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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 63, Number 2, June 1998 

DOP AND FCP IN GENERIC STRUCTURES 

JOHN T. BALDWIN AND SAHARON SHELAH 

?1. Context. We work throughout in a finite relational language L. This paper 
is built on [2] and [3]. We repeat some of the basic notions and results from these 
papers for the convenience of the reader but familiarity with the setup in the first 
few sections of [3] is needed to read this paper. Spencer and Shelah [6] constructed 
for each irrational af between 0 and 1 the theory Ta as the almost sure theory of 
random graphs with edge probability n -. In [2] we proved that this was the same 
theory as the theory T. built by constructing a generic model in [3]. In this paper 
we explore some of the more subtle model theoretic properties of this theory. We 
show that Ta has the dimensional order property and does not have the finite cover 
property. 

We work in the framework of [3] so probability theory is not needed in this paper. 
This choice allows us to consider a wider class of theories than just the Ta. The 
basic facts cited from [3] were due to Hrushovski [4]; a full bibliography is in [3]. 
For general background in stability theory see [1] or [5]. 

We work at three levels of generality. The first is given by an axiomatic framework 
in Context 1.10. Section 2 is carried out in this generality. The main family of 
examples for this context is described in Example 1.3. Sections 3 and 4 depend on 
a function 6 assigning a real number to each finite L-structure as in these examples. 
Some of the constructions in Section 3 (labeled at the time) use heavily the restriction 
of the class of examples to graphs. The first author acknowledges useful discussions 
on this paper with Sergei Starchenko. 

1.1. Notation. Let Ko be a class of finite structures closed under substructure 
and isomorphism and containing the empty structure. Let Ko be the universal class 
determined by K0. 

1.2. Notation. Let B n c = A. The free amalgam of B and C over A, denoted 
B 0A C, is the structure with universe BC but no relations not in B or C. 

We write A C,, B to mean A is a finite subset of B. A structure A is called discrete 
if there are no relations among the elements of A. Lets : Ko | * R+ (the nonnegative 
reals) be an arbitrary function with 6 (0) = 0. Extend 6 to d: Ko x Ko | * R+ by 
for each N C K0, 

d(NA) = inf{f(B): A C B Cc) N}. 

Received April 19, 1996; revised July 11, 1996. 
The first author was partially supported by NSF grant 9308768. 
This is paper 567 in Shelah's bibliography. Both authors thank Rutgers University and the Binational 

Science Foundation for partial support of this research. 

? 1998, Association for Symbolic Logic 

0022-481 2/98/6302-0007/$2.20 

427 

This content downloaded from 132.203.227.63 on Mon, 02 Nov 2015 12:55:26 UTC
All use subject to JSTOR Terms and Conditions

Sh:567

http://www.jstor.org/page/info/about/policies/terms.jsp


428 JOHN T. BALDWIN AND SAHARON SHELAH 

We usually write d (N, A) as dN (A). We only use this definition when 6 is defined 
on every finite subset of N. We will omit the subscript N if it is clear from context. 

For g = 6 or dN and finite A, B, we define relative dimension by g(A/B) 
g(AB) - g(B). For infinite B and finite A, d (A/B) = inf{d(A/BO): Bo c,, B}. 
This definition is justified in e.g., Section 3 of [3]. For any finite sequence a C N, 
dN(-a) is the same as dN(A) where -a enumerates A. 

Consider a finite structure B for a finite relational language L. We assume that 
each relation of L holds of a tuple -a only if the elements a are distinct and if R (-a) 
holds, R(W') holds for any permutation -a' of 'a. 

R (B) denotes the collection of subsets Bo = {bI . . . bn} of B such that for some 

(any) ordering b of Bo, B l= R(b) for some relation symbol R of L; e(B) = I R(B) 1. 
Let A, B, C be disjoint sets. We write R(A, B) for the collection of subsets from AB 
that satisfy some relation of L (counting with multiplicity if a set satisfies more than 
one relation) and contain at least one member of A and one of B. Write e (A, B) for 
IR(A, B) . Similarly, we write R(A, B, C) for the collection of subsets from ABC 
that satisfy some relation of L and contain at least one member of A and one of C. 
Write e(A, B, C) for IR(A, B. C) . 

1.3. Example. The most important examples arise by defining as follows. In the 
last section of [3] we enumerated several other examples to which this axiomatization 
applies. Let 

A,-(A) = PJAI - ce(A). 

We may write &, for 6 1, The class Ka is the collection of finite L-structures A such 
that for any A' C A, 6a (A') > 0. We denote by Ta the theory of the generic model 
of Ka. 

1.4. Axioms. Let N be in Ko and let A, B, C c Ko be substructures of N. 

1. If A, B, and C are disjoint then (C/A) > ?(C/AB). 
2. For every n there is an 8n > 0 such that if JAI < n and 6(A/B) < 0 then 

6(AIB) < -En 
3. There is a real number E independent of N, A, B, C such that if A, B, C are 

disjoint subsets of model N and (A/B)- (A/BC) < Ethen R(A, B, C) 0 
and 5(A/B) = 6(A/BC). 

4. For each A C Ko, and each A' C A, (A') > 0. 

We call a function d = dN derived from 6 satisfying Axioms 1.4 a dimension 
function. 

1.5. Lemma. If 6 is a dimension function satisfying the properties of Axiom 1.4 
and <s (read strong submodel) is defined by A <, N if dN(A) = dA(A), then <,, 
satisfies the following propositions. Let M, N, N' c Ko. 

Al. M <S M. 
A2. If M <s N then M C N. 
A3. M <s N' <s N implies M <s N'. 
A4. If M <? N, N' C N thenMnN'? <, N. 
A5. ForallM c Ko, 0 <, M. 
We need to analyze extensions which are far from being strong. 
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DOP AND FCP IN GENERIC STRUCTURES 429 

1.6. Definition. For A, B c S(Ko), A <i B if A C B but there is no A' properly 
contained in B with A C A' <s B. If A <i B, we say B is an intrinsic extension of 
A. 

1.7. Definition. The intrinsic closure of A in M, iclM (A) is the union of B with 
A C B C M and A <i B. When M is clear from context, we write A for iclM (A). 
The intrinsic closure can be more finely analyzed as follows. 

1. For any M C K, any m C co, and any A C M, 

icln?(A)=U{B:A?< B CM&lB-A <m}. 

2. 

iclm (A ) =U,,, icl" (A). 

3. M has finite closures if for each finite A C M, icl(A) is finite. 
4. K has finite closures if each M c K has finite closures. 

Using A4, note that the intrinsic closure of A in M is the intersection of the strong 
substructures of M which contain A. Thus, when finite, iclM (A) c Ko and is a 
strong substructure of M. Moreover, a countable M has finite closures if and only 
if M can be written as an increasing union of finite strong substructures. 

1.8. Definition. The countable model M c Ko is (Ko, <s)-generic if 

1. If A <s M, A <s B c K0, then there exists B' <s M such that B 'A B', 
2. M has finite closures. 

1.9. Fact. If (Ko, <s) satisfies the properties of Lemma 1.5 and the amalgamation 
property with respect to <s then there is a countable Ko-generic model. 

1.10. Context. Henceforth, (Ko, <s) is class of finite structures closed under 
isomorphism and substructure with <s induced by a function 6 obeying Axioms 1.4. 
Moreover, we assume (Ko, <s) satisfies the amalgamation property and K is the 
class of models of the theory of the generic model M of (Ko, <s). 4W is a large 
saturated model of T = Th(M). In the absence of other specification, the dimension 
function d is the function induced on 1 by 6 and we work with substructures of 

?2. Independence and orthogonality. As indicated in Context 1.10, the following 
definitions take place in a suitably saturated model elementarily equivalent to the 
generic. We work in that context throughout this section. 

2.1. Definition. We say the finite sets A and B are d-independent over C and 
write 

1. AId Bif 

(a) d(A/C) = d(A/CB). 
(b) ACnBCCC. 

2. We say the (arbitrary) sets A and B are d-independent over C and write A Jjf B 
if for every finite A' C A and B' C B, A' Id B'. 

The compatibility of the two definitions is shown, e.g., in Section 3 of [3]. The 
following is well known (cf. 3.31 of [3]). 
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430 JOHN T. BALDWIN AND SAHARON SHELAH 

2.2. Lemma. Suppose A, B and C = A n B are closed and A Jti B. Then AB is 
closed, i.e., AB =A U B. 

The equivalence of d-independence and stability theoretic independence was first 
proved in this generality in [3] but the basic setup comes from [4]. 

2.3. Fact. Suppose T satisfies Context 1.10. If C is intrinsically closed then for 
any A and B, A ic B if and only if A S" B. 

We give a different proof that is not as involved with the intricacies of amalgama- 
tion in the case without finite closures as the one in [3]. 

Suppose for contradiction that R(A, C, B) zh 0. Then for E chosen according 
to Axiom 1.4, 6(A/B) - 5(A/BC) > e. Now, construct a nonforking sequence 
(Ai, Bi) in tp(AB/C). Since A is not in the algebraic closure of BC, no AX is in the 
algebraic closure of the union of Bi for i < j. We will use this fact to show that the 
types pi = tp(Ai/CBi) are n-contradictory for some n. If not, for each n there is an 
A* which is common solution for, say P1,.. ., Pn. Fix n such that n E > (A/C). 
But 6(A*/BI,. . .Bn) < 6(A/C) - n - so this implies A C acl(CB1 .. . ,Bn) and 
this contradiction yields the result. The extension property for nonforking types 
and uniqueness suffice to deduce the converse from d-dependence implies forking 
dependence so we finish as in Lemma 3.35 of [3]. 

We extend our notion of dimension to a global real-valued rank on types. 
2.4. Definition. Let p c S(A). Define d (p) as d (a/A) for some (any) -a realizing 

P. 
2.5. Definition. Let PI, P2 C S(A). 

1. pI and P2 are disjoint if for any al, a2 realizing p1, P2, 
icl(A-al) n icl(Aa2) C icl(A). 

2. p1 c S(A) and P2 C S(B) are disjoint if any pair of nonforking extensions of 
p1 and P2 to AB are disjoint. 

2.6. Lemma. Let A c B, p C S(B) and p IA = q and suppose A is intrinsically 
closed. 

1. If d(p) < d(q) then p forks over A. 
2. q is stationary. 

PROOF (1) follows immediately from Fact 2.3; (2) is also proved in [3] (Lemma 
3.38). 

2.7. Lemma. Let A be intrinsically closed, P1, P2 C S(A). Ifp 1 and p2 are disjoint 
and d (pi) = 0 then p1 and p2 are orthogonal. 

PROOF. If not, there exist sequences al . . . ak and b, .. . b,.. of realizations of pi and 
P2 respectively, which are independent over A, such that a XA b. Since d(p1) = 0, 
d(-/A) = 0 and icl(A-a) n icl(Ab) 9 A. By Lemma 2.2, intrinsic closure is a trivial 
dependence relation. Since the ai and the bX are independent, this implies that for 
some i, j, icl(Aai) n icl(Abj) 7 A. But this contradicts the disjointness of P1 and 
P2 and we finish. 

The dimensional order property (DOP) and dimensional discontinuity property 
DIDIP are defined in [5]. Either of these conditions implies T has many models in 
uncountable powers. T has the eventually non-isolated dimensional order property 
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DOP AND FCP IN GENERIC STRUCTURES 431 

(eni-dop) if some type witnessing the dimensional order property is not isolated. 
This condition implies that T has the maximal number of countable models. Since 
Tog is not small for irrational al, this is not new information. However, the eni-dop 
seems to be a much more intrinsic feature of the construction than the smallness. 
(For precise definition see e.g., [1].) 

2.8. Theorem. Let Ko be a class satisfying Context 1.10. Let T be the theory of 
the generic modelfor (Ko, <?). Suppose further that there is a pair of independent 
points B = {x, y} and a nonalgebraic type p with d (p/B) = 0 but d (p/x) > 0 and 
d(p/y) > 0. 

1. The theory T has the dimensional order property. 
2. If p is not isolated the theory T has the eni dimensional order property. 
3. The theory T has the dimensional discontinuity property. 

PROOF. (1) Let A {a, b} where a and b are independent over the empty set. 
It suffices to show that there is a type p c S(A) with d (p) = 0 and such that if -c 
realizes p, c Ya b and c Xb a. For then we can construct an independent sequence 
of points ai and disjoint copies PiX over {ai, aX } which will be pairwise orthogonal 
by Lemma 2.7. The required type is constructed in Theorem 3.6. (2) follows by the 
same argument if p is not isolated. 

For (3) it suffices to find an independent sequence of sets Bn for n < co and 
p G S(B) where B = UBn such that p - Un<j Bn for each j. Choose Bn and 

Cn as described at the beginning of the proof of Theorem 3.6. Let B be the union 
for n < co of Bn = {Xn, Yn} with no relations on B. For each n, let fn map Cn to 
c, x to xn and y to Yn. Then B U {c} is as required. That is, d (t(c/B)) = 0 but 
d (t (c/ Un<m71BJ ) ) > O. 

?3. Constructing types of d-rank 0. We construct a nonalgebraic type p over a 
two element set with d (p) = 0. 

3.1. Context. We work with a class Ko of finite structures as in Example 1.3. 
Thus, (Ko, <?) witnesses Context 1.10. Recall that K is the class of models of the 
theory of the generic M, X is a saturated model of this theory, and S(K) is the 
universal class it determines. 

Finally, the af parameterizing the dimension function may be rational or irra- 
tional. This distinction affects only the question of whether the type with rank 0 is 
isolated and we discuss that when it arises. 

3.2. Definition. (Ko, <?) has the full amalgamation property if B n C = A and 
A <? B imply B (A C C KoandC <, BOA C. 

It is easy to check (Section 4 of [3]) that if (Ko, <?,) is closed under free amalga- 
mation then it has full amalgamation. 

3.3. Assumption. (Ko, <s) has thefiill amalgamation property. 

3.4. Examples. Each of the following classes is closed under free amalgamation. 

1. The class (Ka, <s) of all finite L-structures A withal,, (A) hereditarily positive. 
The resulting theory is co-stable if af is rational and stable if af is irrational. 

2. The class yielding the stable 8o-categorical pseudoplane of [4]. 

The main aim of this section is to establish the following result which leads easily 
by Theorem 2.8 to showing the theory of the generic model X has DOP and DIDIP. 
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432 JOHN T. BALDWIN AND SAHARON SHELAH 

3.5. Definition. We say C is a primitive extension of B if B <S C but there is no 
B' properly between B and C with B' <s C. 

3.6. Theorem. There exists a triple {x, y, c} c XW such that B {x, y } is an 
independent pair over 0 and d(c/xy) 0 but d(c/x) > 0, d(c/y) > 0 and c 
acl(x, y). 

PROOF. Fix a discrete structure B with universe {x, y}. We will construct a family 
((Cn , xn y Yn , Cn) : n < co) of structures in Ko which satisfy the following conditions. 
Let Bn {x= n,Yn}. The inequalities in the following discussion automatically 
become strict inequalities if a is irrational. 

1. 0 < 6 (Cn IBn) <I In. 
2. (xt1, Yn,, Cn) is a discrete substructure of C,1. 
3. C,, is a primitive extension of B,. 
Now map each B,, to B and amalgamate the images of the Cn disjointly over B. 

Then identify all the c,, as c to form a structure A. Without loss of generality we 
can assume A is strongly embedded in X. Thus, iclf(cB) = A. Then d (c/B) = 0 
but d (c/x) and d (c/y) are both at least one. Thus c /, xy and c X, xy. Since 
6(Cn/Bn) > 0, for every n, c 0 acl(B). 

3.7. Remark. If al is irrational, all the C,, are necessary and tp(c/xy) is nonprin- 
cipal. If al is rational, for some n, 6(Cn/Bn) = 0. (We expand on this remark after 
Observation 3.9.) The type is principal but still not algebraic since in this context 
there are infinitely many copies (in a generic) of a primitive extension with relative 
dimension 0. 

The construction of the Cn follows a rather tortured path. We first need to 
consider structures with negative dimension over B. 

3.8. Definition. Let v = s, be the class of structures of the form (A, a, b, e) 
which satisfy the following conditions. Let B be the structure with universe {a, b} 
and no relations. 

1. A C K0. 
2. {a, b, e} is the universe of a discrete substructure of A. 
3. For each A' with B C A' and A' properly contained in A, (A') > (A). 
4. -1 < 6(AIB) < 0. 

3.9. Observation. 

1. The choice of 6 as 6, makes v depend on al. 
2. If the last three conditions are satisfied, the first is as well. 
3. The last condition implies that 6 (A/a) > 0 and 6 (A/b) > 0. 

We first show that the set 

X = X- = {fi: = 6(A/{a, b}) for some (A, a, b, e) c 58} 

is not bounded away from zero. If al is irrational, 0 0 X so X is infinite. If a = p/q 
is rational, every element of X has the form (mq - np)/q so there cannot be an 
infinite sequence of members of X tending to 0. That is, there will be an A with 
6(A/B) = 0. As indicated X depends on al (through 6 = , and v = But 
the bulk of the proof is uniform in al, so to enhance readability we keep track of al 

only for that part of the proof where the dependence is not uniform. 
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DOP AND FCP IN GENERIC STRUCTURES 433 

3.10. Construction. There are two elementary steps in the construction. It is easy 
to check that if the constituent models described here are in Ko, then so is the result. 

1. If a(A/B) = P and P c X, and A* is the free amalgam over B of k copies of 
A, then (A*/B) = k/i. 

2. Let (Al, al, bI, cl) and (A2, a2, b2, c2) be in O. Let A* be formed by identifying 
b, and a2 and freely amalgamating over that point. 

3.11. Lemma. If / > -1/k and / c X then k/i c X. 

PROOF. Use Construction 3.10 (1). 

It is straightforward to determine the following properties of the second construc- 
tion. 

3.12. Lemma. Suppose (AI/{a1,b}) I PI, (A2/{a2,b2}) = /2 and /l,/i2 C 

X. Let A* be formed as in Construction 3.10 (2). 
1. 6(A*1faI, b2j) = PI1 + P2 + 1. 

2. If -2 < PI1 + ,B2 _< -I then PI1 + B2 + 1 E X and (A*,I al, b2, cl ) C v/ 

3. If-1 /<-I + H/2 <-1 + i/n then 
(a) 0 < ?(A*/{al, b2}) < I/n. 
(b) 6(A*/al) > 1 and6(A*/b2) > 1. 

PROOF. The key observations for (1) and thus (2) and (3a) is that for any B C 
Al C A*, 

6(A'/{al, b2}) = (A' n A/{all,bl}) +(A' n A2/{a2, b2}) + 1. 

For (3b) we need the further remark: 

6(A'/al) = 6(A'/b2) )= (A'/{al, b2}) + H- 

3.13. Lemma. If L contains a single binary relation and K0 = Ka, then X is not 
empty. 

PROOF. It suffices to show that each s, is nonempty for 0 < al < 1. The 
construction is somewhat ad hoc and proceeds by a number of cases depending on al. 
Thus to establish Lemma 3.13 we will use the notations sf, 6. These constructions 
are very specific to graphs. The second author has an alternative argument which 
avoids the dependence on al. However, it passes through hypergraphs and has its 
own computational complexities. 

3.14. Case 1. 3/4 < al < 1: Let A1 be the structure obtained by adding to 
{a, b, e} two points b1, b2 such that b, is connected to a and e while b2 is connected 
to b and e. Then 

-1 < ,(A1/B) = 3-4 a < 0 

for the indicated Ol and (Al, a, b, e) c Oa. 
3.15. Case 2. 2/3 < al < 4/5: Let A2 be the structure obtained by adding 

to {a, b, e} two points bl, b2 such that bi is connected to a, b, and e while b2 is 
connected to b and e. Then 

-1 < a(A2/B) = 3-5c5 < 0 

This content downloaded from 132.203.227.63 on Mon, 02 Nov 2015 12:55:26 UTC
All use subject to JSTOR Terms and Conditions

Sh:567

http://www.jstor.org/page/info/about/policies/terms.jsp


434 JOHN T. BALDWIN AND SAHARON SHELAH 

for the indicated al and (A2, a, b, e) C sa,. 
3.16. Case 3. 0 < al < 2/3: Let A,,k be the structure obtained by adding to 

{ a, b, e} both n points al,... , an such that each ai is connected to a, b, and e and 
k points bl,... ., bk such that each bi is connected to all the aj. 

Then 6(An,k/B) = n + k + 1 - (nk + 3n)a. We say al is acceptable for n and k 
if the following inequality is satisfied. 

_n-Ik-i- n-kH-2_ 
nk = k + 3n < n< k + 3 = nk. 

To show that if al is acceptable for n and k, then (Ank a, b, e) C 5 we need 
several claims. 

3.17. Claim 1. For each k, 
1. Un7+1,k > n,k, 
2. fn+1,k <4,k, 

3. limn ,oo 4e = 1/(k + 3). 
Claim 1 is established by routine computations. 
3.18. Claim 2. For every al that is acceptable for n and k, if B C A' C AnAk, 

;a(A'/B) > 6a(Ank/B). 
To see this, note that any such A', for some m < n and ? < k, either A' has 

the form Amne or the form Bm,e, where Bm,e is the structure obtained by omitting 
the element e from Amne. Now note that if 6a(Bme/B) < 0 then 6a(Bn,e/B) > 
6a(Bm+i,e/B) and 6a(Bmie/B) > 6a(Bmie+I/B). The same assertion holds when 
Am,e is substituted for Bn1,e. Finally, 6 (Bn,k/B) > 6 (An,k /B). These three obser- 
vations yield the second claim. 

From these two claims we see that for each al, there is a pair n, k with An,k C a - 
The remainder of the argument does not depend on al so we return to the use of the 
notation X and a. 

3.19. Lemma. For every n there is an element ,6 of X with f > -1/n. 

PROOF. If not, fix the least n such that all elements of X are at most -1 /(n + 1) 
and fix P6o c X with -1/n < P6o < -1/(n + 1). (If P0 = -1/(n + 1), 1i = 0 
and we finish.) Define by induction ,e+ = (n + l)/h? + 1. Combining the two 
elementary steps we see that each Pie c X. Let /& be the distance between -1 /n and 

/Pi. That is, Pi = |-1 /n - pi I 1/n + Pie. Now /Pi < -1/(n + 1) if and only if 

pi/ < 1(n)(n +1). 
But 

fle?, = l/n + (n + l)/hi + 1 = (n + 1)/Li. 

So 

.e=(n + t,. 

As Po' > 0, for sufficiently large X, pi' > 1/(n)(n + 1) so Ple > -1/(n + 1) as 

required. 

With a few more applications of our fundamental constructions, we can find the 

Cn needed for Theorem 3.6. 
By applying Construction 3.10 (1) and Lemma 3.19 for any n, and i = 1, 2 we 

can find (A nxlnylncln) and (A nXnynCn) containing Bi {x7,yi} such that 
{x, yn CI} is discrete and 6 (AX /Bin) = f with-1 < fjn + Hn <-1 + 1/n. 
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To construct A', choose using Lemma 3.19 a (D', xl, y"2, c~l) c s with -1/n < 
a(D n/B1 ) < 0. Take an appropriate number, k, of copies of D n over B" and apply 
Construction 3.10 (1) to form A" with 

-1 < ks(Dn/Bl ) =6 (A7/B11) = P" <-1 + 1/n 

and choose cl C Al so that (xl, yj, cl) is discrete. By Lemma 3.19 again choose 
(A nI x~n yn, ~ C v with 

_(pn + 1)/2 < 6(A n1B n) = ,Bn < O. 

Now apply Construction 3.10 (2) to (Al, xl, yn, cl ) and (As, xnI ye, IC") to form 
(Cn, Xn, yn, Cn) where xn = xl, yn = y n, and C,7 = cl. Denote {xn, y4} by Bn. Then 
0 < 6(Cn/Bn) =1 -+ / + H n < 1 /n. Each Cn contains a discrete set {X/7 I y, c,7} 
and the third property of the Cn follows using the second part of Lemma 3.12. This 
completes the construction of the type of d-rank 0. 

Using the argument for constructing Al, we easily show the following density 
result. 

COROLLARY 3.1. For any y, 6 with-I < y < 5 < 0 there is a (D, a, b, e) C as with 
y < 6(Dlf a, bl) < 6. 

The restriction to one-types in the following lemma is solely for ease of presenta- 
tion. 

3.20. Lemma. Suppose A C M F To, is intrinsically closed and P1, P2 C S1 (A) 
are disjoint. If O < d (pi) for i = 1, 2 then P1 Y P2. 

PROOF. Clearly if pi and P2 are not disjoint or if there is an edge between real- 
izations of the two types, they are not orthogonal. Let al, a2 realize PI, P2 and sup- 
pose for contradiction that P1 and P2 are orthogonal and d (a Ia2/A) = d (a I/A) + 
d(a2/A) = f > 0. In particular, there is no edge linking a, and a2. By Lemma 
3.25 of [3] there are finite A 1 D al a2 and AO C A with ,6 < y = 6 (A 1 /Ao) < f + 1. 
Lemma 3.1 allows us to choose a finite B D {al, a2} with 

-1 < S(B/{ai, a2}) < A-y < 0- 

Then Ba1a2 is in Ko. By full amalgamation we can freely amalgamate B with 
AAI over {ai,a2} inside XW. Then d(ala2/A) < (AIB/Ao). Note (B/AIAo) = 
6(B/{al, a2}) < f-y. So 

6 (A 1 BAo) = 6 (BIA 1Ao) + (A I Ao) < P. 

This contradicts d (a Ia2/A) = P so we conclude P1 I P2 

Using the Lemmas 2.7 and 3.1 it is easy to see 

COROLLARY 3.2. In T, 

1. For disjoint Pi, P2, PI I P2 if and only if d (pi) = or d (P2) = 0 
2. Every regular type satisfies d (p) = 0. 

Our construction yields some further information. 
3.21. Definition. The type p c S(A) is minimal if p is not algebraic but for any 

formula q$(x, b) either p U {q$(x, b)} or p U {-iq$(x, b)} is algebraic. 
3.22. Definition. The type p c S(A) is i-minimal if for every -a realizing p, if 

C 
., 

ilAa,_ *c( c 
., , 

icl*A., a, 
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436 JOHN T. BALDWIN AND SAHARON SHELAH 

3.23. Theorem. If p is constructed as in Lemma 3.6 then p is minimal and trivial. 

PROOF. If d (p) = 0 and p is i-minimal then p is minimal. We constructed p so 
that d (p) = 0 but the fact that each C,, is primitive over B and A is intrinsically 
closed guarantees that p is i-minimal and we finish. 

Clearly, d(p) = 0 does not imply p is minimal. For, if d(a/A) = d(b/A) = 0 
then d(ab/A) = 0 but if, for example, a and b are independent tp(ab/A) is not 
minimal. 

?4. The finite cover property. In this section we show that for classes as described 
in Example 1.3 with the full amalgamation property, and in particular for (K,, <?s), 
the theory of the generic does not have the finite cover property We rely on the 
following characterization due to Shelah [5, 11.2.4]. 

4.1. Fact. If T is a stable theory with the finite cover property then there is a 
formula 0 (x, y, ) such that 

1. For every c, q(c, y, z) defines an equivalence relation. We call this relation 
c-equivalence. 

2. For arbitrarily large n, there exists c,, such that the equivalence relation defined 
by 0(-,, -, i) has exactly n equivalence classes. 

Here is some necessary notation. 
4.2. Definition. Let A, B be finite substructures of M with A C B then 

1. XM(B/A) is the number of distinct copies of B over A in M. 
2. XA (B/A) is the supremum of the cardinalities of maximal families of disjoint 

(over A) copies of B over A in M. 

4.3. Definition. (A, B) is a minimal pair if (B/A) < 0 and for every B', with 
A C B' C B, (B/A) < 6(B'/A). 

The next result is proved in [3]. 
4.4. Fact. There is a function t taking pairs of integers to integers such that if 

A ?o B then for any N c K and any embedding f of A into N, ZN (f B/fA) < 
t( AI, IBI). 

There is an easy partial converse to this result. 
4.5. Lemma. For any M c K0, if Z4*j(B/A) > t(IA , IB ) then A <s B. 

PROOF. Suppose some B' with A C B satisfies A <i B'. Then there are more 
than t (IA A, I B I) disjoint copies of B' over A in M contradicting Fact 4.4. 

We also need the finer analysis of the intrinsic closure carried out in [2]. In fact, 
this argument depends on the slightly finer notion of a semigeneric which is defined 
in [2]. The crucial facts from [3] and [2] are the following. 

4.6. Fact. If (Ko, ?s) satisfies Context 1.10 and has the full amalgamation prop- 
erty then the theory of the generic T satisfies 

(1) All models of T are semigeneric. 
(2) T is stable. For any formula 0q(xl ... x,.) there is an integer f = fo, such that 

for any semigeneric M E K and any r-tuples a and -a' from M if icl" (a) e icl" (a') 
then M l 0(a) if and only if M l (). 
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4.7. Theorem. Let the language L contain only binary relation symbols. If (Ko, <) 
satisfies Context 1.10 and has the full amalgamation property then the theory of the 
generic T does not have thefinite cover property. 

PROOF. Suppose not. We know T is stable so there is a formula b satisfying the 
conditions of Fact 4.1. Each model of T is semigeneric. Choose f = to as in Fact 4.6 
so that the isomorphism type of iclm (c, a, b) determines the truth of 0 (c, a, b) for 
any triple of -c, a, b of appropriate length. For any n choose m sufficiently large 
with respect to the maximal cardinality of iclm (c, a, b) and n so that applying the 
pigeonhole principle and Ramsey's theorem we can choose -c} so that the (Kai : i < n) 
are pairwise c, -inequivalent and for i < n letting Ai = icle1 (c, ai) and C = iclm (c) 
the following property P (C) holds. 

1. foralli,jAi -c A1 
2. for i < j, AoA1 -c AiA1. 

If n > t(k, IAO)! for k < JAoJ, applying the A-system Lemma we can find C 
with C C C C AO such that (without loss of generality) the Ai are disjoint over 
C. By appropriate choice of n, depending only on JAo0, JCJ, we may assume 
that p(C) holds. By Fact 4.5, C <?, AO. We claim in fact that the structure im- 
posed on AoAI is AO 0X Al. If not, R(AO, CAl) is nonempty. Let Ei denote 
the substructure of M with universe U1<i Aj. By Axiom 1.4 (3) for sufficiently 
large k, 5(Ak/Ek) < 0. There is a minimal pair (Ej,,A') with E13 C Ek and 
A4 C Ak. But then for each j > k there is a copy A'1 of A'4, contained in 

Aj and isomorphic to A' over Ek (since the language is binary). This contra- 
dicts the bound on the number of copies of a minimal pair, Fact 4.4. Thus we 
establish the claim. But now we have Ei+I Ei ?c AO. Since (Ko, <s) has 
full amalgamation, this construction can be carried on indefinitely. But the def- 
inition of fo guarantees that the 'ai represent distinct -c-equivalence classes and 
this contradicts the hypothesis that there are only finitely many -c-equivalence 
classes. 

4.8. Conclusion. The arguments in the paper are fully worked out only for lan- 
guages with binary relation symbols. For Section 4, this is just a matter of easing 
notation; slight modifications of the argument work for any finite relational lan- 
guage. The combinatorial arguments in Section 3 are sufficiently complicated that 
the proof is the general case is less clear. But it would be quite surprising if the 
restriction to a binary language is actually necessary. 
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