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ABSTRACT 

We investigate the relations of almost isometric embedding and of almost 
isometry between metric spaces. 

These relations have several appealing features. For example, all iso- 

morphism types of countable dense subsets of R form exactly one almost- 
isometry class, and similarly with countable dense subsets of Uryson's 

universal separable metric space U. 
We investigate geometric, set-theoretic and model-theoretic aspects of 

almost isometry and of almost isometric embedding. 

The main results show tha t  almost isometric embeddabili ty behaves in 

the category of separable metric spaces differently than  in the category of 
general metric spaces. While in the category of general metric spaces the 

behavior of universality resembles tha t  in the category of linear orderings 

- -  namely, no universal s tructure can exist on a regular A > R1 below 

the continuum - -  in the category of separable metric spaces universality 
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behaves  more  like t h a t  in the  ca tegory  of graphs ,  t h a t  is, a smal l  n u m b e r  

of met r ic  separable  met r ic  spaces  on an  uncoun tab l e  regular  A < 2 ~o m a y  

cons is ten t ly  a lmos t  i sometr ical ly  embed  all separable  metr ic  spaces  on A. 

1. In t roduc t ion  

In this paper we investigate two relations between metric spaces: almost 
isometric embedding and almost isometry. 

The study of these relations is motivated by three different considerations, 

the first of which is geometric. From a geometric point of view, the relations 

of isometry and of isometric embedding between metric spaces are too strong: 

the metric space 7rQ is not isometric to Q and no subinterval of ~rQ can be 

isometrically embedded into Q, although both spaces "look the same" geomet- 

rically. On the other hand, the relations of bi-Lipschitz embeddability and of 

bi-Lipschitz homeomorphism are too weak, since, given a Lipschitz constant 

K > 1, the graph of y = a sin x for small c~ > 0 and R are K-bi-Lipschitz 

homeomorphic, though geometrically different. 

The relations we study are strictly weaker than their corresponding isome- 

try relations and strictly stronger than their corresponding bi-Lipschitz ones. 

Almost isometry is sufficiently weak to make all countable dense subsets of R 

almost isometric to each other, yet sufficiently strong so that only isomorphism 

types of countable dense subsets of ~ are almost isometric to Q - -  thus all 

isomorphism types of countable dense subsets of ~ form exactly one almost 

isometry class. 

Our second motivation is set-theoretic. Up to order-isomorphism there is just 

one countable dense subset of ~, and Baumgartner [1] proved long ago that it 

is consistent with the axioms of set theory that up to order isomorphism there 

is just one Rl-dense subset of ~. Also up to almost isometry there is just one 

countable dense subset of R. Does the analog of Baumgartner's consistency 

hold for almost isometries? Namely, is it consistent with the axioms of set 

theory that all Rl-dense subsets of ~ are almost isometric to each other? Such 

a consistency would be a strengthening of Baumgartner's consistency, since an 

almost isometry between two dense subsets of ]~ implies they are either order 

isomorphic or order anti-isomorphic, and there is some Rl-dense subset of 

which is order isomorphic to its inverse. 

Furthermore, in the category of separable metric spaces, Uryson's universal 

separable metric space U plays the exact role that ~ plays in the category of 
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separable linear orderings. Just as I~ is the unique separable complete, ultra- 

homogeneous and universal separable linear ordering, U is the unique separable, 

complete and isometry-ultrahomogeneous universal metric space. It is natural 

to to ask about the relation of almost isometry between Rl-dense subsets of U. 

We shall see below, though, that the analog for almost-isometries of Baum- 

gartner's consistent statement about Rl-dense real order types is too strong to 

be consistent with the axioms of set theory. Not only in R but also in the Uryson 

space U (see below) and in many other separable spaces there are always many 

pair-wise bi-Lipschitz incomparable Rl-dense subsets. 

Our third and final consideration is model-theoretic. An important problem in 

model theory is to determine, for a class of structures, the universality spectrum 
of the class: the class of infinite cardinals in which the class of structures has 

a universal structure. When adopting almost isometric embedding and almost 

isometries as the notions of embeddability and similarity, the class of metric 

spaces has a unique countable and homogeneous universal model. We study 

below the universality spectrum of the class of separable metric spaces and the 

class of general metric spaces in uncountable cardinalities. The universality 

spectrum of metric spaces has several similar properties to universality spectra 

in some of the other classes the authors have looked at linear orders, infinite 

graphs, Abelian groups and models of a stable unsuperstable first-order theory, 

but is not quite the same as any one of them. The main results below show the 

universality behavior in the class of separable spaces is quite different than that 

in the class of general metric spaces. 

1.1. ORGANIZATION OF THE PAPER. The definitions of almost isometry and 

of almost isometric embedding and their basic properties are presented and dis- 

cussed briefly in Section 2. In Section 3 we examine two properties of separable 

metric spaces: uniqueness of countable dense subsets up to almost isometry 

and almost isometric uniqueness of the whole space. It turns out that both 

properties are satisfied by many well-known metric spaces. 

In Section 4 we investigate almost isometric embeddability on Nl-dense sub- 

sets of ]l~ d and on RFdense subsets of Uryson's separable universal space U. 

We show that in each case there are 2 ~~ pair-wise non-bi-Lipschitz-embeddable 

Rl-dense subsets. In the case of U this means that there are continuum many 

pair-wise non-bi-Lipschitz-embeddable separable metric spaces, each of cardi- 

nality Ra. 

Section 5 presents universality results. It is first shown that fewer than con- 

tinuum A-dense subsets of U consistently suffice to almost isometrically embed 
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every A-dense subset of U, for a regular uncountable A < 2 ~~ This is not as 

strong as proving the consistency of the existence of a single universal metric 

space on A below the continuum, but it makes a partial analog to the consistency 

of a universal graph in A below the continuum [14, 15, 16]. 

This consistency is complemented by the negative result in Section 5.2 about 

the category of general metric spaces. We prove that, in contrast to the separable 

case, it is not possible to have fewer than continuum metric spaces of cardinality 

A so that every metric space on A is almost isometrically embedded into one of 

them when the continuum is larger than A and A > R1 is regular. The method for 

proving this negative result is the method of attaching invariants to structures 

modulo club guessing ideals, which was introduced in [10] for linear orderings 

and was later used for classes of models of stable-unsuperstable theories, classes 

of infinite Abelian groups and certain infinite graphs [10, 11, 12, 9, 5]. 

The results in Sections 3 and 5.2 were obtained by the first author and the 

results in Sections 4 and 5.1 were obtained by the second author. 

The authors wish to dedicate this paper to Hillel Furstenberg with deep 

mathematical and personal appreciation. 

2. Basic definitions and some preliminaries 

Cantor proved that the order type of (Q, <) is characterized up to isomorphism 

among all countable order types by being dense and with no end-points. Thus, 

any two countable dense subsets of R are order isomorphic to each other. As 

Q and ~rQ demonstrate, not all of them are isometric to each other; in fact 

there are 2 s~ countable dense subsets of R no two of which are comparable 

with respect to isometric embedding, since the set of distances which occur in 

a metric space is an isometry invariant. 

We introduce now relations of similarity and embeddability which are quite 

close to isometry and isometric embedding, but with respect to which the set 

of distances in a metric space is not preserved. 

Definition 1: 

(1) A map f:  X -* Y between metric spaces satisfies the Lipschitz condition 

with constant A > 0 if for all xl, x2 E X,  d(f(xl) ,  f(x2)) < Ad(xl, x2). 

(2) Two metric spaces X and Y axe almost  isometric  if for each A > 1 there 

is a homeomorphism f: X ~ Y such that f and f -1  satisfy the Lipschitz 

condition with constant A. 

(3) X is a lmost  isometr ical ly embedded  in Y if for all A > 1 there is an 
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injection f :  X ~ Y so that  f and f -1  satisfy the Lipschitz condition with 

constant A. 

Let us call, for simplicity, an injection f so that  f and f -1  satisfy the A- 

Lipschitz condition, A-bi-Lipschitz.  Observe that  we use a strict inequality 

in the definition of the Lipschitz condition. We also note that  X and Y are 

almost isometric if and only if the Lipschitz distance between X and Y is 0. 

The Lipschitz distance is a well-known semi-metric on metric spaces (see [7]). 

It is important to notice that  one does not require in (3) that  the injections 

f for different A have the same range. 

In every infinite-dimensional Hilbert space there are two closed subsets 

which are almost isometric but not isometric: fix an orthonormal set of vec- 

tors {Vn : n C N} and fix a partition Q = A1 U A2 to two (disjoint) dense sets 

q vn], and enumerate Ai = {q~ : n C N} for i = 1, 2. Let Xi = UneN[0, Now 

X1, X2 are closed (and connected) subsets of the Hilbert space which are not 

isometric, but are almost isometric because A1, As are. 

Almost isometry and almost isometric embedding can be viewed as isomor- 

phisms and monomorphisms of a category. Let 2L4 be the category in which the 

objects are metric spaces and the morphisms are defined as follows: a morphism 

from A to B is a sequence f =  (fn : n E n) where for each n, fn: A ~ B satisfies 

the Lipschitz condition with a constant An so that  limn An = 1. The identity 

morphism ideA is the constant sequence (idA : n E N) and the composition law 

is ~o f =  (gn o f n :  n �9 N). 

A morphism f in this category is invertible if and only if each f,~ is invertible 

and its inverse satisfies the Lipschitz condition for some ~gn so that  lim~ 8n = 1, 

or, equivalently, f � 9  horn(A, B) is an isomorphism if and only if fn satisfies a bi- 

Lipschitz condition with a constant An so that  limn An ---- 1. Thus, A and B are 

isomorphic in this category if and only if for all A > 1 there is a A-bi-Lipschitz 

homeomorphism between A and B. 

In Section 3 and in Section 5.1 below we shall use the following two simple 

facts: 

FACT 2: Suppose X is a nonempty finite set, E C_ X 2 symmetric and reflexive, 

and (X, E) is a connected graph. Suppose that  f :  E ~ R + is a symmetric func- 

tion such that  f ( x , y )  = 0 r x = y for all (x ,y )  �9 E. Let ~i<~ f (x~ ,x i+l )  

be the l e ng t h  of a path (x0, x l , . . . ,  x,) in (X, E). Define d(x, y) as the length 

of the shortest path from x to y in (X,E) .  Then d i s  a metric on X. If, 

furthermore, for all (x, y) �9 domf,  (x, y) is the shortest path from x to y, then 

d extends f .  We call d as defined here the s h o r t e s t  p a t h  met r ic .  
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FACT 3: Suppose ({X0 , . . .  ,Xn-l,Xn},dl) and ({Y0,... ,yn-1},d2) are metric 

spaces, 0 > 1 and the mapping xi ~-* yi for all i < n is 0-bi-Lipschitz. Then there 

is some Yn ~ {Yo,... ,Yn-1} and a metric d* on {Yo,. . . ,Yn-I,Yn} extending 

d2 such that  the extended mapping xi ~ Yi for i < n is 0-bi-Lipschitz from 

d* ( { x 0 , . . . , X n - l , x n } , d l )  to ( { Y 0 , . . . , Y n - 1 } , )  

Proof: Fix 1 < A < 0 so that  the mapping xi ~ Yi is A-bi-Lipschitz. Fix a new 

point yn ~ {Y0,... ,Yn-1} and define a function d p by letting, for each i < n, 

d'(yn, Yi) = d'(yi, Yn) := Adl(xn, xi) and letting d'(yn, Yn) = 0. So f = d2 tJ d' is 

a symmetric function on {y0 , . . . ,  yn-1, Yn} 2. Using Fact 2, let d* be the shortest 

path metric on {y0 , . . . ,  Yn-1, Yn} obtained from f = d2 U s  

Let us verify that  d* extends d2. For i , j  < n, d2(yi,Yj) <_ )~dl(Xi,Xj) < 

,~(dl (Xn, xi) + dl (Xn, x j)) = d' (Yn, Yi) + d' (Yn, Yj), so (Yi, Yj) is the shortest path 

from Yi to yj. 
Now let us verify that  the mapping x~ ~ Yi for all i _< n is 0-bi-Lipschitz. 

The path (Yn,Yi) has length )~dl(xn,Xi) with respect to f = d2 U d', hence 

the shortest path from Yn to Yi cannot be longer than ~dl(Xn, xi), and hence 

d*(ymyi) <_ ,~dl(xn,Xi). For the opposite inequality, fix j < n so that  the 

shortest path from Yn to Yi is (YmYj,Yi).  Then d*(yj,yi) >_ d l ( x j , x i ) / ~  and 

certainly d*(yn,yj) > dl(xn,Xj), so d*(yn,Yi) >_ (dl(Xn,Xj) + dl(z j ,x i)) /~ 
dl(Xn,Xi)/.~ as requi red .  | 

We conclude this section with a construction of two closed sets A, B c_ R which 

are not almost isometric to each other although each is almost isometrically 

embedded in the other. 

CLAIM 4: Suppose X C N is finite. Then there is some K > 1 so that every 
K-bi-Lipschitz f: X -* N is either order preserving or order reversing. 

Proof: Suppose X = {a,b,c} C_ IR and a < b < c. If K is such that  

max{Kd(a ,b) ,Kd(c ,b )}  < d (a , c ) /K  and f :  X --* IR is K-bi-Lipschitz and, 

wlog, f (a)  < f(e),  then necessarily f (a)  < f(b) < f (x) .  For a finite set X with 

at least 3 points let K be good enough for all 3-subsets of X. If f :  X -~ R 

is K-bi-Lipschitz and not order preserving, then there is a triple on which f is 

neither order preserving not order reversing, contrary to the choice of K. | 

FACT 5: There are two closed subsets of R which are not almost isometric but 

such that  each is almost isometrically embeddable into the other. 

Proof." By induction on 100 < n E N define An, Bn, fn, gn so that: 
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(1) A100 = {0}, B100 = {0, 7r/22} and fl00:A0 ~ B0 is the identity function. 

(2) An and Bn are finite subsets of {0} t3 (1/8, 1/7), An n B0 = {0}, An C Q 

and Sn A Q --- {0}. 

(3) An C_ An+l and Bn C_ Bn+ 1. 

(4) fn: An ~ Bn is (1 + 1/n)-bi-Lipschitz and fn(O) = O. 

(5) Bn+l = Bn U ranfn.  

(6) g~: Bn ---* A,~+I is (1 + 1/n)-bi-Lipschitz, gn(0) = 0 and 9,~(Y) �9 Q \ An 

for all y �9 Bn \ {0}. 

(7) An+l = A,~ U rangn. 

Now s e t A = U { n + A n : 1 0 0 < n e H } a n d B = U { n + B n : 1 0 0 _ < n � 9  

So A and B have order-type o~ and meet every bounded interval at most finitely. 

Both a and B are topologically discrete spaces, so in particular closed subsets 

of ~. 

FACT 6: For all n, the map x ~ x + n isometrically embeds A into A and B 

into B, since n + A N [k, k + 1) C_ A r) [k + n, k + n + 1) for all k. 

Let f (x) -- n + fn(x  - n) for all x E A N In, n + 1) and gn(Y) = n + gn(Y - n) 

for all y E B N  In, n +  1), for each n. 

Let In __ / [ [n ,  oo) and let gn _ fI[n, OO)" So f (n )  = g(n) = n for all 

1 0 0 _ < n E N .  

CLAIM 7: For every m >_ 100, the function fm is a (1 + 1/n)bi-Lipsclaitz em- 

bedding of A n[m,  oo) into B, and the function gm is a (1 + 1/m)-bi-Lipschitz 

embedding of B N Ira, oo) into A. 

Proof." If Xl, x2 E A N [k, k + 1/7) for some k _> m, then f [(Xl, X2} is (1 + 1/k)- 

bi-Lipschitz. If xl  E A ( ~ [ k , k + l / 7 ) ,  y E A N [ 6 , ~ + 1 / 7 )  and m _ k < 6, 

then (Xl - k)/(1 + l / k )  < f ( x l )  - k < (1 + 1/k)(xl  - k) and similarly for x2 

and g, so f (x2)  - f ( x l )  < (x2 - x l)  + If(x2) - x21 + I f (x l )  - Xll < x2 - xl  

+2 max{xl-k, x2-~}/k < x2-x l+ l /2k  < ( l+l /k)(x~-xl)  since x2-x~ > 1/2. 
| 

For each n _> 100 the function f ( x )  := f n ( x  + n) is a composition of an 

isometry with a (1 + 1/n)-bi-Lipschitz embedding and therefore is a bi-Lipschitz 

embedding of A into B. Thus, A is almost isometrically embeddable into B. 

Similarly, B is almost isometrically embeddable into A. 

It is obvious that  A and B are not isometric. We argue that  they are not even 

almost isometric. Suppose that  f :  A -~ B is a bi-Lipschitz homeomorphism with 

a bi-Lipschitz constant 1 < K < 8/7. Then f (n )  C N for all n E A N N, and 
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consequently, since f rN has to be order preserving, f [ ( A  M N) is the identity 

function. But now contradiction arises, since A M [100, 101] = {100,101} while 

B ~ [100,101] = {100, 100 + ~/22,101} and there is no possible preimage for 

100 + 7r/22 in A. I 

Definition 8: Let LAu t (X )  be the group of all autohomeomorphisms of X 

which are A-bi-Lipschitz for some A > 1. Let 

LAut~(X)  = { f  �9 L A u t ( X )  : f is ),-bi-Lipschitz}. 

X is a l m o s t  u l t r a h o m o g e n e o u s  if every finite A-bi-Lipschitz map f :  A --* B 

between finite subsets of X extends to a )~-bi-Lipschitz autohomeomorphism. 

3. A l m o s t - i s o m e t r y  u n i q u e n e s s  a n d  c o u n t a b l e  d e n s e  se ts  

Definition 9: A metric space X is a l m o s t  i s o m e t r y  u n i q u e  if every metric 

space Y which is almost isometric to X is isometric to X. 

All compact metric spaces are of course almost isometry unique. In this sec- 

tion we shall prove that  various non-compact metric spaces are almost-isometry 

unique and prove that  the isometry types of all countable dense subsets of 

Uryson's space U form exactly one almost isometry class. 

THEOREM 10: Suppose X satisfies: 

(1) a11 dosed bounded balls in X are compact; 

(2) there is xo C X and r > 0 so that for all y E X and all A > 1 there is a 

A-bi-Lipschitz autohomeomorphism of X so that d( f(y) ,  xo) < r. 

Then X is almost-isometry unique. 

Proof'. Suppose X,  x0 E X and r > 0 are as stated, and suppose Y is a metric 

space and fn: Y ~ X is a (1 + 1/n)-bi-Lipschitz homeomorphism for all n > 0. 

Fix some Y0 E Y. By following each fn with a bi-Lipschitz autohomeomorphism 

of X (using condition (2)), we may assume that  d(fn(yo),Xo) < r for all n. 

Condition (1) implies that  X is separable and complete, and since Y is home- 

omorphic to X, Y is also separable. Fix a countable dense set A C Y. Since 

for each a E A, d(fn(a),xo) is bounded by some La for all n, condition (1) 

implies that  there is a converging subsequence (fn(a) : n E Da) and, since A is 

countable, diagonalization allows us to assume that  fn(a) converges for every 

a E A to a point we denote by f (a) .  The function f we defined on A is clearly 

an isometry, and hence can be extended to an isometry on Y. It can be verified 
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that  fn(Y) converges pointwise to f (y)  for all y C Y. Since each fn is onto X, 

necessarily also f is onto X. Thus X is isometric to Y. | 

COROLLARY 11: For each d E N, ~d and the d-dimensional hyperbolic space 

~.~d are almost-isometry unique. 

THEOREM 12 (Hrusak, Zamora-Aviles [8]): Any two countable dense subsets 

of ~n are almost isometric. Any two countable dense subsets of the separable 

infinite-dimensional Hilbert space are almost isometric. 

If one regards a fixed ]l~ d as  a universe of metric spaces, namely considers 

only the subsets of N d, then among the countable ones there is a universal 

element with respect to almost isometric embedding, which is unique up to 

almost isometry: 

COROLLARY 13: Every dense subset of ]I~ d is almost-isometry universal in the 

class of countable subspaces of ]~ d. 

Proof: Let B C ~ d  be countable and extend B to a countable dense A ~ c ]~d. 

Since A r and A are almost isometric, B is almost isometrically embeddable into 

A. | 

3.1. THE URYSON SPACE. Uryson's universal separable metric space U is 

characterized up to isometry by separability and the following property: 

DeIinition 14 (Extension property): A metric space X satisfies the e x t e n -  

s ion p r o p e r t y  if for every finite F = {x0, . . .  ,Xn--I ,Xn},  every isometry f : 

{x0, . . .  ,Xn-1} --* X can be extended to an isometry f :  F --* X. 

Separability together with the extension property easily imply the isometric 

uniqueness of U as well as the fact that  every separable metric space is isometric 

to a subspace of U and that  U is ultrahomogeneous, namely, every isometry 

between finite subspaces of U extends to an auto-isometry of U. This property 

of U was recently used to determine the Borel complexity of the isometry relation 

on polish spaces [3, 6]. 

Definition 15 (Almost extension property): A metric space X satisfies 

the a l m o s t  e x t e n s i o n  p r o p e r t y  if for every finite space F = {x0 , . . . ,  Xn-1, Xn } 

and A > 1, every A-bi-Lipschitz f :  {x0, . . .  ,xn-1}  ~ X can be extended to a 

A-bi-Lipschitz f :  F --* X. 
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CLAIM 16: Suppose that A C_ U is dense in U. 

extension property. 

Then A satisfies the almost 

Proof'. Suppose f :  { x l , . . .  ,Xn--1} ~ A is/k-bi-Lipschitz. By Lemma 3 there 

is a metric extension r a n f  U {Yn} so that  f U {(xn, Yn)} is A-bi-Lipschitz. By 

the extension property of U, we may assume that  Yn E U. Now replace Yn by a 

sufficiently close y ;  E A so that  f U {(Xn, y~)} is ~-bi-Lipschitz. | 

A s tandard back and forth argument  shows: 

FACT 17: Any two countable metric spaces tha t  satisfy the almost extension 

property are almost isometric. 

Therefore we have proved: 

THEOREM 18: Any two countable dense subsets of U are almost isometric. 

A t y p e  p over a metric space X is a function p: X ~ ~+  so that  in some 

metric extension X U {y}, d(y, x) = p(x) for all x E X.  A point y E Y r ea l i ze s  

a type p over a subset X C_ Y if p(x) = d(y, x) for all x E X.  The extension 

property of U is equivalent to the property that  every type over a finite subset 

of U is realized in U. 

THEOREM 19 (Uryson): If  a countable metric space A satisfies the almost 
extension property, then its completion A satisfies the extension property and 

is therefore isometric to U. 

Proof'. Let X C_ fi~ be a finite subset and let p be a metric type over X.  Given 

> 0, find )~ > 1 sufficiently close to 1 so that  for all x E X,  )~p(x) - p ( x )  < c/2 

and p(x) -p(x)/)~ < ~/2, and find, for each x E X,  some x '  E A with d(x',x) < 

s /2  and sufficiently small so that  the map x ~ x t is )~-bi-Lipschitz. By the 

almost extension property of A there is some y E A so that  d(y, x) < r Thus 

we have shown that  for all finite X C_ .4 and type p over X,  for every ~ > 0 

there is some point y E A so that  Id(y,x) -p (x ) l  < ~ for all x E X. 

Suppose now that  X c_C_ -4 is finite and tha t  p is some type over X.  Suppose 

> 0 is small, and that  y E A satisfies Id(y,x)-p(x)I < E for all x E X. Extend 

the type p to X U y by putt ing p(y) = 2c (since Id(y,x) - p(z)l < c, this is 

indeed a type). Using the previous fact, find z E A that  realizes p up to ~/100 

and satisfies d(y, z) < 2~. 
I terat ing the previous paragraph,  one gets a Cauchy sequence (Yn)n C_ A so 

that  for all x E X,  d(yn, x) --~ p(x). The limit of the sequence satisfies p in .4. 
| 
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We now have: 

FACT 20: A countable metric space is isometric to a dense subset of U if and 

only if it satisfies the almost extension property. Thus, the isometry-types of 

all countable dense subsets of U form exactly one almost-isometry equivalence 

class. 

THEOREM 21: The Uryson space U is almost isometry unique. 

Proof: Suppose X is almost isometric to U. Fix a countable dense A C U and 

a countable dense B C X. For every A > 1, B is A-bi-Lipschitz homeomorphic 

to some countable dense subset of U, so by Theorem 18 it is A2-bi-Lipschitz 

homeomorphic to A. So A and B are almost isometric. This shows that  B has 

the almost extension property. By Uryson's theorem,/~ = Y is isometric to U. 
| 

Let us construct now, for completeness of presentation, some countable dense 

subset of U. 

Let (An : n E N) be an increasing sequence of finite metric spaces so that: 

(1) all distances in An are rational numbers; 

(2) for every function p: An --* Qn which satisfies the triangle inequality 

p(xl) + d ( x l ,  x2) >_ p(x2) and p(xl)  +p(x2) >_ d(Xl, x2) for all Xl, x2 e An, 

and satisfies that  p(x) _< n + 1 is a rational number with denominator 

< n + 1, there is y E An+l so that  p(x) = d(y, x) for all x C An. 

Such a sequence obviously exists. A0 can be taken as a singleton. To obtain 

An+l from An one adds, for each of the finitely many distance functions p as 

above, a new point that  realizes p, and then sets the distance d(yl, Yl) between 

two new points to be min{d(yl,x) + d(y2,x) : x e An}. Let A := UnAn . 
To see that  A satisfies the almost extension property, one only needs to verify 

that  every type p over a finite rational X can be arbitrarily approximated by a 

rational type (we leave that  to the reader). 

This construction, also due to Uryson, shows that  the Uryson space has a 

dense rational subspace. (Another construction of U can be found in [7].) This 

is a natural place to recall: 

PROBLEM 22 (ErdSs): Is there a dense rational subspace of ]~2 ? 

PROBLEM 23: IS it true that for a separable and homogeneous complete metric 

space, all countable dense subsets are almost isometric if and only if the space 

is almost-isometry unique? 
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4. A l m o s t  i somet r ic  e m b e d d a b i l i t y  b e t w e e n  Rl-dense se ts  

Definition 24: A subset A of a metric space X is Rl-dense  if for every nonempty 

open ball u C_ X, [AN u I = R1. 

Among the early achievements of the technique of forcing, a place of honor is 

occupied by Baumgartner's proof of the consistency of "all Rl-dense sets of reals 

are order isomorphic" [1]. Early on, Sierpinski proved that  there are 22~~ order- 

incomparable continuum-dense subsets of I~, hence Baumgartner's consistency 

result necessitates the failure of CH. 

Today it is known that  Baumgartner's result follows from forcing axioms like 

PFA and also from Woodin's axiom (*) [19]. 

In our context, one can inquire about the consistency of two natural analogs 

of the statement whose consistency was established by Baumgartner. First, is 

it consistent that  all lql-dense subsets of ~ are almost isometric? Since every 

bi-Lipschitz homeomorphism between two dense subsets of ]~ is either order 

preserving or order inverting, and since there is an Rl-dense subset of ~ which 

is order isomorphic to its reflection on 0, this statement is stronger than Baum- 

gartner's consistent statement. Second, since U in the category of metric spaces 

has the role II~ has in the category of separable linear orders (it is the univer- 

sal separable object), is it consistent that  all Rl-dense subsets of ILl are almost 

isometric? 

The answer to both questions is negative. 

4.1. INCOMPARABLE b~I-DENSE SETS. For every infinite A C_ 2 ~, let TA C_ 2 <N 

be defined (inductively) as the tree T which contains the empty sequence and 

for every ~ E T contains ~0,  ~"1 if [~?[ E A, and contains only ~0  if [~[ ~ A. Let 

DA be the set of all infinite branches through TA. The set of positive distances 

occurring in DA, namely {d(x, y) : x, y E DA, x ~ y}, is equal to {1/2 n : n C A}. 

Let d3 be the metric on 2 N defined by d3(~, ~) := 1/3 A(~'~). Observe that  the 

natural isomorphism between 2 N and the standard "middle-third" Cantor set is 

a 4-bi-Lipschitz map when 2 • is taken with d3. 

For sets A, B C_ N let us define the following condition: 

(*) [A] -- [B[ -- R0 and for every n there is k so that for all a E A, b E B, if 

a,b > k thena/b > n  orb/a >n .  

LEMMA 25: Suppose A, B C_ N satis~ (*). Then for every infinite set X C_ DA 

and every function f :  X ~ DB, t:or every n > 1 there are distinct x ,y  E X so 

that  either d(f(x) ,  f (y) ) /d(x ,  y) > n or d(f(x) ,  f (y) ) /d(x ,  y) < 1In. 
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Proof." Let x, y C X be chosen so that  d(x, y) > 0 is sufficiently small. I 

The lemma assures a strong form of bi-Lipschitz incomparability: no infinite 

subset of one of the spaces DA, DB can be bi-Lipschitz embeddable into the 

other space, if A, B satisfy (*). 

Let ~ be an almost disjoint family over H, namely, a family of infinite subsets 

of N with finite pairwise intersections. Replacing each A E 5 t- by {n n : n C A}, 

one obtains a family of sets that  pairwise satisfy condition (.). Since there is 

an almost disjoint family of size 2 s~ over N, there is a family $- of subsets of N 

whose members satisfy (*) pairwise, and therefore {D A : A E $-} is a family of 

pairwise bi-Lipschitz incomparable perfect subspaces of (2 N, d3) of size 2 ~~ 

THEOREM 26: Suppose X is a separable metric space and that  for some K > 1, 

for every open ball u in X there is a (nonempty) open subset of (2 N, d3) which 

is K-bi-Lipschitz embeddable into u. Then there are 2 ~~ pairwise bi-Lipschitz 

incomparable Rl-dense subsets of X.  

In particular, in every separable Hilbert space (tTnite- or in,Hire-dimensional) 

and in U there are 2 ~~ pairwise bi-Lipschitz incomparable Rl-dense subsets. 

Proof: Fix a family {Da : a < 2 s~ } of pairwise bi-Lipschitz incomparable 

perfect subspaces of 2 N, as above. For each a, fix an Rl-dense D* C D~. 

Let (u,  : n E N) enumerate a basis for the topology of X (say all balls 

of rational radii with centers in some fixed countable dense set). For each 

a < 2 s0 , for each n, since there is a 4-bi-Lipschitz embedding of some nonempty 

basic open set of (2 •, d3) into u,~, there is also a 4-bi-Lipschitz embedding of 

a nonempty open subset of D~ into Un. Fix such an embedding and call the 

image of the embedding E~,, .  Let Y~ = Un E'a ,  n. Y~ is thus an Rl-dense 

subset of X. 

Suppose f :  Y~ --~ YZ is any function, a, 13 < 2 s~ distinct, and K > 1 is 

arbitrary. There is I E N so that  f-l[E~,z] N E*,o is uncountable, hence infi- 

nite. Therefore, by Lemma 25, there are x, y C Y~ so that  d(f(x), f(y))/d(x,  y) 

violates n-bi-Lipschitz. We conclude that  Y~, YZ are bi-Lipschitz incomparable. 

The second part of the theorem follows now from the fact that  every separable 

metric space embeds isometrically into U and from the observation above that  

(2 N, d3) has a bi-Lipschitz embedding into R. I 

5. Universality of  metric spaces below the cont inuum 

Let (2k4~ p, _<) denote the set of all (isometry types of) separable metric spaces 

whose cardinality is R1, quasi-ordered by almost isometric embeddability, and 
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let (Ad~l, <) denote the set of all (isometry types of) metric spaces whose 

cardinality is ttl, quasi-ordered similarly. 

Let cf(3d~l,  _<) denote the cof ina l i ty  of this quasi-ordered set: the least 
M sep cardinality of D C 3d sep with the property that  for every M E there is 

- -  R1 R1 

N E D so that  M < N. The statement "cf(j~l sep ~) 1" -- ~ ~1 ' = means that  there 

is a single Rl-dense subset of U in which every Rl-dense subset of U is almost 

isometrically embedded, or, equivalently, that  there is a universal separable 

metric space of size R1 for almost isometric embedding. 

In the previous section it was shown that  there are 2 ~~ pairwise incomparable 

elements - -  an anti-chain - -  in this quasi-ordering, with each of the elements 

being an l~l-dense subset of U. This in itself does not rule out the possibility 

that  a universal separable metric space of size R1 exists for almost isometric 

embedding. In fact, if CH holds, U itself is such a set. 

What  can one expect if CH fails? There has been a fairly extensive study of 

the problem of universality below 2 ~~ in various classes of structures [14, 15, 

16, 10, 11, 12, 13, 4, 5]. It is fairly routine to produce models of set theory in 

which there are no universal objects in cardinality 1~1 in every reasonable class 

of structures (linear orders, graphs, etc.) [13, 10] and here too it is routine to 

find models in which neither a universal separable metric space nor a universal 

general metric space exists in cardinality }ll (Fact 28 below). 

It has been shown that  universal linear orderings may consistently exist in 

R1 < 2 ~~ [14], that  universal graphs may consistently exist in any prescribed 

regular A < 2 ~~ [15, 16] and, more generally, that  universal relational theories 

with certain amalgamation properties may consistently have universal models 

in regular uncountable A < 2 ~~ [13]. The amalgamation properties which the 

class of graphs satisfies are not available in the class of linear orderings 1, and, 

in strong contrast to graphs, universal linear orderings cannot exist in a regular 

cardinal A > R1 below the continuum [10]. 

In the class of metric spaces with almost isometric embedding, the situation 

is as follows. Metric spaces do not satisfy 3-amalgamation, and indeed behave 

A class of structures satisfies the n-amalgamation property if, whenever Mx 
is a structure from the class for each X E P ( n ) \ { n }  so that X1 C X2 =a 
Mx1 <_ Mx2, there is a structure Mn so that Mx <_ M,~ for all X E P(n). 
The class of graphs satisfies n-amalgamation for all n :> 1. Linear orderings 
satisfy 2-amalgamation but not 3-amalgamation. Metric spaces also satisfy 2- 
but not 3-amalgamation (let M{o,1} = {a, b} with d(a, b) = 1, M{1,2} = {b, c} 
with d(b, c) = 3 and M{0,2} = {a, c} with d(a, c) = 1. Then the union of any 
two of the three metrics can be extended to a metric, but the union of all three 
metrics violates the triangle inequality). 
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like linear orderings: there cannot exist a universal metric space with respect to 

almost isometric embedding in any regular A > R1 below the continuum (The- 

orem 35 below). However, the additional assumption of separability partially 

compensates for the absence of amalgamation, and it is consistent to have a 

small number of separable metric spaces on a prescribed regular A < 1% below 

the continuum so that  every separable metric space on A is almost isometrically 

embeddable into one of them (Theorem 34 below). 

We do not know whether it is consistent to have a universal separable metric 

space of size ~1 < 2 ~~ for almost isometric embedding. 

We begin by relating separable to non-separable spaces: 

e l  J ~sep  ~ \  THEOREM 27: cmuvl_<~n , _)  < cf(AAR., _<) for all n. 

Proof." Suppose M = (wl, d) is a metric space. For every ordinal a < 021 denote 

the closure of a in (M, d) by X~. The space X~ is separable and is therefore 

isometric to some Ya C_ U. Let N(M) = [-J~<~l Ya" N(M) is a subspace of U 

whose cardinality is _< R1. 

Suppose X is an arbitrary separable snbspace of M, and fix a countable 

d e n s e A  C_ X. There is somec~ < wl so that  A C_ a, h e n c e X  C_ X~ and is 

thus isometrically embedded into Y~ C_ N. In other words, N(M) is a single 

subspace of U of cardinality _< R1 into which all separable subspaces of M are 

isometrically embedded. 

Suppose now that  cf(Ad~l, _<) = n and fix D C_ A4~1 of cardinality n so 

that  for a l l N  E A4~1 there i s M  E D so that  N_< D. For e a c h M  E D l e t  

N(M) C U be chosen as above. We claim that  {N(M)  : M E D} demonstrates 
8ep that  cf(A4_<~l , _<) < n. Suppose that  X is a separable metric space of cardinality 

R1. Then X is almost isometrically embedded into M for some M c D. Since 

every separable subspace of M is isometric to a subspace of N(M), it follows 

that  X is almost isometrically embedded in N(M). 
Simple induction on n shows that  for every n there is a collection ~'n of 1% 

many countable subsets of wn with the property that  every countable subset of 

w, is contained in one of them. Working with ~ ,  instead of the collection of 
8r initial segments of 021 gives that  cf(Ad_<~, _<) _< c f (Ad~ ,  <). | 

The next fact is standard, and we include its proof only for completeness of 

presentation. 

FACT 28: After adding A > ~2 Cohen reals to a universe V of set theory, 

cf(Z4  ', <) > 
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Proof: View adding A Cohen reals as an iteration. Let 0 < A be given. For 

any family {As : a < O} of lql-dense subsets of U in the extension it may 

be assumed, by using 0 of the Cohen reals, that  A~ E V for all a < 0. Let 

X = Q u {ri : i < a;1} be a metric subspace of ll{, where each ri, for i < Wl, 

is one of the Cohen reals. We argue that  X cannot be almost isometrically 

embedded into any As. Suppose to the contrary that  f :  X --~ As is a bi- 

Lipschitz embedding. By using countably many of the Cohen reals, we may 

assume that  f [ Q  E V. If f (ro) E A~ and f [ Q  are both in V, so is t o - -  

contradiction. | 

5.1. CONSISTENCY FOR SEPARABLE SPACES. For the next consistency result 

we need the following classic result of Baumgartner: 

THEOREM 29 ([2]): For every regular A > R0 and regular 0 > A + there is 

a model V of set theory in which 2 ~ = 0 for every lqo ~_ ~ < 0 and there is a 

family {As  : a < O} of subsets of,k, each As  of cardinality A and ]A~nA~[ < 1% 

for a11 a </3 < O. 

We now state and prove the consistency of having a small family of separable 

metric spaces on A which together almost isometrically embed every separable 

metric space on A, when A < 2 ~~ We first prove it for A = lql, for simplicity. 

Then we extend it to a general regular A > Ro. 

THEOREM 30: It  is consistent that 2 ~~ = 2 ~1 = 2 ~2 = R3 and that there are R2 

separable metric spaces on wl such that every separable metric space is almost 

isometrically embedded into one of them. 

The model of set theory which demonstrates this consistency is obtained as 

a forcing extension of a ground model which satisfies 2 ~~ = 2 lql = 2 lq2 : Ra 

and there are R3 Rl-Subsets of R1 with finite pairwise intersections. Such a 

ground model exists by Baumgartner 's  Theorem 29. Then the forcing extension 

is obtained via a ccc finite support iteration of length R2. In each step ( < w2 a 

single new separable metric space Me of cardinality lql is forced together with 

almost isometric embeddings of all Rl-dense subsets of U that V4 knows. At the 

end of the iteration, every lql-dense subset is almost isometrically embedded 

into one of the spaces M( that  were forced. 

Let {As : a < wa} be a collection of subsets of a;1, each of cardinality R1, 

so that  for all a < /3  < w3, Aa n A~ is finite. For each a < w~ fix a partit ion 

As = I.Ji<~l Aa# to R 1 parts, each of cardinality 1%. 

Fix an enumeration (da : a < w3) of all metrics d on wl with respect to which 

(Wl, d) is a separable metric space and every interval (a, a + w) is dense in it. 
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Since every separable metric space of cardinality Wl can be well ordered in order 

type wl so that  every interval (c~, c~ + w) is dense in the whole space, this list 

contains w3 isometric copies of every separable metric space of cardinality 1~1. 

We define now the forcing notion Q. A condition p E Q is an ordered quintuple 

p : (W p, U p, d p, -fP, ~P} where: 

(1) w p is a finite subset of w3 (intuitively - -  the set of metric spaces (wl, d~) 

which the condition handles). 

(2) u p C_ col is finite and d p is a metric over u p. (u p, d p) is a finite approxima- 

tion to the space M = (wl, d) which Q introduces. 

(3) ~P : @'P : OZ E W p} is a sequence of rational numbers from (0, 1). 

(4) ? ~- (fo~: Oz �9 W p} is a sequence of finite functions f ~ :  (wl, da) ~ (u p, d p) 
that  satisfy: 

(a) f~( i )  �9 A~,i for each i �9 domfP; 

(b) each f~ is (1 + cP)-bi-Lipschitz. 

The order relation is: p _< q (q extends p) iff w p C_ w q, (u p, d p) is a subspace 

of (uq, dq), and for all a �9 w p, e L = e~ and fP _C f~. 

Informally, a condition p provides finite approximations of (1+~ p)-bi-Lipschitz 

embeddings of (~1, d~) for finitely many a < w3 into a finite space (u p, d p) which 

approximates (~1, d). 

LEMMA 31 (Density): For e v e r y p  �9 Q: 

(1) For every j �9 wl \ u p and a metr ic  type  t over (u p, d p) there is a condition 

q >_ p so that  j �9 u q and j realizes t over u p in (u q, dq). 

(2) For every c~ �9 w3 \ w p and 5 > 0 there is a condition q >_ p so that  a �9 w q 

and spa < 5. 

(3) For every ~ �9 w p and i �9 wl \ d o m f  p there is a condition q >_ p so that  

i �9 domfq 

Proof'. To prove (1) simply extend (u p, d p) to a metric space (u q, d q) which 

contains j and in which j realizes t over u p, leaving everything else in p 

unchanged. 

For (2) define w q = w p U {a} and r = c for a rational c < 5. 

For (3) suppose i ~ domf  p. Fix some x �9 A ~ , i \ u  p and fix some 1 < A < l+ePa 

so that  d ~ ( j , k ) / A  <_ dP( j ,k )  < A d s ( j , k )  for all distinct j , k  C domf~. Let 

d * ( x , f ~ ( j ) )  = rj  for some rational Ad~( i , j )  _< rj < (1 + eP)d~( i , j ) ,  and let 

d* (x, z) = 0. Let d be the shortest path metric obtained from d p U d*. This is 

obviously a rational metric and, as in the proof of Fact 3, it follows that this 

metric extends d p and that  fP U {(i, x)} is (1 + etP)-bi-Lipschitz into u p U {x} 

with the extended metric. | 
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LEMMA 32: In V Q there is a separable metric space M -- (wl,d) so that  for 

every separable metric space (Wl, d') E V and 5 > 0 there is a (l+5)-bi-Lipschitz 

embedding in V Q of (wl, d') into M.  

Proof" Let d = [.Jpec dp where G is a V-generic filter of Q. By (1) in the 

density lemma, d is a metric on wl. Furthermore, a standard (forcing) density 

argument shows that  for every given i < wl the interval (i, i + ~) is dense in 

(~1, d). 
Given any metric space (wl, d') and a condition p, find some c~ E w3 \ w p so 

that  (wl, do) is isometric to (wl, d') and apply (2) to find a stronger condition 

q so that  a C w q and c a < (~. For every i < Wl there is a stronger condition q' 

so that  i E domf~ q'. Thus, the set of conditions which force a partial (1 + 5)- 

bi-Lipschitz embedding from (wl,do) into (wl,d) which includes a prescribed 

i < w1 in its domain is dense; therefore Q forces a (l+5)-bi-Lipschitz embedding 

of (Wl, d') into (wl, d). | 

LEMMA 33: Every antichain in Q is countable. 

This Lemma is the main ingredient in the proof of Theorem 30. Before 

plunging into the details of the proof, let us sketch shortly the main point 

in the Lemma's proof, and in particular clarify where it is different from the 

parallel proofs in Shelah's consistency of a universal graphs in A < 2 ~~ In 

Shelah's proofs [15, 16] the ccc is guaranteed by the amalgamation properties 

of the class of graphs (a fact that  was abstracted from Shelah's proof by Mekler 

and used in [13] to generalize the results from graphs to classes of universal 

relational structures with amalgamation). 

The required amalgamation properties are not available in the class of metric 

spaces. However, the topological assumption of separability partially compen- 

sates for this. While combining two arbitrary finite &-bi-Lipschitz embeddings 

from a fixed metric space into a single one is not generally possible, when the 

domains are sufficiently "close" to each other, it is possible. The main point 

in the proof of the ccc condition is that  separability of the spaces (wl, 6o) for 

< w3 implies that  among any ~1 finite disjoint subsets of (wl, do) there are 

two which are arbitrarily small perturbations of each other. 

Proof of Lemma 33: Suppose {pc : a < wl} C_ Q is a set of conditions. 

Applying the A-system lemma and the pigeon hole principle a few times, we may 

assume (after replacing the set of conditions by a subset and re-enumerating) 

that: 
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(1) I .<l = n for all ~ < 031 for some fixed n and {ur ~ < 031} is a A-system 

with root u, - -  m. Denote U pC ~- u U u ~  (so ~ < ~ < 031 ==~ u~ NU~ ---- 0). 

(2) d pC Iu = d for some fixed (rational) metric d. 

(3) Denote by gr the order preserving map from ur onto ur Then idu Ugr162 

is an isometry between u pC and u p~. This means that  ur and ur are 

isometric and that  for every x E ur and y E u, d pr (x, y) = d p~ (gr (x), y). 

(4) {wPr : ~ < 031} is a A-system with root w. 

(5) ~r -- r for some fixed ca for every a E w and ~ < 031. 

(6) For every a E w, {domf~ r : ~ < 031} is a A-system with root r~ and 

[domf~r is fixed. 
pc �9 (7) ]Pc Ira is fixed (may be assumed since f~ (z) E A~,i for all i ~ r and A~# 

is countable). 

(8) Denote domf~ r = ra U s~ for a E w; then f~r [s~] n u = 0. Consequently, 

f~[s~a] C u r 
(9) For all a E w and ~,{ < 031, gr162 = f~P~[s~]. ~ Denote h~ '~ = 

( r p ~ - i  pc h~,{: fP~ Pc �9 j~ j o gr o f~ . Thus s~ --~ s~ and (h~,r = f~ (z) for all 

i E s ~ .  

(10) For all a,  ~ E w and ~ < 03t, ran(fa  ~) M ran(f~) C_ u; here we use the fact 

that  ranf~ C_ Aa, ran( f~)  C_ AZ and IA~ MAzl < No. 

Fix c~ E 03 and a point x E f~[s~] (the set does not depend on ~). Consider 

the set {i E s~ : ~ < 03~ and f~(i) = x}. This is an uncountable subset of 

the separable metric space (031,da), so after thinning-out we may assume that  

every point in this set is a complete accumulation point of the set, that,  for every 

s > 0, ~ '~ 031 and i E S~, there are 03~ many ~ < 03 1 SO that  d,~(i, h~'~(i)) < e. 

Repeating this thinning-out a finite number of times, we may assume: 

(11) For every a E w and ~ < w~, every i E s~ is a point of complete accumu- 

lation in (03~,d,) of {h~'~(i): { < 031}. 

We shall find now two conditions pr ~ < ~ < 03~ and a condition t E Q 

which extends both pc and p~. 

Fix some ~ < Wl and define 50 = min{dPr : x  # y E u U ur Next, for 

a E w let i, j E d o m f  pC be any pair of points. We have 

(i) da( i , j ) / (1  + ~r  < dPr162 f~r (j)) < (1 + ePcr 

= = Denoting, forsimplicity,~ ( l+eP~) ,a=d(~ ( i , j ) andb  d ~f~ (i), 
this can be re-written as 

(ii) a/A < b < ha. 
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There is a sufficiently small 5 > 0, depending on a and b, such that  for all 

a', b', if ]b - b' I < 5 and ]a - a'] < 5 then 

(iii) a'/)~ < b' < )~a'. 

Since w and domf  pC for each a E w are finite, we can fix 51 > 0 which is 

sufficiently small to make ( i i i )  hold for all a E w and i, j E d o m f  pc �9 

Let 5 = min{50/100, 51/2}. 

By condition (11) above, find ~ < ~ < wl so that  for each a E w and i E s~, 

d (i, < 5. 

Let u t = u U ur U u~. We define now a metric d t on u t as follows. First, for 

each a E w and x = fPr (i) E fPr [s~] let y = gr (x) and define d* (x, y) = r, r a 

rational number which satisfies 1/(1 + zP)d,~(i , j)  < r < (1 + cP)d~( i , j ) ,  where 

j = h~'~(i). Since for a,/~ E w the sets fa  pC [s~] and fPr [s~] are disjoint, and 

similarly for ~, d* is well defined, namely, at most one a is involved in defining 

the distance r. In fact, any two d* edges are vertex disjoint. 

Now (uU ur Uu~, d U d*) is a connected weighted graph. Let d t be the shortest- 

path metric on uUur  Uu~ obtained from d pC Ud p~ Ud*. It is obviously a rational 

metric, as all distances in d pC U d p~ U d* are rational. 

Let us verify that  d t extends d pC U d  p~ Ud*.  Suppose x E ur E u~ and 

d* (x, y) is defined. Any path from x to y other than (x, y) must contain some 

edge with a distance in (u pC , d pC), and all those distances are much larger than 

d* (x, y), so (x, y) is the shortest path from x to u. Suppose now that  x, y E u p<. 

So (x, y) is the shortest path among all paths that  lie in uPr and the path of 

minimal length from x to y among all paths that  contain at least one d* edge 

is necessarily the path ( x , x ' , y ' , y )  where x'  = gr and y' -- gr (since 

(u p~, dP~) is a metric space). Since d pC (x, y) = d p~ (x', y') by condition (3), the 

length of this path is larger than d pC (x, y). 

Let f t  = f~r U f ~ ,  where we formally take fP to be the empty function if 

C ~ W  p. 
t PC P~ Let w t = w pC U w pr and let c~ = max{r , ~  } where CP is taken as 0 if 

a ~ w p (recall that  E pC = CP~ for a E w). 

Now t is defined, and extends both pc and pC; one only needs to verify that  

t E Q. For that,  we need to verify that  each f t  is (1 + Ct~)-bi-Lipschitz. For 

a ~ w this is trivial. Suppose a E w and i, h E d o m f  t = r~ U sr U s~. The only 

case to check is when i E s~ and j E s~. If h~,r = j then this is taken care of 

by the choice of d t ( f  pC (i), fP~ (j))  = d* (fPr (i), fP~ (j)). 

We are left with the main case: j ~ h~'~(i). Let x = f~r y = fP~(j)  and 
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denote a' = d~(i, j) ,  b' = dt(x,y).  Let j '  6 x~ be such that  h~,~(j ') = j and let 
y, = g-1 r (y) (so f~ '  (j ')  -- y'). 

Denote b = dt(x,y') ,  a = d~(i,j ') .  We have that  a/A < b < Aa, and need to 

prove a'/A < b' < Ab'. 

We have da(j , j ' )  < 5 < 51/2, hence dt(y,y  ') < 51. By the triangle inequality 

in u t, we have Ib - b' I < 51. On the other hand, by the triangle inequality in 

(Wl, d~), we have la' - a] < 5 < 51. Thus, by the choice of 51 so that  (iii) holds 

if (ii) holds and ]a-a '  I < 51, ]b-b'[ < 51, we have a'/A < b' < Aa', as required. 
| 

Let P = <Pz, QZ : ~ < w2> be a finite support iteration of length 022 

in which each factor Qz is the forcing notion we defined above, in V P€ Since 

each Qz satisfies the ccc, the whole iteration satisfies the ccc and no 

cardinals or cofinalities are collapsed on the way - -  in particular, the collection 

{As : a < 023} required for the definition of Q is preserved. 

Since every metric d on 021 appears in some intermediate stage, the universe 

V p satisfies that  there is a collection of 022 separable metrics on Wl so that  every 

separable metric on Wl is almost isometrically embedded into one of them. 

There is no particular property of 021 that  was required in the proof. Also, 

Baumgartner 's  result holds for other cardinals. We have proved then: 

THEOREM 34: Let A > Ro be a regular cardinal. It is consistent that 2 ~~ > A + 

and that there are A + separable metrics on A such that every separable metric 

on A is almost-isometrically embedded into one of them. 

In the next section we shall see that  separability is essential for this 

consistency result for all regular A > R1. 

5.2. NEGATIVE UNIVERSALITY RESULTS FOR GENERAL METRIC SPACES BELOW 

THE CONTINUUM. Now we show that  the consistency proved in the previous 

section for separable metric spaces of regular cardinality A < 2 s~ is not possible 

for metric spaces in general if A > 1~1. Even a weaker fact fails: there cannot 

be fewer than continuum metric spaces on A so that  every metric space is bi- 

Lipschitz embeddable into one of them if N1 < A < 2 s~ and A is regular. 

The technique we use here is associating invariants to a structure modulo a 

club-guessing ideal. This technique was introduced in [10] and used there in 

the context of linear orders. The same technique has been used since for other 

classes of structure as well - -  models of stable theories, Abelian groups, infinite 

graphs and Eberlein compacta [10, 11, 12, 4, 9, 5]. 

We shall prove: 
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THEOREM 35: f f  ~ql < A < 2 R~ and A is a regular cardinal, then for every 

t~ < 2 ~o and metric spaces {(A, di) : i < ~} there exists an ultra-metric space 

(A, d) that is not bi-Lipschitz embeddable into (A, d~) for all i < n. In particular, 

there is no single metric space (A2, d) into which every ultra-metric space of 

cardinality A is bi-Lipschitz embedded. 

The proof of Theorem 35 uses the preservation and construction of invariants. 

We start with preservation. 

Let A > R1 be a regular cardinal. Let So ~ = {5 < A : cf6 = w}, the stationary 

subset of A of countably cofinal elements. For a regular A > R1 we may fix, for 

the rest of the section, a club guessing sequence C = (ca : 6 E So ~> [17, 10]: 

(1) c~ c_ 5 = supca and otpc~ = w for all 6 E So~; 

(2) for every club E C_ A the set S(E)  := {5 E So ~ : ca C_ E} is stationary. 

For each 6 c So ~ let (a~ : n < w} be the increasing enumeration of ca. 

Let (A, d) be a given metric space. Let X~ denote the subspace (~, : ~y < a}. 

Let d(/3,X~) denote the distance of fl from X~, that  is, the infimum over all 

d(/3, 7) for ~ < a. Thus, if (an : n E N} is increasing and an < /3 for all n, 

then (d(/3, Xa . )  : n < w} is a weakly decreasing sequence of nonnegative real 

numbers. 

LEMMA 36: Suppose (A, di) are metric spaces for i = 1,2 and f:  A ~ A is a 
K-bi-Lipschitz embedding of(A, dl ) in (A, d2 ) with constant K >_ 1. Then there 

is a club E C_ A such that: for all a E E and t3 > a we have f(~3) > a and 

(1) (2K) - l  dl(/3, Xa) <_ d2(f(/3),Xc~) <_ Kdl  (/3, Xc~). 

Proof.' Consider the structure A4 = (A; dl, d2, f ,  (Pq : q E Q+}) where Pq is a 

binary predicate so that  A/l ~ Pq(/31,/32) iff d2(/31,/32) < q. 

Let E = {a < A : M IX~ -< M}. Then E C_ A is a club. Suppose that  a E E. 

Then X~ is closed under f and f - 1  and therefore f(/3) > a. The inequality 

d2(f(/3), X~) < Kdl(/3, X~) is clear because X~ is preserved under f .  For the 

other inequality suppose that  7 E X~ is arbitrary and let e := d2(f(/3), 7). Let 

q > e be an arbitrary rational number. Now A/[ ~ Pq(f(/3), ~/) and therefore, 

by A4 IX~ -< 2~4, there exists some/3' E X~ so that  A,{ ~ Pq((f(/3'), "y). Thus 

d2(f(/3), f(/3')) <_ d2(f(/3), ~/) + d2(~', f (~ ' ) )  < 2q. 

Since K-ld~(~, /3  ') <_ d2(f(fl),f(/3')), it follows that  K - l d l ( f l ,  Xa) < 2q, 

and since q > c is an arbitrary rational, it follows that  (2K)-ldl(/3,Xc~) < 

d2(I(/3),X~). | 
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LEMMA 37: Suppose (A, di) are metric spaces for i = 1, 2, that K > 1 and that 

f:  ~ ~ A is a K-bi-Lipschitz embedding of (;~,dl) into (A, d2). Let E C ~ be 

a club as guaranteed by the previous lemma. Suppose 6 E S (E) ,  /3 > 6 and 

(a~ : n < co} is the increasing enumeration of ca. Let gn ---- d l  (/3, Xc~hn) a n d  let 
! 

s n : d 2 ( f ( / 3 ) , X ~ ) .  Then for each n, 

Ell ! (2) ( 2 K 2 ) - l c n / s  ~ n/En+l ~ 2K2s163  . 

Proof." The proof follows immediately from (1). I 

We show now how to code a real (a subset of co) in a metric space and retrieve 

it from a larger metric space in which the former space is bi-Lipschitz embedded. 

a for which the The idea is quite simple: the real is coded as the set of places a n 

distance d(/3 ,X~+l ) decreases dramatically compared to d(/3, X ~ ) ,  for some 

element /3 in the space. If the decrease in the distance is sufficiently large 

compared to the Lipschitz constant, then it is still possible to recognize the set 

of n-s at which the distance decreases also in the larger space, in spite of the 

distortion caused by the embedding. 

Definition 38: Suppose ~ > It1 is regular, ~ = (c~ : 6 E So ~) is a club-guessing 

sequence and (~, d) is metric space. For 6 E So ~ let (an : n E co} be the increasing 

enumeration of ca. Let/3 _> ,~ be some ordinal in A and denote cn := d(~, X~.) .  

For a subset A C co we write: 

(1) Od(/3, 6, A, K) if, for every n E co, either cn/an+l = 1 or r > 4K 4 

and A = {n :e , / en+l  > 4K4}. 

(2) Od(/3, 5, A, K) if A = {n:  e , / en+ l  > 2K2}. 

From (2) there follows: 

LEMMA 39 (Preservation Lemma): Suppose )~ is as in the previous definition, 

dl and d2 are metrics on ~, K >_ 1 and f:  )~ --* )~ is a K-bi-Lipschitz embedding 

of (,k, dl) in (,k, d2). Then there is a club E C_ ,~ such that for all 5 E S (E) ,  

A c_ co and/3 > 6, we have f(/3) > 6 and (I)d~ (/3, 6, A, K) =v Od: (f(/3), 6, A, K).  

LEMMA 40 (Construction Lemma): For every regular cardinal A > R1 and 

infinite A C_ co there is an ultra-metric space (A, d) and a club E C_ A so that, 

for all 6 E S (E)  and integer K >_ 1, there exists/3 > 6 with Od(/3, 6, A, K).  

Proo[: Suppose A C_ w is infinite and let (an : n < w} be the increasing 

enumeration of A. Let A~ be the tree of all ,;-sequences over A and let d be 

the metric so that  for distinct 7h, 7/2 E (w2) ~, d(~h, r]2) = 1/(n  + 1), where n 
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is the length of the largest common initial segment of r71 , rt2 (or, equivalently, 

d(rJ1, r~2) = 1/(I~1 Mr/2] + 1)). Every finite sequence t: n --+ A determines a basic 

clopen ball of radius 1/(n + 1) in (A~o, d), which is Bt = {7 E ~ : t C rl}. 

By induction on c~ < A define an increasing and continuous chain of subsets 

X~ C_ ~ so that: 

(1) IX~I < ~ for all c~ < ,k. 

(2) X~ g X~+I and X~ = U~<~ x ~  if a < A is limit. 

(3) For every ~ C X~ and k < co there exists r / E X~+I \ Xa so that  v rk C_ 

but B~t(k+l) ~ X~ = 0. 

(4) If a = 5 �9 So ~, (an : n < co} is the increasing enumeration of c~, then 

for every integer K >_ 1 a sequence ~K is defined as follows. Let bn = 

(4K2) n+l. Define an increasing sequence of finite sequences tn with Itn I = 

bn by induction on n as follows: to = (>. Suppose that  tn is defined and 

Btn N X~o~ ~ 0. Choose r / � 9  Xc~an+l N Btn so that  Brl[(bn+l ) CI Xc~,~ -- 0. 
Now let tn+l = rl[(b~+l). 

Finally, let ~g = Un tn. Put  z~k in Xa+l for each integer K _> 1. 

There is no problem to define X~ for all ct < A. Let X = U~<~ x a .  Fix a 

1-1 onto function F: X --+ A and let d be the metric on co2 which makes F an 

isometry. Observe that  for some club E C C_ A, F[X~] = ~ for all a �9 E. If ca C_ E, 

let ~K be the sequence we put in X~+I in clause (4) of the inductive definition 

and let /3K = F(V'K). We leave it to the reader to verify that  r 5, A, K). 

I 

Now we arrive at: 

Proof of Theorem 35: The proof of the theorem follows from both lemmas. 

Suppose ~ < 2 u~ and di is a metric on/k for each i < ~. Consider the set 

A := {A c_ co: (3i < a)(35 �9 So ~) (3K �9 co \ {0})(~/3 > 5)[Od~ (/3, 5, A, K)]}. 

This set has cardinality <__ ~ �9 a < 2 ~o. Therefore, there is some infinite 

A �9 P(co)\A.  By Lemma 40 there is some ultra-metric d on ~ and a club E C_ 

so that  for all 5 �9 S~ and integer K _> 1 there is /3 > 5 with Od(/3,5,A,K). 

If, for some i < g and integer K > 1, there is a K-bi-Lipschitz embedding q# 

of (~, d) into ()~, di), then from Lemma 39 there is some club E '  C_ /~ so that  

for all 5 �9 S(E),  /3 > 5 and infinite A C__ w, ~,0(/3) > 5 and (Dd(/3,5, A, K)  

Od~ (/3, 5, A, K).  Let E "  = E A E' .  Choose 5 �9 S(E").  Now for some/3 > 5 

we have r 5, A), hence Od~ (/3, 5, A, K)  - -  contrary to the choice of A ~ A. 

I 
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