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ABSTRACT

We continue here our investigation of cofinalities of reduced products of
regular cardinals and give some applications, such as the non-productiveness
of A*-c.c. when 1 > 24,
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§1. Introduction

A Boolean algebra B satisfies the A-chain condition (4-c.c.) if any family of
pairwise disjoint nonzero members of B has cardinality < A. For a topological
space X, by ¢(X) we denote the cellularity of X which is the supremum of
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cardinalities of families of pairwise disjoint nonempty open sets in X. Clearly
¢(X) = Aiff the regular open algebra of X satisfies A *-c.c. The problem whether
the A-c.c. is a productive property (of Boolean algebras or, equivalently, of
topological spaces) has a very long history which we do not repeat here (see, for
example, [T1], [T2); Juhasz [J] and Monk [M] stress this problem in prelimi-
nary versions of their surveys). First ZFC examples of regular cardinals A for
which A-c.c. is not productive were given by Todorcevic [T1]. The cardinals of
[T1] are of the form of 2* where ded(x, 2*) holds (e.g., k = ¥,), so all of them
might be weakly inaccessible. Hence [T1] didn’t solve the topological question:
Is always ¢(X X Y) = ¢(X)-c(Y)? Note that this question is trivially equiva-
lent to the question: Is 1*-c.c. productive for all A? In [T2], Todorcevic
answered this question (in ZFC) by providing a class of cardinals 4 for which
A7*-c.c. is not productive: the A such that (Vu < A)(u* < 1). Todorcevic [T2]
uses (e.g., when 4 = (2%)*) [Sh 1] about cofinalities of reduced products of
regular cardinals. He also got negative partition relations, e.g., A* + [A*)%;
when (Vu <A)[u* <A], and got A — S and A4 — L spaces. He told me that a
proof of the consistency of “A*-c.c. is productive” will be the real generaliza-
tion of MA (unlike some soft ones; see e.g. [Sh 2]). By [Sh 7], this fails for
A = 2% regular (even Pry(d*, R, R,) fails, see Definition 31 and for some
consequences 36, 37). This makes it more desirable to get parallel results not
just for some successor of singular, but for quite many.

In [Sh 1], [Sh 3], [Sh 4], [Sh 5, Ch. XIII, §5, §6] and [M Sh] the cofinalities of
reduced products of regular cardinals (usually = x cardinals > 2¥) were
investigated for various purposes. We continue this here (but start from the
beginning, for the reader’s convenience, giving the statements but usually not
the proof of the repeated parts, but in a way that the reader may reconstruct
them).

The main new conclusions are (the hypothesis can be weakened, and apply
to some weakly inaccessible):

A. THEOREM. If A=u*, u>2% k=cfu, or A =cf(ll, ., A/%) where
2> A, A, <A, D a filter on k, then:
(A) for some regular cardinals o and A; from ((2¥)*,A) for i<o, 0 Sk
(i<j=i<A) and letting 2 ={aCo:0—a bounded},
L, ., A/ D™ has true cofinality A, i.e., there are f,€ETL, ., A; for a<A
[a<B=f/D < fy/ D) and

(er I A,.) (Fa<iANfla™™ < £/ D™},

i<o
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(B) there are regular cardinals A, €(2%, 1) for i <9,d <k* [i <j=4 <]
and a |d |-complete filter D on d, and {f,: a <) witnessing I, .; 4,/ P
has true cofinality A, which form a kind of a strong Kurepa tree: i .e., for
each i, {f,!i:a <A} has cardinality <1,.

We then define some strong negative partition relations, observe their
interrelations and consequences, and draw some of them from the work on the
cofinalities (mainly Theorem I). Part (B) of Theorem I is motivated by its being
used by Todorcevic [T2]. In that case it follows by cardinal arithmetic. Lastly
we deal with powers of singulars, giving some information of (4, 2%). We may
represent the proof of R§'? < R ;#4+ in a simpler way than in [Sh 5], at least in
most cases.V

Conventions and notations

a,B,v,(, & 1,]J,d are ordinals, J should be limit;

A, Kk, u, X, 0, o are cardinals, usually infinite;

foraseta,Ila={f:dom f=a, f(O)ElHfor 0€a}; P(a)={b:b Ca};

for a sequence A = (A;: i €u), e, 4, =T = { f:dom f=u, f(i))EA};

forafilter onu, 2+A={XCu: XU (u—A)E D},

foranideal Jonu, I+A={XCu:X—A€I}.

Many times we do not distinguish between a filter and the ideal dual to it.

9, 1s the filter of closed unbounded subsets of 4, for A regular uncountable.

D™ is the filter (A:ACA, [A—A| <A}, J¥=(bCa:|b|<]|al}). If
(P, =)is a partial (quasi)order, p <gmeans p =g Aa—q = p.

§1. Cofinalities

1. DEFINITION. For a partial order P, p € P is a lub (a least upper bound)
of A C P if it is an upper bound ((Vx€A4)(x = p)) and p = q for any upper
bound g of 4.

We say p EP is a weak lub of 4 if it is an upper bound and no g < p is an
upper bound.

1A. Fact. (1) If a lub exists, it is unique up to equivalence.

() For further advances, see [Sh 11] on 2*-c.c is not productive, e.g. for A regular > R,; and
[Sh 12] for more information on cofinalities of products of regular cardinals.
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(2 IfA,BCP,VpEAIqEB(p=q),VqEBIpEA(@=p),thenA,B

has the same lub (if any).

1B. NoTATION. (1) R*®={4: 1 a regular cardinal),
R*'={A€R*: A >k},
R*? = {(A€ER*0: ) > 2%},
I"={aCR":|la| Sk},
I =(1:1=(A:i€u) a sequence of cardinals
from R, |u| = k).
(2) If we omit / it means / = 2; we usually omit x as it is fixed.

2. DeFINITION. For a partial order P (which is (| P|, <) or (|P], =)):

(@) cf(P)=Min{|A|:ACP,(VpEP)IgqEA)p =q} (it is always well
defined). Such A is called a cover.

(b) A is a possible scale of P if there are p,EP for i <A such that
[i<j<i=p;<p],(VpEP)V, p;£pand Ais a regular cardinal.

(c) psc(P)= {A:4is a possible scale of P}.

(d) Ais the true cofinality of P, A = tcf(P) if it is a regular cardinal and there
are p;€Pfori <i,[i<j<i=p,<pjland (VgEP)V,q = p,. [Note
that tcf(P), if it exists, is unique and then cf(P)=tcf(P), psc(P) =
{tcf(P)}.] Also tcf(P) = 1 if there is p € P such that (VgEP) g = p.®

3. DEFINITION. (1) For 1 = (4,: i Eu) a sequence of cardinals, and 2 a
filter on u, then for f,g€Mc, 4, =g mod D, or f<,g iff
{i€u: f(i) = g(i)} € @ [it is a partial order].

(2) If 2 = {u}, we omit it.

(3) If 2 is a filter on some u’, u C y’, this will mean

{(i€u: liy=g(H}v W —u)E 9.

(4) We sometimes replace & by the dual ideal.
(5) We can replace = by any other relation (in particular <).

4. Fact. (1) If cfa; =cf B, for i Eu, 2 a filter on u, then:
(@) cflle;, =5)=cfIIf;, =4);

(b) teflley;, = g)=Ae=tcflllf;, =5)=4;

(©) pscllay, =) =psc(I1B;, =o)

@ Remember, if we are using P = (P, <) then p <gmeansp <gorp=gq.
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(d) if in addition u(s)={i€u:eq; is limit) #* Fmod 2, then for XE
{cf, tcf }

X(H a, §9) = X(H o, §9+u(.)) @

i€u i€u

(e) if {i€u:a,islimit}E P and (f,: <) witnesses A = tcf(ll;c, a;, =)
then for some club C of A

aECABECAa<B=f,<sf,

(so wlog C =4).
(2) If @ is an ultrafilter over u then (I1;c, 4;, =) has a true cofinality (in fact
every Psuch that (Vx,yEP)x =y vy = x)).
(3) Suppose for a filter 2 on u,

tcf(l'[ Ais __<_g>=/1, A ul<Aicfd #4 and [u] <A,
i€u Eu
then

(a) for each cardinal u,

{i:Ai=u}=2 mod 2,and A = Min{k: {i: i, <k} €E P}

and
(b) for each filter 2, extending 2, tcf(IlA;, =5)= A (here the assump-
tions on u, A; are not necessary, except “A; a limit ordinal™).
Also
(c) defining [iEj<i€uni;=4] (an equivalence relation) u/E =
(ilE:i€u)}, DIE ={4 Cu/E:U{i/E:i/EEA) belong to D}, Az =
A;, we have

tcf( H Ac, <9/E>=)"

{EUlE
(4) In (3)(c), if 2 is a-complete then 2/E is o-complete; if
D={v:vQu,|u—vl <k}

@ Also pselllc, o, = 5) = psollie, @, = g4uep) — {1} and {1} EpscllTie 0, = @) iffu — u(»)# &
mod 2 + u(»).
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where k¥ < |u| or u =0ER*®, 9 normal,® then for some sCu, s+ J
mod 2, and E is equality on s.
(5) If 9 is a filter on u,

tcf(H A §9)=l, A A<A and 2" <}
i€y i€u
then {i€u: 4 = |u|} =& mod 2 so the conclusion of (3) holds.

6) In (5), if A>u"! (e.g. u=2") then {i€u:4 =pu}=& mod 9, so
tefiTI{A;: 4, >u}, =q)=A4A.

(7) T, €M, A for a <, @ afilter on u, u*€ P, cf 6 > |u| (or alternati-
vely, 2 is (cfd)*-complete) and [a<f <dAi€u*= f (i) = f3(i)], then
{fe:a<d} hasa =,lub f, where

U f6), i€u*

a<é

f@)=
0, i Eu*.

(8) If A is regular > 2!, @ afilteron u, (f,:a < 1) is = g-increasing, then
for some v C u;
(i) if v# & mod 2 then (f/(2 + v) : « < 1) is eventually constant,
(i) if u—v+# < mod 2 then for some club CCA, (f,:a€C) is
< g-increasing.

(9) If 2 is afilter on u, Aregular, f, ET;e, 4, fora <i,[a <f= f, = afs] and
in 2(u)/ 2 there is no strictly increasing sequence of elements of length A, then
the conclusion of (8) above holds [use the assumption twice].

(10) Suppose A is regular > |u|, 2 a filter on u, (f:a<<l) is
=< g-increasing and (f./% : « < A) is not eventually constant. Let

E={vCu:(f/(2+u—1v):a<Ai)is eventually constant}.

Then
(i) (f,:a<A)is =g-increasing;
(i) if v # & mod E then (f,/(2 + v): « <) is not eventually constant;
(iii) if 92 is o-complete then E is g-complete (and always E is a proper
filter).

5. FacT. (1) Suppose Z isa filteron u, f,EM;, A fora <A, f, = fymod 2
for a < <A, and A is regular > 2'*!. Then there is f€II;¢, (4; + 1) such that
(a) fisa =g -least upper bound of (f,: a<4i):
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f‘;§gf fora<l,

VPN fel=150r];
(b) w.lo.g. (Vi)f(i) +# 0 (provided that {i: f(i) =0} = & mod 2) and
for every f’ <g f, for some a, f* <g f, (if {i : f(i) limit} € D).
(2) If Zis regular > 2%, @ afilter on u, (f,: a = 4) is <g-increasing, then
for some f = f;, tcf(ll;e, f0), <g) =A.

PrOOF. See [Sh 4] 2.3.

6. DEFINITION. (1) For any a €1/
(a) pcfla) = {cf(Ila, =y): 2 an ultrafilter over a}.
(b) For a property I' of filters,

pefa) = {tcf(lla, =,): 2 a filter over a, F [(2)}.

(¢) For I' = being g-complete, we write o; for I' = “extending 2™ we write 2.
(2) Similarly for A €.$%/..

6A. REMARK. (1) Asthe number of ultrafilters over ais 22", we know that
[pef(a)| < 2%, however (see 16(3)) |pef(a)] < 2~.
(2) For I =2 the difference between dealing with I*/, and #*/ is slight by
4(2)-4(6). For [ =0, 1 I*! is more interesting.

6B. PROBLEM. Can |pcf(a)| > |a| for a €I5??
7. FacT. pcfyf(a) = pcf(a) (for any a €1%).

8. DEFINITION. For a regular A (we may omit /if / = 2):

(1 I<,1 = {a €I cf(lla, <)<)~}.

(2 J¥, ="' ={(bCa:beI)} foracl,

(3) <, —{aew of(Il1, <)<4).

(4) FY = 4 = (u:u Cdom(1), 1t u €S, )} for 1 €%, [so u € #1, iff
u C dom(4) and cf(A t u, <)< A4).

9. LEMMA. (1) Suppose A €Epsc(Il;c, 4;, <;),Ianideal onu,and: ) > 2!
or at least in P(u)/I there is no strictly increasing sequence of elements of length
A.

Then there is an ideal I, on u such that:

(l) I C I 18]
(i) A =tcf{e, A, <)1)
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(2) If I is o-complete then there is a o-complete ideal I, satisfying (i) + (ii)
above.

(3) Similarly for normal filters.

4) Iff,€ENe, A for a <A, [a <fB= f, <, fs] where I is an R,-complete ideal
on u, then for some g €M, (4; + 1) and f, = f, mod I for a <A, f.,El;e, g(i)
and {f".: a <) is a witness for A Epsc(Il;c, g(1), <;).

(5) If (A;: i <) is increasing, A, ER*®, § < A, [or at least 6 < Z; s /], Ian
ideal on 8, d is a limit ordinal , I includes all bounded subsets of §, then inTI; _; A,
there are f, for a <(Z,.54;) " as in (4).

(6) IfAEpsc({A;: i€u), <)), A > 2"l then there is a minimal I,, satisfying
(1), (1) from (1); i.e. every I satisfying (i), (ii) from (1) extends I,. Similarly for
(2), (3).

PrOOF. (1) Let (f,:a<A) witness A Epsc([T;e, 4;, =;). Define
Ii={A Cu:(f,:a<l) does not witness 1 Epsc(Tl;e, 4i, =;4u-4)}-

By 4(8) there are v = u, C as there, so vE1,; and for notational simplicity let
C = 2. So for A €I, there is g, EIl;c, 4; such that f, <;,_4 & for a<A.
Clearly u &1, (by the choice of (f,:a<A)). Note that IC ], as AEI=
u€l + (u — A), hence f, <; (-4 Jo for every a <A so g, of foiso.k.

Now I, is downward closed: if A €1,, B C A4 then g, witnesses that BE],.

Next I, is closed under union: if A, BEI, then g defined by g(i)=
Max{g,(i), gs(i)} witness 4 U BEI,.

Lastly A = tcf(Tl;, 4;, I;) because (f,:a<<A) witness it; let us check the
conditions of 2(d).

L€, A; trivially; a<f=f,<, fz as ICI, vEIL, C=A4; lastly if
SE€EMe, Ay let u, = {i €u: f(i)Z f(i)}, then for some u*, {a <A:u,=u*}is
an unbounded subset of A [or at least {« <A : u, = u*mod I} is an unbounded
subset of A], hence fcan serve as g,. hence u* €1, and we finish easily.

(2), (3) Left to the reader.

(4) Choose by induction on n, g, €I, (4 + 1) such that f, <g, mod I for
a<i,and g,,, <g,modI.

Let g, be: go(i) = 4;. As Iis R,-complete, for some n < w, we have chosen g,
but cannot choose g, ;. As fo <;&», W.1.0.8. (Vi)g,(i)> 0. Let f1(i) be £(i) if
fAi) < g,(i) and be zero otherwise. Check.

(5) Left to the reader.

(6) We can choose for every w Cu, It, (f2:a<<A) as in the proof of (1)
such that w & I, if possible. Easily {w C a: I} is not defined} is as required.
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10. ConcrusioN. (1) If

}.EpSC(H ]‘i’ é(), Z’i<2', |u|<l

i€u

(4 regular, I an ideal on u) and A > 2'*! or at least in 2P(u)/I there is no strictly
increasing sequence of length A, then for some u,, |u,| < u, regular cardinals y;
(i€uy), u; =4, and ideal 1; on u,,

}.=tcf<l'[ Wiy é,,) and [i #j=u # ul.

i€uy

(2) If A > 2/, we can have y; ER -2 (for i Eu).

(3) If I is o-complete, we can have “I; o-complete” and if / is normal
(u = 0 ER*') we can have “I; is normal ideal on 6”.

(4) Suppose f,EIl;c, 4; for « <A, I'is an ideal on u and [a <f= f, <, f;],
A>21 2>} for i €u, Aregular. Then we can find a set v, a function 4 from
some u;, ¥ — u; €1, onto v, an ideal J on v and regular cardinals y; for i Evs.t.:

() J={h"(4): AEI},

(1) A =tef(ILie, i, =),

(iii) ppey =4 fori€u,

Gv) ifi€v, jEv, i #jthen y; # u;,
(v) 2"l <y, for jEw.

(5) Ifin (1) Iis selective [i.e., for every equivalence relation E on u, for some
iif E+ & modlIorforsomev# & modl, |vNi/E| =1 fori€u (vC u)),
then we can have (iYvCu, J={wnNv:w€&€l}, htv=id, [note: if k¥ = |u|,
then {vCu:|v| <|ul|} is selective, and if u =8=cf0 >R, then P, is
selective].

(6) Suppose f,EIlc, 4; for a <A, J, I ideals on u,J CI, I is an ;-
complete ideal on u, [a <f= f, <, fz], A is regular, Ajc, 4; <A, |u| <A and
(fi/I:x<<A) is not eventually constant and in 2(u)/J there is no strictly
increasing sequence of length A (which remains so mod 7) and / is & -compiete,
then

(i) for some v C u, and pairwise distinct or equal regular cardinals y;
(i €v), w; = 4;, and some filter I(») on v, tof (i, 4 <y)) =4, I(*)
X,-complete (and is o-complete, normal, if J is),

(ii) tcfTy;, S4.) =4 is witness by (f,:a<l) st a<fBf=f=
fymod J.
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Proor. (1) by 5(2) and 9(1); and for “4, # 4, use 4(3). (We use 4(1)
without saying.)

(2) Use 4(6).

(3) Use 9(2), 9(3), too.

(4) By 5(2), 4(3).

(5) Easy.

(6) By 4(9), wlogla<f=f,<,f;] and then use %(4) to have some
g, Nie, g(1) = A;, and A Epsc(llc, g(i), =), then use 9(1) + 9(2) and lastly
4(3). (There is no problem to preserve normality too.) (When J # I, we have to
look again at the proof of 9(1).)

10A. CorOLLARY. (1) Suppose A >cf i >R, I is a normal ideal on cf A
such that (x) for no (u,:a<A):u,Ccfi, [a<p=|up—u,| <cfi],
[a <f=u,LusmodI]. Then

(i) for some normal ideal J on cfi, I CJ, and some regular A; <A for
i <cfd, (A4:i<cfA) constant or strictly increasing, At = tcf(IL; . ¢, A, =J),

(1) At =tcf (T o5, Aiy =) is witnessed by some (f,: a <A7¥)s.t. fora<p,
£, fymod @,

(iii) the A;’s are all equal or (A;: i <cfA) is strictly increasing.

(2) Wecanreplace “normal” by “o-complete” if : cf A = 0 > R, and in (iii) we
assumel ={vCcfi:|v] <cfi}.

Proofr. (1) Let (4;:i <cfA) be strictly increasing <A s.t. A =2, .41 4;.
By 95) we can find (f:a<i?) st:f,€_.4:47 and
[a <B= [, < fymod 23] By 10(6) we can finish (with y; there as our desired
A’s).

(2) Similarly,

11. CorROLLARY. If 2% <} then for some constant or strictly increasing
sequence (A;:i<cfA) of regular cardinals <Atcf(IlA;, Sga) =A% (wit-
nessed by a = gme-increasing sequence).

Proor. Choose 4;, A =Z{A;:i <cfi}, (4;:i<cfi) as in 9(5) and then
use 9(5), 10(4).

12. LEMMA. Ifa=cfu> R, (VO <u)[0<’ =u), u <A =pu°, A regular,
then for some normal filter 2 on o and 6, < u (for i <o), tcf(Il; ., D)= A.

ProOOF. By [Sh 4] §7.

13. LemMmA. (1) In 94) if (u =80 a regular cardinal) E, 9 are nice
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(normal) filters on A, 0 resp. (see [Sh 4, 7.10]), then for some nice 9, extend-
ing 9,

tcf<H Ais §gl> =A.

i<@
(2) If A is singular, on A*, cf A there are nice filters E, 2 then for some nice
filter 9,, extending 9 and 2, < A (for i <cfA)

tcf( II ,li/@) =it

i<cfi
ProoF. (1) Let g, be as in the proof of 9(4) and let fora <4
A, ={i =0: L) <&}
Clearly: A, # & mod 2,
a<fi=A4;C A, mod 2.
W.lo.g. (Vi)g,(i)>0.
Let 2={4C0:foreverya, A U(0 —A,)E2P*}. Clearly

th( H A.,', §9> - )..
i<@
Why is 2 nice? By observation 13A below.

(2) By 13(1) and 9(5).

13A. OBSERVATION. If1 > 6> R, are regular, E a nice filter on 4, and for
a<i 2, is a nice filter on 4, then:

() 2 £ (4CH:{a<i:AED)EE} is nice,

(ii) if f€°0rd, h€*0rd, rk(f, 2,) = h(a) for a<i, then re(f, @)=

ri(h, E).
Proor. See [Sh 4] Def. 5.1, 3.1
13B. REMARK. (1) Note that: if
(Fr) AW >2 Ap*>u+x)*], fi>R,

then there is a nice filter 2 on cf(1) (see [Sh 4] 4.14, 4.15) and also on
I={aCA:la|<8}if@=cf@>R, A’ =4.

(2) In fact, in (1) the club filter is nice (on A and on {@a C A:|a| < 6)).

(3) If A° =4, Ry<o =cfo =0, and the club filter on {a CA:|a| <8} is
nice, then every normal fine filter on {a C 6:|a| <} is nice.
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§2. Good stationary sets and existence of lub’s

14. LeMMA. (1) Ifiissingular,S C A™ isastationary subset of A* which is
good (see below) and 6 ES=cf(d)>«k < ¢f 4, then Jor some A; <A (for
i < k), and a uniform ultrafilter 2 on k, 11, ., A;/ 2D has cofinality A*.

(2) Suppose A, is regular <A for i <k, A is regular, 9 a filter on k, Kk <4,
LLEIL o A, [@ <B= f,<g f3). Then one of the following occurs:

(@) (f.: <A) has a w <g-lub f; (hence for some filter 9, extending P
[f<s fi=(Ia<A)f <q L.

(b) In P(x)/ D there is a strictly increasing sequence {a,/9D:a<l) of
length A (in particular, 9 is not an ultrafilter).

(c) Thereis a club B C A and functions g, €11, ., A; for « € B such that
(0) f,=98. =g f3Jor a<pin B(so you can get f, <5 8, <a Jf3),
(B) U,cqrang g, has cardinality <x.

(3) If there is a good stationary set

SC{d<i:xk<cfd<Min{i:i<k}},

MK, fo (i<x,a<A) as in (2), (A,:a<A) witnesses “S is good” and
[@€4p= A, £.(i) < f3(i)], then in (2) above (c) and (b) do not occur.

(4) In (3) (using of) we can conclude A —{4;:i <k} ([Sh 1}), so, e.g., if
A =R, there is on A a Jonsson algebra.

(5) In (1), ifk <A, {6 E€S: cf(d) = k} is stationary, then

(Fi<cfA)Vj[i <j<cfA)=4,>k]

ReMARK. On good sets see [Sh 8] and Appendix of [Sh 9]; they are defined
in 15 below.

15. DEFINITION. For a regular 4, S C A is good if there is a sequence
(4, a<A),A,C aand for some closed unbounded C C Aforeveryd€EC NS
there is an unbounded 4 CJ of order type cfd such that (Va<Jd)
[4 Na€E{4s: B <a}l

ProoF. (1) Let (4,:a<A) beasin Definition 15. W.l.0.g. for each limit «
{A.Ny:yEA)} C {4;: B <a}. Note that wlog. |4, | <4 for every . Let
(A;:i <k) be an increasing continuous sequence of cardinals <A with
A =U, ., 4. We can define, by induction on a <47, a function f, such that

(i) LEM A7,

(ii) for B <a, for every large enough i <k, f3(i) < fi);

(iii) if BEA,, | <K, |A,| = A then f5(i) < £,(0).
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Now (f,:a<A%) has a lub f;+ [as otherwise use part 3 of 14, i.e., for (c)
find a closed unbounded C CA* and (g,:a€C), g EI,  A4;, |4 =k,
fo<28.<a f3 for a < f from C; choose § €S a limit point of C, and get easy
contradiction by (iii) above]. By 4(1),(3), 9(1) we get the conclusion.

(2) We define, by induction on { <k*, a function g; €I, .. (4; + 1) such
that [ <{=g Zq.g)[( =¢+1=g #5g]and[a<i=f =5 8] Welet
& be defined by go(i) = A;. If (g;: £ =) are defined, and there is g, g€
M (A +1), fL=,g for a<l, g #58; and g =, g, then choose such a
function g as g; . ; if we cannot, we have gotten “(f;: i <) hasa w <, -lub”,
hence (a) holds. If { is limit ordinal, { = x*, let A} = {g:(i): £ <{} U {4}, 50
Alisasetof < |{| + 1ordinals. Fora <4, let f{E€TI, ., (4; + 1) be defined by

fii)=Min{y €EAf: £() =y}

(well defined as f(i)<AEAF). Clearly a<i=f,<,f! and also
la<Bp<i=fi=af}l

Case I: {<k*and (Va<A)IB<Ma<BArfi<qff]
then conclusion (c) holds.®

Case II: { <xk* and for some a = af,

(VB <Mfita fH1but (Va<AXIB <Dla<Bafitafil

Then some closed unbounded subsequence of (as:f <A) exemplifies (b)
where

ag={i: f3(h)> fls(A)).

Case III: { <k* and both previous cases fail, then for some a =,

(VB<Mlasp=fi=5f}]
We let g; be f..

Case 1V: Suppose { =k* [so (g:: £ <k™) are defined and for o <4 and
limit € <k, a¢dae1nd 1§ are defined].

Note that o* = U{a;: E<k*}is <A.

Note that for each a <A, i <k, f{()EA} = U+ A¢, so for some & =
o, i) <k™*, fLHEAF™). Let &(a)=sup; < &(a, i), it is <k*, and as
(Af: E<k™) is increasing, (i) EAF. Clearly then, e.g., f{@*¢ = fl@to+o

) Note that f§ <, f§ implies f§ <4 f;.
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hence using & = a*, gxw+0 = 2 8t +w+0 NENCE Lo+ w+1 = 2 8w +w> CONtradic-
tion to the choice of g+ +1-
(3), (4), (5) Left to the reader.

§3. More on cofinalities

16. LEMMA. Leta€I** JER*?,

(1) For some set b C a, J%%+ = (J“%) + b [we choose such a set b and call it
bi4, and w.l.o.g. ifaEJ™S+ then b = a and if J*5+ = J*4 then bf* = & ].

(2) J*4 is the ideal (of subsets of a) generated by {b}*: p ER™?, u <A}.

(3) pcf(a) has cardinality < 2* and has a maximal element, which is equal
to cf(lla, =).

(4) For b=Db"+ & there are functions f}? (a<A) which witness
“tcf([1b, =)= A" (though the choice of [} is not unique, we choose such
Sunctions). W.lo.g. if (ff.tb*:a<d<A) has a least upper bound
mod J%, then (f{f 1 by*)J%S is such a least upper bound.

(5) ForeveryfE€Iatherearen >0,1,>A,> - -+ > A, frompcfla), ag < 4,,
<Ay ... 0,<Anand b, Caforl = nsuchthat (b;:] =n) is a partition of
a, and

bo=bitmod J%, b=bj"modJ%, [1b= S5 1b

Y

(note:a — byEJY,a—byU - - - UpEJY ,a—bU - ---Ub, =)
(6) Let @ be an ultrafilter on a: cf(lla, <g)=A iff A\ER*? and bi* € 2,
“Na=yg.

ProoF. By [Sh 5] Ch. XIII, §5, §6.

17. CLamM. (1) a C pef(a), [a € b= pcf(a) C pcf(b)];

(2) pE€pcfla)y=u€pcfla Nnp*);

(3) for u>2'%!, u Epcfipcf(a)) = u Epcfla);

(4) pcfla — {0}) 2 pcfla) — {6);

(5) if A€pcfla), A > 2%, aEI*? then A Epcfla — (2)*) (we can use any
u = p* instead of 2¥) and A = max pcf(bf*);

(6) if 8Epcf(a), a€T? and (Va < 0)[|a| <° < 8] then J=} is o-complete
for b = b~

ProoF. (1) Easy (see Definition 6(1)).

(2) If % is an ultrafilter on a, and {6€a:0>u}E P, then easily
tef(lla, <g)>u. Now as u€Epcfla), for some ultrafiter 2 on a,
tcflla, <z)=u hence (a—u*)¢2 hence anNu*€P, hence 2,=
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2! @nu*) is an ultrafilter on a Nu* and cfill(a Nu*), <g)=u, so
uEpcflanput).

(3) By 17(1), uE€pcfla)= u Epcfipcf(a)). So assume u € pcfipefla)). Let
pefla) = {u;: i <i(x)}, so i(») <(2'*!)*, for each i there is an ultrafilter 9; on
a such that g; = tcf(Tla, <g). So u = tcf{lly;, =4), 2 an ultrafilter on i(=).
By the theorem of ultraproducts of ultraproducts

H= th(H{Bj: U’ I)EJ(*) X l(*)}’ §@‘)
where
D*={A Cj(») X i(»): {j <j(*):{i:i <i(x)and (j, i) EA}E 2,} E D).

By 4(3)(c) we finish.

(4), (5) Left to the reader.

(6) Suppose b,EJ) for i <i(#), i(x)<a, U;b&J%; wlog b=U,b,
and the b;’s are pairwise disjoint. Let F; C II(b,) be a cover of cardinality <2
(exists as we know cf{I1;) < 6 as b, EI%S by 16(3)). Now

F={ U j::f,EF,-fori<i(*)}

i<i(s)

has cardinality < TII; ., | F;| < 6 by our assumptions and F is a cover of I1b,
contradiction.

17A. LEMMA. Suppose 0 =cfu>R,, (VO <u) [6° Sul,u<i=cfAd =
u°,2°<u,
(1) If A =cfA <u*°" then we can have (0;: i < a) strictly increasing and

0. <u, tef(T16;, <p)=A.

(2) Ifla€R’?, a C u= |pcfla)| = o] then the conclusion of (2) holds.
(3) Wecan allow o = cfu = R, if we add A Epcfla), a Eu, a ER*2

Proor. (1) By the proof of (2).

(2) As in 12(1), we can find (4:i<0a), 2 st.: (4:i<o) is strictly
increasing, 2 a normal filter on o, 4, <y and tcf(I, ., 4;, <z)=A. Leta =
{Ai:i <a), clearly J25+ = Jp4, let pcfla) — u = {u, : @ < a(*)} (4, increasing),
so for some 7, 4 = y,, and necessarily A,,(a — b)ED. As y <g* (by an
assumption) and 2 is normal, there is a*€ % such that a* C by¢ and
[a<y=|a* N bl <o)
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17B. LEMMA. If A <pu belongs to pcfla), 2" <A, a ER*? and pcfla) N
[, ) = pcf(pef(a) N [4, 1)) then for some b

JeE =(JY) +b.
Proor. Easy.

REMARK. Below, ac stands for “accessible”, ia stands for “inaccessible”.

18. DEFINITION. (1) R%% = {6 ER"*: for some-a EI*?, § Epcf,(a) and
0 > sup(a)}.

(2) RE2 =R**— R,

(3) If 6 = R, we omit it.

(4) Instead of o we can use I" (see 6(1)(b)).

19. DEFINITION. (1) R&L = {§ER*: for some 1 E.F*/, 6 Epcfi{a) and
(ViE€Edom )4, < 6)

(2) REF =R™ — R

(3) If T is being o-complete we write g.

(4) If 0 = X, we omit it.

20. REMARK. A disturbing point of R*! is that 17(5) is not known.
21. Fact. Definitions 18 and 19 are compatible.
22. LEMMA. If @ €RE? then for some a €EI** : 6 Epcfla) and a C R

PROOF. We define by induction on n < w the following 7, and a,, 2, (for
n €T,) such that:

@ To={(6)).

(ii) T,is a set of decreasing sequences of cardinals from R*?, each sequence

haslength n + 1 and | T, | = «.

(iii) n€7T, ., implies y ' (n + 1)ET,.

(iv) For n€T,, a, = {u:n"(u) belongs to T, ,,}.

(v) Ifn€T,, a, + < then B, is an ultrafilter on a,, cf(lla,, =4,) = n(n).

(vi) For nE€T,, a, =< then n(n)ERE.

There is no problem to carry the definition.
Also letting a* = {n(n):n <w,n€T,,a,= D} easily |a*| =k, a*E[?
and 6 Epcfla*).

23. REMARK. The same proof gives 24 below (we can even replace R*? by
any R C R [interestingly I" may be “g-complete”, “nice”; note they are closed
under the sum operation below}.
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24. LeMMA. Let I be a property of filters, 6 EREY-. Then there is 1 =
(A;:i€u) and filter @ on u such that

(a) 6= th(HtEu 'ln <9)s

(b) 4 <A, A, EREL,

(c) there is a set Y of finite sequences of cardinality = k, closed under initial
segments, { )YEY, which is well founded, u ={n€Y: for nov€Y, nisa
proper initial segment of v}, ( )&u, and there are filters 2, on Y, =
(n(xy:q(x)EY}fornE€EY —usuch that k£ I(D,)and for X Cu: XE 2 iff
forsome X' CY, X'Nu=X,{ YEX"and

MEX' ={n"(x):n"(x)EX'}ED,].

§4. Representation by nice products

25. MAIN LEMMA. Suppose a EI*?, a C RE?, A = max pcf(a), A > sup(a),
and for u <sup(a), sup pcfla N u) <A. Then there are f, ETla for a < A which
witness tcf(Ila, = pa2)=Aand

(%) Joru€a,{f.!(aNpu):a<i} has cardinality <u
(and fs is <pa-lub of {f,: a<d} when cfd > 2*).
REMARK. Note that g has no last element.

PROOF. Leta = {;:i <d(x)}, y;increasing with i, a({) =a, = {;: i <{}
for { <&(*)((»)is alimit ordinal as sup pcf(a N ) <2 foru < sup(a)). Let F;
be the set of functions of the form f; by U - -- U f, 1 b, where (b,: [ S n)isa
partition of a; and b,= b§* mod J%, and

HE{f520:£<(, 0 Epcflay), a< 6}

Clearly |F| =2* + Z < sup pcf(a;) = 2° + max pef(a;) which is <y, as
[a C R**=2* <min(a)] and as a C R? by

26. Fact. If AERE? a C R*? (or even a C R*%), (Vu€E€a){u <4], then
A > max pcfla).

[ProoF. If A < max pcf(a), a C R*° then there is an ultrafilter 2 on a, and
in Ila, a <g-increasing sequence (f, : « <max pcf(a)), so by 4(1), 5(2) for
some b C R*%, [b| =k, sup(b) = sup(a) (< 4) and A Epcf(b). By 4(6) w.Lo.g.
b C R*2, 50 we get a contradiction to A € R

Now it is enough to show
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(») for every a < A for some f * €1, .5, U;:
() fiismrfre Il u:
¢ <d(»)

(ii) forevery { <d(x),fX¥!a,EF,.

[Why is (%) enough? We then can choose by induction on a, 8, f¥ such that
(@) B, <Aissuch that (Vy <a)f¥ <,u 14,
(b) f*ET; .5 1 is such that fF <, fF and fF satisfies (ii),
the first step by the choice of (ff?:a<A1), the second by («). Clearly
(f*.a<A) satisfies the conclusion. More accurately, when « is limit of
cofinality > 2* we want also that f§ is <js-lub of {f: # <4}, but the proof
of this is by 27 (i.e., 27 say this holds for a clus of §’s and now rename).}

PROOF OF (*). W.lo.g [f€a=6>(2%)"]). Let x be a regular cardinal,
large enough. We choose by inductions on i < (2*)* a model N, such that:
(a) N, is an elementary submodel of (H(x), €),
®) | N: || =2%but {j:j<2*+i}CN,
© Uj <iN;C N,
(d) the following belongs to N, , |:
@) (N:jsi),
(ii) pcfla) (hence pef(a) C N, ,y),
(i) ((f5t:a<0):0€Epcf(b), bER®, b CA),
(iv) a (see (x)),
(e) for i limit, N; = U, ; N,
We now define g, EIla for y = (2%)* by

&) = sup (uc N ( U N.-)),

i<y

and for each § ER*? N N, let 8} = sup(6 N (U,-<,N,-)). As we have assumed
[6€a=6>(2%)*] clearly g,(u;) <u, for { <d(x) and &} <6 for 6ER** N
N,.

From Fact 27 below we can prove (x), as f:2€E N, and, e.g., g5+ is an f ¥ as
required. (Really for a closed unbounded set of y < (2*)*, cf y > x implies g, is
as required.)

27. FAcT. Suppose (N;:i =4) is an increasing continuous sequence of
elementary submodels of (H(x), €), N; €EN, . Define a function g;: dom g, =
R°NN; — | N || *, &(6) =sup(@ N N;); note that necessarily g(8) <0 as 6
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is regular > | N; || . Let g = g;. Suppose further that a CR°N N; — |a|*,
a€N;, la| =k,

({fFe:a<Ad):AEpcfla)) EN;, (b§*: 0 Epcfla)) EN;.

Then:
(1) If 6€pcfla), 0 €N;, cf(d) > 2* then

@B, g !t by = f526 1 by*mod I,

(2) If 6Epcfla), § EN;, I 1 b is g-complete and ¢ > cf(5) then &B),.

(3) If I3 1 by# is generated by =< o sets (as an ideal) and cf(d) > o then €B,.

(4) If cf(d) > 2" (or for each 0 € Ny, the assumptions of (2) or (3) hold) then
forsomen < w, 6,> 6,> - - - > 0, from pcf(a), 6, = max pcfla) and for
some partition (b,:/ =n) of a,

gta= IUO (fbzaen T O5°)-

(5) If the assumptions of (1) or (2) or (3) hold, cf{(d) > R,, then for a closed
unbounded set of ¢, < J, cf(d,) > k implies

ng f bg’a = fg,'ga‘l(g) f bg'a mOd 1220 .

Proor. (1) W.lo.g. aU{a, ({(ff2:a<Ad):A€pcfla)),0} C N, so aC
dom(g;) for each i. Alsoas N;EN,,, g aEN,,,.Sofori <j<d,g a€EN,,
hence g;(u)EN;foru€ahence g; I a <g; I a. Also f55e €N, hence f 55 U)E
N, for p€a hence f§5 <g ! a. Lastly, as g;  a €N, and for some a <6,

&1 b < f521 b mod I

this holds for some a € N; too, hence it holds for a = g,(6). Now for each i <,
there is ¢; C b§°, c;=b}*mod I3, and

gla=fEs. 0 <&+lc

So for some ¢, 4={i<d:¢;=c} is unbounded, and now by 4(7)
{f5a1 by*: o < g5(6)} has a least upper bound mod(I%} | b5*): g I b§* so we
can finish.

(2), (3) Similar.

(4) Like the proof of 16(5).

(5) Left to the reader.
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28. MAIN LEMMA. If 4 = max pcfla) > sup(a), aER*?, (a;:i <o) is a
partition of a, and (Vi < 0)a; EJZ;, then for some n; <wand 8, . .., 0; ,4y-:
from pcf(a;) (for | < o),

AEDPCE({B,,: i <a,l<n(i)}).

ProoF. Let A(0) =sup(4 N pcf(a)). As |pcf(a)| =2* <4 (as 4 > sup(a),
a €I?) clearly A(0) is <A.(We could obtain A(0) ¢ pcf(a) but have no need.)
Let x be a regular cardinal large enough and M an elementary submodel of
(H(y), €) such that:

a€EM, {i:i<i(0)}CM, and | M| =Ai0),
((fEt:a<8):bCa,0Epcf(b))EM.

We now assume that the conclusion fails, and eventually we shall get a
contradiction.

It is enough to show that for every f€Ila for some g€(Ila) N M, f=
gmod J%. So let f€I1a be fixed.

We let y(x)=(2%)*, and (N;:i < y(*)) be an increasing continuous se-
quence of elementary submodels of (H(y), €), such that:

(i) A,a,M,{((fEt:a<p):u€pcfib), b Ca) belong to N,

(@) (Nj:j SIYEN,

i) | N, || =25+ il

@iv) {a:a<2*4+i}C N,
Clearly a C pcfla) C N, and every subset of pcf(a) of cardinality = x belongs
to N,. Let for each b C pcf(a) of cardinality =< x, g, €EI1b be defined by

85(6) = sup(6 N Ny,)).
Let g =U{g,: b C pcfla), |b| = k}. By Fact 27(1)
&=/ 1wy mod JS.

We shall show that g, € M thus deriving the desired contradiction [as fE N,,,

clearly f < g,].
For each i < g, by Fact 27(4) there are 6,(/)Epcf(a;),

b()Ca;, — U bi(m), b(l)=bi mod J%%a»
m<l!

&ro)y=r ey | b(/), and 6,(0)=max pcf(a;), 6,(+1)<8(),
and 8,(), b,(!) are defined just for / < n(i), and lastly
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a,' - U b,(l )
1S n(@)

As P(x)C M, {(i,1,6,)):i <o,l <n(i)}EM, it is enough to show that
(foineeny : 1 S n(), i <o)EM.

As ((f52:a<@):b Ca, 6Epcf(b)) EM it is enough to have g. =gt cEM
where ¢ = {6,(/):i <o,/ <n(i)}. Now |c¢| =0 =k, ¢ C pcf(a) hence cEM
and pcf(c) C pcfla) (so ¢ € R*?), therefore max pcf(c) < max pefla) = 4. If
max pcf(c) = A we finish. Otherwise (as pcfic) C pcf(a)) max pefi(c) = A(0), and
as cEM, by 27 easily g. €M, and as we said above, we finish.

29. ConcLusIoN. (1) If A ERX?, k minimal, then
(i) for some a

A =max pcf(a), supa<i, a€I*?

(ii) for any such a, J% is a k-complete ideal on a, hence
[bCanl|b| <k=b€&J%](and A = tcf(lla, =;«)and necessarilyis
regular.

(2) If(Va<)}REX< R;), Rsis singular,a C R*2 N R;, k < Ry, u Epcfla) N
[R;, RY), then there is a C R¥%2 N Ry, |a| = cf d such that u Epcf(a) (even a
has order type = cf9).

Proor. (1) (i) This holds by the definition of R%? and 17(5).
(ii) If J%4 is not k-complete, we can find 0 <k, g, EJY fori <o,
U a; EJ4.
W.l.o.g. the g;’s are pairwise disjoint (otherwise use a; = a— U, a)
and a = U, , a; (otherwise replace a by a’ 4 Ui <o ).

By 28 we get a contradiction to minimality of x.
(2) Easy (by 12 and 29(1)).

30. MAIN LEMMA. Suppose A € RX?, o is minimal such that A € R%*.

(1) For some a€I**:a C A and A Epcfla).

(2) For a as above for some b C a, A = max pcf(b) and A > max pcf(b N u)
Jor u€b (take first b = b and then b N u for the minimal u €b such that
A€pcflb N u)).

(3) For b as above J% is a-complete.
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(4) For b as above for some ¢ C b, letting d, ] pcf(c), A =maxd,, d o
dy, — {A} has no last element; in fact
d — 0 = pcfib) — {u: uEpcf(b), u <2, pcfib) — u is finite} — 6

Jor some 0 €d (so pcf{b) — pcflc) is finite and J5 is a-complete by (3)).
(5) For ¢ as above, the order type of the sets c, d has cofinality = a.
(6) Letting J3° be the ideal of bounded subsets of d, then tcf(Ild, <) =A.
(7) For some d, C d of order type cf(otp d), pcf 4, (dy) = {A}.

ReMARK. The main conclusion here is part (6).

ProoF. (1) By definition of RS2

(2) Clear.

(3) By the assumption on ¢ and 28.

(4) Clearly {u Epcf(b) : u <A, pcf(b) = pu is finite} is finite. So by 16

def

c=b-—U(b: uEpcflb), u <4, |peflb) — u| <R}

is as required.
(5) By (3) J% is g-complete. If 4, €4 for i <d <o, then bj<E€JL], so
U, <5 b €J% hence by 16 for some n <w,

O, ...,0,_1€d, =pcflc) — {4}, U bcc U be.
i<é I<n

So necessarily each g; is =Max{6,:/ <n}, so (as 4 has no last element by
30(4)) sup; s 4; <sup d, as required.

As for cf(otp(c)), use 30(2) and g-completeness of the ideal.

(6) For each a < 4, choose, if possible, a function g = g,, g €I1d such that:
for every 0 € pcfic) (for 6 = 4 stipulating g(8) = a)

g1 b5 = [ mod J5.
Let 4 = {a<A:g,is well defined}. Now
FAcT a. A is an unbounded subset of A.
ProoOF. By 27.
Fact B. Fora<pin4, g,<gymod J}.
PrOOF OF FacT B. Clearly f§5 < f¥5 mod J% hence

a={0€c: [7:0) 2 fi5(6)}EJ.
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Now J%5 =U{J% :p€pcf(c), pu # A} =U{J% - uE€pef(c),u #1} (as
pcf(c) — {4} has no last element). So for some () Epcf(c) — {1}, c; EJ ).
Also

o={u€c: fiiu) * &M} EJL,

cs={u€Ec: fiiu)* gW)}EJH.
So w.l.o.g. also ¢;, ¢;€J%G,). Now

glc—aquaua)=fEic—qUaqUcag)
<fHMe—qUaUg)=gllc—cquUaUc).
Hence for every 0 €d, if 0 = 6(x) (as ¢, U ¢, U ;€T %Y,y C J%5) then
Shew ! b5 =g, by <g 1 by* = fi545 mod JZ5.

Hence by the choice of (/5 : y <0) necessarily g,(6) < g;(9) as required.

Fact y. If g€Ild, then for some a€4, g <g,modJ} [use 27 with
gENol.

By Facts a, 8, y we finish.
(7) Follows by 30(6).

§5. Applications

31. DEFINITION. PryA, k,0) where A =x + 8, A an infinite cardinal,
means that there is a two place function ¢ from 4 to x which witnesses it, which
means:

(*) ifE<Band for i <4, (a;;: { <&) is a strictly increasing sequence of
ordinals = i, <A and A is a two place function from & = {{: { <&} to k, then
there are i <j <4, such that U, . o; ; <a;and

[(Li<éala<é=claig, a;r) =h(, (D)

32. DerFiNiTION. (1) Pry(4, k, 6) where A = x + 6, A an infinite cardinal,
means that there is a two place function ¢ from A to ¥ which witnesses it, which
means:;

(*) if ¢ <@ and fori <4, {a;;: { <) is a strictly increasing sequence of
ordinals Z i, <Aand y <k, then there are i <j <Asuch that U, ., a;; <o
and

[(i<énlo<é=clai a;0)=7]
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(2) Pri (4, k, 8) is defined similarly but we add to the assumption of (x):
[i<i, i <G<E=clag aig)=7)

33. DeFINITION. (1) Pry(4, x, @) where A = x + 6, A an infinite cardinal,
means that there is a symmetric two place function ¢ from A to x which
witnesses it, which means:

(%) if ¢ <6 and for i <4, (@;;: { <) is a strictly increasing sequence of
ordinals = iand <Zandy <k, thentherearei <j <4,suchthatU, ;a;, <
ajgand for {,, {,<¢

(D) &i=0=claig, o) =7,
) ¢ #=6H= c(ai,Cv aj,(z) = C(ai,cl’ ai,(z)'

(2) Pry(A, k, 0) is defined similarly, replacing (1), (ii) by
@y ¢>0>0=cla ;) =27,
Gy <b<é=clag, app)=claig aig)
(iiiy {<&é=c(ojf, aj)=2y+1.
(3) Pri4, k, 0) is defined similarly, interchanging the conclusions of
@iy, ().
(4) Pry4, k, 0, u) is defined as in (1), but we add to the assumption of () an
ordinal y, <u and get a set u C 4 of order type y, such that any i <j from u
satisfies the conclusion of ().

34. DerINITION. (1) Pri(A, k, 6) where A = k + 8, A an infinite cardinal,
means that there is a two place function ¢ from 4 to x which witnesses it, which
means;

(*) if £ <0 and for i <4, (a;;: { <&) is a strictly increasing sequence of
ordinals =i and <A and 2y + 1 <k and {(*) <&, then there are i <j <A
such that U, . a;; <a;oand

D) {<{)=cleigey ;) =27,
(i) {(»)<{<&=claigup @0 = c(@ige @),
(iti) cla; gy @) =27 + 1.
(2) Pri(4, k, 6) is defined similarly replacing (i), (ii), (iii) by:
1y {<{F)=claig, ajpw) = claig, o g

iy ((x)<{<E=cla;g, o) =27,
(lll)' C(a,"c(,), aj,((,)) = 2)’ + 1.

35. DeFINITION. In Definitions 31-34, omitting § means that it is R.
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36. OBSERVATION. (1) Pry(4, k, 8) implies Pr\(A, k, 9), Pry(4, k, 6).

(2) Pr¥(4, k, 0) implies Prj(A, x, @) wheny =a,x=Sory=b,x =L.

(3) Pr(4, x, 8) implies Pri (4, x, 6).

(4) Pry4, k, 6) implies Pr{ (4, &, ).

(5) Pry(4, K, 6, 2) is equivalent to Pry(4, k, 8).

6)If K=K, 6,60, wm=w then Prfd,xr,0)=Pr{4d,x,?H0),
Pri(4, i,0))=Pr,(4, K, 6)), Pri(4, x5,6))=Pri (4, k1, 6,), Pry(4, 15,0y, p)=
Pry(4, ki, 6, w), Prs(4, Kp,60,)= Prs(4, Ky, 6y).

(7) Pr{ (4, 2) implies that the A-c.c. is not productive for Boolean algebras
(see [Sh 7] proof of 1.10).

(8) Pr{(4, 2) implies that there are A — X spaces for X = L, S (Hausdorf
with a basis of clopen sets). (See [Sh 7] proof of 1.10.)

(9) Pri (4, n)implies that there are Boolean algebras B, (/ < n)- I, ., B,does
not satisfy the i-c.c. but IT, ., , ., B, satisfies it for m <n. (See [Sh 7] proof
of 1.10.)

37. DiaGRAM. (Forxk=2,60=2)

Pry4,x, 6)
Pri(4d,k, 8) Pry4,k, ) Pri(A, k, 0)
Pry (A, x, 6) Pri(4, k, 6)
Pri(4, k, 6) Pri4, «, 6)
A-c.c. not productive 34 — L space 31 — §space
A—— AR

38. LEMMA. (1) Suppose ¢ C R® tcf(Ilc, =)= A (c has no last element)
(Vu€cu<i) and let y=Min{|lc—p|:pEc}<supc. Then
Pr(4, x, cf(c)).

(2) If in addition for arbitrarily large 6€c, Pr(6,y’,20), 65°<
Min(c — 0%), [€{0, 1}, sup(c N G)Ec, o = cf(c) then Pr/(4, x/, o).
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39. REMARK. (1) Every unbounded ¢’ C ¢ satisfies all the assumptions
(though: maybe with a smaller y). So w.Lo.g. |c| =%.

(2) If in 38(2) we want to interpret ¢ as order type, 20 should be replaced
by 2.

(3) In 38(1) we can have Pr;(8, x5, 20,) for 6§ Ec, such that

[v(1) = 0(2)= 20y = X6y A Op) = Ogz))

and get Pr;(4, Z, x5, Z4 0p).
(4) cf(c) is the cofinality of the order type of c.

Proor. (1) Let (f,:a<Aa) exemplify tef(Ilc, = m) =4, (c;:i <x) a par-
tition of ¢ to x sets, each c; is an unbounded subset of ¢. Let & : ¢ — x be such
that 6 E ¢y,

Let us define two two-place functions, 6, e from A with range of power y : for
a<f <A, 0(a, ) =sup{f: fL6) = f4(6)} (so if there is a maximal 6 for which
f2(0) = £3(0), it is O(a, B)) and

e(a, B) = h(6(a, B)).

Suppose ¢ <cf(c), (ag,: { <&) is a strictly increasing sequence of ordinals
=B but <A for each f <A. Now for any given i(x) <y we should find
B <y <Asuch that U, ay; <a,qand for every {;, {, <&, O(ap, @, ) belongs
10 Ci(ay

Let x* be a regular large enough cardinal. Let M, be an elementary submodel
of (H(x*), €, <*) where <* is a well ordering of H(x*), to which 4, ¢, &,
({ogr:E<E):B<A), (f,:a<d)belongs, L Uc CM,and || M) <supc.

Let ¢’ ={0€Ec:sup(MyN 6)< 8}, so ¢’=cmodJ*. Define a function
g€Ilc:g(0) is sup(MyN @) for OEc’ and zero otherwise. As (fz: f <A)
exemplify tcf(Ilc, <) = A for some B(0) <A, g < fzoymod J, and B(0) >
sup(MyN A).

As ay); Z B(0) for each { < ¢ for some 67 Ec,

[0 <0E€Ec=g(0) <[, (O]

Let 6(0) = sup{6¢: { <&} so as cf(c) > ¢ clearly §(0) <sup(c). Let 6(1)E
Cisy b€ > 0(0). Let for § <A, f# EIlc be defined by

f#(6)=Min{f, (6):{ <¢&}.
Easily f; < f# mod J¥ (as cf(otp c) > £). Let
c*={0€c:sup{ff0):B<i}=0)}.
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So ¢*=cmod JP* [otherwise define g*EIlc: g*(0) =sup{f#(0): B <A} if
6 €c — c*, and zero otherwise. So for some § <4, g* < f; mod J2, and we get
a contradiction easily].

So we could have chosen 6(1)Ec*, such that 6(1)> || M, || and for some
B(1),

y E fhn0(1)> sup{f, (1) : { <&}

Let M, be the Skolem Hull of M U {y} (in (H(x*), €, <*)). Now clearly
(H(x*), € <®) F (3B <A FO)=7;as A, (ff,F<A), 6(1), yare in M,
there is B(2)EM, N A, f3,(6(1)) =y. So

8 & <G=f56:(6(1) <[, (B()].

Easily, for every regular cardinal ¢ €M,, if ¢ > 6(1), then sup(M, N o) =
sup(M, N o).

As B(0) > sup(M, N A), also B(0) > sup(M, N 1), but B(2)EM,, so B(0)>
B(2), and similarly g, <agg, (for {;, {;<§). Also for every f€Ec, if
0>6Q1), {,{,<é, then ﬁ,,,(ml(H)EM1 hence j,",,mcl(O) <sup(M, N 6) hence
jf,ml(e) <g(6), but g(6) < ;;,(%(0). So B(ape s 2saye) = 6(1), but A(0(1)) =
i(»), so we finish.

(2) Let ¢y be a two place function from 6 to x’, which exemplifies our
hypothesis when possible. Let

*a, B) = CowupfSel0(ct, B), f5(O(c, B))).

The rest is left to the reader.

§6. Additional information

40. LEMMA. Suppose a €I*?, A = max pcf(a), ¢ = pcfla) — {1}, ¢ has no
last element, y = min{|c —pu|: uE€c}. Then Pry(4, x, Ro).

ProoOF. Let (¢;: i <A) be a partition of ¢ such that each ¢; is an unbounded
subset of c. Let /1 : ¢ — x be defined by 8 E ¢ ). W.lo.g. (YU Ec)u > (2%)*. Let

A & ¥4, g = R,. Let us define two two-place functions 8, e~ from 4 to cf x
respectively:

fora<f <2, 8=(a,B) < min{u: {0€a: f(0) = f,(0)} EI2+)

(so 07(a,B)Epcfla) and as f,# fymodI%} clearly 6~(a, B)Ec. Let
e~(a, B) = h(0~(a, B)).
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Define A as in the proof of 30(6). W.l.o.g. we restrict ourseives to 4.

Suppose & <Ry, (ag,: ¢ <&) is a strictly increasing sequence of ordinals
= B but from A, for each § < 4.

Now for any given i(x) < x we should find <y <Asuch that U, oy, <a,,
and 0(ag, @, ) belongs to ¢, if {;={,and is 0 (ag;, agy) if {;# (5.

Let x* be regular large enough. Let M, be an elementary submodel of
(H(x*),E€, <*)where <* is a well ordering of H(x*), such that the following
belongs to My: 4, a, ¢, ({ag;: { <&): B <A), (fora<A),uforu€c,and M
has cardinality 2* and every subset of M, of cardinality = x belongs to M.

Let g€Ilc be defined by g(@)=sup(M;NO); as aCR™,
(Vu€a)u > (2%)*], clearly g€Ilc; so for some B(0)EA, gla<
Soymod J<5. But J§ = Uye, J%%, so

def

at = {6€a:g6)= £, ()}

belongs to J%5,, for some 6;. As J<§ is o-complete, ¢ <, for some 6(0)Ec,
Uc<§ afEJi"é(o). Let H(I)EC,'(.), 0(1) > 0(0).

As B(0)EA, for { <& we can find y;, (I = n;) from ¢ N §(1)* and partition
(aU: = nc) of a, = UC<C af U b:;‘(f) U U{b(’;‘: 6= (aﬂ(o),gl, aﬂ(o)'ﬁ)} such that:

f;ﬁmc ta,= IU f Ifcf S70d r {i where Vo= j;l(ou(ﬂc,l)-

‘-‘nc
Let M, be the Skolem Hull of

MU (i gs Sapo W) ) IS mp) 1 0 <€)}

So there is B(1)EM,, B(1)EA, and £, | @, = £, | @ As in the proof of 38,
for 8 €pcf(a) — 6(1)",

sup(M; N 8) = sup(M, N 6).
Easily #(1) < B(0) are as required.

41. REMARK. Can we have Pry(4, x’, 0)? Yes, if e.g. for some yEc,
[Ho <u€c=p° <Min(c — u*)}, even replacing ¢ by ¢’ Cc¢, supc =supc’,
x' =Min{|¢’—pul:pEc}.

42. ConcLusioN. If AERX’, k minimal, then Pr,4,x,x) and
Prf4, x, Ry).
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ProoF. By 30(6), (5) the assumption of 38 and 40 holds. By 38 and 40 we
get respectively our two conclusions.

43. CoNcLUsION. (1) If A > 2% then for some «,

Pr(A*,k,x), PryAt, kK, R
(and see 37).
Q Ifu<i=sp*, cfu>R, (VO<u)d*<pu, cfi =2, then Pr,(4, x, ),
Pry4, k, k).

44. LEMMA. Suppose a €I**, a C R*?*, 4 = max pcfla) > sup(a).

[VOEa)l[Vu <0]u<’ <],
aNOEJ for € a. Suppose y,, 6,4 are cardinals for each 0 Ea, and
[0, <0, from a= pgy) = poy A Oay = Ggl, G = 0.
Then for | =2, Age, Pri(8, ug, ag) implies Pri(A, sup py, sup a).
Proor. Straightforward.

REMARK. The improvement 20 below enables us to have Pry(4, 2) even
when I%4 is a maximal ideal.

45. LEMMA. Suppose a€I**, a CRY% A =maxpcfla)>sup(a),
{(a;: i <a,) are pairwise disjoint subsets of a, a; €J%5, J is a,-complete and
forO€a, [Vu<0lu<2<6. Then

(1) Pry4, 0,, 0y).

Moreover
(2) Pry4, 20y, 6).
(3) If for 6E€a, Pry0, x4, 0p), Gg < 03,

[0(1) = 0(2)= X0y = Yoy A Ooqry = To2))
then PrZ(}v’ ZOEa Xa, 2:OEa 0'0)-

Proor. (1) Let £, be such that () of 25 holds (and the other demands
there). We define for a <f <Ai: 6(a, B) =Min{0Ea: f(0) # f3(0)}. Now
{a;:i <a,) is a partition of a, and let & : a — g, be defined by 6 E a,,.

Let fora<p <4, e(a, ) = h(6(a, B)). Let £ <oy (ap;: § <&) be astrictly
increasing sequence of ordinals <A, =B, and let i(x) <o,. Let us define
Sf2€E€Iaby

f#0)=Min{f, (0):{ <}
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As & < g, J is g,-complete, clearly f, = f7 mod J%5. Let
c*={0€a:sup{fF(0):p <A} =06}

Then c*=cmod J%4.

So we can find 6*Ec* N¢; so there are B(i) <A for i <@* such that
S0 =i, wlog [i <j<0*=B@i)<B(j)] and (by (+) of 25) w.Lo.g.
(fogoo T (@ N 0% : £ < &) is the same for all. The rest should be clear.

(2) What for 20 colours? Let pr(a,f) be 0 if a<B=f(0(a, )<
f3(6(, B)), and 1 otherwise, and let e”(a, B) = 0, X pr(a, ) + h(6(a, B)).

46. CLAIM. Suppose A =max pcf(a), a €EI?, Ji* is o-complete. Then
Pri (4, 2, o).

Proor. Fora<p
0 (Yu€a)ffuw) = figw),
c(o, B) = ,
1 otherwise.

For y = 1, the proof is similar to the proof of 38 (using f ¥, but now we get only
c* # & mod J54, which suffice. For y =0, take a close enough elementary
submodel M of (H(x), € <J) of cardinality x, choose B(1) <4, B(1)<
sup(M N A) and then choose S(0)EA N M such that for { <,

Soree (@) <Min[M N (0 + 1) — £, (0)]
and is large enough.

47. REMARK. (1) We can analyze Ilc/J* when k = |¢| <min ¢, g = cf(c),
2° < Min(c) define pcf, hence the f;, etc. This essentially is what is used in
proving the bound on R§® when § < Rj, 2 < R;.

(2) A conclusion (of 25) is that for singular A > 2%, there is a Kurepa tree
for 4.

Note

48. CLam. If Pri(A, x, o) and 2% = A then Pry(4, g, 9).
PrROOF. As in [Sh 6] — 3.x (and explicitly in [Sh 11] 1.3).

48A. REMARK. Note that our partition relations show that it is quite hard
to get positive ones.

A slight strengthening of Todorcevic [T2} is
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49, THEOREM. IfAERX?, x minimal, then there are a A — L-space and a
A — S-space with k-directed nb basis for each point.

PrROOF. By the definition there are an a €EI*% supa <A (2*<A) and
f.EMa(a < 2) such that for no a <p, f; = f,. For repeating the Todorcevic
proof [T2] we seemingly need also

(») foru€a, H{ftutra<i}| <A.

We can get it w.l.0.g. by 22, 25 (we get really more).
In his proof a basis of clopen neighbourhoods of « is

wy =B<Afof=fufhtut=ftu*}

for u €A (thus we get a A — S-space).
For a A — L-space use as a basis of clopen neighbourhoods of

unf,u ={ﬂ<1f;§ff}’f/} r,ll+ =.f;rﬂ+}

§7. Oni—[u*]?

50. LEMMA. Suppose b is a set of regular cardinals > 2%, |b| =k, b has no
last element, 9 is a filter on b to which all cobounded subsets of b belong,

(VD' ChAb|<|b|—b—-bED]

and i = (sup b)*, uregular, 0 < k.

Suppose further A Z u, f,EI1b for a <A and f, < fymod 2 fora <p <A.

Ifa, Cbfori<f,b—a, &9, [i #j=a; Na =] then there is a sym-
metric two place function e from A to 6 such that:

If k<w, ag; (B<u,l <k) are pairwise distinct ordinals <2, k <w,
h:{1,...,k}—0, then we can find f(1) < - - - <B(k) <u such that:

() apn<appr<--: <appfor{ <k

@ii) for {(1) # {(2) one of the following holds:

(a) f0r l, m = 1, P k, ap(,),c(l)<a,g(m),;(2);
(b) for l, m = 1, ceey k, aﬁ(,),c(,)> a,;(,,,),((z);
(c) either
Ay < gy < X)) < g *
or

Ay, < Apmim < g < Ape))” *
(lll) for 1< m, C <k: e(aﬂ(l)’c, ap(m),c) = h(l),
(iv) for {(1) # {(2) <k,
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(@) forl# m, elagn iy %pom iy =0
or

(b) for 1< m, e(a,,(,),c(l), aﬁ(m,c(z») = h(l).

S0A. REMARK. In (iv) there are some restrictions on {({(1), {(2)): (iv) (a)
occurs}; see the proof.

PrOOF. We define the colouring as follows: 8, e are symmetric functions;
fora<p

O(a, B)=Max{6Eb: f(0)> f;(0)}
(6(a, B) is undefined if there is no maximal such as 8),

i if@(a, B)Ea;,
0 otherwise.

e(a, )= {

Suppose k < w, {ag;: { <k} isasequence of ordinals <A for f < usuch that:
agmen = %= B(1) = B(2) A (1) ={(2).

Let (B, {) = ay,.

Let x be regular large enough, <} a well ordering of H(y).

Let (N;:i<k*) be increasing continuous, | N;| =2%, N, <(H®),
€, <), (N;:j =i)€EN,,,and every subset of N, ., of cardinality =< x belongs
to Ny and b, (f,:a<d), ({age: { <k):B <pu)belongsto N, LetN,+=
U i<x* Ni.

Choose f(x)<u, B(*)>sup(u NU, ..+ N;). For each { <k let b, =
{0Eb: fipmo(0)EU; o+ N;}, b* = b — by, and f 2, f;* be defined by:

dom f7 = b,

fHo)=Min{j:j€ U N.j> fug0(0)};
dom f;* = b,

S& =V Ugonnr T y)-

Clearly for some successor i(*) <x*, rang f;* C Ny, for every { <k, hence
(f&:{<k)ENy,

Let, for {(1) # {(2) <k, cianm = {0 €D Lpwian(0) = fupercan(0)}. For
ocEblet
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N7, = Skolem Hull in (H(x), €, <) of Ni 41 U {fis0(0) : { <k},
Ni= U N4y

i<é
We can find B(i, 0)Eu N Ni,)4i 42 Such that
(@) fapi.00(01) = figwo(o) for § <k,
(d) fusi.0,0)(T) = figwpp(t) for { <k, tE€b,
(©) sup(f &) N Nigy 1141 < SfagimnoT) <sup fH(1) 0 Nigyyyi4 for { <k,
TEL—b —0".
(A) Sapeor,0)(60) < fagpenntp(02) il faapian,c0(01) < Spiinonca(6) for any {y, §, <&
and 0,, 6,€b.
Now suppose i, <i, <i(x), and {;, {,<k and 0, <0,€b — U, b, and we
shall check the color of ag, 4.0 Xs(iron.cr

Case I: {;=(={.
Easily
by € {7 Supinan o) = fepiap (D)} € b U (b N ),

{02} C {7 fi8tino00(T) > fapinann(T)} € {2} U (b N a).
So e(aggi,anto Atinons) = H(02.
Case II: {, +# (..
b, N b, 0 €, © {TED: fepti040(T) = Sapnon,ta(1)}

c (bﬁ n bCz N CCh{z) U (b n 62)’

{t€b: fE(D)> ()} U {02} € {T: fignonca(T) > Latptinanta(T)}
- {TEb . f{T(T)>fC-:(T)} U {02} U (b N 0'2).

Now choose i(x) <i, < -« +ij <k*,0,> -++>a,in b — U, b, such that if
{o: fiy(0) > f (o)} is bounded in b then gy is a bound. Now {ag;,0¢: ,{}
are as required.

51. LEMMA. Supposeb,x, 2?,u =(sup b)*, A, f,(a <) areasin Lemma
50, and suppose further that for s €b, {f,! (b N 6): a <A} has cardinality <a
(see 22, 25 for such cases), and & <x*,(VaEb)V O <a)[0" <o)

(1) Forevery A C A, |A| = u, there is b,€ 9D such that:

forevery k < w, m < w and one to one functions h;: {0, . ..,k — 1}~ wand
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Minb =0,<0,<--. <a,, from b, there are aqy<a;< --- <a,_, from A
such that fori <j<k:p=m

(Vo €blf, (o) = £, (0)],
(VolloEbra &b rd€Ela,, 0,,1) £, (0) < f,(6)=h,()) = b,(j)],
(Vo)loEbAro&b ra 20, f,(0)<f,(0)]

(2) For every E <k*, ag; (B <u, { <) distinct ordinals <A, r(x) <k*,
the following holds:

For some b, €2, f : b—ord (for { <¢&):

For every sequence (k,{(b%, b}:r<r)) such that k, <w, b° is a strictly
increasing function from k,={0,...,k;—1} to ordinal [r+#s=
rang(b?) N rang(b®)= &), b, a strictly decreasing function from k, =
{0, ...,k — 1} to b there are B(r)(r <r(x)), from A, such that:

(@) r <j<i(0)=p(r)<p(s).

(b) Let {(1), {(2)<¢, i <j<i(#),

{0€b: fupmniaV0) = Luprc(0)}
= by N by N {TED: f{1y(0) = f ()}

(©) Let {(1), {(2) <&, r<s, 0 €D, if f{1)(0) < f (o) then frpmcan(0) <
Jusorz(0)-
(d) Let {(1), {(2)< &, r<s,0 €D, f1y(0) = fx(0); if 6 Ebyoy — by then
Japoan(0) < Saperen(@) while if a€byy—brey then fupeian(a)>
- Jagerean(0)-
(e) Let {(1), L)< &, r<s,0€Eb — by U by, and fy(0) = f iy (0).
Iflskm=k, h' ()= <h!(+1), h}(m) = o <h{(m + 1) (stipulating
h!(k)) = sup b), then

Seencan(0) < fuprean(@) = B (1) = hd(m).
51A. REMARK. The proof gives more than stated in the lemma.

Proor. (1) Follows by 2.

(2) Let ap; (B <p, { <&)be distinct ordinals <4 (for some ¢ <k*). Asin
the proof of Lemma 50 we choose x, <}, (N;:i <x*), and then S(») <u, by,
gfE. f¢ for { <&and i(x). Note

(¥) ifo€b,a;<Afor{<¢ f=(f, ta:{<&);
N, . .[ f]is the Skolem Hull of |N,,,| {/}, and
0€b—U,o" then sup(6 N N, ,,[f]) =sup(@ N N;)).
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We shall show that b, £ ({ < &) are as required, so let (k,, b7, b} 1 r <r(»)).
W.lo.g. each B? is into {i + 1:i(*)<i <x*}. Now for each r <r(s), we
define B(r, ), [ =0, . .., k, by downward induction on /. For / = k,, B(r,[)=
B(»). If B(r, ] + 1) is defined, let: N,; be Skolem Hull of
Nl fgei+00t U <]

and let: B(r, )EN,; N u be such that
(agerno! h):{<&) = S+ ! h(l): { <é),

Ac (Y 0 Eb) fuprin0(0) = fapers+1,0(0) = fagwnns
(<

c/\é (Vo €b — b)) fuseno(0) E Nigay—11,

cAé (Vo €b — b, — hP())[Vy Eo N Nygy(fagerne(0) S v =1 (@) = 7))

There is no problem, and this suffices.
52. ConcLusioN. Under the assumptions of Lemma 51, 4 — [u]Z.

53. ConcLusiON. If,in Lemma 51,0 >k, k <w, u = (sup b)* then there
are Boolean algebras By, . . ., B, such that
(i) each B, satisfies the u*-c.c., and even

II B; satisfies the u*-c.c.
i=1.k
iwl

(ii) TTX_, B; does not satisfy the A *-c.c.

PrROOF. Let e be a two place function from A to f as there. For/ =1,...,k
let B, be the Boolean algebra generated freely by {x;:8 <A} except that
xg N x, = 0 when e(B, y) = [. Also the rest is as in [Sh 7] 1.10.

§8. N3 < Rpry+ revisited

We can generalize the information on Ila to more sets.

54. DEFINITION. (1) I"*={4:4 C R**,MinA4 > |A[|*} (x will be fixed
below).
(2) pef*(4) =U{pcf(b): b C a, |b| Sk} ={cf(14, <g): D2Euf*(4)}
where
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A)={D: 2 afilteron 4, Min{|b|: bDE D} =k},
uf*(A) = {2 € fF(4) : 2 an ultrafilter on 4}.
(3) Forf,g€NI4, AEI, f <, . g iff for every b E[A]",
(bEJL+ = ftb=mgth]

55. CLaM. (1) For A€, |pef*(4)| < |A|* + 2~.

(2) For A €13, A Epcf{4), we can define (f§2: a <A) such that:
(i) a<Pp=fHA<icfiF,
(ii) for every g €I14 for some a <4

4 <).,x fﬂt’:

(3) For AE€I%? A Epcf*(A) there is B = B{ such that
(i) BCA4,
(ii) for every a €[4]=*

aE€JY+=a— B CJH"E.

(4) For AEI*3, and A and a €E[A]=*: max pcf(a) < A «a is in the ideal of
P(A) generated by {B : u €A N pcf*(4)}.

(5) If 4 = {0: R, = 6 <N, 0 regular}, RE <R;, then pcf*(4) has the form
{6:R,=<0 <XR,, 0regular} for some y.

PrOOF. (1) Easy.
(2) We define by induction on a<4, a function f*= f{Z€II4 and
(y2:a€L) where

L ={a:a€[A]5", a€J% —J}

such that
(@) frétasf*tafora€L,
(b) asyl<Aifora€L,
(c) forf<a,a€L,f}la<fFpmodJ.
There is no problem to do it [for each «, first choose (2 : a € L) such that (b)
and (c) are satisfied, next choose /¥ such that (a) is satisfied; this is possible as
MinA4 > |A|*= |L|, each 8 €A regular]. Now (f¥:a <A) is as required.
(3) Let (f§4:a<Ai)befrom(2). Foreverya €L, = {a €[A]=*: a €J%5+},
we can find h, €Ila such that, for every a <4, b, Zf 41 amod J%5.
We can define h €T14,

h(6) = sup[{0} U {h.(6): 6EaEL,}].
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Now for every bEL for some y, <A, htb = f5d modJe5. Let y(»)=
supye; ¥p <A,soforbEL, ht b =, fis, Let B={0€A: h(0) = f5,(6)}.
(4) Easy.
(5) By 5(2).

56. REMARK. By [Sh 5] (R;)¥ <R ;¢4+ and when RFI<R, .,
(R4 )0 <Rarqarse

57. THE SIMPLER PROOF OF (R, ;5)"’! <R, )+ WHEN RTI <R, ;.

Let k = |4, and J a minimal counterexample. The case d = X, , ; is unreal
so let  <N,,;. For some ay, 6, 6 =a,+ ), |d,| <R, 44, @, limit or zero
and [4;[*=R,, or §=w. If R,,,)*Z=R,,; we can finish easily. So
wlo.g. (remember R:, , =RF+R,,) [0*=RE Let u=(N)", a=
{A:ut <A <N Aregular}. So |a| = |d| <X, =u <Mina, so 16 applies.

Let (f¥:a<A) be as in Claim 55.

Let x be regular large enough, <} a well ordering of H(x). For each
x € N,14, | x| = we define by induction on { <u™*, Nf such that

(a) N} <(H(), €, <?),

®) INF | =p,u+1C N XENE (f58: <x):A€pcfa ENF, AENF,

(c) (Nf:{ <pu™) is increasing continuous,

(d) (Nf:{ =C)ENE,,.

As u + 1 C Nf, pcf4) € Nf clearly pef(a) C Nf. Let chf is the function with
domain a, chf(6)=sup(f N Nf), it is <6 as |[Nf| <u*=MinA hence
chf €Ila. So for each 4 Epcf(a) and {, for some a;(x, {) <A (letting b = b{™*)

fhxen <chftb = fi%., modJs.
Let
Nx = U+ Nf,  chf(0) =sup chi(0) =sup(N;+ N 6).
¢

{<u

Let a;(x) = U, a;(x, {). So easily chi+ I b = f 1, mod J%§. So
h
Ch;r = U ffl”’:)'(x) fb, N C[
=1

where (b, ¢;:]/=1,x) depend on x. So the number of possible ch}+ is
= sup pcf a which, by 55(5), is =R, w)+. Now ch)+ determines N3+ N R,45
as

(*) ibe M2 < (H(X)9 Ea <1*)’ .u+ g MI’ JEMIa
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for each 0 €4, sup(M, N 6) = sup(M, N @), it has cofinality > R, and both M,
and M, contains a club for it then M, N R; = M, N R;, so we finish.
58. THEOREM. Suppose cf(d) =x, (Vi <d)NF <X;),
u g |R¢; ﬂR;I <R5 then N§<R5+(ﬂ")+.

59. REMARK. If N; is minimal such that X;=4J, x=R, then
R;NRE— (%)Y ={0:0=cf 0 = 0%, 2% < 0 <N;).

60. Proor. Either imitate proof of the bound or show inductively that
IRs NREF = |91~

61. THEOREM. If S={0 <R,:cfd =Ry, R <R;,,} is stationary,
2/ <R, then R <R,

PrROOF. By 63.
62. THEOREM. Suppose cf(6) < 6 <k, and for every a C R*? N R;,
[la] = 6=max pcf(a) = Ry o)

where a(x) < 8%, and 2* < R;.
Then for some y <4, every a C R** N [R,, R;),

[la| = k= max pcfla) = R; ¢ o)
62A. REMARK. If (R;)? < R4+ the assumption holds.®

ProoF. Now let 4 CR*N[(2¥)**, R;] be a set of cardinality =k,
def

(fAf:B<A)AEc = {Rsip+1: 8 <a(¥)} are well defined. Now if fEI1A for
each A for some B(f,A)<A, f<iofifsn. If for every finite wCc,
S£Maxe, 4, then there is o(w)E 4 which exemplifies it. Now let

b =U{a(w): w Cc; w finite}.

For f't b we can find a w, hence we have shown cfI14 = R;, ), this shows the
desired conclusion.

63. THEOREM. Supposecfx =k >0, u<* <R, cfu =pand

Sp={0 <p:(R;)’ <Rn, cf(d) = 0}
or

6} We can, in the assumption, restrict ourselves to [X,, X;) 2 a for some fixed a <J.
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S,={6 <u:cfd =0and for some a <dand y <y, for every a ER??,
a C[R,, X;]=max pcfa <R, }

is stationary.
Then for every a <u, (R) <" <R,.

64(1). REMARK. In the definition of S we need just the conclusion of the
last theorem.

PROOF. Let a(*) be minimal such that (X)) <* = X, (assuming that the
theorem fails). So R, > u=*, hence a(*) is limit, [a <a(*)= R *<R,]; but
(r=F)<* = x=" (as k is regular) so [a <a(#)=R;*<R,,]. So necessarily
cfla(+)) <k, and (R )= R, s0x > o & cfla()). By the last theorem and
Fodor we know that for some d(*) <u, > of), S is stationary where

S={d<p:cfid)=08,R;>pu’, and sup pcf’{R,,: 0(x) Sy <} <N,}.

Let for d = u, A(0) = {R,: u”+ R;,, <R, <R;, R, regular}. Let x be regular
large enough, N, < (H(x), €, <}) for {<us", uy o U+ Ry e SN,
(Ne: £ =0)EN,,,, and (((f19:a<l):AEpcf?A(d)):IES) belongs
to N, as well as letting B={R,:R, regular<R,,, X,>u+2},
(fPr:a<A):A€pcfB)and | N, || =us'.

Now (if ¢ > R, by 12 (holds if S, is stationary) and if ¢ = R, by [Sh 5] Ch
XIII (or see 65 below)) we know that, for every f < a(*) for some a; ER?,
ag C (%, Ry and Ry, Epcflag). Let W= {f <pu:p = d(s)).

Let g be the function: g(6) = sup(d N U, N;) for 0E€[us *, R,). For each
B € W let by C B be maximal s.t.

g r bﬂ =f§;’ihg(x)+l) r bﬂ’
Now there is a set wy C W of cardinality = |B| < |a(*)] <pu such that
U{by: BEW)} =U(bs: BEW).
Choose yES, y > d(x), y >sup(w,) and (note: C is a clubof u as S€Eu is
stationary)
yeC o {o<p:ifa CR N [Ry. R5), la| =g, supa <X;, then
sup pcfla) < R;}.

So there is w C wy, W] S g, s.t. b, C Upe,, by
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Let d =supw, a={R;,,:BEW}, a*=pcfla). Note that aCa*C
[R5y R,), hence we know that pcf(a) has abound <R, (and |a| = o) so there
are 0(y, 1),...,0(y,n), bt,..., b} s.t.:

(i) 0@y,Ea*,

(i) bt Ca,

(i) g1 a* =U/_; f8eeon ' b1-

So from the information in (i), (ii), (iii) we can reconstruct g t (U{b;: BEwW}),
hence g ! a,, hence g(R,, ). But we could easily choose the N;’s so that this
fails (for all possible ’s).

64(2). REMARK. An instance of 64 for R, is: suppose
S= {(5 <@, : if 2 is an ultrafilter on {R,,, : a <}

containing every cobounded subset then cf ( I Reii/ 9) < Nw.}

a<d
is stationary and 2% < X, then X% < R, . Similarly for 62.
During this proof we have really showed, e.g.,

64(3). FAcT. Suppose a ER*?, 1 Epcf(a), u = sup(A N pcfla)), 1 a limit
cardinal, cfu>|a|, and let u=U{y:i<cfu}, (u:i<cfu) strictly
increasing continuous. Then

{6 <cfu: for some x <u;, max[pcf([x, u;) N pcfla))] <4}
is not stationary

64(4). FacT. Suppose u =sup(a), a €ER*?, 6 <k, and for every b C a,
|b| = 6 we have:

(), {A: for some ultrafilter 2 on b, [for x<u(@a-—x)EZ2=
tcf(Ila, <,) = 4]} has cardinality =<6,
then (x),.

65. PROOF OF (R;)T9(R,;5,«5+.® We shall rely only on §1 and §3. Let x =cf J,
D Justlet u =k = R, 8 = R, (S; stationary). Note that in the definition of S, we can replace

“<R,” by “ <R,y for some y(5) < w,, as the set of such cofinalities has a last element.
® The proof of (R, +5)™ < R, s+ When RFD <R, is similar.
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def

the case |d |* = R;is easy so w.l.o.g. 28 <N, [0 <R;. Letu = (|d])*. Let,
fora ER™, a C Ry, ({f¥8: <A):AEpcf(a)) as in 16.

Let, for every limit ordinal a < R, C, be a club of « of order type cf{a). Let
M be a model with universe X;, and functions f, g s.t. for every a <X,

0 (B:8<a}={flai):i<]al),

(ii) fori < jaf, gla, fle, i) =1,

(iii) for B <a, fla, g(e, B)) = B,

(iv) fla, )= |al,

V) gla,a)=a+ 1.
Easily

(*»), if M*<M, YCM* and for every § =N, [0,07)NM*+ F=
sup(Y N 6%) = sup(M* N 6), then M* is the Skolem Hull of Y in M. [Other-
wise let « be minimal in M* but not in the Skolem Hull of Y, let § = |«|, S0
thereis fEY N O C M*, a<fandlet i o g(B, a), so necessarily | € M* (as
B, a€ M*),buti <0 = asoby «’s minimality / is in the Skolem Hull of Y; but
then so is a = f(8, i), contradiction.] We know that for some ordinal {(x) <

(119"
(#), fora€R* a C[u*, R;)= max pefla) = R, (by 10(4)).
Let
F= {f: Dom f= a €R*? for some n < w,
pairwise disjoint b,, ..., b, ER** N [u*, R;),
andregulari,,..., 4, =ER;yand a,; <4y, ..., a,<i,:
U bi-a, f= O giarel.
I=1 =1
Clearly
(%); |F| = Ry

Let y =(22%)*. Now for every x C R;, | x| < k, we can choose (N:i = pu)
s.t.:

(@ N' <(H), €),

(b) j<i=N <N},

©) NP =,

(d) (Nf:jZi)ENT,
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() {ata=pu}C Ny,

) ((fE:a<A):A€pcf(b)and bER* N [u*, R;), |b| Ex)EN,,

(@) (C,:a<R;limit) € N},

(h) MENG,

(i) x €N (hence x C N}).
Let for i =(|J[%)*, g = g* be a function with domain R*° N (u, R;), g:(0) =
sup(d N Ny). By 27, for every a€ER"*? a C (u, R,) and x Epcfla) we have
8t bf=f§za ! bf mod J2¥. Hence (see 27)

(¥)y fora CR**N[u*,R;), g, aEF (and a EI?).

It is also quite clear that for 6E€R** N (u, R;), (g(0):i =pu) is strictly
increasing continuous, so for i limit cf(g;(8)) = cfi > R, so

Cro=CooyN {£7(0): i <u}

is a club of g,(0) and is included in N;.
Now we can define M} by induction on 7 s.t.
() M7 <M, |M;| CNj,

B I M7 =k,
) M; <M;,,,
(9) x C M,

(&) if u <V, <R, IMF| N[N, R,i)) # T then for some y(x, X, ,, n)E
Cx,N.H mj‘lr)x‘+l

P(x, Rop1s 1) > sup(R,0 N M)

There is no problem to carry this.
Let a(x)={R,+1: 4 <R, <Ry, and for some 7n [R,, R, )N M; * T},
so a(x) C R** N [u™, R;) (there is no weakly inaccessible in [u*, R;)!) and let

Yx = {})(x1 Ro‘+l’ n): n< w1 [Ra’ Ncvz+l) N Mrf # 0}'

Now Y, has cardinality «; it is a subset of M* < U, M7 so by (%),

(%), M~* is the Skolem Hullin M of (M* Nu*t) U Y,.
Now

(*)s Y, € Ugear) Cotor

(*)s | UOEa(x) Cg,.(o)| =u, | Y| =k

Now
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{Y,:x CR;, |x| =k}

A

H<g,’,‘1a(x),{z:z§ U Cpep |21 éx}>:x§&,, [x| __<_x}

6€a(x)

S|F|Xp S |F| Xp =R
So if R > K., necessarily for some Y
[{x: Y, =Y} >R
and easily, for some 4 C u,
{x: Y, =Y M Nu=A4}| >Ry

But x C M*, | M* || =k, 2* <R, contradiction.
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