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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 65, Number 2, June 2000 

AFTER ALL, THERE ARE SOME INEQUALITIES WHICH ARE 
PROVABLE IN ZFC 

TOMEK BARTOSZYNSKI, ANDRZEJ ROSLANOWSKI, AND SAHARON SHELAH 

Abstract. We address ZFC inequalities between some cardinal invariants of the continuum, which 
turned out to be true in spite of strong expectations given by [11]. 

?1. Introduction. The present paper consists of two independent sections which 
have two things in common: both resulted in a failure to fulfill old promises to 
build a specific forcing notion and in both an important role is played by cardinal 
invariant a.*. 

The first promise was stated in [4] and was related to cardinal invariant cov* (X). 
Let B denote the measure algebra adding one random real. 

DEFINITION 1.1. Let X2 be the ideal of measure zero subsets of Ill x Ill and let 
Borel(IIR) be the collection of all Borel mappings from Ill into Ill. Define 

cov*(X) = min{I AS: SI C X2 & (Vf E BoreI[(R)) (VB E Borel \ X) 

(3H E sW)({x E B: (X,f(x)) E H} f)} 

and 

non*(X) = min{ X1 X C Borel(IIR) & (VH E X2)(VB E Borel \AX) 

(3f E X) ({x E B : (x, f (x)) H} & )O}X 

PROPOSITION 1.2. cov*(A/') = cov(Jf)VB and non*((X) = non (X))VB 
It has been known that (see [4], [7], [9] for more details): 

1. max{cov(X)V, bV} < cov(.V)VB < non(AX); 
2. it is consistent that cov(A) v > max{covl(X) V, b V}; 

3. it is consistent that covl/) v > D 
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804 TOMEK BARTOSZYI4SKI, ANDRZEJ ROSLANOWSKI, AND SAHARON SHELAH 

And in [4, 3.11] we promised that in [11] it would be proved that 

* it is consistent that cov((X) VB < non(X), 

being sure that using the method of norms on possibilities we could construct a 
forcing notion which: 

a: is proper co'-bounding, 
b: makes ground reals meager and 
c: does not add a B-name for a random real over VB. 

However, when trying to fill up the details of the construction, we have discovered 
that there is no such forcing notion and found new inequalities provable in ZFC. 

The second section deals with an inequality related to localizations of subsets of 
co by partitions of co. Several notions of localization and related cardinal invariants 
were introduced in [10]. The one we will refer to is the Re-localization property. 

DEFINITION 1.3. Let V C V* be universes of Set Theory and let k E co. 

1. We say that the extension V C V* has the R3-localization property if in V*: 
for every infinite co-infinite set X C co there is a partition (Kn : n E 
co) E V of co such that Kn I > k + I and 

(3??n E )(IX n Kn I < k). 

2. An infinite co-infinite set X C co, X E V* is said to be (k, 0)-large over V if 
for every sequence (Kn n E co) E V of disjoint k-element subsets of 
co we have 

(Vo?n E co)(Kn n x 0). 

The following result has been shown in [10, 1.8]. 

PROPOSITION 1.4. Let V C V* be models of ZFC, m > 2, k E co. Then the 
following conditions are equivalent: 

1. there is no (m, 0)-large set in V* over V, 
2. there is no (2, 0)-large set in V* over V, 
3. V C V* has the Re -localization property, 
4. V C V* has the R3-localization property. - 

After noting that if V n 2' is not meager in V*, V C V* then the extension 
V C V* has the Re-localization property we promised to give in [11] an example 
of a forcing notion showing that the converse implication does not hold. In fact we 
wanted to construct a forcing notion which: 

a: is proper co'-bounding, 
b: makes ground reals meager and 
c: has the R3-localization property. 

Once again, we have discovered that there is no such forcing notion and we have 
established some new inequalities between relevant cardinal invariants. 

NOTATION 1. 5. We try to keep our notation standard and compatible with that of 
classical textbooks on Set Theory (like Jech [6] or Bartoszynski Judah [3]). 

1. Let i, j < co. The set of all integers m satisfying i < m < j is denoted by [i, j), 
etc. 

This content downloaded from 62.122.76.48 on Fri, 13 Jun 2014 18:30:31 PM
All use subject to JSTOR Terms and Conditions

Sh:616

http://www.jstor.org/page/info/about/policies/terms.jsp


AFTER ALL, THERE ARE SOME INEQUALITIES WHICH ARE PROVABLE IN ZFC 805 

2. For integerski, . kj (i < j < co), I ke is their Cartesian product interpreted 
i=i 

as the collection of all finite functions r such that dom(z) = [i, j] and (ye E 
dom (r)) (r(i) E ki). 

However, we will use the same notation for the cardinality of this set, hoping that 
it will not cause too much confusion. 

3. For two sequences a, v we write v < q whenever v is a proper initial segment 
of a, and v < q when either v < q or v = a. The length of a sequence q is denoted 
by Ih(i(). 

4. The quantifiers (V1n) and (3??n) are abbreviations for 

(3m E co)(Vn > m) and (Vm E co)(3n > m), 

respectively. 
5. For co-sequences a, p we write q =* p whenever 

(V\fn E co)(q(n) = p(n)). 

6. The Cantor space 21 and the Baire space coO are the spaces of all functions 
from co to 2, co, respectively, equipped with natural (product) topology. 

7. In forcing arguments, a stronger condition is the larger one. 

?2. Adding a random name for a random real. As the failure in building the forcing 
notion we had in mind for [4, 3.1 1] directly results in some properties of extensions 
of universes of ZFC, we will formulate the main result of the present section in this 
language. Further we will draw several conclusions for cardinal invariants. 

The result presented in 2.3 below is of some interest per se if you have in mind the 
following theorem (see [9, 3.1]). 

THEOREM 2.1. 1. (Krawczyk; [7].) Suppose that V C V* are universes of Set 
Theory such that V n co- is bounded in V* n coo. Let r be a random real over V*. 
Then there is in V* [r] a random real over V[r]. 

2. (Pawlikowski; [9, 3.2].) Suppose that c is a Cohen real over V and r is a random 
real over V[c]. Then, in V[c][r] there is no random real over V[r]. 

DEFINITION 2.2. Let 1 E coo be a strictly increasing function. A (D-constructor 
is a sequence (n1, mi, ki: i < co) of integers defined inductively by: no = 2 and for 
i E co 

mi = Tmj .2'(ni+i) , ki = mi tkj) 4(Dmi tkj) ni+ I = ni (ki + l). 
j<i j<i j<i 

[So ni < mi < ki < ni+l.] 

THEOREM 2.3. Suppose that V C V* are universes of Set Theory such that 

if r is a random real over V* 
then in V* [r] there is no random real over V[r]. 

Let D E cowf n V be strictly increasing and let (n1, mi, ki : i < co) be the 0-constructor. 

1. If V n cofw is dominating in V* n qA, then, in V*: 
for every function / E H ki there are sequences (Xe : ? < co) E V and 

i~c) 
(im : m < co) E V such that 
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806 TOMEK BARTOSZYNSKI, ANDRZEJ ROSLANOWSKI, AND SAHARON SHELAH 

a: (V E co)(Xi C ke & jXej = M. H kj), 

b: (Vm E co)(3e E [im, im+i)) (e (i) E Xe). 
2. If V n co is not dominating in V* n co, then, in V*: 

for every function iq E H ki there is a sequence (Xe: ? <co) E V such that 
iEW 

a: (We E c) (Xi C kj & jXj j = Mt. r kj) 

b: (3ew) e E c) ( km(H) E X)) . 

THEOREM 2.4. Suppose that V C V* are universes of Set Theory such that 

if r is a random real over V* 
then V[r] n 2' has measure zero in V* [r]. 

Let D E co' n V be strictly increasing and let (ni, mi, ki : i < co) be the cD-constructor. 

1. If V n co' is bounded in V* n w@, then there are sequences (Xe : ? < co) E V* 
and (im : m < co) E V* such that for every function q E rl ki n V 

isO 

a: (V E co)(X XCke &jXeI= me kj), 

b: (V??m E co) (3i E [im, im+ )) (i1(e) E Xe). 
2. If V n co@ is unbounded in V* n co, then, there is a sequence (Xe: ? < co) E V* 

such that 
for every function q E H ki n V* 

isw 

a: (W1 E co) (Xi C kj & jXj I = Mt . rkj) 

b: (3V? E co)(Cke(&) E Xi) m ) 

PROOF OF 2.3. We will only prove 2.3, the proof of 2.4 is obtained by dualization. 
The main parts of the proofs of (1) and (2) are the same, the difference comes 

only at the very end. So, for a while, we will not specify which part of the theorem 
we are proving. We will present a construction which itself is interesting, though it 
is very elementary. 

Let D e coE n V be increasing and let (ni, mi, ki: i < co) be the (D-constructor. 
Letting n_1 = 0, for each i E co choose a sequence (f : ? < ki) of functions such 
that 

i # 2[ni,ni+,) 2[ni-,,ni) 

* for every sequence (Ve : ? < ki) C 2[ni- 1ni) we have 

{4p e 2[ni :i~) (VW < ki)(f (p) = ve)}= 2(n2-nii)ki 

For i < j < co and q E H kr let 
r=i 

ij [ns ,nj+ 1) > [ni _1 ,nj p) U f rrZ()( " r 
f',J : 2 2[nH- L (r) (P [[nrinr+l)). 

r=i 
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AFTER ALL, THERE ARE SOME INEQUALITIES WHICH ARE PROVABLE IN ZFC 807 

The main point of our arguments will be done by the following combinatorial 
observation (which should be clear if S is thought of as a tree of independent 
equally distributed random variables, but still it needs some calculations). 

CLAIM 2.4. 1. Suppose that 0 i <?1< co and 0 74 S C H k, is such that for each 
r=i 

E Sandr e [i,j): 

If{-(r) z E S &zr r =qir} = mr. 

Then 

l{Pe2 (]oX e. 2[n'-"~n')) (2n'7 fIr E S f "j(p) = a}l) }| 

- nj+l -ni 

2 

PROOF OF THBECLAM. Fix r E [i, j] and r* E Hj ke (so if r = i then* =( 

such that there is z E S with r* <r. Let 

AT - {p E 2[ r fr+i) for some oU E 2[fr-iXfr) 

I {~) E S & 
* 

<2 r & f (r(p= } 1 1 1 

, mr 2nr-nr-2nrnr-I 2nr-nr-l . 2r 

By Bernoulli's law of large numbers and by the definition of the mix's we know that 

I~| < 2n-- . 1 1 2(3nr 1+r) 

2nr+l-nr - 4 Mr (2-(nr-nr-.+r))2 4 4H m 
e<r 

Let 

A d {p E 2 :(3r E [i, j])(3z* E j k) 
ec[i r) 

((3] E S)(z* < r) & p[l[nr,nr+i) E AT 

Note that 

JAI < IAr* I 
2+ - Z {242fr+i-l rT :zE Jk & (3r E S)(z* < r)j 

rC[i,]j] ec[i,r) 

< Z(4 n .2(3nr1+r) .17m ) < Z2-r < 

r 4[i, ] e<r e<r rE[ij] 

Suppose now that p E 2[ni nj+,) \ A. Let a E 2[nj-t nj). We know that for each 
r E [i, j] and r* E H ke such that (3r E S)(z* < r) we have p [[nr, nr+l) A* 

?C[i,r) 

and therefore 

t{z(r):ZES&z* < &f'E(r)(pr[flrflr+l)) = ar[nr-1,nr)} (1__ 
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808 TOMEK BARTOSZYISKI, ANDRZEJ ROSLANOWSKI, AND SAHARON SHELAH 

(just look at the definition of the set Al.). Hence 

I{T E S: f " (p)=c}< 1 - ]7J(i ? 
ISI 2r 2nr-nr-I 

2n2fnrfl -1 
r=i r=i 

1 21-i 7 
- < 2" "_1e < "_i_ 

This finishes the proof of the claim. - 

Now define a function 

F ki x 2-* 20' (q, p) U f ,(i) (P r[ni, ni+)). 
iCc iEW 

It should be clear that F is well defined (look at the choice of the fX 's) and its 
definition (or rather its code) is in V. The function F is continuous and we have 
the following claim. 

CLAIM 2.4.2. If ooq1I E H1Eki, poPi E 20) and 'lo =* 'iil po =* p1 then 
F(qo, po) =* F(ql, P1) 

PROOF OF THE CLAIM. Should be clear. A 

Before we continue with the proof of the theorem let us introduce some more 
def 

notation. For a tree T C 2<C0 x 2<C0 and integers ?, i < co we let Ti = T n 
(2ni+1 x 2ni) and 

T1[e] - {(vo, v1) E 2ni+1 x 2ni if ? < i then there are (v6, v') E Ti such that 

vo r[ne+I, ni+l) = vo r[n+I, ni+i) and vr[[ne, ni) = vI r[ne, ni)}. 

If ? < i < co then we may treat members of TiI] as elements of 2[ne+1,ni+1) x 2[nieni) 

(as only this part carries any information). Thus if Po E 2[ne+1,ni+1), P1 E 2[ne ni) then 
(Po, pi) E TI'] means that there is (vo, v1) E TIe] such that vo [[n+I, ni+i) = po, 
v1 [[ne, ni) = P1. 

CLAIM 2.4.3. Suppose that q E rl ki nV*. Then there is a tree T C 2< 0) X 2< W) 
ico 

T E V such that 

(i) u2 ([T]) > 0 
(where [T] is the set of all infinite branches through T, 

[T] = {(p,) E 20) x 20: (Vn E wo)((p[n,oan) E T) 

and u2 stands for the Lebesgue measure on the plane 20) x 20)), 
(ii) for each ? < co 

I ( p E 2co : (Vi. E co) ((p [ni+l, F (r, p) [ni) E TVt]3}= 0. 

PROOF OF THE CLAIM. Let r be a random real over V*. By the assumptions of the 
theorem we know that F(rq, r) is not a random real over V[r]. Every Borel null 
subset of 21) from V[r] is the section at r of a Borel null subset of 2) x 2` from 
V. Consequently we find a Borel null set B C 20) x 20) coded in V and such that 
(r, F(rq, r)) E B. We may additionally require that B is invariant under rational 
translations, i.e., that 

(Po,Pl)'E B & Po =* p = & p= (Pop E B. 
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AFTER ALL, THERE ARE SOME INEQUALITIES WHICH ARE PROVABLE IN ZFC 809 

In V take a closed subset of 21 x 21 of positive measure disjoint from B. This 
gives a tree T E V, T C 2` x 2<` such that ,u2([T]) > 0 and 

(ffl) ~~(V/ E co) (i E co) ((r [ni+l, F (q, r) [ni) fV Ti ) 

We want to argue that this T is as required and for this we need to check the 
demand (ii). Let ? < co. Look at the set 

Yd{p E 2W: (Vi E co) ((p ni+l F (q p) ni) E 

It is a closed subset of 20 coded in V*. Assume that ,u( Y) > 0. Then some finite 
modification r* of the random real r is in Y. By 2.4.2 we know that F(iq, r)-* 
F (i, r *). Take to > ? so large that 

F(1, r) [ne0,o) = F(i, r*)[[neo, w) and r [[ne, co) = r* [no, co). 

Now note that 

r* e Y ? (Vi e ) (r* [ni+1, F(q, r*) [ni) E Tie[] 

? (Vi E co) (r [ni+i ,F(q, r) [ni) E Ti'0?I 

and the last contradicts (@) above, finishing the claim. 

CLAIM 2.4.4. Suppose that T C 2< ) x 2< ) is a tree, 1 < i < j < co and 

63 T______ 

(023i ) 64 - 
2nj/l nj 

Let 

W = {T e JJke I{P E 2 [+I) 2(pf (p)) E Ti 

Then there are sets Xi C ki, Xi+, C ki+,1..., Xi C kj such that 

(a) lXe I<me-Jkr foreach =i. jand 
r<e 

(13) ~~~(V'r E W) (3i E [i, j ]) (r () E Xi). 

PROOF OF THE CLAIM. Assume not. Then we may find a set S C H ke such that 

S C W and for everyro E S and every E [i, j] 

lr(i) : r E S &z4 [ =- zo [}| = me. 

How? For ? E [i, j] let We = {T[i: E W} (so Wi = {()}). Now we choose 
inductively sets Xe C ke and Ye C We for ? = j, ... . i. First we let 

Y= {v E W': l{T(j): v < T E W}| < m}}, Xj= U {z(j): v < T E W}. 
V Yj 
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810 TOMEK BARTOSZYNSKI, ANDRZEJ ROSLANOWSKI, AND SAHARON SHELAH 

By its definition we have IXj I < m1 Yj I < mj* H kr. Suppose that i < ? < j and 
r<j 

we have defined Ye+i C Wt+1 already. Let 

Yt = {v E We: {z(i): v <z E We+\ye+}l < me}, and 

Xt = U {t(i) v <I e Wt+1 \ Ye+1}. 
vE Ye 

Note that jXe I < me I Ye I < me H1 kr. 
r<e 

Now look at the setsX, .i.. ,Xj. By our assumption we know that there is TOE W 
such that (V? E [i, j])c (TO() W Xt). This implies that () V Y1. [Why? If () E Yi 
then, as ro(i) V Xi, we have (zo(i)) E Yi1 . Suppose we have already shown that 
(To(i). . Zo(i)) E Ye+i, i < ? < ] - 1. Since ro ( + 1) V Xe+1 we conclude 
(To(i). . ( ro(), Zo(i + 1)) E Ye+2. Thus, by induction, (ro(i) . z.., ro(I - 1)) E Yj 
and zo(j) E Xj, a contradiction.] 

Now we define the set S C W. We do this choosing inductively a finite tree 

S* C U H kr in which maximal nodes will be elements of W. First we declare 
t=i r=i 

that () E S* and since () ? Y1 we may choose a set SP C {z(i) z e WE ' \ Y I+i} 
of size mi. We declare that {(z) z e SE(} C S*. Note that (z) E W'+' \ Yj+j 

e 
for z E S). Suppose that we have decided that a sequence V E H kr is in S, 

i < ? < j - 1 and we know that v E Wt+1 \ Ye+,. By the definition of Ye+i we 
may choose a set Sv+l C {z(i + 1) v < T E We+2 \ Ye+2} of size me+1. We 
declare that all the sequences v-(z) for z E S,+. are in S*. Note that we are sure 
that v '(z) E Wt+2 \ Y+2 (for z E Sv+l). Finally, having decided that a sequence 
v E Wj \ Yj isinS* wechooseaset SJ C {T(j): v < T E W} of sizemj andwe 
declare v -(z) E S* for z E Sjv. Immediately by the construction of S* we see that 

the set S = S* n 1i ke is as required. 
t=i 

Define: 

u0W - {pe 2[nifli+1): ES: (Per (p)) TI[ 111 

def p E 2 (p) e ]} 7 

U2 del { p c :) (3o E _ _ SJ : )=( < | 5 | ) }i' 

Since S C W, by Fubini theorem, we have that 

Ifa ~ lo' E 2 )ET'1 

2nj+i-ni < 8 

Now look at the assumption (J) on T: itimpliesthat byFubinitheoremonce 
again, 

2nj+1-ni - 8 
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AFTER ALL, THERE ARE SOME INEQUALITIES WHICH ARE PROVABLE IN ZFC 811 

Finally, by 2.4.1, we know that 

I 21 < 
I 

2nj+l -ni - 2' 

Consequently we find a sequence p C 2[ninj+i) \ (Uo U u1 U u2). Since p u uo U u1 we 
know that in the sequence 

(fij(p): T c S) 

less than 8 2 1-1i many values (from 2[ni-in)) appear more than 7 IS times. 8 

This implies that there is one value a C 2[ni- ,nj) which appears in this sequence 
more than nnj 7 ISI times and therefore p E u2, a contradiction finishing the 
proof of the claim. - 

Now we may prove the theorem. 
(1) Assume that V n co" is dominating in V* n c Let (n., mi, ki i < co) be 

the F-constructor and let F H ki x 2a) 2a) be as defined above. Suppose 
icco 

il C H ki. By Claim 2.4.3 we find a tree T C 2< co x 2< aO from V satisfying the 
iCcO 

demands (i) and (ii) of 2.4.3. Let p C coWI n V* be such that for each i C co 

i <HSo (i ) and C E 2[ni, :+ (P' fp:t 0 
(1)](P))EE T[iC - 16 

Since V n co" is dominating in V* n coco we find an increasing sequence of integers 
(im m E co) C V such that 

6 3 ____ ____ 

(?) - < T' for each io < j <, 
6-2nj+1 +nj 

(0+) for each m c co 

{p C 2[nj'm'nm+i ) (Pf7it /+.) (p)) E TmEl-1}} _ 1 
2nim+l'in 64 

[Note that to get (?+) it is enough to require (im) < im+1 for each m C co, what is 
easy to get as V n co@' is dominating.] 

Now we construct, in V, a sequence (Xe ? < Co). 

Fix m C co for a moment. Note that (?) implies (?&m _ ) of 2.4.4. Let moment. Note 
1M~~~~~b+1-of244Le 

Wi= {ZC E fljj11 k : {P E 2[nm nm+i) ( Jpft +1l(p)) CTI m } 

2'iiln 64f 

It follows from 2.4.4 that there are sets Xim C k ... , Xim+,1I C k1m+,_I such that 

(a) Xe? <me fkr 
r<e 

(f3) (VT C Wm)(3? E [imIim+i))(T () E Xe). 

But now we easily finish notifying that (X+) implies that 

(Vm E o)Q(1[[T im+ m) E WM). 

This content downloaded from 62.122.76.48 on Fri, 13 Jun 2014 18:30:31 PM
All use subject to JSTOR Terms and Conditions

Sh:616

http://www.jstor.org/page/info/about/policies/terms.jsp


812 TOMEK BARTOSZYNSKI, ANDRZEJ ROSLANOWSKI, AND SAHARON SHELAH 

(2) We repeat the arguments from the first case, but now we cannot require (0+). 
Still, as V n o is unbounded in V* n cw we may demand that the sequence 
(im m c co) c V satisfies (0) and 

(?i ) for infinitely many m e co 

I{P E 2 [niM Inim+j): (p, f1'I'+1 ,1 (p)) c TJ[7-I}} < 1 

2n'tn+ -nil,, 64 
Then, defining Wm as above, we will have 

(3??m E co)(q [[im, im+i) E Wm), 

and this is enough to get the conclusion of (2). - 

COROLLARY 2.5. Suppose that V C V* are universes of Set Theory such that 

if r is a random real over V* 
then in V* [r] there is no random real over V[r]. 

Let H co'0 n V be an increasingfunction. Then: 

V* (vf C 17 H(t)) (3g Ec 17 H (t) n v) (3xt E co) (g(9) = f ()). 
e e 

PROOF. Define inductively a sequence (ni, mi, xi, yi, ki : i c co) E V: 

no = 2, mo 64, xo = 64, yo = 64+ rI H(e), ko = 64 yo, 
e<64 

ni+l =ni (ki+ 1), mi+1= (flmj) 23(ni+l+i+1) xi+ x= Xi+ Mi .]7kj5 

j<i j<i 

Yi+1 = Yi + Xi+i + H H(e), ki+1 = Yi+l (mi+1 fk kj) 
ec[xi,xi+j) jy 

Note that Yi+l -yj > xi+, > mi+, H kj - mi H kj. Consequently we may choose 
i<i i<i 

a strictly increasing function FD c co' n V such that (Vi c c) ((D(m1 H kj) = y). 
J<i 

Now look at the definition of the sequence (ni, inm, ki: i c co) - clearly it is the 
(D-constructor. 

For i c co we have H H(e) < ki (we let x-1 = 0 here). So we may take a 
ec[xiI,,Xi) 

one-to-one function 7ri: H H(e) - k. 

Now suppose f c H H(e) n V*. Define q H n ki n V* by 
eco iCO 

(Vi E co) (wq(i) =- ri (f [xi-1, xi))) 

By 2.3(2) we find a sequence (Xe : ? co) c V satisfying 2.3(2)(a),(b) (for our 

q). Using the sequence (Xe : ? c co) (and working in V) we define a function 
g C H H(r)n V. Fixt ccoandlookattheset 

rw 

YdefJ{C fI H(r):lre(r)CXe} 
C [xeHxe) 
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Since I Ye< me H kj =Xe - xel, we find "e c H H(r) such that 
j<e rC[xeixe) 

(Vz c Ye)(3r c [xeq xe))(ae(r) = r(r)). 

Next let g E H H(r) n V be such that g [[xe, xe) = 'e (for e c co). We finish 

noting that if q (t) C Xe then f [[xie-1, xe) C Ye and therefore for some r C [xe, Xe ) 
we have g(r) = f (r). -A 

?3. cov* (X) and other cardinal invariants. Results of the previous section allow 
us to compare cov* (X) to other cardinal invariants. 

We will need several definitions. Let f, g E (a be two nondecreasing functions 
such that 0 < g(n) < f (n) for every n. Let Sf,g = fn [f (n )]g(n) and S*g 

(n )]g(n) x [o]`. Define relations RVg, R',g as 

I1R'gS =- (3??n) (I (n) c S(n)) 

qRv gS 4==- (V"??n) (Iq (n) c S (n)) 

for ?1 E fn f (n) and S C Sf,g. In case when g(n) 1 for all n we will drop 
subscript g and define 

q1oR'ql (3??n) (ro(n) = ql (n)) 

for i10, ill c Sf . The dual relation RV is not very interesting, so we consider the 
following weaker relations R and R * defined as 

iRf* (S K) - (Vo?n) (3m c [kn5 kn+l)) (i(m) E S(m)), 

forii E Sf, S E Sf,g andK = {ko < k, < ...} E [o]W. Finally define forarelation 
R C A x B, 

b(R) = min{IXI: X C A & (Vy C B)(3x c X)(-ixRy)} 

D(R) = min{I YI: Y C B & (Vx c A)(3y E Y)(xRy)}. 

For various independence results and techniques connected with these invariants 
see [11]. 

Using this terminology we can express the results of the previous section as 
follows. 

THEOREM 3.1. There are f, g c coa such that cov* (X) > t (R g). Ifcov* (X) > t, 
then cov*(AX) > (Rp ). 

Similarly, non*(AX) < b(R ), and if non*(AX) < b then non*(X) < b(R)$g). 

PROOF. This is a simple reformulation of Theorem 2.3. Fix an increasing function 
(D c co". Let M be a model of size cov* (X) containing a witness for cov* (X), and 
containing (D. Since cov* (X) > b we can assume that M n co, is an unbounded 
family. Let {ni, mi, ki: i c co} C M be a (D-constructor. Define f (n) = kn and 
g (n) = Mn Hi<n f (i). By 2.3, 

(V'7/ E Sf )(3 S c Sf,g n M) (I ??n) (q(n) c S (n)). 
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814 TOMEK BARTOSZYISKI, ANDRZEJ ROSLANOWSKI, AND SAHARON SHELAH 

Thus tj (Ri g) < IMI = cov*(X). Remaining parts of the theorem are proved in 
the same way by using 2.4. It is not very hard to see that by simple diagonalization 
we can show that for many triples (h, f, g) we have b(R 3) < b(R g) and z(R 3) > 

Z1(R 3g). A 

DEFINITION 3.2. Let 

,N* =sup{Z(Rf): f c (co\ {})W9} and l* inf{b(R:): f E (co \ })c}. 

THEoREM 3.3. cov* (X/) > ,* and non* (X) < A*. 
PROOF. Let f c (co \ {O})W0. We may assume that f is strictly increasing. Take 

a family a? C X2 realizing the minimal cardinality in the definition of cov* (X/) 
and take an unbounded family Y C cow of size b (remember b < cov* (X)). Let 
N - (k(x), c, <x) be an elementary submodel of size cov* (X) containing all 
members of a and - and such that f c N. Now apply 2.5 to N C V. Note 
that if r is a random real over V then in V[r] there is no random real over N[r] (as 
v C N). Moreover N n wt is unbounded in V n at (as Y C N). Consequently 
(in V) we have 

(Vh c 7 Jf(n)) (3g E f (n) N) (N"n co) (g(n) =h(n)), 
n co n Gco 

showingthatt(Rf) < INl cov*(AX). A 

DEFINITION 3.4. Suppose that X C 2w. 

1. X E SA (strong measure zero) if for every meager set F C 2t, X + F 7$ 2t, 
2. X c SAd (strongly meager) if for every null set H C 2w, X + H 7$ 2w, 

LEMMA 3.5. A* = non (aS) and ,* > non(SA). 

PROOF. The first equality was proved by Miller (see [8] or [3, 8.1.14]). 
Suppose that a family Y C 1n 1,o f (n) exemplifies D (Ri ). Work in the space X = 

Hn Gco f (n) (for sufficiently big f ) equipped with the standard product measure. 
Consider the set G {x c X: (9Y"n) (x(n) = 0) }. It is easy to see that G is a null 
set and Y + G = X. Thus Y s SA in X (which easily translates to 2w). A 

COROLLARY 3.6. cov* (X) > maxf b, non (aSA)} and 
non* (Xl) < min{D, non(zSa)}. A 

LEMMA 3.7. If cov*((X) > DJ then cov*((X) non(Xf). If non*((X) < b then 
non*(X) = cov(A'). 

PROOF. We will prove only the first assertion. The other one is proved by the dual 
argument. 

It is well known (see [3, 2.4.7, 2.4.1]) that 

non(X) - min{ F: F C cot & (Vg E coc)(3f c F)(3'?n)(f (n) - g(n))} 

and 

cov(A1) min{ F: F C cot & (Vg E co )( f c F)(V??n)(f (n) 7$ g(n))} 
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Let F C cot be a dominating family of size D. For each f c F choose a witness 
Xf C Sf of size D(R: ). Let X Uf cF Xf . It is clear that JXJ = max{Z, *} < 
cov* (X) and 

(Vg E coco)(3f c F)(3xf c Xf)(9i0n) (g(n) xf (n)). 

Thus, non (A) < cov* (X). To see that cov* (X).< non (A) in we need the following 
lemma:. 

LEMMA 3.8. cov*(X) < non(X') and non*4(X) > cov(A1). 

PROOF. We have the following cov*Q(X) = cov((X)VB < non(A)VB non(X). 

The first equality is by 1.2, the second is well known, and for the third one see [3] 
or [4]. - 

COROLLARY 3.9. There is no proper forcing notion S such that 
1. is proper co -bounding, 
2. makes ground reals meager and 
3. does not add a B-name for a random real over VB. 

?4. Adding a (2, 0)-large set. 
THEOREM 4.1. Assume that V C iV* are universes of Set Theory. Let h E co' n V 

be a strictly increasing function. Suppose that 

V | q E J h(n)) (Vp EE 1 VV)(V`0n E co)(p(n) 7$ q (n)) 
n Cco n :zco 

Then there is a set X c [o]w n V* such that 

V* (Vf E co n V)((Vn E ow)(n < f (n)) Ji {m E X: f(m) E X}1 < ) 
(so in particular the set co \ X is (2, 0)-large over V). 

PROOF. Let (ni: i E co) be defined by 

no = 0, ni+= n + J h(k). 
k<nj 

Let H: U H h(k) I4 co be a bijection such that for each i E co 
ion k<nj 

H [f h(k)] [nj,nj+j). 
k<nj 

For a function f E co' a define pf c H h(k) by 

(H1) (f (k))( if ni < k < nj+j and nj+j < Ik) 
Pf() 

0o 
(~) k otherwise. 

Note that the mapping f 4 pf is coded in V. 
Let X {H( [ni) : i co } (so it is an infinite subset of co from V*). Suppose 

that f c cal n V is such that (Vn E co) (n < f (n)). Look at pf - We know that 
pf c H h(k) n V. So, by the assumptions on r , we find io E co such that 

ki>t 

(Vi > io) Q'1(i) $& pf (i)). 
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816 TOMEK BARTOSZY&SKI, ANDRZEJ ROSLANOWSKI, AND SAHARON SHELAH 

Suppose now that i > io and f (H(ij [nn)) c X. Then f (H(ii [ni)) = H(ii [nj) for 
some j > i. But this means that 

pf (H(i [ns)) = H 1 (H(i [unj)) (H(i [ni)) = q (H(q [ni)), 
a contradiction with the choice of io. 

DEFINITION 4.2. Let D (RW) be the minimal size of a family X of partitions (Kn: 
n E co) of co into sets of size > 2 such that for every infinite co-infinite subset X of 
co we have 

('] (Kn n E co) E 3))(3' n c co)(Kn n X 0). 

In [10, 3.1] we remarked that b < D(R W) < non(X'). Now we may add: 
COROLLARY 4.3. ;* < ?(R 3). 

PROOF. It follows from 4.1 (compare the proof of 3.6); remember 1.4. A 
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