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THE DECISION PROBLEM FOR BRANCHING TIME LOGIC12 

YURI GUREVICH3 AND SAHARON SHELAH 

Abstract. The theory of trees with additional unary predicates and quantification over 
nodes and branches embraces a rich branching time logic. This theory was reduced in the 
companion paper to the first-order theory of binary, bounded, well-founded trees with 
additional unary predicates. Here we prove the decidability of the latter theory. 

Contents. 
Introduction 668 
§1. Partial elements and finite fragments of theories 670 
§2. Well-ordered chains with additional unary predicates 672 
§3. A composition theorem for trees 675 
§4. Tree automata 676 
§5. The emptiness problem 679 
References 681 

Introduction. The main result of this paper plus the companion paper [GS] is the 
decidability of the theory TREE of trees with additional unary predicates and 
quantification over nodes and branches. Here a tree is an arbitrary partial ordered 
set such that for every element x the subset {y: y < x] is totally ordered. Elements of 
a tree are called nodes. Maximal totally ordered subsets of a tree are called branches. 

Formally speaking, the language of TREE is the monadic second-order language 
(with equality) of trees with additional unary predicates. It has individual variables 
v0, f i,... and unary predicate variables K0, Vx,.... Its nonlogical symbols are the 
binary predicate symbol < and unary predicate constants P0, Pt, .... Formulas 
vt = Vj, vt < Vj, Vi(Vj), Pi(vj), Vi = Vj are the atomic formulas of the language. The 
rest of the formulas in the language are built from the atomic formulas by means of 
the usual Boolean connectives and the usual quantifiers V, 3 for individual as well as 
unary predicate variables. 

Let 0 be a sentence (a formula without free individual or unary predicate 
variables) in the language of TREE, and let Ph,...,Pik be the unary predicate 
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THE DECISION PROBLEM FOR BRANCHING TIME LOGIC 669 

constants of <j>. The sentence 4> is a theorem of TREE if it holds in every tree T with 
unary predicates Ph,,.., Pik when the unary predicate variables of (f> range over all 
branches of T. As usual, the decision problem for TREE is the problem of finding an 
algorithm which, given a sentence </> in the language of TREE, decides whether <j> is a 
theorem of TREE or not. 

The decision problem for a rich branching time logic reduces to the decision 
problem for TREE. As a matter of fact TREE is used to define the semantics of 
branching time logic. In this connection John Burgess posed to us the decision 
problem for TREE. In the companion paper [GS] we illustrate the relation between 
TREE and branching time logic, and reduce the decision problem for TREE to the 
decision problem for the first-order theory of binary, bounded, well-founded trees 
with additional unary predicates. 

Let us recall the necessary definitions from [GS]. We imagine our trees growing 
upward. If x < y are nodes of a tree and there is no node z with x < z < y then x is 
the father of y and y is a son of x. A tree is called binary if no node has more than two 
sons. A branch of a tree is bounded if it has a maximal node (a leaf). A tree is bounded 
if all its branches are bounded. 

Our definition of well-founded trees is a little more restrictive than the usual one. 
We say that a tree is well-founded if 

(i) for every node x the subset {y: y < x} is well ordered, and 
(ii) every pair of nodes has a greatest lower bound. 
Note that every well-founded tree has a least node (the root). 
REMARK. The additional unary predicates of a tree were called colors in [GS]. In 

this paper the term "color" is reserved for a different purpose. In other respects the 
terminology here is compatible with that of [GS]. 

The main result of this paper is the decidability of the first-order theory of binary, 
bounded, well-founded trees with additional unary predicates. This paper can be 
read independently of [GS]. In the rest of the paper all trees are binary and well-
founded if the contrary is not stated explicitly. 

Even though we deal in this paper with (formally) first-order theories, our 
methods are typical for dealing with monadic second-order theories. See the survey 
[Gu] in this connection. This paper is distinguished by an interaction of the 
automata method and the composition method. Neither of the two methods is used 
too deeply here, but their interaction is somewhat nontrivial. 

In §3 we introduce tree automata. In §4 we reduce the decision problem for the 
first-order theory of bounded trees with additional unary predicates to the 
emptiness problem for tree automata. The reduction proceeds essentially by 
induction on the given first-order formula. (Actually, we deal with so-called 
n-theories rather than formulas.) Since we do not quantify unary predicate symbols 
(another way to put it is that they are quantified universally but not existentially), we 
are forced to move negations in all the way to atomic formulas and to deal directly 
with the case of the universal quantifier. In §3 we prove a composition theorem for 
trees which allows us to treat the case of the universal quantifier. In §5 we prove the 
decidability of the emptiness problem for tree automata. 

Monadic second-order theories form a better frame for composition theorems 
[Sh or Gu] than first-order theories. The reason is that subsets are easier to split 
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670 YURI GUREVICH AND SAHARON SHELAH 

than elements. For example, let C be the concatenation A + B of linear orderings A 
and B. A subset X of C naturally splits into A n X and B n X, whereas an element 
of C does not split that easily. In order to deal with this difficulty we introduce 
partial elements in §1. 

Finally, let us note that the theory of arbitrary (not necessarily binary or well-
founded) trees with additional binary relations of type node-branch and quantifica
tion over nodes and branches is undecidable. This theory provides semantics for 
branching time logic which allows atomic sentences whose truth-value may depend 
on the future (e.g. "There will be a naval battle tomorrow"). We sketch briefly the 
undecidability proof. 

The idea is to interpret a finitely axiomatizable undecidable arithmetic on the 
nodes of a distinguished branch B. Every triple R = (Ri,R2,Ri) of node-branch 
relations gives a ternary relation Rl on B as follows: 

(x1,x2,x3) e Rl if and only if there is a branch Y with {xh Y) e Rt for i = 1,2,3. 
It remains to check that on a certain tree (on the tree of lexicographically 

ordered binary words) we can define addition and multiplication on B this way. 

Acknowledgements. We thank John Burgess for posing to us the question of 
whether TREE is decidable. We thank Andreas Blass for useful comments. 

§1. Partial elements and finite fragments of theories. In order to prove com
position theorems for fragments of first-order theories (see §§2 and 3) it is convenient 
to deal with partial elements. In this section we introduce partial elements and adjust 
the well-known notion of n-theory to the case of partial elements. 

DEFINITION. A partial element of a structure S is an element of S or the word NIL. 
We consider only those structures which do not contain the word NIL as an 
element. To stress that an element x of S differs from NIL we will sometimes say that 
x is an actual element of S. 

Recall that the vocabulary (signature, similarity type) of a structure is the set of 
nonlogical constants of the structure. (The equality sign is a logical constant. It does 
not belong to any vocabulary.) In this paper vocabularies are finite and consist of 
predicate symbols and distinguished partial elements. It will be convenient for us to 
view the distinguished partial elements as a list rather than a set. This way we need 
not care about the names for distinguished partial elements. 

Introducing partial elements allows a liberal definition of substructures. Let S be a 
structure whose partial distinguished elements are xx,..., x,. With each nonempty 
subset A of S we associate a substructure of S with universe A. The basic relations of 
the substructure are of course the basic relations of S restricted to A. The partial 
distinguished elements of the substructure are yl,...,yh where y,- equals x; if x, 
belongs to A and yt equals NIL otherwise. 

NOTATION. If S is a structure of a certain vocabulary a and x = (xl,...,xl) is a 
tuple of / partial elements of S then (S, x) is a structure whose vocabulary is an 
extension of a by / distinguished partial elements. 

DEFINITION. Let S be a structure of some vocabulary a which consists entirely of 
predicate symbols. Let x be a tuple (xx,..., x,) of partial elements of S. The 0-theory 
Th°(S,3c) of the structure (S,x) comprises: 
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THE DECISION PROBLEM FOR BRANCHING TIME LOGIC 671 

(i) the atomic formulas P(vh,...,i>,J where Pea,i <il,...,ik<l, every x(j is an 
actual element of S and P(x,,,...,xik) holds in S, 

(ii) the atomic formulas vt — Vj, where x, and Xj are the same actual element of S, 
and 

(iii) the atomic formulas vt = NIL, where x; is NIL. 
DEFINITION. The (n + l)-theory Th" + \S) of a structure S is the set {Th"(S, x): x 

eS} . 
Note that x ranges over the actual elements of S in this definition. 
DEFINITION. TWO structures A and B of the same vocabulary are n-equivalent if 

Th"U) = Th"(B). 
Ultimately we are interested in the first-order theory of structures without 

distinguished partial elements. 
LEMMA 1. There is an algorithm with the following property. Let a be a vocabulary 

comprising only predicate symbols. Let (pbea first-order a-formula of quantifier depth 
<n with k free individual variables. Let S be a a-structure and x be an l-tuple 
(*!,...,Xj) of distinguished partial elements of S such that x^,...,^ are actual 
elements. Given Th"(S, x) and (J j , . . . , ik), the algorithm computes whether (j>(xii,...,xik) 
holds in S. 

PROOF. The desired algorithm is defined by an easy recursion in n. # 
DEFINITION. Let a be a vocabulary. The (0, l)-box for a is the set of 0-theories 

Th°(S,x), where S is a (T-structure and x is an /-tuple of partial elements of S. The 
(n + 1, l)-box for a is the power set of the (n, / + l)-box for a. 

LEMMA 2. There is an algorithm which, given a, n and I, computes the (n, l)-box for a. 
There is an algorithm which, given any member t of the (n, l)-box for a with n> Qorl 
> 0, computes a, n and I. 

The proof is easy. # 
LEMMA 3. There is an algorithm with the following property. Let S be a structure, 

x0 = NIL, (x!, . . . , xk) a tuple of partial elements of S, and f a function from some 
{1,...,/} to {0,1, . . . , k}. Given Thn(S,xl,...,xk), the algorithm computes 
7h"(S,xn,...,xft). 

PROOF. An easy recursion in n. # 
LEMMA 4. There is an algorithm which, given any Th" + 1(S), computes Th"(S). Hence 

there is an algorithm which, given any Th"(S), computes Th°(S). 
PROOF. Pick any Th"(S,x) in Th" + l(S) and use the algorithm of Lemma 3 to get 

rid of x. # 
LEMMA 5. There are two algorithms with the following properties respectively. Let 

a+ be the extension of a vocabulary c by an additional predicate symbol P,S+ beao+-
structure, and S the a-reduct of S + . Given Th"(S + ), the first algorithm computes 
Th"(S). Suppose that P is expressible by a quantifier-free a-formula (p in S+. Then, 
given Th"(S) and <p, the second algorithm computes Th"(S + ). 

PROOF. The desired algorithms are defined by an easy recursion in n. # 
REMARK 1. The algorithms of Lemmas 1 and 3-5 are defined for arbitrary 

members of the appropriate boxes, not only for genuine n-theories. In particular, the 
algorithm of Lemma 4, given any member of the (n + 1, /)-box for some a, computes 
a member of the (n, /)-box for a. 
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672 YURI GUREVICH AND SAHARON SHELAH 

§2. Well-ordered chains with additional unary predicates. This section is auxiliary. 
We analyze the first-order theory of well-orderings with additional unary predicates 
and essentially reprove the classical result [DMT] about the decidability of that 
theory. Our technique is not a novelty either. The decidability of richer theories was 
proved by similar techniques; see the survey [Gu] in this connection. However, the 
specific result that we need (Theorem 1 below) is not in the literature, and we prove it 
here. 

Let a be a vocabulary comprising the binary predicate symbol < and finitely 
many unary predicate symbols. In this section a chain is a a-structure which is a 
(total) well-ordering with respect to < . 

DEFINITION. A chain with / distinguished partial elements will be called an l-chain. 
DEFINITION. Let C be a chain and x be an /-tuple (x j , . . . , x,) of partial elements of 

C. The color of an element y of the /-chain (C, x) is the 0-theory of the singleton 
substructure {y} of C. 

LEMMA 1. There is a uniform in a algorithm with the following property. Let Cbea 
singleton l-chain. If at least one of the I distinguished partial elements is the actual 
element of C then, given Th°(C) and n, the algorithm computes Th"(C). If I = Oorl > 0 
but all I distinguished partial elements are equal to NIL then, given n and the color of 
the unique element of C, the algorithm computes Th"(C). 

The proof is clear. # 
DEFINITION. Let A be a subchain of a chain C. For every partial element x of C we 

define the projection x \ A of x into A. If x e A then x | A = x; otherwise x | A = NIL. 
If x is a tuple (xl,...,xl) of partial elements of C then x\A is the tuple 
(xj | A,... ,x, | A). With respect to §1 the /-chain (A,x \ A) is a substructure of the /-
chain (C, x). If A is a segment (initial segment, final segment) of C then (A,x | A) is a 
segment (initial segment, final segment) of (C, x). 

DEFINITION. An /-chain C is a sum of /-chains A and B if C can be split (partitioned) 
into an initial segment isomorphic to A and the corresponding final segment 
isomorphic to B. If C is a sum of A, B we write A + B = C. 

LEMMA 2. There is an algorithm PLUS with the following property. If A, B, C are l-
chains and A + B = C then 

Th"(,4)PLUSTh"(B) = Th"(C). 

We will use an alias + for PLUS. 
PROOF. The algorithm PLUS is defined by recursion in n. The case n = 0 is 

obvious. 
Thn + 1(C) is the union of the sets {Th"(C,x): x e A} and {Th"(C,x): x e B}. The 

first set is 

{Th"(A,x) + Th"(B,NIL): x e A} = {t + Th"(B,NIL): t e Th" + 1(A)}. 

(Use the algorithm of Lemma 3 in §1 to compute Th"(B,NIL) from Th"(B).) The 
second set is computed similarly. # 

DEFINITION. Let a be a nonzero ordinal, and let A be an /-chain. An /-chain C is an 
a-multiple of A if C can be partitioned into a successive segments isomorphic to A. It 
is easy to see that if a > 1, then A has a-multiples iff all / distinguished partial 
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elements of A are equal to NIL. All a-multiples of A are isomorphic. This justifies the 
notation a • A for a-multiples of A. 

LEMMA 3. Let A be an l-chain with all I distinguished partial elements equal to NIL. 
For every integer k>2" the l-chains k • A and 2" • A are n-equivalent. 

PROOF. Use Ehrenfeucht games [Eh]. The lemma obviously reduces to the case of 
singleton A, which was treated e.g. in the lemma of §1 of [Gu2]. # 

DEFINITION. Suppose that A is an /-chain such that 2 • A (exists and) is n-equivalent 
to A. An unbounded /-chain C is a pseudomultiple of A with respect to n if it has a 
cofinal set D such that D contains the first element of C and for every pair x < y of 
elements of D, the segment [x, y) of C is n-equivalent to A. 

LEMMA 4. There is a uniform in a algorithm with the following property. Let A be an 
l-chain with A + A n-equivalent to A. Given Th"(A), the algorithm computes the n-
theory of any pseudomultiple of A with respect to n. Hence all pseudomultiples of a 
given l-chain with respect to n are n-equivalent. 

PROOF. The desired algorithm is recursive in n. The case n = 0 is trivial. In order to 
deal with the case of n + 1 let C be a pseudomultiple of A with respect to n and let D 
£ C witness that C is a pseudomultiple of A with respect to n. For every x e C select 
an initial segment Ax = [c,d) of C, where c = min(C) and x < de D. The corre
sponding final segment Cx = \d, oo) is a pseudomultiple of A. Then 

Th"+1(C) = {Th"(C,x): x e C} = {Thn(Ax,x) + Th"(C„ NIL): x e C ) 

= {t + Th"(C,NIL):teTh" + 1(/l)}. # 

LEMMA 5. There is a uniform in a algorithm MULT with the following property. Let 
A be an l-chain with all I distinguished partial elements equal to NIL. Then 

MULT(ThV)) = Th"(co • A). 

PROOF. Use the algorithm PLUS of Lemma 2 to compute the n-theory of 
B = 2" • A. By Lemma 3, B + B is n-equivalent to B. Use the algorithm of Lemma 4 
to compute the n-theory of co • B, i.e. of co • A. # 

We write co • Th"(/4) for MULT(Th"(/4)). 
LEMMA 6. For every n, every l-chain C is n-equivalent to an l-chain of ordinal type 

<u>a. 
PROOF (by induction on the ordinal type a of C). The only interesting case is 

when a is limit. By Theorem 1.1 in [Sh], there is a cofinal D ^ C such that for all x 
< y in D the segment [x, y) of C is n-equivalent to a fixed /-chain A. Thus C has a 
final segment which is a pseudomultiple of A with respect to n. By Lemma 4 this final 
segment can be replaced by a> - A. Thereafter both the corresponding initial segment 
and each copy of A can be replaced by /-chains of ordinal type < <yro. # 

DEFINITION. Let C be an /-chain. An element x of C is an n-leader in C if there is no 
y < x such that the final segments [x, oo) and [y, oo) of C are n-equivalent. 

DEFINITION. Let C be an /-chain. If x is the maximal element of C then x is an n-
preleader. A nonmaximal element x of C is an n-preleader of C if x is an n-leader in 
every proper initial segment of C which contains x. 

LEMMA 1. If xt < • • • < xk are nonmaximal n-preleaders of an l-chain C then k is 
bounded by the cardinality of the (n, l)-box for a. 
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674 YURI GUREVICH AND SAHARON SHELAH 

PROOF. The segments [xl 5 x j , . . . , [_xk,xt] have different n-theories. # 
DEFINITION. Let xx < • • • < xk be the n-preleaders of an /-chain C. The extended n-

theory ETh"(C) of C is the sequence (of length k) of the n-theories of the segments 
[x1,x2), [x2 ,x3) , . . . , [x t_1 ,xk) , [xt,co)of C. 

LEMMA 8. There is a uniform in a algorithm with the following property. Given the 
extended n-theory of an l-chain A and the color of the unique element of a singleton l-
chain B, the algorithm computes ETh"(A + B). 

The proof is clear. # 
LEMMA 9. There is a uniform in a algorithm with the following property. Let C be an 

unbounded l-chain and I be the set of extended n-theories t such that for every xeC 
there is an initial segment A of C with x e A and ETh"(A) = t. Given I, the algorithm 
computes ETh"(C). 

PROOF. Pick u = (tt,..., tk) in / in such a way that 
(i) there are p < q < k such that £ {tf: p < i < k} = £{r,-: q<j< k}, and 
(ii) the index q is minimal. 
(By Lemma 7 the number of n-preleaders is bounded. Hence cofinally often we 

have n-preleaders that are not n-leaders. Hence there exists a member of J which 
satisfies (i). Hence there exists a member of J which satisfies (i) and (ii).) 

Let a = min(C), let D be a cofinal subset of C such that ETh"[a,x) = u for all x 
e D, and put d = min(D). Without loss of generality / contains every ETh"[a, x) with 
x > d. By the minimality of q the first q — 1 n-preleaders of [a, d) are exactly the n-
preleaders of C. For every x 6 D let fx be the first n-preleader of [a, x) which fails to 
be an n-leader in \_a,x). It remains only to compute Th"[/<i, oo). 

Clearly, fx < fy if x < y are elements of D. The set {fx: x e £>} is cofinal in C. For, 
if b is an upper bound for this set then {fx: b < x e D} is an infinite set of n-leaders in 
[a, b~\, which contradicts Lemma 7. Without loss of generality, x < fy if x < y are 
elements of D. Let c be the pth n-preleader of [a,d), and let s = Th"[c,/d) 
= l{ti-P<i<q}. 

For all x e D, Th"[c,/x) = Th"[c,fd) = s and Th"[/x,x) = Th"[c,x). Hence for 
all x < y in D, 

TVUxJy) = Th"[/x,x) + Th"[x,/y) 

= Th"[c,x) + Th*[x,/y) = Th"[c,/j;) = s. 

By Lemma 4, Th"[/d, oo ) = co • s. # 
DEFINITION. An l-chain automaton is a quadruple M = (Q, S, qin, F), where Q is a 

finite set (of states), qin is an element of Q (the initial state), F is a subset of Q (the set 
of final states), and 5 (the transition function) is the union of two functions: 

<5-NEXT: Q x /-COLOR -> Q and .5-LIM: PowerSet(Q) -> Q. 

Here /-COLOR is the set of possible colors of elements of /-chains. 
DEFINITION. The run of an /-chain automaton M = (Q, d, qm, F) on an /-chain C is 

the function r:C -*Q such that 
(i) if x is the first element of C then r(x) = qm, 
(ii) if x is the successor of an element y then r(x) = S{r(y), color(y)), and 
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(Hi) if x is a limit element and / = {q: for every y < x there is z with y < z < x and 
r(z) = q}, then r(x) = 3(1). 

The function r'(x) = 5(r(x), color(x)) is the associate run of M on C. 
THEOREM 1. For all I and n there is an l-chain automaton M such that if r1 is the 

associate run of M on an l-chain C, a is the first element of C and x is an element of C, 
then rl(x) is the extended n-theory of the segment [a, x] of C. Moreover, there is a 
uniform in a algorithm which, given I and n, constructs an appropriate automaton M. 

PROOF. The algorithms of Lemmas 8 and 9 provide the transition function of the 
desired automaton # 

The decidability of the first-order theory of well-orderings with additional unary 
predicates easily follows from Theorem 1, but we will not work out the details. 
Theorem 1 is the only result of this section which is used later. 

§3. A composition theorem for trees. This is again an auxiliary section. 
Let T be a vocabulary comprising the binary predicate symbol < , the unary 

predicate symbols Root, Left, Right, and a finite number of additional unary 
predicate symbols. 

In this section a tree is a t-structure T such that 
(i) T is a binary well-founded tree with respect to < , 
(ii) T1= Root(x) iff x is the root of T, and 
(iii) the predicates Left and Right partition all sons (i.e. all nodes which have 

fathers) in T into left sons (satisfying Left) and right sons (satisfying Right) in such a 
way that for every pair of brothers, one brother is a left son and the other is a right 
son. 

DEFINITION. A substructure S of a tree T is a stem for T if 
(1) x < y e S implies x e S, and 
(2) every totally ordered subset of S is bounded in S if it bounded in T. 
Note that if C is a totally ordered subset of a stem S for a tree T and b = sup(C) in 

T then b e S and b = sup(C) in S. 
DEFINITION. Let / be a natural number. An l-tree is a tree with / distinguished 

partial elements. 
DEFINITION. Let T be a tree, S a stem for T and x a partial element of T. We define 

the projection x | S of x into S. If x = NIL then x | S = NIL. Otherwise x | S is the 
supremum of {a e S: a < x}. If x is a tuple (xlf..., x,) of partial elements of T then 
x | S is the tuple (xl\S,.,.,xl\S)o( partial elements of S, and (S, x | S) is a stem for the 
f-tree(T,x). 

DEFINITION. Let T be a tree, S a stem for T and a an element of S. The graft of T at 
a with respect to S is the tree Ga with the following properties. The universe of Ga is 
{x e T:x\S = a}. Ga is the substructure of T with respect to the vocabulary T 
- {Root}, and Ga 1= Root(x) iff x = a. 

DEFINITION. Let T be a tree, S a stem for T, a an element of S, and Ga the graft of T 
at a with respect to S. For every partial element x of T we define the projection x | Ga 

of x into Ga. If x is an element of Ga then x | Ga is x; otherwise x | Ga is NIL. If x is a 
tuple (x1,...,xl) of partial elements of Tthen x | Ga is the tuple (xt | Ga,... ,x,| Ga) of 
partial elements of Ga, and (Ga, x \ Ga) is the graft of the /-tree (T, x) at the node a with 
respect to S. 
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DEFINITION. Let T be an /-tree and S a stem for T. Then S" is the expansion of S by 
the unary predicates 

Pt = {a e S: Th"(G„) = t}, 

where t ranges over the (n, /)-box for x and Ga is the graft of T at a with respect to S. 
THEOREM 1. There is a uniform in x algorithm with the following property. Let T be 

an l-tree and S a stem for T. Given Th"(S"), the algorithm computes Th"(T). 
PROOF. The case n = 0 is straightforward. Let x, y be distinguished partial 

elements of T, let a = x \ S, b — y \ S, let G = Ga, and let Q be a unary predicate 
symbol in x which differs from Root, Lett and Right. Use the following obvious facts: 

T N x = NILiff S N a = NIL, 
T\= x = y iff S\= a = b and G\= x = y, 
T N Root(x) iff S1= Root(a) and G N Root(x), 
T1= x < y iff either S1= a = b and G\= x < y or S^= a <b and G N= Root(x), 
Th= Left(x) iff either G N Left(x) or S N Left(a) and G N= Root(x), 
T t= Right(x) iff either G 1= Right(x) or S1= Right(a) and G N Root(x), 
T N Q ( x ) i f f G N e W . 
The case of n + 1. Given Th"+1(S"+1), we would like to compute Th" + 1(T). It 

suffices to construct an auxiliary algorithm which, given an element Th"(S"+1, b) of 
Th" + 1(Sn + 1), computes all n-theories Th"((S,y\S)n) with y\S = b, where(S,y |S)is 
the corresponding stem for the (/ + l)-tree (T,y). For, the auxiliary algorithm al
lows us to compute {Th"((S,y\S)"):y e T}. Then, calling recursively the main 
algorithm we can compute {Th"(T, y):y e T} = Th"+1(T). 

Let u = Th"(S"+ \ b) be an arbitrary element of Th"+ 1 (S"+ x). Using the algorithm 
of Lemma 4 in §1 we can compute Th°(S" + 1,b), which provides Th" + 1(Gfc). Let 
s = Th"(Gb,y) be an arbitrary element of Th" + 1(Gfc). It turns out that u and s 
uniquely define t; = Th"((S,.y | S)"). Moreover, v is computable from u and s. 

To compute v from u and s we use the algorithms of Lemma 5 in §1. Let ( range 
over the (n, I + l)-box for T, and let r range over the (n + l,/)-box for x. Then u 
describes (S, b) with predicates Pr, and v describes (S, b) with predicates P,. It suffices 
to express every Pt(a) as a quantifier-free statement about (S, b) with predicates Pr. 
The algorithms of Lemmas 3 and 4 in §1 allow us, given r, to compute t = f(r) such 
that if G is an /-tree and r = Th"+X(G) then Th"(G, NIL) = /(r). Obviously, every Pr 

is included into Pf{r). 
If t = s, then 

Pt(a) <-> t = Th"(Ga,y \Ga)<-+a = b because y \ Ga * NIL iff a = b. 

If t + s, then 

P,(a)<->a*fe & \J{Pr{a):f{r) = t}. # 

§4. Tree automata. In this section we introduce tree automata and reduce the 
decision problem for the first-order theory of binary, bounded, well-founded trees 
with additional unary predicates to the emptiness problem for tree automata. The 
notation and terminology of §3 are used. 

In §2 we have defined the color of a point of an /-chain. In a similar way we define 
the color of a node x of an /-tree T: it is the 0-theory of the singleton substructure {x} 
of T. The set of all possible colors of nodes of /-trees will be denoted COLORS(/). 
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DEFINITION. An l-tree automaton is a quadruple (Q, A, qin,F), where Q is a finite set 
(of states), qin belongs to Q (the initial state), F is a subset of Q (the set of final states), 
and A (the transition function) is the union of two functions 

Zl-NEXT: Q x COLORS(/) ->• PowerSet(g x Q), 
and 

zl-LIM: PowerSet(g) -> PowerSet(g). 

DEFINITION. A run of an /-tree automaton (Q, A,qm,F) on an /-tree Tis a pair of 
functions r^.T -• g and r2: T -> g x Q such that 

(1) r^x) = qm if x is the root of T, 
(2) r2(x) e ^(/^(x), color(x)), 
(3) if y is the left (right) son of x then rx{y) is the left (right) component of r2(x), 

and 
(4) if x is a limit node and / is the set of q e Q such that for every y < x there is z 

with y < z < x and ry{z) = q, then rx(x) e A(I). 
DEFINITION. A run (rx,r2) of an /-tree automaton on an /-tree is accepting if 
(1) for every node x without a left (right) son the left (right) component of r2(x) is a 

final state, and 
(2) for every unbounded branch B, if / is the set of states which appear cofmally 

often in the sequence <J"I(JC):X e B), then A(I) meets F. 
DEFINITION. An /-tree automaton accepts an /-tree if it has an accepting run on the 

/-tree. 
It is easy to see that an /-tree automaton accepts a given /-tree if and only if it has a 

winning strategy against an adversary (called Pathfinder) in the following ac
ceptance game. In a play of the game Pathfinder builds an initial segment of a 
branch, and the automaton builds what can be called a run on that segment of a 
branch. 

Step 0. Set x0 equal to the root and q0 equal to qm. The automaton chooses 
(L0, R0) in A(q0, color(x0)). 

Step a + 1. Pathfinder chooses Left or Right. Suppose without loss of generality 
that Left is chosen. If xa does not have a left son then the game is over. If Lx e F then 
the automaton won; else Pathfinder won. If xx has a left son set x0L+1 equal to the left 
son of xa. Then the automaton chooses (Lx+l,Ra + l) in A(qa, color(xa+1)). 

Step a for a limit a. Let B = {xp: P < a} and / = {q: for every /? < a there is y with 
a < y < P and qy = q). If B is a branch then the game is over; the automaton won if 
A(/) meets F; else Pathfinder won. Otherwise set xx = sup(B). The automaton 
chooses qa e A(l) and (La, RJ in A(qx, color(xj). 

THEOREM 1. For all n, I and every member of the (n,l)-box for x there is an l-tree 
automaton A, which accepts an arbitrary l-tree T if and only if Th"(T) = t. Moreover, 
there is a uniform in x algorithm which, given t, constructs an appropriate At. 

PROOF. We prove only the first statement of Theorem 1, but the proof will provide 
the desired algorithm. 

The case n = 0 is easy. The desired automaton A, "knows" which of the / partial 
elements are equal to NIL and which are actual elements with respect to t. Each state 
of A, codes (consistent with t) information about these actual elements: which of 
them have been seen, which have been left aside, and which will be seen. If {rx, r2) is 
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an accepting run of A, on an /-tree T and x e T, then the information coded in 
r^x) faithfully reflects the situation in the acceptance game when the automaton 
reaches x. 

We suppose that the first statement of Theorem 1 is proved for n, and we prove it 
for n + 1. 

LEMMA 1. For every t in the (n, I + \)-box for x there is an l-tree automaton Et which 
accepts an arbitrary l-tree T if and only if t e Th" + 1(T). 

PROOF. The desired automaton E, runs a copy of At. Since the colors of a given /-
tree do not contain the needed quantifier-free information about the (/ + l)st 
distinguished element, E, guesses the needed information in a consistent 
fashion. # 

DEFINITION. Let x be a node of an /-tree T. Tx, Tx and T* are /-trees with a 
common root x. The three /-trees are substructures of T with respect to T — {Root}. 
Tx comprises the nodes y>x.T\ (resp. T\) comprises the nodes y such that either 
y = x or y is a descendent of the left (right) son of x. 

LEMMA 2. For every I there are l-tree automata C, L, R such that 
(1) each of the three automata accepts all l-trees, and 
(2) if {r1, r2) is an accepting run of C (resp. L,R)on an arbitrary l-tree T and x e T, 

then r2{x) codes the n-theory of(Tx,x) (resp. (T)., NIL), (T*, NIL)) with respect to an a 
priori fixed coding. 

PROOF. After reading the color of a node x the automaton C guesses t = Th"(Tx, x) 
and starts a copy of A, to verify that Th"(Tx, x) is indeed t. If C happens to have more 
than one copy of some A, in the same state, it merges them into one copy. 

The automata L and R are defined similarly. # 
LEMMA 3. For every I there is an l-tree automaton U such that 
(1) U accepts all l-trees, and 
(2) if(r1,r2) is an accepting run of U on an l-tree Tandx e T then r2(x) codes then-

theory of the (I + \)-tree (T,x) with respect to an a priori fixed coding. 
PROOF. Let T be an arbitrary /-tree. For every x let Sx be the stem {y: y < x} for the 

( /+ l)-tree (T,x). The algorithm of Theorem 1 in §3 computes Th"(T,x) from 
Th"(S"x). 

Note that S"x is an (/ + l)-chain for a certain vocabulary a. By Theorem 1 in §2 
there is a deterministic (/ + l)-chain automaton M such that if r' is the associate run 
of M on S"x then r'(x) is the extended n-theory ETh"(Sx). The usual n-theory Th"(S^) 
is easily computable from ETh"(S"). 

It is easy to see that U is able to exploit M provided it is able to compute the n-
theories of (Tx,x), (T^.NIL) and (T*,NIL). Now we use Lemma 2. U incorporates 
the automata C, L, R in such a way that a run of U is accepting only if the 
corresponding runs of C, L, R are accepting. # 

We are ready now to finish the proof of Theorem 1. Let t be a member of the (n, /)-
box for T. The desired automaton A, incorporates automata £s (see Lemma 1) for 
each s e t. A run of At is accepting only if the corresponding runs of the automata Es 

are accepting. Hence A, accepts an /-tree T only if Th" + '(T) includes t. 
A, incorporates also a modified version of the automaton U of Lemma 3. Recall 

that each state q of U codes a member s of the (n, / + l)-box for T. If s $ t, make q a 
dead-end state. As a result, if A, accepts an /-tree T then Th" + 1(T) is included in 
t. # 
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COROLLARY 1. There is a uniform in i algorithm which, given any member t of any 
(n, 0)-box for x, constructs a tree automaton A', such that an arbitrary tree T is accepted 
by A\ if and only if T is bounded and Th"(T) = t. 

PROOF. Given t, use the algorithm of Theorem 1 to construct a tree automaton 
A, = (Q, A, qin, F) which accepts exactly the trees T with Th"(T) = t. We change A, 
into the desired A\. 

First let us hint the idea. If A, accepts an unbounded tree, then after reading a 
certain unbounded branch A, may put itself into a final state q. We would like to 
replace q by a nonfinal state q' without altering A, too much. 

Here is a formal construction. Let Q' be the extension of Q by new elements q', 
where q e F, and let / be a mapping from Q' to Q such that / is the identity on Q and 
fq' = q for q e F. The desired automaton A\ equals (Q',A',qia,F), where A' is the 
extension of A with respect to the following two clauses: 

(1) If q 6 F and s is a color of a node of a tree then A'(q',s) = A(q,s). 
(2) If / c Q, / ' c Q', f maps / ' onto /, A(I) = J and A'(I') = J' then / maps J' 

onto J and J' avoids F. 
It is easy to see that A't accepts only bounded trees and that A\ accepts every 

bounded tree accepted by At. # 
COROLLARY 2. There is a uniform in x decision algorithm for the first-order theory 

of bounded trees with an oracle for the emptiness problem for tree automata. 
PROOF. Given a first-order sentence 0 in the vocabulary z, compute the quantifier 

depth n of (j>. Use the algorithm of Lemma 1 in §1 to compile a list L of those 
members t of the (n, 0)-box for x which imply <(>. Use the algorithm of Corollary 1 to 
construct automata A', for t in L. The sentence (f> is a theorem of the first-order 
theory of bounded trees iff none of the automata A', accepts any tree. # 

§5. The emptiness problem. Recall that our trees are special structures of a certain 
vocabulary x (see the beginning of §3). In this section we construct a uniform in T 
decision algorithm for the emptiness problem for tree automata (defined in §4). This 
algorithm and the algorithm of Corollary 2 in §4 yield a decision algorithm for the 
first-order theory of binary, bounded, well-founded trees with additional unary 
predicates. 

DEFINITION. A tree automaton is liberal if it accepts at least one tree. 
LEMMA 1. A tree automaton (Q, A, qin,F) is liberal if there is a color t (an element of 

COLORS(O) in terms of §4) such that A(qm,t) meets F x F. 
PROOF. The automaton accepts a singleton tree. # 
LEMMA 2. Let A — (Q,A,qin,F) be a tree automaton and qe Q — F. If the tree 

automata A^ = (Q,A,qin,F u {q}) and A2 = (Q,A,q,F) are liberal, then so is A. 
PROOF. Fix trees T,, T2 accepted by A1, A2 respectively. Let [rx, r2) be an accepting 

run of At on Tt. It is easy to see that A accepts the tree obtained from Tx as follows. 
If a node x of Tj does not have a left (right) son and the left (right) component of 

r2(x) equals q, then graft a copy of T2 in such a way that the root of the graft is the left 
(right) son of x. If B is an unbounded branch of Tt and A(B) contains q but avoids F, 
then graft a copy of T2 in such a way that the root of the graft is the supremum 
ofB. # 

LEMMA 3. Let A be a tree automaton (Q, A,qia, F) such that A(Q — F) meets F. Let 
(4o>---><Zm-i) be a list of all members of Q — F, where q0 = qiB if qm is nonfinal. 
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Suppose that all automata 

Ak = (Q,A,qk,F u {qk+i}) 

are liberal, where qm = q0- If <l\n <
s final, suppose that the automaton 

A-m = {Q,A,qin,F u {gj) 

is liberal. Then A is liberal. 
PROOF. For each k < m fix a tree Sk accepted by Ak and an accepting run 

rk = {r\, r\) of Ak on Sk. If qin is final fix a tree Sin accepted by Ain and fix an accept
ing run rm = (rf, r'2) of Ain on Sin. We construct embedded trees T0, T,,. . . and runs 
R°,Rl,... of A on T0, Ti, . . . respectively. 

If qin is final set T0 = Sin and /?° = rin; otherwise set T0 = S0 and R° = r°. Suppose 
that T„ and R" are constructed. Let k be the residue of n + 1 modulo m. 

If x is a node of T„ without a left (right) son and the left (right) component of R\(x) 
equals qk, then graft a copy of Sk on T„ in such a way that the root of the graft is the 
left (right) son of x. If B is an unbounded branch of T„ and A(B) contains qk but 
avoids F, then graft a copy of Sk on T„ in such a way that the root of the graft is the 
supremum of B. Compose R" + 1 from R" and rk in the natural way. 

It is easy to see that the union of the runs R" is an accepting run of A on the union 
of trees T„. # 

LEMMA 4. / / an automaton A = (Q,A,qin,F) is liberal, then any automaton 
A' = (Q',A',qin,F), where Q' extends Q and A' extends A, is liberal. 

PROOF. Accepting runs of A are accepting runs of A'. # 
Let LIB be the smallest set of tree automata which contains every automaton 

satisfying the condition of Lemma 1 and which is closed under the operations 
described in Lemmas 2, 3 and 4. 

LEMMA 5. The decision problem of whether a given tree automaton belongs to LIB is 
decidable. 

The proof is easy. # 
THEOREM 1. LIB contains every liberal tree automaton. 
PROOF. Assume the contrary and fix a liberal automaton A = (Q, A, qin,F) outside 

LIB with a minimum number m of nonfinal states. Let T be a tree accepted by A and 
let r = (/!, r2) be an accepting run of A on T. Without loss of generality we suppose 
that rl(x)eQ — F for every node x of T which is not the root. (Just throw away all 
nodes y such that y > x for some x with rt(x) in F.) 

Claim 1. T is not singleton. 
Proof. Use Lemma 1. # 
Claim 2. T does not have leaves. 
Proof. Assume, towards a contradiction, that x is a leaf of T. Let q = rt(x) and 

Ax, A2 be as in Lemma 2. Ax accepts T; hence Ay is liberal. By the minimality of A, Ax 

belongs to LIB. By Lemma 1, A2 belongs to LIB. By the definition of LIB, A belongs 
to LIB, which is impossible. # 

Claim 3. For every p in Q — F and every x in T there is y > x in T with ry(y) = p. 
Proof. Suppose that p and x witness the contrary. Let q = rt(x), and let A1,A2be 

as in Lemma 2. Ax accepts T; by the minimality of A the automaton Ax belongs to 
LIB. A proper reduct of A2 (obtained by omitting p) accepts the subtree { v: x < v} of 
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T. By the minimality of A the reduct belongs to LIB. By the clause related to Lemma 
4 in the definition of LIB, A2 belongs to LIB. By the clause related to Lemma 2 in the 
definition of LIB, A belongs to LIB. # 

Let q0,..., qm _ ^ be a list of all elements of Q — F, where q0 = qin if qin is not final. 
Claim 4. A(Q — F) meets F. 
Proof. Choose an arbitrary node x0 in T. If r ^ x j = qk and / is the residue of 

k + 1 modulo m, choose an arbitrary node x a + 1 > xa with r1(xot+l) = qx. If a is a 
limit ordinal and the sequence (xp:P < a> is bounded in T, choose an arbitrary 
bound xa for the sequence. Consider the branch B through all nodes xx. Since A 
accepts T, A(Q — F) meets F. # 

Let A0,...,Am-l and Ain be as in Lemma 3. 
Claim 5. All automata A0,...,Am^1 and Ain belong to LIB. 
Proof. First we show that all these automata are liberal. Ain accepts T; hence it is 

liberal. For k < m pick a node x in T with rj(x) = qk. Ak accepts the subtree 
{y:y>x} of T. 

By the minimality of A, all the automata in question belong to LIB. # 
By the definition of LIB and Claims 4 and 5, A belongs to LIB, which is 

impossible. Theorem 1 is proved. # 
THEOREM 2. There is a uniform in x decision algorithm for the emptiness problem for 

tree automata. 
PROOF. By Theorem 1 every liberal tree automaton belongs to LIB. By Lemmas 

1-3, every automaton in LIB is liberal. Now use Lemma 4. # 

REFERENCES 

[DMT] J. E. DONER, A. MOSTOWSKI and A. TARSKI, The elementary theory of well-ordering—a 
metamathematical study, Logic Colloquium '77, North-Holland, Amsterdam, 1978, pp. 1-54. 

[Eh] A. EHRENFEUCHT, An application of games to the completeness problem for formalized theories, 
Fundamenta Mathematicae, vol. 49 (1961), pp. 129-141: 

[Gu] Y. GUREVICH, Monadic second-order theories, Model-theoretical logics (J. Barwise and 
S. Feferman, editors), Springer-Verlag, Berlin (to appear). 

[Gu2] , Toward logic tailored for computational complexity, Logic Colloquium '83, Lecture 
Notes in Mathematics, Springer-Verlag, Berlin (to appear). 

[GS] Y. GUREVICH and S. SHELAH, TO the decision problem for branching time logic, Foundations of 
logic and linguistics: Problems and their solutions, Plenum Press (to appear). 

[Sh] S. SHELAH, The monadic theory of order, Annals of Mathematics, ser. 2, vol. 102 (1975), pp. 379-
419. 

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 

UNIVERSITY OF MICHIGAN 

A N N A R B O R , M I C H I G A N 4 8 1 0 9 

INSTITUTE OF MATHEMATICS 

THE HEBREW UNIVERSITY 

JERUSALEM 91904, ISRAEL 

Sh:230


