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THE JOURNAL OF SYMBOLIC LoGIc 

Volume 44, Number 4, Dec. 1979 

MODEST THEORY OF SHORT CHAINS. II 

YURI GUREVICH AND SAHARON SHELAH1 

Abstract. We analyse here the monadic theory of the rational order, the monadic 
theory of the real line with quantification over "small" subsets and models of these 
theories. We prove that the results are in some sense the best possible. 

?0. Introduction. A chain is a linearly ordered set. A chain is short iff it embeds 
neither Wi nor O1. Shortness is expressible in the monadic language of order. For 
convenience, we shall use the term "chain" to mean "short chain". 

Modest chains are defined in ?2. A chain is modest iff it is p-modest for every posi- 
tive integer p; p-modesty is expressible in the monadic theory of order. 

Let R be the real line. Set X c R will be called pseudo-meager iff it is a union of 
less than c (the cardinality of continuum) nowhere dense subsets. It is well known 
that the hypothesis "R is not pseudo-meager" can be neither proved nor disproved 
in ZFC. The Continuum Hypothesis (or Martin's Axiom, see [MS]) implies that 
each pseudo-meager set is meager. By the Baire Theorem, R is not meager. 

Let Q be the chain of rational numbers. The monadic theory of Q is decidable 
(see [Ra]) but not categorical. By [Sh], there exist nonseparable chains monadically 
equivalent to Q (i.e. having the same monadic theory as Q) and if R is not pseudo- 
meager then there are subchains of R of cardinality c monadically equivalent to Q. 

THEOREM 1 (SEE ?3). A chain is monadically equivalent to Q iff it is modest and has 
neither jumps nor endpoints. Moreover there exists an algorithm associating a pair 
(p, s) with each sentence SD in the monadic language of order in such a way that either 

= 0 and all p-modest chains without jumps and endpoints satisfy q or c = 1 and all 
these chains do not satisfy q. 

Each modest chain is embeddable into a modest chain without jumps and end- 
points. 

COROLLARY 2. The monadic theory of the class of modest chains is decidable. 
THEOREM 3 (SEE ?2). Assume that R is not pseudo-meager. For each p there exists 

an everywhere dense subset of R forming a chain which is q-modest for each q < p 
but is not p-modest. Hence the monadic theory of Q is not finitely axiomatizable in 
the monadic logic. 

THEOREM 4 (SEE ?3). Assume that each pseudo-meager subset of R is meager. There 
exists an algorithm associating a sentence pp in the monadic language of order with 
every p and first-order arithmetical sentence (p in such a way that for each chain M 
which is not p-modest, 5D holds in the standard arithmetic iff (pp holds in M. 

Corollary 2 and Theorem 4 form a dichotomy. 
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492 YURI GUREVICH AND SAHARON SHELAH 

In ?4 we define subsets modest in a chain. (A subset X is modest in a chain M iff 
it is p-modest in M for every positive integer p; p-modesty in M is expressible in the 
monadic theory of M.) If X c M is modest in M then X forms a modest subchain; 
the converse may be wrong. Subsets modest in a chain M form an ideal closed under 
countable unions. 

Let Kp be the collection of pairs (M, S) where M is a complete chain without 
jumps and endpoints having an everywhere dense subset p-modest in M and S is a 
collection of subsets of M p-modest in M and satisfying some natural conditions 
(conditions (1) (3) in ?5 below). Let Tp be the set of sentences (p in the monadic 
language of order such that for each (M, S) e Kp, qD belongs to the theory of M with 
quantification over S. 

THEOREM 5 (SEE ?5). There exists an algorithm associating a pair (p, s) with each 
sentence p in the monadic language of order in such a way that either s = 0 and (p 
belongs to Tp or E = 1 and q(n belongs to Tp. 

The modest theory of a chain M is the theory of M with quantification over sub- 
sets modest in M. Chain N is absolutely modest iff it is modest in its completion. 
Subset X of a complete chain M is modest in M iff it forms an absolutely modest 
subchain. 

COROLLARY 6. The modest theory of the real line R is decidable. The following 
theories coincide with the modest theory of R: the modest theory of an arbitrary com- 
plete chain without jumps and endpoints having an everywhere dense absolutely modest 
subset, the theory of R with quantification over countable subsets, the theory of R with 
quantification over subsets of cardinalities < c. 

Note that decidability of the theory of R with quantification over countable 
subsets follows from [Ra]. 

The augmented modest theory of a chain M is the collection of monadic formulas 
F(V) such that for each subset X of M the statement F(X) holds in M when the 
bound set variables of F(X) range over subsets modest in M. 

THEOREM 7 (SEE ?5). Assume that each pseudo-meager subset of R is meager. The 
augmented modest theory of any complete chain without jumps is undecidable. 

Note also that the condition "having an everywhere dense absolutely modest 
subset" may not be omitted in Corollary 6. There exist complete chains without 
jumps and endpoints whose modest theories are undecidable. 

In ?6 we give some phenomena and counterexamples concerning modest subsets 
of R. 

Some results of this paper were announced in [Gu 1] and [GS]. Paper [Gu 2] will 
be referred to as Part 1. We use here its terminology and results For completeness 
and reader's convenience we expound here some results of [Gu 1] and [Sh]. 

?1. Cantor subsets. Let M be a chain. A point x E M is a left (right) limit point of 
Y c M iff there exists Z c Y such that Z is not empty and x = inf Z (x = sup Z). 
x is a limit point of Y iff x is either a left or a right limit point of Y. This coincides 
with the definition of limit point in terms of the interval topology on M for which 
the open intervals form a base. Every chain is regarded to be equipped with the 
interval topology. Note that the interval topology of a subchain may be weaker 

than the inherited one. 
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MODEST THEORY OF SHORT CHAINS. II 493 

We say that X cA M is dense in Y iff the closure of X n Y includes Y. Thus, X is 
everywhere dense iff it is dense in M, and X is nowhere dense iff it is not dense in 
any nonempty open set. The set of limit points of Y is denoted by der(Y). Y is 
Cantor iff it is perfect (i.e. 0 :A Y = der(Y)) and nowhere dense. The collection of 
Cantor subsets of M will be denoted by Ca(M). The set of two way (left and right) 
limit points of Y is denoted by YO. The cardinality of the continuum is denoted by 
c. Note that the real line has c perfect subsets and c Cantor subsets and 2c nowhere 
dense subsets. It is easy to see that the relations "X is Cantor" and "X = YO" are 
expressible in the monadic language of order. 

Let us note that each (short) chain is of cardinality < c (use the Erd6s-Rado 
generalization (see [ER]) of Ramsey's Theorem). 

THEOREM 1.1. Let 
M be a chain, 
XO, X1, ... be everywhere dense subsets of M, 
X =U Xc XO, and 
A c M- Xbe meager in M. 
Then there exist a countable B c X and afamily S c Ca(M) of cardinality c such 

that B c BO and every Xn is dense in B andfor each C E S: 
(a) B n c c O c and each B n Xn is dense in C, 
(b) C n C1 c B for each C :A C1 E S, and 
(c) C is disjoint from A. 
PROOF. Let A = UA, where each A, is nowhere dense in M. Let 

f: {O, 1} x {O, 1} x cv x Pe -* cv 

be one-one and onto and (an, An, i-n, an) = f1-(n). Let s and t range over the set of 
finite sequences of natural numbers, lh(s) be the length of s. s will be regarded as a 
function from lh(s) to A. t = s-n means that t extends s by t(lh s) = n. 

LEMMA 1.2. There exist intervals I(s) and points x(s) such that 
(i) I(s) c M - Alhs, I(s-n) c( I(s), and I(s-m) n I(s'n) = 0 if m # n; 
(ii) x(s) E I(s), x(s-n) E X., lim x(s-n) = x(s), x(s-n) < x(s) if an = 0, other- 

wise x(s-n) > x(s); 
(iii) If x = lim x(sJ) then either x = x(t) for some t or there exists a strictly in- 

creasing sequence to c t c= ... such that x E nI(tn). 

PROOF OF LEMMA 1.2. Take 1(0) c M - AO and x E I(0) n xr0. Suppose that 
I(t) and x(t) are chosen for every t with lh(t) < 1 and that the relevant cases of (i) 
and (ii) hold. Let lh(s) = 1 and G = I(s) - Al+. Select yo < yl < ... and z0 > z1 
> .. in such a way that Yn, Zn E G and lim yn = limZn = x(s). If an = 0 (an = 1) 
choose I(s-n) between yn and Yn+1 (between Zn and Zn+l) in such a way that I(s-n) 
c G. Pick x(s-n) E I(s-n). 

We have only to check (iii). Let x = lim X(Sn). 
Let Ni = {Sn I (i + 1): i < lh(sX)}. If there exists infinite Ni take the minimal i 

with infinite Ni. Select a subsequence SnO, Sn, ... such that sno I i = Sn, I i = ... and 

sn0(i) < sn1(i) < *-. . Then lim X(SnZ) = X(Sno i) E X. 

Otherwise by Koenig's Lemma there exists a sequence to c( t1 c( ... such that 

ti E Ni. Then x = lim x(ti) E nl(ti). Lemma 1.2 is proved. 
We continue the proof of Theorem 1.1. Let I(S), x(s) be as in Lemma 1.2, B be 
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494 YURI GUREVICH AND SAHARON SHELAH 

the set of points x(s) and S = { Cg: g E 02} where Cg = {x(s) : for each k < lh(s), 
3(s(k)) = g(k)}. Note that limj_.. x(s'f(e, g(lh(s)), i, J) = x(s) hence Cg c Cg 
and Xi is dense in Cg. 

Cg is nowhere dense. For if x(s) belong to an interval I then there exists n such 
that I(s'n) is disjoint from Cg and intersects L 

Clearly each Cg is disjoint from A. 
Let us check that Cg n Ch C B if gm 0 hm. For reduction and absurdum let 

x = lim(s) = lim(t") 0 B where x(s") E Cg and x(tn) E Ch. Wlog, sequences so, sl, 
... and to, t1, ... are strictly increasing. Then x E I(sm.+) n i(tm+i) = o. 

Theorem 1.1 is proved. 
COROLLARY 1.3. In conditions of Theorem 1.1 suppose that M is of cardinality less 

than c. Then there exists a countable C = CO E Ca(M) such that C c X and each X,, 
is dense in C. 

PROOF. Let B and S be as in Theorem 1.1. By (b), members of S are pairwise 
disjoint on M - B. Since cardinality of S is bigger than cardinality of M - B there 
exists C E S such that C c B. Now use (a). $ 

?2. Modest chains. 
DEFINITION 2.1. Let M be a chain and 1 < z < Xo. M is perfunctorily z-modest 

iff M c( MO and for each family {X: n < z} of everywhere dense subsets of M 
there exists C E Ca(M) such that CO c UX, and each X,, is dense in CO. M is 
z-modest iff each subchain of M without jumps and endpoints is perfunctorily 
z-modest. M is modest (perfunctorily modest) iff it is z-modest (perfunctorily 
p-modest) for each finite z. 

For each positive integer p, Definition 2.1 actually expresses perfunctory p- 
modesty and p-modesty in the monadic language of order. By Theorem 2.3 below, 
every chain of cardinality less than c is N0-modest. One can easily see that the real 
line is not perfunctorily 1-modest. 

LEMMA 2.1. (a) Chain M is z-modest if all separable subchains of M without jumps 
and endpoints are perfunctorily z-modest. 

(b) Suppose that M is separable and has neither jumps nor endpoints. It is per- 
functorily z-modest iffor each disjoint family {X,, n < z} of countable and every- 
where dense subsets of M there exists C E Ca(M) such that CO c UX,, and each 
Xn is dense in CO. 

PROOF. (a) It is enough to prove that M is perfunctorily z-modest provided M 
has neither jumps nor endpoints. Let {X n < z} be a family of everywhere dense 
subsets of M. By Theorem 1.1, there exists a countable Y c UXn such that Y c 
YO and each Xn is dense in Y. Let N be the subchain Y?. If C e Ca(N), CO c UX, 
each Xn is dense in CO and D is the closure of C in M then D E Ca(M) and DO = CO 
hence DO c UXn and each X,, is dense in D. 

(b) Let {In: n < co} be an open basis of M, and {Xq: q < z} be a family of 
everywhere dense subsets of M. Let f: co x -- co be one-one and onto, and 
(ln, rn) = f-l(n). Choose consecutively Yn e Iln n Xrn - {ym: m < n}. Form 
Yq = {yf(n,q): n < cw}. If Cce Ca(M), CO C U Yq and each Yq is dense in CO then 
Co UXq and each Xn is dense in C. # 

LEMMA 2.2. If M is z-modest and {Xn: n < z} is a family of everywhere dense 
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MODEST THEORY OF SHORT CHAINS. 1I 495 

subsets of M then there exists countable C = CO E Ca(M) such that C C UXn 
and each X, is dense in C. 

PROOF. By Theorem 1.1, there exists a countable Y = YO c UXn such that every 
Xn is dense in Y. Since M is i-modest Y is perfunctorily i-modest; hence there 
exists C E Ca( Y) such that CO c Y and every X,, is dense in CO. Let D be the closure 
of C in M. Since C is countable the completion of D is embeddable into the real 
line. Each point of D - CO gives a jump in the completion of D hence D = CO U 
(D - CO) is countable. By Corollary 1.3 (with M = D and X = U(Co n x")) 
there exists E = EO E Ca(M) such that E c CO and every X,, is dense in E. $ 

THEOREM 2.3. Each chain of cardinality less than c is So-modest. 
PROOF. Use Corollary 1.3. # 
THEOREM 2.4. Suppose that the real line R is not a union of less than c nowhere 

dense subsets. Then there exists an NO-modest subchain of R of cardinality c. 
PROOF. Let {I,: a < c} be an open basis of R where each element is repeated 

c times. Let Ca(R) = {C,,: a < c}. Pick xaE(I, - Up,- C:) - {xp: A < a}. 
It is easy to see that the subchain {xa: a < c} is N0-modest. # 

There exist chains which are not 1-modest, take for example the real line R. 
One gets another example setting p = 0 in the proof of the following theorem. 

THEOREM 2.5. Assume that R is not a union of less than c nowhere dense subsets. 
Then for each positive integer p there exists a p-modest subset of R which is not 
(p + 1)-modest. 

PROOF. Let AO, ..., AP be countable disjoint and everywhere dense subsets of 
R. Let S0 (respectively S1) be the collection of Cantor subsets C of R such that 
there exists Ai disjoint from CO (resp. each Ai is dense in CO). Let S0 = {Boa: a < 
c} and S, = {C,,: a < c}. Each Bp is nowhere dense in each CQ. Choose consecu- 
tively xtce(C? - Up<a Bp) - {xp: 3 < a}. Let W= {xa: a < c} and A = 

AO U ... U AP U W. Clearly each IBBS nW I < c and eachCg, n w # o. 
A is not (p + 1)-modest for there exists no C E Ca(A) such that CO c UAi and 

each Ai is dense in CO. 
We prove that A is p-modest. Let M be a subchain of A without jumps and 

endpoints, and {Xn: n < p} be a family of subsets of A everywhere dense in A. 
By induction on q < p it is easy to check that there exist an interval I of M 

and a function f: q -- (p + 1) such that for each n < q, X, n (Afn U W) is dense 
in I. Therefore we can assume that each X,, is disjoint from AO. 

By Theorem 1.1, there exists Ce Ca(M) such that CO c UX, and each X,, is 
dense in CO and C is disjoint from AO. Let D = der(C) in R. Clearly D E SO hence 
ID f nW < c and I Cl < c. Now use Theorem 2.3. # 

THEOREM 2.6. Assume that the real line is not a union of less than c nowhere dense 
subsets. There exists a modest subset of R which is not NO-modest. 

PROOF. Similar to that of Theorem 2.5. Define A as above but with KO instead of 
p. We have to check only that A is p-modest for each finite p. Let {X,, n < p} 
be as above. 

Let A' = U {Am: p < mi. There exist I andf: p -- w such that for each n < p, 
xn n (Afn U A' U W) is dense in L Therefore we can assume that each Xn is 
disjoint from AO. 

We finish as above. $ 
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496 YURI GUREVICH AND SAHARON SHELAH 

Recall that an equivalence relation E on a chain M is called a congruence iff 
every equivalence class of E is convex. 

THEOREM 2.7. Subchains and quotient chains of z-modest chains are i-modest. 
If E is a congruence on a chain M, the quotient chain M/E is z-modest and each 
X E M/E is z-modest, then Mis i-modest. 

PROOF. The first statement is clear. We prove the second one. Let N be a sub- 
chain of M without jumps and endpoints. If E does not glue points of N then N 
is isomorphic to a subchain of MIE and perfunctorily i-modest. Otherwise N 
has a i-modest interval and therefore is perfunctorily I-modest. # 

?3. Monadic theory of the rational line. For each positive integer p let Kp be the 
class of p-modest chains. Let RI associate the ring of all subsets of M with each 
chain M E K1. It is easy to see that the pair <K1, Rl> is nice with respect to Defini- 
tion 3.2 in Part 1. In the following lemma we use terminology of Part 1. 

LEMMA 3.1. There exists an algorithm computing U'(M, P) from Th0(M, P) when- 
ever there exists p such that M E Kp, and P is a sequence of less than p subsets of M, 
and the augmented chain <M, P> is 0-uniform. 

PROOF. Suppose that Me Kp, and P = <P1, ..., Pi> is a sequence of 1 < p subsets 
of M, and the augmented chain < M, P> is 0-uniform. Given Th0(M, P) we compute 
UO(M, P). 

Setm = l+ 1,Pm= M-(P1 U **. U PI),P' = <KP1i..Pm> andM= <M,P'>. 
It is sufficient to compute U'(M). 

Recall that Ul(M) is the collection of ThO(I/E) where I = <I, P' I I> is an interval 
of M, E is a congruence on I and I/E is 0-uniform. For each convex X c M set 
th(X) = [i, j, e] where 

(a) min X E Pi or X does not have a minimal point and i = 0, 
(b) max X E Pj or X does not have a maximal point andj = 0, and 
(c) e = 1 if X is one-point and e = 0 otherwise. 
If I and E are as above then ThO(I/E) is easily computable from th(E) = {th(X): 

X E I/E}. Thus it is sufficient to compute t = {th(E): there exists an interval I = 
<I, P' | I> of M such that E is a congruence on I, I/E is 0-uniform and E is not the 
identity relation on I}. Let A = {0} U {i: Pi # 0}. 

We show that t coincides with the collection t * of subsets S c A x A x {0, 1} such 
that 0 belongs to the third projection of S. Clearly t c t*. Let S = {51, ...I SJ E tC 

and B be the union of the first and the second projections of S. We construct a 
congruence relation E on M such that M/E is 0-uniform, th(E) = S and E is not 
the identity relation on M. 

Since M is p-modest and m < p there exists a countable C = CO c Ca(M) such 
that C C {Pk: k E B} and for each k E B, Pk is dense in C. WIog, C is cofinal in 
M in both directions. 

Let C = {ak: k < w} and {bk: k < w} contain an element from each cut of C 
realized in M. Build a sequence 0 = Fo c F1 c F2 c - .. of finite families of convex 
subsets of M satisfying the following conditions (a) - (c). 

(a) Let XG Fk - Fkl. If k = q (mod r) and 1 < q < r then th(X) = sq, If X 
has the minimal (maximal) point then it belongs to C. If X has not the minimal 

This content downloaded from 91.229.229.13 on Mon, 16 Jun 2014 01:23:51 AM
All use subject to JSTOR Terms and Conditions

Sh:70

http://www.jstor.org/page/info/about/policies/terms.jsp


MODEST THEORY OF SHORT CHAINS. II 497 

(maximal) point then C is not bounded above (below) in the part of M below 
(above) X. 

(b) Fk is pairwise disjoint and for every X, Ye Fk there exist elements of Fk+1 

below, between and above X and Y. 

(c) ak, bk EFo U .. U Fk+1. 
There exists E such that M/E UFk. It is the desired congruence. $ 

THEOREM 3.2. There exists an algorithm associating a pair (p, C) with each sentence 
p in the monadic language of order in such a way that either e = 0 and all p-modest 
chains without jumps and endpoints satisfy qD or I = 1 and all these chains do not 
satisfy (p. 

PROOF. Use Theorem 5.3 in Part 1. 
COROLLARY 3.3. A chain M is monadically equivalent to the rational chain iff it 

is modest and has neither jumps nor endpoints. 
Each modest chain is easily embeddable into a modest chain without jumps and 

endpoints. 
COROLLARY 3.4. The monadic theory of modest chains is decidable. 
THEOREM 3.5. Assume that each pseudo-meager subset of the real line R is meager. 

The true arithmetic is interpretable in the monadic theory of the class of chains which 
are not p-modest. 

PROOF. Let M be not p-modest. By Lemma 2.1, there exist a subchain N of M 
and subsets X1, ..., Xp of N such that N has neither jumps nor endpoints, and 
X , ..., Xp are disjoint, countable and dense in N, and there exists no C e Ca(N) 
such that in N: CO ' UXq and each Xq is dense in CO. 

Let D c N - UXq be countable and dense in N and D = U{Dn: n < cw} be a 
partition of D into disjoint countable subsets dense in N. Let S be the collection of 
C e Ca(N) such that each Xq is dense in CO. Let C e S. C will be called good iff 
there exists n such that C n D c Dn. C will be called bad iff each good C1 is 
nowhere dense in C. 

For each C e S, CO is not meager in C. Otherwise by Theorem 1. 1, there exists 
E E Ca(N) such that E ' UXq and each Xq is dense in E? which is impossible. 

Let S= {C,,:cx < c}. If Ca, is bad pick xEiCa - U{Cp: j < a and C: is 
good}. Form W = {xa,: Ca is bad}. Clearly 

(i) iCf WI < cifCis good, and 
(ii) C nW: W OifCis bad. 
The rest of the proof parallels the proof of Theorem 7.10 in [Sh]. A more detailed 

proof is in [Gu 3]. # 

?4. Absolute modesty. Unfortunately the union of two modest subchains may be 
not modest. Consider for example the case p = 1 in the proof of Theorem 2.5. AO 
is N0-modest (for it is countable). W is 80-modest too. (To check that let M be a 
subset of W without jumps and endpoints and Zo, Z1, ... be subsets of M dense in 
N. By Theorem 1.1, there exists CE Ca(R) such that each Zn is dense in CO and C is 
disjoint from AO. By the construction of W, i C nW JW < c. Now use the 80-modesty 
of C n W.) But A = AO U Wis not 1-modest. 

DEFINITION 4.1. Let M be a chain and 1 < X < NO. A subset X of M is perfunc- 
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498 YURI GUREVICH AND SAHARON SHELAH 

torily z-modest in M iff M has neither jumps nor endpoints and for each family 
{ Yn: n < z} of everywhere dense subsets of M there exists C E Ca(M) such that 
CO is disjoint from X - U Yn and each Yn is dense in CO. X is z-modest in M iff for 
each subchain N of M without jumps and endpoints, N n x is perfunctorily Z- 
modest in N. X is modest (perfunctorily modest) in M iff X is i-modest (perfunctorily 
i-modest) in M for each finite z. M is absolutely modest (absolutely z-modest) iff 
it is modest (X-modest) in its completion. 

For each finite z, the property "X is i-modest in M" is expressible in the monadic 
theory of chain M. 

LEMMA 4.1. X is z-modest in M if for each countable Y c M, the subehain X U Y 
is z-modest. 

PROOF. First suppose that X is i-modest in M. Let Y c M be countable and N 
be a subchain of X U Y without jumps and endpoints. We check that N is perfunc- 
torily i-modest. N itself is a union of i-modest and countable subchains. Wlog, 
N = M. Let {Zn: n < z} be a family of everywhere dense subsets of M. There 
exists C E Ca(M) such that CO is disjoint from X - UZ and each Z, is dense in CO. 
By Theorem 1.1, (with M= C and X= CO) there exists De Ca(C) such that 
DO C UZn and each Zn is dense in DO. 

Now suppose that for each countable Y, the subchain X U Y is i-modest. Let 
N be a subchain of M without jumps and endpoints. We check that N n x is 
perfunctorily i-modest in N. Wlog, N = M. Let {Zn: n < z} be a family of every- 
where dense subsets of M. Take countable A such that A c AO and each Zn is dense 
in AO. Since X U A is i-modest there exists C E Ca(M) such that CO is disjoint 
from X - (UZn) and each Zn is dense in CO. # 

Recall that an equivalence relation E on a chain M is called a congruence iff 
every equivalence class of E is convex. 

COROLLARY 4.2. (a) Let E be a congruence relation on M. If X is i-modest in M 
then each Y c X is i-modest in M and {Z E M/E: X n Z : o} is i-modest in M/E. 
If {Z e M/E: X n Z ? o} is z-modest in M/E and for each Z E M/E, X f Z is 
z-modest in Z, then X is z-modest in M. (b) There exists an so-modest subset of reals 
which is not absolutely 1-modest provided R is not pseudo-meager. 

PROOF. (a) Use Theorem 2.7. (b) Consider Wfrom the proof of Theorem 2.5. $ 

THEOREM 4.3. Let Do, D1, ... be subsets of a chain M modest in M. Then UDn is 
z-modest in M. 

PROOF. Let N be a subchain of M without jumps and points, and D = (UDn) n 
N. We have to prove that D is perfunctorily i-modest in N. Wlog, N = M. Let 
{Xq: q < zr} be a family of everywhere dense subsets of M, and X = UXq. Let S 
be the collection of C E Ca(M) such that each Xq is dense in CO. Below, C range 
over S. Let s, t range over the finite sequences of natural numbers, and f: {O, 1 } x 
i x cv -_ c be one-one and onto, and (an, An, Tn) = f1-(n). We need the following 

LEMMA 4.4. There exist Cantor subsets C(s) and points-x(s) such that 
(i) C(s) is disjoint from Dlh(,) -X, C(s-n) c C(s) and C(s-m) n C(s n) = 0 

if m ? n; 
(ii) x(s) e CO(s), x(s-n) e Xp, lim x(s-n) = x(s), x(s-n) < x(s) if an = 0, otherwise 

x(sfn) > x(s); 
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MODEST THEORY OF SHORT CHAINS. II 499 

(iii) if x = lim x(s") then either x = x(t) for some t or there exists a strictly in- 
creasing sequence to c t1 c such that x Ef nC(t). 

PROOF OF LEMMA 4.4. Since Do is z-modest in M, there exists C(O) disjoint from 
Do- X. Pick arbitrary x(O) e CO(O). Suppose that C(t) and x(t) are chosen for every 
t with lh(t) < 1, and that the relevant cases of (i) and (ii) hold. Select yo < Yi < 
and zo > z1 > ... in such a way that yn, Zn e CO(s) and lim y, = lim zn = x(s). 
Since DI is i-modest in M, for each n there exists C(s'n) c C(s) disjoint from DI - 
X and located between y, and yn+? if an = 0, and between zn and zn+I otherwise. 
Pick x(s'n) E CO(s'n) n xp,3. Similar to the corresponding part of the proof of 
Lemma 1.2 one can check that (iii) holds. Lemma 4.4 is proved. We continue the 
proof of Theorem 4.3. 

Let B be the collection of points x(s), and C = B. Each Xq is dense in B C CO 
and C is disjoint from U(Dn -X) = D - X. $ 

THEOREM 4.5. Let M be a chain with an everywhere dense subset A 2-modest in M. 
Then for each everywhere dense subset X of M there exists B C X everywhere dense 
and 2'-modest in M. 

PROOF. By Corollary 4.2(a), it is enough to prove that for each interval I of M 
there exist a subinterval J c I and a set B C J f X such that B is dense and iZ- 
modest in J. 

Let I be an interval of M. First suppose that there exist a subinterval J c I and 
a set Y c J such that I YI < c and Y is dense in J. Then there exists an open basis 
aJ,: a < k} of J where k < c. Take B = {ba: a < k} where ba EJa ln X and use 

Theorem 2.3 and Lemma 4.1. 
Now suppose that each subset of I of cardinality < c is nowhere dense in L Let 

tIs: a < c} be an open basis of I and { Ye: a < c} be the collection of countable 
subsets of M. Pick ba e Ia n X - U {cl Yp: j < a} and set B = {by: a < c}. 

We check that B is ir-dense in L Let N be a separable subchain of B without 
jumps and endpoints. It is enough to prove that N is i-modest in I (use Lemmas 
2.1(a) and 4.1). 

Let D = der(N) in L By the construction of B, ID f NI < c hence D n N is 
i-modest in I. N - D is discrete in I hence it is isomorphic to a quotient chain of 
A f Ihence it is i-modest in I. Now use Theorem 4.3. # 

?5. Modest theory of the real line. Let K be a class of complete chains and Rl 
associate a ring Rl(M) of subsets of M with each M e K. Suppose that members of 
Rl(M) are modest in M and the pair <K, Rl> is nice with respect to Definition 3.2 
in Part 1. In the following lemma we use terminology of Part 1. 

LEMMA 5.1. There exists an algorithm computing U01(M) from Th0(M) whenever M 
is a 0-uniform augmented chain. 

PROOF. Let M e K and P = <P1, I., Pm> be a sequence of members of RI(M). 
Suppose that the augmented chain ? = <M, P> is 0-uniform. Given ThO(M) we 
compute UO(M). 

By the definition, Uol(f) in the collection of ThO(I/E) where I = <I, P I> is an 
interval of M, E is a congruence on I and I/E is 0-uniform. Let N = PI U ... U 
Pm and N* be the augmented chain <N, P>. If I and E are as above then I* = 
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500 YURI GUREVICH AND SAHARON SHELAH 

<If N, PII> is an interval of N*, E* = E n (N x N) is a congruence onl If N 
and I*/E* is 0-uniform. It is easy to construct an algorithmf computing ThO(I/E) 
from ThO(I*/E*) and to check that UI(M) = {f(t): t E Uo(N*)}. Since the chain 
N is modest we can use the algorithm of Lemma 3.1 to compute Uo(N*) from 
the 0-theory ThO(N*) of N* which is easily computable from ThO(M). Thus U'(M) 
is computable from ThO(M). $ 

THEOREM 5.2. There exists an algorithm associating a sentence (P' with each sen- 
tence (p in the monadic language of order in such a way that (P' is either (P or the nega- 
tion of ( andfor every chain M in K without jumps and endpoints, p' is a theorem in 
the theory of M with quantification over RI(M). 

PROOF. Use Corollary 5.4 in Part 1. # 
The modest theory of chain M is the theory of M with quantification over subsets 

modest in M. 
COROLLARY 5.3. Let M be a complete chain without jumps and endpoints having 

an everywhere dense subset modest in M. Then the modest theory of M coincides 
with the modest theory of the real line R. The modest theory of R is decidable. 

COROLLARY 5.4. Thefollowing theories coincide: the modest theory of R, the theory 
of R with quantification over countable subsets, the theory of R with quantification 
over subsets of cardinalities < c. 

Note. Let W be a subset of R which is p-modest in R but not (p + 1)-modest in 
R. Let M be a chain obtained from R by replacing of points of W by copies of 
[0, 1]. M has an everywhere dense subset p-modest in M but it does not have an 
everywhere dense subset (p + 1)-modest in M. 

Let L1 be the monadic language of order enriched by a set constant. If X is a 
subset of a chain M then (M, X) is a model of L1. The theory of (M, X) in L1 when 
set variables range over subsets modest in M will be called the modest theory of 

(M, X). 
THEOREM 5.5. Assume that each pseudo-meager subset of R is meager. Then for 

each complete chain M without jumps and endpoints andfor each X c M which is 
not modest in M the modest theory of (M, X) is undecidable. 

See the detailed proof in [Gu 3]. # 
Now we turn our attention to the condition. "M has an everywhere dense subset 

modest in M" occurring in Corollary 5.3. This condition is essential. 
THEOREM 5.6. Assume that R is not pseudo-meager. There exists a complete modest 

chain without jumps and endpoints whose modest theory is undecidable. 
PROOF. Let Q be the set of rationals. According to Theorem 7.11 in [Sh], there 

exists W c R - Q such that a finitely axiomatizable undecidable first-order theory 
T is interpretable in the theory of (R, W) with quantification over subsets of Q. 
W is not 1-modest in any interval of R. 

Let M be a chain obtained from R by replacing each point of W by a copy of 
[0, 1]. Clearly Tis interpretable in the modest theory of the completion of M. # 

?6. Addition. Here we prove some phenomena concerning modest subsets of the 
real line R. The first phenomenon contradicts somewhat the feeling that modest 
subsets are small. 

Note. The sequences built in the proofs of the theorems below are continuous. 
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THEOREM 6.1. Assume that each pseudo-meager subset of R is meager. Then there 
exists a partition R = A U B such that both A and B are perfunctorily so-modest in 
R. 

PROOF. Let {< XaO, Xal, ...>: 0 < a < c and a is even} be the collection of sequences 
<X0, X1, . . . > such that each Xn is a countable and everywhere dense subset of R. 
Let R = {ya: a < c and a is odd}. By induction on a we build meager approxi- 
mations Aa and Ba. AO = Bo = 0. Suppose that a is odd. If ya does not belong to 
Aa U Ba set Aa+1 = Aa U {yaj and Ba+1 = Ba; otherwise set Aa+1 = Aa and 
Ba+1 = Ba. Let a be even. By Theorem 1.1, there exist Can, Cal e Ca(R) such that 
each Xan is dense in each C?, and Cao n C., Xa = U{Xan n < w} and each 

Ca. is disjoint from Aa U Ba - Xa. Set Aa+1 = Aa U (CaO - Ba) and Ba+1 = 

Ba U (Cal - Aa+,). Set A = UAa and B = UBa. Given <XaO, Xai, ...> take 
Ca0 (respectively Ca.) to check perfunctorily so-modesty of A (respectively B). # 

LEMMA 6.2. Theorem 1.1 remains true if (X c XO) and (B n C c Co) are replaced 
by (X c der X) and (B n Co = 0) respectively. 

PROOF. Replace (an = 0) by (x(s) is a left limit point of X) in Lemma 1.2. $ 

COROLLARY 6.3. Let X be a countable subset of R without isolated points (i.e. 
X c der X), and X0, X1, ... be subsets of X dense in X, and A c R -X be of cardi- 
nality < c. Then there exists C E Ca(R) such that each X, is dense in C and C0 is 
disjointfrom A U X. 

PROOF. By Lemma 6.2 (with M equal to the closure of X), there exist B c X 
and S c Ca(R) such that I SI = c, and each X, is dense in each C e S, and B is 
disjoint from CO for each C E S, and S is disjoint on R - B. There exists C e S 
disjoint from A and (X - B). Clearly CO is disjoint from A U X. # 

Let M be a chain and 1 < iz < so. Subset A c M is topologically 2-modest iff 
for each X c M with X c der(X) and each family {X": n < ir} of subsets of X 
dense in X there exists C e Ca(M) such that C c X and each X, is dense in C. 

THEOREM 6.4. Assume that R is not pseudo-meager. Then there exists an every- 
where dense A c R such that A is topologically so-modest in R but A is not even 
perfunctorily 1-modest. 

PROOF. Let {<Xao, Xai, ...>: a < c and a is odd} be the collection of se- 
quences <X0, X1, ... > such that UXn is countable and has no isolated points 
in R and each X, is dense in UX,* Let {Ca: 0 < a < c and a is even} be the 
collection of subsets C e Ca(R) such that the set Q of rational numbers is dense 
in CO. By induction on a we build disjoint and increasing Aa and Ba such that 

I Aa I < a + c) and Ba is meager. 
AO = Q and Bo = 0. Suppose a is odd. By Corollary 6.3, there exists Da e Ca(R) 

such that each X,, is dense in Da and DO is disjoint from U {Xan: n < 4j and 
from Aa. Set Aa+ = Aa and Ba+ = Ba U (Da - Aa). Note that DO is disjoint 
from Q hence Da is nowhere dense in any Ca. Now suppose that a > 0 is even. 
Pick xa e Ca - (Ba U Q), set Aa+1 = Aa U {ax} and Ba+1 = Ba. Set A = UAa. 
A is topologically so-modest in R but there is no C e Ca(A) such that Q is dense 
in C0 and C0 is disjoint from Q - A. # 

LEMMA 6.5. Let X be an everywhere dense subset of R and Do, D1, ... be nowhere 
dense subsets of R. There exists an everywhere dense Y c X such that each D. n Y 
is finite. 
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502 YURI GUREVICH AND SAHARON SHELAH 

PROOF. Let {In: n < w} be an open basis of R. Pick y E In - (DO U .. U y). $ 

THEOREM 6.6. Assume the Continuum Hypothesis. Then there exists an NO-modest 
A c R such that for each everywhere dense E c R - A, A U E is not even per- 
functorily 1-modest. 

PROOF. Lett< XaO, Xal, > : a < c is odd} be the collection of sequences 
<X0, X1, ...> such that UXn is countable and forms a subchain without jumps 
and endpoints and each X. is everywhere dense in that subchain. Let Xa = U{Xa,,: 
n < co}. 

Let Ca(R) = {Ca: 0 < a < c and a is even} where each Cantor subset of R is 
repeated c times. 

By induction on a we build Aa, A* and Ba such that Aa c A*, and Aa n Ba = 0, 
and A*, Ba are meager in R. AO = A* = Q and Bo = 0. 

If a is odd and Xa c Aa let Ma be the subchain of R formed by the closure of 
Xa. By Theorem 1.1, there exists Da E Ca(Ma) such that Da is disjoint from A* - Xa 
and in Ma: each Xan is dense in DO. Set Aa+, = Aa, A*1 = A* and B+, = 

Ba U (Da - Xa). 
If a is odd and Xa is disjoint from Aa select an everywhere dense Ya C Xa such 

that each Do n Ya is finite where f3 < cr. Set A+i = Aa, A*+1 = A* U Ya and 

Ba+1 = Ba. 

If a > 0 is even and there exists f3 < a such that Ye is dense in C0 then each 
D with r < a is nowhere dense in C.O. Pick aa E Ca - (A* U Ba). Set Aa+ = 

Aa U {as}, A* 1 = A* U {aa} and B+i = Ba. 

In the other cases set Aa1 Aa, A*?1 = A* and B+i = Ba. Set A = UAa. 
Clearly A is No-modest. Let E c R - A be everywhere dense. We check that 
A U E is not perfunctorily 1-modest. There exists a such that Ya c Xa c E. If 
Z e Ca(A) and Ya is dense in Z then there exists f3 such that Z = Ca and ap E A 
hence (ZO c Ya) does not hold. # 
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