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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 66, Number 3, Sept. 2001 

MAIN GAP FOR LOCALLY SATURATED ELEMENTARY SUBMODELS 
OF A HOMOGENEOUS STRUCTURE 

TAPANI HYTTINEN* AND SAHARON SHELAHt 

Abstract. We prove a main gap theorem for locally saturated submodels of a homogeneous structure. 
We also study the number of locally saturated models, which are not elementarily embeddable into each 
other. 

Hard experience has indicated that before we speak on this particular paper, 
we should say something on classification theory for nonelementary classes and of 
the specific context chosen here. Classification theory for first order theories is so 
established now that many tend to forget that there are other possibilities. There 
are some good reasons to consider these other possibilities: first, it is better to 
understand a more general context, we like to classify more; second, concerning 
applications many classes arising in 'nature' are not first order; third, understanding 
more general contexts may shed light on the first order one. 

Of course, we may suspect that applying to a wider context will leave us with 
less content, but only trying will teach us if there are enough interesting things to 
discover. 

In any case, 'not first order' does not define our family of classes of models. We 
are in particular interested in generalizing the main gap theorem for n-saturated 
models (see more below). Tending to the general case, we may consider replacing 
the first order theory by an L,+,,t,-sentence Vt. Fixing the vocabulary, the notion of 
elementary submodel is with respect to this logic (all formulas with finitely many 
free variables) or at least with respect to a fragment, a family of formulas of L,+,,, of 
cardinality < i' closed under subformulas and including t/. We may even consider 
abstract such classes discarding the logic altogether and working with 'algebraic' 
properties of the class of models. For such an approach see [37], [38], [39], Makkai 
and Shelah [25], and [40],[31] (both on universal classes), Grossberg and Hart [6], 
Hart and Shelah [14], Kolman and Shelah [21], [29], [28], [27], Shelah and Villaveces 
[43], [42] and Villaveces [44]. (See [28] on history and earlier works.) See also the 
closely related Grossberg and Shelah [1 1],[13], [12], Grossberg [5] and Baldwin and 
Shelah [2], [3], [4]. Naturally much of the work is on categoricity (as was the early 
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MAIN GAP FOR LOCALLY SATURATED SUBMODELS 1287 

history of the first order case). Anyhow in those cases even a very weak form of 
compactness may fail: 'compactness of types', see below. 

To explain this we have to say first what we mean by 'the elements a and b realize 
the same type over the set B in the model A'. If for simplicity we assume that for our 
class of models and our notion of elementary submodel -<, there is a monster model 
M, then 'the elements a and b realize the same type over the set B in the model A' 
means that there is an automorphism of M which maps a to b and is the identity 
on B. (Without the monster we should say that this occurs in some extension of X. 
If we have amalgamation this works nicely.) Now 'failure of compactness for types' 
means that for some model v in our class, elements a and b (or finite sequences) 
from v and a subset B of X, the type of the elements a and b over the set B in 
the model v is not determined by their restrictions to finite subsets of B; i.e., for 
every finite subset A of B, there is an automorphism of M which is the identity on 
A and maps a to b but for A = B there is no such automorphism. (Another way 
to point out the difficulty is that for an increasing sequence of sets or even models 
(o : oa < 8), in the appropriate sense, if pa c S(a) is increasing with a, do we 
have a limit type i.e., does Ua<6 pa exist? This means: is there p E s(U 6<s SI) 

such that for every a < 8 we have p [ Sa = pa and is it unique?) So the assumption 
that such a failure does not occur is quite reasonable. 

Assuming that we have a class of models of tg c L2+,,, with amalgamation and 
the joint embedding property and with 'compactness of types', we can prove the 
existence of a monster model M of cardinality a, which is not saturated, but is 
'i,-homogeneous for sequences'. So our class of models K = KM is the class 
of elementary submodels of M of cardinality < a'. Here 'no-homogeneous for 
sequences' means that, if f is a partial map from M to M which preserves the 
satisfaction of first order formulas and has cardinality < ai, then it can be extended 
to an automorphism of M. This gives a situation where we cannot use compactness 
for arbitrary sets of formulas, but types, defined as usually, behave 'normally'. Note 
that M is determined up to isomorphism by its cardinality i' and its finite diagram: 

D(M) = {t(a, 0): a a finite sequence from M}. 
Classification theory in this context (i.e., using the family of elementary submod- 

els of a i,-homogeneous for sequences monster model M as the class of models and 
the usual notion of elementary submodel) was started in [32], (and [33] , called 
there context IV, see page 250, particularly Theorem 1.13) and continued in [16], 
[17], [19], [18] and [10]. This is the context chosen here. Note that some attention 
was given to some special cases of it: [33] deal mainly with the following two re- 
lated cases: In the first M is the universal homogeneous model for i, under usual 
embeddings for the class of models of T, a first order theory with amalgamation 
and the joint embedding property. Then we can restrict ourselves to existentially 
closed models. This is called context II there. The second is the class of existentially 
closed models of a first order theory with the joint embedding property, again under 
usual embeddings. This is called context III there. Lately Hrushovski [15] has dealt 
with context II: he shows that for it, some hopeful properties of non forking fail for 
simple such classes (on simple first order theories see e.g., [7] and [20]). See also 
[26]. 
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1288 TAPANI HYTTINEN AND SAHARON SHELAH 

Another simpler context is when instead stable we generalize n0-stable, such 
investigation have been carried by Grossberg and Lessmann [9], [8], Lessmann 
[23],[24]. 

By [41], a major result in classification theory is the main gap theorem for the 
class of models of a first order countable T. This essentially gives an understanding 
of the function counting the number of models of the class in a cardinality up to 
isomorphism. Weaker but still very important one is the main gap for the class of 

n-saturated models of a first order theory This is proved in [35], [36], and the 
tenth chapter of [41] is dedicated for representing it (or see the tenth chapter of the 
book [22] and Part D of Baldwin's book [1] ). Recall that in the first order case, a 
model v is called E -saturated if for every finite A C v and element a c M, there 
is an element b c X, which is equivalent with a for every equivalence relations 
with finitely many equivalence classes and definable by a first order formula with 
parameters form A. 

Our aim here is to prove a parallel of this theorem in our context (see [6] and [9] 
for other main gap results for nonelementary classes). Note that for this we have to 
choose what is the right parallel of 1~-saturation. Why was the case of Un-saturated 
models more accessible to analysis? It has enough saturation to make the existence 
of primary models work on the one hand, but not too much so that the class of such 
models is closed under union of increasing elementary chains. We find here a similar 
notion. For making it preserved by the union of increasing chains, it only says that 
'for every finite subset A of v we have --< v such that ...'. In order to have 
relevant primary models, we need to have something like the following property of 

n-saturated models: Let B be a subset of M, A a finite subset of B and p c S(B) 
be such that p [ A does not have a forking extension q c S(C) over a bigger finite 
subset C of B including A. Now if v is an n-saturated model including A, then p 
is realized in X. This motivate our choice. 

This work continues in particular [19]. Naturally, parallels to 'regular types', 
'decomposition theorems' etc. play an important part. 

Throughout this paper we let M be our monster model. As in [19], we assume 
that M is homogeneous and that IMI is strongly inaccessible. This can be done 
without loss of generality. 

By a, b, etc. we mean finite sequences of elements of M. Subsets of M of power 
< IMI are denoted by A, B, etc. and we write X, -, etc. for elementary submodels 
of M of power < IMI. 

We assume that the reader is familiar with [19] and we use its notions and results 
freely. Especially, we use the notion of independence defined in [19]. It is similar to 
non-forking. In fact, if M is saturated, then it is the same as non-forking. 

The difference is that in our situation, the independence notion does not have 
all the properties of non-forking in the full strength. In [40], a related notion has 
been studied. We also assume that the reader knows the basic methods of using the 
non-forking calculus. 

Let A C M and p be a type over A. We say that p is M-consistent if it is realized 
in M. We say that M is stable if there is A < IMI such that for all A C M of 
power < A, the number of complete M-consistent types over A is < A. Here we 
have a general rule: Mostly the notions used in this paper are got from their usual 
definition from stability theory ([41]) by replacing 'consistent' by 'M-consistent' 
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MAIN GAP FOR LOCALLY SATURATED SUBMODELS 1289 

and/or by replacing non-forking by the independence notion from [19]. E.g., FM"- 
saturation is got from F, -saturation by this rule (see Definition 0.1 (i)). Like this 
one, several of these concepts appeared already in [32] (but with different notation 
and in a slightly different context). The main exception to this rule is the notion of 
strong type. Instead of the usual strong types we use Lascar strong types. In fact, 
we do not talk about strong types over A but equivalence classes in the minimal 
equivalence relation Emin A (over A and between sequences of length m). 

Notice that M may be stable while Th (M) is unstable. 

DEFINITION 0.1. (i) Suppose M is stable. We say that v is s-saturated if it 
is FlM -saturated i.e., for all A C v of power < A(M) and a there is b c v 

such that t(b, A) = t(a, A). 
(ii) We say that v is locally F,i'-saturated if for all finite A C v there is F,t"- 
saturated - such that A C - C X. If M is stable, then we say that v is 
e-saturated if it is locally FM) -saturated. 

(iii) Suppose M is stable. We say that v is strongly F,~I-saturated if for all 
A C v of power < i' and a there is b c v such that b EmifA a. By 
a-saturated we mean strongly FKM -saturated. 

LEMMA 0.2. (i) Every F,"1-saturated model is locally F,'"1-saturated and so 
(assuming M is stable) every s-saturated model is e-saturated. 

(ii) Suppose M is stable. Then every e-saturated model is strongly Fj,'-saturated. 
(iii) Suppose M is superstable and i' > A(M). Then every locally F,"1-saturated 
model is F,;'I-saturated, in particular every e-saturated model is s-saturated. 

PROOF. (i) is trivial and (ii) is immediate since by [19] Lemma 1.9 (iv), every 
FM)-saturated model is strongly F(M-saturated. So we prove (iii): Assume v is 
locally FM-saturated. Notice that by (ii), v is a-saturated. Let A C v be of power 
< i and a arbitrary. We show that there is b c v such that t(b,A) = t(a,A). 
Clearly we may assume that a n v = 0. 

Choose finite B C v so that a 1B X. Since v is locally FMI-saturated, we 
can find FMI-saturated - such that B C - C X. Since by [19] Lemma 1.9 (iii) 
- is strongly F,~I-saturated, we can find ai c -, i < X, such that as E~minB a 
and ai 1B Uj<iaj. Let I = {ail i < ,}. For all i < ,(M), choose bi so that 
t(bi,sV) = t(a, ) and bi JR Uj<i b. Let J = {biI i < i(M)}. By [19] Corollaries 
3.5 (iv) and 3.1 1, I U J is indiscernible over B. So 

Av(I,A) = Av(J,A) = t(a,A). 

Since IAI < i' and ,(M) = co, we can find C C B U I of power < i, such that for 
all c C A, t(c, B U I) does not split strongly over C. Let b c I (C - C s) be such 
that b n c = 0. Then clearly t(b, A) = Av(I, A) = t(a, A). -] 

We prove a main gap theorem for e-saturated submodels of M. To some extend, 
the proofs are similar to the related proofs in the case of complete first-order theories. 

?1. Regular types. In (the end of) the next section, regular types are needed. In 
this section we prove the basic properties and the existence of regular types. In this 
section we assume that M is stable. 
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1290 TAPANI HYTTINEN AND SAHARON SHELAH 

DEFINITION 1.1. (i) We say that a stationary pair (p, A) is regular if the fol- 
lowing holds: if C D dom(p), a l= p and a 4A C, then (p, A) is orthogonal 
to t(a, C). 

(ii) Assume v is s-saturated and p c S(QV). We say that p is regular, if there 
are A C B C v such that p does not split strongly over A, (p [ B, A) is a 
regular stationary pair and I B I < i (M). 

LEMMA 1.2. Assume v is s-saturated and p E S(sV) is regular, not orthogonal to 
t(a, s) and ?W is s-primary over sv U a. Then there is b EE ?/ such that t(b, s) = p. 

PROOF. Assume not. Let A C B C v be as in Definition 1.1 (ii). For all 
i < (M) choose i as follows: 

(i) 0 = X, 
(ii) if i is limit, then Vli C _ is s-primary over Uj<i-W, 
(iii) if i j + 1 and there is by E _ such that t(bj, B) p [ B and a 4,. by, 
then Vi C _ is s-primary over Wj U by, if such by does not exist then we let 

vi =vj. 

Clearly there is i < ,(M) such that Vi =Vji+. Let i* be the least such ordinal. 
Then 

(*) t(a, i*) is orthogonal to p. 

Let V* be s-primary over Wi* U a. 

CLAIM. Assume b F p. Then p t (b, V*). 

PROOF. Since p is not realized in _, for all i < i*, bi AA Wi and so, since p is 
regular, for all i < i *, p is orthogonal to t (bi, Wj). By induction on i < i * it is easy 
to see that p F- t(b, Vj). And so by (*) above, p F t(b, *). V 

By Claim, p is orthogonal to t(a, V), a contradiction. H 

COROLLARY 1.3. Assume Vj, i < 3, are s-saturated, pi E S(S/i) and pI is regular. 
If po is not orthogonal to P1 and p1 is not orthogonal to P2, then po is not orthogonal 
to P2. 

PROOF. Immediate by Lemma 1.2 and [19] Lemma 5.4 (iii). 

LEMMA 1.4. Assume that V is s-saturated, a A,4 b and t(b, ,) is regular. Then 
a >Dw b. 

PROOF. Let A = (A(M))+. Clearly we may assume that V is Ff1-saturated. For 
a contradiction, assume that there is c such that c %, a and c A4, b. Choose 
A C B C _ C s such that 

(i) (t(b, B), A) is a regular stationary pair and b 1A S, 

(ii) IBI < K(M) and II = A(M), 
(iii) _ is s-saturated and a U b U c %g sV. 

Then b 4_, a, b 4gq c ([19] Lemma 3.8 (iv)) and a Jq c. Let s* be F.'-primary 
over s U a and V C V* s-primary over _ U a. Without loss of generality we may 
assume that b U c 1W % 

For all i < K(M), choose bi E s* such that t(bi, FUUj<i b1) = t(b, FUUj<i bj). 
Let I {bi i < i(M) }. Then I U { b } is indiscernible over F'. Since b 4i, F, it is 
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MAIN GAP FOR LOCALLY SATURATED SUBMODELS 1291 

easy to see that I U {b} is not sW-independent. So we can choose finite J C I such 
that 

(*) J U {b} is not s -independent. 

If J is chosen so that IJI is minimal, then J is so-independent. 
Let 9 be s-primary over - U c. By (iii) and the choice of c, c %B W*. Then 

J .q7 9 and so J is 9-independent. Since p is regular and b 4/ g , J Ig b and 
so J .q7 b. Clearly this contradicts (*) above. -] 

Assume v is s-saturated and a 0 X. We write Dp(a, X) > 0 if there is s-primary 
model - over v U a and b , - such that t (b, -) is orthogonal to X. 

LEMMA 1.5. Assume that M is superstable without (A(M))+-dop. Let v be s- 
saturated, I be X-independent and a 4,, I. If t(a, X) is regular and Dp(a, X) > 0, 
then there is b c I such that a A,4 b. And so by Lemma 1.4, a J, U(I - {b}). 

PROOF. Assume not. Clearly we may assume that Is| = A(M). Choose aj, Vi 
and Fi, i < a*, so that 

(i) a %, aj, 
(ii) Vi is s-primary over v U aj, 
(iii) {ai I i < a* } is XV-independent, 
(iv) V'o = so and Vi?+ is s-primary over Vi U sli+, 
(v) a AW, _V+, 
(vi) (ai)i<a* is a maximal sequence satisfying (i)-(v) above and a* > 1. 

Since M is superstable, a* < co. Let n be such that a* = n + 1. Let A = (A(M))+ 
and - be F.'-saturated model such that v C - and - J,? Vn. Let /JG be F'M- 
primary over - U Vi and 9 F.M-primary over Ui<n-i. It is easy to see that Fn is 
s-primary over Ui<n~i and so we may choose 9 so that Fn C 9. Choose a' C 9 
so that t(a', Sn) t(a, Sn). Let A' be s-primary over v U a'. 

CLAIM 1. vSI' -. 

PROOF. Immediate by Lemma 1.4. -1 

CLAIM 2. For all i < n, %l J i 

PROOF. Clearly it is enough to show that a' J,2 - U Vi. Let I {j < n j i7 i}. 
By Claim 1 and (vi) above, 

(*) a' IF ". 

By the choice of -, UjEIsj %,R, - and so Fn lci -. With (*) above, this implies 
that a' Jui -. Since a' %Q Vi, a' %Q - U sVi. -1 

Since Dp(a, X) > 0, there is b , a' such that t(b, a') is orthogonal to v and 
b %Ju 9. By Claim 2 and [19] Corollary 4.8, t(b, 9) is orthogonal to -/i for all 
i < n. This contradicts the following claim: 

CLAIM 3 (M is superstable without A-dop.). Assume -, -i, i < n < co, and 9 

are Ff'-saturated, for all i < n, - C A, (-i)i<n is -W-independent and 9 is 

Ff'-primary over Ui <nA If b 0 X, then there is i < n such that t(b,9) is not 
orthogonal to .i 

This content downloaded from 185.44.78.129 on Fri, 13 Jun 2014 01:39:13 AM
All use subject to JSTOR Terms and Conditions

Sh:676

http://www.jstor.org/page/info/about/policies/terms.jsp


1292 TAPANI HYTTINEN AND SAHARON SHELAH 

PROOF. We prove this by induction on n. The case n 0 is trivial and the case 
n = 1 follows immediately from A-ndop. So assume n> 1. 

Let A' be FlM-primary over Ui<n-i and 9' be FM'-primary over A' U Wn. By 

[19] Lemma 5.4 (ii), A' U Wn is Ff1-constructible over Ui<n11i and so a' is FjlM- 

primary over Ui<n-i. By the uniqueness of F.'-primary sets, we can choose AW' 

and 9' so that 9' = 9. Clearly we may assume that t(b, 9) is orthogonal to Wn. 
By [19] Lemma 5.11, choose b' , 9 so that t(b', 9) is a c-type ([19] Definition 

5.10) and b >o b'. Since t(b, 9) is orthogonal to Wn, so is t(b', 9). Then by 

A-ndop, t(b', 9) is not orthogonal to AJ'. Since t(b', 9) is a c-type, there is b" , 9 

such that b" lae ? and b' >g b". By the induction assumption, there is i < n, 
such that t(b", I') is not orthogonal to -i. Then t(b", 9) is not orthogonal to /JG 

and because b >g b", also t(b, 9) is not orthogonal to -W. - 

LEMMA 1.6. Assume that M is superstable, v C - are s-saturated andv 7& -. 
Then there is a singleton a E -- such that t(a, X) is regular. 

PROOF. As in the case of superstable theories (see e.g., [1] XII Exercise 2.4). -1 

?2. Superstable with ndop. Throughout this section we assume that M is super- 

stable and does not have A(M)-dop. If P is a tree and t E P is not the root, then by 

t- we mean the immediate predecessor of t. 

DEFINITION 2.1. (i) We say that (P, f, g) = ((P, <), f, g) is an s-free tree of 

the (s-saturated) model v if the following holds: 

(1) (P, <) is a tree without branches of length > co, f: (P - {r}) -* v and 

g : P -* P(s), where r E P is the root of P and P(W) is the power set of 

JW, 

(2) g(r) is an s-primary model (over 0 i.e., saturated model of power A(M)), 

(3) if t is not the root and up- = t then t(f (u), g(t)) is orthogonal to g(tj, 

(4) if t = up- then g(u) is s-primary over g(t) U f (u), 

(5) Assume T, V C P and u E P are such that 

(a) for all t c T, t is comparable with u, 

(b) T is downwards closed. 

(c) if v E V then for all t such that v > t > u, t , T. 

Then 

U g(t) %g(u) U g(v). 
tET vEV 

(ii) We say that (P, f, g) is an s-decomposition of v if it is a maximal s-free 

tree of X. 

(iii) We say that (P, f, g) is an s-free tree, if it is an s-free tree of some XV. 

Notice that by Lemma 0.2 (iii) it is easy to see, that every e-saturated model has 

an s-decomposition. 

THEOREM 2.2 (M superstable without A(M)-dop). Assume v is e-saturated and 
(Pf, g) is an s-decomposition of sX. If - C v is s-primary over Utcpg(t), then 

PROOF. Immediate by Lemma 0.2 (iii) and [19] Theorem 5.13. H 
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MAIN GAP FOR LOCALLY SATURATED SUBMODELS 1293 

COROLLARY 2.3. Suppose v and ?W are e-saturated. If(P, f, g) is a decomposition 
of both v andy, then v and ?W are isomorphic over UtEpg(t). 

PROOF. By Theorem 2.2, v is s-primary over Utcpg(t). By [19] Theorem 5.3 
(ii), there is an embedding f: s -* - such that f [ Utcpg(t) = idu EPg(t). By 
Theorem 2.2, rng (f ) = -. -H 

We say that an s-free tree (P, f, g) is regular if the following holds: if t, u c P are 
such that u is an immediate successor of t, then t(f (u), g(t)) is regular. We say that 
(P, f, g) is a regular s-decomposition of e-saturated X, if it an s-decomposition of 
v and a regular s-free tree. 

LEMMA 2.4. Every e-saturated model v has a regular s-decomposition. 
PROOF. For this, it is enough to show that every maximal regular s-free tree of v 

is a maximal s-free tree of X. But this follows immediately from Lemma 1.6. -] 

DEFINITION 2.5. (i) We say that M is shallow if every branch in every regular 
s-free tree is finite. If M is not shallow, then we say that M is deep. 

(ii) If P = (P, <) is a tree without infinite branches, then by Dp(P) we mean 
the depth of P. 

(iii) Assume that M is shallow. We define the depth of M to be 

sup{Dp(P) + 1 (P, f, g) is a regular s-free tree}. 

LEMMA 2.6. Assume that M is shallow. Then the depth of M is < A(M)+. 
PROOF. Choose a minimal regular s-free tree (P, f, g) so that the following holds: 

for all t c P and p c S(g(t)), if (*) below holds, then there is an immediate 
successor u c P of t such that t (f (u), g (t)) = p. 

() p is regular and if t has an immediate predecessor t-, then p is orthogonal 
to g(t-). 

Clearly Dp(P) < A(M)+. 

CLAIM. If (P', f ', g') is a regular s-free tree, then there is an order-preserving 
function h : P' -* P. 

PROOF. By induction on height (t), t c P', we define h(t) so that 
(i) if u is an immediate predecessor of t, then h (u) is an immediate predecessor 
of h (t), 

(ii) there is an elementary function ht : g'(t) -* g(h(t)) such that if u is an 
immediate predecessor of t, then ht(g'(u)) C g(h(u)) and ht(g'(t)) lht(g'(u)) 

g(h(u)). 
If height(t) = 0, then we let h (t) be the root of P. Then ht exists because g'(t) and 

g(h(t)) are FM -saturated models of power A(M) and thus isomorphic. Assume 
then, that height (t) > 0. Let u be the immediate predecessor of t and let hu be the 
function given by the induction assumption. Then there is h (t) E P such that it 
is an immediate successor of h(u), t(f (h(t)), hu(g'(u))) = hu(t(f '(t), g'(u))) and 
f (h(t)) Jhu,(g'(u)) g(h(u)). This is because the free extension of hu(t(f '(t), g'(u))) 
is clearly regular and if up- is an immediate predecessor of u, then by (ii) of the 
induction assumption and [19] Corollary 4.8 the free extension of hu(t (f '(t), g'(u))) 
is orthogonal to g(h(u-)). We need to define ht. 
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1294 TAPANI HYTTINEN AND SAHARON SHELAH 

Since g'(t) is s-primary over g(u) U f (t), it is s-primitive over g(u) U f (t). So 
there is h, such that h, [ g'(u) = hu (and so h,(g'(u)) C g(h(u))), h,(f '(t)) = 
f (h(t)) and ht(g'(t)) C g(h(t)). By the choice of h(t) and [19] Lemma 5.4 (i), 
ht(g'(t)) lh,(g'(u)) g(h(u)). -1 

By Claim, if (P', f ', g') is a regular s-free tree, then Dp(P') < Dp(P) < A(M)+. 
-1 

By ILI we mean the number of L-formulas modulo the equivalence relation 
l= Vx (OW+(x (/ ) ) x) 

THEOREM 2.7. Assume that M is shallow. Then the depth of M is < (IS(0) 1)+ 
and so it is < (2 ILI)+. 

PROOF. By Lemma 2.6, we may assume that A(M) > co. Choose a minimal 
regular s-free tree (P, f, g) so that if t E P and p E S(g(t)) is regular such that if 
t has an immediate predecessor t-, then p is orthogonal to g(t-), then there is an 
immediate successor u E P of t and an automorphism h of g(t) such that such that 
t(f (u),g(t)) = h(p). 

CLAIM 1. Dp(P) < (IS(0)I@)+. 

PROOF. Clearly it is enough to show that for all t E P the number of immediate 
successors of t is at most IS(0) 1. As in the proof of Lemma 0.2, for all p E S(g(t)), 
there is a countable indiscernible I C g(t) such that Av(I, g(t)) = p. Also if 
t(I, 0) = t(I', 0), then there is an automorphism h of g(t) such that h(I) = I' 
(remember that g(t) is an Flg(t),-saturated model of power A(M) > co). So the 
number of immediate successors of t is at most 

I{t(I, 0)I I C g(t) countable indiscernible}1. 

Clearly this is at most IS(0)1w. I 

CLAIM 2. If (P', f ', g') is a regular s-free tree, then there is an order-preserving 
function h: P' -* P. 

PROOF. By induction on height (t), t E P', we define h(t) so that 
(i) if u is an immediate predecessor of t, then h (u) is an immediate predecessor 
of h (t), 

(ii) there is an elementary function ht: g'(t) -* g(h(t)) such that if u is an 
immediate predecessor of t, then ht(g'(u)) C g(h(u)) and ht(g'(t)) Jh,(g(u)) 

g(h(u)). 
The case height (t) = 0 is as in the proof of Lemma 2.6. So assume that height (t) > 
0. Let u be the immediate predecessor of t and hu the isomorphism given by the 
induction assumption. As in the proof of Lemma 2.6, we can find h (t) E P and 
an automorphism h* of g(h(u)) such that h(t) is an immediate successor of h(u), 
t(f (h(t)), (h* o hu)(g'(u))) = (h* o hu)(t(f '(t), g'(u))) and f (h(t)) J,(h*ohu)(g/(u)) 
g(h(u)). Now we can proceed as in the proof of Lemma 2.6 (h* o hu in place of 
hu). -] 

As in the proof of Lemma 2.6, Claim 1 and 2 imply that the depth of M is 
< (Is(O))+. 

THEOREM 2.8. Assume that M is shallow and y* is the depth of M. Then the number 
of non-isomorphic e-saturated models of power 10, is at most Zy* (lajI + A(M)). 
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PROOF. By Corollary 2.3, it is enough to count the number of 'non-isomorphic' 
regular s-free trees (P, f, g) of power Ha. This is an easy induction on Dp(P), see 
the related results in [41]. -1 

THEOREM 2.9. Assume that M is shallow and <* is the depth of M. Let K = 
7y* (A{(M))+. If Vi, i < A, are e-saturated models, then there are i < j < r, such that 

VW is elementarily embeddable into sV. 

PROOF. By Corollary 2.3, this question can be reduced to the question of 'em- 
beddability' of labelled trees. So this follows immediately from [41] X Theorem 
5.16C. -1 

A cardinal r, is called beautiful if , = co or for all 4 < a, r, w (co)`, see [34] 
Definition 2.3. 

THEOREM 2.10. (M is superstable without A(M)-dop but not necessarily shallow.) 
Assume that there is a beautiful cardinal > A(M). Let A* be the least such cardinal. 
If Vi, i < ,*, are e-saturated models, then there are i < j < A* such that Wi is 
elementarily embeddable into sVW. 

PROOF. Again by Corollary 2.3, this follows immediately from [34] Theorems 5.8 
and 2.10. -] 

If (P, <) is a tree without branches of length > co and t c P, then by Dp(t, P) 
we mean the depth of t in P. 

THEOREM 2.1 1. Assume that M is superstable, deep, does not have A(M)-dop and 
(A(M))+-dop andA > A(M). Then there are s-saturated (and so e-saturated) models 
Vi, i < 2', of power A such that for all i < j < 22, Vi . Vj 

REMARK. In the next section we show that M has many e-saturated models if 
M is superstable and has A(M)-dop. Similarly we can show that M has many 
e-saturated models if M is superstable and has (A(M))+-dop. 

PROOF. Assume Xi C A, i < 2, are such that Xo 7& XI and X Xi A. Choose 
regular s-free trees (Pi, f i, gi), i < 2, so that 

(i) Pi does not have branches of length > co but for all t E Pi, if t is not the 
root, then Dp(f (t), g(t-)) > 0 (see just before Lemma 1.5), 

(ii) for all a c Xi, there are A many t c Pi such that the height of t is one and 
Dp(t, Pi) = a and if Dp(t, Pi) = P and the height of t is one, then 3 c Xi, 

(iii) for all t E Pi, if Dp(t, Pi) = a and P < a, then 

I {u E Pi I u = t and Dp(u, Pi) > f}t = St, 

(iv) if t, u E Pi are not the root and t- = u-, then 

t (f i t, gi (t I) = t (f i(u), gi (u -A) 

we write Pt- for this type. 
Let ri be the root of Pi, Choose finite Ai C Bi C gi(ri) so that pr. does not split 
strongly over Ai and (pri [ Bi, Ai) is a regular stationary pair. Then we require also 

(v) Bo =B1 (=B), AO = Al (=A) and p.0 [ B = Pr [ B. 

Let Vi, i < 2, be s-primary over UtEpigi (t). We show that there is no isomorphism 
F: So -> I such that F [ B = idB. Clearly this is enough (since A`< < 22, 
'naming' finite number of elements does not change the number of models and 
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1296 TAPANI HYTTINEN AND SAHARON SHELAH 

since M is A-stable, I~i I = A). For a contradiction we assume that F exists. Clearly 
we may assume that F = idAg, this simplifies the notation. 

We let P7 be the set of those t E Pi, which are not leaves. For all t E P*, we let 
G(t) c P* be (some node) such that pt is not orthogonal to PG(t) (if exists). 

CLAIM. G is an one-to-one function from Po* onto Pj . 

PROOF. Since for all t E PO*, {u E PoI u t}= A > A{(M), the existence of 
G(t) follows easily. Since for all u, u' E P*, u 74 u', Pu is orthogonal to Pu," G(t) is 
unique by Corollary 1.3. But then by symmetry, claim follows. - 

We prove a contradiction (with (i) above) by constructing a strictly increasing 
sequence (tj)j, J of elements of Po*. We construct also a strictly increasing sequence 
(uj)j<Ju of elements of PI, sets Ij, i < 2, and models /jy so that 

(1) Dp(uj, Pi) < Dp(tj, Po) and for all t > tj, G(t) > uj, 
(2) I]i C Pi is downwards closed, non-empty and of power < A(M) and 

Ji .C IJi~. Ii 
- 11+1, 

(3) tj E IP I and G(tj) E 1+1, 

(4) GW is s-primary over UtE1ogo(t) and over Uucp gi (u) and W C Wj+?. 

We do this by induction on j < co. 
j = 0: Choose Io, Io' and Go so that (2) and (4) above are satisfied (if s' C Wo is 

s-primary over utcjg(t), I C Po, then by Theorem 2.2 and [19] Lemma 5.4 (ii), -o 
is s-primary over A' U UtCPO g(t)). Let to c Po be such that to X Io? and (to)- = ro. 
Then 

() fO (to) IA 0 

By Lemma 1.5, there is uo E Pi - III such that fI (uo) J4Zq fo(to) and (uo)- E Io. 
By Lemma 1.4, 

fo(to) I q U gI(u)I u o UO}. 

So uo is unique and the latter half of (1) holds. By (*), (uo)- = ri and so since 
Xo 7& XI we can choose to so that Dp(uo, PI) 7& Dp (to, PO). By symmetry, we may 
assume that Dp(uo, PI) < Dp(to, PO). Finally, this implies that to E P. 

j = k + 1: Essentially, just repeat the argument above. H 

?3. Superstable with dop or unstable. We start by making changes to a result 
from [17]. Our conclusion is weaker but so are the cardinal assumptions. 

THEOREM 3.1. Assume M is superstable with AI(M)-dop, K > (r,. (M))+ is regular 
and 4 > (i+)(r (M) ) Then there are FM-saturated (and so e-saturated) models Vi, 
i < 2X, of power 4 such that for all i 7& ], Vi is not isomorphic to -W1. 

PROOF. Let A = (Ar(M))+. We write p E F.'(A) if p [ A F.'-isolates p. By 
[19] Corollary 6.5, M has A-sdop (see [19]) and so by [Hy] Corollary 2.3, there are 
F~m-saturated models Ai of cardinality i, i < 3, and an indiscernible sequence I 
over AI U A2 of power a+ such that 

(i) Ao CAl A2, Al IAo A2, 
(ii) there is D C AI U A2 of power < A with the following property: if Ci, 
i < 3, are such that Co JAo Al U A2 and for i e {1, 2} and all ci E Ci, there is 
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Di C Ai U Co of power < A such that t(ci, Ai U A2 U Co U C3-i) E FM(Di), 
then 

t(I, A1 U A2 U Co U C1 U C2) E Fi (D). 

Let q be a linear ordering. We define an FM'-saturated model ad as follows. For all 
i E q we choose Bi and Ci so that t(Bi, Ao) = t(A1, Ao), t(Ci, AO) = t(A2, AO) and 

{BiI i E ,/} U {CiI i E )/} is independent over AO. For all i, j E q we choose Iij so 
that t(Iij UBi U Cj,Ao) = t(I U A1 UA2,AO). Then we let W? be FM'-primary over 

Uf Bi I i E q1} U Uf Ci I i E qj U Uf Jj I (i, j) E rq2, i < j}. 
We let g(x,y), x = X1 - X2,Y = YI - Y2, length(xi) = length(x2) 

length(yl) = length(y2) = A, be a formula (in some language), which says that 
there is J such that t(J U xI U Y2, 0) = t(I U A1 U A2, 0). Then by [Hy] Lemma 2.5, 
for all i, j E a, i < j iffW7 ad g (Bi U Ci, By U Cj). 

Let z be a similarity type and x a cardinal. We say that V is a PC ( (Z))- 
formula if i is of the form (3f i) i<q, where a < x, f i are new function symbols 
and X is a Lx ,-formula of similarity type T U {f i I i < a}. In Lx -formulas any 
number of free variables may appear. We write PC (LZ,'.) for PC (LZC0 (z)) if T is 
the similarity type of M. 

CLAIM. (i) There is a PC (L,.+ )-sentence VO such that for all models F of 
power < IMI, F #= Vo iff F is (isomorphic to) an FM'-saturated elementary 
submodel of M. 

(ii) There is a PC(L,++,c,)-formula V, (x, y) such that for all linear orderings 
q and i, j E a, ad I= VI (Bi U Ci, By U Cj) iff i < j. 

(iii) There is a PC(L,+,c,)-formula V2(X, y) such that for all linear orderings q 
and i,j E a, ad, t= y2(Bi U Ci, Bi U Cj) iff i > j. 

(iv) {fVo, VI (c, d), V22(c, d)} is inconsistent, where c and d are sequences of 
new constant symbols. 

PROOF. (i) To say that F is an elementary submodel of M, it is enough to say that 
for all n < co, F does not realize n-types over 0, which are not realized in M. This 
can be expressed by an L,+,c, -sentence. To say that F is FM'-saturated, by Lemma 
0.2 (iii), it is enough to say that F is locally FM'-saturated. This can be expressed 
by a PC(L,+,c,)-sentence. 

(ii) Clearly v is equivalent to a PC(L,++,(,)-formula. 
(iii) Let {akj k < a,+} be an enumeration of I and 9 D I U Al U A2 be an 

s-saturated model. By [19] Lemma 4.3, there are finite D C E C 9 such that 
(Av(I, E), D) is a stationary pair and Av(I, 9) does not split strongly over D. Let 
fekl k < n} be an enumeration of E so that for some n' < n, D = {ek k < n'}. 
Now assume that J C 9 is such that t(J,AI U A2) = t((aiI i < rz),AI U A2), 
Av(J, E) = Av(I, E) and Av(J, 9) does not split strongly over D. Then 

(*) J is not maximal in 9 over -VI U A2, 

i.e., there is b E 9 - J such that J U f b} is indiscernible over all U sW2. For this, let 
D* = J U A1 U A2 U {ail i < a,} U E. By the pigeonhole principle, there is j < a+ 
such that t(aj, D*) Av(I, D*). Then b = aj is as wanted: For this it is enough to 
show that Av(I, D*) = Av(J, D*). By [19] Lemma 2.4 (ii), it is enough to find K 
such that IK = ,(M) and both I U K and J U K are indiscernible. For this choose 
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Ck, k < n(M) so that t(Ck, E) = Av(I,E) andCk SD IUJUEU{cv p <k}. By 
the choice of E and D and [19] Lemma 2.4 (i), K = {ci I i < r,(M)} is as wanted. 

By (*), the following formula is as wanted: There are functions fk, k < a, such 
that for all bp, p < n, if t({bkI k < n} U Bi U Cj, 0) = t(E U AI U A2, 0), then J = 
{ fv (bo ., bnq l) I p < J} is such that t (J U Bi U Cj, 0) = t ((ak k< ,) U A 1 U A2,0), 
it is a maximal in ad over Bi U Cj, AV(J, {bkI k < n}) is a conjugate of Av(I, E) and 
Av (J, all) does not split strongly over {bk I k < n'}. Notice that the last requirement 
depends on t({ fv (bo, ..., bn-1q) I p <, (M)} U {bk I k < n}, 0) only. 

(iv) Immediate by (*). 

By Claim, the theorem follows from [30] Chapter III Theorem 3.23 (2). -H 

REMARK 3.2. To strengthen the conclusion of Theorem 3.1 to '-ai is not elemen- 
tarily embeddable to -Wj', we need the parallel of [30] Chapter IV Theorem 3.1 for 
trees of height i, + 1 dealing with sequences of length < i, (instead of height co + 1 
and finite sequences). For humane reasons this has not been done in [30]. 

LEMMA 3.3. Assume that M is unstable. Let K > ILI be a regular cardinal, and 
= (q, <) be a linear ordering. Then there are sequences ai, i E /, a model 

vW and functions fi : Mni -4 M, i < 2<', such that ni < co and if we write 
L* = L U f f i I i < 2<'-} then the following holds: 

(i) (ai)i, is order-indiscernible inside a? in the language L*, 
(ii) for all X C ,q, the closure sWx of {ai I i E X} under the functions of L* is a 
locally FM-saturated model (in the language L) and v= f, 

(iii) there is an L-formula 0 (x, y) such thatfor all i, j E /, b 0 (ai, aj) iff i < j. 
PROOF. Define functions f' Mni - M, i < 2<", so that 

the closure of any set under the functions f i is locally FM'-saturated 
(*) (in L) and L'-elementary submodel of (M, f ')i<2<Kwhere L' = L U 

{f' i<2<K}. 

By Erd6s-Rado Theorem and [32] I Lemma 2.10 (1), we can find sequences 
(afr)k<k, k < c, such that 

(1) there is a formula q$(x, y) such that for all k < o and i, j < k, = q(afk, al) 
iffi <j, 

(2) (afr)k<k is order-indiscernible in the language L', 
(3) the L'-type of (afr)k<k (over 0) is the same as the L'-type of (a k+1 )i<k. 

Since M is homogeneous, we can find for all i E a, ai so that for all k < c, 
if io < il < ... < ik-1, then t((aij)j<k,0) = t((a%)I<k,0). Again, since M is 
homogeneous (use e.g., [19] Lemma 1.1) we can define the functions f i so that for 
all io < i < ... < ik-l the following holds: 

If all is the closure of (aij)j<k under the functions fi and SW2 is the 
closure of (a) j<k under the functions f, then there is an L-isomorphism 
F: X -4 02, such that F(ai) = ak and for all a, b E 1 and i < 2', 

fi(a) = b iff fi'(F(a)) = F(b). 
Let a? = ad, i.e., the closure of {ai I i E a} under the functions of L*. Then it is 
easy to see that (iii) in the claim is satisfied. 
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(ii): Assume X C a. We show that _Wx is locally FM'-saturated. For this let 
A C sWx be finite. Then there is X' C X finite, such that A C -Wx,. By (**) above, 
?Wx, is locally FM'-saturated. So there is FM'-saturated 2 such that A C 2 C six. 

(i): By (*) and (**) above it is easy to see that for all finite X C a, _Wx is an 
L*-elementary submodel of a?. By (2), (*) and (**) again, (i) follows. - 

THEOREM 3.4. Assume M is unstable. Let A and K, be regular cardinals, A > 2<'- 
and i, > ILI. Then there are locally FM"-saturated models Vi, i < 2i, such that 
-si I = A and if i ] j, then sli is not elementarily embeddable into _Wj. 

PROOF. By Lemma 3.3 this follows from [30] Chapter VI Theorem 3.1 (3). Notice 
that the trees can be coded into linear orderings. - 

?4. Strictly stable. Through out this section we assume that M is stable but 
unsuperstable, and that , = cf (n) > A, (M). 

We write A<c for ai - -+ c I < cow}, i<c and Ad = = are defined similarly 
(of course these have also the other meaning, but it will be clear from the context, 
which one we mean). Let J C 2?'. We order Pc) (J) (=the set of all finite subsets 
of J) by defining u < v if for every q E u there is s E v such that q is an initial 
segment of s. 

Since M is unsuperstable, by [19] Lemma 5.1, there are a and F..(M) -saturated 
models ail, i < co, of power Ar (M) such that 

(i) if j < i < co, then slj C sli, 
(ii) for all i < co, a ,4 A? S~+I 

Let aso be an F{M) -primary model over a U Uk<, si. Then for all q E A,< we 
can find ad such that 

(a) for all q E A," there is an automorphism f, of M such that f (S length(C)) 

(b) if , is an initial segment of s, then f 4 I Length(r) f71 -Wlength(r) 

(c) if c E I'd, a e r, and X is the set of those s E I'd such that q ^ (aE) is an 
initial segment of s, then 

U~cx-q4 I-W UEC(r'<--x)X4- 

For all q E A,, we let a,, fl, (a). 
For each ar < r, of cofinality co, let Ad, E A be a strictly increasing sequence such 

that Uji<co q,(i) = a. Let S C f{e < gI cf (a) = c}. By Js we mean the set 

K<0 U fq,,, a E SI. 

Let Is PO (Js). 
LEMMA4.1. For all S C {a < nI cf (a) = o}, there are sets -W, u E Is, such that 

(i) for all u, v E Is, u < v implies Vu C _W, 
(ii) for all u E Is, Vu is Fj'{M)-primary over UNIVAC, 

(iii) if a E n - S, u E Is and v E Po (Jis n ac) is maximal such that v < u, 
then 

-Wu 1L?/v UwcPwO(Jssnl<c)-W 

PROOF. See [18] Lemmas 4 and 7. - 

This content downloaded from 185.44.78.129 on Fri, 13 Jun 2014 01:39:13 AM
All use subject to JSTOR Terms and Conditions

Sh:676

http://www.jstor.org/page/info/about/policies/terms.jsp
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For all S C {cE < ,I cf (ca) }co}, let aWs = UUcIs aU. By Lemma 4.1 (i) and (ii), 
Ws is e-saturated and WsI = 

LEMMA 4.2. There are sets Si C {cE < , I cf (a) = w}, i < 2', such that if i I' j, 
then Si - Sj is stationary. 

PROOF. Let fi; >, -a ,, i < 2, be one to one functions such that rng(fo) n 
rng (f 1) = 0. Let R', i < 2K, be an enumeration of the power set of N'. We define 
Ri, i < 2K, so that fo (a) E Ri iff a E Rk and f I (a) E Ri iff a' Rk. Then clearly, 
i 7& j implies Ri - Rj 7& 0. By [41] Appendix Theorem 1.3 (2), there are pairwise 
disjoint stationary sets Sj C {e < I cf (a) = w}, j < N,. For i < 2', we let 
Si = Uj RiRS> Clearly these are as wanted. - 

THEOREM 4.3. Assume M is stable and unsuperstable and K = -f (K,) > A, (M). 
Then there are e-saturated models Vi, i < 2K, of power K, such that if i 7& j, then Vi 
is not elementarily embeddable into sW. 

PROOF. For all i < 2'1, let sli = ass where the sets Si are as in Lemma 4.2. 
Assume i 7& j. We show that there are no elementary map F: Vi -> W. 

For a contradiction, assume that F exists. For all a < a, let Isa be the set of those 
u E Is, such that for all C E u, sup{q(i) i < length (% )} < a. Let -Via = Uucs -WU. 

Isa and -Ili are defined similarly. We say that ar is closed if for all a E Vi, a E Via 
iff F(a) E -W7. Let C be the set of all closed ordinals and Ciim the set of all limit 
points in C. Then SO Ciim n (Si - Sj) is stationary. 

For all a c SO, let uc, c Isj be such that F(a,,) E sua By gc(a) we mean the 
least P E C such that, , Ja aW7a. By Lemma 4.1 (iii) and the fact that SO n Si 0, 

g(a) < a. So there is stationary S1 C SO such that g 1 S' is constant. Let ar* be 
this constant value. 

Then there is S2 C S1 and n < co such that IS21 = n and for all /l, y C S2, if 
/, 4 y, then 7fi(n) 7& qy(n). By choosing n so that it is minimal, we may assume 
that for all /3 C S2, 7fi(n - 1) < a*. Clearly we may assume that for all / E S2, 
l/3(n) > a*. 

Then by Lemma 4.1 (iii), 

(i) (F (.W711l L(n+1)))fics2 is F (s/ia )-independent. 
Since F(a,,f) J',1 * F QPWfl(n+l)) and F(a,7l) /F(Wa*) F (.6(n+l)) 

(ii) for all F E S2 F(.WflL(n+1)) A F(<*) vij 

Since n(M) < A, llja I < , and IS21 = a, (i) and (ii) are contradictory. H 

REMARK 4.4. By using [30] Chapter IV Theorem 3.1 (3), it is possible to replace 
the assumption n = cf (r,) > Ar (M) by , > Ar (M) in Theorem 4.3. 
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