A < \M\, where A is a regular cardinal, then <pp ^ <frM.

THEOREM 4-3. Suppose M is a structure in a relational language and A < \M\ is a
regular cardinal such that 2<x < 2A. Then for all fi < A, ^ ^ <j>x.

Proof. If there is a set B of size less than A such that there are A types realized over
B, then by Lemma 1-6 </>A > 2A, so we can apply Proposition 1-5. Otherwise, by
Lemma 22, Theorems 2-4 and 35 apply.

Note that WGCH guarantees 2<A < 2A for all cardinals. For A a successor cardinal
this is just the statement of WGCH. If A is a limit cardinal then WGCH implies that
the cofinality of 2<A is the cofinality of A. But by Konig's theorem the cofinality of
2A is greater than the cofinality of A. From Lemma 1-6 and Lemma 2-2 (a) we also
obtain the following result.

THEOREM 4-4. Assume WGCH holds. Let Mbea structure in a relational language. If
(i < A < \M\, where A is a regular cardinal, then ^ < 0A.

As was mentioned in the Introduction it is possible to eliminate the requirement
that A be regular.

Next we obtain some information about the structures with few /^-substructures.

Theorem 4-5. Suppose M is a structure in a relational language. Further suppose that
for some infinite /i = Xp, ^ < \p\ + Ko. Then M = K U / , where \K\ < fi and I is a set of
total indiscernibles over K, provided any of the following conditions holds: /i is regular,
/i < \M\ and 2</J < 2^; ft is regular, uncountable and 2</1 <\M\; or 2>" <\M\. Further if
I is chosen maximally then I and K are unique.

Proof. There are various cases to consider. Since the proofs are largely the same we
will do one of the more complicated cases. Assume that ft is a regular uncountable
cardinal and that either /i < \M\ and 2 < / ' < 2 ' ' or 2</x <\M\. The assumptions,
together with Lemma 16 and Proposition 2-2, imply that the hypotheses of Theorem
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2-4 are satisfied. So using 2-4, we have that over every set of size less than /i there is
a set of total indiscernibles of cardinality / i o r a sequence of indiscernibles of order
type fi+. If for some set of cardinality ji there was a sequence of indiscernibles of order
type fi+ which was not totally indiscernible then by Corollary 3-4 (see the remark
after the corollary), <f>M^ /i+. So over every set of cardinality less than /i there is a set
of total indiscernibles of cardinality fi. Note that by Theorems 41 and 43, <j>y ^ 0A

for all y < /i. Let 6 < /i be an infinite cardinal such that there are more than (j)^
cardinals less than 6. (To see such a 6 exists, note that since fi is regular either fi is
a successor cardinal or fi is a regular limit cardinal and p = /i.)

For the rest of this proof, 'indiscernibles' will mean 'totally indiscernible set'. If
a substructure A is the disjoint union of H and J where \H\ < \J\, we shall say that
J is a maximal set of indiscernibles in A if it is indiscernible over its complement in
A and is maximal subject to this. The fundamental fact we shall use is that under
these circumstances, if 6 < \J\ then \H\ < 6. Otherwise by the subclaim in Claim (i) of
Theorem 35 there would be more than 0^ pairwise non-isomorphic substructures of
some cardinality less than or equal to/t, contradicting Theorem 41 or Theorem 4-3.

To begin fix J a set of size fi which is totally indiscernible over the empty set.
Notice that for any A and I ^ L c i i f l i s totally indiscernible over A\L then Ll

is totally indiscernible over A\L1.

Claim (i). For any finiteH £ Jf there is a unique maximal subset J(H) c J s o that
J(H) is indiscernible over (J U H)\J{H) and \J\J(H)\ < 6.

Proof of Claim (i). Write J as the union of an increasing continuous chain (Ja:
a < /i) where for all a, 6 ^ |</J < /i. For each a, choose La a set of total indiscernibles
of cardinality /i over H U Ja. Expand La to a maximal set of indiscernibles Ka in
H U Ja U La. By the second paragraph of the proof Ja\Ka has cardinality less than 6.
Expand Ja D Ka to a maximal set of indiscernibles Ea in Ja U H, and let Fa = Ja\Ea.
We claim that for a < fi, Fa c: Fp. To see this consider Ep 0 Ja. The complement of this
set in H U Ja has cardinality less than 6. So Ep D Ja can be expanded to a unique
maximal set of indiscernibles in Ja U H. But this set is Ea. So Ep f) Fa = 0 .

For all a, \Fa\ < 6. So there is some a0 such that for all /? > a0, Fp = F . So we can
let J(H) = J\^a0-

Notice in the proof of the claim that for aeJa if there is K £ J^ so that \K\ ̂  6,
aeK, and K is indiscernible over (H \JJao)\K, then aeJ(H).

Claim (ii). There exists J1 £ J so that \J\Jj\ < 6 and J1 is totally indiscernible over

Proof of Claim (ii). Let Jx = D J(H), where H ranges over the finite subsets of M\J.
I t suffices to show that \J\J±\ < 6. Assume not. Then there is a set R of cardinality
6 which is disjoint from J so that if we let J2= f\ J{H) where H ranges over the finite
subsets of R, then \J\J2\ ^ 6. We use the notation of Claim (i). Since /i is regular there
is an ordinal a < /i so that \Ja\J2\ ^ 6 and for all finite subsets H <^R and a e Ja if
there is K <= Ja so that \K\^ 8, aeK, and K is indiscernible over (H U JJXK, then
aeJ(H).

Let L be a set of total indiscernibles of cardinality /i over R\J Ja. Let Lt be a
maximal set of indiscernibles extending L. Note that \Ja\Lj\ < 6. But by the choice
of a, Ja C\L1 £ J2t a contradiction.
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Using the two claims above, we can prove the theorem. Choose J2 £ Jl with

|J2| = Ko. Let

/ = {aeM:J2 U {a} is indiscernible over M\(J2 U {a})}-

Since J2 is infinite, / is indiscernible over M\I. If the theorem is false then there exists
a subset K of M\I of size 6. Now for all ksK, J2 U {k} is not indiscernible over
M\(J2 U {k}). But now we can choose # 3 K so that \H\ = 6 and for all keK, J2 U {k}
is not indiscernible over H\(J2[){k}). If we let £ be a set of indiscernibles of
cardinality [i over H\}J2, then we can obtain a contradiction just as in Claim (i). This
completes the proof in the case where /i is regular and uncountable.

In the case /i is singular, the hypotheses, 2-2 (b) and 2*4 guarantee the existence of
a set of total indiscernibles of cardinality /i+ over every set of size fi. The proof can
be simplified. We may take 6 to be /i, and when we choose the sets of total
indiscernibles they should have cardinality /i+.

In the case where ji = No, there is a finite bound n for the cardinality of a finite set
H so that there is an infinite set J disjoint from H so that in H U J, J is a maximal
set of indiscernibles. Fix some such choice of H and J and a finite sublanguage so that
J is a maximal set of indiscernibles in the sublanguage. Let m be the arity of the
sublanguage and assume that m> n. We claim that / = M\H is the required set of
indiscernibles. It is enough to show that for all a$H, J U {a} is indiscernible over H.
Consider any finite Jo ^ J so that |J0| > 2m. Choose L an infinite set of indiscernibles
over H U Jo U {a}- Let Lx be the maximal set of indiscernibles containing L. Since the
complement of Lx has cardinality at most n, \L1 ("I Jo\ > m. So H f]L1 = 0 . Hence
Jo U {a} £ Lv

Remark. In [6], the case where \M\ = A and <f>A is finite is analyzed. It is shown that
any such structure is the union of a finite set and a set of order indiscernibles. The
indiscernibles will be totally indiscernible if ^ < /i+ for some infinite fi < A.

The first author would like to thank the Department of Mathematics and Statistics
at the University of Calgary for its hospitality during a visit when part of this work
was done. The second author's research is partially supported by NSERC of Canada
Grant no. A8948.

REFERENCES
[1] P. CAMERON. Transitivity of permutation groups on unordered sets. Math. Z. 148 (1976),

127-139.
[2] W. HODGES, A. H. LACHLAN and S. SHELAH. Possible orderings of an indiscernible sequence.

Bull. London Math. Soc. 9 (1977), 212-215.
[3] R. FBAISSE.CoursdeLogiqueMathematique, t.l (RelationetFormuleLogique) (Gauthiers-Villars,

1971).
[4] R. FKAISSE. Theory of Relations (North Holland, 1986).
[S] M. POUZET. Application d'une propriete combinatoire des parties d'un ensemble aux groupes

et aux relations. Math. Z. 150 (1976) 117-134.
[6] M. POUZET and R. WOODKOW (In preparation.)
[7] J. ROSENSTEIN. Linear Orderings (Academic Press, 1982).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100069668
Downloaded from https://www.cambridge.org/core. TU Wien University Library, on 29 Apr 2018 at 16:00:38, subject to the Cambridge Core terms of use,

Sh:318

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100069668
https://www.cambridge.org/core

