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THE JOURNAL OF SyMBOLIC LoGIC
Volume 66, Number 3, Sept. 2001

MAIN GAP FOR LOCALLY SATURATED ELEMENTARY SUBMODELS
OF A HOMOGENEOUS STRUCTURE

TAPANI HYTTINEN* AND SAHARON SHELAH'

Abstract. We prove a main gap theorem for locally saturated submodels of a homogeneous structure.
We also study the number of locally saturated models, which are not elementarily embeddable into each
other.

Hard experience has indicated that before we speak on this particular paper,
we should say something on classification theory for nonelementary classes and of
the specific context chosen here. Classification theory for first order theories is so
established now that many tend to forget that there are other possibilities. There
are some good reasons to consider these other possibilities: first, it is better to
understand a more general context, we like to classify more; second, concerning
applications many classes arising in ‘nature’ are not first order; third, understanding
more general contexts may shed light on the first order one.

Of course, we may suspect that applying to a wider context will leave us with
less content, but only trying will teach us if there are enough interesting things to
discover.

In any case, ‘not first order’ does not define our family of classes of models. We
are in particular interested in generalizing the main gap theorem for X.-saturated
models (see more below). Tending to the general case, we may consider replacing
the first order theory by an L+ ,-sentence y. Fixing the vocabulary, the notion of
elementary submodel is with respect to this logic (all formulas with finitely many
free variables) or at least with respect to a fragment, a family of formulas of L+, of
cardinality < k closed under subformulas and including . We may even consider
abstract such classes discarding the logic altogether and working with ‘algebraic’
properties of the class of models. For such an approach see [37], [38], [39], Makkai
and Shelah [25], and [40],[31] (both on universal classes), Grossberg and Hart [6],
Hart and Shelah [14], Kolman and Shelah [21], [29], [28], [27], Shelah and Villaveces
[43], [42] and Villaveces [44]. (See [28] on history and earlier works.) See also the
closely related Grossberg and Shelah [11],[13], [12], Grossberg [5] and Baldwin and
Shelah [2], [3], [4]. Naturally much of the work is on categoricity (as was the early
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history of the first order case). Anyhow in those cases even a very weak form of
compactness may fail: ‘compactness of types’, see below.

To explain this we have to say first what we mean by ‘the elements ¢ and b realize
the same type over the set B in the model .&°. If for simplicity we assume that for our
class of models and our notion of elementary submodel <, there is a monster model
M., then ‘the elements a and b realize the same type over the set B in the model &/°
means that there is an automorphism of M which maps a to b and is the identity
on B. (Without the monster we should say that this occurs in some extension of &/ .
If we have amalgamation this works nicely.) Now ‘failure of compactness for types’
means that for some model & in our class, elements a and b (or finite sequences)
from & and a subset B of &, the type of the elements a and b over the set B in
the model & is not determined by their restrictions to finite subsets of B; i.e., for
every finite subset 4 of B, there is an automorphism of M which is the identity on
A and maps a to b but for 4 = B there is no such automorphism. (Another way
to point out the difficulty is that for an increasing sequence of sets or even models
(¥, : a < &), in the appropriate sense, if p, € S(&,) is increasing with a, do we
have a limit type i.e., does | J,_5 po exist? This means: is there p € S(U,5 ¥a)
such that for every a < § we have p | %, = p, and is it unique?) So the assumption
that such a failure does not occur is quite reasonable.

Assuming that we have a class of models of w € L;+, with amalgamation and
the joint embedding property and with ‘compactness of types’, we can prove the
existence of a monster model M of cardinality x, which is not saturated, but is
‘k-homogeneous for sequences’. So our class of models K = Kjs is the class
of elementary submodels of M of cardinality < . Here ‘k-homogeneous for
sequences’ means that, if f is a partial map from M to M which preserves the
satisfaction of first order formulas and has cardinality < , then it can be extended
to an automorphism of M. This gives a situation where we cannot use compactness
for arbitrary sets of formulas, but types, defined as usually, behave ‘normally’. Note
that M is determined up to isomorphism by its cardinality x and its finite diagram:

D(M) = {t(a,D) : a afinite sequence from M}.

Classification theory in this context (i.e., using the family of elementary submod-
els of a k-homogeneous for sequences monster model M as the class of models and
the usual notion of elementary submodel) was started in [32], (and [33] , called
there context IV, see page 250, particularly Theorem 1.13) and continued in [16],
[17], [19], [18] and [10]. This is the context chosen here. Note that some attention
was given to some special cases of it: [33] deal mainly with the following two re-
lated cases: In the first M is the universal homogeneous model for x under usual
embeddings for the class of models of T, a first order theory with amalgamation
and the joint embedding property. Then we can restrict ourselves to existentially
closed models. This is called context IT there. The second is the class of existentially
closed models of a first order theory with the joint embedding property, again under
usual embeddings. This is called context III there. Lately Hrushovski [15] has dealt
with context IT: he shows that for it, some hopeful properties of non forking fail for
simple such classes (on simple first order theories see e.g., [7] and [20]). See also
[26].
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1288 TAPANI HYTTINEN AND SAHARON SHELAH

Another simpler context is when instead stable we generalize No—stable, such
investigation have been carried by Grossberg and Lessmann [9], [8], Lessmann
[23].[24].

By [41], a major result in classification theory is the main gap theorem for the
class of models of a first order countable 7'. This essentially gives an understanding
of the function counting the number of models of the class in a cardinality up to
isomorphism. Weaker but still very important one is the main gap for the class of
N.-saturated models of a first order theory. This is proved in [35], [36], and the
tenth chapter of [41] is dedicated for representing it (or see the tenth chapter of the
book [22] and Part D of Baldwin’s book [1] ). Recall that in the first order case, a
model & is called W,-saturated if for every finite 4 C & and element ¢ € M, there
is an element b € &, which is equivalent with a for every equivalence relations
with finitely many equivalence classes and definable by a first order formula with
parameters form 4.

Our aim here is to prove a parallel of this theorem in our context (see [6] and [9]
for other main gap results for nonelementary classes). Note that for this we have to
choose what is the right parallel of X, -saturation. Why was the case of N,-saturated
models more accessible to analysis? It has enough saturation to make the existence
of primary models work on the one hand, but not too much so that the class of such
models is closed under union of increasing elementary chains. We find here a similar
notion. For making it preserved by the union of increasing chains, it only says that
“for every finite subset 4 of & we have & < & such that ...’. In order to have
relevant primary models, we need to have something like the following property of
N, -saturated models: Let B be a subset of M, 4 a finite subset of B and p € S(B)
be such that p | 4 does not have a forking extension g € S(C) over a bigger finite
subset C of B including 4. Now if & is an R,-saturated model including 4, then p
is realized in & . This motivate our choice.

This work continues in particular [19]. Naturally, parallels to ‘regular types’,
‘decomposition theorems’ etc. play an important part.

Throughout this paper we let M be our monster model. As in [19], we assume
that M is homogeneous and that |M| is strongly inaccessible. This can be done
without loss of generality.

By a, b, etc. we mean finite sequences of elements of M. Subsets of M of power
< |M| are denoted by 4, B, etc. and we write &, %, etc. for elementary submodels
of M of power < |M|.

We assume that the reader is familiar with [19] and we use its notions and results
freely. Especially, we use the notion of independence defined in [19]. It is similar to
non-forking. In fact, if M is saturated, then it is the same as non-forking.

The difference is that in our situation, the independence notion does not have
all the properties of non-forking in the full strength. In [40], a related notion has
been studied. We also assume that the reader knows the basic methods of using the
non-forking calculus.

Let A C M and p be a type over A. We say that p is M-consistent if it is realized
in M. We say that M is stable if there is A < |M]| such that for all 4 C M of
power < A, the number of complete M-consistent types over 4 is < 1. Here we
have a general rule: Mostly the notions used in this paper are got from their usual
definition from stability theory ([41]) by replacing ‘consistent’ by ‘M-consistent’

This content downloaded from 185.44.78.129 on Fri, 13 Jun 2014 01:39:13 AM
All use subject to JSTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

Sh:676

MAIN GAP FOR LOCALLY SATURATED SUBMODELS 1289

and/or by replacing non-forking by the independence notion from [19]. E.g., FM-
saturation is got from F?-saturation by this rule (see Definition 0.1 (i)). Like this
one, several of these concepts appeared already in [32] (but with different notation
and in a slightly different context). The main exception to this rule is the notion of
strong type. Instead of the usual strong types we use Lascar strong types. In fact,
we do not talk about strong types over 4 but equivalence classes in the minimal
equivalence relation £, , (over 4 and between sequences of length ).

Notice that M may be stable while T/ (M) is unstable.

DEFINITION 0.1. (i) Suppose M is stable. We say that & is s-saturated if it
is F %M)-saturated i.e., forall 4 C & of power < A(M) and a thereis b € &
such that ¢(b, 4) = t(a, 4).

(ii) We say that & is locally FM-saturated if for all finite 4 C & there is F,M-
saturated % such that 4 C & C &. If M is stable, then we say that & is
e-saturated if it is locally F. %M) -saturated.

(iii) Suppose M is stable. We say that & is strongly FM-saturated if for all
A C & of power < k and a there is b € & such that b E;; , a. By
a-saturated we mean strongly F ,f(lM) -saturated.

Lemma 0.2. (i) Every FM_saturated model is locally FM-saturated and so
(assuming M is stable) every s-saturated model is e-saturated.

(ii) Suppose M is stable. Then every e-saturated model is strongly FM -saturated.

(iii) Suppose M is superstable and k > A(M). Then every locally FM -saturated
model is FM-saturated, in particular every e-saturated model is s-saturated.

PrOOF. (i) is trivial and (ii) is immediate since by [19] Lemma 1.9 (iv), every

F %M)-saturated model is strongly F. %M)-saturated. So we prove (iii): Assume & is

locally FM-saturated. Notice that by (ii), & is a-saturated. Let 4 C &/ be of power
< k and a arbitrary. We show that there is b € & such that 7(b, 4) = t{a, A).
Clearly we may assume that a N &/ = 0.

Choose finite B C & so that a |p &. Since & is locally FM-saturated, we
can find FM-saturated & such that B C # C &. Since by [19] Lemma 1.9 (iii)
B is strongly FM-saturated, we can find a; € %, i < k, such that a; EJ, 5 a
and a; |p Ujca;. Let I = {a;| i < s}. For all i < k(M), choose b; so that
1(bj, ) =t(a, ) and b; | Uj;b;. Let J = {b;| i < k(M)}. By [19] Corollaries
3.5 (iv) and 3.11, I U J is indiscernible over B. So

Av(I,A) = Av(J, A) = t(a, A).

Since |4| < k and k(M) = w, we can find C C B U I of power < & such that for
allc € A, t(c, BUI) does not split strongly over C. Letb € I (C % C &) be such
that 5 N C = (. Then clearly ¢(b, A) = Av(I, A) = t(a, A). 4

We prove a main gap theorem for e-saturated submodels of M. To some extend,
the proofs are similar to the related proofs in the case of complete first-order theories.

§1. Regular types. In (the end of) the next section, regular types are needed. In
this section we prove the basic properties and the existence of regular types. In this
section we assume that M is stable.
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1290 TAPANI HYTTINEN AND SAHARON SHELAH
DerFINITION 1.1. (i) We say that a stationary pair (p, 4) is regular if the fol-
lowing holds: if C O dom(p),a = panda [, C, then (p, A) is orthogonal
to t(a, C).

(i) Assume & is s-saturated and p € S(&/). We say that p is regular, if there
are A C B C &/ such that p does not split strongly over 4, (p | B,A4) is a
regular stationary pair and |B| < x(M).

LEMMA 1.2. Assume &/ is s-saturated and p € S(&/) is regular, not orthogonal to
t(a, ) and B is s-primary over / U a. Then there is b € B such that (b, ) = p.
PrOOF. Assume not. Let 4 C B C & be as in Definition 1.1 (ii). For all
i < k(M) choose &/; as follows:
(i) o=,
(i) if 7 is limit, then &; C & is s-primary over U, ; %/},
(iii) if i = j 41 and thereis b; € & suchthatt(b;, B) = p [ Banda A4 b;,
then & C & is s-primary over &; U b;, if such b; does not exist then we let

M= ;.
Clearly there is i < x(M) such that &/; = &/;,;. Let i* be the least such ordinal.
Then
* t(a, ;+) is orthogonal to p.

Let &/* be s-primary over &= U a.
CrAamM. Assume b = p. Then p + 1(b, &/*).

PrOOF. Since p is not realized in &, for all i < i*, b; /[, &; and so, since p is
regular, for all i < i*, p is orthogonal to #(b;, &;). By induction on i < i* it is easy
to see that p + ¢(b, &;). And so by (*) above, p - t(b, &/ *). =

By Claim, p is orthogonal to #(a, /), a contradiction. -

COROLLARY 1.3. Assume S/;, i < 3, are s-saturated, p; € S(%/;) and p; is regular.
If po is not orthogonal to py and p; is not orthogonal to p,, then py is not orthogonal
to p2.

ProOOF. Immediate by Lemma 1.2 and [19] Lemma 5.4 (iii). -

LemMma 1.4. Assume that & is s-saturated, a [, b and t(b,s/) is regular. Then
a>ygb.

ProOF. Let A = (A(M))*. Clearly we may assume that & is FM-saturated. For
a contradiction, assume that there is ¢ such that ¢ |y a and ¢ 4, b. Choose
A C B C % C & such that

(i) (¢(b, B), A) is a regular stationary pair and b | 4 &,

(ii) |B| < k(M) and |Z| = A(M),

(iii) & is s-saturated anda UbUc | g & .
Thenb fg4a,b Agc ([19] Lemma 3.8 (iv)) and a |4 c. Let &/* be FM-primary
over & Ua and € C &/* s-primary over & U a. Without loss of generality we may
assume thatb Uc |g &.

Foralli < (M), choose b; € & * such that t(bi,%UUKi bj) = t(b,%UUK,. b;).
Let I = {b;| i < xs(M)}. Then I U{b} is indiscernible over #. Since b 4 7, it is
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easy to see that I U {b} is not %-independent. So we can choose finite J C I such
that

() J U {b} is not Z-independent.

If J is chosen so that |J| is minimal, then J is %-independent.

Let @ be s-primary over & U c¢. By (iii) and the choice of ¢, ¢ |5 &*. Then
J | @ and so J is @-independent. Since p isregularand b 4 9, J |o b and
so J |g b. Clearly this contradicts (*) above. -

Assume &/ is s-saturated and a & &. We write Dp(a, &) > 0if there is s-primary
model % over & Ua and b & % such that (b, &) is orthogonal to .

LemMa 1.5. Assume that M is superstable without (A(M))*-dop. Let S/ be s-
saturated, I be s/ -independent anda [, 1. If t(a,8) is regular and Dp(a, /) > 0,
then thereisb € I such thata [, b. And so by Lemma 1.4, a |y U(I — {b}).

PrOOF. Assume not. Clearly we may assume that || = A(M). Choose a;, ¥;
and &;, i < o, so that

(i) alw a
ii) & is s-primary over & U a;,
) {a:| i < a*}is &-independent,
iv) % = & and G, is s-primary over &; U &, 1,
v) a Ag Hit1,

(vi) (a;)ica+ is a maximal sequence satisfying (i)-(v) above and a* > 1.
Since M is superstable, a* < w. Let n be such that a* = n + 1. Let A = (A(M))*
and &% be F /{"’ -saturated model such that &¥ C # and & |y %,. Let B; be F /{” -
primary over & U &; and & F, fl -primary over U;<,%;. It is easy to see that &, is
s-primary over U;<,&; and so we may choose & so that &, C . Choose a’ € @
sothat t(a’,%,) = t(a,%,). Let &' be s-primary over & U a’.

Ciaml. &' |y B.
Proor. Immediate by Lemma [.4. -
Cram 2. Foralli <n, ¥’ |y 5.

Proor. Clearly it is enough to show that @’ |y BU ;. Let I = {j <n|j #i}.
By Claim 1 and (vi) above,

*) alg, B.
By the choice of &, Uje1; |, B and s0 €, |w, F. With (*) above, this implies
that @’ |y, B. Since a’ |y i, a’ |y B U ;. -

Since Dp(a, %) > 0, there is b ¢ %' such that #(b, &/') is orthogonal to & and
b |y @. By Claim 2 and [19] Corollary 4.8, (b, Z) is orthogonal to %; for all
i < n. This contradicts the following claim:

Cram 3 (M is superstable without A-dop.). Assume &, %B;, i < n < w, and &
are FM-saturated, for all i < n, & C %, (%;)i<n is B-independent and Z is
F/{”-primary over Uj<,%;. If b € &, then there is i < n such that t(b, ) is not
orthogonal to %;.
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Proor. We prove this by induction on #. The case n = 0 is trivial and the case
n = 1 follows immediately from A-ndop. So assume n > 1.

Let B’ be FM-primary over U<, %; and @’ be FM-primary over %' U %,. By
[19] Lemma 5.4 (ii), &’ U B, is FM-constructible over U;<,%; and so @' is FM-
primary over U;<,%;. By the uniqueness of FM-primary sets, we can choose &’
and 2’ so that 2’ = @. Clearly we may assume that #(b, &) is orthogonal to %,.

By [19] Lemma 5.11, choose b’ ¢ 9 so that ¢(b’, D) is a c-type ([19] Definition
5.10) and b >g b’. Since t(b, D) is orthogonal to %,, so is t(b’,Z). Then by
J-ndop, t(b’, @) is not orthogonal to %’. Since t(b’, &) is a c-type, there is b” & D
such that b” |z 2 and b’ 1> b”. By the induction assumption, there is i < n,
such that 7(b”, &’) is not orthogonal to %;. Then ¢(b”, &) is not orthogonal to %;
and because b > b”, also ¢(b, D) is not orthogonal to ;. -

_|

LEMMA 1.6. Assume that M is superstable, S/ C & are s-saturated and I # %.
Then there is a singleton a ¢ B — & such that t(a, %) is regular.

PROOF. As in the case of superstable theories (see e.g., [1] XII Exercise 2.4).

§2. Superstable with ndop. Throughout this section we assume that M is super-
stable and does not have A(M)-dop. If P is a tree and ¢ € P is not the root, then by
¢t~ we mean the immediate predecessor of ¢.

DEFINITION 2.1. (i) We say that (P, f,g) = ((P, <), f,g) is an s-free tree of
the (s-saturated) model & if the following holds:
(1) (P, <) is a tree without branches of length > w, f : (P — {r}) — & and
g : P — P(&), wherer € P is the root of P and P(%) is the power set of
S,
(2) g(r)is an s-primary model (over { i.e., saturated model of power A(M)),
(3) if ¢ is not the root and u~ = ¢ then ¢(f (), g(¢)) is orthogonal to g(¢7),
(4) if ¢ = u~ then g(u) is s-primary over g(z) U f (u),
(5) Assume T,V C P and u € P are such that
(a) forallz € T, tis comparable with u,
(b) T is downwards closed.
(c) ifv € Vthenforallfsuchthatv >t >u,t & T.
Then
U g(t) J’g(u) U g(U)
teT veV
(i) We say that (P, f, g) is an s-decomposition of & if it is a maximal s-free
tree of &/.
(iii) We say that (P, £, g) is an s-free tree, if it is an s-free tree of some &7.

Notice that by Lemma 0.2 (iii) it is easy to see, that every e-saturated model has
an s-decomposition.

THEOREM 2.2 (M superstable without A(M)-dop). Assume &/ is e-saturated and
(P, f,g) is an s-decomposition of (. If B C & is s-primary over U;cpg(t), then
B =9

ProOF. Immediate by Lemma 0.2 (iii) and [19] Theorem 5.13. -
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COROLLARY 2.3. Suppose &/ and B are e-saturated. If (P, f, g) is a decomposition
of both ¢ and &, then & and B are isomorphic over U,cpg(t).

ProOF. By Theorem 2.2, & is s-primary over U;epg(¢). By [19] Theorem 5.3
(ii), there is an embedding f : & — % such that f | Uiepg(t) = idy, (). By
Theorem 2.2, rng(f) = %. 4

We say that an s-free tree (P, f, g) is regular if the following holds: if 1, u € P are
such that u is an immediate successor of ¢, then 7( f (u), g(¢)) is regular. We say that
(P, f,g) is a regular s-decomposition of e-saturated ./, if it an s-decomposition of
& and a regular s-free tree.

LEMMA 2.4. Every e-saturated model & has a regular s-decomposition.

ProoF. For this, it is enough to show that every maximal regular s-free tree of &/
is a maximal s-free tree of .&/. But this follows immediately from Lemma 1.6. =

DEFINITION 2.5. (i) We say that M is shallow if every branch in every regular
s-free tree is finite. If M is not shallow, then we say that M is deep.
(i) If P = (P, <) is a tree without infinite branches, then by Dp(P) we mean
the depth of P.
(iii) Assume that M is shallow. We define the depth of M to be

sup{Dp(P) + 1| (P, f, g) is a regular s-free tree}.

LEMMA 2.6. Assume that M is shallow. Then the depth of M is < A(M)™.
ProOF. Choose a minimal regular s-free tree (P, f, g) so that the following holds:

forall t € P and p € S(g(z)), if (*) below holds, then there is an immediate
successor u € P of ¢ such that ¢(f (u), g(1)) = p.

(%) pisregular and if # has an immediate predecessor ¢, then p is orthogonal
tog(¢7).
Clearly Dp(P) < A(M)*.

Cramm. If (P’, f7,g’) is a regular s-free tree, then there is an order-preserving
function 4 : P’ — P.

Proor. By induction on height(t), t € P’, we define /() so that

(i) if u is an immediate predecessor of ¢, then 4 (u) is an immediate predecessor
of h(1),

(i) there is an elementary function 4, : g’(¢) — g(h(z)) such that if u is an
immediate predecessor of ¢, then 4,(g’(u)) C g(h(u)) and h,(g'(¢)) Ln (e ()
g(h(u)).

If height(t) = 0, then we let 4(¢) be the root of P. Then A, exists because g’(¢) and
g(h(1)) are F %M)-saturated models of power A(M) and thus isomorphic. Assume
then, that height(¢) > 0. Let u be the immediate predecessor of ¢ and let 4, be the
function given by the induction assumption. Then there is 4(¢) € P such that it
is an immediate successor of A(u), t(f (h(2)), h,(g'W))) = h,(t(f'(¢),g"(u))) and
S (1(2)) Ln,(gruy) &(A(u)). This is because the free extension of 4, (¢(f’(¢),g'(u)))
is clearly regular and if u~ is an immediate predecessor of u, then by (ii) of the
induction assumption and [19] Corollary 4.8 the free extension of 4, (1( /' (¢), g'(u)))
is orthogonal to g(#(u~)). We need to define #4,.
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Since g’(¢) is s-primary over g(u) U f(¢), it is s-primitive over g(u) U f(¢). So
there is 4, such that &, | g’(u) = h, (and so (g’ (u)) C g(h(w))), h:(f'(2))
f(h(¢)) and h:(g'(z)) C g(h(z)). By the choice of A(¢) and [19] Lemma 5.4 (i),
hi(g' (1)) Ln(eruy) & (h(u)).

By Claim, if (P, f', g’) is a regular s-free tree, then Dp(P’') < Dp(P) < A(M)*.

_|

By |L| we mean the number of L-formulas modulo the equivalence relation

F Vx((x) < w(x)).

THEOREM 2.7. Assume that M is shallow. Then the depth of M is < (|S(0)|°)*
and so it is < (21F0)*.

Proor. By Lemma 2.6, we may assume that 1(M) > w. Choose a minimal
regular s-free tree (P, f,g) so thatif ¢ € P and p € S(g(¢)) is regular such that if
¢ has an immediate predecessor ¢, then p is orthogonal to g(¢~), then there is an
immediate successor u € P of ¢ and an automorphism 4 of g(¢) such that such that

t(f(u).g(2)) = h(p).
Cramv 1. Dp(P) < (IS(@)|*)*.

Proor. Clearly it is enough to show that for all # € P the number of immediate
successors of ¢ is at most |S(()|*. Asin the proof of Lemma 0.2, forall p € S(g(¢)),
there is a countable indiscernible I C g(¢) such that Av(Z,g(z)) = p. Also if
t(1,0) = t(I',0), then there is an automorphism / of g(¢) such that h(I) = I’
(remember that g(z) is an F]Qf(t)l-saturated model of power A(M) > ). So the
number of immediate successors of ¢ is at most

[{¢(1,0)| I C g(t) countable indiscernible}|.
Clearly this is at most |S(()|*. =

L=

Cram 2. If (P’, f7,g’) is a regular s-free tree, then there is an order-preserving
function s : P’ — P.

ProoOF. By induction on height(t), t € P’, we define A (¢) so that

(i) if u is an immediate predecessor of ¢, then /(u) is an immediate predecessor
of h(r),

(ii) there is an elementary function 4, : g’(t) — g(h(¢)) such that if u is an
immediate predecessor of #, then 4,(g’(u)) C g(h(u)) and 4, (g'(¢)) L, (g )
g(h(u)).

The case height(t) = 01is as in the proof of Lemma 2.6. So assume that height(t) >
0. Let u be the immediate predecessor of ¢ and 4, the isomorphism given by the
induction assumption. As in the proof of Lemma 2.6, we can find /() € P and
an automorphism 4* of g(h(u)) such that A(¢) is an immediate successor of 4 (u),
t(f(h(2)), (h* o hu)(g' () = (h* o h)(t(f'(2), g (w))) and f(h(£)) L(hon,) (')

g(h(u)). Now we can proceed as in the proof of Lemma 2.6 (k* o h, in place of

hy). 4
As in the proof of Lemma 2.6, Claim 1 and 2 imply that the depth of M is
< (IS@)~)*. n

THEOREM 2.8. Assume that M is shallow and y* is the depth of M. Then the number
of non-isomorphic e-saturated models of power R, is at most 3« (|| + A(M))).
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ProoF. By Corollary 2.3, it is enough to count the number of ‘non-isomorphic’
regular s-free trees (P, f,g) of power R,. This is an easy induction on D p(P), see
the related results in [41]. -

THEOREM 2.9. Assume that M is shallow and y* is the depth of M. Let k =
3 (AM))*T. If 4, i < K, are e-saturated models, then there are i < j < k such that
& is elementarily embeddable into 5/ .

Proor. By Corollary 2.3, this question can be reduced to the question of ‘em-
beddability’ of labelled trees. So this follows immediately from [41] X Theorem
5.16C. o

A cardinal & is called beautiful if K = w or for all & < &, K *> (@)%, see [34]
Definition 2.3.

THEOREM 2.10. (M is superstable without J.(M)-dop but not necessarily shallow.)
Assume that there is a beautiful cardinal > A(M). Let k* be the least such cardinal.
If 7;, i < K*, are e-saturated models, then there are i < j < k* such that ; is
elementarily embeddable into ;.

ProoF. Again by Corollary 2.3, this follows immediately from [34] Theorems 5.8
and 2.10. -

If (P, <) is a tree without branches of length > w and ¢ € P, then by Dp(t, P)
we mean the depth of ¢ in P.

THEOREM 2.11. Assume that M is superstable, deep, does not have A(M)-dop and
(A(M))*-dop and ) > A(M). Then there are s-saturated (and so e-saturated ) models
S, i < 2%, of power A such that for all i < j < 2%, sl; % ;.

REMARK. In the next section we show that M has many e-saturated models if
M is superstable and has A(M)-dop. Similarly we can show that M has many
e-saturated models if M is superstable and has (1(M))*-dop.

ProOF. Assume X; C 4, i < 2, are such that X, # X; and |X;| = 1. Choose
regular s-free trees (P;, f;, i), i < 2, so that
(i) P; does not have branches of length > w but for all ¢ € P;, if ¢ is not the
root, then Dp(f(¢),g(t7)) > 0 (see just before Lemma 1.5),
(ii) for all o € X;, there are A many ¢ € P; such that the height of ¢ is one and
Dp(t, P;) = a and if Dp(¢, P;) = f§ and the height of 7 is one, then § € X,
(iii) forallt € P;,if Dp(t, P;) = o and B < «, then

H{u € P;lu™ =tand Dp(u, P;) > B} = A,
(iv) if t,u € P; are not the root and 1~ = u~, then

t(fi(t), gi(t7)) = t(fi(u), &:(u™)),
we write p,- for this type.
Let r; be the root of P;, Choose finite 4; C B; C g;(r;) so that p,, does not split
strongly over 4; and (p,, | B;, A;) is a regular stationary pair. Then we require also
(v) By= B, (=B), Ay= A, (=4) and p,, | B = p,, | B.
Let &7, i < 2, be s-primary over U,cp,g:(¢). We show that there is no isomorphism
F : ofy — & such that F | B = idg. Clearly this is enough (since 1<% < 2%,
‘naming’ finite number of elements does not change the number of models and
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since M is A-stable, |%;| = ). For a contradiction we assume that F exists. Clearly
we may assume that F' = idy,, this simplifies the notation.

We let P} be the set of those t € P;, which are not leaves. For all ¢ € Pg, we let
G(t) € P} be (some node) such that p, is not orthogonal to pg(,) (if exists).

CramM. G is an one-to-one function from P onto Py.

Proor. Since for all 1 € P§, |{u € Po| u~ = t}| = A > A(M), the existence of
G (t) follows easily. Since for all u,u’ € P}, u # u', p, is orthogonal to p,/, G(¢) is
unique by Corollary 1.3. But then by symmetry, claim follows. -
We prove a contradiction (with (i) above) by constructing a strictly increasing
sequence (7;) <. of elements of Pj. We construct also a strictly increasing sequence
(4j) j<w Of elements of Py, sets 1 j’ , i < 2, and models %, so that
(1) Dp(u;, P1) < Dp(t;, Po) and forall ¢ > t;, G(¢) > uy,
(2) It C P; is downwards closed, non-empty and of power < A(M) and
o)
L S
(3) LIS I]p-f-l and G(tj) S Ij1+1’
(4) @B is s-primary over U, ¢ jogo(t) and over U, ¢;1g1(u) and B, C B 1.
7 J

We do this by induction on j < w.

J = 0: Choose 10, I} and % so that (2) and (4) above are satisfied (if B’ C % is
s-primary over Userg(t), I C Py, then by Theorem 2.2 and [19] Lemma 5.4 (ii), %,
is s-primary over ' U, p, &(2)). Let to € Py be such that 7y ¢ 10 and (#y)~ = ro.
Then

() So(to) L4 SBo.

By Lemma 1.5, there is ug € Py — I}' such that f1(uo) A, fo(to) and (ug)~ € Ij.
By Lemma 1.4,
Solto) Lay U{g1(w)| u 2 uo}.
So ug is unique and the latter half of (1) holds. By (*), (1)~ = r; and so since
Xy # X, we can choose %y so that Dp(ug, P;) # Dp(ty, Py). By symmetry, we may
assume that D p(up, P1) < Dp(t9, Py). Finally, this implies that 7 € P§.
j = k + 1: Essentially, just repeat the argument above. —l

§3. Superstable with dop or unstable. We start by making changes to a result
from [17]. Our conclusion is weaker but so are the cardinal assumptions.

THEOREM 3.1. Assume M is superstable with .(M)-dop, k > (A,(M))* is regular
and & > (k) M7) | Then there are FM-saturated (and so e-saturated) models /;,
i < 2%, of power & such that for all i # j, 4; is not isomorphic to 8.

PrOOF. Let 4 = (4,(M))*. We write p € FM(A) if p | A FM-isolates p. By
[19] Corollary 6.5, M has A-sdop (see [19]) and so by [Hy] Corollary 2.3, there are
F AM -saturated models A4; of cardinality A, i < 3, and an indiscernible sequence /
over Ay U A, of power k* such that

(i) Ao C A1N Ay, A1 L4, A2,
(ii) there is D C A; U A, of power < A with the following property: if C;,
i < 3, are such that Cy | 4, 4 U 4, and for i € {1,2} and all ¢; € C;, there is
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D; C 4; U Cp of power < 4 such that ¢(c;, 41U 4, U CoU C3_;) € FM(D;),
then

I(I,A1 Uud,UCyu Gy UCz) € F){V[(D)

Let # be a linear ordering. We define an FM-saturated model &, as follows. For all
i € n we choose B; and C; so that t(B;, Ag) = t(Ay, Ao), t(C;, Ag) = t(A43, Ag) and
{Bi|i € n} U{C;| i € n} isindependent over A,. For all i, j € # we choose I;; so
that #(I;; U B; U C;, Ag) = t(I U Ay U A, Ag). Then we let &/, be FM-primary over
U{Bil i e n} UU{Ci| i € n} WU{Ty| (0. j) € n?, i < j}.

We let w(x,p), x = x1 —~ X2,y = y1 —~ ya, length(x)) = length(x;) =
length(y,) = length(y;) = A, be a formula (in some language), which says that
there is J such that ¢ (J U x| U y5,0) = t(1 UA; U Ay, D). Then by [Hy] Lemma 2.5,
for all l,] €, i< ] lff&fn ': l//(B, U C,',Bj U Cj)

Let = be a similarity type and y a cardinal. We say that y is a PC (L, (7))-
formula if  is of the form (3f;);<o ¢, Where @ < x, f; are new function symbols
and ¢ is a L, ,-formula of similarity type U {f;| i < a}. In L, ,-formulas any
number of free variables may appear. We write PC(L,,,) for PC(L, (7)) if 7 is
the similarity type of M.

CLAIM. (i) Thereis a PC(L,+,)-sentence wq such that for all models € of
power < |M|, & |= wo iff & is (isomorphic to) an FM-saturated elementary
submodel of M.

(i) There is a PC(Lyx++.)-formula y(x, y) such that for all linear orderings
nandi,j €n, & =y (B;UC,B;UC))iffi< j.

(iii) Thereisa PC(Ly+ . )-formula w,(x, y) such that for all linear orderings #
and i,jen, M’? |= l/lz(B,' @] Ci,Bj @] Cj) iff i > j.

(iv) {wo,wi(c,d), w2(c,d)} is inconsistent, where ¢ and d are sequences of
new constant symbols.

Proor. (i) To say that & is an elementary submodel of M, it is enough to say that
for all n < w, & does not realize n-types over @), which are not realized in M. This
can be expressed by an L, ,,-sentence. To say that & is FM-saturated, by Lemma
0.2 (iii), it is enough to say that & is locally FM-saturated. This can be expressed
by a PC(L+,)-sentence.

(ii) Clearly v is equivalent to a PC(L,++ ,)-formula.

(iii) Let {ax| & < xT} be an enumeration of 7 and & O I U 4; U 4, be an
s-saturated model. By [19] Lemma 4.3, there are finite D C E C & such that
(4v(I, E), D) is a stationary pair and Av(I, 2) does not split strongly over D. Let
{ex| k < n} be an enumeration of E so that for some n’ < n, D = {e| k < n'}.
Now assume that J C 9 is such that 1(J, 4; U 45) = t((a;] i < k), A1 U 4,),
Av(J E) = Av(I, E) and Av(J, &) does not split strongly over D. Then

* J is not maximal in & over &) U A3,

i.e., thereis b € & — J such that J U {b} is indiscernible over &) U &,. For this, let
D* =JUA,UA,U{a;| i < k}U E. By the pigeonhole principle, there is j < k™
such that ¢(a;, D*) = Av(I, D*). Then b = a; is as wanted: For this it is enough to
show that 4v(I, D*) = Av(J, D*). By [19] Lemma 2.4 (ii), it is enough to find K
such that |K| = k(M) and both 7 UK and J U K are indiscernible. For this choose
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i, k < k(M) so that t(ck, E) = Av(I,E)and ¢, |p IUJUE U{cy| p <k}. By
the choice of E and D and [19] Lemma 2.4 (i), K = {¢;| i < k(M)} is as wanted.

By (*), the following formula is as wanted: There are functions f%, k < &, such
that for all b, p < n, if t({bx| k <n} UB; UC;,0) = 1(E U A, UA,,0), then J =
{fp(bo, ....by—1)| p < k}issuchthat 1(JUB;UC;,0) = t((ax| k < K)UA1UAL, 0),
it is a maximal in &, over B;UC;, Av(J, {bc| k < n})is a conjugate of Av(I, E) and
Av(J, o,) does not split strongly over {b;| k < n’}. Notice that the last requirement
depends on t({f ,(bo, ..., bu—1)| p < (M)} U{bi| k < n}, () only.

(iv) Immediate by (*).

__I
By Claim, the theorem follows from [30] Chapter III Theorem 3.23 (2). -

ReMARK 3.2. To strengthen the conclusion of Theorem 3.1 to “%; is not elemen-
tarily embeddable to &7;’, we need the parallel of [30] Chapter IV Theorem 3.1 for
trees of height x + 1 dealing with sequences of length < « (instead of height w + 1
and finite sequences). For humane reasons this has not been done in [30].

LeMMA 3.3. Assume that M is unstable. Let & > |L| be a regular cardinal, and
n = (5,<) be a linear ordering. Then there are sequences a;, i € 1, a model
& and functions f; : M" — M, i < 2<%, such that n; < w and if we write
L* = LU{f;|i < 2<%} then the following holds:
(i) (a:)iey is order-indiscernible inside ¢ in the language L*,
(ii) for all X C n, the closure Slx of {a;| i € X} under the functions of L* is a
locally FM -saturated model (in the language L) and ¢ = 7,
(iii) there is an L-formula ¢(x, y) such that for all i, j € n, = ¢(a;, a;) iff i < j.
Proor. Define functions f7 : M™ — M, i < 2<%, so that

the closure of any set under the functions f; is locally FM-saturated
(*)  (in L) and L'-elementary submodel of (M, f!);<p<x,where L' = L U
{fili<2%"}.
By Erdés-Rado Theorem and [32] I Lemma 2.10 (1), we can find sequences
(ak)ick, k < w, such that
(1) thereisa formula ¢(x, y) such that for all k < w and i, j < k, = ¢(af, af)
iffi < j,

(2) (aF)i<k is order-indiscernible in the language L’,

(3) the L'-type of (a¥);<i (over 0) is the same as the L'-type of (af ™).
Since M is homogeneous, we can find for all i € #, a; so that for all k < w,
if ip < i1 < ... < ig—1, then 1((a;,)<k.0) = t((a}‘)j<k,(2)). Again, since M is
homogeneous (use €.g., [19] Lemma 1.1) we can define the functions f; so that for
all ip < i] < ... < ix_1 the following holds:

If o/ is the closure of (ai,.) j<k under the functions f; and #, is the
closure of (a }‘) j<k under the functions f7, then there is an L-isomorphism

F : 8y — 84, such that F(a;,) = a}‘ and for all a,b € &) and i < 2<%,
fila) =biff f{(F(a)) = F ().

Let & = &, i.e., the closure of {a;| i € 7} under the functions of L*. Then it is
easy to see that (iii) in the claim is satisfied.

**)
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(ii): Assume X C 7. We show that &y is locally FM-saturated. For this let
A C /x be finite. Then there is X’ C X finite, such that 4 C &/x. By (**) above,
Sy is locally FM-saturated. So there is FM-saturated % such that 4 C B C ¥y.

(i): By (*) and (**) above it is easy to see that for all finite X C #, &y is an
L*-elementary submodel of &. By (2), (*) and (**) again, (i) follows. 4

THEOREM 3.4. Assume M is unstable. Let A and k be regular cardinals, A > 2<%
and k > |L|. Then there are locally FM-saturated models sf;, i < 2*, such that
|;| = Aand ifi # ], then ; is not elementarily embeddable into 7.

Proor. By Lemma 3.3 this follows from [30] Chapter VI Theorem 3.1 (3). Notice
that the trees can be coded into linear orderings. -

§4. Strictly stable. Through out this section we assume that M is stable but
unsuperstable, and that k = c¢f (k) > A,(M).

We write 65 for { : @ — k| @ < 0}, k< and k” = k= are defined similarly
(of course these have also the other meaning, but it will be clear from the context,
which one we mean). Let J C 2<%, We order P, (J) (=the set of all finite subsets
of J) by defining u < v if for every € u there is ¢ € v such that # is an initial
segment of &.

Since M is unsuperstable, by [19] Lemma 5.1, there are a and FM

(M
models &7, i < w, of power A,(M) such that
(i) if j < i< w,then &; C &,
(i) foralli < w,a Ay i1

) -saturated

Let &/, be an FM -primary model over a U J,_, ;. Then for all € k=%, we

A (M)
can find &, such that
(a) for all 7 € k=, there is an automorphism f, of M such that /5 (Zjengsn(y))
= %’7,
(b) if 5 is an initial segment of &, then f& [ Fpnginn) = S | Liengtn(n)»
(c) ify € kK<?, o € k and X is the set of those & € k= such that 7 ~ () is an
initial segment of &, then

i<w

Uzex e Lo, Uge(nso—x) e

For ally € k*, welet a, = f,(a).
For each a < & of cofinality w, let 7, € k® be a strictly increasing sequence such
that Ui . (i) = a. Let S C {a < k| ¢f(a) = w}. By Js we mean the set

K< U{n.| a € S}

Let Is = Pw(.]s).
LemMma 4.1. Forall S C {a < k| cf (o) = w}, there are sets 4, u € Is, such that
(i) forallu,v € Is, u < v implies 8, C 5,
(ii) forallu € Ig, 4, is FﬁM)-primary over Uyeu Ay,
(iii) ifa € k = S, u € Is and v € P, (Js N aS?) is maximal such that v < u,
then
My Lst, Uwep,(1snase)uw.

Proor. See [18] Lemmas 4 and 7. -|
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Forall S C {a < k| cf () = w}, let ¥s = U, e, ,. By Lemma 4.1 (i) and (ii),
&5 18 e-saturated and |s| = .

LEMMA 4.2. There are sets S; C {a < k| cf(a) = w}, i < 2%, such that if i # j,
then S; — S is stationary.

ProOOF. Let fi;k — K, i < 2, be one to one functions such that rng(fo) N
rng(f1) = 0. Let R., i < 2%, be an enumeration of the power set of k. We define
R;, i< 2% sothat fo(a) € R; iff & € Rl and f1(a) € R; iff @ & R!. Then clearly,
i # jimplies R; — R; # 0. By [41] Appendix Theorem 1.3 (2), there are pairwise
disjoint stationary sets S7 C {a < k| ¢f(a) = w}, j < k. Fori < 2%, we let
Si = Ujer,S’. Clearly these are as wanted. -I

THEOREM 4.3. Assume M is stable and unsuperstable and k = c f (k) > A.(M).
Then there are e-saturated models $7;, i < 2%, of power k such that if i # j, then 5/;
is not elementarily embeddable into S7;.

Proor. For all i < 2%, let & = %s,, where the sets S; are as in Lemma 4.2,
Assume i # j. We show that there are no elementary map F : &; — ;.

For a contradiction, assume that F exists. Foralla < «, let S be the set of those
u € Is, such that for all y € u, sup{y(i)| i < length(n)} < . Let 7 = Uyese o,
I §’J and &/ are defined similarly. We say that o is closed if for all a € &, a € e
iff Fla) e & . Let C be the set of all closed ordinals and Cj;,,, the set of all limit
points in C. Then S = C;,, N (S; — S;) is stationary.

For all o € S°, let u, € I, be such that F(a,,) € %,,. By g(a) we mean the
least # € C such that u, | a &/ By Lemma 4.1 (iii) and the fact that S°NS; = 0,

g(a) < a. So there is stationary S' C S such that g | S! is constant. Let a* be
this constant value.

Then there is S? C S! and n <  such that |S?| = « and for all 8,y € S?, if
p # v, then nz(n) # n,(n). By choosing n so that it is minimal, we may assume
that for all § € S, ng(n — 1) < a*. Clearly we may assume that for all 8 € S?,
np(n) > a*.

Then by Lemma 4.1 (iii),

(i) (F(y1(0e1)))pese i F (/2" )-independent.
Since F (ay,) lea F (8, 1(n41)) and F (ay,) A p(ss) F(M,M(HI)),

*

(i) forall # € S2, F(87,,1(141)) Ay 25
Since k(M) < &, | ja*l < k and |S?| = &, (i) and (ii) are contradictory. 4

REMARK 4.4. By using [30] Chapter IV Theorem 3.1 (3), it is possible to replace
the assumption x = ¢f (k) > 4,(M) by k > 4,(M) in Theorem 4.3.
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