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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 339, Number 2, October 1993 

THE EHRENFEUCHT-FRAISSE-GAME OF LENGTH co 

ALAN MEKLER, SAHARON SHELAH, AND JOUKO VAANANEN 

ABSTRACT. Let A and 9B be two first order structures of the same vocab- 
ulary. We shall consider the Ehrenfeucht-Fraisse-game of length co1 of A 
and 9B which we denote by 9,,l (A, 9B). This game is like the ordinary 
Ehrenfeucht-Fraiss&-game of Lc,9, except that there are co, moves. It is clear 
that 9,,, (A, 9B) is determined if A and 9B are of cardinality < RI . We prove 
the following results: 

Theorem 1. If V = L, then there are models A and B of cardinality R2 such 
that the game 9,9l (A, 9B) is nondetermined. 

Theorem 2. If it is consistent that there is a measurable cardinal, then it is con- 
sistent that g',o (A, 9B) is determined for all A and 9B of cardinality < R2 . 

Theorem 3. For any K _> 3 there are A and 9B of cardinality K such that 
the game g',o (A, 9B) is nondetermined. 

1. INTRODUCTION 

Let A and 9B be two first order structures of the same vocabulary L. We 
denote the domains of A and 9B by A and B respectively. All vocabularies 
are assumed to be relational. 

The Ehrenfeucht-Fraisse-game of length y of A and 93, denoted by 4y (A, 9), 
is defined as follows: There are two players called V and 3. First V plays x0 
and then 3 plays yo. After this V plays xi, and 3 plays YI, and so on. If 
((xfl, yf): fl < a) has been played and a < y, then V plays x^, after which 3 
plays y,!. Eventually a sequence ((xf, yf): fl < y) has been played. The rules 
of the game say that both players have to play elements of A U B. Moreover, 
if V plays his xf in A (B), then 3 has to play his yf in B (A). Thus the 
sequence ((xf, yf): fl < y) determines a relation 7r C A x B. Player 3 wins 
this round of the game if iz is a partial isomorphism. Otherwise V wins. The 
notion of winning strategy is defined in the usual manner. We say that a player 
wins gy(2, 9B) if he has a winning strategy in gy(%, 9B). 
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568 ALAN MEKLER, SAHARON SHELAH, AND JOUKO VAANANEN 

Recall that 

_ 93, XVn < w(3 wins 2n(, 93)) 
93oc - x 3 wins 9fl,(% 93) 

In particular, 9,(%, 93) is determined for y < co. The question, whether 
gy(2, 93) is determined for y > co, is the subject of this paper. We shall 
concentrate on the case y = c1 . 

The notion 

(1) 3winsgy(%, 93) 

can be viewed as a natural generalization of A-( , 93. The latter implies iso- 
morphism for countable models. Likewise (1) implies isomorphism for models 
of cardinality IYI: 
Proposition 1. Suppose A and 93 have cardinality < K. Then WflK(%, 93) is 
determined: 3 wins if A2-93, and V wins if A #93. 
Proof. If f: A -- 93, then the winning strategy of 3 in WK(%, 93) is to play in 
such a way that the resulting ir satisfies ir C f . On the other hand, if A 9 93, 
then the winning strategy of V is to systematically enumerate A U B so that the 
final ir will satisfy A = dom(7r) and B = mg(7r). D 

For models of arbitrary cardinality we have the following simple but useful 
criterion of (1), namely in the terminology of [15] that they are "potentially 
isomorphic." We use ColI(, K) to denote the notion of forcing which collapses 
JAI to K (with conditions of cardinality less than K) . 

Proposition 2. Suppose A and 93 have cardinality < A and K is regular. Player 
3 wins 9K(%, 93) if and only if 'FCOI(A,K) 93. 

Proof. Suppose T is a winning strategy of 3 in 9K(2, 93). Since Col(, K) iS 
< K-closed, 

IFCO1(A, K) "T is a winning strategy of 3 in GK(2, 93)" 

Hence IFCO1(A,) K)A _ 93 by Proposition 1. Suppose then p I- f: A - 93 for 
some p E Col(, K). While the game 9K(2, 93) is played, 3 keeps extending 
the condition p further and further. Suppose he has extended p to q and V 
has played x E A. Then 3 finds r < q and y E B with r I- f(x) = y. Using 
this simple strategy 3 wins. D 

Proposition 3. Suppose T is an co-stable first order theory with NDOP. Then 
w,1 (A, 93) is determined for all models A of T and all models 93. 

Proof. Suppose A is a model of T. If 93 is not LOO1 -equivalent to A, then 
V wins .,l (A, 93) easily. So let us suppose A-( % 93. We may assume A 
and B are of cardinality > Ri. If we collapse JAI and IBI to RI, T will 
remain co-stable with NDOP, and A and 93 will remain LO1 -equivalent. So 
A and 93 become isomorphic by [19, Chapter XIII, ?1]. Now Proposition 2 
implies that 3 wins ,l (2, 93). El 

Hyttinen [10] showed that gy(2, 93) may be nondetermined for all y with 
co < y < co, and asked whether c,l (2, 93) may be nondetermined. Our results 
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EHRENFEUCHT-FRAISSE-GAME OF LENGTH co, 569 

show that 9 (,2(( B) may be nondetermined for A and 9B of cardinality R3 
(Theorem 17), but for models of cardinality R2 the answer is more complicated. 

Let F(col) be the free group of cardinality R i. Using the combinatorial 
principle M,E, we construct an abelian group G of cardinality R2 such that 
S (F(col), G) is nondetermined (Theorem 4). On the other hand, we show 
that starting with a model with a measurable cardinal one can build a forc- 
ing extension in which 9,, (A, 9B) is determined for all models A and 9B of 
cardinality < R2 (Theorem 14). 

Thus the free abelian group F(col) has the remarkable property that the 
question 

Is 9,, (F(co), G) determined for all G? 

cannot be answered in ZFC alone. Proposition 3 shows that no model of an 
R I-categorial first order theory can have this property. 

We follow Jech [1 1] in set theoretic notation. We use Snm to denote the set 
{l < com: cf(a) = wo}. Closed and unbounded sets are called cub sets. A set 
of ordinals is A-closed if it is closed under supremums of ascending A-sequences 
(ai: i < A) of its elements. A subset of a cardinal is A-stationary if it meets 
every A-closed unbounded subset of the cardinal. The closure of a set A of 
ordinals in the order topology of ordinals is denoted by A. The free abelian 
group of cardinality K is denoted by F(K) . 

2. A NONDETERMINED 9fls, (F(wo,), G) WITH G 
A GROUP OF CARDINALITY R2 

In this section we use 0,E, to construct a group G of cardinality R2 such 
that the game 9,, (F(co,i), G) is nondetermined (Theorem 4). For background 
on almost free groups the reader is referred to [4]. However, our presentation 
does not depend on special knowledge of almost free groups. All groups below 
are assumed to be abelian. 

By E,,, we mean the principle, which says that there is a sequence (Ca: a < 
(02, a = U a) such that 

1. Ca is a cub subset of a. 
2. If cf(a) = co, then IC,aI = co. 
3. If y is a limit point of C^, then Cy = C, n y. 
Recall that Eb,l follows from V = L by a result of R. Jensen [14]. For a 

sequence of sets Ca as above we can let 

Ef6 = {a E S02: the order type of C, is fi}. 

For some < <col the set Ef has to be stationary. Let us use E to denote this 
Ef . Then E is a so-called nonreflecting stationary set, i.e., if cf(y) > co then 
E n y is nonstationary on y . Indeed, then some final segment Dy of the set of 
limit points of Cy is a cub subset of y disjoint from E. Moreover, cf(a) = co 
for all a e E. 

Theorem 4. Assuming E?l, there is a group G of cardinality R2 such that the 
game , (F(cow), G) is nondetermined. 

Proof. Let Zw2 denote the direct product of 02 copies of the additive group 
Z of the integers. Let xa be the element of Zw2 which is 0 on coordinates : a 
and 1 on the coordinate a. Let us fix for each 3 E S02 an ascending cofinal 
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570 ALAN MEKLER, SAHARON SHELAH, AND JOUKO VAANANEN 

sequence ij: co -a . For such , let 

00 

Zs= E 2nX,,,(n) . 
n=O 

Let (Ca: a = U a < 02), (Da: a = Ua < 02), and E = Ef be obtained from 
M,, as above. We are ready to define the groups we need for the proof: Let 
G be the smallest pure subgroup of Z02 which contains x, for a < (02 and 
z3 for 3 E E, let Ga be the smallest pure subgroup of Z2 which contains xy 
for y < a and z3 for 3 E E n a, let F (= F(w02)) be the subgroup of Zw2 

generated freely by xa for a < 02, and finally, let Fa be the subgroup of Zw2 

generated freely by xy for y < a. 
The properties we shall want of Ga are standard but for the sake of com- 

pleteness we shall sketch proofs. We need that each Ga is free and for any 
fl 0 E any free basis of Gf can be extended to a free basis of Ga for all 
a > fl . 

The proof is by induction on a. For limit ordinals we use the fact that E is 
nonreflecting. The case of successors of ordinals not in E is also easy. Assume 
now that 3 E E and the induction hypothesis has been verified up to 3. By 
the induction hypothesis for any fl < 3 such that fl 0 E, there is no so that 
G5 = GP E H E K where K is the group freely generated by {xn(:) no < n} 
and Xn, (m) E Gf for all m < nO. Then G5+1 = GA ED HEK' where K' is freely 
generated by {IE'M= 2m-nXn(m): no< nl}. 

On the other hand, if 3 E E and {x,>(n): n < co} C B, where B is a 
subgroup of G such that z3 0 B, then G/B is nonfree, as z3 + B is infinitely 
divisible by 2 in G/B. 

Claim 1. 3 does not win .,l (F, G) . 
Suppose T is a winning strategy of 3 . Let a E E such that the pair (Ga, Fa) 

is closed under the first co moves of Tr, that is, if V plays his first co moves 
inside Ga U Fa, then T orders 3 to do the same. We shall play g , (F, A) 
pointing out the moves of V and letting T determine the moves of 3. On his 
move number 2n V plays the element xna,(n) of Ga On his move number 
2n + 1 V plays some element of Fa . Player V plays his moves in Fa in such a 
way that during the first co moves eventually some countable direct summand 
K of Fa as well as some countable B C Ga are enumerated. Let J be the 
smallest pure subgroup of G containing B u {za}. During the next co moves 
of 9,(F, A) player V enumerates J and 3 responds by enumerating some 
H C F. Since T is a winning strategy, H has to be a subgroup of F. But now 
H/K is free, whereas J/B is nonfree, so V will win the game, a contradiction. 

Claim 2. V does not win .,l (F, G). 
Suppose T is a winning strategy of V. If we were willing to use CH, we could 

just take a of cofinality co, such that (Fa, Ga) is closed under r, and derive 
a contradiction from the fact that Fa - Ga . However, since we do not want to 
assume CH, we have to appeal to a longer argument. 

Let K = (20)++. Let 9) be the expansion of (H(K), E) obtained by adding 
the following structure to it: 

(HI) The function 3 F > . 
(H2) The function 3 F-+ z3. 
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EHRENFEUCHT-FRAISSE-GAME OF LENGTH co, 571 

(H3) The function aF- Ca. 
(H4) A well-ordering < of the universe. 
(H5) The winning strategy T. 
Let 91 = (N, E, ...) be an elementary submodel of 9) such that c1 C N 

and N n w02 is an ordinal a of cofinality co, . 
Let Da = {I1i: i < coI } in ascending order. Since Cfi6 = Ca n fli , every initial 

segment of Ca is in N. By elementaricity, Gfi6 E N for all i < co I. Let q 
be an isomorphism Ga -4 F, obtained as follows: q restricted to Gf60 is the 
<-least isomorphism between the free groups Gf60 and Fo. If 0 is defined on 
all Gf6j, j < i, then X is defined on Gfi8 as the <-least extension of Uj<i 06 
to an isomorphism between Gfi6 and Fi. Recall that by our choice of Da, 
Gfi+1 /Gfi6 is free, so such extensions really exist. 

We derive a contradiction by showing that 3 can play X against T for the 
whole duration of the game 9,, (A, 9). To achieve this we have to show that 
when 3 plays his canonical strategy based on 0, the strategy T of V directs V 
to go on playing elements which are in N, that is, elements of Ga U Fa. 

Suppose a sequence s = ((xy, yy): y < ,u), ,u < coI, has been played. It 
suffices to show that s E N. Choose f3i so that the elements of s are in 
G,6, u F,f61. Now s is uniquely determined by 0 b Gfi6 and T. Note that because 
C,8i = Ca fnli, X b Gf61 can be defined inside N similarly as b was defined 
above, using Cfl8 instead of Ca. Thus s E N and we are done. 

We have proved that 9,, (F, G) is nondetermined. This clearly implies 
9,1 (F(wi), G) is nondetermined. oI 

Remark. R. Jensen [14, p. 286] showed that if E,h, fails, then cw2 is Mahlo in 
L. Therefore, if 9,, (A, 9) is determined for all almost free groups A and 9 
of cardinality R2, then 02 is Mahlo in L. If we start with El, , we get an almost 
free group A of cardinality K+ such that 9,, (F(co,), A) is nondetermined. 

3. 9, (F(wo,), G) CAN BE DETERMINED FOR ALL G 

In this section all groups are assumed to be abelian. It is easy to see that 3 
wins S (F(wi), G) for any uncountable free group G, so in this exposition 
F(col) is a suitable representative of all free groups. In the study of determinacy 
of :,, (F(wi), 9A) for various ?2 it suffices to study groups A, since for other 
A player V easily wins the game. 

Starting from a model with a Mahlo cardinal we construct a forcing extension 
in which 9l (F(co,), G) is determined, when G is any group of cardinality 
R2. This can be extended to groups G of any cardinality, if we start with a 
supercompact cardinal. 

In the proof of the next results we shall make use of stationary logic L(aa) 
introduced in [17]. For the definition and basic facts about L(aa) the reader is 
referred to [1]. This logic has a new quantifier aa s quantifying over variables 
s ranging over countable subsets of the universe. A cub set of such s is any set 
which contains a superset of any countable subset of the universe and which is 
closed under unions of countable chains. The semantics of aa s is defined as 
follows: 

aa sq(s, ...) X q(s, ...) holds for a cub set of s. 
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572 ALAN MEKLER, SAHARON SHELAH, AND JOUKO VAANANEN 

Note that a group of cardinality 1 is free if and only if it satisfies 

(+) aa s aa s'(s C s' --? s is free and s'/s is free). 

Proposition 5. Let G be a group of cardinality at most N2 . Then the following 
conditions are equivalent: 

(1) 3 wins 9Z1 (F(c1), G) . 
(2) G satisfies (+). 
(3) G is the union of a continuous chain (Ga: a < (02) offree subgroups with 

Ga+I/Ga 81-free for all a <(02 a 

Proof. (1) implies (2): Suppose 3 wins 9,, (F(co 1), G) . By Proposition 2 we 
have IFCo1(IGI, w1) "G is free". Using the countable completeness of Col(IGI, co0) 
it is now easy to construct a cub set S of countable subgroups of G such that 
if A E S then for all B E S with A C B we have B/A free. Thus G satisfies 
(+). (2) implies (3) quite trivially. (3) implies (1): Suppose a continuous chain 
as in (3) exists. If we collapse IGI to 8i, then in the extension the chain has 
length < (02 . Now we use Theorem 1 of [8]: 

If a group A is the union of a continuous chain of < 02 free 
subgroups {Aa: a < y} of cardinality < N, such that each 
Aa+i /Aa is N l-free, then A is free. 

Thus G is free in the extension and (1) follows from Proposition 2. a 

Remark. Conditions (1) and (2) of Proposition 5 are equivalent for G of any 
size. 

Let us consider the following principle: 

For all stationary E C S02 and countable subsets aa of a E E 
*H such that aa is cofinal in a and of order type co there is a 

closed C C (02 of order type co( such that {a E E: aa\C is 
finite} is stationary in C. 

Lemma 6. The principle (*) implies that 9,,, (F(col), G) is determined for all 
groups G of cardinality N2 - 

Proof. Suppose G is a group of cardinality N2. We may assume the domain 
of G is 02. Let us assume G is 82-free, as otherwise V easily wins. We 
prove that G satisfies condition (3) of Proposition 5 and thereby that 3 wins 

ol (F (oil),~G) . 
To prove condition (3) of Proposition 5, assume the contrary. Then G can be 

expressed as the union of a continuous chain (Ga: a < (02) of free groups with 
Ga+ I/Ga non-4I-free for a E E, E C (02 stationary. By Fodor's Lemma, we 
may assume E C S02 or E c S2. The latter case is much easier and therefore 

we assume E C S02. Also we may assume that for all a, every ordinal in 
Ga+i\Ga is greater than every ordinal in Ga. Finally by intersecting with a 
closed unbounded set we may assume that for all a E E the set underlying 
Ga is a. Choose for each a E E some countable subgroup ba of Ga+, with 
ba + Ga/Ga nonfree. Let ca = baf n Ga. We will choose aa so that any final 
segment generates a subgroup containing ca. Enumerate ca as {gn: n < co} 
such that each element is enumerated infinitely often. Choose an increasing 
sequence (a,: n < co) cofinal in a so that for all n, gn E Ga,, . Finally, for 
each n, choose hn E Ga,,+i\Ga,,. Let aa = {hn: n < co} u {hn + g: n < co} It 
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EHRENFEUCHT-FRAISSE-GAME OF LENGTH oi 573 

is now easy to check that a, is a sequence of order type co which is cofinal in 
a and any subgroup of G which contains all but finitely many of the elements 
of aa contains ca. 

By (*) there is a continuous C of order type co, such that {a E C: aa\C 
is finite} is stationary in C. Let D = (C U Zaec ba). Since IDI < 8i, D is 
free. 

For any a E C, let 

Da= (Cna)u ( Z bf) 
D CE(Cna) 

Note that D = Uaec Da, each Da is countable and for limit point a of C, 
DJ = UaE(cnd) Da. Hence there is an a E C n E such that aa\C is finite and 
DIDa is free. Hence ba + Da/Da is free. But ba + DaI/Da bal/ba n Da - 

bal/ba n Ga, which is not free, a contradiction. a 

For the next theorem we need a lemma from [6]. A proof is included for the 
convenience of the reader. 

Lemma 7 [6]. Suppose A is a regular cardinal and Q is a notion of forcing 
which satisfies the A-c.c. Suppose >J is a normal A-complete ideal on A and 
J+ = {S C A: S 0 >J}. For all sets S E J+ and sequences of conditions 
(pa: a E S), there is a set C with A\C E J so that for all a E C n S, 

Pa Ih-Q "{/3: pfl E G} E T+, where . is the ideal generated by >J." 
Proof. Suppose the lemma is false. So there is an >J-positive set S' C S such 
that for all a E S' there is an extension ra of Pa and a set Ia E >J (note: Ia 
is in the ground model) so that 

ra HF {/3: Pf, E G} C Ia 

Let I be the diagonal union of {Ia: a E S'} . 
Suppose now that a < ,B and a, f, E (S'\I) . Since ,B ? I, rag 1 pfl ? G. 

Hence ra 1H rfl 0 G. So ra, rfl are incompatible. Hence {ra: a E S'\I} is 
an antichain which, since S' is >J-positive, is of cardinality A. This is a 
contradiction. a 

Remark. It is a well-known fact that the ideal 9' of Lemma 7 is forced by Q 
to be A-complete and normal. 

Theorem 8. Assuming the consistency of a Mahlo cardinal, it is consistent that 
(*) holds and hence that ',,,(F(coj), G) is determined for all groups G of 
cardinality N2. 

Proof. By a result of Harrington and Shelah [7] we may start with a Mahlo 
cardinal K in which every stationary set of cofinality co reflects, that is, if 
S C K iS stationary, and cf(a) = co for a E S, then S n A is stationary in A 
for some inaccessible A < K. 

For any inaccessible A let 1P, be the Levy-forcing for collapsing A to w)2 
The conditions of 1P, are countable functions f: A x c1 i- A such that f(a, ,B) 
<-a for all a and ,B and each f is increasing and continuous in the second 
coordinate. It is well known that 1P, is countably closed and satisfies the A-chain 
condition [1 1, p. 191]. 
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574 ALAN MEKLER, SAHARON SHELAH, AND JOUKO VAANANEN 

Let P = IPK . Suppose p E P and 

p 0F "F C SO is stationary and 

Vca E E(&aC a is cofinal in a and of order type co)." 

Let 
S = {a < K: 3q < p(q 1 a EE)}. 

For any a E S let pa < p such that pa 0F a E F. Since P is countably 
closed, we can additionally require that for some countable aa C a we have 
pa F aa = aa. 

The set S is stationary in K, for if C C K iS cub, then p F C nE $ 0, 

whence C n S $ 0. Also cf(a) = co for a E S. Let A be inaccessible such 
that S n A is stationary in iA. We may choose A in such a way that a E S n A 
implies Pa E 1P . By Lemma 7 there is a 6 E S n A such that 

PA IFA "F1 = {a < A: Pa E G} is stationary." 

Let Q be the set of conditions f E P with dom(f) c (K \A) x o I. Note 
that P _ P, 0 Q. Let G be P-generic containing pa and G, = G n Pz for 
any inaccessible A < K. Then GK is PZ-generic and w02 of V[G,] is A. Let 
us work now in V[G,]. Thus A is the current w02, E1 = {a < A: Pa E GZ} 
is stationary, and we have the countable sets aa C a for a E E1. Since Q 
collapses A there is a name f such that 

f-Q "f: co, -4 A is continuous and cofinal." 

More precisely f is the name for the function f defined by f(a) = ,B if and 
only if there is some g e G so that g(A, a) = ,B. Let C denote the range of 
f. We shall prove the following statement: 

Claim. Ih-Q {a < A: aa\C is finite} is stationary in C. 
Suppose q e Q so that q 0F "D C col is a cub." Let 9) be an appropriate 

expansion of (H(K), E) and (9i: i < A), 9i = (Ni, ,.. . ),asequence of 
elementary submodels of 91 such that 

(i) Everything relevant is in No. 
(ii) If ai = Ni n A, then ai < a1 for i < j < A. 
(iii) N1+l is closed under countable sequences. 
(iv) INiI=il. 
(v) Ni = Uj<i Nj for i a limit ordinal. 
Choose y = ai E E1 and let (in: n < co) be a sequence of successor ordinals 

such that y = sup{fai: n < co}. Let qo < q and f,o E col such that qo, 
Po E Nio X 

qo IF ",Bo E D" 

and qo decides the value of f "flo (which will by elementaricity necessarily be 
a subset of a0o). 

If q, and fh are defined we choose q,+i < qn and fln+l E (01 such that 
qn+l X fln+l e Nin+1 D 

qn+l 1F "fn+l E D) and ay n (ain+1 \ain) C f 11fln+l C ain+1 "9 
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EHRENFEUCHT-FRAISSE-GAME OF LENGTH w, 575 

and qn+I decides ff h+i . Finally, let 

qW= U{q,: n < col and l= U{ffl n < co}. 
Then 

qc, 1- ",f E D and a7\f "f, is finite." 

The claim, and thereby the theorem, is proved. 0 

Corollary 9. The statement that 9,,, (%2, 9) is determined for every structure A 

of cardinality N2 and every uncountable free group 9, is equiconsistent with the 
existence of a Mahlo cardinal. 

Remark. If ,Wi (A, F(cow )) is determined for all groups A of cardinality K+, 

K singular, then OK fails. This implies that the Covering Lemma fails for the 
Core Model, whence there is an inner model for a measurable cardinal. This 
shows that the conclusion of Theorem 8 cannot be strengthened to arbitrary G. 
However, by starting with a larger cardinal we can make this extension: 

Theorem 10. Assuming the consistency of a supercompact cardinal, it is consistent 
that 9,v1 (F(col), G) is determinedfor all groups G. 
Proof. Let us assume that the stationary logic L,1,,,t,(aa) has the Lowenheim- 
Skolem property down to , i. This assumption is consistent relative to the 
consistency of a supercompact cardinal [2]. Let G be an arbitrary 82-free 
group. Let H be an L(aa)-elementary submodel of G of cardinality NI. 
Thus H is a free group. The group H satisfies the sentence (+), whence so 
does G. Now the claim follows from Proposition 5. a 

Corollary 11. Assuming the consistency of a supercompact cardinal, it is consis- 
tent that %, (%2t, 9) is determined for every structure A and every uncountable 
free group B. 

4. s1g (Q, 9) CAN BE DETERMINED 

FOR ALL A AND 9 OF CARDINALITY N2 

We prove the consistency of the statement that &Wi (AX, 9) is determined for 
all A and 9 of cardinality ? N2 assuming the consistency of a measurable 
cardinal. Actually we make use of an assumption that we call I* (co) concern- 
ing stationary subsets of w02. This assumption is known to imply that w)2 iS 

measurable in an inner model. It follows from the previous section that some 
large cardinal axioms are needed to prove the stated determinacy. 

Let I*(co) be the following assumption about co,-stationary subsets of 02: 

I*(co): Let >J be the coI-nonstationary ideal NS.1 on w02 . Then J+ has a 
a-closed dense subset K. 

Hodges and Shelah [9] define a principle I(co), which is like I*(co) except 
that >J is not assumed to be the cow-nonstationary ideal. They use I(co) to 
prove the determinacy of an Ehrenfeucht-Fraisse-game played on several boards 
simultaneously. 

Note that I*(co) implies JY is precipitous, so the consistency of I*(co) im- 
plies the consistency of a measurable cardinal [12]. For the proof of the follow- 
ing result the reader is referred to [12]: 
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Theorem 12 (Laver). The assumption I* (co) is consistent relative to the consis- 
tency of a measurable cardinal. 

We shall consider models A, 9 of cardinality N2, so we may as well assume 
they have (02 as universe. For such A and a < (02 we let %a denote the 
structure a n a. Similarly 9L . 

Lemma 13. Suppose %2 and 9 are structures of cardinality N2 . If V does not 
have a winningstrategy in ,(,,,2t, 9), then S = {a: %La r '- } is col-stationary. 
Proof. Let C C (02 be co,-closed and unbounded. Suppose S n C = 0. We 
derive a contradiction by describing a winning strategy of V: Let 7r: cWi x cWi x 
2- )co, beontowith a, JJ,d?< 7r(a, f,d) forall a, fJ< ol and d< 2. If 
a < 02, let Oa: cWi -- a be onto. Suppose the sequence ((xi, yi): i < a) has 
been played. Here xi denotes a move of V and yi a move of 3. During the 
game V has built an ascending sequence {ci: i < a} of elements of C. Now 
he lets ca be the smallest element of C greater than all the elements xi, yi, 
i < a. Suppose a =7r(i, y, d). Now V will play OSc(y) as an element of A, 
if d = 0, and as an element of 9 if d = 1. 

After all coI moves of 9>1 (%, 9) have been played, some %a and Ba, 
where a E C, have been enumerated. Since a 0 S, V has won the game. 0 

Theorem 14. Assume I* (co). The game 9,,, (%2, 9) is determinedfor all A and 
9 of cardinality < N2 . 

Proof. Suppose V does not have a winning strategy. By Lemma 13 the set 
S = {a:%a 9L} is co,-stationary. Let I and K be as in I*(co). If a E S, 
let ha: %2a - Ba. We describe a winning strategy of 3. The idea of this 
strategy is that 3 lets the isomorphisms ha determine his moves. Of course, 
different ha may give different information to 3, so he has to decide which ha 
to follow. The key point is that 3 lets some ha determine his move only if 
there are stationarily many other hfl that agree with ha on this move. 

Suppose the sequence ((xi, yi): i < a) has been played. Again xi denotes 
a move of V and yi a move of 3. Suppose V plays next xa and this is (say) 
in A. During the game 3 has built a descending sequence {Si: i < a} of 
elements of K with SO C S. The point of the sets Si is that 3 has taken care 
that for all i < a and ,B E Si we have yi = hfi (xi) or xi = hfi (yi) depending 
on whether V played xi in A or B. Now 3 lets SaC ni<a Si so that Sa E K 
and Vi E Sa (xa < i). For each i E Sa we have hi(xa) < i. By normality, 
there are an Sa C Sa in K and a Ya such that hi(xa) = Ya for all i E Sa. 
This element Ya is the next move of 3. Using this strategy 3 wins. 0 

5. A NONDETERMINED 't,1 (As ) 

WITH A AND 9 OF CARDINALITY N3 

We construct directly in ZFC two models A and 9 of cardinality N3 with 
9,,, (AX, 9) nondetermined. It readily follows that such models exist in all car- 
dinalities > N3. The construction uses a square-like principle (Lemma 16), 
which is provable in ZFC. 

Lemma 15 [181. There is a stationary X C S3 and a sequence (Da: a E X) 

such that 

1. Da is a cub subset of a for all a E X. 
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2. The order type of Da is co. 
3. If a, fl E X and y < min{a, ft} is a limit of both Da and Df,, then 

Da n y = Dfl ny. 

4. If y E Da,, then y is a limit point of Da if and only if y is a limit ordinal. 
Proof. See [18, Theorem 4.1] or [3, Lemma 7.7]. Cl 

Lemma 16. There are sets S, T, and Ca for a E S such that the following 
hold: 

1. S c So u S3 and S n S3 is stationary. 
2. T C SO is stationary and Sn T= 0. 
3. If a E S, then Ca C ao n S is closed and of order-type < co, 
4. If a E S and f E Ca, then Cfl = Ca n,8. 
5. If a E S n S3, then Ca is cub on a. 

Proof. Let X and (Da: a E X) be as in Lemma 15. Let S' = X U Y, where Y 
consists of ordinals which are limit points < a of some Da,, a E X . If a E X, 
we let Ca be the set of limit points < a of Da. If a E Y, we let Ca be the 
set of limit points < a of Df, n a, where ft > a is chosen arbitrarily from X. 

Now claims 1, 3, 4 and 6 are clearly satisfied. 
Let S3 = Ui<-2 Ti where the Ti are disjoint stationary sets. Since ICaI < Wi, 

there is ia < w02 such that i > ia implies Ci n Ti = 0. Let S" C S' be 
stationary such that a E S" implies ia is constant i. Let T = Ti . Finally, let 
S = S" U U1{Ca: a E S"} . Claim 2 is satisfied, and the lemma is proved. 0 

Theorem 17. There are structures %2 and 9 of cardinality N3 with one binary 
predicate such that the game 9,,' (%2, 9) is nondetermined. 

Proof. Let S, T, and (Ca: a E S) be as in Lemma 16. We shall construct a 
sequence {Ma: a < W3} of sets and a sequence {Ga: a E S} of functions such 
that the conditions (M1)-(M5) below hold. Let Wa be the set of all mappings 
GdO.. Gyd, where yo,.., Y, E S n , di E {- 1, 1}, GI means G and G-1 
means the inverse of Gy Let W = We,,3. (Note that W consists of a set of 
partial functions.) 

The conditions on the Ma's and the Ga's are 
(Ml) Ma CMfl if a <,8, and Ma c Ma+I if a E S. 
(M2) Ml = Ua<, Ma for limit v. 
(M3) Ga is a bijection of Ma+I for a E S. 
(M4) If ft E S and a E Cfl, then Ga C Gf,. 
(M5) If for some ft, Gfi(a) = b and for some w E W, w(a) = b, then 

there is some y so that w C GyI Furthermore if ft is the minimum ordinal 
so that Gfi(a) = b then y = ft or ft E Cy . 

In order to construct the set M = Ua<.3 Ma and the mappings Ga we define 
an oriented graph with M as the set of vertices. We use the terminology of 
Serre [16] for graph-theoretic notions. If x is an edge, the origin of x is 
denoted by o(x) and the terminus by t(x). Our graph has an inverse edge x- 
for each edge x. Thus o(x) = t(x) and t(x) = o(x). Some edges are called 
positive, the rest are called negative. An edge is positive if and only if its inverse 
is negative. For each edge x of M there is a set L(x) of labels. The set of 
possible labels for positive edges is {ga: a < w3} . The negative edges can have 
elements of {ga-1: a < 03} as labels. The labels are assumed to be given in 
such a way that a positive edge gets ga as a label if and only if its inverse gets 
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the label g 1. During the construction the sets of labels will be extended step 
by step. 

The construction is analogous to building an acyclic graph on which a group 
acts freely. The graph then turns out to be the Cayley graph of the group. The 
labelled graph we will build will be the "Cayley graph" of W which will be 
as free as possible given (Ml)-(M4). Condition (M5) is a consequence of the 
freeness of the construction. 

Let us suppose the sets Mf?, fi < a, of vertices have been defined. Let 
M<a = Ufi<a Mf?. Some vertices in M<a have edges between them and a set 
L(x) of labels has been assigned to each such edge x. 

If a is a limit ordinal, we let Ma = M<a. So let us assume a = ,B+ 1. 
If ,B 0 S, Ma = Mfi. So let us assume i E S. Let y = sup(Cfi). Notice 
that since S consists entirely of limit ordinals and Cfl C S, either y = ,B or 
y + 1 < f. 

Case 1. y = ,B: We extend Mf? to Ma by adding new vertices {P: z E Z} 
and for each z e Z a positive edge x4P with o(x4P) = P, and t(xaz) = P+- 
We also let L(xaP) = {gfI} u {g,: f E C,} . 

Case 2. y + 1 < f: We extend Mf? to Ma by adding new vertices {P': z E 
Z\{0}} for each P E Mf\My+l . For notational convenience let PO = P. Now 
we add for each P E Mfi\My+l new edges as follows. For each z E Z we add 
a positive edge xap with 

O(xap- 
) = P', t(xp- ) = P'+ , Lxz ) = 

{g,l 
u { 

5 : fl E CQ } 
Pt 

This determines completely the inverse of xpz. 
This ends the construction of the graph. In the construction each vertex P 

in Ma+i, a e S, is made the origin of a unique edge xP with ga, e L(xP). 
We define Ga(P) = t(xaP). 

The construction of the sets Ma and the mappings Ga is now completed. It 
follows immediately from the construction that each Ga, a e S, is a bijection 
of Ma+i. So (M1)-(M3) hold. (M4) holds, because ga is added to the labels 
of any edge with gfl, where ,B E Ca, as a label. Finally, (M5) is a consequence 
of the fact that the graph is circuit-free. 

Let us fix ao E M1 and bo = Gflo(ao), where flo E Ca for all a E S. Note 
that we may assume, without loss of generality, the existence of such a goi. 

If ao, al E M, let 

R(ao,ai) = {(a , a') E M2: 3w E W(w(ao) = a' A w(al) = al)}. 

We let 

93 = (M, (R(ao ai))(ao a,)EM2) M A = ( ao) X = ( bo)X 

and show that 9,, (AX, 9) is nondetermined. 
The reduction of the language of A and 9 to one binary predicate is easy. 

One just adds a copy of (03, together with its ordering, and a copy of M x M to 
the structures with the projection maps. Then fix a bijection q from (03 to M2. 
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Add a new binary predicate R to the language and interpret R to be contained 
in (03 X M2 such that R(JJ, (a, b)) holds if and only if Rk(fi)(a, b) holds. 
We can now dispense with the old binary predicates. We have replaced our 
structure by one in a finite language without making any difference to who wins 
the game 93) (Q 9). The extra step of reducing to a single binary predicate is 
standard. 

An important property of these models is that if a E S n S3, then Ga [ Ma 
is an automorphism of the restriction of 9m to Mat and takes ao to bo. 

Claim 3. V does not win WGI (A, 93). 
Suppose V has a winning strategy T. Again, there is a quick argument which 

uses CH: Find a E S such that Ma is closed under T and cf(a) = co I. Now 
Ca is cub on a, whence Ga maps Ma onto itself. Using Ga player 3 can 
easily beat T, a contradiction. 

In the following longer argument we need not assume CH. Let K be a large 
regular cardinal. Let e be the expansion of (H(K), E) obtained by adding the 
following structure to it: 

(H1) The function a H4 Ma. 
(H2) The function a H+ Ga. 
(H3) The function a ~+ Ca. 
(H4) A well-ordering <* of the universe. 
(H5) The winning strategy T. 
(H6) The sets S and T. 
Let 9 = (N, E, ...) be an elementary submodel of S of cardinality R2 

such that a = N n O3 E S n S3. 
Now Ca is a cub of order-type co, on a and Ga maps Ma onto Ma. 

Moreover, Ga! is a partial isomorphism from A into 93. Provided that T does 
not lead V to play his moves outside Ma, 3 has an obvious strategy: he lets 
Ga determine his moves. So let us assume a sequence ((x<, y,) : 4 < y) has 
been played inside Ma and y < Wi . Let ,B E Ca such that M,6 contains the 
elements x,, y, for 4 < y. The sequence (y? : 4 < y) is totally determined by 
Gl and T. Since Gfl E N, (y: < y) E N, and we are done. 

Claim 4. 3 does not win 1 (A, 93). 
Suppose 3 has a winning strategy T. Let Si be defined as above and 9 = 

(N, E, . . . ) be an elementary submodel of S of cardinality R2 such that a = 
N n (03 E T. We let V play during the first co moves of , (A, 93) a sequence 
(an: n < a) in A such that if an is the least an with an E Man, then the 
sequence (an: n < o) is ascending and sup{oan: n < } = a. Let 3 respond 
following T with (bn : n < co). As his move number (0 player V plays some 
element ac,, E M\Ma in Qt and 3 answers according to T with b,. 

For all i < (o, R(ao,ai)(ao, ai) holds. Hence R(ao ,ai)(bo, bi) holds. So there 
is wi such that wi(ao) = bo and wi(a1) = bi. Since Gfi0(ao) = bo, by (M5), 
for each i there is f3i so that Gfl1 (a1) = bi. We can assume that f3i is chosen 
to be minimal. Notice that for all i, f8i > ai and for i < (c, ,i E 91. So 
sup{ i: i < (} = a. 

Also, by the same reasoning as above, for each i < c(0, R(ai,a,) (b, b..) holds. 
Applying (M5), we get that Gfi(ai) = bi . Using (M5) again and the minimality 
of /,i, for all i < (0, /,i E C,,6. Thus a is a limit of elements of Cfl,., 
contradicting a E T. o 
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