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Abstract. The oracle c.c.c. is closely related to Cohen forcing. During
an iteration we can “omit a type”; i.e. preserve “the intersection of a
given family of Borel sets of reals is empty” provided that Cohen forcing
satisfies it. We generalize this to other cases. In Section 1 we replace
Cohen by “nicely” definable c.c.c., do the parallel of the oracle c.c.c.
and end with a criterion for extracting a subforcing (not a complete
subforcing, <!) of a given nicely one and satisfying the oracle.

0. Introduction

This answers a question from [2, Chapter IV] (the chapter dealing with
the oracle c.c.c.) asking to replace Cohen by e.g. random. Later we will
deal with the parallel for oracle proper and for the case ¢, is a (definition of
a) nep forcing. An application will appear in a work with T. Bartoszynski.

How do we use this framework? We start with a universe satisfying ¢,
and probably 28 = Ry and choose (SF:i < wg), SF C 8" C wp such that
S¥ /Dy, is strictly increasing and for every i < wa, Sz \Ss holds and for
simplicity S; C S;; where Dy, is the club filter on w;. We choose by
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induction on i < ws, a c.c.c. forcing P; of cardinality Ny, a sequence M’ =
(M!: a € SF) of countable models C (H(X;), €) of some version of ZFC,
without loss of generality transitive and a 1-commitment mainly connected
to a P;-name 1%, which is, e.g. random over M} (and the commitment is that
if, 7 > 1, IP’; = P;/IP; is represented such that it has set of elements C wy,
G C IP’;- is generic over V¥i_ then for a club of a € S;, V¢, € Vi is random
also over M [G] which naturally is M![G N a]). They are increasing in the
relevant sense and the work at limit stages is done by the general claims
here. In stage i, by bookkeeping we are given a task connected with a IP;-
name X; we have some freedom in choosing P;y1, usually P;11 = P; * Q.
So, working in Vi, ; has to satisfy a 0-commitment on S}, and we like it
to satisfy that task, usually connected with X; C RVl say X; = X; [Gp,].
We essentially have to choose M'™! such that M'™! | S* = M but we
have freedom (in addition to choosing Q;) to choose (M}t: a € Sf1\S;)
and a 0-commitment on S; ;\S;. Also the reals generic for the chosen
forcing notion (for o € Sf1) as well as M. for o € Sf;\S; can be
chosen considering X;. E.g. Mi*! can be the Mostowski Collapse of some
M < (H(Rg), €) to which P;, M* and X; belong.

Really this corresponds to the omitting type as in [1, XI|. This was orig-
inally part of [4], particularly close to faking.

1. Non-Cohen oracle c.c.c.

Hypothesis 1.1.

(a) We assume CH, moreover {g- where S* C {0 < w;: J limit} is sta-
tionary.

Definition/Notation 1.2. 1) M denotes an oracle, i.e., a sequence of the
form (Ms: 6 € S), M; a transitive countable model of ZFC; satisfying
0 C My and S C S* is stationary satisfying: for every X C wj, the set
{6 € S*: XN € Ms} is stationary.

2) D denotes a normal filter on w; usually extending D;; which is defined
in 1.3(1) below (of course, the default value is Dy, see 1.4(1)).

3) For a countable forcing P, a wide P-name is a Borel function giving for
every directed G C P an object (so if P <;. P’ then any wide P-name is still
a wide P’-name hence a P’-name).

We first give the old definitions from [3, IV]
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Definition 1.3. 1) Dy; is

{X Cwy: for some Y Cw; we have: § € Sy N X =Y Né e Ms}.

2) A forcing notion P of cardinality < ¥y satisfies the (M, D)-c.c. if for some
(equivalently any) one to one f: P — w; the set:

{6€Sy:if X € Myand {y €P: f(y) <dand f(y) € X}
is predense in P | {y € P: f(y) < 0} then X is predense in P}

belongs to D and P has minimal element (p.

3) If D = Dy; we may write “M-c.c.”. Recall that D = {4 Cw;: wi\A ¢
D}.

4) Let M' < M? if M* = (M}: § € S;) and {0: 5 € S1\Sz or 6 € S1 N
So and M 51 #* M 52} is not stationary; let M' <p M? be defined similarly
(i.e. the set is = () mod D).

5) A forcing notion P satisfies the (M,D)-c.c. if: |P| < Rg or for every
X C P of cardinality Ny there is Py < P of cardinality Ny which includes
X and satisfies the (M, D)-c.c.

Fact 1.4. 1) Dy; is a normal filter on wy.

2) The M-c.c. implies the c.c.c., and if Dy; € D (or just there is a normal
filter D' O Dy; U D) then the (M, D)-c.c.c. implies the c.c.c. and if Dy D
D) D Dy; are normal filters, then the (M, D;)-c.c. implies the (M, Dsy)-c.c.
3) We can find (S&“: ¢ < wo) such that S¢C 8%, (<&= 5 C 5 mod Dy,
SZ - SZH and SZH\SZ € D;\%, moreover SZH\SE is countable.

4) If M* < M? and the forcing notion Py satisfies the (M?,D)-c.c. and
Py < Py, then Py satisfies the (M, D)-c.c.

Proof. See [3, IV], but for the reader’s convenience we prove part (4).

Without loss of generality P2 has cardinality X; and even set of elements

wi. As Py < Py there is a function f: Ps — Py such that

(*)1 ¢ € P2 A f(q) <p, p € P1 = p, q are compatible in Ps.

Let g: Py x Py — Py be such that

(%)2 if p,q € Py are compatible then g(p, q) is a common upper bound and
p.q €P1=g(p,q) € P1.

So there is a club E of wy; which is closed under f, g so

(x)3if 6 € ENS, Z CP; N is predense in Py | § then 7 is predense in
Py | 6.
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[Why? If ¢ € PaNJ then f(gq) € P1Nd so by the assumption on Z, f(q)
is compatible with some 1 € Z € Py N 4, so there is ro € Py [ § above
q and 73. By the definition of f the conditions r2, ¢ are compatible in
Py hence g(rg,q) is a common upper bound of them in Py [ §.] [j4

Remark 1.5. 1) Note that below when P?< is the older case ([3, IV]) we
just preserve every predense set, so in M, (in the based obeyed) the forcing
is countable.

2) We may forget to mention this case as it is by now easy.

Definition 1.6. 1) We say JV = (5,®,7,v) = (8Y, <I>y,7jy, 7Y) is a 0-
commitment for M if for some E € Dy;:
(a) SQS*,SED;\FZ
(b) n={(n,a€S), ®=(Pa: a€S)andifa € SN E then
Po € M, and
M, = “pq is an absolute definition of a c.c.c. forcing notion called
Qo = Q% with generic real ga”; note, absolute here means that forcing
extensions of M, preserve predensity of countable sets (in the sense
of M) order and incompatibility
(¢) 7 = (Vo: a € S) where v, € “w and for every o € SN E the real v, is
(Qa, 1, )-generic over M.

We ignore M if clear from the context. We can replace M by (M, D) if
above E € D, S € D*.
1A) A forcing notion P of cardinalit_y < Ny satisfies the O-commitment ) =
(8Y, @y,ﬁy,ﬂy) for an Nj-oracle M (we may suppress) if: P is a forcing
notion and for any one-to-one mapping h: P — w; for some E € Dy; we
have
(d) if @« € SN E then Ikp “the real vy is a (Qa,7 )-generic real over
My[anh"Gp)”
(e) [the old case]: if « € SNE even when Q,, is a singleton (hence v, € M,,
a degenerated case), then every predense subset Z of {p € P: h(p) < a}
for which {h(p): p € T} € M, is a predense subset of P.

2) Let P € H(N2) be an M-c.c. forcing notion. We say that J =
(S,gf),f],?) = (Sy,g[)y,ﬁy,?y) is a 1-commitment on P for M if: for any
N satisfying (x); below, the clauses (a)-(d) of (x)2 below hold

(

)1 N = (Ny: a < wi) is increasing continuous, N, < (H(R3), €) is count-
able, N | (a+1) € Nay1 and {M,P} C | J N,

a<wi

(x)2 (a) SC Dom(M)C S* S¢c DJ'E[
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(b)ﬁ—(ya:a65> = (g, a € S)so (g, .n,)is aP-name of a
pair as in 1.6(1)(a), both are hereditarily countable over P

(¢) 7 = (vy: a € S) and v, a P-name of a real given by countably
many conditions

(d) the set of the a € S satisfying the following belongs to (Dy; +
S)*: @, € My, Mos Coly, (Nq) € My, and letting

P/, = Mos Coly, (PN € M,
we have M, | “¢ is a wide P, -name of an absolute definition
of a c.c.c. forcmg with generic real 7,” and IFp “the real v, is a
(Qge . )-generic real over Mq[Gp]”.
For simplicity the reader may concentrate on the case ((pa,7,_): €« €S)€V.
3) Let
IS = {(P,Y,M): P € H(Xy) is an M-c.c. forcing notion and Y
is a 1-commitment on P}.
We shall omit M if clear from the context. We can replace M by (M, D)-
naturally and write ISp, but the claims are the same.
4) For QIPZ,)?Z,ME) € IS (¢ =1,2) let (P, V', M") <* (P2,)?%, M?) means
M"' < M?, P! < P? and for some E € Dy we have
SMNECS”NE, @3’1 (SN E) =0 [ (SYNE),
7 (S NE) =7 1 (SY NE)and 2 | (Y NE) =0 1 (S NE).
We call E a witness to (P, Y1, M) <* (P2, )2, M?).

We point out the connection between 0-commitment and 1-commitment.

Fact 1.7. 1) If Y is a 1-commitment on P and P an M-c.c. forcing notion
of cardinality < ¥y, then IFp “V[Gp] = (S¥, ®Y[Gp], 77 [Gpl, 7[Gp]) is a
0-commitment” so we call it Y[Gp]. Note 7,[Gp] is still a name.

2) If P = {0} (the trivial forcing) then: Y is a 1-commitment on P iff ) is
a 0-commitment.

3) If (M*: i < ¢) is <-increasing, { < wp and Dom(M")\S is not stationary
for i < ¢, then there is M, Dom(M) = S such that i < ( = M* < M.

4) Increasing M preserves everything.
5) If a forcing notion P satisfies the 0-commitment ) for the R;-oracle M

and §' = {§ € SY: Qf“[y] is a singleton (i.e., 4 of the old case for )} and
S" # () mod Dj; then

(a) P satisfies the M-c.c.
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(b) if S” C 8" and S” # 0 mod Dy; and Ms E “Xs5 C “2 is not meagre”
for every 6 € S” then U X5 is not meagre in V[P].
6es”

As a warm-up (see [4] for more)

Claim 1.8. 1) Assume
(a) M is a countable transitive model of ZFC~, M = “P; is a countable
forcing notion”
(b) M = “p is an absolute definition of c.c.c. forcing notion Q¥ with
generic 1: a3 — Q2 7 and o, g < w
(c) v is (M,Q¥)-generic sequence, i.e., there is G C (Q?)M generic over
M such that v = n[G].

Then we can find a countable Py such that
() Py Cie Py and every J € M which is predense in Py is predense in Py
(B) Ikp, “vis (M', Q%) -generic sequence where M' = M[Gp, NTP1]”.

2) Similarly for ¢ defining a nep forcing.

Proof. 1) In M we can define P* = Pl*(@sD)M[QPJ, now as Q¥ is absolutely
c.c.c., we know that ¢ — (),q) is a complete embedding of (Q¥)M into
Pt. So if G. C (Q¥)M is generic over M such that v = n[G] then let

P; = {(p,q) € Py * (Q‘P)M[GPJ: (p,q) is compatible with (0, ¢’) for every
q € G.}. Now check.
2) See [4]. Uis

Crucial Claim 1.9. In IS, any <*-increasing w-chain has an upper
bound.

Remark. 1) The w-limit is the crucial one not the w;-limit? Actually for
w1-limit we take the union and we preserve what we need by using the
square (and having done something toward it in earlier limits or stages of
cofinality o).

2) When is the union not an upper bound? If, e.g., for each a € S’ C SV
the forcing note gz%} is random real forcing we have in particular to preserve
{Va: a € §'} is non-null, but the union normally adds a Cohen.

Proof. So assume (P",)", M") € IS and (P",Y", M™) <* (Prti, yntt
M"Y for n < w, let M be such that M > M™" for each n; so let E, €
Dy witness both. For simplicity assume that above any p € P" there
are two incompatible elements, and 0 € P° is minimal in all P*, ie. is
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(p,. Without loss of generality the set of elements of P" is C w; and
w1\ U, <, P" has cardinality ®; and let X* be such that | J,, ., P, € X* C wy
and [X*\ U, <, P"| = Ny; this notation helps in a future use, also there we
replace w by a (countable) ordinal of cofinality Ry. We can define functions
Fo, Fom, Fome (Wwhen n < m < w,? < w) such that
(a), if p,q € P, are compatible then F,(p,q) € P, is a common upper
bound
(b)n,m if n < m and p € Pp,, then (F, ., ¢(p): £ < w) is a maximal antichain
of PP,,, such that for each ¢:
either p, F, mm.¢(p) are incompatible (in Py, )
or p is compatible in P, with every ¢ € P, which is above F}, , ¢(p)
(Onm if n <m, p€Pp, g€ P, then p < F,,,,(p,q) € Py, and if there is r
such that ¢ <p, r and r,p are incompatible in P, then p, F}, n(p, q)
are incompatible in P,,.
Let E be a club of wy, such that 6 € E = ¢ is closed under F},, I, yn, Fym ¢
and
otp(X*nd\ | JP") = 4.
n<w
We would like to define a forcing notion P¥ with universe X*, and 1-
commitment V¥, and functions F,, F, ¢ satisfying the natural require-
ments. First, let

E,=()E.NnES" =] nE,,
n<w nw
w . w w wN . _yn(a) n (o) n (o)
and for o € SY* the trlfle (%Jff 7173; YY) s (3025 ,172!) ,vY"") where
n(a) = Min{n: a € SV"}.

Defining Py, F,, F}, ., ¢ is harder, so we first define AP, a set of approx-
imations to it. A member t of AP has the form (6', P, F}, F)  ,,T")¢<y
satisfying

(a) &' € E,
(B) P! is a forcing notion with set of elements C X* N §* and D §' N UIP’n

n

and 0 <p: p for every p € P!
(v) PYT (PP N6Y) =P [ (PN
(8) if p,q € P! are compatible in P! then F!(p,q) is such an upper bound
(e) if p € P\, n < w then (F)  ,(p): £ <w) is a maximal antichain of IP,,
the members are < §%, and for each ¢, either p, Fﬁ’w’e(p) are incompat-
ible in P or (Vg € P,Nd) (P, = “F,u0(p) < ¢ = p, q are compatible
in P*) and for at least one £ the second case occurs



Sh:669

8 S. SHELAH

(Q) it pe PP NP\ | Pe then FY , ,(p) = From.e(p)
<m

(n) T is a sequence <]§é: ¢ <Y, ¢t <wy and ﬁz is a sequence of length w
of members of P! which form a maximal antichain (of PY)

0) ifpePlandn<m <wandr € P, ﬂ5t and [r <71’ € P,Nd" = 1/, p are
compatible in P*], then the set {F", we(p)t £ <w and p is compatible
with Ft (p) in P!} satisfies: if r < ¢ € P,, then in P,,, ¢ is compatible

m,w f
with some member of this set

(1) if ¢ < ¢t and n < w then:
{ nwz(pzk) k<w, { <wand pC s nwe(pé’k) are compatible in P'}
is a predense subset of P,. Note that trivially this subset is predense
in P,, N 6*; similarly in clause (k)
Moreover,
(k) if p* € P! and n < w and ¢ < ¢! then
It7n7p* =: {7“’ eP,Né": (i) +,p* incompatible in P* or
(ii) for some k < w and p’ we have
(vr//) [7,,/ S 7,,// c Pn m 5t N {r//’p/}
has an upper bound in IP’t] and
p* <pe ', Pl e '}

is predense in P,,.

* * *

We define the (natural) partial order <* on AP: for t,s € AP as follows;
we let t <* s iff:

(i) 6' <68
(ii) Pt C P*
(iii) F, C F?
(ZU) an—Friwé
)

(v) T is an initial segment of I'.

Fact A. AP # 0.

Proof. Easy: choose § € F, let
Pt = ( U Pn) r 57 Fw(pa Q) = Fn(p,q)(p> Q)

n<w

where n(p,q) = Min{n: p € P,, and ¢ € P, }.
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Forn <w,peP'nédlet (Ff ,(p): £ <w)be (F,me(p): £ <w) for the
first m > n such that p € Pp,.
Lastly, I' = empty sequence.

Fact B. If t € AP and §' < § € E, then there is s satisfying ¢t <* s € AP
with §° > §,¢5 = ¢t

Proof. Without loss of generality ¢, (P" [ §: n < w), X* N ¢ belongs to M;
and 0 € EN(),«, En and X*N6\ U, ., Pr\d" is infinite and even has order
type 6. [Why? As 0 ¢ D;; and we can increase d.] So (for the last phrase
see the proof of 1.4(4))

(x) any J € Ms which is a predense subset of P, | 0 is a predense subset

of Ppbandn<m="DP, [0 <Py [J.

Let A=P C X*Nét, B = Un<o P" N 6. We define a forcing notion @Q,
with set of elements C A x B identifying (p,0) with p and (0,¢q) with gq.
Now (p,q) € A x B belongs to Q iff: p =0 or ¢ =0 or there are r € ANB
and n = n(p,q) such that: P, = “r < ¢”, and (V') [r <+’ € P, NS — 1/,
p compatible in P!]; we call such 7 a witness and n a possible value for
n(p,q). The order on Q is

(pg) <(,q) & p<pp and \/q<p, d.

n

Now note
() Q] A=P"
B) QIB=JPuls.

nw

(v) If (p,q) € Q, m =n(p,q) and g € Py, [ 0 and Py, [ 6 = “qg < ¢'” and
P |= “p < p”, then (p',¢') € Q and Q  “(p,q) < (p,¢)"-

(0) If (p,q) € Q and n = n(p,q) < m < w, then for some ¢; we have:
(p,q) < (p,q1) € Q and n(p,q1) = m, or at least m is a possible value
for n(p, q1)-

[Why? Let r € Py, ;) be a witness in particular r is compatible with p
in P;. By clause (6) of the Definition of AP the set J = {F:n,w,é(p) <
w and p is compatible with Fqﬁl’wl(p) in P!} is predense above r in
Pp. Pp, = r < g hence P,,, = r < ¢ so for some ¢, Fﬁl’w’e(p) e Jis
compatible with ¢ in P, so there is ¢; € P,;,Nd such that P, =g < 1A

Fﬁ%wx(p) < q. So (p,q1) € Q as witnessed by m and ' = an,w,ﬁ(p)’

is as required.]

(e) Pr ] 0<Q.
[Why? Let (p°,¢°) € Q, of course, we can replace this pair by any
larger one, so by clause (0) above without loss of generality some m €
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[n,w), is a possible value for n(p°, ¢°) so we have ¢° € P,, | , hence
recalling that P, [ § <P, | 6 there is ¢* € P,, | § such that:

(Vr € P,)(P, | 6 = ¢! <7 = r,¢° compatible in P, | §).

Assume ¢! <r € P, [ §. So r,¢" are compatible in IP,,, | § hence has
a common upper bound ¢> € P,, | 6.
In particular ¢° < ¢ € P,,, | § so by clause (7) we have (p°,¢?) € Q
and (p°,¢°) <9 (p°,¢?); also r = (0,7) < (p°, ¢?) as r < ¢? together 7,
(p°, ¢°) are compatible in Q, so [¢' <r € P, [ n = (p°,¢°), r = (0,7)
are compatible in Q]. As (p°,¢°) € Q was arbitrary we are done.]
(¢) If p1,p2 € P! are incompatible in P! then they are incompatible in Q.
[Why? Look at the order of Q).
(n) If ¢ < ¢ then ﬁé is a maximal antichain in Q.
[Why? If not some (p*, ¢*) € Q is incompatible in Q with every (p’é )
for k < w. Let n < w be a possible value of n(p*,¢*) so ¢* € P,, | §
and there is a witness r* < ¢*,7* € P,, | 6¢ for (p*,¢*) € Q.
By clause (k) in the definition of ¢ € AP we know that for some
r € P, N 6" we have:
(1) re ZZ%p*
(7i) ¢*,r are compatible in PP, .
As ¢*,r are compatible and r* < ¢* also r*,r are compatible in [P,
hence in P,, N &, so by the demand on r*, we have: r, p* are compatible
in P*. So in clause () of the definition of AP, in the definition of Z¢ , .
for our r subclause (7) fails hence subclause (i7) holds so there are k, p’
as in subclause (ii) there. Also let ¢! € P, | § be a common upper
bound of ¢*,7. So r witness that (p/,q!) € Q with n a possible value
of n(p/,q'). Clearly it is above (p*, ¢*) and above pé’k so we are done.]
Let 0° = 0. Clearly Q € Ms and M;s = “|Qs| < |0]” so, as X*Né\,, Pr has
order type 6 and P! is bounded in it, there is f € Ms such that f: Q — X*NJ
is a one to one (into or even onto), extending id4 U idp, and define P* such
that f is an isomorphism from Q onto P°. We can define F3, F} (n,l < w)
extending F£7Fi,w7£ as required, e.g., Fnﬂw?z((p, q)) = Frim,ﬁ(q) for some
m > n such that ¢ € P, except when ¢ = 0 then Fj; ,((p,0)) = F} , ,(p).
Now it is easy to check clause (#) of the definition of s € AP, recalling
() above and clauses (i), (k) holds since the construction is made in Ms;.
Lastly, let I'¢ = I't.

Fact C. If t" € AP and t" <* t"T! for n < w then there is ¢ such that
n<w=t"<*te AP and §' =, 6" and ¢* =, """

[Why? Just let 6%, ¢* be as above, P' =, _ P, Fl =, ., Fi", F!, ,, =
Un<w Fﬁ;w’g and p’é}k = pgjk for every n large enough. Now check.]

n<w
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Main Fact D. Assume t € AP, §' € EN(),., En, t € Ms and ¢ := ¢' €
Un<w SYn. Then there is s € AP such that ¢ <* s and vs is actually a

P%-name (i.e. all the countably many conditions appearing in its definition
belongs to |J,,., Pm N d° C P*) and:

(x) if P5 G, Q, and for each ¢ < ¢* the sequence p¢ is a maximal antichain

n<w

of Q, then
II—Q “there is G’ C @M‘S[ ] generic over M;[G] such that (1[G])[G'] =
vs”.

[Why? Chase arrows so similar to the proof of 1.8 (1) (and we use clause
(cv) there for clause (e) of Definition 1.6 (1A)).]

Fact E. If in Main Fact D, Qs is a singleton (hence vs € Mjs so the main
fact is trivial) then there is s € AP such that ¢ <* s and p € M; is an
w-sequence listing a predense subset of P! then p appears in the sequence
It.

[Why? Easy.]

So we can choose t. € AP by induction on € < w; such that ¢ is <*-
increasing continuous, s > oY, and if ¢ € M st5y, 5t e Mheow EnNEN
Un<w S¥n then t°*! is gotten by Fact D. No problem to carry this (¢ = 0
by Fact A, ¢ =1 4+ 1 by Fact D if possible and by Fact B if not; lastly, if ¢
is a limit ordinal, use Fact C).

Now let P = (J._,, P¥ and it should be clear how to define }*; now
check the requirements. U

Definition 1.10. Let C* = (C5: § < wp a limit ordinal) (and C}, = 0
otherwise) be a square sequence and X* = (X: i < wp) be an increasing
sequence of subsets of wq,

xAUxpl=x, x5 = | X7

1<t <wi

We say that (P, Vs, fi, M;): i < a) is a (C* ) 2 X*)-iteration (we omit M’
and write (M, C*, X*)-iteration if i < o = M" < M or an M-iteration
when C*, X are clear from context) if:

(a) (P;, Vi, M?) € IS is <*-increasing and Dom(M?) = SV
(b) f; is a one to one function from P; onto XJip(csy» and let (PL, V) be
such that f; maps (P;,);) to (P, V)
(c) if j € acc(C;) then f; C f;
(d) if cf(i) = R and i = supacc(C]) then (P},)!) is gotten from
(P}, Y}): j € ace(Cy)) as in the proof of 1.9 (using (X7 j € acc(CY)),
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X;‘tp(ci*) instead of (X,,: n < w), X,, so acc(C}) replace w and we gen-
erate (t!,: o < wy) and by it define (P}, Y!) hence (P;, V;))

(e) in clause (d), assume 0 = otp(C}), (P}, V) [ d: j € acc(C})) € M;s
and for j; < jo from acc(C}) the ordinal § belongs to the club
{a < wy: a limit closed under the functions F7* and ngl’jQ (see clause

(f) below)} and 55 = 6. Let tt € AP be defined by 8% = otp(Cy),
P = U[P, | §:j € ace(C))}, Fif = U{FI | &y, € ace(CP)},
F;iwj = U{Fgl’j2 : J2 € acc(C))\j1} and let ' be empty. If ti € M
then let tf, be gotten from ¢! as in Fact D.
(f) F7 is a (partial) two-place function from X;‘tp(c;
Fi(p,q) is the <-first common upper bound of p and ¢ in IP’; and if

) to itself such that

j1 € acc(C},) then we have (FI%72(p): n < w) is a maximal antichain
of P, satisfying: for each n, either F3'”*(p) is incompatible with p in

P’, or p is compatible with 7 in P, wherever P, = Fip"?(p) <.

Claim 1.11 (iteration at limit). 1) Assume ((P;,V;, fi) @ i < () is a
(M, C*, X*)-iteration where ( < wa is a limit ordinal. Then
(a) we can find (Pe, Ve, f¢) such that (P, Vi, fi) : i < (+ 1) is an M-
iteration
(b) if SC S*, i< (= S8V CS mod Dy, then we can demand S¥¢ = S.

Proof. If cf({) = Ny we use 1.9 but taking care of clause (e), this just
dictates to us how to start the induction there. If cf({) = N;, then by
the square bookkeeping (see clause (e) in Definition 1.10) our work is done

(using fe = U{fe: £ € acc(Cy)}). 0411

Claim 1.12. 1) Assume
(a) Y = (S,®,7,7) is a 1-commitment on the forcing notion P € H(Ry)

for M
(b) Gp C P is generic over V, 1° = (10: a € S) where V0 = v,[Gp],
M*' = M[Gp] = (Ms[f"(Gp)]: 6 € S*) for some one to one function f
from P into wy
(c) in V[Gp], V' = (S, @, 7', 7') is a 0-commitment,
S € ' mod Dy, 11 (SNSYH) =@ [ (SN S),
7' (SNS)=71(SNSy), 7' [(SNS) =21 (SNS1) and
(sL, ety eV
(d) in 1V[GPL Q is a forcing notion satisfying the 0-commitment Y for
M-+,



Sh:669

NON-COHEN ORACLE C.C.C. 13

Then for some P-name Q and 1-commitment V? we have:
(a) (P,Y) <* (PxQ,)?)
(b) S¥° =81, @Y =@, P2 =7, p[Gy] = 7'
(c) Q[Gp] =Q.

2) If for every Gp C P generic over V there are Q satisfying some 11 and
(S1, @1,171, v) € V[Gp| as above satisfying some 1o, then we can demand

(d) IFp ‘@[Qp],yQ as above satisfies 11, 1o respectively”.

3) We may allow ((fa;7a): & € S) be a sequence of P-names and even
(P % Q)-names.

Proof. Straight.

Claim 1.13 (iteration in successor case: increase the commitment).
Assume (P;, Vi, fi): i < C) is an M-iteration and { = €41, S¥s C S C S*,
S C Dom (M) and ((¢asna): o € S\SY¢) is as required in Definition 1.6.
Lastly Zo, C¥2 is a Pg—na}ne of a positive set for (P, na) for every such a.
Then we can find (P¢, Ve, fe) such that c
(i) {(P;, Vi, fi): i <+ 1) is an M-iteration

.. Ve Y _ .
(17) Pe = Pg, SYe = 8, (S?agvz]as) = (Sfoaﬂ]a) if € S\S7%.
Proof. Straight.

Claim 1.14 (iteration at successor: increasing the forcing). Suppose
(a) (P,Y) € IS and the set of elements of P is X; (the X7 ’s as in 1.10)
(b) Q is a P-name satisfying, for every G C P generic over V, the follow-
ing:
(zg Q[G] is a forcing notion with set of elements beings X1\ X;
(i) {5 <wi:if P € Ms and GNJ is a generic subset of
P [6,Q[G] | 6 € Ms[G N 4] and vs[G] is forced to be generic
for ((@#1)Ml4), 15(G)) } € Dyyiey-
Then we can find (PT,Y7T) such that (P,Y) <* (PT,Y*) € IS and the
P-name Pt /Gp is equivalent to Q[Gp].

Proof. Straight.

Conclusion 1.15. Assume (C*, X*) is as in 1.9. Let ® be a set of defini-
tions of forcing notions with some real parameters, and (S;: i < wg) is as
in 1.4 for Dy;.

We can find ((P;, Vi, fi, M?): i < wy) such that
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(a) it is an (C*, X*)-iteration
(b) P= U P; is a c.c.c. forcing notion of cardinality N

1<w2

(so in VF, 2% < R,) and except in degenerated cases equality holds
(c) SYi = S7 from 1.4(3)
(d) if in Vi we have (¢,7) is a case of ® as in 1.6, moreover

IFp, “{0 € S} \S;: MZH[f”(G]p )7 E “(@,m) as required in 1.6”} €

Dl
(even less with more bookkeeping) and Z C (¥2)V’ is positive for
(957 77)7 then
(@) {0 € 87+1\8¥: (4,115)/Gr, = (#.1) and vs[Gr,] € Z} € Dy,

in fact the set is forced to include such old set (from V) by this

we can get

(8) for some j > i, 6 € S¥+\SY* = (,15)/Gr, = (¢,1), vs[Gr,] €
(e) if H is a pregiven function such that for every i < wy and (P,Y
satisfying (P;, Vi) <* (P,Y) € IS such that SY = S we have (P, Y
H(P,Y) € IS such that H(P,Y, M) satisfies the demands from (a)
(¢) on (Pig1, Vi1, ML), then we can demand (3¥25)[(Pj11,Vj+1)
H(P;,Y;)]; moreover, if S* C wy is stationary we can demand {j
S: (Pjy1,Vj41) = H(P;, Vy)} is stationary.
(Of course, we can promise this for Rg such functions).

) )
) *

+
S

Proof. Put together the previous claims. (Concerning clause (e) without
loss of generality {i < w;: otp(C}) = 0} is stationary) so in those stages we
have no influence of clause (e) of 1.10; anyhow the influence of 1.10(e) is
minor.

Discussion 1.16. We discuss here some possible extensions.

Claim 1.17. Assume (S;: i < w9) is a sequence of pairwise almost disjoint
stationary subsets of wi, each with diamond andi < j = S; C S;r mod D, ,
50 S;r Cuwi and S; N Sf =0 and S;F/le 1§ increasing with 1.

Then in the following game the between the bookkeeper and the forcer, the
bookkeeper has a winning strategy.
A Play last ws moves, before the a-th move a sequence ((P;, Q;, M, V;): i
«) is defined such that

(

(
(

a) P; a c.c.c. forcing notion of cardinality N1, say C Hoy, (N2)
b) Q; is a Pi-name of a forcing notion of cardinality < Ny, say C wy
c) P; is <-increasing
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(d) Pit1,P; % Q; are isomorphic over IP;
(e) M; is a P;-name of an S;-oracle
(f) Vi is a Pi-name of a S;-commitment.
In the i-th mowve:
(a) the bookkeeper chooses P; and a P;-name (M, V) of an S;-oracle
and 0-commitment
(b) the forcer choose Q; and (M;,Yi),Pi-names such that Q; satisfies
(M, Y]") and (M, Ys).
In the end the bookkeeper wins if
i < j <wy=P;/P; satisfies (Mz,yl)

Proof. Similar to earlier proofs.

We give an easy criterion for existence. The following uses more from [4].

Claim 1.18. Assume
a) (P, <, <n)n<w @8 a definition of a forcing notion satisfying condition
(@) (P, <, <n)n< g ying
A of Baumgartner with <, as witness and ZFC, says this, in a way
preserved by suitable forcing
(b) Y =(S,®,7,7) is a 0-commitment so ® = (pa: a € 5)
(c) P is absolutely nep such that for each oo € SY it is <,-purely Igea -
preserving, i.e. .
(%) if M is a P-candidate and a Q%=-candidate, p € PM, n < w and
q € (Q%)M then for some p, n, v we have p <, p' € P, p
is (M, P)-generic and v is (Q?*,14)-generic over M satisfying q
(check def) and p' IFp “v is (Q%,Z)Q)-generic over M(Gpn PM) 7,
Then there is a c.c.c. forcing notion P’ C P (not necessarily P'<P) satisfying
the 0-commitment Y and lFp “for a club of § < wy, go(y,g}) 7,

Remark. Why the s5’s? We hope it helps, for example in the following;
suppose we are given f: R — R, we like to force A C R which is not in Igea
and on which the function f is continuous; i.e. to force a continuous f*
such that {n € “2: f*(n) = f(n)} € (I§')". So not only do we like to find
q I- “ns is (Qs,ns)-generic over M;[Gp]” but also g IFpr “f(ns) = f(ns)”-
This is what ¢ says. (On Igea, 15" see [4].)

Proof. We choose by induction on o < wy, a pair (P, T'y) such that:
(a) P, C P is countable
(8) Ty is a countable family of predense subsets of P,
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(v) if Z €Ty and p € P, and n < w then for some g we have p <,, ¢ € P,
and 7 is predense above ¢ in P
(0) P, is increasing continuous in «

(e) Ty is increasing continuous in o.

Case 1: a = 0. Trivial.
Case 2: a = 3+ 1, § non-limit or (Pg,I'g) ¢ Ms.
Let (IP’a,Fa) = (Pg,rg).

Case 3: o limit.

Let (Paa FOI) = (U/6<o¢ PB’ Uﬁ<o¢ I‘ﬁ) .
Case 4: a =6 + 1 where 6 is a limit ordinal and (Ps,T's) € Mj.

We can find g € Levy(Rg, |P|)Ms, generic over M;s such that n} is still
Qjs-generic over Mjs[g| (see [4, §6]).

In Ms[g] we define Pf = {p: Mslg] F p € PandZ € I, =
7 predense above p}, using the induction hypothesis, as in Mjs[g] the set
I's is countable, so:

(x) for every p € Py and n < w there is p’ € IF)(J{ such that P = p <, p'.

Again by [4, §6] for every n < w and p € P, there is g,, € P such that
P <n Gpn €P, qpn is (Ms[g], Q)-generic and gy, IFp “v5 is a (Qg,gg)—generic
real over Mjs[g][Gp]”.

Let Ps11 =Ps U {gpn: p € P and n < w} and Ty = I's U {Zs} where
Zs ={gpm: D€ IP’5+ and n < w}. 01 18

References

[1] Shelah, S., Non-Structure Theory, Oxford University Press, (accepted).

[2] Shelah, S., Proper Forcing, Lecture Notes in Math. 940, Springer-Verlag, Berlin-New
York, 1982.

[3] Shelah, S., Proper and Improper Forcing, Perspect. Math. Logic, Springer-Verlag,
Berlin, 1998.

[4] Shelah, S., Properness without elementaricity, J. Appl. Anal. 10(2) (2004), 169-289,
math. LO/9712283.

SAHARON SHELAH

THE HEBREW UNIVERSITY OF JERUSALEM
EINSTEIN INSTITUTE OF MATHEMATICS
EpMoND J. SAFRA CAMPUS, GIVAT RAM
JERUSALEM 91904, ISRAEL

E-MAIL: SHELAHQMATH.HUJI.AC.IL



Sh:669

NON-COHEN ORACLE C.C.C.

AND

DEPARTMENT OF MATHEMATICS

HiLL CENTER — BuscH CAMPUS

RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
110 FRELINGHUYSEN ROAD

Piscataway, NJ 08854-8019

USA

17



