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Abstract. Let E be an equivalence relation on the powerset of an uncountable set, which
is reasonably definable. We assume that any two subsets with symmetric difference of size
exactly 1 are not equivalent. We investigate whether for E there are many pairwise non
equivalent sets.

Annotated content

§0 Introduction

§1 Dichotomical results on nice equivalence relations
[Assume E is a H} [A]-equivalence relation on *2 such that , v are not
E-equivalent whenever they differ in exactly one place. Assume further that
this holds even after adding a A-Cohen subset of A. If A = A<t >3, (alterna-
tively, E is more nicely defined or other requirement on 1) then E has a perfect
set (so 2* elements) of pairwise non E-equivalent members of *2. There are
related results.]

§2 Singular of uncountable cofinality
[Assume A = A= > cf(A) = k > Rg. We find on “A quite nice equivalence
relations for which the parallel of the results of §1 fail badly. If X is strong limit,
we can use *2.]

§3 Countable cofinality: positive results
[Assume that A > cf(X) = R and X is the limit of measurables, or just a
related property (which consistently holds for X, = 3,) is satisfied. We prove
the parallel of the result in §1 on “A.]

§4 The countable cofinality case: negative results
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[We show that if our universe is far enough from large cardinals (and close to
L) then we can build counterexamples as in §2.]
§5 Onr,(Ext(G, Z))

[We return to the p-rank of the abelian group Ext(G, Z) where G is torsion
free abelian group (N;-free, without loss of generality). We show that if « is
compact, A strong limit (singular) cardinal > « and r,(Ext(G, Z)) > A then
rp(Bxt(G, Z)) > 2% This is preserved by adding ¥ Cohens, k super-compact. If
GCH holds above « we have a complete characterization of {Ext(G, Z) : G}.]

§0. Introduction

The main topic here is the possible generalizations of the following theorem from
[Sh 273] on “simple” equivalence relation on “2 to higher cardinals.

Theorem 0.1. /) Assume that

(a) E is a Borel 2-place relation on 2
(b) E is an equivalence relation
(c)ifn,v € ®2and (A'n)(n(n) # v(n)), then n, v are not E-equivalent.

Then there is a perfect subset of “2 of pairwise non E-equivalent members.

2) Instead of “E is Borel”, “E is analytic (or even a Borel combination of
analytic relations)” is enough.

3)IfEisa Hé relation which is an equivalence relation satisfying clauses (b)
+ (c) also in VEP then the conclusion of (1) holds.

In [Sh 273], Theorem 0.1 was used to prove a result on the homotopy group: if X is
a Hausdorff metric topological space which is compact, separable, arc-connected,
and locally arc-connected, and the homotopy group is not finitely generated then it
has the cardinality of the continuum; the proof of 0.1 used forcing in [Sh 273], see
[PaSr98] without the forcing.

We may restrict E to be like the natural equivalence relation in presenting
rp(Ext(G, Z)) or just closer to group theory as in Grossberg Shelah [GrSh 302],
[GrSh 302a], Mekler-Roslanowski-Shelah [MRSh 314], [Sh 664]. In §5 we say
somewhat more. We here continue [Sh 664] but do not rely on it.

Turning to *2 the problem split according to the character of A and the
“simplicity” of E. If E is H} and A = A<* and A > I, (or just (DI); holds),
a generalization holds. If E is 211 and A = A=*, the generalization in general fails;
all thisin §1. Now if A is singular, strong limit for simplicity, it is natural to consider
f) 3 instead of #2. If A has uncountable cofinality we get strong negative results
in §2. If A has countable cofinality, and is the limit of “somewhat large cardinals”,
e.g. measurable cardinals, (but A = X, may be O.K., i.e. consistently) the general-
ization holds (in §3), but if the universe is close to L (e.g. in L there is no weakly
compact) then we get negative results (see §4). Note that theorems of the form “if
E has many equivalence classes it has continuum many equivalence classes” do
not generalize well, see [ShVs 719] even for A weakly compact.

We thank Alex Usuyatsov for many helpful comments and corrections.
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Definition 0.2. For a cardinal A let By, be *2 (or * A or S )); we write B for such
set.

1) For a logic L we say that E is a L-nice, (say 2-place for simplicity) relation
on B if there is a model M with universe A and finite vocabulary t, and unary
function symbols F|, F> ¢ t (denoting possibly partial unary functions), such that
letting t+ = v U {Fy, F>}, for some sentence = vy (Fy, F2) in L(t™T) we have

© for any ny, m € B letting My, n, = (M, n1,n2) be the T"-model expanding
My, 5
M with F,"""™ =g for £ = 1,2 we have
mEn < (M, n,m) E .

We may write M = V¥ [n1, n2] and W[ny, n2, Ml or ¥ (x,y, M) or writea C A
coding M instead of M.

2)Eisall } -relation on B means that above we allow v to be of the form (VX C Ao
where @ is first order or even in inductive logic (i.e. we have variables on sets and
are allowed to form the first fix point for ¢(x, X) where X1 C X3 A ¢(x, X1) —
@(x, X2)); ifwe allow just first order ¢ we say “strictly”, if we allow ¢ € L we say
L-strictly. Similarly £1, Hé, projective; writing nice means L is L(induction) i.e.
first order + definition by induction. We may write E € nice(B,), E} [B] etc, and
may replace B by X if this holds for some B. We write very nice for L-nice when L
is L first order logic.

We note the obvious (by now) relation (on L see below)

Fact 0.3. 1) If A = A=" and R is a [strictly] L, + ,-nice relation on 3, then R is a
[strictly] Z} -relation and also a [strictly] l'[}-relation (with parameter a relation of
A, of course).

2)If RisalL,+ ,(induction)-nice relation on B, and x > Vo, then R is L+ -
strictly a H%-relation on B;,

3) If cf(X) > Rg then if R is L(induction)-nice relation on B, then R is strictly
Ell -nice (hence being E} is equivalent to being strictly Ell ).

Proof. (1), (2) Recall that in the definition of H%, ¢ was allowed to be a formula
in L(induction).

3) It is well known that a linear order <* on such X is a well ordering iff for
every @ < A, <*| {8 : B < «} is isomorphic to (y, <) for some y < A (e.g.
[Na&5]). Oo.3

Notation.

(V*i < &) means “for every large enough i < §”.

J(de is the ideal of bounded subsets of §.

L denotes a logic, £(t) denotes the language (i.e, a set of formulas, for the logic
L in the vocabulary 7), L denotes first order logic, L, , denotes the extension of
by allowing /\ ¢y (When a(x) < A) and (Vxo, ..., X;)i<a()@ for a(x) < «.

a<a (k)

Definition 0.4. Let (D{), means that A is regular, uncountable and there is a
sequence P = (P, : a < A) such that Py is a family of < A subsets of o and
for every X C A the set {§ < A : X N8 € Ps} is stationary; hence . = A~*.
(By [Sh 460], » = A<* > 3, = (DY), and (by Kunen) ». = u+ = (D), = ).
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Definition 0.5. Q C *2 is called perfect or A-perfect if:

(a) Q#0

(b) if n € Qthen {Lg(nNv) :v € O\{n}} C A is an unbounded subset of L

(c)theset{n | ¢ :n € Qand < A} is closed under the union of <-increasing
sequences.

Equivalently, Q = {p, : 1 € 22} such that
(a) Py € *2
(b) n #m €*2= pyy # Py

() if no, 1, 2 € *2 are distinct and (1 Nn2) < (n1 No) (so N Nz # 01 N1o)
then (py, N pp,) < (oy N Py) and py, (£g(oy, N Ppy)) = n1(Lg(M1 N N2)).

§1. Dichotomical results on nice equivalence relations on *2

We here continue [Sh 664, §2], the theorem and most proofs can be read without
it. The claims below generalize [Sh 273].

Claim 1.1. Assume

X (a) A = 2<% and » > 3, or just (DI);, (see 0.3)
(b) E is a nice 2-place relation on )
(c)(@) E is an equivalence relation on )
B) ifn,v e 22 and Ao < M (n(a) # v(a)) then —~(nEVv).

Then E has 2" equivalence classes, moreover a perfect set of pairwise non E-equiv-
alent members of *2.

Proof. Note that

® If P is a A-complete forcing (or just A-strategically complete) then IFp
“clauses (c), (@), (B) are still true”.

So we can apply 1.2 below. O1.1
A relative is

Claim 1.2. Assume

Xh(a), (¢) as in X
(b) Eisa H%[)\] 2-place relation on r, say defined by NZ)p(x,y, Z, a)
see Definition 0.2
F = (C)Jcrahen if P = (*>2, <), i.e. A-Cohen, then in V¥ clauses (c) from
1.1 still hold.

Then the conclusion of 1.1 holds.

Proof. Stage a. Let (99, n1) € *2 x *2 be generic over V for the forcing Q =
(*>2) x (**2). Now do we have V[no, n1] E “noEn{? If so, then for some
(po, p1) € (*72) x (*>2) we have (po, p1) kg “noEm”, let @ < % be >
Lg(po), £g(p1) and by clause (¢)T(B) in V[ng, n1] we can find r)’l € *2 such
that n] [ @ = n | , and for some B € (a, 1), 0} [ [B,A) = n1 [ [B, A), (here
B = a+ 1is O.K. but not so in some generalizations) and V[no, 1] = —(n} En1).
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SoVne, n1] E “—-(noEnﬁ)”(again asin V[no, n1], E isanequivalence relation
by clause (c)™ and we are assuming for the time being that V[ng, n1] = “noEn.”).
But also (10, 1}) is generic over V for (*>2) x (*>2) with (pg, p1) in the generic
set and V[no, n1] = V[no, r;/l] so we get a contradiction to (pg, p1) IF “(7]0E171)”-
Hence

®1 H‘(A>2)X(A>2) “_‘(Z]OEZ“)”.

Stage B: Let x be large enough and let N < (H(x), €) be such that |N| =
A, N<* C N and the definition of E belongs to N. Note that

®; if (o, m) € (*2) x (*2) (and is in V) and N[no, n1] E “—(noEn1)”, then
—(moEn1).
[Why? As E is TI!, in N[no, 1], there is a witness € *2 for failure, and it also
witnesses in V that =(noEn1).]

Clearly to finish proving 1.1, it suffices to prove

Subclaim 1.3. /) Assume A = A< and (Dl);.

IfH(A) € N,N<* C N, ||N|| = » and N }= ZFC~, then there is a perfect
Q C *2 such that for any ng # 1 from Q the pair (9, m1) is generic over N for
[(*72) x =21V,

2) Assume that X is regular and

(a) T is a tree with X levels each of cardinality < X and 2* \-branches (or just
> u)and
(b) N = (Ny : a < A) is C-increasing, N | (@ + 1) € Nyy1,7 € No and
@ C Ng, INgll < 2and N = |J Ny and T<y € Nyy1 (if M is regular it is
a<A
enoughthat N | (@ +1) e N,7<4 € N)
(c) <* is a well ordering of N such that <*| Ny € Ny41.

Then for some X C *2,|X| = 2% (orjust |X| = ) and no # n1 € X = the pair
(o, n1) is generic over N for (*>2) x (*>2).
3) Like part (2) but we weaken clause (a) to

(a) T is a tree with A levels each of cardinality < » and Y = (Yo : o < A), Yy
is a set of < A nodes of T of level o if @ < A and a set of A-branches of T if
a=Arand || = pandn#veY,= Fa <)o v acely).

Remark 1.4. Such T is called a A-Kurepa tree and much is known on its existence
(and non existence). E.g. if A is strong limit then such 7 exists.

Proof. 1) Let (P, : @ < A) be such that P, C P(«), |Py| < A, and for ev-
ery X € Atheset{o : X Na € P,} is stationary. So by coding we can find
P., < {(no, n1) : no, n1 € *2} of cardinality < A such that for every ng, 71 € )
the set {& < A : (o [ a, 1 | @) € P} is stationary. Lastly, let (Z, : o < A) list
the dense open subsets of (*>2) x (*>2) which belong to N. Now we define by
induction on o < A, (o, : n € *2) such that:
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(@) py €72

(b) B <tg(n) = pyip<py

(©) py”(€) < (e

(d) if e is alimit ordinal and (1o, 1) € Py, Lo < 2, &1 < 2and 10"(€o) # m"(€1)
then (050" (60> Pme1)) € () Zp-
— pea

There is no problem to carry the definition (using |P,| < A = cf(A)) and
{U pprain e %2} is a perfect set as required.
a<Ai

2) Similar. We choose by induction on «, (o, : 7 € 7y) such that (a),(b),(c)
above holds and
(d)" if no # n1 are in T4 then (py,, py,) € N{Z : T is a dense open subset of P
and belongs to Ny}
(e) if{p,:ne1y)isthe <;‘(-sequence satisfying (a)—(d).
So {(p, : n € 1) can be defined from (Ng : f < ).
The proof in part (2) is easier as we can assume that such a tree belongs to N.
3) Left to the reader.
So we have finished proving claim 1.2 hence claim 1.1. 013,012

Claim 1.5. 1) In claims 1.1, 1.2 we can weaken clause (B) (in (c), (¢)™, call it
©~, (©* respectively) to:
(B)" ifn € *2 and o < A then for some B € (a, 1) and p € '“P)2 the sequences
n, ((n [ o) p™n | [B, L)) are not E-equivalent.
2)Inclaims 1.1, 1.2 andin 1.5(1), forany €* < Awecanreplace E by (E. : ¢ < &*),
each E; satisfying clauses (b) and (c), (c)T, (¢)~, (¢)* there respectively and in
the conclusion:
(%) there is a A-perfect Q such that
(@) Q= (py:n€*2)and
(B) if n1 # 2 are from *2 then py, # py, and & < &* = —(py, E¢pp,)
(y) forn € *2 the set {€g(oyNpy) i v e *2\{n}} is a closed unbounded subset
of L.
3)In 1.2, 1.5(1),(2) we can weaken (¢)t or (¢)* to
(%) for astationary set of N € [H(A 1)1 thereis (in V) n € *2which is Cohen over
N such that H{ [A] sentences are absolute from N[n]to V (for 211 [A]-sentences
this is necessarily true) and clause (c) (or (c)™ ) holds.

Proof. 1), 2) The same as the proof of 1.1.

3) The only place it makes a difference is in Stage A of the proof of Claim
1.1. We choose N, n as in (x) of 1.5(3), and let ny = (nQRa +¥¢) : @ < A) in
N[n] = N[no, n1] instead of working with V[no, n1]. 05

Now we would like not to restrict ourselves to H{ [A]-equivalence relations.

Claim 1.6. /) Assume
(@) h=A1~4 pu <2
b) E is a Hé[)\] 2-place relation on A2, say definable by (VZ1)(3Z,)
px,y, 21, Z2,a)
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(¢)(@) E is an equivalence relation on )
B) ifn,ve 22 and Al < M (n(a)) # v(a)) then =(nEv)
()t if n € *2 is generic over V for (*>2, <), i.e. is a Cohen sequence over V
then in V[n], clause (c) still holds
(note that for pi1, p2 € (*2)¥ anyhow V |= “p1 Epy” < VInl = “p1Ep2”)
(d) for every A C A and x > 2* there are N, (p, : &€ < ) such that
(i) N < (H(x),€), N“* T N,|IN||=* AeN
(i) pe €2 and[e < ¢ = pe # pel
(iii) for € # ¢ the pair (pe, p;) is generic over N for the forcing notion
(A>2 X A>2)
@iv) I'I{ [A] formulas are preserved from N|pg, pr]1toV fore < ¢ < .
Then E has > [ equivalence classes.
2)We can replace > | by “perfect” inthe conclusionifin(d), {ps : ¢ < u} € *2
is perfect [see 0.5].
3) We can replace *>2 by a subtree T C *>2 such that forcing with T adds no
bounded subset to A.

Proof. By [Sh 664, 2.2t].

Definition 1.7. Clause (d) of 1.6 is called “M\ is [\, n)-weakly Cohen-absolute:
[A, w)-w.c.a., in short” (as in [Sh 664, 2.1t]’s notation).

Claim 1.8. We can strengthen 1.6 just as 1.5 strenghthens 1.1.
We may wonder when does clause (d) of 1.6 hold.

Claim 1.9. 1) Assume
(i) =1<*inV
(ii) P is a forcing notion
(iii) (ne : € < W) is a sequence of P-names,
(iv) IFp “ne #ne € Mfore < <u”
(v)if A C A, p € P, x large enough then there are N < (H(x), €), IN| =
A, N<* C N, {A, p} € N and q such that p < q € P, q is (N, IP)-generic,
q Ik “(A>2)VP C N[Gp]” and P’ <P such that q IFp “for some u € [u]*, for
every € # ¢ fromu, the pair (1., n¢) is generic over N|Gp'] for (A>2xk>2)vp
and the forcing P/ (P’ + ns + n}) is A-complete (or at least A-strategically
complete). ) B

Then X is (A, p)-w.c.a. (see 1.7) in the universe VL.
Proof. Straightforward.

§2. Singulars of uncountable cofinality

In this section we show that the natural generalization of 0.1 usually provably fails
badly for “™ . A singular of uncountable cofinality.
Claim 2.1. Assume

(a) >k = cf(h) >Ry
(b) 2 + A= = A,
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Then there is E such that

(a) E is an equivalence relation on “ 1

(B) E isvery nice L (see Definition 0.2)

(v) ifni, ma € “hand (Vi < k) (i) = n2(i)) then 1 Eny < m = 2
(8) E has exactly A equivalence classes.

Obervation 2.2. In2.1, and in the rest of this section: (of course, we have to translate
the results; we leave it as an exercise to the reader).

1) We can restrict ourselves to [[,_, A; where i <k = A; <A =Y.
see the proof; similarly in 2.4.

2) We can consider “ A as a subset of #2, in fact a very nice one:

we identify n € “A with v, € *2 when (@) =1%1ie{pr(¢,n)): ¢ <k}
for any choice of a pairing function pr, in fact, any one to one function pr from
k x A onto A is O.K.

3) If A is strong limit we can identify [ ], _, A; with *2 as follows: without loss
of generality A; = 2 with p; increasing, let (g! : & < *i2) list the functions
from [jL<Ji wj, i) to {0, 1} and we identify n € [];_, A; with iL<JK g;(i) e ™).

4) We can translate our results to any [[;_, A; when 4; < 1 = }_
lim sup(A; : i < k).

5) The union of < X closed subsets of (“A) x (“A) is very nice.

i<k Jj<k )“j’

A=

i<k

Proof of 2.2. (1),(2),(3) left to the reader.
4) Define the function F from |J ‘A to |J [;_, Ai by defining F () by

=k {=«x
induction on £g(n) as follows:

(a) F(<>) =<>
(b) F(n™ (@) is F(n)"pp« When: &y = Minfe : o < Agg(Fp)+ehs Pna =
0c,, (1 +0)
(¢) for i of limit length, F(n) = | F(n [ e).
e<tg(n)
Clearly ¢g(n) < £g(F(n)) and n, v are <-incomparable implies F(n), F(v) are
<-incomparable, so F is one to one. Also F maps “A into [ ], _, A; continuously so
Range(F) is a closed set.
Also, when cf(k) > Vg for any n,v € “A we have (V*¢)(n(e) = v(e)) &
(Y e)(F(m)(e) = F(v))(e)).
This is enough to translate 2.1 to [, _,.
Alternatively, we can repeat the proof.
5) Why is it very nice? Assume E = U{E; : i < i(x)}, i(x) < A and each E; is
a closed subset of (“A) x (“1). Let {vy : @ < A} list “~ A with no repetitions, and
we define a model M:

i<k

A; instead of “A.

its universe is A
Fy is unary, Fo(a) = £g(vy)

! In fact we have a closed division of “A to 2 sets such that E refines this division and
on each part E is closed, see 2.2(5)
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Fy is binary, Fi(a, €) = B iff vg = vy | (minfe, £g(vy))

R is a three-place relation, RM (o, B, i) iff for some (59, 1) € E; we have
Vo <70, Vg <11

P is unary predicate PM =i (%)
< is binary relation, the order on A.

Now for f, g : Kk — A we have

JEgift (M, f, g) = @DIP() & (Ve < k)T, B)(Fo(a) = ¢ & Fo(B) = ¢
& R(a, B, 1) & (V¢ < &)[f(§) = Fi(a, §) & g(¢) = F1(B, D).

Normally we do not elaborate such things. mpP)

Proof of 2.1. We choose A = (A; : i < k), nondecreasing, i.e.i < j = A; < Aj

with limit A, (e.g. A; = A which is the case stated in the claim) let 1 ; = ]_[l-<j Ai SO

mj < Aand let fi= (fo’; o< ) list ]_[j<l~ A or be just a set of representatives
bd

Ofl_[j<i )‘J/Jl .

For every n € [, _, Ai let

1<K

(a) forlimiti <k lete;(n) = Min{a : n [ i = £ mod JPI}

(b) fore < klet Be(n) ={i :i < k is alimit ordinal, & < i and foii(n)(s) =n(e)}
and lastly

(c) A(n) = {e < k : Bg(n) is not stationary}.

Now we define two binary relations Eg, E1 on ]_[i < Mt

(d) n1Eon; iff for every ¢ < k we have B.(n1) = B:(12)
(e) mEm iff n1 Eoma&ny [ A(n) =n2 [ A(m2).

Clearly

(o) Ep is an equivalence relation on ]_[i ¢ A with < 2% < A classes
(B) Ej is an equivalence relation on “ A, refining Eg
(y) Eop, E; are very nice; in details:
(a) Ep is a closed subset of (J[;_, Ai) x ([[;~, ;) under the initial seg-
ment topology, that is, for (o, n1) € ([];-, Ai) x ([]; -, Ai) the family
u?nof&mfﬁ) 1 & < k) where u% = {{(vo, v1) € ([To 2i) x (T, M) :
(vo [ &,v1 | &) = p}is aneighborhood basis of (19, 1)
[Why? as the truth value of i € B.(n) is determined by n [ i for e < «,
I <k
(b) E; is the union of < 2% closed subsets of (“A) x (¥A) under the initial
segment topology
[Why?
(a) asif (o, n1) € ]_[i<K Ai X ]_[i<K Ai\Ey, then for some ¢ < « and
i < k,wehave (i € Bs(np)) = (@ ¢ Bs(n1)) soe < i < k and so
/ e le) is a nb of (179, n1) and by the definition of B,(—) we
haveu NEg =@ henceu NE; =0
(b) for B= (B, : ¢ < k), B C«k
letT'z ={nel,-, Ai: Be(n) = B, forevery e < «}.

— 1
U= U
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(6)
(&)

©)
(m

)

®

()

Now (I'z : B € “P(x)) list the Eg-equivalence classes (and @) and

each E | I'; is closed.]
if 91, n2 € “A and 11 Egny then A(n1) = A(n2)
[Why? Check the definitions]
for n € “A, A(n) is a bounded subset of
[why? otherwise let C = {§ < k : § = sup(A(n)N§)},itisaclubof x, and
foreachi € C thereis j; < isuchthatn [ [j;,i) = oiu(n) [ [ji, i), clearly
Ji exists by the definition of «; (17). By Fodor lemma, for some j () < « the
set Sjx) = {i € C : ji = j(*)} is stationary, now choose ¢ € A(n)\j (%),
so clearly B, (n) includes S;)\& hence is a stationary subset of « hence
by the definition of A(n) clearly & does not belong to A(n), contradiction.]
So clearly
Eihas < ([];_, Ai/Eo) + E{]_[jq. Aj1i <k} < Xequivalence classes.
Now
if 1, n2 € “Aand n; = n2 mod J,?d then for every limiti < « large enough
we have a; (171) = o; (m2)
[why? let i* = sup{j + 1 : n1(j) # n2(j)} so by the assumption, if
i is a limit ordinal and i € (i*,x) thenn; [ i = n; [ i mod Jibd hence
a;(n1) = «; (12) by the definition of ; (—), which is the desired conclusion
of (1).]
if n1,m2 € “Aand 0y = ny mod J then n1 Eyna < 1 =m
[why? if n; = ny clearly n1 E1n2; so assume 11 E1n2 and we shall show
that n1 = m, i.e. ¢ < k = n1(e) = n2(¢). By the definition of E;
we have 11 Egna hence by clause (§) we have A(n1) = A(n2), call it A.
If ¢ € A, by the definition of E; we have ny | A = > | A hence
n1(e) = m(e). So assume ¢ € k\ A, first we can find j* < « such that for
every limit i € (j*, k) we have «; (1) = o;(12), it exists by clause ().
Second, the sets Bg(11), B<(12) are stationary (as ¢ ¢ A(n¢)) and equal
(as n1Egna); so we can find i € B.(n1) N Be(n2) which satisfy i > j*.
Now n1(e) = foii(m)(g) by the definition of B.(n1) as i € Bg(n1) and
a;(n) = o;(mp) as i > j* and fol;,-(nz)(s) = n2(¢e) by the definition of
B.(n2) as i € B.(n2); together n1(e) = n2(e). So we have completed the
proof that ¢ < k = n1(e) = n2(e) thus proving n; = n, as required.]
E1 has > A; equivalence classes for any i <
[why? let n* € l_[j</< Xjand fora < A; let 5} € “A be defined by 1} (¢) is
« if e = i and is n*(¢) otherwise. By clause (0) we have o < B < A; =
—ng Eing, hence | [, A;/E1l = A;.]
E has exactly A equivalence classes
[why? by clause (¢), E1 has > sup{A; : i < k} = A equivalence classes
and by clause (¢), E has < X equivalence classes.]

We could have defined Eg as

(%)

n1 Egny iff for every ¢ < k we have B;(n1) = B¢(n2) mod D, where D,
is the club filter on k.

This causes no change except that Ej is not a closed subset of (“1) x (1), but a
union of 2% ones. 02.1
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Claim 2.3. Assume

(@) A > k = cf(A) > R
b) 2K + 1=K = A
() A <0 <A<

Then there is E such that

(«) E is an equivalence relation on “\

(B) E is very nice 2

(¥) if m.m € “x and ni = ny mod J2* then m Eny < 1 =y
(8) E has 0 equivalence classes.

Proof. Let X be as in the proof of 2.1 except that we add i < k = ]_[j<i Aj < A,
(this holds ife.g.if i < ¥ = A; = A). We can find atree 7 C *~ A with A nodes and
exactly 0 «-branches ([Sh 262]); we can easily manage that n # v € lim,(7) =
3 < k)(n(@)) # v(i)). We proceed as in the proof of 2.1, but in the definition of
E{ we add

m € lime(T) =nz € lime(T) & (1 € lime(7) — 01 = n2).

023
Claim 2.4. In Claim 2.1 we can replace clauses (), (v) by

(B)1 E is very nice (even the union of < A closed sets minus the union of < A
closed sets)

(y)1 foreveryn™ € A, the set{n € “A : n = n*modJ,?d} is a set of representatives
for the family of E-equivalence classes.

Proof. Let Abeastherebute <k = «t < A;.Let K; bea group, with universe
i and unit Ok, . Let <* be a well ordering of “(P(k)). For every n € [ [ _, i let

i<k
8y ={(B:(v):e <k):vE€ H)‘i and v = n mod J,?d}.
i<k
So B, is a nonempty subset of “ (P («)) and let B;‘ = <B;,g 1 e < k) beits <*-first
member. Note that
O for ni, m € [[;-, Ai if n1 = 12 mod J,l’d then B;‘l = E:;z and E,, = E,,

let ®, ={v e[]
Now note

(00 Oy # 0. ]
[Why? By the definition of E,, B and ©,.]

(x)1 if v € ®,, then for every limiti < « large enough we have o; (v) = a; ().
[Why? As v =  mod JP.]

(k)2 if vy, € O, and ¢ < k, then for' every limit i large enough we have:
a;(v1) = a;(v2) hence f(ii(‘)l)(g) = fol[l.(,)z)(g)-

Ai i B:(v) = B,’;’s for every ¢ < x and v = 1 mod J,E’d}.

i<k

2 in fact, again union of < 2* closed sets of pairs
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Now for n € [];

1<K

A; we define p, € [];

l<K y

pn(€)is: foi,- ) (¢) foreveryi € B:;,s large enough
if By , is stationary

Ok, if By , is not stationary.
It is easy to see that

(¥)3 if n € []; -, Ai then p,(e) = n(e) for every e < « large enough.
[Why?_We canfind v € [[;_, A; such that v = 1 mod J,?d and (B.(v) : ¢ <
k) = By Now apply (¢) inside the proof of 2.1.] hence

(¥)a py = nmod J

()5 if 91,72 € [T, A and n; = 12 mod J then p,; = py,.

Lastly, we define the equivalence relation E:
for n1, m € []; -, Ai we define:

O mEny iff (foreveryi < «xwehave K; = “ni()(py, )™ = m()
(P (D).

Now clearly

()6 if 91, m € [];—, A and 1 = np mod J24 then 1 Eny < 11 = no.
[Why? By (*)s we have p,, = py,, call it p; we are done by [] and the
properties of groups (i.e. )cly_l = )czy_1 & X1 = x2.]
(#)7 if n € [[;_ di then {n' : 0 € [[;_, A and n = n mod J2} is a set of
representatives of the E-equivalence classes.
[Why" Let n,v € [[;_, 4 and we shall define n° € [[;_, A; such that
n € v/E and n’ = n mod J,?d. For i < k we choose n'(i) € K;,ie. < A
such that K; k= “n/(i)(0,(i))~" = v(i)(py (i)~
[Why this is solvable? As K; is a group and p, (i), v(i), p, (i) are well de-
fined members of K;.] Also we know that v = p,, mod J,f’d by (*)4 hence
for some i1 < k we have i € [i1,k) = v(i) = py(i); this implies that
i €li1,«) = ') = py(i),son = p, mod J,Pd; however p,, = n mod J}?d
hence n’ = n mod J,'(’d, as required. Hence p,; = p; so by the definition of
n wehave K; = “n’(i)(py (i)"Y = v(i)(py(i))~"” which means that ' Ev,
so we have proved (x)7.]

Lastly, how complicated is E? Define a two-place relation E* on [];

Ll n1 E*ny iff
(a) B* —B*

I<K

Clearly

(x)g E™* is an equivalence relation on “ and is the union of < X closed minus the
union of < A closed subsets of ([ [;_, 2i) x ([ [, A;) with < 2* equivalence
classes

(*)9 oneach E*-equivalence class the function n — p,, is continuous (even under
the Tichonov topology, even more)

i<k
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(x)10 if Y1, Y, are E*-equivalence classes, then E N (Y] x Y>) is closed (even under
the Tichonov topology).

Now check. 0o 4
We may like to weaken the cardinal arithmetic assumptions.

Remark 2.5. Assume that k = 01 and instead the ideal J,?d we use the ideal [«]<?.
Then we can define «j (1) for n € [[;_, A; and j < « if ¢f(j) = cf(0). Let ot (1))
be Min{w : fa =n [ jmod J;} where J; = {A C j: for some i < j we have
|A\i| < 0} so J; replaces th.’d in the earlier proof.

1<K

So n = v mod [«]<Y implies that aj(n) = aj(v) for all suitable j. There are
no marked changes.
Now

(%) if n1 E*ny then Be(n1) = B.(n2), E;, = 8y, and B* = B*
[lgp E* can serve as well and it is an equivalence relatlon Wlth < 2¥ equivalence
classes, each closed even under the Tichonov topology.

We canuse A > k > 6, J = [«]<? but in general the number of ideals necessary
is k7. Most interesting is the case § = R dealt with in the next claim.

Claim 2.6. 1) Assume

(@) A >k = cf(A) > R
) ™0 < = AN,
Then the results 2.1, 2.4 and 2.3 holds if we replace the ideal J,‘fd by the ideal
[K]<NO.
2) This applies also to 2.3 if

(c) A <0 < A€ and there is a tree T with ) nodes and k-branches.

3) The natural topology for (1) + (2) is the R1-box product.

Proof. Without loss of generality A; > «™0, (A; : i < &) as in the proof of 2.1.
Let (D; : i < &™) list the subsets of « of order type w and let fi = (f} -
o < H jep; i) list [Tjep, A (or just a set of representatives modulo Jp%). For

RS [ P let
(@) aij(n) = Min{a : n | D; = fi mod de} fori < &M
(b) fore <k letBo(n) ={i < k™ ¢ e D; and nE) = fo;mp(€)}

(©) A(m) ={e <k :Bl(n)is ﬁmte}
(d) Be(n) = {i € BL(n) : i N B.(n) is finite}.

With those choices the proofs are similar. O2.6

Claim 2.7. 1) If2RO < A=A, Ry < k = cf(L) < A, then we can find E as in
2.1(a), (B), (8) (but not necessarily (y)) and

W ifne“randi <k thenXy; ={ve A : V) <k &j#i—v(j)=
n(j)} is a set of representatives for E.
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D2 <=2 Ry <k = cf(h) < A, 1 <6 < rand (Y < M +
0)<F < A), then we can find E as in 2.1(a), (B) and

() ifne“randi < k then X, ; contains a set of representatives
(8)* E has 6 equivalence classes.

Proof. 1) First the proof in short.

We choose A; = A fori < k. We let K be a group with universe A and
let (D; : j < «™0) be as in the proof of 2.6 and define E by: nEv iff K |=
[Ticam @@ W)™ = TTicaw V(@) (o) ~"). We give a more detailed proof
below.

2) First, the proof in short. We choose A; but 6 < A;; without loss of generality
each A; is a subgroup of K but we use equality in cosets of xK; = yK, K; a
subgroup of K such that [K : Kj] =0 anda,c € K = {abcK| :b e {e:¢e <
Mo} = {bK1; b < A}

Now in detail (for (2) so including a proof of (1)).

We repeat the proof of 2.4.2.6, so for n € “A we let B, = {{B:(v) : € < k) :
v € “rand v = n mod[k]<N0} where By (v) = {j < «™0 : Ja;j (&) = v(e)} and
let B;‘ be the <*-first member of E, and let ®, = {v € “A : By(v) = B,’;’E for
every ¢ < k and v = 7 mod [«k]<N0} and for n € “1 let P € “X be defined by

(@) pp(e) = fu;m(e) if AV)(v € Oy & v(e) = fo;()(e)) & j € By,
(b) p,(e) = 0if there are no j, v asin (a).

Easily p, € “X is well defined and p,, = n mod [k]=.
Lastly, leta, = {¢ < « : n(¢) # p,(¢)} and we define the two-place relation E
on [Ty 2 by mEn iff ay, = ay, & [Ticq,, mE©py@) ' K1 = ([Teca,, 12(0)
n2(e)"1 K. Is this well defined? The product [],,
the group K, so in general we have to choose an order of (n¢(¢) : € € ay,), i.e.,
of a;,. We use the most natural choice: the order on « (if K is abelian clearer).
Obviously E is an equivalence relation on [ [, _, A and it has [{xK| : A € K}| =
[K : K] equivalence classes. Now suppose that n € “A and ¢ < k and we shall
prove that X, . is the set of representatives for E, recall X, . is defined in (y)* of
27(1).Leta™ =ay,Ne,at =ay\(e + 1), letg™ = ]_[iea,(n(i)(p,](i))_l) and
gt =Tlica+ @) (0 ()71, s0:
(*) g7, g% € K again well defined as a—, a™ are finite
(xx) if v € X, ; thena, C a, U {e} and ]_[ieav(v(i)(,ou(i))_l) =g v(e)gt ek,
the product in K, of course.

" n¢(¢) is a finite product in

Now for part (1), g, the sequence (v(¢) : v € X, ) lists K without repetition (as
the universe of K is A) hence (by basic group theory), (g~ 'v(s)gt : v € X n,e) lists
K without repetitions hence (Hieav (v(i)(,ol,(i))_l) 1V € Xg) lists K without
repetitions, so if we use the trivial Ky, X, ; is a set of representatives of E, as
required.

For (2) the sequence (g, K> : v € X, ;) lists {xK| : x € K} possibly with
repetition. 035
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Concluding Remark 2.8. 1) Instead of (J};‘ii ti < kMY wecanuse (D;, J;) i <
i)‘>, D; C «k, J; an ideal on D; such that |]_[8€Dl, re/Jil < A, 1 = {D C «: for
every i < i* wehave DN D; € J;}is included in J,'jd. The author has not pursued
this.
2) Assume K is a group of cardinality A, K| a subgroupand [K : K;] =6 < A.
Then we can find B € K, |B| = 6 such that if K’ is a subgroup of K including
B such that

®k.k,.k' ifa,c € K'then{acK| :b e K'} ={bK; : b € K}.
[Why? Let {b; : i < 6} be such that {b;K;| :i <0} ={bK; :b € K}
andlet B=1{b; :i <0} .If BC K'C Kandac € K’ andi < 6 there
isb’' € K’ such that ab’c = b; so ab'cK; = b;K.]

§3. Countable cofinality: positive results

We first phrase sufficient conditions which relate to large cardinals. Then we prove
that they suffice. The proof of 3.1 is presented later in this section.

Lemma 3.1. Assume

(a) X\ is strong limit of cofinality Rg
(b) A is a limit of measurables, or just
(b)™ for every 8 < A for some wu, x satisfying 0 < u < x < A, there is a
(x, 1, 0)-witness (see Definition 3.2 below)
(¢) E is anice equivalence relation on A (or has enough absoluteness, as proved
in 3.12), i.e., fact 3.13, so being A% (A) is enough
() ifn,v € ®Aand (A'n)(n(n) # v(n)) then —(nEv).

Then E has 2* equivalence classes, moreover if Ay < Apy1 < A = Zp<optn

then there is a subtree of ©~ A isomorphic to | J[],,,, An, whose w-branches are

m
pairwise non E-equivalent (even somewhat more, see 3.17).

Remark. For the simplest example of “witness” defined below see 3.4(2) so a
witness is a weak form of A being measurable.

Definition 3.2. 1) We say (Q, s1, s2) is a (A, u, 0)-witness if (A= p =0 and):

(a) Q is a 0-complete forcing notion

(b) s1 is a function from Q to P(M)\{?}

(c) sa is a function from Qto {A: A C {(a, B) : ¢ < B < A}}

(d) ifQ=“p < q” then s¢(q) < s¢(p) for€ =1,2

(@) (a, B) € s2(p) = {a, B} S s1(p) for p € Q

(f) forevery p € Qthereis g suchthat p < g € Qand (V8)(3a, y)[B € s1(g) —
(a, B) € s2(p) & (B, y) € 52(p)]

(@) if pe Qand A C A X A, then for some g we have p < q € Q and (s2(q) C
A)V(s2(g9) NA=0)

(h) if p € QthenforsomeY € [L]* foreverya < B fromY we have («, B) € s2(p)
(hence Y C s1(p)).
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2) We say (Q, s1, s2) is a (A, i, 8, 0)-witness ZIQ is a cardinal < A and we can
strengthen clause (g) to 3

(g);)|r if f %1 — oand p € Q then for some g we have p < g € Qand f | s2(q)
is constant.

3) We call (Q, s1, s2) uniform (A, u, 0)-witness if A = U{s1(p) : p € Q} and for

every p € Q and a < X for some g we have p < g € Q and s1(q) N = .
Similarly “a uniform (A, i, 0, 0)-witness”.

4) We replace o by < o if we demand only (g)tg which means that Rang(f) is a

subset of o of cardinality < o. We write “< " instead of “p” if in clause (h) of

Definition 3.2(1) we demand just that for each « < | there is Y C A of order type

o and as there (so | can be an ordinal).

Definition 3.3. /) We say that (Q, 5) isa (A, u, 6, 0; n)-witness ifA>p>0,A>
oands = (s, :m=1,...,n)and

(a) Q is a 0-complete forcing

(b) sy isafunctionfromQrtoP{a : @ = (g : £ <m) € "handay < g+ < A
fort <m —1})

@ fQE“p<q”andm € {1,...,n} then sy (q) < sm(p)

@) if{ag: L <m—+1) € spyy1(p) andk < m + 1 then
(gl <k){ag:L=k+1,...,m) € s,,(p)

(e) for every m € {1,...,n — 1},k < m and p € Q there is q satisfying
P =q€Qand(Va € s,(q))(3B € smy1(p)la = (B[ k) (B [ [k+1,m))]

(AHTifme{l,....,n}and f : ™\ — o and p € Q then for some q we have

p<qeQand f | sn(q) is constant

(g) if p € Q then for some Y € [A]* every increasing & € 'Y belongs to s, (p).

2) (Q,5) is a (A, 1, 0, 0; w)-witness is defined similarly (i.e., § = (sy, : m €
[1, ®))).

3) If o = 2 we may omit it, as in Definition 3.2. Also “uniform” and “< @”
means as in Definition 3.2.

We first give some basic facts on witnesses, including cases of existence.

Claim 34. 1) If (Q, 5) isa (A, u, 0; n)-witness and ¢ < 0,n < w, then (Q,s) is
a (A, u,0,2%; n)-witness.

2) If D is a normal ultrafilter on X\ so A is a measurable cardinal and we choose,
Q= (D, 2),51(A) = A, 52(A) = {(a, B) : @ < B are from A}, then (Q, 51, 52) is
a uniform (A, A, ., < A)-witness.

3) Ifin (2), sm(A) = {a : @ = (¢ : £ < m) is increasing, oy € A}, s =
(Sm+1:14+m <n)yandn < w then (Q, 5) is a (A, ©, A, < A; n)-witness.

4) If there is a (A, i1, 0, 0; n)-witness and 2<% < X, then there is such (Q, 5)
with |Q| < 2*.

5) Definition 3.2(1) is the case n = 2 of Definition 3.3(1) that is, (Q, s1, s2) is
a(\, 1,0, 0)-witness iff (Q, (s1, 52)) isa (A, u, 0, 0; 2)-witness.

3 note that (g);r isequal to (g) if o = 2
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6) If (Q, 5) is a (A, u, 0)-witness and p € Q, then we can find g such that p <
q € Q and for every 8 € s1(q) there are a) < ay < B such that (a1, B), (a2, B) €
s2(p) (this strengthens clause (f) of 3.2).

Proof. Easy.

1) Checking Definition 3.3 the least easy clause is (f)T, so assume m €
{1,....,n}and p € Q and f is a function from "X to 22 and we should find ¢
satisfying p < g € Q and f [ s,,(q) is constant. Let 2 be a one to one function
from 29 into €2 and define f; : ™A — {0, 1} fore < g by f:(5) = (h(f(5)))(e).
Now we choose p. € Q, increasing (by <g) by induction on & < @ such that
Po = P, fe | Sm(ps+1) is constant, say is £.. For & = 0 this is trivial, for & succes-
sor use “(Q, 5) is (A, u, 6; n)-witness, i.e. clause (f)* in Definition 3.3”. For ¢ a
limit ordinal we use “Q is 6-complete, i.e., clause (a) in Definition 3.3 for (Q, 5)
isa (A, u, 0; n)-witness, recall p < 6.

Lastly, let ¢ = p, so we are done.

2), 3) Note that QQ is A-complete as D is A-complete as D is a A-complete
ultrafilter (being normal) and clause (f)* holds because if f, : [A]" — w and
@ < A then for some A, € D we have f | [A]" is constant (see, e.g., [J]) and
as D is closed under intersection of < A (hence of R¢y) we are done (if p € Q, let

g=pnN ) An.
n<w

4) Let (Q, 5) be a (A, u, 0, 0; n)-witness and let x be large enough. Choose an
elementary submodel N of (H(x), €) towhich (Q, 5) satisfying | N|| = 2*, [N]* €
N so2* C N.

Lastly, choose Q' = Q [ N and s, = s, | Q. Now check that (Q’, (s;,.; :
m < n))isa (A, u, 0, 0; n)-witness recalling u, 0, 0 < A.

5) Read the definitions.

6) For £ € {0,1,2} let Ay = {«@ € s1(p): the number |{o’ < @ : (&, @) €
s2(p)}| is equal to £ or £ = 2 and the number is > ¢}.

So (Ao, A1, Ap) is a partition of s1(p).

Define a function f from A; to A: for @ € Ay, f(a) is the unique o’ < a €
s2(p). Itis known (and easy) that we can find a partition ( By, B, B3) of A1 such that
Le{l,2,3} &a € By = f(a) ¢ By. Let Bp = Ag, B4 = Az, s0 (By, ..., Ba)
is a partition of U%:() Ay that is of 51(p). By clause (g) of Definition 3.2 (applied
three times, see 3.4(1)) we can find £(*) < 5and g € Q such that p < g € Q and
51(g) S By(x). s s2(q) # ¥ necessarily £(x) = 4 and so we are done. 03.4

Something of the “largeness” remains if we collapse a large cardinal, see, e.g.,
[JMMP]. We shall need

Claim 3.5. /) Assume

@2<n<wandr=23,_16)"

(b) 0 is a compact cardinal or just a h-compact cardinal

)p=pn~t<o

(d) P = Levy(u, < 6).

Thenin vP (and of course in V), there is a (A, i, 6; n)-witness (Q, 5) which is even
a (A, u,0, < u; n)-witness.
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2) If there are Ay, forn < w, Ay, < Apy1 and A, is 2(21")+-c0mpact and ). =
S{A 1 n < ), then for some set forcing P, in V¥ the cardinal » = 3, = R, is
dichotomically good (see Definition 3.8 below).

Proof. By [Sh 124].

Remark 3.6. 1) In fact we can weaken the consistency strength considerably.
Assume that (G.C.H. holds for simplicity) and:

(a) (un : n < w) is strictly increasing sequence of cardinals

(D) n < Ap < Mn41

(¢) Dy41 is a up+1-complete ultra filter on 1,11 = {a € A1 @ |a| = Ap—1,
min(a) < fp41 }

(d) let ty1 ¢ Ins1 = Apg1 18 tp1(@) = min(uy4+1 Na) and if A € Dy, f -
A — [y is regressive, ie., f(a) < t,4+1(a) then f is constant on some
BeD,1,BCA

(e) if g : [An41]" = pp then {a € 41 : g [ {[a\{min(a)}]" is constant} € Dy

(f) Qo = Levy(Ro, 10), Qui1 = Levy(f T, < tag1), Q = [T, -0, Qu.

Then VQis as required in 3.5.

2) If w, is M,J{(”H)-hyper-measurable, A = wi"*! then there is j, : V —

M, i, is the critical cardinal of j,, MY" € M, ju.(un) > /LI("H). Soin V we

can find b € [, () \ pnl*=" such that f : [pa]" = A1 = ju(f) | [b]" is

constant. Leta = {u,} Ubsoa € M, and D, = {A C [, 1> : a € ju(A)}.
Those D,, are as required for A, = .

Toward proving Lemma 3.1 assume (from 3.10 till the end of this section) that

Hypothesis 37 m = ()»n, Mn, 9,,, an Sn,1» Sn,2>n<w = ()‘217 M;nﬂ er]zn’ ]P)l‘:l“’ S;Tl’
St ) n<w satisfies A = T{k, : n < w}and By + 2% : € < n} < 6, < A,
and (P, sp.1, Sn2) isa (Ap, < u;l“, 6,)-witness and it follows that u,, < w,+1 and

A= {un:n <o}

Definition 3.8. We call A dichotomically good if there is w, i.e., there are
)"nv Mn,s 9}1, ]Pn, Sn,], Sl’l,2 as in 3.7.

The hypothesis 3.7 is justified because

Obervation 3.9. If A satisfies (a) + (b) or at least (a) + (b)™ of Lemma 3.1 then A is
dichotomically good. Also consistently G.C.H. and R, is dichotomically good and
wlog Eison[]

n<w )‘”
Proof. By 3.4(2) we know (b) = (b)~ in 3.1, now read the definitions. Second
those by 3.5

Definition 3.10. /) We define the forcing notion Q (really Q = Q[m]) as follows:

(@) Qi ={p:p=m A =P, AP) such that letting n” = n(p) = £g(n)
we haven” < w, nP € H£<n[p] Ae and

AP = (A} : ¢ € [n(p), w)) and A} € P}
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(b) p <q, q iffn” < n? (son(p) < n(g) and [€ € [n(g), w) = Py = “A] <
A7) and [n(p) < £ < n(g) = n?(L) € 51(A})]
(c) We define the Q1-name n by: n[G] = U{n* : p € Gq,}
(d) We define -7
(Mps%qﬁps@q&mm=n@)
B)p faplr q iﬁCp <Q1 q& /\£>n(q)(Az = Af)
(V) P <pin @ if p <pt g and AP [ [n(p),n) = A7 [ [n(p), n) if n > n(p).
2) We define the forcing notion Q; (really Q[m]) by:

@Q = {p: p = (om,A = (g, n{, AP) where for some n(p) < @
we have: ng, nf € Hkn(p) Ae and AP = (Af 1L € [n(p), w)) and Af € Pg}
(b) p =@, q iff
(1) n(p) =n(q)
(iiy n) < nf fort =0,1
(iii) A} € Al for € € [n(g), w)
(iv) the pair (ng 0), n({(ﬁ)) is from sz(Af)forZ € [n(p),n(qg))
(c) we define the Qy-name ny (for £ =0, 1) by n¢[G] = U{né7 :peGQ,)
(d) we define B B
(mps%qﬁps@q&mm=n@mm
B p Sapzr qiff p <@2 4 & Nisng) Al = A} and
W) p Sprn qifp = < 7 q and AP | [n(p),n) = A7 | [n(p),n) ifn > n(p).

3) If for a fixed k < w, we have (P,,, 5") is a (Ay, Un, On; k)-witness forn < w then
we can define Qi naturally.
4) If (P, §™) is a (Ay, Wn, On; n)-witness for n < w then we can define
Q={n,A) :n<wnl) et and A= (Ar: L € [n,w), Ay € P}} with
the natural order.

Remark. 1) We shall not pursue here parts (3) and (4) of Definition 3.10 because we
deal with equivalence relations which are binary. We can prove parallel theorems
for relations with higher arity using 3.10(3),(4).

2) In the definition of the set of elements p of @2, why don’t we ask (V¢ <
n? )(r;é7 ®) < nf (£))? To be able to construct the perfect set, but, of course, p I-q,
“no(6) < ni(f) for £ € [n(p), w)”.

3) Those forcing notions are in the (large) family of relatives of Prikry forcing.

Fact 3.11. Let £ € {1, 2}.

0) For p, g € Q¢ we have:
() p<pa=p=qq
(ii)pfi%rqip<q

(lll)p_prn+]q:>[)§(@[ 0

prmnqd =P Zpr q-
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1) If p <@, r then for some g we have p < <Q qg < <D
=Q =prn(q) 4 =apr
DIfp=(pi:i<a)is <Q5 -increasing and a < Oy (py) (= n(pO))’ then p has

a <Q” -upper bound; similarly for <gr nand o < 6,.
3) If 7 is a Q¢-name of an ordinal and p € Q, then for some ¢ and n we have:

(@) p =prdq

(b) if g <qpr r and n(r) > n, then r forces a value to 7.

4) In (3), if IFg, “7 < w or just < o < 6y(p)” then without loss of generality
n =n(p).

Proof. Easy.

Claim 3.12. Recall that E is a nice definition of a two-place relation on [ ], _, *

Then forcing by Q; preserves “E is an equivalence relation on [ [, _, satzsfylng
clause (d) of 3.1” or more exactly the definition E defines in V@& an equiva-
lence relation on [, _, An satisfying clause (d) of 3.1 (and, of course, E(VQZ) [

(Hn<w )\n)V = EV)'

Proof. Assume toward contradiction that p* Ikg, “vo, vi,v2 € [[,-, A¢ form a
counterexample, thatis: vo Evi Avi EvaA—vgEvy or mvgEvgor voEvi A—v1 Evg
or voEvi A (3!n)(vo(n) # vi(n))”.
Choose y large enough and N = (N, : n < w), N such that:
®%) Ny <L, (HOO, €) and [N, || = 2% and {p*, E, vo, 1,02, No, - -,
N,—1} belong to N,
(ii) N, € Nu4+1 hence N, =<,
(RH(x), €).

Now we choose p, by induction on n < w such that:

Nyyiand N = |J N, so N <

+ 5+
P n<w

() (@) po=p*,
(ii) pn € Ny N Q2 and n(p,) = max{n, n(p*)}
(iii) pn < pnt1
(iv) if T € N, is a Qx-name of an ordinal then for some k,(z) > n + 1 we
have: if p,+1 < g and n(q) > k,(z) then g forces a value to 7.

This is possible by 3.11(2),(3). Now let G = {g : ¢ € NN Qz and g < p, or
just p, |- “q € G” for some n}; it is a subset of QQ’ generic over N. (Why? If
N = “T € Q) is dense” then Z C Q, is dense and there is Z' C 7, a maximal
antichain of (Q, which belongs to N hence to some N,; there is g € N, a one
to one function from Z’ onto |Z’|, so it defines a Qz-name 7 by T[G] = y &
V)(qg eI’ NG — f(@)=y) & NG eI’ NG & f(q) =y),50k, (1) <@
is well defined (see clause (iv) above) and so py, () forces a value to T hence forces
qg € Gforsomeg € ' C Z,hence g € G s0 GNZT # @ as required). Now
by straightforward absoluteness argument, vo[G1, v1[G], v2[G] € [],_,, *¢ give
contradiction to an assumption.

In details let vy = v¢[G]. Let M be the Mostowski collapse of N, so there is an
isomorphism g from N onto M. Clearly A, € N, hence A € N hence A+ 1 C N
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sogx) =xifxei+lorx CA+1orx € H(L). Clearly G* = g”(G) is a
generic subset of Q} = (g(@z))M and M* = M[G] is a generic extension of M
(for g(Q2)M) and so

[y M* is a transitive model of enough set theory (i.e. of ZC if x is strong limit)
which includes H(A) U {A, H(M)} U {{A, : n < w)}.

Also easily in M*, v [G*] = vy, so as g(p*) € G*, clearly (E stands for the
formula defining it, its parameter a subset of A so it is mapped by g to itself):

M* = “vo,v1,v2 € I{A, : n < w} and
voEv) & viEvy & —vgEv; or
—vgEvg or vgEv; & —vi Evg or
voEvi & (3n)(vo(n) # vi(n))™.
So it is enough to prove (see Lemma 3.1, clause (c)). 03.12

Fact 3.13. Assume M* satisfies [-]| above, E is a nice two-place relation on IT{A,, :
n < w} so a definition with parameter a subset of A (equivalently: a model on 1)

as in Definition 0.2(1).
Then

Cl, if M* satisfies “ny Eny & —n3Eng and ng, n1, 12, n3 € {1, : n < w}” then
so does V.

Proof. Immediate.
In fact

Obervation 3.14. Assume

(a)(@) A* is strong limit of cofinality Ry,
(i) A" = Zn<w )‘;;
(iii) A5 < Ak, forn < w, for simplicity 2 < A
(b)(i) Q is a forcing notion
(ii) <pr isincluded in <g
(fii) n : Q — w is a function satisfying for each n the set 7, = {p €
Q : n(p) > n}is a dense subset of Q
(v)forpeQ,{geQ:p =<, q}is A:(p)-complete
(v) Q has pure decidability for Q-names of truth values
(vi) if p € Q and 7 is a Q-name of an ordinal, then there are m < w
and g satisfying: p <, g and (¢ <r & m < n(r)) = (r forces
a value to 1)
(¢) N,(N, : n < o) as in the proof of 3.12 for (A} : n < o),
{Qv =, Spr} € No.

Then there is G € QV generic over N hence H(W)NIGT = H (L) = HO)V.
Proof. Should be clear.

Claim 3.15. Assume that F is a permutation of ([ [y, 2¢) X ([Tg<p) 2e) and
let @22"(*) ={p € Q : n(p) = n(x)}. We let F be the following function from
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2zn(*) to szn(*)
F(p)=qiff n(g)=n(p)
Mg T ne), 0 Tne) = F((l [ n(x), 0} [ n()))
ng I n(x),n(p)) =nf | [n(x),n(p))
i | [n(x),n(p)) =n{ | [n(x),n(p))
A4 = AP,

Then the following holds:
1) Forpe (@22"(*), ﬁ(p) is well defined € sz"(*).

n(x)

~o. . > . .
2) F is a permutation of Q3 preserving <, <pr, <prn, Zapr and their

negations, and F +— Fisa group homomorphism (hence embedding).
3)If G € Qy is generic over V then

(a) ﬁ(G) =:{r € Qy: for someq € GN szn(*) we have r < ﬁ(q)} is a subset of
Q, generic over V

(b) G = (p € Qu: thereis g € Q"™ such that p <q, q and F(q) € F(G)}

(¢) and V[ F(G)] = V[G] and even N[F(G)] = N|[G] Q‘ e.g.,
N <(H(x),€), Q2 e N,FeN,ACN.

Proof. Easy.
Claim 3.16. ”_Qz “_‘170E7~71 7,

Proof. If not, let p € Q> be such that p g, “n0E1~71”. Now by clause (f) of
Definition 3.2(1), we can find p; such that:

@) QEP =y
@ii) ifn(p) <n <wandp € 51(AP") then forsome «, y wehave (a, B), (B,y) €
52(A}).

Let G; € @, be generic over V such that p; € G and let n, = n¢[G ] for
£ =1,2s0V[G1] = noEni. By 3.12in V[G1], E is still an equivalerfce relation
satisfying clause (d) of 3.1 and trivially n € [n(p), w) = n1(n) € s1(AL"). Let
n* =: n(p), we can find ¢* < A,+ such that o™ < ni(n*),a™ # no(n™) and
(@*, n1(n*)) € s2(A%,). Let us define 1, € [,,_,, An by 16(n) is &* if n = n* and
no(n) otherwise; as a* < n1(n*) < no(n*) necessarily no # 7.

Now the pairs (o [ (n(x) + 1), m1 [ (n(x) + 1)) and (ny [ (n(x)) + 1), m1 |
(n(%) + 1)) are from (Hnsn(*) An) X (ﬂnSn(*) An), SO there is a permutation F of
this set interchanging those two pairs and is the identity otherwise. Let F be the

automorphism of sz(n*ﬂ) from Claim 3.15. Let G, = ﬁ(Gl). Now by 3.15:

(*)1 G2 is a generic subset of (9, over V
(¥)2 V[G2] = V[G1]
()3 10lG2] = 1y, m1G2] = 1.

By 3.12 (and the choice of 7)) we have
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(x)4 V[G1] = —noEmny,.
As p < p1 € Gy, by the choice of p clearly

(x)s VIG1] E"“noEm™.

By the choice of p; and (e, n1(n*)) clearly p < (o [ [=n(x) + 1), 0} [ (n(x) +
1), A | [(n(x) + 1, w) € G3 so (using (*)1)

(06 VIG2] = “(nolG2DE(1[G2D)”

hence by ()2 + ()3 we have

()7 VIG2] = "ngEm”.
Now ()4 + ()5 + ()7 contradict 3.12. 03.16

Claim 3.17. ]) Fix x > A large enough and choose Ny <Ly (H(x), €) such
that |N, || = 2", {E, m} U {Ng : £ < n} belongs to N, (hence Qy € N,), and let
N =, —p Nu; (certainly can be done). Then we can find (p, : v € [[,_, in and
n < w) and*

(@) pv € [Tocrgny M

(ﬂ) V1 V2 = Py < Py,

() ifvi,v2 € [[jcpdeandm <k <n,vi [ m = vy [ mand vi(m) < va(m)
then ny, (k) < 0y, (m)

() if v € [1y—e te then p, =: 1, _,, Pvin is generic for (N, Q1)

() if vo,v1 € [y e and vo <jex vi then (pyy, pv,) is generic for (N, Q2)
hence

() ifvo # v1 € [y, te then =(py, Epyy).

2) Also, for some p € Q2,n(p) = 0 and non-principal ultrafilter D on @ we have

() ifn.v € [ s1(A) and /D # v/D then ~(nEv).

n<w

3) Moreover, there is a filter J on w to which all co-finite subsets of w belong and

forn,v e ]_[n<ws1(Af;) we have nEv <& n = v mod J.

Proof. Let Mo <Ly, , No be such that || Mo|| = 2™ and {E, m} € Mo.
As above we choose p, by induction on n such that:

Xi(@) pn € Q2
(i) pn € Ny
(iii) n(po) =0
(iv) pn <pr Pn+1 (hence po <pr pp 50 € < @ = n(pe) =0)
(v) for every Q2-name of an ordinal T € N,, for some k,(7) € [n, w)
we have: if Q2 = “pp+1 < ¢” and n(q) > k,(z) then g forces a
value to T

* whynot v € IT{A; : £ < n}? First we like (p, (n) : v € TT{A; : £ < n}) to be increasing
with v (the v’s are linearly ordered by lexicographic order) so the order type is the ordinal
product A, X A,_; X ... X A has cardinality A but order type > X. Second and more seriously
we intend to use clause (h) of Definition 3.2 which gives us Y of cardinality u; note if we
use 3.4(1) we get A, = u, but not if we use 3.5(1)
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(vi) if T € My is a Qz-name of a natural number then pq forces a value
to it.

Moreover,

(vii) if n < w and no, n; € H4<n A¢ then prll_H = (no, N1, (Ag”“ RS
[n, w]) € Q, satisfies, too, clause (v).

We can find p,, € Q such thatn < w = p, <, p, and we can find p* such that

Po < p* and (Vn)(VB)(Fa, y)[B € s1(Af ) — (. B), (B.¥) € s2(Af*)] and we
shall show that p* is as required in parts (2) and (3), for p. Now clearly

&y if o, m1 € [ [, An and (V€ < 2)(¥n < w)(ne(n) € sl(A,[;*)) and for every

n <  large enough (11g(n), 71 (n)) € s2(A%) then

(a) for some subset G of Qg] generic over N to which pg belongs we have
nolGl = no, m[Gl =m

(b) —noEn.
[Why? Let k* < w be such that k* < k < w = no [ (k*) # n1 | (%),
it exists by the definition of order on Q;. For every k > k* we define a
condition ¢ = ¢f , € Qaby:n(g) = k,nf =mno | k.ol =m | k
and Al = AY forn € [k, ) and let Gy, =: {r : r € Qa,r € N and
r <@, q,’jo’m for some k < w}. By X and the proof of 3.12 easily G, 4,
is a subset of Q; N N generic over N, so clause (a) holds. By 3.16 clearly
NI[G .70l = —(noEn1). By using absoluteness (as in 3.12(1)), also clause
(b) holds.]

This suffices for part (1), in detail: by clause (h) of Definition 3.2(1) recalling the
M,J{ is Hypothesis 3.7, we can find Y;, C X, of order type w, X ty—1 X -+ X Uo

from N, such that for any & < B from Y, the pair (a, 8) belong to sy (A% *). Now
we can choose by induction on n, (p, : v € ]_[kn We) as required in («), (B), (v)
of 3.17(1), they are as required.

We are left with proving part (2). For B C w let ng be the following (Q2-name:

np(n)isni(n)ifn € B andis no(n) if n € w\B.

Clearly 73 is a Q2-name of a member of “A and ng € My (recall that | M| = 280)
hence for By, B, C w the following Q,-name of a truth value, the truth value of
(nB,Eng,), is decided by po, say itis t(By, B2).
" Define a two place relation E’ on P(w) : BiE'B; iff t(B;, B) = truth.

Let J = {B C w : t(}, B) = truth}, that is, J = {B : JE'B}.

Clearly

(*)o E’is an equivalence relation on P(w).

[Why? By E being (forced to be) an equivalence relation.]
(*)1 w ¢ J, moreover [n,w) ¢ J.

[Why? By X.]
(%), if By, By € J then B1E'B;.

[Why? As E’ is an equivalence relation.]



Sh:724

On nice equivalence relations on *2 55

Leta) < o) < @ < o) < af < &) be from Y, forn < w and for h €

©{0,1,2,3,4} let vy € [],_, n be va(n) = o™ . 1f g1, g2 € ©{1,2,3,4} and
gi(n) ifn¢B
g () ifn e B.

n<w
BCwwelethy g p€®(1,2,3,4) be hy, o 5(n) =

Easily

(%)3 if g1, 82 € ©®{1,2,3,4} and (Vn < w)((n € B1\B2) V (n € B)\B)) =
g1(n) < go(n)) and By, B> C w then B, E'B; iff Vg, 60,51 Evhgl 0.
[Why? That is, let hy = hg, 4, B, for £ = 1,2 and note thatn € (B; N By) U
(w\B1\B2) = hi(n) = ha(n).
We define 7, nj €[], ya as follows:
(@) ifn € (B1\B2) U (B2\B1) ther; ) = nz ) =a’
(b) ifn € By N By then nj(n) = gz(n) WHOE ) ()
(c) if n € w\By\Bs then njj(n) = gl(n), ni(n) = Zl 41
Now choose G as in clause (a) of X, for (170 1) and note that
(d) Vi = 77B1[G] Vhy, = nBz[G]
[Why? Because as

n € Bi\By = (1B,(n),15,)[G] = (g2(n), g1(n)) = (vn, (n), vn, (n)) and

n € By\By = (p,(n), 5, (m)[G] = (g1(n), g2(n)) = (vy, (1n), vy, (n))

and also for the other n’s.]
Now clearly, vy, Evp, iff N[G] = “np,[G]Eng,[G]” which is equivalent to
B E'B>, so we are done.] i )

(x)4 if B, B Cw,B =B NBythen BiE'By, & B1E'B & BoE’'B.
[Why? The implication <= holds as E is an equivalence relation so let us
proof =. By the symmetry it is enough to show that B E’ B. We choose h; €
®{1,2,3,4} for £ = 1,2,3 by: if n € (B1\B2) then (h(n), ho(n), h3(n)) =
(2,3,1),ifn € B\ Bj then (h1(n), ha(n), ha(n)) = (1,2, 3),ifn € w\(B1U
By) orn € By N By = B then (hy(n), ha(n), h3(n)) = (1,1, 1).
Now we choose functions g, g9, g’l’, gé’, g5, 85 € “{1,2, 3,4} as follows:
for n < , the six-tuple (g§(n), g5 (n), g5(n), g5(n), g (n), g5(n) is:

@) (1,2;1,3;2,3)ifn € Bj\B>

@) (1,3;2,3;1,2)if n € B2\ By
@ii) (1, 1;1,1;1, D ifn € (B1 N B2) U (w\(B1 U By))
So vy, Evpy as we are asuming By E' By, using ()3 for (g{, g5) the “only if”
part. Also vy, Evy,, similarly using (g%’, g'z’).
Together it follows that v;, Evy,, as E is an equivalence relation. Using ()3
again for (g{, g5) this time, by the “if” part it follows that By E’ B as required.]

Similarly

(%)5 if Bj € By C wthen B{E'By < (By\By) € J.
[Why? This follows by (x)3.]

(x)g if By € By € B3 C wand B1E’'B3 then B1E'B, & B> E'B;
[Why? We define hy, ho, h3 € “{1, 2, 3, 4} by:
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(a) if n € B3\ By then (h{(n), ha(n), ha(n)) = (2,2,4)

(b) if n € By\Bj then (h1(n), ha(n), hz(n)) = (2,3,4)

(c) if n € w\(B3\By) then (h1(n), ha(n), h3(n)) = (1,1, 1). Now vy, Evp,
as we are assuming Bj E’B3 using (x)3 with (g{, g5) the “only if” part.
Similarly vy, Evy, using ()3 with (g%, g5).

As E is an equivalence relation we deduce vy, Evp, hence B E'B; by ()3 using
(g7, g5) the “if” part.

By E’ being an equivalence relation we can deduce B, E’ B3 so we are done.]

(*)7 J is an ideal

[Why? If By € By & By € J wehave § C B; C By & BE'B; so by ()¢

we have @E’B; as required. If By, B, € J are disjoint members of J, then

@#E'B| & BE’'B; by the definition J, so by E’ being an equivalence relation

B E’'B;. Now By € J and so by (x)s applied with By, B; U B, here stand-

ing for By, B; there we get Bj E'(B; U B3) so by transitivity of E’ we have

WE'(B; U B) which means By U B, € J.]

()8 {0,...,n}eJ

[Why? By X.]

(¥)9 BIE'By iff BjAB; € J

[Why? Let B = B N By; if BjABy € J then we have B1\B, Bo\B €

J so by (x)s we have BiE'B & BE’'B; hence B{E’'B;. If B{E'B; then

B1E'B & By EBby (%)4,hence Bj\ B, Bo\B € J by (¥)ssoby (x)7 BIAB; €

J.]

So by (x)7 4+ (*)2 there is an ultrafilter D on w disjoint to J, and by (x)g it is
non-principal, and by (x)g it has the desired property so we have proved also part
(2). Part (3) has been proved by (x)7 + (x)9. O3.17 O34

§4. The countable cofinality case: negative results

In the previous section we have gotten positive results, however, the assumptions are
such that they may fail in ZFC (for every A). Can we eliminate those assumptions?
We below show that we cannot eliminate them: for reasonable A the conclusion
fails strongly (as in §2), if A fails the free subset property (a well known property,
see, e.g., [J]). So e.g. if —0*, the results of §3 fail.

Claim 4.1. Assume

(@) L > cf(A) =Ry

(b) (Vo < M| < 2]

(c) there is an algebra B with universe X\, with < A functions and with no infinite
free subset, see Definition below.

Then there is E such that

(a) E is an equivalence relation on “ )\
(B) E is very nice (see Definition 0.2)
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(y) ifn,ve®randn =" v (ie. ANn)(n(n) # v(n)) then nEv < n =v
(8) E has A equivalence classes.

Definition 4.2. A subset Y of an algebra B is free if: a € Y = a ¢ clg(Y\{a})
where clsg(Y'") means the subalgebra of B generated by Y'.

Remark 4.3. 1) We can replace “A by the set of increasing w-sequences or by
[Thcw?n When &, < Apyr < A =3 Amorby {A CA: (Vn)@lo)(x € A
& Dy he S < Al

2) We can omit clause (b) if we weaken clause (y). We can imitate 2.4 and 2.7,
see 4.4 below.

m<w

Proof. Without loss of generality B has 8¢ function and the individual constants
{o : @ < Ao} and there are no other individual constants. Let £} = {o (xo, ...,
Xp—1) : 0 (X0, ..., Xy—1) a Tg-term} and < a well ordering of X where 19 < 2,
of course.

We define a two place Ep on “A by

nEoviff : ifn < wand

k,ki,...,k, < wthen

(@) thereis o (xp,...,xy—1) € X such that
nk) =oky), ..., nlk,)) iff there is
o (X0, ..., Xy—1) € X such that
v(k) = (o (v(k1), ..., v(kn))

(b) if in (a) they hold then the < -first term o (xg, ..., X,—1) € X1
such that n(k) = o (n(ky), - . ., n(ky)
is the < -first term o (xg, ..., X,—1) € X, such that
v(k) = o (w(ky), ..., viky)).

So Ey is an equivalence relation with < Ago < A equivalence classes. For n € “A
let A(n) = {k : for some k* < w there are non < w, kq,...,k, € [k*, w) and
B-term o (xq, ..., x,) such that n(k) = o (nky), ..., nky))}.

Lastly, we define E| by

nEwiff nEgv & n [ A(n) =v [ A(v).
The rest is as in §2. O4.1

Claim 4.4. 1) In 4.1 we can demand
(8) for each n € A, r)/JLE‘]l is a set of representatives of E.
2) We can weaken in 4.1 assumption (b) to
(b)Y Ro + [T(B)PN < 7.
3) If in 4.1 we change clause (y) in the conclusion to (y)* below, we can omit
clause (b) of the assumption
(Y)* for every n € ®A the set (ng., : @ < M) is a set of representatives of E with
no repetition where 0y, € “Ais: Ngn() = o if £ = n and Ny, (L) = n(L)
otherwise.
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Proof. 1) We imitate 2.4 only letting &, = {{(k, ki,....ky,o) + vk) =
olki, ... .k} v e®rv/J =n/J5).
2) The same proof.
3) For n € ®A let n(n) < w be the minimal n € [n(n), w) = cy{n) :
L e [n,w)} = cly{ni) : £ € [n(n),w)}. Let K be an additive group with uni-
verse A, K| a subgroup, |K{| = A,[K : K{] = A and nEv iff ]_[,Kn(n) nn) =
]_[n<n(v) v(n) mod K.
044

Remark. We can imitate in §2 the proof of 4.1: use a function F' : “A — A such
that there is no infinite independent set for the algebra (A, F); see [EH 71]

Question 4.5. 1) What about having o € (X, 2*) equivalence classes?
2) Assume, e.g., A is strong limit singular and 2% = A%, does A have the free
subset property? (See in [Sh 513]).

§5. On r,(Ext(G, Z)

Definition 5.1. For an abelian group G and prime p letr,(G) be the rank of G/ pG
as a vector space over 7./ pZ. Let ro(G) be the rank of G /Tor(G).

There has been much interest in Ext(G, Z) for G torsion free abelian group see
[EM], and later [MRSh 314]. This group is divisible so the ranks r, (G) above and
ro(Ext(G, Z)) determine it up to isomorphism.

Instead using a definition of the abelian group Ext(G, Z), we quote (see [Fu])
a result which gives a characterization of the cardinal r, (Ext(G, Z)) directly from
G.

Claim 5.2. For a torsion free abelian group G and prime p, r,(Ext(G, 7)) is the
rank of Hom(G, Z/pZ)/(Hom(G, Z)/ pZ) where

(a) Hom(G, Z.] pZ) is the abelian group of homomorphisms from G to 7./ pZ,

(b) Hom(G, 7))/ pZ is the abelian group of homomorphism h from G to 7/ pZ such
that for some homomorphism g from G to Z we have x € G = g(x)/pZ =
h(x).

More generally (see [Sh 664, §3] except separating g*), the point is that asking
what can 7, (Ext(G, Z)) be when G is an abelian group of cardinality A, we can
translate the situation to a A-system:

Definition 5.3. 1) We say ) = (A, K,G, D) is a A-system z_f

(A) A= (A; 1 i < A) is an increasing sequence of sets, A = A, = U{A; 1 i < A}

(B) K = (K; : t € A) is a sequence of finite groups

(C) G = (Gi :i < A) is a sequence of groups, G; C HteA, K;, each G; is closed
(under the Tichonov topology) andi < j <A = G; ={g [ A; : g € Gj}and
G,={ge HteAx K, : (Vi <)) (g | Ai € Gy)}, that is, G is the inverse limit
of (G : i < \) under the restriction maps
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(D) D = (Dj : 8 < A (a limit ordinal)), Ds an ultrafilter on § such that a < § =
[, 8) € Ds; the Ds’s are used to choose limits canonically.

Of course, formally we should write A?J, K,y, Gg;, ng, gly, etc., but if clear from
the context we shall not write this.

2) Let Y~ be the same omitting D, and we call it a lean \-system.

3) We say g* is a YV-candidate if

(E)g* = (g :i<A), g €Grandg] | Ai =eg, = (ek, : t € A;).

We can deduce the result of Sageev Shelah [SgSh 148] (if |G| = A is weakly
compact (> Ro) and p is prime, then 7, (Ext(G, Z)) > A = rp(Ext(G, Z)) = 2M).
(We later get more.) For this note

Claim 5.4. 1) Assume

(a) Y is a A-system

(b) H = (H; i < 1) is a sequence of groups, & = (mij:i<j<A),
m;,; € Hom(H;, H;), commuting

©) h= (hi :i <A),h; € Hom(H,-,Giy), andi < j <A&x e Hi = (hj(x)) |
A; = hi(m; j(x))

(d) Hy, 7 (i <) formthe inverse limit of (H;, m; j 1 i < j < A), and h = h;,
the inverse limit of (h; 11 < )

(e) Ey, is the following 2-place relation on G), : fiE,f» < fi fz_l € Rang(h)
similarly Ep, for o < A.

Then

(¢) h € Hom(H,, G,)
B) if Vi < M)Al < A& |Hij| <A &|Gi| <)), then Episa E}[A]-equivalence
relation on G,
() if Vi < M)(JAil < A & |H;i| < X) and X is weakly compact uncountable
cardinal, then
(a) the 2-place relation E = Ej on G, (from clause (e)) is a very nice equiva-
lence relation
b®) if f1, f» € Gy and fi f{l ¢ Rang(h) then for every o < X large enough
(fi 1 A)(f> | A))~! ¢ Rang(h;) that is ~(f1E;. f2) = (Vo < M)=(f1 |
Ay)
(8) under (y)’s assumptions, if [G : Rang(h)] > A then [G : Rang(h)] = 2*.

i
are as in (a)—(e) above and ® below (which follows for A weakly compact) and

i <= |Hi|+|A;| <A, andforeverya < Athereare [ € Gy (fori < a) such
that ﬁ(]‘i“Ehif]‘?‘)fori < j <a&e < &%), then there are f; € G fori < 2*
suchthati < j <2 & e <¢&* = —(fiEn: f})

2) If fore < e(x) < A we have (Hf : i <k),(n.€j S< < A)(hY i <A

® A is strong limit and forany f, g € Gy ande < e(x) suchthat fg~' ¢ Rang(hf)
for some y < A we have (fg~1) | A, ¢ Rang(hf,).
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Proof. Straightforward. 1) Clause («): Easy.

Clause (8): By (b) of clause (y) proved below it is enough (in Definition 0.2)
to code E; for every i < A and as X is strong limit this is easy.

Clause (y): The pointis thatif f € G\ Rang(h,) then for somei < X we have
7 »(f) € G;\ Rang(h;) by the tree property of A, (one of the equivalent forms of
being “weakly compact”).

Clause (6): By part (2).

2) We shall show the proof such that it works for any strong limit except one
point where we use weak compactness. For each i < A, as A is strong limit, let 14
be ([]ca, IK: Dt if A regular, [Tica, |K:l+ cf(3) if & singular. By the assumption
we can find (f* : i < (2He)T) such that f* €e Gande < a &i < j < g =
—(f Epe f]‘.’l). By the choice of o without loss of generality i < (2H«)* = i
Ay = [ | Ag. By the weak compactness (i.e., see clause () of part (1)) for any
I < j < lg thereis v, (i, j) < A suchthate < o = (fi‘”(f/‘?‘)’l) P Ay &
Rang(hs (i ]))

If A = cf(d) let yy = sup{ya(i,j) i < j < (te)T}. Note if A is regular
then trivially y < A and if 1 > cf(X) by Erdos-Rado theorem without loss of
generality v = sup{ya(i, j) : i < j < uf} < A. So for some club E of A we
have @ € E = y} < Min(E\(« + 1)). Now for any p € [],cz ud we define
8p = (8p,a : @ < A) as follows:

8pa € Gy is f/‘j‘(a) ifa € Eandiseg, if ¢ E and let f, = f3, be defined
as in [Sh 664, §3]. Easily (see there)

® foeGrandifp) [a=p [a,0 € E, p1(a) # p2(x) and B = Min(E\ (o +
1)) thene < e(x) = (fp, f5,") | Ap ¢ Rang(h}).
Easily we can find B, € [,u;[]“I for @ € E such that:

() p1, 02 € [Igepng Hp and &1 # {2 € By and € < e(x) and B = Min(E\(« +

1)) then
(fgpl yi wy<a)” )(fgﬂzi/ y <o) f( ) ! FA/S ¢ Rang(h )

Sorestricting ourselves to (f, : p € [[,cp Ba) We are done, thatis, if & < &(x) and
p1 # p2 € [[4ep Ba thenwecanfinda suchthat py [« = p2 [, p1(@) = p2(@),
so letting 8 = Min(E\(x + 1)),pé = p¢ | (@+1) for £ = 1,2 we have

foo T Ag = fp/ | Ag for £ = 1,250 (fp/ o f_l) | Ag ¢ Rang(h ) hence
(for fpzl) I Ap ¢ Rang(h ) hence f), fp2 ¢ Rang(h ) as required. Os4

Remark 5.5. We can phrase 5.4(2) forgetting h{, etc., using only E.(¢ < A) and
Ef ={(f,8) € Gy x Gy, : (fg~) I A; € Rang(h®)}.
Claim 5.6. Assume

O(Z]

(A)(a) X is a strong limit cardinal and 0 is a compact cardinal < A
(b) K; is a group fori < A
(¢) I is a directed partial order, t € I = A(t) € A and | J,c; A(t) = A
(d) fort € I, Gy is a subgroup of TI{K; : i € A(¢)}
(e) fors <t from I we have A(s) C A(t)and f € G; = f | A(s) € Gy
(f) G is the inverse limit of the G,’s, i.e, {f € [[;_, Ki : f | Ar € G, for
everyt € I}
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(B)(a) () <A

(b) fore < e(x), (HE, 775,11} cu < w from 1) is an inversely directed system of
groups

(¢) h{, e Hom(H}, G,) foru e l,e <e(x)andx € H, &u < w = hi/(x) |
Au), hy (o, (%))

(d) Hg,, h®, hy, , are the limit of the inverse system

(e) Eg is the equivalence relation on G, : fE.g < fg~' € Rang(h®,)

(C) for every u < A we can find (fy : a < u) from Gu such that & <

HNee) &a < B = —~(LEcf})

(D) 0 is > sup|K;| +sup |A(t)| and also Sup,c ¢ (s | H |-
i<A tel

Then there are fy € G for a < 2" such that s < e(x) & a < B < 2+ =
ﬁ(faEsfﬁ)-
Proof. Let k = cf(X), (A; : i < k) be increasing with limit A. We can choose by
inductionon i < A, I;, A; such that
(@) A CA A <O+]iland j <i= A; C A;j, L CA;
(B) I; < Iisdirected, || <0+liland j <i = [; € ljand7 € [; = A1) C A;
(y) if we restrict ourselves to A;, I;, there is a sequence (f, : & < A;), such that
fO’; € Gé"o = Lim;(Gy, fuw : v < wirom [;) and ¢ < e(x) & o < A; =
—(fiES fi) and y € U Aj N By, fi(y) = ex, .
j<i
This is straightforward (see the proof of 5.9, first case). We can extend fO’; to * fO’; €
Goo such that i € A\B; = *f.(i) = ek,. Now we can apply the proof of 5.4.
Os.6

Claim 5.7. 1) Assume

(a) A > cf(L) = k, and « is a measurable cardinal, say D a normal ultrafilter on

K
(b) G is a torsion free abelian group
(© 1G] =4

(d) p is a prime number.
Ifrp(Ext(G,Z)) > A and A = A~% thenr, (Ext(G, Z)) > A*.
2) Assume
(a) of part (1)
(b) (G; :i < k) isanincreasing continuous sequence of torsion free abelian group
(¢) ui =rp(Ext(Gi, Z2)) fori < k.

Then

(o) if f € Hom(G, Z/pZ) but f ¢ Hom(G, Z)/ pZ then for some i < k, f |

G; € Hom(G;, Z/pZ), f ¢ Hom(G, Z)/ pZ

B) e < Hi</< i
Proof 1) LetA =Y {A; :i <k}, i < j= A <Xj.Let(G; :i <«)bean
increasing sequence of pure subgroups of G with union G satisfying i < k =
|Gi| = A;i. Now
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(%) if g € Hom(G,Z/pZ) andi < k = g | G; € Hom(G;,Z)/pZ then
g € Hom(G, Z)/pZ.
[Why? Let g | G; = h;/pZ where h; € Hom(G, Z) and let & a function
from G to Z be defined as h(x) = n < {i < « : hj(x) = n} € D. Clearly
h € Hom(G, Z) and g = h/pZ, as required.]

The result follows by 5.4(2).
2) Similar. Os.7

A complimentary claim is

Claim 5.8. Assume that (G; : i < k) is a purely increasing sequence of torsion
free abelian groups, k = cf(«) for notational simplicity. r;, (Gi) =rp(Ext(G, Z))

1)If (r;,(G,') i i < k) isnot eventually constant then for some closed unbounded
set C C k we have

(a) (r;,(Gl-) 1 i € C) is strictly increasing
(b) there are (fol; ieC,a< r;(Gi)) such that
(@) f € Hom(Gy. Z/ pZ)
(B) fl I G is constantly zero (of the abelian group 7./ pZ) '
W) ifieC,j=Min(C\(i+1)anda < B < r;,(Gi) then (f}, —fé) G ¢
(Hom(G, Z)/ pZ); moreover; (fi | G;)+ (Hom(G,;Z)/pZ : a < r},(Gi))
is independent.

2) If C € k = sup(C) and the sequence (fO’; i e C,a < ;) is as above then
V;;(GK) > l_[i Mi-

Proof. Straight.

Conclusion 5.9. If

(a) A is a strong limit cardinal and such that («) Vv (8) where
(o) A is above some compact cardinal
(B) cf(r) is a measurable cardinal

(b) G is atorsion free abelian group and p is a prime.

Then r, (Ext(G, Z)) > A = r,(Ext(G, Z)) = 2.

Proof.
First Case. Let 6 < X be a compact cardinal.

For any © < A we can find a sequence (f; : i < wu) of members of Hom
(G,Z/pZ) such thati < j = f; — f; € {h/pZ : h € Hom(G, Z)}. As 6 is
compact fori < j < u we can find a pure subgroup G; ; of G of cardinality < 6
such that fj [ G,‘_yj =fil G,‘,j ¢{h/pZ:he Hom(G,-yj, 7)}.

Let G, be a pure subgroup of G of cardinality < y«+6 which includes U{G; ; :
i <j<p})Sor,(Ext(Gy,Z)) = . By 5.4(2) we are done.

Second Case. Should be clear by the two previous claims. Os.9
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Remark 5.10. 1) So for A strong limit singular the problem of the existence of G
such that |G| = A, r,,(Ext(G, Z)) = A is not similar to the problem of the existence
of M such that |[M]| = A, nu(M) = A where nu(M) = {N/ =: N is a model of
cardinality ||M ||, Loo,x-equivalent to M}.

That is, we know (in ZFC) that for A strong limit singular of uncountable
cofinality, for some model M of cardinality A we have nu(M) = A (see Shelah
and Vaisanen [ShVs 644] and history there). Now 5.9 is a strong negation of the
parallel of this result for r, (Ext(G, Z)).

2) There has been much effort to characterize the class {Ext(G,7Z) : G a
torsion free abelian group} of abelian groups under the assumption V = L
(see [MRSh 314] and references there). We note another possible characterization
(in a different model of ZFC).

Claim 5.11. Assume « is supercompact, Vu)(u > k — 2* < Z’ﬁ) and Q is the
forcing of adding k Cohen reals. Then in V@ we have

Xy if G is a torsion free abelian group, p a prime and r,(Ext(G, Z)) > 0 then for
some (pure) subgroup G’ of G of cardinality < 280 we have rp(Ext(G',Z)) > 0

X, if G is a torsion free abelian group, then r,(Ext(G, 7)), if not finite, has the
form 2"

X3 in (2) rp(Ext(G, Z)) = 2I1=1kip1(G) | see below.

Definition 5.12. For a prime p.
1) Let K, = {G : G is a torsion free abelian group such that even if we add
|G|t Cohen reals still r,(Ext(G, Z)) = 0}.
2) For a torsion free abelian group G let
frrkp)(G) = Min{rk(G') : G' is a pure subgroup of
G and G/G' € Kp}.

Proof. Essentially by [MkSh 418].
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