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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 347, Number 11, November 1995 

ON INVARIANTS FOR cow1-SEPARABLE GROUPS 

PAUL C. EKLOF, MATTHEW FOREMAN, AND SAHARON SHELAH 

ABSTRACT. We study the classification of co,-separable groups by using 
Ehrenfeucht-Fraisse games and prove a strong classification result assuming 
PFA, and a strong non-structure theorem assuming O . 

INTRODUCTION 

An cowI-separable (or I-separable) group is an abelian group such that every 
countable subset is contained in a free direct summand of the group. In partic- 
ular, therefore, an cWI -separable group is RI -free, i.e., every countable subgroup 
is free. The structure of coI -separable groups of cardinality RI was investigated 
in [1] and [8]; most of the results proved there required set-theoretic assump- 
tions beyond ZFC. (See also [2, Chapter VIII] for an exposition of these results.) 
Specifically, assuming Martin's Axiom (MA) plus -_CH or the stronger Proper 
Forcing Axiom (PFA), one can prove nice structure and classification results; 
these results are not theorems of ZFC since counterexamples exist assuming 
CH or "prediction principles" like O . In [1, Remark 3.3] it is asserted that a 
construction given there under the assumption of CH (or even 28o < 2R1) of 
two non-isomorphic co,-separable groups 

"is strong evidence for the claim that in a model of CH there is 
no possible meaningful classification of all cWI -separable groups. 
It is difficult to see what conceivable scheme of classification 
could distinguish between [the groups constructed here]." 

But, in fact, the Helsinki school of model theory provides a scheme for distin- 
guishing between such groups. It is our aim here to use the methodology of 
the Helsinki school-which involves Ehrenfeucht-Fraisse games (cf. [9], [11] or 
[12])-to strengthen the dichotomy referred to above: that is, to obtain strong 
classification results assuming PFA, and a strong "non-structure theorem" as- 
suming 0. 
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4386 P. C. EKLOF, MATTHEW FOREMAN, AND SAHARON SHELAH 

We begin by describing the Ehrenfeucht-Fraisse (or EF) games, after which 
we can state our results more precisely. If a is an ordinal and A and B are 
any structures, the game EF, (A, B) is played between two players V and 3 
who take turns choosing elements of A U B through a rounds. Specifically, in 
each round V picks first an element of either A or B; and then 3 picks an 
element of the other structure. The result is, at the end, two sequences (a,),<, 
and (b,),<o of elements of, respectively, A and B. Player 3 wins if and only 
if the function f which takes a, to b, is a partial isomorphism; otherwise V 
wins. If A and B have cardinality K, 3 has a winning strategy for EFK (A, B) 
if and only if A and B are isomorphic. (Let V list all the elements of A U B 
during his moves.) 

We consider variations of these games defined using trees. Given any tree 
T, we define the game EF(A, B; T): the game is played as before except that 
player V must also, whenever it is his turn, pick a node of the tree strictly above 
his previous choices (thus his successive choices will form a branch-a linearly 
ordered subset-of the tree). The game ends when V can no longer pick a node 
above his previous choices. The criterion for winning is as before; that is, 3 
wins if and only if the function f defined by the play is a partial isomorphism. 
We write A =T B if 3 has a winning strategy in the game EF(A, B; T) . For 
the purposes of motivation consider first the case a = co. (Our interest is 
in the case a = co, .) In this case, we consider only well-founded trees, i.e., 
trees without infinite branches; then for every such T, each play of the game 
EF(A, B; T) is finite. (So EF(A, B; T) may be regarded as an approximation 
to the game EFW,(A, B).) Scott's Theorem implies that for each countable A 
there is a countable ordinal f, such that if Tfl is any tree of rank f,, then for 
any countable B, B is isomorphic to A if and only if A =_Tfl B. In terms 
of infinitary languages, A is determined up to isomorphism (among countable 
structures) by a sentence of L of rank ,B . 

For structures of cardinality R 1, it is natural to look at approximations to 
the EF game of length cl and use trees of cardinality R I which may have 
countably infinite branches, but do not have branches of cardinality RI; we 
call these bounded trees. For such T, each play of the game EF(A, B; T) 
will end after countably many moves. We will say A is T-equivalent to B if 
A =T B. This relation provides a possible way of distinguishing between the 
co,-separable groups constructed in [1] under the assumption of CH (cf. the 
remark after the quotation above). 

By a theorem of Hyttinen [3], the entire class of bounded trees determines 
A up to isomorphism; that is, assuming CH if A and B are of cardinality RI 
and A =T B for all bounded trees, then A is isomorphic to B. The structure 
of the class of bounded trees is much more complicated than that of the class of 
well-founded trees (cf. [ 12]). However, in contrast to the situation for countable 
structures, there is not always a single tree which suffices to describe A up to 
isomorphism. Specifically, Hyttinen and Tuuri [4] proved (assuming CH) that 
there is a linear order A of cardinality R1 such that for every bounded tree T 
there is a linear order BT of cardinality R1 such that A =T BT but A is not 
isomorphic to BT. They call this result a non-structure theorem for A. It can 
be translated in terms of infinitary languages and says that there is no complete 
description of A by a sentence of a certain strong language MC92CS, (which we 
shall not define here). 
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ON INVARIANTS FOR co,-SEPARABLE GROUPS 4387 

A similar non-structure theorem for p-groups was proved by Mekler and 
Oikkonen [10]; their theorem is proved by carrying over to p-groups, by means 
of a Hahn power construction, the result of Hyttinen and Tuuri. Whether 
the analogous result for RI-free groups is a theorem of ZFC + CH remains 
open, but when we consider the question for R -separable groups, we obtain an 
independence result, which is the subject of this paper. In the first section we 
prove (with the help of the structural results referred to above) that assuming 
PFA 

if A and B are co,-separable groups of cardinality RI such 
that A -- +0 B, then they are isomorphic (where wt2 + Ct is the 
countable ordinal regarded as a-linearly ordered-tree). 

See Theorem 2. Thus a single, simple tree contains enough information to 
classify any co,-separable group-in the precise sense that a single sentence of 
MC02091 of "tree rank" co2 + Co completely describes A. 

In Section 2 we show, assuming 0, that not only does wt2 + Co not have 
the property above, but for any bounded tree T, there are non-isomorphic w1 I- 
separable groups AT and BT of cardinality RI which cannot be separated by 
T, in the sense that AT =T BT . (See Theorem 7.) The construction in Section 
2 is strengthened in Section 3 to obtain a non-structure theorem (Theorem 8.): 

there is an cowI-separable group A of cardinality RI such that 
for every bounded tree T there is an co I -separable group BT of 
cardinality RI which is not isomorphic to A but is T-equivalent 
to A. 

(Note that A does not depend on T.) 
We shall make use, at times, of the following siinple lemma, where A* de- 

notes the dual of A, i.e. Hom(A, Z). 

Lemma 1. Suppose A C B and A' C B' C C' where C'/B' is RI-free, B/A is 
countable and (B/A)* = 0. If 0: B -+ C' such that 6[A] C A', then 6[B] C B'. 

Proof. 0 induces a homomorphism: B/A -+ C'/A'. By the hypotheses, the 
composition of this map with the canonical surjection: C'/A' -+ C'/B' must 
be zero; that is, 6[B] C B'. o 

1. A STRUCTURE THEOREM 

An RI -separable group A of cardinality RI is characterized by the property 
that it has a filtration, that is, a continuous chain {A, v < coI } of countable 
free subgroups whose union is A and is such that Ao = 0 and for all v, 
Av+1 is a direct summand of A. We say that two RI-separable groups A and 
B are quotient-equivalent if and only if they have filtrations, {Av : v < col } 
and {Bv : v < o1 }, respectively, such that for every ca < Wi1 , Aa+I/Aa is 
isomorphic to B+1 /B' . We say that A and B are filtration-equivalent if and 
only if they satisfy the stronger condition that for every a < c(0 there is a 
level-preserving isomorphism 0a : Aa+I -+ Ba+I, i.e., an isomorphism such that, 
for every v < a, 0[Av] = Bv . Under the assumption of MA+ -_CH, filtration- 
equivalence implies isomorphism. 
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4388 P. C. EKLOF, MATTHEW FOREMAN, AND SAHARON SHELAH 

In [8] (see also [2, Chapter VIII]) it is proved under the hypothesis of the 
Proper Forcing Axiom, PFA, that RI-separable groups of cardinality RI have 
a nice structure theory. More precisely, it is shown that, under PFA, every 
RI-separable group of cardinality RI is in standardform. (Roughly, this means 
that they have a "classical" construction. We will give a definition below.) Our 
goal in this section is to use that theory to prove the following: 

Theorem 2. (PFA) cow2 + Co is a universal equivalence tree for the class of Rl- 
separable abelian groups of cardinality R I . That is, any two R I -separable abelian 
groups of cardinality RI which are cow2 + co-equivalent are isomorphic. 

We shall see in the next section that this is not a theorem of ZFC. We begin 
with a weaker result. 

Proposition 3. If A and A' are strongly R i-free groups of cardinality RI which 
are co2-equivalent, then they are quotient equivalent. 
Proof. Suppose that T is a w.s. for 3. Let C be a cub such that if a E C, then 
for any n E co), as long as the first n moves of V are in A, U A', the replying 
moves of 3 given by T are also in Aa U A' . If A and A' are not quotient- 
equivalent, there exists al E C such that Aa+I/Aa D Z(w) is not isomorphic to 
Al +1 /A' D Z(w) . Now let V play the game so that during the first co moves he 
makes sure that all elements of Aa U A' are played; the result, since T is a w.s., 
is that an isomorphism f: Aa -+ A' is obtained. 

Then in the next co moves, V plays so that all, and only, the elements of 
AfluA' are played for some f8 > a+ 1 . This is possible by using a bijection of co 
with co x co. The result is an extension of f to an isomorphism f': Afl -+ A'fl. 
Then, since Afi /Aa+I and A /A'1 are free, we have Afl/A A,i /A, e 
Afl/Aa+l and similarly on the other side. Since f' induces an isomorphism of 
Al/Aa with A' /A', we obtain a contradiction of the choice of a. O 

Suppose A is an RI-separable group of cardinality RI with a filtration {A>: 
v E C(oI}, and let E = {a: A3 is not a direct summand of A}; A is said to be 
in standard form if: 

(1) it has a coherent system of projections {r1, : v 0 E}, i.e., projections 
: A -+ Av with the property that, for all v < T in wt)I\E, 5 7ro r = 7rv ; and 
(2) for every (3 E E there is a ladder t, on a and a subset Y3 of A3+I 

such that A3+1 = A3 + (Y3) and 
for all y E (Y3) and all v < (3 with v ? E, lrv(y) = 

(t ) ZaES(7ra+I(Y) - 7(a(y)) where S = {a E rge(13) : a < vI} . 

(Here a ladder on (3 means a strictly increasing function t, : co , (3 with 
rge(qt5) C cwi\E and suprge(qt5) = J3.) This property is actually stronger than 
the usual definition of standard form (because of the assertion about the ladder); 
it can be shown that the Proper Forcing Axiom (PFA) implies that every strongly 
R -free group of cardinality RI has this property (by essentially the same proof 
as in [2, Theorem VIII.3.3]). 

Let Ka = ker(7ra) and let Ka, a+1 = Ka n Aa+1 . Notice that we can replace 
any y in Y3 by y + u where u E Ka, a+I for some a E (3\E, and we will still 
have a generating set of A3+1 over A3 which satisfies (t). Also we can, and 
will, assume that Av+1 /Av has infinite rank for every v ? E. 
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Lemma 4. Suppose A is in standard form. Then there is a filtration {A,: v E 
co, } of A and for each a E E = {d: A3 is not a direct summand of A}, there 
are: a ladder q, on c5; and a subset y, = {y,5,i: i E I} of A,+1 which is 
linearly independent mod A, such that if /in = q,5(n) 

1. for all n E co, fin 1 E; and 
2. A3+1 is generated mod A, by a set of elements of the form 

~~~~~~~t(.,) - a 
d 

where t(yj) is a linear combination of the elements of y,5, d E Z, and a E 
(DnEco Kfin ,Bfn+ I1 
Moreover, given It < c, we can choose q, such that ,5 (0) > /u. 
Proof. Let Y3 and q, be as in the definition of standard form above. Let 
Y-a = {Y3, i: i E I} be a maximal linearly independent subset of Y3 . By the 
remark preceding the lemma we can (by replacing y3,i by yV,i - 7rz+ I(Yye, 
assume that qj (O) > Iu . 

If d divides t(j73) mod Av+I for some integer d and linear combination 
t(QT3), then d divides t(Qj) - a where a =7rv+I(t(Y3)) =ES ,B,,B+I(0(Y)) 
for some finite subset S C rge(3) . a 

Proposition 5. Let G and G' be R I-separable groups such that G is in standard 
form. Suppose that they have filtrations {Gv : v E co,} and {G' : v E (0l } 
respectively such that the filtration of G attests that G is in standard form and 
E= {v E Wi1: Gv is not a summand of G} = {v E Wi1: G' is not a summand of 
G'}. Suppose also that for all limit ordinals Y, given a ladder t' on Y, there 
is an isomorphism 06: G3+1 -+ G,,+, such thatfor all n E w, 03[Gq(n)] = G 
and 631Q[G61(n)+l] = G,6(n)+l1. Then G and G' arefiltration-equivalent. 
Proof. We can assume that the filtration of G is as in Lemma 4. We prove by 
induction on v the following: 

if ,I < v and ,u, v E coI \E and f: GA GA is a level- 
preserving isomorphism, then f extends to a level-preserving 
isomorphism g: Gv -+ G' . 

If v = T + 1 where T f E, then the result follows easily by induction and 
the fact that Gv /GT and G' /G' are free. If v is a limit ordinal, choose a 
ladder 4v on v such that 4v (0) > ,u and for all n, Cv,(n) f E, and extend f 
successively, by induction, to gn : G -+(n) GI (n), and let g = Un gn 

The crucial case is when v = (5 + 1 where 5 E E. Let q1/ be as in Lemma 
4 with qi5(0) > Iu, and let 06 be the corresponding isomorphism given by the 
hypothesis of this proposition. Let C,n = Kn, ,+. By induction, extend 
f to a level-preserving isomorphism fo : G?,1(o) G - (0) and then extend it 
to go : Gw16(0)+I -- G' by letting go [ CQ = 063 C3,0. Clearly go is 
level-preserving. By induction extend go to a level-preserving fiernG,16(1) 
GI>1 and then to g, : G -16 G' by letting g C[,1 = 63 C3,1 . 
Continuing in this way we obtain level-preserving isomorphisms gn: G:i6(n,+ 
GI(n+ for each n . Let g=Un gn: G- - G5 . 

By Lemma 4, G5+1 is generated mod G3 by a set of elements of the form 
t(d5) - a 

d 
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where a E nE- C3,I; hence G'1 is generated mod G' by elements 

t(06(y3)) - 0a(a) 
d 

But then since g(a) = 0a(a) for each such a by construction, we can extend 
g to g: G3+1 -+ G'+1 by sending each y,5i in y5 to 05(y5, ). Since y5 is 
linearly independent over G3, this is a well-defined homomorphism. 0 

Theorem 6. Suppose A and A' are R1-separable groups of cardinality RI and 
at least one of them is in standard form. If A and A' are co2 + co-equivalent, 
then they are filtration-equivalent. 
Proof. We can suppose that A is in standard form, and that we have chosen a 
filtration, {A, v E co I}, which attests to the fact. Moreover, we can assume 
that if (3 E E = : A3 is not a direct summand of A}, then (A3+I/A3)* = 
0. (Use Stein's Lemma [2, Exercise 3, p. 112], and replace A3+1 by a direct 
summand, if necessary.) 

Since A is quotient-equivalent to A' by Proposition 3, we can assume that 
there is a filtration {A' : v E co, } of A' such that E = {a: Al is not a direct 
summand of A'} and for (3 E E, Al+1/AI _ A3+ 1/A3 = 0, so in particular 
(Al6+IA')= 0. 

Fix a bijection yfl: co -+ (Afl\A,) U (Al\Al) for each a < f/. Let V = 
{N/afl a < f < ()1} 

When we talk about moves in a game, we refer to the game EFw,2+w,(A, A') . 
Given a strictly increasing finite sequence of countable ordinals a I < a2 < ... < 
C?n, we will say that V plays according to yi and (al, a25 . . ., c n) for the first 
con moves if the cok + I move of player V is Vakak+1 (1) for k = 0, ... , n - 1 
and 1 e cO (where ao = 0). 

Suppose that T is a w.s. for 3 in the game EFa,2+,(A, A'). Let C be the set 
of all 3 < col such that, for any integers n > 0 and m > 0 and any ordinals 
a1 < (2 < *. < an < , if V plays according to yi and (al1, a2, ... ,cn) for 
the first con moves and then plays any elements of A3 for the next m moves, 
then the responses of 3 using T are all in A3 u Al. 

Then C is a cub: for the proof of unboundedness, note that there are only 
countably many possibilities that one has to close under: choice of n and m, 
choice of a I< a2 < *.. < an and choice of moves con, con + 1, ..., con + 
m - 1 . (The earlier moves are determined by the Vakak+1 and by T.) 

There is a continuous strictly increasing function h: co, co, whose range 
is C. Define h: co, co, by { h(,B) + 1 if ,B is a successor and h(,B) E E, 

h h(f/) otherwise. 

Let Ga = Ah(a) and G' = A'h(a) .Then for successor ,B, Gfl is a summand of A 
and, for limit 3, G3 = A*(a) + Ufl<6 Ah(fl) = Ufl<6 Gfl, so {Ga :a E 0i1} (resp. 
{Ga : a E COwI}) is a filtration of A (resp. A'). Given a limit ordinal (3 and a 
ladder t, on (3, it follows-from Lemma 1 and the definition of C-that there 
is an isomorphism 03: G3+1 -+ G'+1 such that, for all n E cl), 06[Gq6()] = 

G(and q63G16(n)+1] = GI(, . In fact, 06 is the partial isomorphism which 

This content downloaded from 193.142.30.174 on Sat, 28 Jun 2014 10:35:28 AM
All use subject to JSTOR Terms and Conditions

Sh:520

http://www.jstor.org/page/info/about/policies/terms.jsp


ON INVARIANTS FOR coI-SEPARABLE GROUPS 4391 

results because 3 wins the game where the cok + 1 move of V is 

V/h (?I&(n)), h (?I&(n) + ) 1) 

when k = 2n, and is 
Y/h (?I&(n) + 1 ), h (?I&(n + 1)) ) 

when k = 2n + 1, and the cw2 + m move of V is yIh(3),h(3+l)(m)M) 
Thus we have satisfied the hypotheses of Proposition 5 so we conclude that 

A and A' are filtration-equivalent. 0 

Now we can prove Theorem 2. PFA implies that every strongly R1-free 
abelian group of cardinality RI is RI-separable and in standard form. More- 
over, assuming PFA, filtration-equivalent RI-separable groups of cardinality 
RI are isomorphic. Thus the result follows from Theorem 6. 

2. A DIAMOND CONSTRUCTION: ONE TREE 

The result to be proved in this section is the following: 

Theorem 7. Assume O . For any bounded tree T1 there exist non-isomorphic 
I1-separable groups GO and G1 of cardinality RI which are Ti-equivalent (and 

filtration-equivalent) are both in standard form. 
Proof. We will present the proof in layers of increasing detail. 

(I) Fix a stationary subset E of cl, consisting of limit ordinals and such that 
E is the disjoint union of two uncountable subsets Eo and E1 such that O (El) 
holds. 

Given a bounded tree T (which in practice will be determined by, but not 
equal to, T1), we shall identify its nodes with countable ordinals in such a way 
that if v <T IU (in the tree ordering), then v < u (as ordinals). 

By induction on a < co1 we will define the following data: 
1. continuous chains {GI : v < a} of countable free groups (for I = 0, 1) 

such that, for all v < It < a, GI /GI is free if v 0 E1, and if v E1, 
then GIV+/GI has rank at most 1; 

2. homomorphisms 74,t,: GI -+ GI for v < it < a and v El U{a + 1: 
C E Eo} such that: 71 is the identity on GI; for v < ,I < p, 

,C , p; and for T < V < ?,i,r ,o o I = (i.e., isa 
projection and the system of projections is coherent); 

3. for each v with v + 1 < c an isomorphism fv>: GO+1 GI1 satisfy- 
ing: 

if VI <T V2, then f5'2 [ Go?+I = 
fLvol . 

(These partial isomorphisms will give 3 her winning strategy.) 
For convenience we will use fvl to denote (fO)-1 : GI-+ GO 
Define GI = Uv,l GI. (It depends on T, but we suppress that in the 

notation.) Now we will indicate how we choose T so that GO and G1 are 
T1 -equivalent. 

Let T2 =<Wi co,1 \0, i.e., the tree of non-empty countable sequences of count- 
able ordinals, partially ordered by inclusion (so it has RI nodes of height 0) . 
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Let T be the product T1 X T2, i.e., the (bounded) tree whose nodes are ele- 
ments (s, v) E T1 x T2, where s and a have the same height, and the partial 
ordering is defined coordinate-wise. (As above, we identify the nodes of T with 
ordinals.) 

Suppose we are able to carry out the construction outlined above for this T. 
Then since the GI are free, GI is N -free. Moreover, for v V E1, UP<W, ir 

GI - GI is a projection which shows that GI is a direct summand of GI; so 
GI is RI-separable (and has a coherent system of projections; the fact that it 
is in standard form will follow from the details of the construction-see part 
(V)). 

We claim that GO and G1 are T1-equivalent. In fact, here is 3's winning 
strategy in the T1 -game. If in his first move V plays s0 E T1 (which we may 
assume has height 0), and yo E G?O , 3 chooses ao such that (so, (ao)) E T 
is the element vo of the enumeration of T, where v0 > yo; and she plays 

fgog(yo) e G10- . (Note that the domain of is GO D GO.) Suppose that 
after ,B moves V has chosen so <T, s1 <T, ... <T, s1 <T, ... in the tree and 
yo, Yi, ... ., Yj, ... in the groups where y, E G", (i < ,), and 3 has responded 
to the ith move with fl'(y,) where v, = (s1, (aeo, ..., ct1)). Now if V plays 

s5 >T, s1 (i < f)-which we can assume has height fi-and yl E Gl, then 
3 chooses ac such that (sn, (ao,..., ap)) is v,6 > yl, and plays f (y). 

Notice that V,6 > T V, o0 f4 extends f, for 1 = 0, 1 . Therefore the sequence 

of moves determines a partial isomorphism, so 3 will win. 

(II) Of course, we also want to do the construction so that GO and G1 are 
not isomorphic. This will be achieved by our construction of Gl+l for a E Et 
(plus the requirement 4 below); when 5 E E1 we will make use of the "guess" 
provided by 0 (E1) of an isomorphism: G. 0, G . 

Our construction will be such that when a = ,u + 1 where ,u p E, then 

G' = GI (1 xl zo 2I , 

When a = a + 1 where a E Eo, then 

G- G' Pe ~Zu' E1 Zv' Gl Gad3 ZUa, n 3 a, n 
nEco 

We define 

Wan=2a,n+l- a,n, 

Notice that {Wa, n: n E co} generates a pure subgroup of $DnE ZUn which 
is not a direct summand. Hence there is no isomorphism of $DnE- ZUa n a, n 
with eDnEWZUaJ,nf , Z which takes each Wa,n to v. In orderto carry 
out the inductive construction we will define in addition: 

4. subsets Wa[0] of Ga for every non-empty finite subset 0 of a which 
is an antichain in T, satisfying: 
(a) forall a < fl, WaV[0] CWV [40]; 
(b) every element of Wa[O] is of the form W,,,n for some a E Eo, 

and n E co. 
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ON INVARIANTS FOR cot-SEPARABLE GROUPS 4393 

The functions ]> will be required to satisfy: 
(c) for all ,u < a, j E {O, 1}, Ifa(x) = x moreover, if 

W,, E 
WJ'V+l[0]andEfn{v:v<Ta}l0,thenfYa(w,,)-=va,n4. 

For any finite antichain 0 in T, let W[0] = Ua Wa['V0. 
Now we will outline how we do the construction so that GO and G1 are not 

isomorphic. Before we start, we choose a function T with domain Eo which 
maps onto the set of all co-sequences (On : n E co) of finite subsets of T such 
that UnE- 0,n is an antichain; we also require that T(a) = (en: n E co) for 
uncountably many a. 

Suppose now that we have defined GI for v < a. If a = a E Eo, then GI+ 
will be defined as indicated above and is such that (as we will prove) 

(11.1) for all e E {1, -1}, there is no isomorphism of GO+1 
with $DnEc,oZVa nC for any C, which for all n E co takes 
Wa, n to evta,n 

Moreover W,,n will be put into W,+1[0na]. (This is the only way that an 
element becomes a member of a Wa[0].) 

If a = 5 E E1 and ,B < 5, we introduce the notation Ap,3 = {t: t is <T- 

minimal in c\fl}-so Ap,,3 is an antichain. We fix finite subsets 0(fl' of Afl,,5 
which form a chain such that Un 0l'3 = Afl,j. We consider the prediction 
given by 0 (E1) of an isomorphism h : G0 - G, and we ask whether the 
following holds: 

(II.2) <c5ee{l,-l} Vn3EwViz <wa,m E VeE] 
such that u < a < d and h(wa,m) :# evIam . 

We will do the construction of GI+1 so that: 

(II.3) If (II.2) holds, then GI I/GI is non-free rank 1 and h 
does not extend to a homomorphism: G,+1 +1-. 

Assuming we can do all of this, let us see why GO is not isomorphic to G1 . 
Suppose, to the contrary, that there is an isomorphism H: GO -- G1. Then 
there is a stationary set, S, of a E E1 where O (El) guesses h = H r G0 and 
H: G? - G . Note that Lemma 1 implies that H must map G+1 into G5+1 
because GO+1/G? is non-free rank 1 but G1 /G,+1 is RI-free by construction. 
If for any such 5 (II.2) holds, then H G?+1 would extend h = H [ G, 
contradicting (II.3). 

Since (II.2) fails, for all a E S and all 11 < a there exists e E { 1, -1 } and 
a finite subset e of Afl,,5 such that H(Wa,n) = ev I for all Wa,n E W3[0] 
for suficiently large a < J. Now there is a cub C such that for all d E C, all 
e E {1, -1}, all ,B < 3, and all finite subsets e of Afl,j, if H(wa,n) :# eva n 
for uncountably many Wa, n E W[e], then H(wG, n) :A ev for Wa n E W3[0] 
with arbitrarily large a < 3 . Thus for all d E C n S and all ,B < , there exist 
e E {1, -1}, and a finite subset e of Afl,, such that H(wa,n) - ev1 _ for 
all Wa, n E W[0] with a > ae. Since C n S is uncountable, it follows easily 
that there exist e E { 1, -1 } and an uncountable set {I E: v < co } of pairwise 
disjoint finite antichains such that H(W, ,n) = ev I for all W,,n E W[Ezv 
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4394 P. C. EKLOF, MATTHEW FOREMAN, AND SAHARON SHELAH 

with a > a, for all v < col. Since T has no uncountable branches, by 
a standard argument (see, for example, [5, Lemma 24.2, p. 245]), there is a 
countably infinite subset {v, n E co} of col such that U{ev,% n E co} is an 
antichain. There exists a E Eo such that T(a) = (Ekn: n E co) and a > av" 
for all n. Now H [ GO+ is such that, for all n E co, H(wa,n) = eva n 
since Wa,n EWr W I1 [e0v; this contradicts (II.1), since EnE- Zva ,n is a direct 
summand of G and hence of G1 (by 2). 

(III) The next step is to describe in detail the recursive construction of the data 
satisfying the properties 1, 2, 3 and 4, as well as (11.1) and (II.3). So assume 
that we have defined GI and WJv[0] for v < a and fl for v + 1 < a. 

There are several cases to consider. 

Case 1: a is a limit ordinal. We let Ga = Uv<a G W, Wa[0] = Uv<a W8] . 
Clearly the desired properties are satisfied. 

If a is a successor, a = u + 1 , we will define G' so that 

(III.1) if B = {t: t <T 4u} and we define gB = U{ft?: t E B}, 
then gB (which is a function by 3) extends to an isomorphism, 
IP,?, of Go onto Gal which satisfies 4(c); i.e. for all v < i,u 
je{O,1},Jf(x0 j)=x j and if Wa,nEWVa [8] and EnI{v: 
V <_T ,ll :A 0 , then f.,?(Wa,,n) = Val n - 

Leaving the verification of (III. 1) to the next part, we will show how to define 
the data at a (except for the definition of the 7tr which we defer to part (V)). 

Case 2: ac = i + 1 for some i V E. As described above, define 

Gla = GI 3 Zx", e Zxl I 

Let Wa[9] = W[E] for every e ) ,u (= 0 if e is not a subset of ,u). 
Assuming (III.1), we have f? as desired. 

Case 3: ca = a + 1, where a E Eo. In this case, as stated before, 

Gla = G'a (1) @ ZU'a, n (1) ZV'a, n 
nEco 

and recall that Wa,n is defined to be 2uo? 1 -u n *Say T(a) = (E0a n E 0). 
Define 

e]0 |f Wa[E] U{Wa,n} ife=80n, 
WaL[0 Wa[E] otherwise. 

Assuming (III.1) (with a) = a), we can define fa ]. Now let us see why (II.1) 
holds. Suppose to the -contrary that there is an isomorphism H: GO 0 GI 
contradicting (1.1). Now @3nlEwta nv is a direct summand of G' and hence 
(by 2) a direct summand of G1. Thus H-1[@IlnEwZVa n] is a direct summand 
of GO. But by assumption on H, H-1[enEWZZva n] = $nEWZWG,n and the 
latter is not a direct summand of GO because the coset of u0 is a non-zero 
element of GO/ en fEW ZW, n which is divisible by all power of 2 by definition 
of the Wa, n - 

Case 4: ca = a + 1, where a e E1. If (11.2) fails, let G,,1 = G<I. Otherwise, 
let Pi be as in (II.2). We introduce some ad hoc notation. For any finite subset 

This content downloaded from 193.142.30.174 on Sat, 28 Jun 2014 10:35:28 AM
All use subject to JSTOR Terms and Conditions

Sh:520

http://www.jstor.org/page/info/about/policies/terms.jsp


ON INVARIANTS FOR co, -SEPARABLE GROUPS 4395 

e of Ap,q , let f{ be the function whose domain is the subgroup generated 
by {x ,u E, u < , j E {O, 1}} U W,3[8] such that -e(x? -) = x I and 
fe(Wa,n) = va n . Notice that, for all u E dom(f0) and all V E 8, if V <T P 
and u E dom(f), then fe(u) = fp(u) by 4(c). Let E)fl a be as before (finite 
subsets forming a chain whose union is Afl,q); for short, let en =E nfl' We 
claim that: 

(III.2) given m, m' E Z\{O}, n E co, y E G,, for arbitrar- 
ily large y < a there exists ko E dom(fen) n GO such that 
k? is pure-independent mod GO and is such that mh(kO) :# 
m'fen (kO)+y. Moreover, fn (k0) is pure-independent modGI 

Supposing this is true-we will prove it in part (IV)-let us define G,+,. 
Fix a ladder ? on 6. Also, enumerate in an co-sequence all triples (r, d, v) 
where r E co, d E Z\{O}, and g E G, so that the nth triple (r, d, g) satisfies 
n > r. By (III.2) we can inductively define primes Pn, ordinals Yn > ?,5(n), 
and elements k?,5 n E dom(fen) n GO +2 pure-independent over GO such that 
(if the nth triple is (r, d, g)) Pn does not divide mh(k0n) - m'fen(k0n)- y 
where 

n-I 
m= Pi, 

1=O 
n-I 

m= d JJ pi, 
i=r 

n-1 - n-1 - 
y =, E pi h(k,50 j)+g-dE tPi) {e, (k60? j). 

j=0 i=0 j=r i=r 

(Note that since G, is free, every non-zero element is divisible by only finitely 
many primes, so we can take Pn to be any sufficiently large prime.) Then we 
let GO,1 be generated by G,0 U {z:,: n E co} modulo the relations 

= + Pn Z,5,n+ I= Z,5,n + k,5? n 

and G+,1 is defined similarly, except that we impose the relations 

6, n+1 = Ze,n + fen (k<), n) 

We need to show that h does not extend to a homomorphism: G,+1 -_ G+ . 
If it does, then h(zo0 ) = dzr + g for some r E co, d E Z\{O}, and g E G6 . 
Let n be such that (r, d, g) is the nth triple in the list. Now, in G?+1 we 
have 

(Pi) zo = 
Z?' + E (Pi) k?0 = 

,n,l =+ 
i=O j=O i=O 

so, applying h, we conclude that Pn divides 

dz, r + g + Pi h (k5? j). 
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4396 P. C. EKLOF, MATTHEW FOREMAN, AND SAHARON SHELAH 

On the other hand, in GI1 we have p, divides 

dZc,r +dZ j) 
j=r .i=r 

so, subtracting, we obtain a contradiction since Pn divides 

mh(ko,) - m'Jf'o (ko? - 

where m, m', and y are as above. 
We let WJ'+VI[O] = WJ'V[O] for any subset e of d (and = 0 if e 6 a). By 

(III. 1) we can define I,',? . 
(IV) In this layer we will prove (III.1) and (III.2). 

First let us prove (III.2) since for the purposes of proving (III. 1) we will need 
more information about the nature of the elements k?n . Fix m, m', n, y, 
y as in (III.2); there are several cases. In the first two cases we can use any 
y < a . 

Case (i): y :? 0. If neither xo?+1 0 nor xo?+1 , will serve for k?, then xo?+1 , - 

x^?+l 1 will. 

Case (ii): y = 0, m :A ?m'. Let k? = xo Then by construction, k? 
generates a cyclic summand of Go; hence f0n(k0) and h(kO) both generate 
cyclic summands of G,. Hence mh(kO) 7 m'J (k0). 

Case (iii): y = 0, m = m'. Pick y = a sufficiently large so that there exists 
WI, j E GO n W6 [On I such that f{n (WI, j) :A h (w,, j) . If x0 1 0 will not serve 
for k? (i.e., h(x^?+1 O) = x +1 0), then we can take k? to be x + 

Case (iv): y = 0, m = -im'. Similarly k? can be taken to be of the form 
x?+I0 or x+ 0 - WI, j where fen (Wa, j) -h(ta,i). 

Now if we examine the construction in Case 4 of (III) and the proof above 
we see that 

(IV. 1) each k,0 n can be (and will be) taken to be of the form 
X i ? o6, n where E6, n is 0, Xao i or wa,j for some a, j. 

We will say that wI, j is a part of k,0 n in case 4a, n is WI,j 
Before beginning the proof of (III. 1), let us observe the following facts: 

(IV.2) Given a E Eo and N E co, there is an isomorphism 
g : DnEW1ZU3a,n @ ZVa ,n -_ enEw ZUa1n 3 ZVa n such that 
g'(w,"n) = VI for n < N and g'(u ) - u I for n > 
N+ 1. 

Indeed, we can define g'(uo ) - for n < N (and the other 
values appropriately). 

(IV.3) Given an isomorphism g: G,0 - G<, where a E E1, we 
can extend g to an isomorphism g' : G -,0+1 G,+ provided 
that (using the notation of Case 4) g(k50 n) = fn (k0 n) for 
almost all n E cO). 
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Indeed, if g(kJO) =f0q(kf n) for all n > N, we can define g'(zo I)=z,n 
for n > N and g'(ZOn) = Png-(Z 

0 n+l) g(k n) for n < N by "downward 
induction". We will apply (IV.3) to the situation of (III.1), with g = gB 
a = ,u, a + 1 = ac; if we are in Case 4, then the hypothesis on g in (IV.3) will 
hold if there exists t E B such that t > f, (where ,B is as in Case 4). 

We return to the notation of (III.1). Let T = sup{t + 1 : t E B}; then 
domgB = GO. Assume first that T = ,u. In case GI GI is free there is no 
problem extending gB; in the other case ,u = ( E E1 and by the remarks above 
we can extend gB since there exists t E B such that t > ,B (since sup B = d) . 

We are left with the case when T < ,. We will first define an extension of 
gB to a partial isomorphism gB whose domain is 

{x0 .:v< , I=O, 1} 
dom(gB) + Ulua EOu+ 1, n E 0) 

UlV an: U E Eo nu + 1, n E co} 

Notice that every k, for d < ,u, n E co belongs to the domain of gB. 

We let gB(xo? j) = x- j for all v, j. By enumerating in an co-sequence the set 

(Eo U El) n (,u + 1) we can define by recursion the values gB(U?an) and gB0(Va?) 

so that: 

* gB(Wa, n) = Va4,n whenever Wa, n E W+I [0] for some e with B n e 
0; 

* for all a E Eo with < a < ,u, for almost all n E cw, kB(u 0) u1 
and 

* for all d E E1 with T < a < ,u, for almost all n E co, if (for some 
a, m) wa,m is a part of k, n, then 4B(WG,m) = ,mv 

The first condition is required by 4(c). In view of (IV.2), there is no conflict 
between the first two conditions because, for any a E Eo, UnEW 017 is an 
antichain, so there is at most one n such that Enf n B # 0. 

To be sure that the third condition can indeed be satisfied, we need to con- 
sider the case that, for some a E El1, there are infinitely many n such that 
there exists wan, mn which is a part of k50, n and belongs to the domain of gB . 

Say this is the case for n belonging to the (infinite) set Y C co (for a fixed 
d). Then for each n E Y 3tn E B such that tn > an. Suppose that the con- 
struction of GI+1 uses Ap, = UnE. E'fl3 . Selecting one n* E Y, we see that, 

since eOP a C arn. , arn. > ,B and hence tn. E Ap,q . Therefore there exists M 
such that, for all n > M, E fl But then, for n E Y with n > M, 
tn > anD 2 en5, sO tn* < tn and thus tn* <T tn . By the construction in Case 4 
and by 4(c), gB(Wan,mn) = Van,m for n E Y, n > M. Moreover, there is no 
conflict between the last two conditions because, by construction, if a E E1 and 
a E Eo, then Wa,m E WJfV[0Efl ] if and only if Ofl,5 = 0am, but the elements of 
{0m: m E co} are disjoint and the Of a form a chain under C. 

It remains to extend gB to f? by defining fJ?(z. n) for T < d < ,u, n E c. 
This is possible by observation (IV.3) because of the construction of gB . 

(V) We will define the projections 7rt , by induction on ,u and then verify 
the conditions to be in standard form (see Section 1 or [2, Definition 1.9(ii), p. 
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257]). We refer to the cases of the construction in part (III). In Case 1, we take 
unions. In Case 2, for v < , + 1 we let rti + be the extension of 7rl which 
sends each xi . to 0. (Here, 7rl is the identity.) In Case 3, for v < a we 
let r1i be the extension of 7ra which sends each ul and each vn to 
0. 

Finally, for Case 4, we use the notation of that case. We define 7 +1(z? n) = 
- >jm dn, jkd,1k where m is maximal such that Ym + 2 < v and dn,i = pl i Pi 
(and dn,0 = 1). (Compare [2, pp. 249f].) The definition of 71 ,+1 is similar, 
replacing k,1 by fe,(kb0j). Let Y1 -zl n E co}. Then we can easily 
verify the conditions of [2, Definition 1.9(ii), p. 257] using the information in 
the proof of (III.2) about the form of k,,O1j. 

This completes the proof of Theorem 7. 

3 A NON-STRUCTURE THEOREM 

Our goal is to generalize the construction in the previous section to prove: 
Theorem 8. Assume O . There exists an R1-separable group GO andfor each 
bounded tree T1 an 1-separable group GT, which is T1 -equivalent to GO but 
not isomorphic to GO. Moreover, all the groups are of cardinality RI and in 
standard form. 
Proof. We assume familiarity with the previous proof and outline the modifi- 
cations, in layers of increasing detail. 
(VI) Fix a stationary subset E of col consisting of limit ordinals (> 0) and 
such that E is the disjoint union of two subsets Eo and E1 such that cardinality 
O (Eo) and 0 (E1) hold. (K0 (Eo) is not essential, but convenient.) 

We need only consider bounded trees T on coI such that if v <T g (in the 
tree ordering), then v < ,u (as ordinals). For each ( E E1 (resp. a E Eo), 
diamond will give us a "prediction" T3 = (d, <3) (resp. T,) of the restriction 
of a bounded tree to d (resp. a). If ,u < (, we write T3 r ,u for (,u, <3 
n(lU x A)) . 

By induction on d E {O} U E we will define the following data: 
1. continuous chains {G5 : v < ( + 1 } of countable free groups such that, 

for all v < , < (5+ 1, G5/G5 is free if v ? E1, and if v E E1, then 
G6+1/G5 has rank at most 1. 

2. projections 7z : G5 -- G5 for v < u< (5 + 1 and v E1 U {+ 1: 
a E Eo} such that: for v < < p, 5 C 7p; andfor6<v<,u, 
Zz ,v o Zz r,p 

3. for each d E E and each v < ( an isomorphism fv GO G6 
satisfying: 

if v1 < v2, thenfr Go+1=ft. 
Moreover, we require that if ( < (' are elements of E such that T,5 = T1 r (, 
then G = G' for v < a(+ 1; 7r5'1 = for v < ,u< + 51; and f3 =-f 
for v <(5. 

Define GO = Uv,,, GO and for each bounded tree T on coI let GT = U- G: 
T, = T r,v < + 1}. As before, given T1 we can choose T so that GO and 
GT are T1 -equivalent. 
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We indicate how to modify the previous construction so that GO and GT 
are not isomorphic. Our construction will be such that when a = ,u + 1 where 
, E, then 

( * ) G> = G,,G 3 Zxo 0 3Zx,I 

and 

for rVeE, a<6. When a=a+1 where aeE0,then 

(***) ~~~~Go %-?3i3,5 n2a, n 
nEco 

and 

**** ) ~~~G6 G6 d33ZU', n (1) ZVa', n 
nEwo 

for a5EE, a<ca. 
We define 

Wa, n = -a, n+ -Ua,na 

In order to carry out the inductive construction we will define in addition: 
4. for d E E and a < d + 1, subsets W? [0] of G? for every nonempty 

finite subset e of a which is an antichain in T7', satisfying: 
(a) for all a < ,B, 8[] c WJ[8]; 
(b) every element of WJ'K [8] is of the form Wa, n for some n E co 

and some a E Eo such that T7' r a = Ta . 
The function fa will be required to satisfy (as before): 

(c) for all ,u< a , i E {0, 1}, fa(x? ) = I ; moreover if Wa,n E 
WJ'JL[0] and 0n {v: v <,? al} $ 0, then f(wa,n) = VI n 

Moreover, in order to carry out the inductive construction we will also require 
the following for all a E E , a < 6: 

(d) if aeEo with a<ca+1 and T, ra$Ta,then f(uoa n)=ua n 
forall neCO; 

(e) for all pairs PIi, P2 with sup{t: t <a a} < PI < P2 < ?, it is the 
case for almost all n E co that for all Wa,m E WV [E/31 P2] we 
have fga (Wa, m) = ?a m . 

(The notation 0fl' 2 is defined before (11.2).) 
0 (Eo) gives us for each a E Eo a "prediction" T(a) = (0e7 n E cl) of an 

co-sequence of finite subsets of Ta such that UnEEw 07n is an antichain in Ta. 
The proof that GO and GT are not isomorphic will then work as before. 

(VII) The next step is to describe in detail the inductive construction of the 
data satisfying the properties given above. Our construction is by induction on 
the elements of E. At stage a E E we will define G? and Ga for any a < a +1 
for which they are not already defined. We will have already defined GO for 
v < SUp{c' + 1: 5' E E, d' < 6}. By following the prescriptions in (*) and 
(***), we can assume that GO is defined for all v < 5. 
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Let y = sup{c5'+ 1: J' E En a, Tj J' = Tat5} . Then we need to define Ga 
for y < a < a + 1. We need to do this in such a way that we are able to define 
the partial isomorphisms fa . We shall leave the details of the latter to the next 
section and describe the construction of the groups here. There are two cases 
to consider. 
Case 1: y = a E E. Then G, is already defined. If d5 E Eo, follow the 
prescription in (***) and (****). If 5 E E1, O (E1) gives us an isomorphism 
h G: (- G(; the construction of Gt+1 and G5 is essentially the same as 
in the previous theorem (Case 4 of (III)); in particular, if (II.2) holds, we use 
an antichain A35 = {t: t is <a-minimal in (\fl}; G<,+, is generated by 
GOU {z? : n E co} subject to relations p,zO n+l = z,4 + k,,O? n (which keep 
h from extending) and G+71 is generated by G<, U { Iz : n E co} subject to 
relations Pn Z,6 n+ l= Z (where k0' = fen (kn)) 

For the purpose of later stages of the construction we also define, for any 
J5 > d such that (51 E E and T,5, r d 7 T3, elements kA'n EGg'. We know that 
kn hasthe form x? + O, where 6, n is either 0, xo? or wa,j forsome 
a, j (cf. (IV.1)). In case 4,n is 0,letk3' = j ;in case 4, = X , let 3',n n ia,] 
ic1' X nx1 Finally, if 6, n = w.,j, let x l n i n where 

,,J [wl, if Ta# a To, 
j= va1 if T3, 1a =T, 

and wl 2ul - ul . We will be able to show (in the next section) the 
following: 

(VII. 1) for any branch B in Tj, 1 d with a = sup{t+ 1: t E B}, 
gB= U{f a E B} is such that, for almost all n, gB(k,fj ) = 
k,6 
6,na 

(This is evidence of what, in view of (IV.3), will enable us to extend functions.) 
Case 2: y < J. We need to define Ga for y + I < a < 5 + 1 by induction on 
a. If we have defined Ga for a < p <5 , and p does not belong to E1, we 
follow the prescription in (**) or (****). If p E E1, then Tj [ p =# Tp (by 
definition of y). By induction GO is constructed as in Case l and we have 
kp0 nas there (with 5 playing the role of (1 and p playing the role of 5). 
In particular, GO is generated by GO U {zp n E co} subject to relations p+1P P 

Pnp ZO = Zo +k0 .Wedefine G6 to be generated by Gu{z : n E c} pn p,n p+U1", 
subject to relations PnZp n+1 = Zp + k1c . Finally, we define G31 as in Case 
1. 

The definition of the Wa[E] will be as in (III); specifically, WI1'[9] = 

Wa[9] unless a = c E Eo, T77 a = T, and E = 917 for some n, in which 
case Wa 1I [e] = Wa? [9] U {Wa, n I 
(VIII) We have defined the groups and the sets W5 [9]; the last step is to show 
that the partial isomorphisms fv can be defined satisfying the conditions in 4. 

First let us verify (VII.1). Let J and J, be as in Case 1 of (VII) and 
suppose B is a branch in Ta5 [ J with J = sup{t + 1: t E B}. Then gB is an 
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isomorphism: GO -- G5' and we want to show that gB(kO ) = k'5 for almost 6 6 6,n "6~~~~~~~~, n 
all n. Recall that kn has the form xo ? n where ,n is either 0, 
xo j , or wa, j for some a, j; the only case we need to worry about is when 

n = War,j. 
Let u = sup{a < 3: T,7 7 a = T35 [ a}; so ,u < 3 and Ga' = Ga for 

a < u. Suppose that GT+1 and Gt+1 are defined using A6 O= Unw9@4" as 
in Case 1 of (VII) and Case 4 of (III). We consider several cases. First, suppose 
that there exists t E A'5 with t > ,u. Then for almost all n, t E 0n6` fl,3 
and thus if wa,j E W[E@fl"5 ], then a > t > Iu; hence T77 [ a 54 T5 [ a 
and it follows from 4(d) that gB(k0 n) = . If this case does not hold, 
then A53 c C so A, =A'5 A is an antichain in T3,u TK T K,u. If 
there exists t E B with ,< < t < ,u, then there exists t E B with t E A'5 

and hence t E '3 a for almost all n; it follows easily that, for almost all 
n, gB(k,n) = k3' n (considering separately the cases when a < u and a > ,i) . 
In the remaining case, if a = inf{t e B: t > l}, then a > , so we have 
sup{t: t <31 a} < ,B < , < a and we have the desired conclusion by 4(e)- 
again distinguishing between the cases when a < , and a > Pu. This completes 
the proof of (VII. 1). 

Now we need to verify the analog of (111. 1). Letting 3 and y be as in (VII), 
we need to define fa for y < a < 3. Fix a and let B = {t < y: t <,5 a} and 
9B = Uftt: t E B}. We can suppose that a is <3-minimal among elements 
of {16:y<?1<a}. 

We will first define an extension of gB to a partial isomorphism gB whose 
domain is 

Ix?, j : V < a,j O , 1 } 

dom(gB) +( U{ua:aE EOEn(a+1),nEC}) . 

U{va? :aE Eofn(a+l),nEw0} 

Using an enumeration in an w-sequence of Yo U Y1 where 

YO = {a E Eo supB < a <y and T,a [= Ta} 

and 
YI = {(fhl, ,62): supB < /Ih < /32 < a} 

we can define gB such that 
(c') for all v < a, j E {0, 1}, kB(X 0, j) = x,1 ; moreover, if Wa,n E 

W^ 8I [0] and E n B 54 0, then B(Wa, n) =V, n; 

(d') if aEEofna+2,then gB(uo I )=ul for almost all n,andif 

Tj r a :$ Ta, then kB(uo n) Itn for all n; and 
(e') for all pairs flu, f32 with supB < f,l < l2 ?O a, it is the case 

for almost all n E cO that for all WU,m E WJ [0n1 fli2]] we have 
gB(Wa, m) = Va1 m . 

Now 4B(kp? n) is defined for all p E E1 with p < a. We need to define 
fg(Z n) for all such p > sup B. In view of (IV.3), we can do this provided 
that g(kp ) - k, n for almost all n E cv. We consider separately the cases: 
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T1 r p = Tp7; and T1 r p $ Tp7. The first case is as in (IV); the last is as in the 
proof of (VII. 1) (with a playing the role of c15, p playing the role of 5 and 
using (d') and (e')). 

This completes the proof of Theorem 8. 
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