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Abstract. The oracle c.c.c. is closely related to Cohen forcing. During
an iteration we can “omit a type”; i.e. preserve “the intersection of a
given family of Borel sets of reals is empty” provided that Cohen forcing
satisfies it. We generalize this to other cases. In Section 1 we replace
Cohen by “nicely” definable c.c.c., do the parallel of the oracle c.c.c.
and end with a criterion for extracting a subforcing (not a complete
subforcing, l!) of a given nicely one and satisfying the oracle.

0. Introduction

This answers a question from [2, Chapter IV] (the chapter dealing with
the oracle c.c.c.) asking to replace Cohen by e.g. random. Later we will
deal with the parallel for oracle proper and for the case ϕ̄α is a (definition of
a) nep forcing. An application will appear in a work with T. Bartoszynski.

How do we use this framework? We start with a universe satisfying ♦ℵ1

and probably 2ℵ1 = ℵ2 and choose 〈S∗i : i < ω2〉, S∗i ⊆ S∗ ⊆ ω1 such that
S∗i /Dω1 is strictly increasing and for every i < ω2, ♦S∗i+1\S∗i holds and for
simplicity S∗i ⊆ S∗i+1 where Dω1 is the club filter on ω1. We choose by
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2 S. SHELAH

induction on i < ω2, a c.c.c. forcing Pi of cardinality ℵ1, a sequence M̄ i =
〈M i

α : α ∈ S∗i 〉 of countable models ⊆ (H(ℵ1),∈) of some version of ZFC,
without loss of generality transitive and a 1-commitment mainly connected
to a Pi-name ν

˜
i
α which is, e.g. random over M i

α (and the commitment is that
if, j > i, P′j ∼= Pj/Pi is represented such that it has set of elements ⊆ ω1,
G ⊆ P′j is generic over VPi , then for a club of α ∈ Si, ν

˜
i
α ∈ VPi is random

also over M i
α[G] which naturally is M i

α[G ∩ α]). They are increasing in the
relevant sense and the work at limit stages is done by the general claims
here. In stage i, by bookkeeping we are given a task connected with a Pi-
name X

˜
i we have some freedom in choosing Pi+1, usually Pi+1 = Pi ∗ Q

˜
i.

So, working in VPi , Qi has to satisfy a 0-commitment on S∗i , and we like it
to satisfy that task, usually connected with Xi ⊆ RV [Pi], say Xi = X

˜
i[GPi ].

We essentially have to choose M̄ i+1 such that M̄ i+1 � S∗i = M̄ i but we
have freedom (in addition to choosing Q

˜
i) to choose 〈M̄ i+1

α : α ∈ S∗i+1\S∗i 〉
and a 0-commitment on S∗i+1\S∗i . Also the reals generic for the chosen
forcing notion (for α ∈ S∗i !) as well as M i+1

α for α ∈ S∗i+1\S∗i can be
chosen considering Xi. E.g. M i+1

α can be the Mostowski Collapse of some
M ≺ (H(ℵ2),∈) to which Pi, M̄ i and X

˜
i belong.

Really this corresponds to the omitting type as in [1, XI]. This was orig-
inally part of [4], particularly close to faking.

1. Non-Cohen oracle c.c.c.

Hypothesis 1.1.

(a) We assume CH, moreover ♦S∗ where S∗ ⊆ {δ < ω1 : δ limit} is sta-
tionary.

Definition/Notation 1.2. 1) M̄ denotes an oracle, i.e., a sequence of the
form 〈Mδ : δ ∈ S〉, Mδ a transitive countable model of ZFC−∗ satisfying
δ ⊆ Mδ and S ⊆ S∗ is stationary satisfying: for every X ⊆ ω1, the set
{δ ∈ S∗ : X ∩ δ ∈Mδ} is stationary.

2) D denotes a normal filter on ω1 usually extending DM̄ which is defined
in 1.3(1) below (of course, the default value is DM̄ , see 1.4(1)).

3) For a countable forcing P, a wide P-name is a Borel function giving for
every directed G ⊆ P an object (so if P ≤ic P′ then any wide P-name is still
a wide P′-name hence a P′-name).

We first give the old definitions from [3, IV]
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NON-COHEN ORACLE C.C.C. 3

Definition 1.3. 1) DM̄ is

{X ⊆ ω1 : for some Y ⊆ ω1 we have: δ ∈ SM̄ ∩X ⇒ Y ∩ δ ∈Mδ}.

2) A forcing notion P of cardinality ≤ ℵ1 satisfies the (M̄,D)-c.c. if for some
(equivalently any) one to one f : P→ ω1 the set:{
δ ∈ SM̄ : if X ∈Mδ and {y ∈ P : f(y) < δ and f(y) ∈ X}

is predense in P � {y ∈ P : f(y) < δ} then X is predense in P}
belongs to D and P has minimal element ∅P.
3) If D = DM̄ we may write “M̄ -c.c.”. Recall that D+ = {A ⊆ ω1 : ω1\A /∈
D}.
4) Let M̄1 ≤ M̄2 if M̄ ` = 〈M `

δ : δ ∈ S`〉 and {δ : δ ∈ S1\S2 or δ ∈ S1 ∩
S2 and M1

δ 6= M2
δ } is not stationary; let M̄1 ≤D M̄2 be defined similarly

(i.e. the set is = ∅ mod D).

5) A forcing notion P satisfies the (M̄,D)-c.c. if: |P| ≤ ℵ0 or for every
X ⊆ P of cardinality ≤ ℵ1 there is P1 l P of cardinality ℵ1 which includes
X and satisfies the (M̄,D)-c.c.

Fact 1.4. 1) DM̄ is a normal filter on ω1.

2) The M̄ -c.c. implies the c.c.c., and if DM̄ ⊆ D (or just there is a normal
filter D′ ⊇ DM̄ ∪ D) then the (M̄,D)-c.c.c. implies the c.c.c. and if D2 ⊇
D1 ⊇ DM̄ are normal filters, then the (M̄,D1)-c.c. implies the (M̄,D2)-c.c.

3) We can find 〈S∗ζ : ζ < ω2〉 such that S∗ζ ⊆ S∗, ζ < ξ ⇒ S∗ζ ⊆ S∗ξ mod DM̄ ,
S∗ζ ⊆ S∗ζ+1 and S∗ζ+1\S∗ζ ∈ D

+
M̄

, moreover S∗ζ+1\S∗ζ is countable.

4) If M̄1 ≤ M̄2 and the forcing notion P2 satisfies the (M̄2,D)-c.c. and
P1 l P2, then P1 satisfies the (M̄1,D)-c.c.

Proof. See [3, IV], but for the reader’s convenience we prove part (4).
Without loss of generality P2 has cardinality ℵ1 and even set of elements
ω1. As P1 l P2 there is a function f : P2 → P1 such that

(∗)1 q ∈ P2 ∧ f(q) ≤P1 p ∈ P1 ⇒ p, q are compatible in P2.

Let g : P2 × P2 → P2 be such that

(∗)2 if p, q ∈ P2 are compatible then g(p, q) is a common upper bound and
p, q ∈ P1 ⇒ g(p, q) ∈ P1.

So there is a club E of ω1 which is closed under f, g so

(∗)3 if δ ∈ E ∩ S, I ⊆ P1 ∩ δ is predense in P1 � δ then I is predense in
P2 � δ.
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4 S. SHELAH

[Why? If q ∈ P2∩δ then f(q) ∈ P1∩δ so by the assumption on I, f(q)
is compatible with some r1 ∈ I ∈ P1 ∩ δ, so there is r2 ∈ P1 � δ above
q and r2. By the definition of f the conditions r2, q are compatible in
P2 hence g(r2, q) is a common upper bound of them in P2 � δ.] �1.4

Remark 1.5. 1) Note that below when Pϕ̄α is the older case ([3, IV]) we
just preserve every predense set, so in Mα (in the based obeyed) the forcing
is countable.
2) We may forget to mention this case as it is by now easy.

Definition 1.6. 1) We say Y = (S,Φ, η̄
˜
, ν̄) = (SY ,ΦY , η̄

˜
Y , ν̄Y) is a 0-

commitment for M̄ if for some E ∈ DM̄ :
(a) S ⊆ S∗, S ∈ D+

M̄

(b) η̄ = 〈η
˜α

: α ∈ S〉, Φ = 〈ϕ̄α : α ∈ S〉 and if α ∈ S ∩ E then
ϕ̄α ∈Mα and
Mα |= “ϕ̄α is an absolute definition of a c.c.c. forcing notion called
Qα = Qϕ̄α with generic real η

˜α
”; note, absolute here means that forcing

extensions of Mα, preserve predensity of countable sets (in the sense
of Mα) order and incompatibility

(c) ν̄ = 〈να : α ∈ S〉 where να ∈ ωω and for every α ∈ S ∩E the real να is
(Qα, η

˜α
)-generic over Mα.

We ignore M̄ if clear from the context. We can replace M̄ by (M̄,D) if
above E ∈ D, S ∈ D+.
1A) A forcing notion P of cardinality ≤ ℵ1 satisfies the 0-commitment Y =
(SY ,ΦY , η̄

˜
Y , ν̄Y) for an ℵ1-oracle M̄ (we may suppress) if: P is a forcing

notion and for any one-to-one mapping h : P → ω1 for some E ∈ DM̄ we
have

(d) if α ∈ S ∩ E then P “the real να is a (Qα, η
˜α

)-generic real over
Mα[α ∩ h′′G

˜ P
]”

(e) [the old case]: if α ∈ S∩E even whenQα is a singleton (hence να ∈Mα,
a degenerated case), then every predense subset I of {p ∈ P : h(p) < α}
for which {h(p) : p ∈ I} ∈Mα is a predense subset of P.

2) Let P ∈ H(ℵ2) be an M̄ -c.c. forcing notion. We say that Y =
(S, Φ̄

˜
, η̄
˜
, ν̄
˜

) = (SY ,Φ
˜
Y , η̄

˜
Y , ν̄

˜
Y) is a 1-commitment on P for M̄ if: for any

N̄ satisfying (∗)1 below, the clauses (a)–(d) of (∗)2 below hold
(∗)1 N̄ = 〈Nα : α < ω1〉 is increasing continuous, Nα ≺ (H(ℵ2),∈) is count-

able, N̄ � (α+ 1) ∈ Nα+1 and {M̄,P} ⊆
⋃
α<ω1

Nα

(∗)2 (a) S ⊆ Dom(M̄) ⊆ S∗, S ∈ D+
M̄
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NON-COHEN ORACLE C.C.C. 5

(b) η̄ = 〈η
˜α

: α ∈ S〉, Φ = 〈ϕ̄
˜ α

: α ∈ S〉 so (ϕ̄
˜ α
, η
˜α

) is a P-name of a
pair as in 1.6(1)(a), both are hereditarily countable over P

(c) ν̄ = 〈ν
˜α

: α ∈ S〉 and ν
˜α

a P-name of a real given by countably
many conditions

(d) the set of the α ∈ S satisfying the following belongs to (DM̄ +
S)+ : ϕ̄

˜ α
∈Mα, Mos ColNα(Nα) ∈Mα, and letting

P′α = Mos ColNα(PNα) ∈Mα

we have Mα |= “ϕ̄
˜ α

is a wide P′α-name of an absolute definition
of a c.c.c. forcing with generic real η

˜
α” and P “the real ν

˜
α is a

(Qϕ̄
˜
α , η

˜α
)-generic real over Mα[G

˜
P]”.

For simplicity the reader may concentrate on the case 〈(ϕ̄α, η
˜α

) : α∈S〉∈V.

3) Let

IS = {(P,Y, M̄) : P ∈ H(ℵ2) is an M̄ -c.c. forcing notion and Y
is a 1-commitment on P}.

We shall omit M̄ if clear from the context. We can replace M̄ by (M̄,D)-
naturally and write ISD, but the claims are the same.
4) For (P`,Y`, M̄ `) ∈ IS (` = 1, 2) let (P1,Y1, M̄1) ≤∗ (P2,Y2, M̄2) means
M̄1 ≤ M̄2, P1 l P2 and for some E ∈ DM̄1 we have

SY1 ∩ E ⊆ SY2 ∩ E, Φ
˜
Y1 � (SY1 ∩ E) = Φ

˜
Y2 � (SY ∩ E),

η̄
˜
Y1 � (SY

1 ∩ E) = η̄
˜
Y2 � (SY

1 ∩ E) and ν̄
˜
Y1 � (SY

1 ∩ E) = ν̄
˜
Y2 � (SY

1 ∩ E).

We call E a witness to (P1,Y1, M̄1) ≤∗ (P2,Y2, M̄2).

We point out the connection between 0-commitment and 1-commitment.

Fact 1.7. 1) If Y is a 1-commitment on P and P an M̄ -c.c. forcing notion
of cardinality ≤ ℵ1, then P “Y[G

˜ P
] = (SY ,Φ

˜
Y [G

˜ P
], η̄

˜
Y [G

˜ P
], ν̄

˜
[G
˜ P

]) is a
0-commitment” so we call it Y[G

˜
P]. Note η

˜δ
[G
˜ P

] is still a name.

2) If P = {∅} (the trivial forcing) then: Y is a 1-commitment on P iff Y is
a 0-commitment.
3) If 〈M̄ i : i < ζ〉 is ≤-increasing, ζ < ω2 and Dom(M̄ i)\S is not stationary
for i < ζ, then there is M̄ , Dom(M̄) = S such that i < ζ ⇒ M̄ i ≤ M̄ .
4) Increasing M̄ preserves everything.
5) If a forcing notion P satisfies the 0-commitment Y for the ℵ1-oracle M̄
and S′ = {δ ∈ SY : Qϕ̄α[Y]

δ is a singleton (i.e., δ of the old case for Y)} and
S′ 6= ∅ mod DM̄ then

(a) P satisfies the M̄ -c.c.

Brought to you by | New York University Bobst Library Technical Services
Authenticated

Download Date | 5/29/15 3:29 PM

Sh:669



6 S. SHELAH

(b) if S′′ ⊆ S′ and S′′ 6= ∅ mod DM̄ and Mδ |= “Xδ ⊆ ω2 is not meagre”
for every δ ∈ S′′ then

⋃
δ∈S′′

Xδ is not meagre in V[P].

As a warm-up (see [4] for more)

Claim 1.8. 1) Assume
(a) M is a countable transitive model of ZFC−, M |= “P1 is a countable

forcing notion”
(b) M |= “ϕ is an absolute definition of c.c.c. forcing notion Qϕ with

generic η
˜

: α1 → α2” and α1, α2 < ω1

(c) ν is (M,Qϕ)-generic sequence, i.e., there is G ⊆ (Qϕ)M generic over
M such that ν = η

˜
[G].

Then we can find a countable P2 such that
(α) P1 ⊆ic P2 and every J ∈M which is predense in P1 is predense in P2

(β) P2 “ν is (M ′,Qϕ) -generic sequence where M ′ = M [GP2 ∩ P1]”.

2) Similarly for ϕ defining a nep forcing.

Proof. 1) In M we can define P+ = P1∗(Q
˜
ϕ)M [G

˜ P1
], now as Qϕ is absolutely

c.c.c., we know that q 7→ (∅, q) is a complete embedding of (Qϕ)M into
P+. So if G∗ ⊆ (Qϕ)M is generic over M such that ν = η

˜
[G] then let

P∗2 = {(p, q
˜

) ∈ P1 ∗ (Q
˜
ϕ)M [G

˜ P1
] : (p, q

˜
) is compatible with (∅, q′) for every

q′ ∈ G∗}. Now check.
2) See [4]. �1.8

Crucial Claim 1.9. In IS, any ≤∗-increasing ω-chain has an upper
bound.

Remark. 1) The ω-limit is the crucial one not the ω1-limit? Actually for
ω1-limit we take the union and we preserve what we need by using the
square (and having done something toward it in earlier limits or stages of
cofinality ℵ0).
2) When is the union not an upper bound? If, e.g., for each α ∈ S′ ⊆ SY

the forcing note ϕYα is random real forcing we have in particular to preserve
{να : α ∈ S′} is non-null, but the union normally adds a Cohen.

Proof. So assume (Pn,Yn, M̄n) ∈ IS and (Pn,Yn, M̄n) ≤∗ (Pn+1,Yn+1,
M̄n+1) for n < ω, let M̄ be such that M̄ ≥ M̄n for each n; so let En ∈
DM̄ witness both. For simplicity assume that above any p ∈ Pn there
are two incompatible elements, and 0 ∈ P0 is minimal in all Pn, i.e. is
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NON-COHEN ORACLE C.C.C. 7

∅Pn . Without loss of generality the set of elements of Pn is ⊆ ω1 and
ω1\

⋃
n<ω Pn has cardinality ℵ1 and let X∗ be such that

⋃
n<ω Pn ⊆ X∗ ⊆ ω1

and |X∗\
⋃
n<ω Pn| = ℵ1; this notation helps in a future use, also there we

replace ω by a (countable) ordinal of cofinality ℵ0. We can define functions
Fn, Fn,m, Fn,m,` (when n < m < ω, ` < ω) such that

(a)n if p, q ∈ Pn are compatible then Fn(p, q) ∈ Pn is a common upper
bound

(b)n,m if n < m and p ∈ Pm, then 〈Fn,m,`(p) : ` < ω〉 is a maximal antichain
of Pn, such that for each `:
either p, Fn,m,`(p) are incompatible (in Pm)
or p is compatible in Pm with every q ∈ Pn which is above Fn,m,`(p)

(c)n,m if n < m, p ∈ Pm, q ∈ Pn then p ≤ Fn,m(p, q) ∈ Pn and if there is r
such that q ≤Pn r and r, p are incompatible in Pm then p, Fn,m(p, q)
are incompatible in Pm.

Let E be a club of ω1, such that δ ∈ E ⇒ δ is closed under Fn, Fn,m, Fn,m,`
and

otp(X∗ ∩ δ\
⋃
n<ω

Pn) = δ.

We would like to define a forcing notion Pω with universe X∗, and 1-
commitment Yω, and functions Fω, Fn,ω,` satisfying the natural require-
ments. First, let

Eω =
⋂
n<ω

En ∩ E,SY
ω

=
⋃
n<ω

SY
n ∩ Eω,

and for α ∈ SYω the triple (ϕ
˜
Yω
α
, η
˜
Yω
α
, ν
˜
Yω
α ) is (ϕ̄

˜
Yn(α)

α
, η
˜
Yn(α)

α
, ν
˜
Yn(α)

α ) where
n(α) = Min{n : α ∈ SYn}.

Defining Pω, Fω, Fn,ω,` is harder, so we first define AP , a set of approx-
imations to it. A member t of AP has the form (δt,Pt, F tω, F tn,ω,`,Γt)`<ω
satisfying
(α) δt ∈ Eω
(β) Pt is a forcing notion with set of elements ⊆ X∗ ∩ δt and ⊇ δt ∩

⋃
n

Pn
and 0 ≤Pt p for every p ∈ Pt

(γ) Pt � (Pn ∩ δt) = Pn � (Pn ∩ δt)
(δ) if p, q ∈ Pt are compatible in Pt then F tω(p, q) is such an upper bound
(ε) if p ∈ Pt, n < ω then 〈F tn,ω,`(p) : ` < ω〉 is a maximal antichain of Pn,

the members are < δt, and for each `, either p, F tn,ω,`(p) are incompat-
ible in Pt or (∀q ∈ Pn∩ δ) (Pn |= “Fn,ω,`(p) ≤ q”⇒ p, q are compatible
in Pt) and for at least one ` the second case occurs
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8 S. SHELAH

(ζ) if p ∈ Pt ∩ Pm\
⋃
`<m

P` then F tn,ω,`(p) = Fn,m,`(p)

(η) Γt is a sequence 〈p̄tζ : ζ < ζt〉, ζt < ω1 and p̄tζ is a sequence of length ω
of members of Pt which form a maximal antichain (of Pt)

(θ) if p ∈ Pt and n < m < ω and r ∈ Pn∩δt and [r ≤ r′ ∈ Pn∩δt ⇒ r′, p are
compatible in Pt], then the set {F tm,ω,`(p) : ` < ω and p is compatible
with F tm,ω,`(p) in Pt} satisfies: if r ≤ q ∈ Pn then in Pm, q is compatible
with some member of this set

(ι) if ζ < ζt and n < ω then:
{F tn,ω,`(ptζ,k) : k < ω, ` < ω and ptζ,k, F

t
n,ω,`(p

t
ζ,k) are compatible in Pt}

is a predense subset of Pn. Note that trivially this subset is predense
in Pn ∩ δt; similarly in clause (κ)

Moreover,
(κ) if p∗ ∈ Pt and n < ω and ζ < ζt then

Itζ,n,p∗ =:
{
r′ ∈ Pn ∩ δt : (i) r′, p∗ incompatible in Pt or

(ii) for some k < ω and p′ we have

(∀r′′) [r′ ≤ r′′ ∈ Pn ∩ δt → {r′′, p′}
has an upper bound in Pt] and

p∗ ≤Pt p′, ptζ,k ≤Pt p′
}
.

is predense in Pn.

∗ ∗ ∗

We define the (natural) partial order ≤∗ on AP : for t, s ∈ AP as follows;
we let t ≤∗ s iff:

(i) δt ≤ δs

(ii) Pt ⊆ Ps
(iii) F tω ⊆ F sω
(iv) F tn,ω,` ⊆ F sn,ω,`
(v) Γt is an initial segment of Γs.

Fact A. AP 6= ∅.

Proof. Easy: choose δ ∈ E, let

Pt =
( ⋃
n<ω

Pn) � δ, Fω(p, q) = Fn(p,q)(p, q)

where n(p, q) = Min{n : p ∈ Pn and q ∈ Pn}.
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NON-COHEN ORACLE C.C.C. 9

For n < ω, p ∈ Pt ∩ δ let 〈F tn,ω,`(p) : ` < ω〉 be 〈Fn,m,`(p) : ` < ω〉 for the
first m ≥ n such that p ∈ Pm.

Lastly, Γ = empty sequence.

Fact B. If t ∈ AP and δt < δ ∈ E, then there is s satisfying t ≤∗ s ∈ AP
with δs ≥ δ, ζs = ζt.

Proof. Without loss of generality t, 〈Pn � δ : n < ω〉, X∗ ∩ δ belongs to Mδ

and δ ∈ E ∩
⋂
n<ω En and X∗∩ δ\

⋃
n<ω Pn\δt is infinite and even has order

type δ. [Why? As ∅ /∈ DM̄ and we can increase δ.] So (for the last phrase
see the proof of 1.4(4))

(∗) any J ∈Mδ which is a predense subset of Pn � δ is a predense subset
of Pn and n < m⇒ Pn � δ l Pm � δ.

Let A = Pt ⊆ X∗ ∩ δt, B =
⋃
n<ω Pn ∩ δ. We define a forcing notion Q,

with set of elements ⊆ A × B identifying (p, 0) with p and (0, q) with q.
Now (p, q) ∈ A×B belongs to Q iff: p = 0 or q = 0 or there are r ∈ A ∩B
and n = n(p, q) such that: Pn |= “r ≤ q”, and (∀r′) [r ≤ r′ ∈ Pn ∩ δt → r′,
p compatible in Pt]; we call such r a witness and n a possible value for
n(p, q). The order on Q is

(p, q) ≤ (p′, q′)⇔ p ≤Pt p′ and
∨
n

q ≤Pn q′.

Now note
(α) Q � A = Pt.
(β) Q � B =

⋃
n<ω

Pn � δ.

(γ) If (p, q) ∈ Q, m = n(p, q) and q ∈ Pm � δ and Pm � δ |= “q ≤ q′ ” and
Pt |= “p′ ≤ p”, then (p′, q′) ∈ Q and Q |= “(p, q) ≤ (p, q′)”.

(δ) If (p, q) ∈ Q and n = n(p, q) ≤ m < ω, then for some q1 we have:
(p, q) ≤ (p, q1) ∈ Q and n(p, q1) = m, or at least m is a possible value
for n(p, q1).
[Why? Let r ∈ Pn(p,q) be a witness in particular r is compatible with p
in Pt. By clause (θ) of the Definition of AP the set J = {F tm,ω,`(p) : ` <
ω and p is compatible with F tm,ω,`(p) in Pt} is predense above r in
Pm. Pn |= r ≤ q hence Pm |= r ≤ q so for some `, F tm,ω,`(p) ∈ J is
compatible with q in Pm so there is q1 ∈ Pm∩δ such that Pm |= q ≤ q1∧
F tm,ω,`(p) ≤ q1. So (p, q1) ∈ Q as witnessed by m and r′ = F tm,ω,`(p),
is as required.]

(ε) Pn � δ lQ.
[Why? Let (p0, q0) ∈ Q, of course, we can replace this pair by any
larger one, so by clause (δ) above without loss of generality some m ∈
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10 S. SHELAH

[n, ω), is a possible value for n(p0, q0) so we have q0 ∈ Pm � δ, hence
recalling that Pn � δ l Pm � δ there is q1 ∈ Pn � δ such that:

(∀r ∈ Pn)(Pn � δ |= q1 ≤ r ⇒ r, q0 compatible in Pm � δ).
Assume q1 ≤ r ∈ Pn � δ. So r, q0 are compatible in Pm � δ hence has
a common upper bound q2 ∈ Pm � δ.
In particular q0 ≤ q2 ∈ Pm � δ so by clause (γ) we have (p0, q2) ∈ Q
and (p0, q0) ≤Q (p0, q2); also r = (0, r) ≤ (p0, q2) as r ≤ q2 together r,
(p0, q0) are compatible in Q, so [q1 ≤ r ∈ Pn � n⇒ (p0, q0), r = (0, r)
are compatible in Q]. As (p0, q0) ∈ Q was arbitrary we are done.]

(ζ) If p1, p2 ∈ Pt are incompatible in Pt then they are incompatible in Q.
[Why? Look at the order of Q].

(η) If ζ < ζt then p̄tζ is a maximal antichain in Q.
[Why? If not some (p∗, q∗) ∈ Q is incompatible in Q with every (ptζ,k, 0)
for k < ω. Let n < ω be a possible value of n(p∗, q∗) so q∗ ∈ Pn � δ
and there is a witness r∗ ≤ q∗, r∗ ∈ Pn � δt for (p∗, q∗) ∈ Q.
By clause (κ) in the definition of t ∈ AP we know that for some
r ∈ Pn ∩ δt we have:
(i) r ∈ Itζ,n,p∗

(ii) q∗, r are compatible in Pn .
As q∗, r are compatible and r∗ ≤ q∗ also r∗, r are compatible in Pn
hence in Pn∩δt, so by the demand on r∗, we have: r, p∗ are compatible
in Pt. So in clause (κ) of the definition of AP , in the definition of Itζ,n,p∗
for our r subclause (i) fails hence subclause (ii) holds so there are k, p′

as in subclause (ii) there. Also let q1 ∈ Pn � δ be a common upper
bound of q∗, r. So r witness that (p′, q1) ∈ Q with n a possible value
of n(p′, q1). Clearly it is above (p∗, q∗) and above ptζ,k so we are done.]

Let δs = δ. Clearly Q ∈Mδ and Mδ |= “|Qδ| ≤ |δ|” so, as X∗∩δ\
⋃
n Pn has

order type δ and Pt is bounded in it, there is f ∈Mδ such that f : Q→ X∗∩δ
is a one to one (into or even onto), extending idA ∪ idB, and define Ps such
that f is an isomorphism from Q onto Ps. We can define F sω, F

s
n,ω,` (n, ` < ω)

extending F tω, F
s
n,ω,` as required, e.g., F sn,ω,`((p, q)) = F s

n,m,`(q) for some
m > n such that q ∈ Pm except when q = 0 then F sn,ω,`((p, 0)) = F tn,ω,`(p).
Now it is easy to check clause (θ) of the definition of s ∈ AP , recalling
(∗) above and clauses (i), (κ) holds since the construction is made in Mδ.
Lastly, let Γs = Γt.

Fact C. If tn ∈ AP and tn ≤∗ tn+1 for n < ω then there is t such that
n < ω ⇒ tn ≤∗ t ∈ AP and δt =

⋃
n<ω δ

tn and ζt =
⋃
n<ω ζ

tn .
[Why? Just let δt, ζt be as above, Pt =

⋃
n<ω Pt

n
, F tω =

⋃
n<ω F

tn
n , F tm,ω,` =⋃

n<ω F
tn

m,ω,` and ptζ,k = pt
n

ζ,k for every n large enough. Now check.]
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NON-COHEN ORACLE C.C.C. 11

Main Fact D. Assume t ∈ AP , δt ∈ E ∩
⋂
n<ω En, t ∈ Mδ and δ := δt ∈⋃

n<ω S
Yn . Then there is s ∈ AP such that t ≤∗ s and ν

˜
δ is actually a

Ps-name (i.e. all the countably many conditions appearing in its definition
belongs to

⋃
n<ω Pm ∩ δs ⊆ Ps) and:

(∗) if Ps ⊆ic Q, and for each ζ < ζs the sequence p̄sζ is a maximal antichain
of Q, then
Q “there is G′ ⊆ QMδ[G

˜
]

ϕ̄
˜
t
δ

generic over Mδ[G] such that (η
˜

[G
˜

])[G′] =

ν
˜
δ”.

[Why? Chase arrows so similar to the proof of 1.8 (1) (and we use clause
(α) there for clause (e) of Definition 1.6 (1A)).]

Fact E. If in Main Fact D, Qδ is a singleton (hence νδ ∈ Mδ so the main
fact is trivial) then there is s ∈ AP such that t ≤∗ s and p̄ ∈ Mδ is an
ω-sequence listing a predense subset of Pt then p̄ appears in the sequence
Γt.
[Why? Easy.]
So we can choose tε ∈ AP by induction on ε < ω1 such that tε is ≤∗-
increasing continuous, δt

ε+1
> δt

ε
, and if tε ∈ M(δtε ), δ

tε ∈
⋂
n<ω En ∩ E ∩⋃

n<ω S
Yn then tε+1 is gotten by Fact D. No problem to carry this (ε = 0

by Fact A, ε = ε1 + 1 by Fact D if possible and by Fact B if not; lastly, if ε
is a limit ordinal, use Fact C).

Now let Pω =
⋃
ε<ω1

Ptε and it should be clear how to define Yω; now
check the requirements. �1.9

Definition 1.10. Let C̄∗ = 〈C∗δ : δ < ω2 a limit ordinal〉 (and C∗α = ∅
otherwise) be a square sequence and X̄∗ = 〈X∗i : i < ω1〉 be an increasing
sequence of subsets of ω1,

|X∗i \
⋃
j<i

X∗j | = ℵ1, X
∗
ω1

=
⋃
i<ω1

X∗i .

We say that 〈(Pi,Yi, fi, M̄i) : i < α〉 is a (C̄∗, X̄∗)-iteration (we omit M̄ i

and write (M̄, C̄∗, X̄∗)-iteration if i < α ⇒ M̄ i ≤ M̄ or an M̄ -iteration
when C̄∗, X̄ are clear from context) if:

(a) (Pi,Yi, M̄ i) ∈ IS is <∗-increasing and Dom(M̄ i) = SYi

(b) fi is a one to one function from Pi onto X∗otp(C∗α), and let (P′i,Y ′i) be
such that fi maps (Pi,Yi) to (P′i,Y ′i)

(c) if j ∈ acc(Ci) then fj ⊆ fi
(d) if cf(i) = ℵ0 and i = sup acc(C∗i ) then (P′i,Y ′i) is gotten from
〈(P′j ,Y ′j) : j ∈ acc(C∗δ )〉 as in the proof of 1.9 (using 〈X∗j : j ∈ acc(C∗i )〉,
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12 S. SHELAH

X∗otp(C∗i ) instead of 〈Xn : n < ω〉, Xω so acc(C∗i ) replace ω and we gen-

erate 〈tiα : α < ω1〉 and by it define (P′i,Y ′i) hence (Pi,Yi))
(e) in clause (d), assume δ = otp(C∗i ), 〈(P′j ,Y ′j) � δ : j ∈ acc(C∗i )〉 ∈ Mδ

and for j1 < j2 from acc(C∗i ) the ordinal δ belongs to the club
{α < ω1 : α limit closed under the functions F j1 and F j1,j2` (see clause

(f) below)} and δt
j1
δ = δ. Let ti∗ ∈ AP be defined by δi∗ = otp(C∗i ),

Pti∗ = ∪{P′j � δ : j ∈ acc(C∗i )}, F t
i
∗
ω = ∪{F j1 � δi,j1 ∈ acc(C∗i )},

F
ti∗
j1,ω,`

= ∪{F j1,j2` : j2 ∈ acc(C∗i )\j1} and let Γt
i
∗ be empty. If ti∗ ∈ Mδ

then let ti0 be gotten from ti∗ as in Fact D.
(f) F j is a (partial) two-place function from X∗otp(C∗j ) to itself such that

F j(p, q) is the <-first common upper bound of p and q in P′j and if
j1 ∈ acc(C∗j2) then we have 〈F j1,j2n (p) : n < ω〉 is a maximal antichain
of P′j1 satisfying: for each n, either F j1,j2n (p) is incompatible with p in
P′j2 or p is compatible with r in P′j2 wherever P′j1 |= F j1,j2n (p) ≤ r.

Claim 1.11 (iteration at limit). 1) Assume 〈(Pi,Yi, fi) : i < ζ〉 is a
(M̄, C̄∗, X̄∗)-iteration where ζ < ω2 is a limit ordinal. Then

(a) we can find (Pζ ,Yζ , fζ) such that 〈(Pi,Yi, fi) : i < ζ + 1〉 is an M̄ -
iteration

(b) if S ⊆ S∗, i < ζ ⇒ SYi ⊆ S mod DM̄ , then we can demand SYζ = S.

Proof. If cf(ζ) = ℵ0 we use 1.9 but taking care of clause (e), this just
dictates to us how to start the induction there. If cf(ζ) = ℵ1, then by
the square bookkeeping (see clause (e) in Definition 1.10) our work is done
(using fζ = ∪{fξ : ξ ∈ acc(Cζ)}). �1.11

Claim 1.12. 1) Assume
(a) Y = (S, Φ̄, η̄

˜
, ν̄
˜

) is a 1-commitment on the forcing notion P ∈ H(ℵ2)
for M̄

(b) GP ⊆ P is generic over V, ν̄0 = 〈ν0
α : α ∈ S〉 where ν0

α = ν
˜
α[GP],

M̄1 = M̄ [GP] = 〈Mδ[f ′′(GP)] : δ ∈ S∗〉 for some one to one function f
from P into ω1

(c) in V[GP], Y1 = (S1, Φ̄1, η̄
˜

1, ν̄1) is a 0-commitment,
S ⊆ S1 mod DM̄ [GP], Φ̄1 � (S ∩ S1) = Φ̄ � (S ∩ S1),
η̄
˜

1 � (S ∩ S1) = η̄
˜
� (S ∩ S1), ν̄1 � (S ∩ S1) = ν̄0 � (S ∩ S1) and

(S1, Φ̄1, η̄
˜

1) ∈ V
(d) in V[GP], Q is a forcing notion satisfying the 0-commitment Y1 for

M̄1.
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NON-COHEN ORACLE C.C.C. 13

Then for some P-name Q
˜

and 1-commitment Y2 we have:
(a) (P,Y) ≤∗ (P ∗Q

˜
,Y2)

(b) SY
2

= S1, ΦY
2

= Φ̄1, η̄
˜
Y2 = η̄

˜
1, ν̄

˜
[GP] = ν̄1

(c) Q
˜

[GP] = Q.

2) If for every GP ⊆ P generic over V there are Q satisfying some ψ1 and
(S1, Φ̄1, η̄

˜
1, ν̄) ∈ V[GP] as above satisfying some ψ2, then we can demand

(d) P “Q
˜

[G
˜
P],Y2 as above satisfies ψ1, ψ2 respectively”.

3) We may allow 〈(ϕ̄α, η̄
˜
α) : α ∈ S1〉 be a sequence of P-names and even

(P ∗Q
˜

)-names.

Proof. Straight.

Claim 1.13 (iteration in successor case: increase the commitment).
Assume 〈(Pi,Yi, fi) : i < ζ〉 is an M̄ -iteration and ζ = ξ+ 1, SYξ ⊆ S ⊆ S∗,
S ⊆ Dom (M̄) and 〈(ϕ

˜
α, η

˜
α) : α ∈ S\SYξ〉 is as required in Definition 1.6.

Lastly Z
˜
α ⊆ ω2 is a Pξ-name of a positive set for (ϕ̄

˜
α, η

˜
α) for every such α.

Then we can find (Pζ ,Yζ , fζ) such that
(i) 〈(Pi,Yi, fi) : i < ζ + 1〉 is an M̄ -iteration

(ii) Pζ = Pξ, SYξ = S, (ϕ̄
˜

Yξ
α , η

˜

Yξ
α ) = (ϕ̄

˜
α, η

˜
α) if α ∈ S\SYξ .

Proof. Straight.

Claim 1.14 (iteration at successor: increasing the forcing). Suppose
(a) (P,Y) ∈ IS and the set of elements of P is Xi (the X∗j ’s as in 1.10)
(b) Q

˜
is a P-name satisfying, for every G ⊆ P generic over V, the follow-

ing:
(i) Q

˜
[G] is a forcing notion with set of elements beings Xi+1\Xi

(ii)
{
δ < ω1: if P � δ ∈Mδ and G ∩ δ is a generic subset of
P � δ,Q

˜
[G] � δ ∈Mδ[G ∩ δ] and ν

˜
δ[G] is forced to be generic

for
(
(Qϕ˜ δ[G])Mδ[G], η

˜
δ[G]

)}
∈ DM̄ [G].

Then we can find (P+,Y+) such that (P,Y) ≤∗ (P+,Y+) ∈ IS and the
P-name P+/G

˜
P is equivalent to Q

˜
[G
˜
P].

Proof. Straight.

Conclusion 1.15. Assume (C̄∗, X̄∗) is as in 1.9. Let Φ be a set of defini-
tions of forcing notions with some real parameters, and 〈S∗i : i < ω2〉 is as
in 1.4 for DM̄ .

We can find 〈(Pi,Yi, fi, M̄ i) : i < ω2〉 such that
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14 S. SHELAH

(a) it is an (C̄∗, X̄∗)-iteration

(b) P =
⋃
i<ω2

Pi is a c.c.c. forcing notion of cardinality ℵ2

(so in VP, 2ℵ0 ≤ ℵ2) and except in degenerated cases equality holds
(c) SYi = S∗i from 1.4(3)
(d) if in VPi we have (ϕ̄, η

˜
) is a case of Φ as in 1.6, moreover

Pi “{δ ∈ S∗i+1\S∗i : M i+1
δ [f ′′i (G

˜
Pi)]” |= “(ϕ̄, η

˜
) as required in 1.6”} ∈

D+
M̄ i+1

(even less with more bookkeeping) and Z ⊆ (ω2)VP is positive for
(ϕ̄, η), then
(α) {δ ∈ SYi+1\SYi : (ϕ̄, η

˜
δ)/GPi = (ϕ̄, η

˜
) and ν

˜
δ[GPi ] ∈ Z} ∈ D

+
M̄

,
in fact the set is forced to include such old set (from V) by this
we can get

(β) for some j > i, δ ∈ SYj+1\SY0
j ⇒ (ϕ̄, η

˜
δ)/GPi = (ϕ̄, η

˜
), ν

˜
δ[GPi ] ∈ Z

(e) if H is a pregiven function such that for every i < ω2 and (P,Y, M̄)
satisfying (Pi,Yi) ≤∗ (P,Y) ∈ IS such that SY = S∗i we have (P,Y) ≤∗
H(P,Y) ∈ IS such that H(P,Y, M̄) satisfies the demands from (a) +
(c) on (Pi+1,Yi+1, M̄

i+1), then we can demand (∃ℵ2j)[(Pj+1,Yj+1) =
H(Pj ,Yj)]; moreover, if S∗ ⊆ ω2 is stationary we can demand {j ∈
S : (Pj+1,Yj+1) = H(Pj ,Yn)} is stationary.
(Of course, we can promise this for ℵ2 such functions).

Proof. Put together the previous claims. (Concerning clause (e) without
loss of generality {i < ω1 : otp(C∗i ) = 0} is stationary) so in those stages we
have no influence of clause (e) of 1.10; anyhow the influence of 1.10(e) is
minor.

Discussion 1.16. We discuss here some possible extensions.

Claim 1.17. Assume 〈Si : i < ω2〉 is a sequence of pairwise almost disjoint
stationary subsets of ω1, each with diamond and i < j ⇒ Si ⊆ S+

j modDω1,
so S+

i ⊆ ω1 and Si ∩ S+
i = ∅ and S+

i /Dω1 is increasing with i.
Then in the following game the between the bookkeeper and the forcer, the

bookkeeper has a winning strategy.
A Play last ω2 moves, before the α-th move a sequence 〈(Pi,Qi, M̄

˜
i,Yi) : i <

α〉 is defined such that
(a) Pi a c.c.c. forcing notion of cardinality ℵ1, say ⊆ H<ℵ1(ℵ2)
(b) Qi is a Pi-name of a forcing notion of cardinality ≤ ℵ1, say ⊆ ω1

(c) Pi is l-increasing
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NON-COHEN ORACLE C.C.C. 15

(d) Pi+1,Pi ∗Q
˜
i are isomorphic over Pi

(e) M̄
˜
i is a Pi-name of an Si-oracle

(f) Y
˜
i is a Pi-name of a Si-commitment.

In the i-th move:
(a) the bookkeeper chooses Pi and a Pi-name (M̄

˜
+
i ,Y˜

+) of an S∗i -oracle
and 0-commitment

(b) the forcer choose Q
˜
i and (M̄

˜
i,Y

˜
i),Pi-names such that Q

˜
i satisfies

(M
˜

+
i ,Y˜

+
i ) and (M̄

˜
i,Y

˜
i).

In the end the bookkeeper wins if

i < j < ω2 ⇒ Pj/Pi satisfies (M̄
˜
i,Y

˜
i).

Proof. Similar to earlier proofs.

We give an easy criterion for existence. The following uses more from [4].

Claim 1.18. Assume
(a) (P,≤,≤n)n<ω is a definition of a forcing notion satisfying condition

A of Baumgartner with ≤n as witness and ZFC−∗ says this, in a way
preserved by suitable forcing

(b) Y = (S,Φ, η̄
˜
, ν̄) is a 0-commitment so Φ = 〈ϕα : α ∈ S〉

(c) P is absolutely nep such that for each α ∈ SY it is ≤n-purely IQϕ̄α -
preserving, i.e.
(∗) if M is a P-candidate and a Qϕ̄α-candidate, p ∈ PM , n < ω and

q ∈ (Qϕ̄α)M then for some p′, η, ν we have p ≤n p′ ∈ P, p′

is 〈M,P〉-generic and ν is (Qϕ̄α , η
˜
α)-generic over M satisfying q

(check def) and p′ P “ν is (Qϕ̄α , η
˜
α)-generic over M〈G

˜
P∩PM 〉”.

Then there is a c.c.c. forcing notion P′ ⊆ P (not necessarily P′lP) satisfying
the 0-commitment Y and P “for a club of δ < ω1, ϕ(ν

˜
, η
˜
∗
δ)”.

Remark. Why the ϕδ’s? We hope it helps, for example in the following;
suppose we are given f : R→ R, we like to force A ⊆ R which is not in IQϕ̄α
and on which the function f is continuous; i.e. to force a continuous f

˜
∗

such that {η ∈ ω2: f
˜
∗(η) = f(η)} ∈ (IexQ )+. So not only do we like to find

q  “ηδ is (Q
˜
δ, η

˜
δ)-generic over Mδ[G

˜
P]” but also q P′ “f

˜
(ηδ) = f(ηδ)”.

This is what ϕ̄ says. (On IQϕ̄α , IexQ see [4].)

Proof. We choose by induction on α < ω1, a pair (Pα,Γα) such that:
(α) Pα ⊆ P is countable
(β) Γα is a countable family of predense subsets of Pα
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16 S. SHELAH

(γ) if I ∈ Γα and p ∈ Pα and n < ω then for some q we have p ≤n q ∈ Pα
and I is predense above q in P

(δ) Pα is increasing continuous in α

(ε) Γα is increasing continuous in α.

Case 1: α = 0. Trivial.

Case 2: α = β + 1, β non-limit or (Pβ,Γβ) /∈Mβ.

Let (Pα,Γα) = (Pβ,Γβ).

Case 3: α limit.

Let (Pα,Γα) =
(⋃

β<α Pβ,
⋃
β<α Γβ

)
.

Case 4: α = δ + 1 where δ is a limit ordinal and (Pδ,Γδ) ∈Mδ.

We can find g ⊆ Levy(ℵ0, |P|)Mδ , generic over Mδ such that η∗δ is still
Qδ-generic over Mδ[g] (see [4, §6]).

In Mδ[g] we define P+
δ = {p : Mδ[g] |= p ∈ P and I ∈ Γα ⇒

I predense above p}, using the induction hypothesis, as in Mδ[g] the set
Γδ is countable, so:

(∗) for every p ∈ Pδ and n < ω there is p′ ∈ P+
δ such that P |= p ≤n p′.

Again by [4, §6] for every n < ω and p ∈ P+
δ , there is qp,n ∈ P such that

p ≤n qp,n ∈ P, qp,n is (Mδ[g],Q)-generic and qp,n P “νδ is a (Qδ, η
˜
δ)-generic

real over Mδ[g][G
˜
P]”.

Let Pδ+1 = Pδ ∪ {qp,n : p ∈ P+
δ and n < ω} and Γδ+1 = Γδ ∪ {Iδ} where

Iδ = {qp,n : p ∈ P+
δ and n < ω}. �1.18
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