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ABSTRACT 

We continue here our investigation of  cofinalities of  reduced products of 
regular cardinals and give some applications, such as the non-productiveness 
of,l+-c.c, when ~ > 2 a~. 
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§1. Introduction 

A Boolean algebra B satisfies the 2-chain condition (2-c.c.) if any family of 
pairwise disjoint nonzero members of B has cardinality < 2. For a topological 

space X, by c(X) we denote the cellularity of X which is the supremum of 
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cardinalities of families of pairwise disjoint nonempty open sets in X. Clearly 
c(X) <= 2 iffthe regular open algebra ofXsatisfies 2 +-c.c. The problem whether 
the 2-c.c. is a productive property (of Boolean algebras or, equivalently, of 
topological spaces) has a very long history which we do not repeat here (see, for 
example, [T1], [T2]; Juhasz [J] and Monk [M] stress this problem in prelimi- 
nary versions of their surveys). First ZFC examples of regular cardinals 4 for 
which 2-c.c. is not productive were given by Todorcevic [T 1 ]. The cardinals of 
[T1 ] are of the form of 2 ~ where ded(x, 2 ~) holds (e.g., x = R0), so all of them 
might be weakly inaccessible. Hence IT 1] didn't solve the topological question: 
Is always c(X X Y)<= c(X) .c(Y)? Note that this question is trivially equiva- 
lent to the question: Is 2+-c.c. productive for all 2? In [T2], Todorcevic 
answered this question (in ZFC) by providing a class of cardinals 2 for which 
2 +-c.c. is not productive: the 2 such that (Vg < 2)(p cf~ < 2). Todorcevic IT2] 
uses (e.g., when 2 -- (2 g0) +~) [Sh 1] about cofinalities of reduced products of 
regular cardinals. He also got negative partition relations, e.g., 4 + ~ [2 ÷ ]~f~ 
when (Vg <2)L u~f~ <2] ,  and got 4 - S and 2 - L spaces. He told me that a 
proof of the consistency of "2 +-c.c. is productive" will be the real generaliza- 
tion of MA (unlike some soft ones; see e.g. [Sh 2]). By [Sh 7], this fails for 
4 >= 2~o regular (even Pr0(4 +, R0, R0) fails, see Definition 31 and for some 
consequences 36, 37). This makes it more desirable to get parallel results not 
just for some successor of singular, but for quite many. 

In [Sh 1 ], [Sh 3], [Sh 4], [Sh 5, Ch. XIII, §5, §6] and [M Sh] the cofinalities of 
reduced products of regular cardinals (usually < x cardinals > 2 ~) were 
investigated for various purposes. We continue this here (but start from the 
beginning, for the reader's convenience, giving the statements but usually not 
the proof of the repeated parts, but in a way that the reader may reconstruct 
them). 

The main new conclusions are (the hypothesis can be weakened, and apply 
to some weakly inaccessible): 

A. THEOREM. I f 4 = l t  +, # > 2  ~, x = c f g ,  or 4 =cf(rIl<~4i/~ ) where 
2 ~ >4 ,  4i <4 ,  ~ afilter on x, then: 

(A) for some regular cardinals a and 4i from ((2~)+, 4)for  i < a, a < x 
( i< j=*4~<4j )  and letting ~ b d  = { a C_ a : a _ a bounded}, 
IIi<o..~._ o has true cofinality 4, i.e., there are f~ErI~<oA~for a < 2  
[a < fl=* f , / ~  < fp/~l and 

( V f e ~<o 4i) ( ] a < 4 + )[f/ e~°bd < f f f  ~°ba]; 
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(B) there are regular cardinals 2~ E (2 ~, 2) for i < 5, 8 < x + [i < j  ==, 2i < 2sl 

and a 18 I -complete filter ~ on 8, and (f~ : a < 8) witnessing IIi< 62i/~ 
has true cofinality 2, which form a kind of  a strong Kurepa tree: i .e. , for 
each i, { f~ r i : a < 2 } has cardinality < 2~. 

We then define some strong negative partition relations, observe their 

interrelations and consequences, and draw some of them from the work on the 

cofinalities (mainly Theorem I). Part (B) of  Theorem I is motivated by its being 

used by Todorcevic [T2]. In that case it follows by cardinal arithmetic. Lastly 

we deal with powers of  singulars, giving some information of  (2, 2a). We may 

represent the proof of R~ f'~ < ~(16 fu)+ in a simpler way than in [Sh 5], at least in 
most cases, o) 

Conventions and notations 

a, t ,  7, (, ~, i, j ,  8 are ordinals, t~ should be limit; 

2, x , / t ,  X, 0, tr are cardinals, usually infinite; 

for a set a, Ha = { f :  dom f = a, f (O)~ 0 for 0 E a }; ~'(a) = {b: b __. a }; 

for a sequence ,~ = (2~:i ~ u),  Hie, 2~ = ~ = { f :  dom f =  u, f(i)~2~}; 
fo ra  filter ~ on u, ~ + A  = { X _  u : X  U ( u - A ) E ~ } ;  
for an i d e a l / o n  u, I + A  = {X _ u : X - A  El} .  

Many times we do not distinguish between a filter and the ideal dual to it. 

~ is the filter of  closed unbounded subsets of  2, for 2 regular uncountable. 
~obd is the filter (A : A C_ 2, 12 - A I < ;t }, f7  = {b c__ a :l b I < l a I }. If 

(P, < )  is a partial (quasi)order, p < q means p < q ^ ----q < p. 

§1. Cofinalities 

1. DEFINITION. For a partial order P, p E P  is a lub (a least upper bound) 

ofA ~ P i f  it is an upper bound ( ( V x ~ A ) ( x  < p)) and p _-< q for any upper 
bound q of A. 

We say p ~ P is a weak lub of A if it is an upper bound and no q < p is an 
upper bound. 

1A. FACT. (1) I f a  lub exists, it is unique up to equivalence. 

(I) For further advances, see [Sh 11] on g+-c.c is not productive, e.g. for 2 regular > Rm; and 
[Sh 12] for more information on cofinalities of products of regular cardinals. 
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(2) I f A , B  c_p, V p ~ A  3qEB(p_-<q), V q E B  3 p E A ( q  <=p),thenA,B 
has the same lub (if any). 

lB. NOTATION. (1) R ~'° = {A : A a regular cardinal}, 
R "'' = {2 e R  ",° : 2 > x } ,  
R ~'2 = (A E R ~ ' °  : 2 > 2~}, 

I~'t={a __. R~,t:la I < x } ,  
j~,t = {2 : 2 = (2~ : i ~ u) a sequence of 

f r o m R  "'t, lul  < x } .  
(2) If  we omit  I it means l = 2; we usually omit  x as it is fixed. 

cardinals 

2. DEFINITION. For a partial order P (which is ( IP I, < )  or ( IP I, <)): 
(a) c f (P)=Min{IAl ' .A C_.P, (Vp~P)(qqEA)p<_q}  (it is always well 

defined). Such A is called a cover. 
(b) 2 is a possible scale of  P if there are p~ ~ P  for i < 2 such that 

[i < j  < 2  =* p~ < pj], ( V p  EP)V~ p~£p and ;t is a regular cardinal. 
(c) psc(P) = {2 :2  is a possible scale of  P}. 
(d) ;t is the true cofinality of P,  2 = tcf(P) if it is a regular cardinal and there 

are p~ ~ P for i < 2, [i < j  < 2 =* p; < pj] and (V q ~ P)V, q _-< p,. [Note 
that tcf(P), if it exists, is unique and then c f (P )=  tcf(P), p sc (P )=  
{tcf(P)}.] Also tcf(P) = 1 if there is p ~ P  such that (Vq ~P)  q < p.t2) 

3. DEFINITION. (1) For 2 = (2~ : i ~ u) a sequence of  cardinals, and ~ a 
filter on u, then for f ,  gElI~e,2~, f ~ g  m o d e ,  or f < ~ g  iff 
{i ~ u : f(i)  < g(i)} E ~ [it is a partial order]. 

(2) If  ~ = {u}, we omit it. 
(3) If  ~ is a filter on some u', u c_ u', this will mean 

{i ~ u : f( i)  <-_ g(i)} U (u' - u) E ~ .  

(4) We sometimes replace ~ by the dual ideal. 
(5) We can replace < by any other relation (in particular <) .  

4. FACT. ( 1 )  If  cf a~ = cffl, for i E u, ~ a filter on u, then: 
(a) cf(n,x, ,  _-< @ = cf(n#,, =< @; 
(b) tcf(IIa ,  =< ~) = 2 ~ tcf(I'lfli, _-< ~) -- ,~; 
(c) psc(rl~. ~ ) =  psc(rl#. =< ~); 

t2) Remember ,  i f  we are using P = (P, _-< ) then  p < q means  p _-< q or  p = q. 
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(d) if in addition u( .)  = { i E u : a ~  is limit) 4= ~ m o d  9 ,  
{cf, tcf} 

then for X E 

(e) if {i E u : a~ is limit) E 9 and (f~ : < / l )  witnesses/1 = tcf(n, . ~,, ~ @ 

then for some club C of/1 

(so wlog C =/1). 
(2) If 9 is an ultrafilter over u then (II~e,/1,., < ~) has a true cofinality (in fact 

every P such that ( V x ,  y ~ P)(x < y v y <= x )). 
(3) Suppose for a filter 9 on u, 

t c f (H  /1 i ,<~)=/1 ,  A lu l</1 ic f /1 i÷/1  a n d l u l < / 1 ,  
\iEu i~u 

t h e n  

(a) for each cardinal #, 

and 

{i :/1i = #} = ~ mod 9 ,  and/1 > Min{x: {i :/1i < x} ~ ~} 

(b) for each filter ~ extending ~ ,  tcf(l-I2i, < ~ , ) =  2 (here the assump- 
tions on u,/1i are not necessary, except "/1i a limit ordinal"). 

Also 
(c) defining [iEj*~ i ~ u ^/1i --/1j] (an equivalence relation) u/E = 

{i /E: i E u } ,  ~ / E  = {A C u / E : U { i / E :  i / E ~ A )  belong to 9},/1~e -- 
/1i, we have 

(4) In (3)(e), if 9 is a-complete then 9 / E  is a-complete; if 

e = {v: v___ u, lu - vl < x ]  

o~ Also psc(rI~. ~. __< ,) = p s c (n ~ .  ~ .  ~ ,+.~.) - [ l } and { 1] e p s c ( n ~ ,  a~, ~ ,~ i f lu  - u ( . )  ÷ 
mod ~ + U(*). 
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where x <  [u[ or u = O ~ R  ~,°, ~ normal, ¢4~ then for some sC_u,  s ÷ ~  
mod ~ ,  and E is equality on s. 

(5) If ~ is a filter on u, 

t c f ( I I  4 , , - < ~ ) = 4 ,  A 4 , < 4  and 21"1<4 
\ i E u  l eg  

then {i E u  : 2i -< l u I} = ~ mod N so the conclusion of(3) holds. 
(6) In (5), if 2 >/z  iu I (e.g./z = 2 l-l) then {i ~ u : 2i _-< # } = ~ mod N, so 

tcf(II{Ai : 2i >/z}, --<e) = 2. 
(7) I f f ~ I I ; e ,  2~ for a < ~, ~ a filter on u, u* E ~ ,  cf~ > l u I (or alternati- 

vely, ~ is (cf~)+-complete) and [a <f l  < ~ ^ i Eu*=* f,(i)  < f~(i)], then 
{f~ : a < ~ }  has a <e - lubf ,  where 

f ( i ) =  t ,~6 f~(i), i Eu*,  

L0, i q~u*. 

(8) If2 is regular > 2 I"1, ~ a filter on u, (f~ : a < 4) is <e-increasing, then 
for some v _  u: 

(i) if v # ~ mod ~ then (f~/(~ + v) : a < 4 ) is eventually constant, 
(ii) if u - v ÷ ~  m o d ~  then for some club C_c4,  ( f ~ : a ~ C )  is 

< ~-increasing. 
(9) If ~ is a filter on u, 2 regular, f~ ~ IIie. 4i for a < 4, [a < fl ~ f~ < ~fp] and 

in ~ ( u ) / N  there is no strictly increasing sequence of elements of length 4, then 
the conclusion of (8) above holds [use the assumption twice]. 

(10) Suppose 4 is regular > l u l ,  N a filter on u, ( f ~ : a < 4 )  is 
_-< e-increasing and (f~/N : a < 4) is not eventually constant. Let 

E = {v c_ u : ( f , / (N  + (u - v)) : a < 4 ) is eventually constant}. 

Then 
(i) (f~ : a < 4) is _-<e-increasing; 
(ii) if v # N mod E then (f~/(N + v) :a  < 4) is not eventually constant; 
(iii) if N is a-complete then E is a-complete (and always E is a proper 

filter). 

5. FACT. (1) Suppose N is a filter on u, f~ E Hie,, 4i for a < 2, f~ _--< fp mod 
for a < fl < 4, and 4 is regular > 2 I" I. Then there is f E  II~e, (4~ + l) such that 

(a) f i s  a _-<e-least upper bound of (f~ : a < 4 ) :  
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f .<uf for a < 2 ,  

( V f ' ) [  A<z f ~ < . f ' ' f < u f ' ] ;  

(b) w.l.o.g. (Vi) f( i )  ~ 0 (provided that {i : f ( i )  ffi 0} ffi ~ mod  ~ )  and 

for every f '  < ~ f ,  for some a, f '  < u f~ (if {i : f ( i )  limit} E ~).  
(2) I f2  is regular > 2 t~l, ~ a filter on u, (f,  : a < 2) is <~-increasing, then 

for s o m e f  < fa, tcf(IIi~,, f(i), <~)  = 2. 

PROOF. See [Sh 4] 2.3. 

6. DEFINITION. (1) For any a E I  ~,t 

(a) pcf fa)  = {cffrla,  _-<~) : ~ an ultrafilter over  a } .  
(b) For a property F of filters, 

PCfr(a) = (tcf(l-la, _-<~) : ~ a filter over a, ~ F(~)}.  

(c) For F ffi being a-complete, we write a; for F = "extending ~ "  we write ~ .  
(2) Similarly for ~t ~ j , , t . .  

6A. REMARK. (1) As the number  of ultrafilters over a is 2 2,,,, we know that 
Ipcf(a)l < 2v"; however (see 16(3)) Ipcf(a)l < 2 *. 

(2) For I = 2 the difference between dealing with I *,t, and j , , t  is slight by 
4(2)-4(6). For l = 0, 1 I ~'t is more interesting. 

6B. PROBLEM. Can Ipcf(a)[ > lal  fo ra~ l* '2?  

7. FACT. pCf~o(a) = pcf(a) (for any a ~I*,t). 

8. DEFINITION. For a regular ~ (we may omit  I if I = 2): 
(1) I ~  = {aEI*,t: cf(IIa, < ) < A } .  

r,,a,~ = {b C a" b ~ I ~ }  for a ~ I ~  (2) 2 G  = ~<~ _ 

(3) J G  = (~ ~J" t :  cf(rI2, _-<)<,t}. 
(4) y ~ t  = y ~ , t  = (u" u _.C dom(2), 2 r u ~ J ~ }  fork  ~ / [ s o  u Eya<~ iff 

u __. dom(2) and cf(2 t u, < )  < ;t ]. 

9. LEMMA. (1) Suppose 2 ~ psc(1-l~e,, 2i, < 1), I an ideal on u, and: 2 > 2 t,, i 
or at least in ~'( u )/ I there is no strictly increasing sequence of  elements of  length 
4. 

Then there is an ideal It on u such that: 
(i) I __ I1, 
(ii) 2 = tcf(IIi~, 2 ,  <i,). 
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(2) I l l  is a-complete then there is a a-complete ideal 11 satisfying (i) + (ii) 

above. 
(3) Similarly for normal filters. 
(4) I f  f~ ~ Ilie, 2i for a < 2, [a < f l  =~f~ <i fp]  where I is an R t-complete ideal 

on u, then for some g E Hie,. (2i + 1) and f'~ = f~ mod I for a < 2, f'~ E Hie, g(i) 
and (f'~ : a < 2) is a witness for ;t ~psc(rl ie.  g(i), <1)- 

(5) I f  (2i : i < ~) is increasing, 2i E R  r'°, 8 < 2o [or at least ~ < Zi<6 2i], I an 
ideal on ~ , 6 is a limit ordinal, I includes all bounded subsets o f  O, then in IIi <6 2~ 
there aref ,  for a < (Y-i<62~) + as in (4). 

(6) I f2  Epsc((2i : i E u ) ,  <i) ,  2 > 2 v'l then there is a minimall l ,  satisfying 
(i), (ii)J~om (1); i.e. every I~ satisfying (i), ( i i )~om (1) extends It. Similarly for 
(2), (3). 

PROOF. (1) Let ( f , : a < 2 )  witness2~psc(Ilieu,;t~, <t) .  Define 

11 = {A _C u : (fa : a < ;t ) does not witness 2 E psc(II~e. 2i, <t+(,-a))}. 

By 4(8) there are v < u, C as there, so v~It;  and for notational simplicity let 

C = 2. So for A EIt ,  there is gA EII ;e .  2i such that f~ <1+(,-,~) gA for a < 2. 
Clearly u ~ I t  (by the choice of  (f~ : a < 2)). Note that I __. I~ as A E l = ,  

dcf 
u E I + (u - A ), hence f~ < t  +(,-a) f0 for every a < 2 so gA = f0 is o.k. 

Now It is downward closed: if A E It, B _ A then gA witnesses that B E It. 
Next It is closed under union: if A , B E I t ,  then g defined by g ( i ) =  

Max{ga(i), gn(i)} witness A U B E I t .  
Lastly 2 = tcf(1-lie. 2i, 11) because ( f~ : a  < 2 )  witness it; let us check the 

conditions of 2(d). 
f .~I l ie .2~ trivially; a<f l=*fa<l ,  fp as IC_It, v~It ,  C = 2 ;  lastly if 

f~ l ' l ; e ,  its, let ua = {i ~ u : f ( i )  >-_- f.(i)}, then for some u*, {a < 2 : u, = u*} is 
an unbounded subset of  2 [or at least {a < 2 : u. = u* mod  I} is an unbounded 
subset of;t],  h e n c e f c a n  serve as g.. hence u*EI~ and we finish easily. 

(2), (3) Left to the reader. 
(4) Choose by induction on n, g, EII~e, (;ti + 1) such that f~ < gn mod I for 

a < 2 ,  and g.+t < g . m o d I .  
Let go be: go(i) = 2i. A s / i s  Rl-complete, for some n < to, we have chosen g, 

but cannot choose g, + 1. As f0 < i  g.,  w.l.o.g. (~' i)g,(i) > O. Let f'~(i) be f~(i) if 
fa(i) < g,(i) and be zero otherwise. Check. 

(5) Left to the reader. 
(6) We can choose for every w __. u, I~, ( f ~ : a  < 2 )  as in the proof  of (1) 

such that w ~I~,  if possible. Easily {w c a :I~' is not defined} is as required. 
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I0. CONCLUSION. (I) If 

2 ~ p s c ( ~ . A , . , ~ z ) ,  2~<2,  l u l < 2  

(2 regular, I an ideal on u) and 2 > 2 I,,t or at least in ~ ( u  )// there is no strictly 
increasing sequence of length 2, then for some u~, lull _-< u, regular cardinals ~ 
(i~ut),/ti _-<2i and ideal Ii on Ul, 

2 = t c f ( H  /ti, <i,)  and [ i ÷ j = * # i ~ # j ] .  
\iEul 

(2) If2 > 2 I.t, we can have #i ~ R  i,l,~ (for i E u~). 
(3) If I is a-complete, we can have "It a-complete" and if I is normal 

(u = 0 ~ R  ~J) we can have "I1 is normal ideal on 0". 
(4) Suppose f~ E II~u 2i for a < 2, I is an ideal on u and [a < fl =* f ,  < l  fp], 

2 > 2 I. I, 2 > 2~ for i ~ u, ;t regular. Then we can find a set v, a function h from 
some u~, u - u~ ~ I, onto v, an ideal J on v and regular cardinals #~ for i ~ v s.t.: 

(i) J - -  {h"(A) :A~I} ,  
(ii) 2 = trf(IliE~#~, <~), 
(iii) /*h¢O < 2~ for i E u, 
(iv) i f i ~v ,  jEv ,  i ~ j  then/*i */zj, 
(v) 2 I'l < # j  f o r jEv .  

(5) If in (1) / is  selective [i.e., for every equivalence relation E on u, for some 
i if E ÷ ~ m o d l  or for some v #  ~ m o d l ,  IvN i/EI < 1 for iEu  (vC_u)], 
then we can have (i)'v _c u, J = {w N v: w El} ,  h t v = id~ [note: if x < l u I, 
then {vC_u:lvl < lul} is selective, and if u = O = c f O > R o  then ~0 is 
selective]. 

(6) Suppose f~I/~e,,2~ for a < 2 ,  J,  I ideals on u, JCC_I, I is an R~- 
complete ideal on u, [a < # = * f .  <j fa] ,  2 is regular, Aie.2~ < 2 ,  lul  < 2  and 
(f . / l:  a < 2 )  is not eventually constant and in ~(u)/J there is no strictly 
increasing sequence of length 2 (which remains so mod I)  a n d / i s  Rrcomplete, 
then 

(i) for some v __. u, and pairwise distinct or equal regular cardinals ~ 
(iEv), #i =< 2 .  and some filter I ( . )  on v, tcf(IIie~#~ ~-<I(*))= 2, I ( . )  
Rrcomplete (and is a-complete, normal, if J is), 

(ii) tcf(rI/z. =<,.))=2 is witness by ( f . : a < 2 )  s.t. a<fl=*f~<= 
fa mod J. 
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PROOF. (1) by 5(2) and 9(1); and for "2~ ~ 2~" use 4(3). (We use 4(1) 
without saying.) 

(2) Use 4(6). 
(3) Use 9(2), 9(3), too. 
(4) By 5(2), 4(3). 
(5) Easy. 
(6) By 4(9), w l o g [ a < f = * f , < t f a ]  and then use 9(4) to have some 

g, A,e,,g(i) < 2~, and 2 Epsc(II~eug(i), <~), then use 9(1) + 9(2) and lastly 
4(3). (There is no problem to preserve normality too.) (When J ÷ I, we have to 
look again at the proof of 9(1).) 

10A. COROLLARY. (1) Suppose 2 > cf2 > R0, I is a normal ideal on cf2 
such that ( . ) f o r  no ( u a : a < 2 ) : u ~ C _ c f 2 ,  [ a < f = * l u p - u a l < c f 2 ] ,  
[a < #  =, u ~  up mod I]. Then 

(i) for some normal ideal J on cf2, I c_ J, and some regular 2~ < 2 for 

i < cf 2, (2~ : i < cf 2 ) constant or strictly increasing, 2 + = tcf(II~ <ef,~ hi, ~ J), 
(ii) 2 + = tcf(lq~ <~f~ 2~, < j )  is witnessed by some (f~ : a < 2 +) s.t. for a < r ,  

~cf~ , f~ _-< fp mod ~o~ 
(iii) the 2~'s are all equal or (2~ : i < cf2)  is strictly increasing. 
(2) We can replace "normal"by "a-complete"if: cf2 > a > Ro and in (iii) we 

assumeI  = {v___ cf2 :lvl < c f 2 } .  

PROOF. (1) Let (2,." i < c f 2 )  be strictly increasing < 2  s.t. 2 = Y.~<~fx2~. 
By 9(5) we can find (f~" a < 2 + ) s.t." f~ E 17,<~fx 2, + and 
[a < fl =* f~ < fa mod ~ff~].  By 10(6) we can finish (with/1i there as our desired 
2~'s). 

(2) Similarly, 

11. COROLLARY. I f 2  ~fx < 2 then for some constant or strictly increasing 

sequence (2~ : i < c f 2 )  o f  regular cardinals <2tcf(II2~, _-<~) = 2  + (wit- 
nessed by a < ~- increas ing  sequence). 

PROOF. Choose 2t, 2 = Y-(2~: i < c f 2 } ,  (2i: i < c f 2 )  as in 9(5) and then 
use 9(5), 10(4). 

12. LEMMA. Ifa = cf/l > R0, (V0 </~)[0 <~ </~],/~ < 2  </1 ~, 2 regular, 

then for some normal filter ~ on a and O~ < l~ (for i < a), tcf(rI~<~, 9 )  = 2. 

PROOF. By [Sh 4] §7. 

13. LEMMA. (1) In 9(4) i f  (u = 0 a regular cardinal) E,  ~ are nice 
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(normal) filters on 2, 0 resp. (see [Sh 4, 7.10]), then for some nice ~ extend- 
ing ~,  

tcf(1-I 2,  ~<,,)--2. 
\ i < 0  

(2 ) / f2  is singular, on 2 +, cf2 there are nice filters E, 9 then for some nice 
filter ~ ~, extending ~ and 2~ < ~ (for i < of 2) 

PROOF. (1) Let gn be as in the proof of 9(4) and let for a < 2 

Aa = (i < O: f~(i)<gn(i)}. 

Clearly: A~ ÷ Z~ mod 9 ,  

a < p ~ A p  _c A. mod 9.  

W.l.o.g. (V i)gn(i) > O. 
Let ~ = {A __ 0: for every a, A U (0 - A a ) E ~ + } .  Clearly 

tcf(  YI 2i, _-<~)=2. 
\ i < o  

Why is 9 nice? By observation 13A below. 
(2) By 13(1) and 9(5). 

13A. OSSERVATION. If2 > 0 > Ro are regular, E a nice filter on 2, and for 
a < ;t 9 ,  is a nice filter on 0, then: 

(i) ~ def {A C 0 : { a < 2  :A ~ 9 ~ } E E }  is nice, 

(ii) if f ~  °Ord, h E ~Ord, re(f, 9~) < h(a) for a < 2, then rr(f, 9 )  <= 
rx(h, E). 

PROOF. See [Sh 4] Def. 5.1, 3.1 

13B. REMARK. (1) Note that: if 

( 3 x)( 3 g)Lu > 2:~' ^/z~ > (g + x)+], cf2 > R0 

then there is a nice filter 9 on cf(;t) (see [Sh 4] 4.14, 4.15) and also on 
I = { a  ___2:la I <0}  if0 = c f 0 > R o ,  2° =2 .  

(2) In fact, in (1) the club filter is nice (on 2 and on {a _ 2:1 a I < 0}). 
(3) If2 ° =2 ,  R o < a  = c f a _ -  < 0, and the club filter on {a c_2:lal  < 0 }  is 

nice, then every normal fine filter on {a _ 0 :l a I < tr} is nice. 
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§2. Good stationary sets and existence of lub's 

14. LEMMA. (1) If2 is singular , S c_ 2 + is a stationary subset of  2 + which is 

good (see below) and 8 E S ~ c f ( J ) > x  ~ cf2,  then for some 2i < 2  (for 

i < x), and a uniform ultrafilter ~ on ~¢, II~<~2i/~ has cofinafity 2 +. 
(2) Suppose 2i is regular < 2 for i < x, 2 is regular, ~ a .tiIter on x, x < 2, 

f ,  E l'li <~ 2i, [ ,  < p =* f ,  <~ fp]. Then one of  the following occurs: 
(a) (fo: < 2 )  has a w < , - l u b  f~ (hence for some filter ~1 extending 

[ f < ~  f~ ==, ( 3 a < 2 ) f <  ~, f~]). 
(b) In ~ ( x ) / ~  there is a strictly increasing sequence ( a d ~  : a < 2 )  of  

length 2 (in particular, ~ is not an ultrafilter). 
(c) There is a club B c_ 2 and functions gaEII~<,2~for a E B  such that 

(a) f~ < ~ g~ <-_~ fa for a < fl in B (so you can get f~ <~ g~ <~ fa ), 
(1~) U~ep rang ga has cardinality < x. 

(3) I f  there is a good stationary set 

S c_ {J < 2 : x < c f J  < Min{2~ : i < x}}, 

2,2i, K,L (i < x , a < 2 )  as in (2), ( A ~ : a < 2 )  witnesses "S is good" and 
[a~Aa=* A/L(/) < fa(i)], then in (2) above (c) and (b) do not occur. 

(4) In (3) (using of) we can conclude 2 --, {2i: i < x} ([Sh 1]), so, e.g., i f  

2 = Ro, +~ there is on 2 a Jonsson algebra. 
(5) In (1), i f x  < 2, {J ~ S:  ef(J) >_- r} is stationary, then 

REMARK. 

in 15 below. 

( 3 i < cf2)Vj[ i  < j  < cf(2)=.2, - > x]. 

On good sets see [Sh 8] and Appendix of [Sh 9]; they are defined 

15. DEFINITION. For a regular 2, S __ 2 is good i f  there is a sequence 
(Aa : a < 2), Aa C_ a and for some closed unbounded C ~ 2 for every J E C N S 
there is an unbounded A c_J of order type c f J  such that ( V a < J )  

[ A n  otE{Ap:~ <a}] .  

PROOF. (1) Let (A~ : a < 2) be as in Definition 15. W.l.o.g. for each limit a 
{A~ n y: yEA,} c_ {Ap :/~ < a } .  Note that w.l.o.g. IA, I < 2  for every a. Let 
(2j: i < x )  be an increasing continuous sequence of cardinals < 2  with 
2 = Oj<~ 2,. We can define, by induction on a < 2 +, a function fa such that 

(i) L ~ II, <~ 2, + ; 
(ii) for/~ < a, for every large enough i < x, f a ( i )<  fa(i); 
(iii) i fpEAa,  i < x ,  IA~I <2~ thenfa(i)<f,( i) .  
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Now ( f ~ : a < 2  +) has a lub f~÷ [as otherwise use part 3 of 14, i.e., for (c) 
find a closed unbounded C__.2 + and (g,,:a~C), gaEH~<,~A~, IA, I < x ,  
f ,  < u g~ < ~  fp for a < fl from C; choose $ E S a limit point of C, and get easy 
contradiction by (iii) above]. By 4(1),(3), 9(1) we get the conclusion. 

(2) We define, by induction on ( < x +, a function g¢ EII~<~ (2~ 4- 1) such 

that [~ < ~=*g¢ < u  go], [~ = ~ + 1 = ,& #ugh]  and [a < 2 =*fo < ~  g¢]. We let 
go be defined by go(i)= 2~. If (g~:~ < ~) are defined, and there is g, g ~  
1-Ii<~(2~ + 1), f ~ < ~ g  for a < 2 ,  g ÷ug~ and g <~g¢,  then choose such a 
function g as g¢+,; if we cannot, we have gotten " ( f  : i < 2 ) has a w < ~  -lub', 
hence (a) holds. If~ is limit ordinal, ~ < x +, letA~ = {go(i) : ~ < ~} U {2~}, so 
A~ is a set of ___< I ( I + 1 ordinals. For a < 2, let f j  ~ 1-I~ < ~ (2~ + 1) be defined by 

f~(i) = Min{7 EA~ • f~(i) < 7} 

(well defined as f~(i)<2~EA[).  Clearly a<2=*fa<~fJ and also 

[a<fl <2=,fJ <~f~]. 

Case I: ( <x+ and(Va<2)(qfl<A)[a<flnf~<~f~] 
then conclusion (c) holds. °) 

Case H: ( < x+ and for some a = a~, 

(Y,8 < 2)[f~qze f~] but (Va  < 2)( 9,8 < 2 ) [ a  < f l  ^f~g~f~]. 

Then some closed unbounded subsequence of (ap:fl < 2 )  exemplifies (b) 
where 

a~ = {i : f~(~ti)> f~(~.i)}. 

Case III: ( < r  + and both previous cases fail, then for some a = a~ 

(Vfl < 2 ) [ a  _--<fl=*f~ =~ f~l.  
We let g¢ be f~c- 

Case IV: Suppose ( = x + [so (& : ~ < x + ) are defined and for a < ;t and 
limit ~ < x +, a¢ and f ~  are defined]. 

def 
Note that a* = U { a ¢ : ~ < x + } i s  < 2 .  
Note that for each a < 2 ,  i < x ,  f~(i)~A[ = U¢<~÷A/¢, so for some ~ = 

~(a, i ) < s :  +, f~(i)EA~ ¢~'i). Let ~(a)=supi<~(a, i), it is < x  +, and as 
(A/¢" ~ < x+ ) is increasing, f~(i) EAi ¢~). Clearly then, e.g., f¢(~)+o, = f~(~)+~ +o, 

(5) Note that f~ <~ f~ implies f~ <~ fp. 
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hence using a > a*, g~(~)+ o, = ~ g~(~)+ o, + co hence g~(~)+ ~o + ~ < • g~(~)+ o,, contradic- 
tion to the choice of  g~(,)+o,+ ~. 

(3), (4), (5) Left to the reader. 

§3. More on cofinalities 

16. LEMMA. Let  a E I  ~'2, ,~ ~ R  ~'2. 
- -  K , a  K , a  (1) For some set b c a,  J<~+ = (J<z) + b [we choose such a set b and call it 

• ~,a = and i f J ~ +  - ~'~ = b~ '°, and w.l .o.g,  i f  a EJ<a+ then b a - J<~ then b~," ~ ]. 
K,a  • (2) J ~  is the ideal (of  subsets o f  a) generated by {b~ . IZ E R  ~'2, IZ <-2}. 

(3) per(a) has cardinality < 2 ~ and has a maximal  element, which is equal 

to cf(Ila,  <) .  

(4) For b = b ~ . ~ v ~  there are functions f~,~ ( a < 2 )  which witness 

"tcf(Ilb, <g~)  = 2" (though the choice o f f  a~ is not unique, we choose such 

functions). W.l .o .g .  i f  (fa~,~ r b; ,~" a < ~ < 2)  has a least upper bound 
K a I¢,a K ,a  mod J ~ ,  then ( f  ~ r b~ )/J<~ is such a least upper bound. 

(5) For e v e r y f ~  Ha there are n > 0, 20 > 2~ > . . .  > A, from pcf(a), a0 < 20, 
a~ < 2l, . . . , a~ < 2~, and b~ c_ a for l < n such that (bl: 1 < n ) is a partition o f  

a, and 

b0---- b~' mod  J:~0, bl = bl, mod  J<a,, = :  ~,,~, ~ bl 

/¢,a /¢~a 
(note: a - bo~J<~, a - bo U • • • O bleJ<a,,  a - bo U • • • U b~ = ~ ) .  

(6) Let  ~ be an ultrafilter on a: cffYla, < ~ )  = 2 i f f  2 e R  ~'2 and b~ '~ ~ ~ ,  

J~] n ~ = ~ .  

PROOF. By [Sh 5] Ch. XIII, §5, §6. 

17. CLAIM. (1) a _ pcf(a), [a _ b ~ p c f ( a )  _ per(b)]; 

(2)/~ E p c f ( a ) ~ g  Epcf (a  n g+);  

(3) for # > 2 lal, # ~ pcf(pcf(a)) ~ / z  Epcf(a) ;  

(4) pcf(a - {0}) D_ pcf(a) - {0}; 

(5) if  2 ~pcf (a ) ,  2 > 2 ~, a ~ I  ~'~ then 2 ~ p c f ( a -  (2~) +) (we can use any 

/z = #~ instead of  2 ~) and A = max pcf(b~'a); 

(6) if  0 ~ per(a), a ~ I ~': and ( V a < 0)[ [ a [ < ~ < 0] then j~b  is o-complete  

for b = bg". 

PROOV. (1) Easy (see Definition 6(1)). 
(2) I f  ~ is an ultrafilter on a,  and { 0 ~ a ' 0 > # } ~ ,  then easily 

tcf(FIa, < ~ ) > p .  Now as / ~ p c f ( a ) ,  for some ultrafilter ~ on a,  

tcf(I'la, < ~ ) = / z  hence ( a - / z + ) ~  hence a t q / z + ~ ,  hence ~ =  
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 t(a +) is an ultrafilter on a n u  + and cf(li(a so 

/z Epeffa n / t  +). 
(3) By 17(1),/z Epcf(a)ffi,/l ~pcf(pcf(a)). So assume/z Epcf(pcf(a)). Let 

pcf(a) --- {/z~: i < i(,)}, so i ( . )  < (2 .,I) +, for each i there is an ultrafilter ~ on 
a such that #~ -- tcf(l-la, <~,). So/t  = tcf(II/z, _<_~,), ~ an ult'rafilter on i( .) .  
By the theorem of ultraproducts of ultraproducts 

= tctIn{0j: ~,  i) E j ( . )  X i(.)}, <u . )  

where 

~ *  = {A _c j ( , )  X i ( , ) :  {j < j ( , )  : {i: i < i ( , )  and (j, i) EA } E ~j  } E ~} .  

By 4(3)(c) we finish. 
(4), (5) Left to the reader. 
(6) Suppose b~EJffo for i < i ( , ) ,  i ( , ) < o ,  U~bi~j~b0; w.l.o.g, b ~U~b i  

and the bi's are pairwise disjoint. Let F~ __ li(b~) he a cover of cardinality < 2 
(exists as we know cf(IIb~) < 0 as b,. E I ~  by 16(3)). Now 

F = { t  <U~<.) f~" f~EF~for i < i ( . ) }  

has cardinality -_< II;<~.) [F~ I < 0 by our assumptions and F is a cover of l ib,  
contradiction. 

17A. LEMMA. Suppose o ffi cf/z > R0, (V0 </~) [0 ° </z],/~ < 2  = cf2 < 
#~, 2 ° < # .  

(1) I f2  -- of 2 </~+~* then we can have ( 0~ : i < o) strictly increasing and 

0, </z,  tcffl-10, < f )  = 2. 

(2) If[a E R  ~.2, a c_ IZ =* I Pcf(a)l < o] then the conclusion of(2) holds. 
(3) We can allow a = cf/z = Ro i f  we add2 Epcf(a), a E/z, a E R  ¢,2. 

PROOF. (1) By the proof of(2). 

(2) As in 12(1), we can find (2~ : i < a) ,  ~ s.t. : (2,: i < a)  is strictly 
increasing, ~ a normal filter on o, 2i < #  and tcf(II~<o2i, <~)ffi 2. Let a -- 
{2~ : i < o}, clearly J ~ .  - fgd, let pcf(a) --/~ ---- {#, : a _--< a(.)} (/z, increasing), 
so for some 7, 2 ~ /~ ,  and necessarily Aa<r(a - b ~ f ) E  ~ .  As 7 < o + (by an 
assumption) and ~ is normal, there is a * E  ~ such that a * _  b~, ,c and 
[ a < • = ,  la* n b~;al < o ] .  
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17B. LEMMA. I f  ,~ <It belongs to pcf(a), 2 ~ < 2 ,  a E R  ~'2 and pcf(a) N 

[2,/1) = pcf(pcf(a) N [2,/z)) then for some b 

J ~  = (J~9 + b. 

PROOF. Easy. 

REMARK. Below, ac stands for "accessible", ia stands for "inaccessible". 

18. DEFXNITION. (1) R.~, ] = {OER ~a" for s o m e - a E U  ,2, 0 ~ p c f . ( a )  and 

0 > sup(a)}. 
(2) R~; 2 = R ~'2 - R,~, 2 . 

(3) If a = Ro we omit it. 
(4) Instead of a we can use F (see 6(1)(b)). 

19. DEFINITION. (1) R¢~r = {OER~'t: for some 2 ~ J  k,t, 0~pcf r (a )  and 

(V i ~ d o m  2)2~ < 0} 

(2) Ri~;  / - -  R ~'t - Ra¢.r.~'t 
(3) If F is being a-complete we write a. 

(4) If a = R0 we omit it. 

20. REMARK. A disturbing point o f R  ~: is that 17(5) is not known. 

21. FACT. Definitions 18 and 19 are compatible. 

22. LEMMA. I f  O E R~ 2 then for some a E l  x'2 : 0Epcf(a)  and a c_ R.~ a. 

PROOF. We define by induction on n < to the following T,, and a,, ~ ,  (for 

~/E T.) such that: 
(i) To= {(0)}. 
(ii) 7". is a set of  decreasing sequences of cardinals from R ~,2, each sequence 

has length n + 1 and [T.I < x. 
(iii) q E T.+~ implies q r (n + 1)~ T.. 

(iv) For t /E T., a, = (# : r/^ (#) belongs to T. + ~}. 

(v) If r I ~ T., a, 4~ ~ then ~ is an ultrafilter on a,, cf(l-la,, <_-~,) = rl(n). 

(vi) For q E T,, a~ = ~ then rl(n)~R~ 't. 

There is no problem to carry the definition. 

Also letting a* = {r/(n) : n < to, r/E T., a, = ~ } easily l a* I --< x, a* E P  ,2 

and 0 Epcf(a*). 

23. REMARK. The same proof gives 24 below (we can even replace R ~a by 

any R _ R ° [interestingly F may be "a-complete ' ,  "nice"; note they are closed 

under the sum operation below]. 
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24. LEMMA. Let F be a property o f  filters, OER~(r. Then there is 2 = 

(At : i E u ) and filter ~ on u such that 

(a) 0-- tcf( I l ie . ,2 i ,  <~) ,  
(b) 2i < 2, ~,t gi fE Ria, r, 
(c) there is a set Y o f  finite sequences o f  cardinality <= x, closed under initial 

segments, ( ) E Y, which is well founded, u -- { rl ~ Y : for no o ~ Y, ~1 is a 

proper initial segment o f  o}, ( ) q~ u, and there are filters ~ on Y~ = 

{ t? ̂  (x)  : q ^ (x)  E Y} for ~1 ~ Y - u such that ~ F ( ~ )  and for X c_ u : X E ~ iff 

for some X'  c_ Y, X '  o u = X, ( ) ~ X'  and 

{ , 7 ^ ( x )  : 

§4. Representation by nice products 

25. MAIN LEMMA. Suppose a E U  ,2, a __. R~a '2, 2 = max pcf(a),  2 > sup(a),  

and for#  < sup(a),  sup pcf(a n /1)  < 2. Then there are f~EI-la for a < 2 which 
witness tcf(Ha,  <~.~)  = 2 and 

( .)  for it ~ a ,  {f~ t ( a n  It) : a < 2 }  has cardinality < lt 

(and f6 is < ~ - l u b  of{f~ : a < 6 }  when c f~  > 2~). 

REMARK. Note  that a has no last element. 

PROOF. Let a = {its: i < ~(,)},  #g increasing with i, a ( ( )  = a¢ = {iti : i < (}  

for ( < ~( , )  (~(,) is a limit ordinal as sup pcf(a O It) < 2 for It < sup(a)). Let F¢ 

be the set of  functions of  the form f0 r b0 U • • • U f ,  r b, where ( bl : l _--< n ) is a 
parti t ion of  a t and bl ~--- bSf mod  J ~ ,  and 

f t e  {f~:a(O : ~ < ( ,  Ot ~ pcf(a¢), a < 0t }. 

Clearly IF¢ I < 2 ~ + Z ¢ ~  sup pcf(a¢) = 2 '~ + max pcf(a¢) which is <it~ as 
[a __. R ~,2 =~ 2 ~ < min(a)] and as a c_ Ri~ ,2 by 

26. FACT. I f  2 ~,2 R~,2 Ria , a c_ (or even a __. R ~,o), ( V p E a)[,u < 2 ], then 

2 > max pcf(a). 

[PROOF. I f2  < max pcf(a), a _ R ~,° then there is an ultrafilter ~ on a,  and 

in Ha ,  a <u- increasing sequence (f~ : a < max pcf(a)) ,  so by 4(1), 5(2) for 

some b ___ R ~,°, tb[ < x, sup(b) < sup(a)  ( < 2 )  and ;t ~pcf (b) .  By 4(6) w.l.o.g. 

b ___ R ~'2, so we get a contradict ion to 2 ~Ri,~'2.] 

Now it is enough to show 
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(,) for every a < 2 for some f *  El'It <~t.)/z¢: 

(i) f ~ < ~ f * E  lI !~¢: 
¢ <6(*) 

(ii) for every ( < d ( . ) , f *  t a¢ EF¢. 

[Why is (.) enough? We then can choose by induction on a, fla, f *  such that 

(a) fla < 2 is such that (V r < a)f* <~<~ fz*J., 
(b) f *  EII¢<6(.~ Ire is such that f~'~. =<~f f *  and f *  satisfies (ii), 

the first step by the choice of  (f~,~:a < 2 ) ,  the second by (.). Clearly 
( f* :a  < 2) satisfies the conclusion. More accurately, when a is limit of 
cofinality > 2 * we want also that f~' is <~f- lub of {fp* : fl < t~}, but the proof 
of this is by 27 (i.e., 27 say this holds for a clus of t~'s and now rename).] 

PROOF OF (*). W.l.o.g. [OEa=*O>(2*)+]. Let )C be a regular cardinal, 
large enough. We choose by inductions on i < (2") + a model N~ such that: 

(a) N~ is an elementary submodel of (H(x), ~), 

(b) IIN, II <2 but{j:j<2 +i}CN , 
(c) _oN. 
(d) the following belongs to ~ +  1: 

(i) (Nj : j  < i), 
(ii) pcf(a) (hence pcf(a) __. N~+~), 
(iii) ( (f~:~ : a < 0) : 0 Epcf(b), b E R  r'2, b _ ;t ), 
(iv) a (see (.)), 

(e) for i limit, Ni = U~<i Nj. 
We now define gr~l-la for y < (2") + by 

and for each O~R K,2 n N r let $~ = sup(0 n (U~<r N~)). As we have assumed 
[0 C a  =~ 0 > (2~) +] deafly g T ~ ) < # ¢  for ( < $(.) and ~ < 0 for 0 E R  ~'2 n 
N, .  

From Fact 27 below we can prove (,), as f~;~EN0 and, e.g., g(2.)+ is an f *  as 
required. (Really for a closed unbounded set of 7 < (2 ~) +, cf 7 > x implies g~ is 
as required.) 

27. FACT. Suppose (N~ : i < J)  is an increasing continuous sequence of 
elementary submodels of(H(x), E), Ni ENd÷ ~. Define a function g, : dora g~ ffi 
R ° n N, - II N, II +, g,(0) = sup(0 n N,); note that necessarily g(O) < 0 as 0 
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is regular > [I Ni [[. Let g = &. Suppose further that a c_ R ° t~ N6 - [a [+, 

a E S 6 ,  lal  =<r, 

( ( f ~ : ~ : a < A )  :3 .~pc f (a ) )EN6 ,  (b~ '=:O~pcf(a))~N6.  

Then: 
(1) If 0 ~ pcf(a), 0 ~N6, cf(t~) > 2 ~ then 

(~)o g r b~ '= = f o,to) r b$ 'a mod I~ 2. 

(2) If 0 Epcf(a),  0 EN6, I~: 2 r b~ ,a is a-complete and o" > cf(d) then ( ~ .  

(3) I f I~  2 ~ b~ ,= is generated by < , sets (as an ideal) and cf(~) > e then ( ~ .  

(4) If cf(t~) > 2 ~ (or for each 0 ~N~, the assumptions of(2) or (3) hold) then 

for some n < to, 00 > 0l > . . .  > 0. from pcf(a), 00 = max pcf(a) and for 

some partition ( bl : l _-< n ) of  a, 

g t a = G (fo,~o,,~'= r bg,=). 
I - 0  

(5) If the assumptions o f ( l )  or (2) or (3) hold, cf(~) > Ro, then for a closed 

unbounded set of  ~1 < O, cf(O0 > x implies 

_ x,a m o d  I<o. gn, r b$ 'a - f O,g,~l(O) r b$ ,= x.2 

PROOF. (1) W.l.o.g. a t3 {a, ( ( f~ ,~ :a< , ! . )  : 2~pc f ( a ) ) ,  0} ___No so a __ 
dom(gi)  for each i. Also as N~ EN~ + ~, g~ r a ~N,+ l .  So for i < j < tJ, g~ r a ~Nj ,  

hence gi(lZ) E Nj for # ~ a hence gi r a < gj r a. Also f$~o) E Nj hence f~J~0)(/z) 
Nj for/z E a hence f$~o) < gj r a. Lastly, as gi r a ~ Nj and for some a < 0, 

g~ r b$ ,= < f'$.~ r b$ ,~ mod I~ 2 

this holds for some aENs too ,  hence it holds for a = gs(O). Now for each i < t~, 
there i s  ci C_ bg ,=, ci -~- b$ '= rood ~.2 I<0, and 

gi P G < f$:~+.(o r ci < g i + 2  ~ C/. 

So for some c, A = { i < ~ : c i = c }  is unbounded, and now by 4(7) 

{f$,~ r b~ ,= : a <g,(0)} has a least upper bound mod(l~ 2 r b~ ',°) : g ~ bff ,° so we 

can finish. 

(2), (3) Similar. 

(4) Like the proof of 16(5). 
(5) Left to the reader. 
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28. MAIN LEMMA. [f ~.--maxpcf(a)>sup(a), a~R  K,2, (ai: i < e )  is a 
K # I  part i t ion o f  a ,  a n d  ( V i < e )a~ ~J<~,  then  for  s o m e  ni < co and  0~,o . . . .  , O~,n(o-1 

f r o m  pcf(ai) ( for i < e),  

2 ~pcf({0~,t : i < e, l < n(i)}). 

PROOF. Let 2 (0 )=  sup(A N pcf(a)). As Ipcf(a)l _-< 2 ~ < 2  (as 2 >sup(a ) ,  
a E I x'2) deafly ;t (0) is < 2. (We could obtain 2 (0)6  pcf(a) but have no need.) 
Let X be a regular cardinal large enough and M an elementary submodel of 
(H(z), ~)  such that: 

a ~ M ,  { i :  i _-<A(0)} _ M ,  and [[ M II -- ~(0), 

( (f'~:~ : a < 0) : b c_ a,  0 6per(b))  E M .  

We now assume that the conclusion fails, and eventually we shall get a 
contradiction. 

It is enough to show that for every f E  Ha for some g E (Ha) n M, f < 
g rood J~].  So let f E  Ha be fixed. 

We let 7 ( . ) =  (20  +, and (N~: i  < ),(,)) be an increasing continuous se- 
quence of  elementary submodels of  (H(z), E), such that: 

(i) ,~, a ,  M ,  ((f~,:~ : a < /z )  :/z 6pcf(b),  b _ a)  belong to No, 
(ii) ( N j : j < i ) ~ N ~ + I ,  

( i i i )  II N, II - -  2~ + I i I, 
(iv) { a : a < 2 ~ + i } C _ N i .  

Clearly a C pcf(a) _ No and every subset of pcf(a) of  cardinality < r belongs 
to No. Let for each b _ pcf(a) of cardinality < r ,  go 6 Hb be defined by 

g b ( O )  = sup(0 n N~(,)). 

Let g = U{gb: b c_ pcf(a), I bl _-< r}. By Fact 27(1) 

g~ = f~ t~ )  mod J ~ .  

We shall show that g~ ~ M thus deriving the desired contradiction [ a s f ~  Ny(.~, 

clearly f < g~]. 
For each i < e,  by Fact 27(4) there are O,(l)Epcf(ai) ,  

- -  - -  / ¢ ~ a  / ¢ , a  bi(l) C ai - [.J b;(m), b~(l) = boa) mod J<o~t), 
m < l  

ga r bi(l) = fg~f),(oa)) ~ bi(l), and 0;(0) = max pcf(ai), 0i(1 + 1) < 0i(1), 

and 0i(l), bi(l) are defined just for l < n(i) ,  and lastly 
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a t=  U bt(l). 
I <-- n( i )  

As ~ ( x )  _ M,  {(i, 1, Or(l)) : i < a, l < n ( i ) } E M ,  it is enough to show that  

K'ai (fo~t>~o~t)) "1 < n(i),  i < a )  ~ M .  

As ( (f0~.-~" a < 0) • b c_ a, 0 E pcf(b)) E M  it is enough to have gc = g t c E M  

where c = {Or(l) : i < g, l < n(i)}. Now Icl _-< cr _<_ x, c c_ pcf(a) hence c~_M 
and per(c) _ pcf(a) (so c _ R~'Z), therefore max pcf(c) < max pcf(a)  = 2. I f  

max pcf(c) = 2 we finish. Otherwise (as pcf(c) C_ pcf(a)) max pcf(c) < 2(0), and 

as c~ .M,  by 27 easily g c E M ,  and as we said above, we finish. 

29. CONCLUSION. (1) I f2  ER~; z, X minimal,  then 

(i) for some a 

2 = max pcf(a), sup a < 2, a ~ I ~,2, 

(ii) for any such a,  J ~  is a x-complete  ideal on a,  hence 

[b _ a ^ I b I < x =* b E J ~  ] (and 2 = tcf(Ha,  --<~4) and necessarily is 

regular. 

(2) I f (V a < ~)(R~ < R6), R6 is singular, a _ R ~.2 A R6, x < R6, It ~ pcf(a) f~ 

[R6, R~), then there is a _ R ~f6'2 N R6, l a I --< cft~ such that  # ~ p c f ( a )  (even a 

has order  type < cf&). 

PROOF. ( l )  (i) This holds by the definition o f R ~  2 and 17(5). 

(ii) I f J ~  is not r -complete ,  we can find tr < r ,  at E J ~  for i < ~, 

U a~ ~ J ~ .  
t<t7 

def 
W.l.o.g. the at's are pairwise disjoint (otherwise use at = at - Uj<l  aj) 

and a = Ut<~ai (otherwise replace a by a '  ~f U~<o at). 

By 28 we get a contradict ion to minimal i ty  o f  x. 
(2) Easy (by 12 and 29(1)). 

30. MAIN LEMMA. Suppose ,~ E R ~  2, t7 is minimal such that 2 E R,~°,2. 
(1) For some a E I ~,z : a c_ 2 and 2 E pcf(a). 

(2) For a as above for some b c_. a,  2 = max pcf(b) and2  > max pcf(b tq It) 

for  It ~ b (take first b = b~ 'a and then b N It for the minimal It E b such that 

2 ~pcf (b  N It)). 
(3) For b as above J ~  is a-complete. 
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(4) For b as above for some c c_ b, letting dl def per(c), 2 = max d~, d d~ 

dl -- {2 } has no last element; in fact 

d - 0 = pcf(b) - {g :# Epcf(b),/z < 2, per(b) - # isfinite} - 0 

for some 0 Ed  (so per(b) - per(c) is finite and J~[ is o-complete by (3)). 
(5) For c as above, the order type of  the sets c, d has cofinality > o. 
(6) Letting J~d be the ideal of  bounded subsets of  d, then tcf(Hd, < # )  = 2. 
(7) For some d2 c_ d of  order type cf(otp d), pcfld~l(d2) = {2}. 

REMARK. The main conclusion here is part (6). 

PROOF. (1) By definition of Rg~ 2. 
(2) Clear. 
(3) By the assumption on o and 28. 
(4) Clearly {/z E pcf(b) : g < 2, per(b) =/z is finite} is finite. So by 16 

d e f  

c = b - U{b~'b" #Epcf fb ) ,#  < 2 ,  [ p e r ( b ) - # [  <R0} 

is as required. 
(5) By (3) J~[ is o-complete. If l z ~ d  for i < ~ < o ,  then b~x~J~[ ,  so 

Ui<6b~,c~J~[ hence by 16 for some n <co,  

0o , . . . ,  O._ ,~d , - -pc f ( c ) -  {2}, U b~ '~ _ [.J bgf. 
i<6 I<n 

So necessarily each/z~ is < Max{01:1 < n},  so (as d has no last element by 
30(4)) sup~<6/li < sup d, as required. 

As for cf(otp(c)), use 30(2) and o-completeness of the ideal. 
(6) For each a < 2, choose, if possible, a function g = g~, g E l id  such that: 

for every 0 E pcf(c) (for 0 = 2 stipulating g(O) = a) 

I¢,C - -  f f ,C /¢ C g ~ bo =folio) mod J~o. 

Let A = {a < 2 : g~ is well defined}. Now 

FACT a. 

PROOF. By 27. 

FACT ft. 

PROOF OF FACT ft. 

A is an unbounded subset of  2. 

For a < •  in A, g~<gpmodJ~.  

Clearly f ~;c < f ~  mod J~[ hence 

C 1 "~- {0  ~ C  : f~ ,c (O)  ~_~ f ~ $ ( O ) }  ~ J ~ .  
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Now J~[ = U { J ~ "  # Epcf(c), /z ÷ 2 }  = U { J ~  : g Epc f ( c ) , #  ÷ 2 }  (as 
pcf(c) - {2 } has no last element). So for some 0( . )E  pcf(c) - (4 }, cl ~J~$t.). 
Also 

c2 = {lZ e c  : f~;~(IZ) • ga(g)}EJ~C~, 

c3 = {IZ e c  : f~$(IZ) * gp{/z)} e J ~ .  

~¢ So w.l.o.g, also c2, c3EJ~o(.r Now 

ga t (c - cl u c~ u c3) --- f; ,~ r (c  - c~ u c~ u c3) 

< fZ:~ r (c - ct u c: u c3) = gp r (c - q u c2 u c3). 

I Q C  m Hence for every OEd,  i f 0  > 0(.) (as c~ U c2 U c3EJ<ot.) C J~o) then 

f g~,to) ~ b$ 'c -~ g~ t b$ 'c < gp r b$ ,~ "~ f $$,~o) mod J~$. 

Hence by the choice of (f~:~: ? < 0) necessarily g~(O) <gp(0)  as required. 

FACT ?. I f  g E I I d ,  then for some a ~ A ,  g < g ~ m o d J ~  a [use 27 with 

g e No]. 

By Facts a, fl, y we finish. 
(7) Follows by 30(6). 

§5. Appl icat ions  

31. DEFINITION. Pr0(k, I¢, 0) where A >_-!¢ + 0, 2 an infinite cardinal, 
means that there is a two place function c from 2 to r which witnesses it, which 
means: 

(*) i f~  < 0 and for i < 4, (ai ,¢:(  < ~) is a strictly increasing sequence of  
ordinals >_- i, < 2 and h is a two place function from ~ -- {( :  ( < ~} to r ,  then 

there are i < j  < 4 ,  such that U¢<~a;,¢ < aj,0 and 

[(,  < ~ ,, (2 < ~ ~ c(,,,.~,, ~J.c) = h(~,,  (9] .  

32. DEFINITION. (1) Pr~(2, r ,  0) where 2 >_- r + 0, 2 an infinite cardinal, 
means that there is a two place function c from A to ~¢ which witnesses it, which 

means: 

(.) i f~  < 0 and for i < 4, (a~,~ : ( < ~) is a strictly increasing sequence of  
ordinals > i, < 2 and ~, < ~¢, then there are i < j  < 2 such that U¢<~ a~,~ < otj, 0 
and 
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(2) Pri-(2, x, 0) is defined similarly but we add to the assumption of( .) :  

[i < i t ,  ~1 < ~2 < ~==~C(Oli,{l, Oli,~) = ~]" 

33. DEFINITION. (1) Pr2(2, x, 0) where ;t > x + 0, 2 an infinite cardinal, 
means that there is a symmetric two place function c from 2 to x which 
witnesses it, which means: 

(*) i f~  < 0 and for i < 2, (ai,~ : ( < ~) is a strictly increasing sequence of 
ordinals > i and < 2 and ~, < x, then there are i < j  < 2, such that I,.J¢ <¢ a~,¢ < 

aj.o and for (1, ~2 < 
(i) ~, = ~2=c(ai,c,, ~J,c2) = ~', 
(ii) {, ÷ G=c(ai,¢,, aj,¢,) = c(ai,¢,, Oti,£,). 

(2) Pr~(2, x, 0) is defined similarly, replacing (i), (ii) by 
(i)' ~ >  ~, > ~2=c(a,,~,, ~j,~) = 2~,, 
(ii)' ~, < ~2 < ~=* c(ai.¢,, Otj,¢,) = C(Otix., Oti.¢2 ) 

(iii)' ~ < ~ = c(ai,¢, aj,¢) = 27 + I. 
(3) Pr2b(2, x, O) is defined similarly, interchanging the conclusions of 

(i)', (ii)'. 
(4) Pr2(2, x, O, g) is defined as in (I), but we add to the assumption of(.) an 

ordinal 70<g  and get a set u _ 2 of order type 7o such that any i < j  from u 
satisfies the conclusion of (.). 

34. DEFINITION. (1) P~(2, x, 0) where 2 > x + 0, 2 an infinite cardinal, 
means that there is a two place function c from 2 to x which witnesses it, which 
means: 

(.) i f ¢  < 0 and for i < 2 ,  <a~,c: ( <  ~) is a strictly increasing sequence of 
ordinals > i and < ;t and 2~, + 1 < x and ~(.) < ~, then there are i < j  < 2 
such that I,,l¢ <¢ a,,¢ < aj,o and 

(i) ~ < ~(.)=*c(ai,¢~.), aj,¢) = 27, 
(ii) ( ( . )  < ( < ~ =  c(at,¢(.), aj,~) = c(ai,~.), aj,~), 
(iii) c(a~,¢(.), aj,¢t.~) = 27 + 1. 

(2) Pr~(;t, x, 0) is defined similarly replacing (i), (ii), (iii) by: 
(i)' ( < ( ( . ) ~ c ( a i , ¢ ,  aj,¢(.~) = c(~i,¢, ~i,~(.~, 
(ii)' ((.) < ~ < {=c(ai.¢, Otj,¢(.~ ~" 27, 
(iii)' c(ai,¢(.), Otj,((.)) = 27 + I. 

35. DEFINITION. In Definitions 31-34, omitting 0 means that it is No. 
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36. OBSERVATION, (I) Pr0(A, x, 0) implies Prl(4, r ,  0), Prx(2, ic, 0). 
(2) Pr~(4, Ic, 0) implies Pr](4, lc, 0) when y = a, x = S or y = b, x -- L. 
(3) Prl(4, ic, 0) implies Pri-(4, ~c, 0). 
(4) Pr2(4, ic, 0) implies Pri-(4, it, 0). 
(5) Prx(4, Jc, 0, 2) is equivalent to Prx(4, r ,  0). 
(6) If tq _</(2, 01 < 02, #, < It2 then Pr0(4, ~c2,02)~ Pro(A, rl, 01), 

Pr,(4, rx,0z)~Prl(2, rl, 01), Pri-(4, tq,0z)=oPri-(2, xl, 01), Pr2(4, rx,0z,#z)~ 
Prx(4, rl, 01,/~1), Pr3(4, ~q,02) =~ Pr3(4, tel, 01). 

(7) Pri-(2, 2) implies that the 4-e.e. is not productive for Boolean algebras 
(see [Sh 7] proof of  1.1 0). 

(8) prX(4, 2) implies that there are 4 - X spaces for X = L, S (Hausdorf 
with a basis of elopen sets). (See [Sh 7] proof of 1.1 0.) 

(9) Pri- (4, n ) implies that there are Boolean algebras Bt (l < n ). 1-It <, B~ does 
not satisfy the 4-c.c. but rI~<,.j,,m Bt satisfies it for m < n. (See [Sh 7] proof 
of 1.10.) 

37. DIAGRAM. (For ~c _--> 2, 0 _--> 2.) 

Pro(4 , Ic, 0) 

Pr/(2,  ~, O) P~(4, r ,  O) 

Pr~(4, prS(2, r ,  O) 

2-c.c. not productive ~ 3 A - L 3 4 - S space 

4 / , [411 

38. LEMMA. (1) Suppose c c_ R °, tcf(Hc, <=#) = 4 (c has no last element) 
(V,u Ec)(,u < 4) and let z = M i n { I c - g l : l z ~ c }  <supc.  Then 
Pr~(4, X, cf(c)). 

(2) I f  in addition for arbitrarily large O~c, Pr~(0,X',2a), 0 < ' <  
Min(e - 0 +), l E {0, 1}, sup(c N 0 ) E  c, tr =<_ ef(c) then Prt(4, )~', a). 
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39. REMARK. (1) Every unbounded c'_C c satisfies all the assumptions 
(though: maybe with a smaller )e). So w.l.o.g, l c I -- Z. 

(2) If in 38(2) we want to interpret a as order type, 2a should be replaced 
by a2. 

(3) In 38(1) we can have Pr;(0, Zfi, 2a0) for 0 ~c ,  such that 

t < t [v(1) < 0 ( 2 ) ~ X 0 ( l  ) = )~0(2)A 0"0(1) _~_ 0"0(2) ] 

and get Pr~(2, ZoZb, Y.o~o). 
(4) cf(c) is the cofinality of the order type of c. 

PROOF. (1) Let (f~ : a < 2 ) exemplify tcf(IIc, < ~ )  = 2, (ci : i < Z) a par- 
tition of c to Z sets, each ci is an unbounded subset of c. Let h : c -~ Z be such 

that 0 ~ Ch(o). 
Let US define two two-place functions, 0, e from 2 with range of power Z : for 

a < fl < 2, 0( , ,  fl) -- sup{0 : f~(O) > fp(0)} (so if there is a maximal 0 for which 
f~(0) > fp(0), it is 0(a, fl)) and 

e( . ,  p) = h(0(~, p)). 

Suppose ~ < cf(c), (ap, c : ( < ~) is a strictly increasing sequence of ordinals 
_>-fl but < 2  for each fl < 2 .  Now for any given i ( * ) < Z  we should find 
fl < 7 < 2 such that U c ap,~ < at,0 and for every (i, (2 < ~, O(ap,c,, ar,~) belongs 
t o  G(.). 

Let )~* be a regular large enough cardinal. Let Mo be an elementary submodel 
of (H(z*), E, <*)  where < *  is a well ordering of H(Z*), to which 2, c, ~, 
((o~p,¢ : ( < ~) : ]3 < 2) ,  (f~ : ot < 2 )  belongs, ~ U c _c M,  and II M0 II < sup c. 

Let c ' = { O ~ c : s u p ( M o N O ) < O } ,  so c ' ~ c m o d J ~ .  Define a function 
g EHc:g(O) is sup(M0 A 0) for O~c '  and zero otherwise. As (fp:]3 < 2 )  
exemplify tcf(IIc, < # )  -- 2 for some ]3(0) < 2, g < fpto) mod J~c, and ]3(0) > 
sup(M0 n 2). 

As ap(0),~ > ]3(0) for each ( < ~ for some 0~ ~c ,  

< g(O) < 

Let 0(0)=  sup{0~ : ( <  ~} so as cf (c)> ~ clearly 0 (0 )<  sup(c). Let 0(1)E 
q(.) be > 0(0). Let for ]3 < 2, f ~  E Hc be defined by 

f~'(O) = Min{f~,,,(0) : ( < ~}. 

Easilyfp < fp* mod J ~  (as cf(otp c) > ~). Let 

C* = {OE¢: sup{fp*(0):fl <A} ---- 0}. 
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So c* = c mod J ~  [otherwise define g* ~ t ic :  g*(O) = sup{f p*(0): fl < 2 } if 
0 E c  - c*, and zero otherwise. So for some fl < 2, g* < fp mod J ~ ,  and we get 
a contradiction easily]. 

So we could have chosen 0(1)Ec*, such that 0 (1)>  II go  II and for some 
#(1), 

def 
7 -- f~,)(0(1)) > sup{f,,,o~,(0(1)) : ~ < ~}. 

Let Mt be the Skolem Hull of M U {~} (in (HC~*), ~, <*)). Now clearly 

(H~*), ~, < *) ~ ( 3,0 < 2)f~'(O(I)) = ~; as 2, (fp*, 1~ < 2 ), 0(I), ~, are in M, 
there is/~(2)~Mt N 2, f~(2)(0(1)) -- 7. So 

[~,, ~2 < ~ ~ f*,ox,,(0( 1 )) < f*,,x,,(0( 1 ))]. 

Easily, for every regular cardinal aEMo, if o'> 0(I), then sup(Mo N a)= 

sup(Mr N a). 
As fl(0) > sup(M0 N 2), also fl(0) > sup(M~ f~ 2), but fl(2)EMt, so fl(0) > 

fl(2), and similarly ap(2).¢,<aB(o),¢ ~ (for ff~, ~2<~). Also for every 0~c ,  if 
0 > 0(1), ~,  ~2 < ~, then f~,(~,,(O)~Mt hence f,,,~x,,(0) < sup(M0 f3 0) hence 
f~,,~,(O) <g(0) ,  but g(O)< f~,~o~,~(0). So O(ap(2).~,, a~(z),¢)= 0(1), but h(0(1))= 
i( .) ,  so we finish. 

(2) Let ca be a two place function from 0 to X', which exemplifies our 
hypothesis when possible. Let 

c*( . ,  # )  = #)), #))). 

The rest is left to the reader. 

~6. Additional information 

40. LEMMA. Suppose a E I  ~,2, 2 = max pcf(a), c = pcf(a) - {2}, c has no 
last element, X = min{ I c - / z  I: # Ec}.  Then Pr2(2, X, Ro). 

PROOF. Let (c~ : i < 2 ) be a partition ofc  such that each ct is an unbounded 
subset ofc.  Let h" c ~ X be defined by 0 ~ ch(0). W.l.o.g. (V# ~ c)# > (2~) +. Let 

f ,  d~ f~k,~, a = R0. Let US define two two-place functions 0 =, e= from 2 to cfx  
respectively: 

for a < / ~  < 2 ,  O-(a,#) --d~fmin{/z:{O~a:f,(O) = fp(0)} EI<~+}~'2 

(so O=(a,#)Epcf(a) and as f ~ ÷ f p m o d l ~  2 clearly O=(a,#)Ec. Let 
e=(a, #) ~ h(O =(a, #)). 
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Define A as in the proof of 30(6). W.l.o.g. we restrict ourselves to A. 
Suppose ~ < R0, (ap,¢: ( < ~) is a strictly increasing sequence of ordinals 

> fl but from A, for each p < 2. 
Now for any given i ( . )  < Z we should find fl < 7 < 2 such that U¢ ap,¢ < otr, 0 

and O(ap.~,, at,c) belongs to c,t. ) if (l = (2 and is 0 --(aft,el , afl,¢l ) if (~ ÷ (2. 
Let Z* be regular large enough. Let M0 be an elementary submodel of 

(H(X*), ~, <*)  where < *  is a well ordering of H(z*), such that the following 
belongs to Mo: 2, a,  c, ((aa,¢ : ( < ~ )  :fl < 2 ) ,  (f ,  : a < 2 ) ,  # for # ~ c ,  a n d M  
has cardinality 2 ~ and every subset of M0 of cardinality _-< x belongs to M. 

Let g ~ I I c  be defined by g(O)=sup(MoO0); as aC_R °,~, 
( V / ~ a ) L u > ( 2 0 + ] ,  clearly g~IIc; so for some fl(O)~A, g t a <  
fat0) mod J ~ .  But J ~  = U0e~ J<o, so 

a~ ~ {O~a:g(O) > f,,po~,(O)} 

Jc,a belongs to J<oc, for some 0 o As J ~  is e-complete, ~ < a, for some 0(0)~c,  
K,a U¢<,a[EJ<oto~. Let 0(1)Ec,.), 0(1) > 0(0). 

As fl(O)~A, for ( < ~ we can find/z¢,t (l _-< n¢) from c n 0(1) + and partition 
(ac,t : l _-< n¢) of a2 = Uc<¢ a~ o b$(~j to U{b$ : 0 = (apto~,~,, apt0),~)} such that: 

f~t~o~, ~ a2 = U f~;~,?~,t t ~,t where 7~,t = f~,cox,(lt~,l). 
I<.n~ 

Let M2 be the Skolem Hull of 

Ml U {(( (/Z¢,h L,,ox,(U¢,t), a,,t) : l  _--< n¢) : ( < ~ ) } .  

So there is fl(1)~ Ml, fl(1)CA, and f~,.~, t a2 = f~,,0~, r a2. As in the proof of 38, 
for 0 E p c f ( a ) -  0(1) +, 

sup(Mo n 0) = sup(M2 n 0). 

Easily fl(1) < fl(0) are as required. 

41. REMARK. Can we have Pr2(2, Z', e)? Yes, if e.g. for some /ZoEC, 
I/to < / t  E c =*#° < Min(c - # +)], even replacing c by c' c_ c, sup c = sup c', 
X' = Min{ I c ' - / z  I:/z ~c}.  

42. CONCLusioN. If  2 ~ R ~  2, x minimal, then Pr l (A,x , r )  and 

Pr2(2, x, Ro). 
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PROOF. By 30(6), (5) the assumption of 38 and 40 holds. By 38 and 40 we 
get respectively our two conclusions. 

43. CONCLUSION. (1) I f2  > 2 a~ then for some lc, 

(and see 37). 
(2) If g < 2 </z ~, 

Pr2(2, ~, r).  

Prl(2 +, r ,  Ic), Pr2(2 +, r ,  Ro) 

cfg  > Ro, (VO <lz)O ~ < g ,  cf2 = 2, then Pr~(2, ~:, r),  

44. LEMMA. Suppose a ~/~,2, a C__ R ~,e, 2 -- max pcf(a) > sup(a). 

[ V O ~ a ] [ v / z  < 01~ <~ < 0], 

a N 0 ¢ J ~  for 0 ~ a .  Suppose #o, ao are cardinals for each 0 ~ a ,  and 

[Of < Oefrom a =:~']-/0(1) ~ ~//0(2)A a0(1) ~ ao(2)], a 0 ~ a. 

Then for I = 2, Ao~a Prt(0, #o, ao) implies Prt(2, sup#o, sup Re). 

PROOF. Straightforward. 

REMARK. The improvement 2a below enables us to have Pr~(2, 2) even 

when I~] is a maximal ideal. 

-- I¢,a 45. LEMMA. Suppose a El ~'2, a C R~ , 2 = max pcffa) > sup(a), 
(ai : i < a~) are pairwise disjoint subsets of a, at q~J~, J~ is a2-complete and 

for O Ea, [VIa < Olu <°2 < O. Then 

(1) Pr2(2, a,, a2). 
Moreover 

(2) Pr2(2, 2a~, as). 
(3) I f for OEa,  Pr2(O, Xo, ao), ao < a2, 

[0(1) _-< 0(2)~Xoo) --<-Xo~2)̂  ao<|) ~ ao~2)] 

then Pr2(2, Zoeo Xo, ZOEa aO)" 

PROOF. (1) Let f~ be such that (,) of 25 holds (and the other demands 
there). We define for a < p < 2 : O(a, fl) = Min{0 E a : f~(O) ÷ f#(0)}. Now 
(a~: i < a~) is a partition of a, and let h : a --* am be defined by 0 E ah¢o). 

Let for a < fl < 2, e(a, p) = h (O(a, p)). Let ~ < a~ (a#.¢: ~ < ¢) be a strictly 
increasing sequence of ordinals < 2, >__ p, and let i ( , ) <  a~. Let us define 

f ~ E l I a  by 
f : (O)  = Min{f,,.,(O) : ~ < ~}. 
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As ~ < 0"2, J~] is a2-complete, clearly f~ _-< fp* mod J ~ .  Let 

c* = (OEa:  sup(fp*(0):fl  < 2 }  = 0}. 

Then c* = c mod J ~ .  
So we can find O*Ec*nc~ so there are f l ( i ) < 2  for i < O *  such that 

f~t,)(O*) > i, w.l.o.g. [i < j  < O*=*fl(i) <f l ( j ) ] ,  and (by (,) of 25) w.l.o.g. 
(f~p~,~: r ( a n  0* : ( < ~) is the same for all. The rest should be clear. 

(2) What for 2a colours? Let pr(a, fl) be 0 if a<fl~-f~(O(ot, f l ))< 
fa(O(a, fl)), and 1 otherwise, and let e"(ct, fl) = a~ × pr(a, fl) + h(O(a, fl)). 

46. CLAIM. Suppose 2 = max pcf(a), a ~ U  '2, J~'~ is a-complete. Then 

Pri-(2, 2, ~). 

PROOF. For a < fl 

¢(c~,fl)= {01 
( V # ~ a)f~;~(#) < f~;~(kt), 

otherwise. 

For ? = 1, the proof  is similar to the proof  of 38 (usingf~*, but now we get only 
c* ÷ ~ mod J'S ,a, which suffice. For ? = 0, take a close enough elementary 
submodel M of (H(z), ~, < * )  of cardinality X, choose f l ( 1 ) < 2 ,  f l ( l ) <  
sup(M n 4) and then choose f l(0)E2 n M such that for ( < ~, 

f,,,o~,(O) < MiniM O (0 + 1) - f~p~,(0)] 

and is large enough. 

47. REMARK. (1) We can analyze rlc/J~ when K = I c I < min c, tr = of(c), 
2 ° < Min(c) define pcf, hence the fa,~ etc. This essentially is what is used in 
proving the bound on R} f~ when ~ < R6, 2 ~fo < R6. 

(2) A conclusion (of 25) is that for singular 2 > 2 cf~, there is a Kurepa tree 

for 2. 
Note 

48. CLAIM. If  Prl(2, X, a) and 2 x > 2 then Pr0(2, Z, 0). 

PROOF. AS in [Sh 6] - -  3.x (and explicitly in [Sh 1 l] 1.3). 

48A. REMARK. Note that our partition relations show that it is quite hard 
to get positive ones. 

A dight  strengthening of Todorcevic [T2] is 
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49. THEOREM. If2 ~ R ~  2, x minimal, then there are a 2 - L-space and a 

2 - S-space with x-directed nb basis for each point. 

PROOF. By the definit ion there are an a E I ~,2, supa < 2 ( 2 ~ <  2) and 

fa~l'Ia(a < 2 )  such that  for no  a < f l ,  fp _-< fa. For  repeating the Todorcevic  
proof [T2] we seemingly need also 

(,) for i t  E a ,  I {f~ t i t  + : a < 2 } l  < 2 .  

We can get it w.l.o.g, by 22, 25 (we get really more). 
In his proof a basis of  clopen neighbourhoods of  a is 

uo~ = {/~ <2: fp  _-<f~, fp tit+ = £  tIt+} 

for It ~ A  (thus we get a 2 - S-space). 
For  a 2 - L-space use as a basis of  clopen neighbourhoods of  a 

uo~ = (# <2  :£  _-< fp, fp tIt+ = L  tIt+). 

§7. On ~ - -  Lu ÷]o2 

5 0 .  LEMMA. Suppose b is a set o f  regular cardinals > 2 ~, I b I < x, b has no 

last element, ~ is a filter on b to which all cobounded subsets o f  b belong, 

(Vb ' ) [b ' c_b^  [b'l < I b l - - ' b - b ' ~ ]  

and it > (sup b) +, # regular, 0 < x. 

Suppose further 2 > It, f~ ~ lib for a < 2 and f~ < fp m o d  ~ for a < fl < 2. 
If ai c_ b for i < O, b - ai q~ 9 ,  [ i ÷ j =* ai N aj = ~ ] then  there is a sym- 

metric two place function e from 2 to 0 such that: 

If  k < co, ap,¢ ([3 < It, ( < k) are pairwise distinct ordinals < 2, k < co, 

h : {1 . . . . .  k}--- 0, then we can find fl(1) < . . .  < f l ( k )  < #  such that: 

(i) ap,).¢ < ap<2).¢ < " "  < ap<k),~for ( < k; 
(ii) for ((1) ¢ ((2) one o f  the following holds: 

(a) for 1, m = 1 . . . . .  k, apo).¢o > < ap~m),¢¢2~ 
(b) for l, m = 1 , . . . ,  k, apo),¢, ~ > ap<m),¢¢2f, 
(c) either 

O/p(I),((I) < ap(1)X(2 ) < o~p(2),~(l) < O~p(2),((2 )" • . 

o r  

O/p(l),~(2) ~ Ot#(1 ) ,£ ( l )~  0 /# (2 ) ,~ (2 )~  0t#(2),C(2 )" • . 

(iii) for I < m,  ( < k :  e(ap<l)¢, ap~.,> ¢) = h(l); 
(iv) for ((1) ~ ((2) < k, 
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o r  

(a) for I * m,  e(aao),w~ aa(,,,¢a) ~ = 0 

(b) for I < m, e(aa(t),w~ aa(=,,a) ~ = h(l). 

50A. REMARK. In (iv) there are some restrictions on {(¢(1), ¢(2)) : (iv)(a) 
occurs}; see the proof. 

PROOF. We define the colouring as follows: 0, e are symmetric functions; 

for a < f l  

O(a, fl) = Max{0 E b : f,,(O) > fp(0)} 

(O(a, fi) is undefined if there is no maximal such as 0), 

/0 ifO(a, fl)Ea~, 
e(a, fl) = otherwise. 

Suppose k < co, (ap.c: ¢ < k)  is a sequence of ordinals < 2 forfl < p such that: 

Ota(i).¢(l ) = ap(2),¢(2)~fl(1) = fl(2) ^ ¢(1) = ¢(2). 

Let  ¢)  = 

Let g be regular large enough, <x* a well ordering of H(X). 
Let (N~: i < r  +) be increasing continuous, II N, II = N, (H0c), 

E, <*) ,  (Nj : j  _-< i) E N~+ ~ and every subset of N~ +, ofcardinality _-< K belongs 
t o N ~ + l a n d b , ( f , : a < 2 ) , ( ( a p , g : ¢ < k ) : f l < p ) b e l o n g s t o N ~  Let N,:. = 

Choose f l ( . ) < p ,  f l ( . ) > s u p ( # n U i < , . N ~ ) .  For each ¢ < k  let b e =  
{ a E b  : f~(.).o(a)EU~<,+ N~ }, b c = b - b¢, a n d f ~ ' , f f  be defined by: 

dom f~' = b ~, 

f ? ( a ) - - M i n { j : j E  U Ni,j>f~(,),o(a)}, 
i<g+ 

dom f f  = b, 

. f ~- = f ?  U (f~(.),C) r be). 

Clearly for some successor i ( . )  < x +, rangf~ + __ N,(.) for every ¢ < k, hence 

(f¢+ : ¢ < k) ENi(,). 
Let, for ¢(1) ÷ ¢(2) < k, c¢o),¢(2) -- {a E b : f~(.).co))(a) = f~(,).ca))(a)}. For 

a E b  let 
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N~'+t = Skolem Hull in (H(x), ~, < * )  ofN~+t  U {f,~(,).o(a)" ~ < k}, 

Ng = U 3/7+1. 
i<g 

We can find fl(i, a ) E g  n N~.)+~+: such that 

(a) f,~o,o),O(aO = f~(.),o(a) for ~ < k, 
(b) = for ¢ < k, 

(c) sup(f  ?(z) N Ni(.)+~+0 <f,~(i,,,),¢)(z) < sup f~*(z) N N~(.)+,+~ for ( < k, 

r ~ b  - be - a +. 
(d) fo~p{.),¢,)(Ot)<f,~¢.~,¢9(02) ifff~(i,o),¢o(O0 <f~0,,),¢~(02) for any {t, ~2 < 

and 01, 02 ~ b. 

Now suppose it < i2 < i(.) ,  and ~t, {2 < k and a2 < at ~ b - U¢ be and we 
shall check the color of ae{,,,,,),¢,, ae¢i,,o,),¢,. 

Case I: {t = ~2 = ~. 
Easily 

be c {z: f~(,.,~.),o(z) = fa$(,~o~,o(z)} C_ b¢ U (b 0 a2+), 

{a2} C {z'f~(i.,¢,),¢)(z)> f~(,~,¢)(z)} __ {a~} U (b n a2). 

So e(ap(,,,oo,¢,, ap(,,,o,),¢) = h (az). 

Case H: ~t # ~2. 

__ (be, n b¢2 n c¢,,¢) U (b n a2), 

(z • b" f¢+, (T) > f~(z)}  U {a=} C_ {z : f~(i,,o,),¢o(z) > f~<i~o,~,¢~(z)) 

_ _  " + + C ( z ~ b  f ¢, (z) > f ¢2 (r)} tO (a2} O (b N a2). 

N o w  c h o o s e  i ( . )  < il  < • • • ik </¢+, a l  > • • • > ak i n  b - U¢ b c, s u c h  t h a t  i f  

{a" fc~o(a) > fc~2)(a)} is bounded in b then ak is a bound. Now {apti,,o,),¢ : 1,(} 
are as required. 

51. LEMMA. Suppose b, x, 9 ,  IZ = (sup b) +, 2, f ,  (a < 2) are as in L e m m a  
50, and suppose further that for a E b, { f~ r (b N a) : a < 2 } has cardinality < a 
(see 22, 25 for such cases), and ~ < x +, ( V a E b)( V 0 < a)[0 m < a]. 

(1) For e very A c_ 2, I A I = #, there is bt E ~ such that: 
for every k < w ,  m < co andone to one functions ht : {0 . . . . .  k - 1 } ~ m and 
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Minb  = a o < a 2 <  . . .  <am from b~ there are ao < Cq < . . .  < Ctk_l from A 
such that for i < j < k: p < m 

( v  a bObf,,(a) = £ , (a ) ] ,  

( V a ) [ a ~ b  A a~b~ ^ aE[ap, ap+~)~ f~,(a) < f~j(a)=--hp(i) < bp(j)], 

(~' a)[a E b ^ a ~ bl A a > am -" f,,,(a) < f~j(a)]. 

(2) For every ~ < x  +, a#,¢ (fl < # ,  ~ < ~ )  distinct ordinals < 2 ,  r ( , )  < x  +, 
the following holds: 

For some be • ~ ,  f~+ : b --* ord (for ~ < ~): 
For every sequence {kr{b °, b~ : r < r)) such that k,  < 09, b°r is a strictly 

increasing function from kr = { 0 , . . . ,  k; - 1 } to ordinal [r ÷ s 
rang(br °) f~ rang(b °) = J~ ], b'r a strictly decreasing function from kr = 
{ 0 , . . . ,  k~ - 1} to b there are fl(r)(r < r(,)) , from A,  such that: 

(a) r < j  < i(0)=~ p(r)  < f l ( s ) .  
(b) Let ~(1), ~ (2)<~ ,  i < j  < i(,) ,  

{a • b : f~(n,¢(o(a ) = f~(s),¢(2)(a)} 

= be(,) N be(=) ¢3 {a  • b : f~ . ) (a )  = f & ) ( a ) } .  

(c) Let ((1), ((2) < ~, r < s, a • b, i f f  ~,)(a) < f &)(a) then f<e(n.¢o))(a) < 

f~(,),:(2))(a). 
(d) Let ~(1), ~(2) < ~, r < s ,  a e b , f  (o)(a) = f&)(a);  i f  aebc(2 ) - b¢( o then 

f~(n,¢(o)(a) < f~(~),¢,))(a) while i f  a • b~( 0 - be(2) then f~(,),¢o))(a) > 

f~(,),¢(2))(a). 
(e) Let ~(1), ~(2) < ~, r < s, a • b - be( 0 U b~(~), andf~(o(a) = f&)(a).  
I f l  ~ k,m <= kj, h)(l) <= a < h)(l + l), h:(m) < a < h~(m + l) (stipulating 

h, ~ (kO = sup b), then 

f,,o,(n,~.,(o') < f,~(~),¢(~))(a),~ h°, (l) < h°(m). 

51A. R~MnRK. The proof gives more than stated in the lemma. 

PROOV. (1) Follows by 2. 
(2) Let a~,~ (fl < # ,  ~ < ~) be distinct ordinals < 2 (for some ~ < x+). As in 

the proof of Lemma 50 we choose Z, < * ,  (N~ : i < x +), and then fl(,)  < p, be, 
g f ? , f ~  for ~ < l a n d  i(,).  Note 

(.) i f a • b , a ~ < 2 f o r ~  < ~ , f = ( f . , t  a :~  <~);  
N,+t[f]  is the Skolem Hull of IN~+~I {f}, and 
O • b  - U t a  + then sup(0 n = sup(0 n N +0. 
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b, ,  b, r < r( . ) ) .  We shall show that  be, f~- ((  < ~) are as required,  so let (k,,  0 ~. 
W.l.o.g. each br ° is into {i + 1 " i ( , ) < i  < x + } .  N o w  for each r < r ( , ) ,  we 

define fl(r, l), l = 0 . . . . .  k~ by downward  induc t ion  on I. For  l -- k~, #(r ,  l) = 
fl(.).  I f # ( r ,  l + 1) is defined, let: N~,t be Skolem Hull  of  

N~°(o[(f,~(,,t+ t),¢) t h°(l) " ~ < ~)1 

and /e t :  fl(r, I)EN,.t  fl It be such that  

(f~(,.0,¢) r h°(l) " ~' < ~J) = (f~(,,t+ l),¢) t h°(l)" ~ < ~), 

A 
¢<~ 

( V a E b¢)f~(,,o,¢)( a) = f~(,,t + ,).¢)(a) = f,~(.),¢), 

A ( V a E b  - b¢)[f,~(,,o.¢)(tr)q~N~o_d, 

A ( V tr ~ b - be - h°(l))[ V y ~ o n Nh,o(l)(fo~(r,l),¢)(a) ~ 7 ~ f ~  (tr) <- 7)]. 
¢<¢ 

There  is no problem,  and this suffices. 

52. CONCLUSION. U n d e r  the assumpt ions  of  L e m m a  51, 2 --- Lu] 2. 

53. CONCLUSION. If, in L e m m a  51, 0 > k, k < to, g = (sup b) ÷ then there 
are Boolean algebras B ~ , . . . ,  Bk such that  

(i) each Bt satisfies the # ÷-c.c., and  even 

H B~ satisfies the/~+-c.c. 
i ~ I , k  

i ÷ l  

(ii) IIk_~ B~ does not  satisfy the 2 +-c.c. 

PROOF. Let e be a two place funct ion f rom 2 to 0 as there. For  I = 1 , . . . ,  k 
let Bt be the  Boolean algebra generated freely by {x#:fl  < 4} except that  
x# t~ xy = 0 when e(fl, 7) = I. Also the rest is as in [Sh 7] 1.10. 

§8. N~o < N(:o)+ revisited 

We can generalize the in format ion  on Ha  to more  sets. 

54. DEFINmON. ( l)  p ,3=  {A :A __. R~'Z, M i n A  > IA I ~} (x will be fixed 

below). 
(2) pcf~(A) = I,.J{pcf(b) : b __. a ,  Ibl < x} = {cf(IIA, < ~ ) :  ~ E u f ~ ( A ) }  

where 
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fl'~(A) -- { ~  : ~ a filter on A, Min{ [ b [: b ~ ~}  _-< x}, 

ufK(A) = { ~ f l ' ( A )  : ~ an ultrafilter on A }. 

(3) For f ,  g~rIA,  A EU'3, f<~,Kg ifffor every b E[A] K, 

[b K,b ~J<~÷ = , f t b  < ~  g t b]. 

55. Ct,AIM. (1) ForA E l  K'3, IPcf'(A)[ < IA I K + 2 ~. 
(2) For A E p,3, 2 ~ pcf(A), we can define (f~,~ : a < 2 ) such that: 

(i) a < , a ~  f'~,~<a,Kf~, 
(ii) for every g E HA for some a < 2 

g 

(3) For A E U  '3, 2 ~pcfK(A) there is B -- B~ such that 
(i) BC_A, 
(ii) for every a E [A ] ~" 

r a  l x a n B  a ~J:~+ ~,a - B C . 

(4) For A ~ I  '~'3, and 2 and a ~[A] __.K: max pe f ( a )<  2 ~ a  is in the ideal of 
~(A)  generated by {Bu A :/z E2  M pcf~(A)}. 

(5) I fA = {0: R. < 0 < R6, 0 regular}, R~ < R6, then pcfK(A) has the form 

{0: R. ~ 0 < R r, 0 regular} for some Z. 

PROOF. (1) Easy. 
(2) We define by induction on a < 2 ,  a function f*=f~,a,~IL4 and 

(~,~ : a E L ) where 

L ={a:a~[A]<-'K, aEJ~a÷ - J ~ }  

such that 

(a) f~,~ t a < f *  t a for a E L ,  
(b) a< ?'. <2  for a E L ,  
(c) for fl < a, a E L ,  f~' t a < f'~'~ mod J ~ .  

There is no problem to do it [for each a, first choose (?a : a E L ) such that (b) 
and (c) are satisfied, next choose f *  such that (a) is satisfied; this is possible as 
MinA > IA I K > [L [, each OEA regular]. Now ( f *  : a < 2 )  is as required. 

(3) Let ( f ~  : a < A ) be from (2). For every a EL i  = {a ~ [A ] -<K : a ~ J ~ +  }, 
we can find ha E Ha such that, for every a < 2, h, ~f~.~ t a rood J ~ .  

We can define h ~ HA, 

h(O) = sup[{0} O {h, (0)  : OUa GL~}]. 
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Now for every b~_L for some Yb < 2 ,  h t b <¢~,b m o d J ~ .  Let 7(*)= J 2,7b 

SUPbeL 7b < 2, SO for b ~ L ,  h t b <~,j~,~.). Let B = {0 EA : h(O) < f~,~.)(0)}. 
(4) Easy. 
(5) By 5(2). 

56. REMARK. By [Sh 5] (R~)at<R06ff,)+ and when Rffr)<R,+~, 
(R~+6) ef~ < R~+(I,~(5 +. 

ef6 57. THE SIMPLER PROOF OF (Ra+6)  I~1 < Ra+(2,',)+ WHEN R a < Ra+ J. 

Let x = 18 I, and 8 a minimal counterexample. The case 8 = R~+6 is unreal 
so let 8 < R~+6. For some a~, 8~, 8 =a~+8~ ,  I~ll < 1~,+~,, a~ limit or zero 
and [Sll'~<R=, or 8~=o9. If  (R,+=,)~>R~+6 we can finish easily. So 
w.l.o.g. (remember R~+I<R~+R=+t)  I~I~_-<RL Let /~--(R=) ~, a - -  
{2 :/t + < 2 < R~, 2 regular}. So I a I < 181 < Ro < # < Min a, so 16 applies. 

Let (f~'i~, ~ : a < 2) be as in Claim 55. 
Let X be regular large enough, < *  a well ordering of H(X). For each 

x _ R~+6, Ix l _-_ xwe  define by induction on ( < / t  +, N~' such that 
(a) N~' < (n(z), e,  <?) ,  
(b) II N~' I[ = # , #  + 1C_N~,xeN{,  (f'~,:: < X ) : 2 e p c f a e N { , A e N ~ ,  
(c) (N{: ~ < # +) is increasing continuous, 
(d) (N~': ~ < ~ ) e N g + , .  

As # + 1 _C N~', pcf(A)~N~' clearly pcf(a) __ N{. Let ch'{ is the function with 
domain a, ch'~(O)=sup(ONN'~), it is < 0  as IN~I < / t  + = M i n A  hence 
ch'{ ~ Ha. So for each 2 ~ pcffa) and ~, for some a~ (x, ()  < 2 (letting b -- b~.~) 

b,r < b r = fa.7,~x.C) f ~,~,¢) < ch{ r b mod J~'~. 
Let 

N~,+ = U N'~, ch~,+(O) = sup ch{(O) = sup(N~'+ ('I 0). 
¢<u + 

Let aa(x) Ucaa(x,  ~). So easily ch~+ t b b.~ ~,b = ~ = fa,~,tx) mod J<a. So 

h 

1-~ J~,,.~tx) r b t n  cl 

where (bl, c1" l = 1, x) depend on x. So the number of possible ch~,X÷ is 
< sup pcfa  which, by 55(5), is < R~+t2,%+. Now ch~+ determines N~+ A R,+6 
as  

(*) i f M ~ , M 2 < ( H ( x ) ,  ~, <*) ,  /z+C_Mt, ciEMt, 
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for each 0 CA, sup(nl  N 0) = sup(M2 N 0), it has cofinality > R0, and both M~ 

and M2 contains a club for it then M~ f~ R6 = M2 f~ R~, so we finish. 

58. TnF.OREM. Suppose cf(6) = x, (V i < 6)(R~ < R6), 

dcf 
/~ = I R6 N R~I < R6 then R~ < R6+~,~+. 

59. REMARK. If R6 is minimal such that R 6 = 6 ,  r = R 0  then 

R6 f3 Ri~ - (2~o) + = {0 : 0 = c f0  = 0 ~o, 2 ~o < 0 < R~}. 

60. PROOF. Either imitate proof of  the bound or show inductively that 

I N~ ~ R~ I ~ _-< 161 ~. 

61. TnEOR~.M. I f  S = {6 < R2 : cf6  = No, R~o < R~+o,,} is stationary, 
2 ~, < Ro,~ then R~ I < Ro,~. 

PROOF. By 63. 

62. THEOREM. Suppose cf(6) < 0 < x, and for every a c_ R K,2 f~ Nt, 

[ la l  --< 0 = ,max pcf(a) -< R6+~.)] 

where a(.) < 0 +, and 2 ~ < R~. 

Then for some ? <6,  every a c_ R ~,2 N [R r, R6), 

[ la l  < x= ,  max pcf(a) _-< R6+o~.)]. 

62A. REMARK. If (R6) ° < R(~+r), the assumption holds3 ~) 

PROOF. Now let A _CR~N[(2~)++,R6] be a set of  cardinality _-<x, 

(f,~o: fl < 2 )2 E c  de__r {R6+p+~ : fl < a(*)} are well defined. Now i f f ~ I I A  for 

each 2 for some fl(f, 2) < 4, A 0 f < a , o f a ~ ) .  If for e v e r y  finite w C c, 
.4,0 f ~ M a x a e ,  f~,atrz) then there is a(w)EA which exemplifies it. Now let 

b = I,J{a(w) : w ___ c; w finite}. 

F o r f t  b we can find a w, hence we have shown cflIA < R~+~); this shows the 

desired conclusion. 

63. THEOREM. Suppose c f x  = x > 0,/z <~ < R~, cf#  --/z and 

$1 -- {6 < / t :  (R6) ° < R(6+o+), cf(6) = O} 
or 

(6) We can, in the assumption, restrict ourselves to [Ra, R6) _D a for some fixed a < J.  
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S~ = {0 < I t :  c f J  = 0 and for some a < O and ? <I t ,  for every a ~ R  °a, 

a ___ [R~, R~]=omax pcfa  < R~} 

is stationary. 
Then for every a <It,  (R.) <~ < R~. 

64(1). REMARK. In the definition of S we need just the conclusion of the 
last theorem. 

PROOF. Let a(*) be minimal such that (R~.))<~ > R~, (assuming that the 
theorem fails). So R~.) >i t<~,  hence a(,)  is limit, [a < a(*)=* R~<'~< R~]; but 
(;{<~)<~=Z <~ (as x is regular) so [a<a(*)=*R~<~<R.~.)]. So necessarily 

el(a(,)) < x, and (R~.)) ~f(*~')) > R~ so x > tr '~f cl(a(,)). By the last theorem and 
Fodor we know that for some J ( , )  < i t ,  > a(,),  S is stationary where 

S = {J < g : el(J) = 0, R~ > It ' ,  and sup pcf°(R, +t : J(*) < ? < J} < R~ }. 

Let for J -<9, A(J) -- {R. : i t °+  R6(.) < R. < R6, R. regular}. Let Z be regular 
clef 

large enough, N¢ < (H(z), E, < * )  for ~ <go+, go = I t°+ R~(.), go+ ___N e, 
(N¢:~ < ~)~Nc+l ,  and ( ( ( f ~ . ~ ) ' ° : a < 2 ) : 2 ~ p c f ' A ( J ) ) : J E S )  belongs 
to No, as well as letting B = { R ° : R ,  regu la r<R,~ . ) ,R~>/~+2°} ,  

BJ¢ • ( ( f a , . .  a < 2)"  2 ~ pcfB)  and II N~ II -- go+. 
Now (if a > R0 by 12 (holds if S~ is stationary) and if a = Ro by [Sh 5] Ch 

XIII (or see 65 below)) we know that, for every fl < a(,)  for some ap E R  °'2, 
ap __. ~ ' ,  R~.)) and Rp + l E pcf(ap). Let W - {fl < It : fl ~ J(,)}. 

Let g be the function: g(O)ffi sup(0 f~ UeNc) for 0ELuo ++, Rj,). For each 
f i e  Wlet  bp __.B be maximal s.t. 

Now there is a set wo C_ W of cardinality ~ I B [ =< I a(,)  I < It such that 

U{b~: f l~wo} -- U{b~: fl ~ W}. 

Choose ? ~ S ,  ), > 6 ( , ) ,  ? >sup(w0) and (note: C is a club of/~ as S ~ i t  is 
stationary) 

? E C  deal {j  < i t  : i f a  C_ R tq [R~(.), R~), [al -< a, sup a < R6, then 

sup pcl(a) < R6}. 

So there is w _ w0, I w I ~ a, s.t. b r _ Upe,  bp. 
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Let c~=supw, a={Rp+~: ,a~w} ,  a*=pcf(a) .  Note that aC_a*CC. 
[R6t.~, R~), hence we know that pcf(a) has a bound < R r (and l a I < tr) so there 
are 0(7, 1 ) , . . . ,  0(~,, ~/), bL. • •, b~ s.t.: 

(i) 0(7, l )Ea*,  
(ii) bT c_ a, 

A(~ o (iii) g r a* = U~.~ fo~r,I~o~r>o r bL 
So from the information in (i), (ii), (iii) we can reconstruct g r (U{bp : fl E w}), 
hence g r a r, hence g(Rr+~). But we could easily choose the Nc's so that this 
fails (for all possible 7's). 

64(2). REMARK. An instance of 64 for R.  is: suppose 

S = {t5 < co~" if ~ is an ultrafilter on {R,+~ : a < c~} 

containing every cobounded subset then cf (1-I R~+g/~) < R,~,} 
\a<6 / 

is stationary and 2s0 < Ro,, then R~0 < Ro,,/7) Similarly for 62. 

During this proof we have really showed, e.g., 

64(3). FACT. Suppose a ER ~'2, 2 Epcf(a) , / t  = sup(2 f~ pcf(a)),/~ a limit 
cardinal, c f / t > l a l ,  and let /z=l , .J{/ t~:i<cfl t},  ( /z ; : i<cf /~)  strictly 
increasing continuous. Then 

{6 < cfg : for some X < ~6, max[peg[x,/z6) tq pcf(a))] < 2 } 

is not stationary 

64(4). FACT. Suppose/t = sup(a), a E R  ~,2, 0 </¢, and for every b _c a, 
I b I --< 0 we have: 

(*)b {2: for some ultrafilter 
tcf(Ila, < ~ ) =  2]} has cardinality _--< 0, 

then ( * )a. 

on b, [for Z < / t ( a - z ) ~ = *  

65. PROOF OF (R6)~f6(Rti6t,5+/s) We shall rely only on §1 and §3. Let x = cfJ ,  

(" Just let/* = x = Rt, 0 = R 0 ($2 stationary). Note that in the definition of  S, we can replace 
" <  R,~" by " <  Rrt~)" for some y(J) < tot, as the set of such eofinalities has a last element. 

(8) The proof of  (Ra+~) a~s) < Ro+061a). when R. a(6) < R.+s is similar. 
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( i )  

(ii) 
(iii) 
(iv) 
(v) 

Easily 

the case I J [~ ->- R6 is easy so w.l.o.g. 2 ~ < R6, I J I x < Ra. Let # ~f (1~ I~) +. Let, 
for a ~ R  ~,z, a __ Ra, ((f~;g : < / l )  : 2 ~pcf(a) )  a s in  16. 

Let, for every limit ordinal ot < R6, C~ be a club of a of  order type cf(a). Let 
M be a model with universe R6, and functions f ,  g s.t. for every a < R6 

{j8 : j~ < a )  = {f(a, i ) : i  < I~1}, 
for i < I o~l, g(a, f (a ,  i)) = i, 

for # < a, f (a ,  g(a, #)) = #,  

f(a,  ~ ) =  la l ,  
g(a, a) = a + 1. 

(.), if M * < M ,  Y _ M *  and for every 0>_-R0, [0 ,0  + ) N M * ÷ ~ = .  
sup(Y M 0 +) -- sup(M* N 0 +), then M* is the Skolem Hull of Y in M. [Other- 
wise let a be minimal in M* but not in the Skolem Hull of  Y, let 0 -- I a I, so 

there i s / / E  Y N 0 + _ M*, a </~ and let i de__f g(p,  a), SO necessarily i E M *  (as 

fl, a ~ M * ) ,  but i < 0 < a so by a's minimality i is in the Skolem Hull of  Y; but 
then so is a = f(fl, i), contradiction.] We know that for some ordinal ~(,)  < 

(IJl~) + 

(*)z 

Let 
for a ~ R  ~'2, a _ [g+, R6)=* max pcf(a) < Rot.) (by 10(4)). 

f 
F = t f :  Dom f =  a E R  x'2 for some r / <  O9, 

pairwise disjoint bl, • • •, bn ~ R  ~'2 f~ [#+, R6), 

and regular ;h . . . .  , 2 n  < R~¢.) and al < 2 1 ,  • • • ,  an < A n :  

(_J b, = a, f= U (f ,~.:, r b,)~ . 
I--I I--I J 

Clearly 

(*)3 

Let X 
s.t.: 

(a) 
(b) 
(c) 
(d) 

IFI ~ Re(.). 

-- (22~') +. Now for every x c R6, Ixl _-<x, we can choose (Nr:  i _-<#) 

N: < (H(x), (~), 

j < i=. N; < N:, 

II N: II =/~, 
(NsX:j <=i)~N:, 
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(e) { . :  ~ =<it} c_ N~', 
(f) ( ( f~;~:a<A) :2EPcf(b)andbER~'2nLu+,R6),  Ibl ~ x ) ~ N o ,  
(g) (C~ : a < R61imit) ~N~ ,  
(h) M e N ~ ,  
(i) x ~ N~ (hence x __. N~'). 

Let for i < (15 I~) +, g~ = ~ be a function with domain R *,° n (~, R~), gi(O) = 
sup(0 n N~). By 27, for every a E R  ~,2, a _  (~, R~) and x E p c f ( a )  we have 

g~ ~ b~ ~f~:g~) ~ b~ mod Y~' .  Hence (see 27) 

(*)4 for a __. R *'2 n ~ + ,  R~), g, ~ a ~ F ( a n d  a ~I*a). 

It is also quite clear that for O ~ R * , z n ~ ,  R6), (g~(0): i < i t )  is strictly 
increasing continuous, so for i limit cf(g~-(0)) = cf i > R0 so 

Cx,o = C~o) n { ~ ( 0 ) :  i < i t }  

is a club ofg~(0) and is included in N;.  
Now we can define M. ~ by induction on n s.t. 
(a) M~ < M ,  IM.~I _CN~, 

q~) II M.  ~ II = ~, 
(7) MX < MX+l, 

(a) x C M~, 
(e) ifit  < R~+~ < R 6, IM~'I n [R~, R~+0 ÷ ~ then for some y(x, R~+I, n ) ~  

Cx,~.+, n MX+l 

?(x, R~+ ~, n ) >  sup(R.+, n g.~). 

There is no problem to carry this. 
Let a (x) = ( R~ + ~ : it < R~ + l < R~, and for some n [R~, R~ + ~ ) n M. ~ 4: ~ }, 

so a(x) c_ R ~,2 n Lu +, Ra) (there is no weakly inaccessible in L u+, Rn)!) and let 

Yx = {7(x, ~a+l, n):  n < to, [~a, Ra+l) n Mr.* ¢: 0}. 

Now Y~ has cardinality r ;  it is a subset o f M  x d,f U .  MJ so by (*)~ 

(*)4 

Now 

(*)s 

(*)6 

M x is the Skolem Hull in M of (M x n it +) u Yx. 

~x -- UoEa(x) Cg~(o), 

IUo~,(,)Cg~o)l ~it. I Y, I--<~. 

Now 
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I { Y , : x  c R~, Ixl _-__x}l 

~ l { ( g ~ ' a ( x ' , { z : z C - o U )  

_-__ IFI X/~ ~ <  IFI X/~ < Ret. ). 

So if R,~ > Ret. ), necessarily for some Y 

I{x" Yx = Y}I>R~(.) 

and easily, for some A c_/t, 

[{x: Yx = Y ,M x (3# =A}[ >Ret.  ). 

But x _ M x, II M~ II --< x, 2 ~ < Ret.); contradiction. 
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