Groupwise density cannot be much bigger than the unbounded number

Saharon Shelah∗

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
and Department of Mathematics, Hill Center – Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

Received 1 June 2007, revised 17 September 2007, accepted 18 September 2007
Published online 1 July 2008

Key words Cardinal characteristics of the continuum, unbounded number, groupwise density.
MSC (2000) 03E17, 03E05, 03E20

We prove that \(g \) (the groupwise density number) is smaller or equal to \(b + \), the successor of the minimal cardinality of an unbounded subset of \(\omega \). This is true even for the version of \(g \) for groupwise dense ideals.

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In the present note we are interested in two cardinal characteristics of the continuum, the unbounded number \(b \), and the groupwise density number \(g \). The former cardinal belongs to the oldest and most studied cardinal invariants of the continuum (see, e. g., van Douwen [9] and Bartoszyński and Judah [2]) and it is defined as follows.

Definition 1.1
(a) The partial order \(\leq J_{bd} \omega \) on \(\omega \) is defined by
\[
f \leq J_{bd} \omega g \text{ if and only if } (\exists N < \omega)(\forall n > N)(f(n) \leq g(n)).
\]
(b) The unbounded number \(b \) is defined by
\[
b = \min \{|F| : F \subseteq \omega \text{ has no } \leq J_{bd} \omega \text{-upper bound in } \omega \}.
\]

The groupwise density number \(g \), introduced by Blass and Laflamme in [4], is perhaps less popular but it has gained substantial importance in the realm of cardinal invariants. For instance, it has been studied in connection with the cofinality \(\text{cf}(\text{Sym}(\omega)) \) of the symmetric group on the set \(\omega \) of all integers, see Thomas [8] or Brendle and Losada [5]. The cardinal \(g \) is defined as follows.

Definition 1.2
(a) We say that a family \(A \subseteq [\omega]^{\aleph_0} \) is groupwise dense whenever
\[(a1) \ B \subseteq A, B \in [\omega]^{\aleph_0} \text{ implies } B \in A;
(a2) \text{ for every increasing sequence } \langle m_i : i < \omega \rangle \in \omega \text{ there is an infinite set } U \subseteq \omega \text{ such that}
\[
\bigcup \{[m_i, m_{i+1}) : i \in U\} \in A.
\]
(b) The groupwise density number \(g \) is the minimal cardinal \(\theta \) for which there is a sequence \(\langle A_\alpha : \alpha < \theta \rangle \) of groupwise dense subsets of \([\omega]^{\aleph_0}\) such that
\[
(\forall B \in [\omega]^{\aleph_0})(\exists \alpha < \theta)(\forall A \in A_\alpha)(B \not\subseteq^* A).
\]
(Recall that for infinite sets \(A \) and \(B \), \(A \subseteq^* B \) means \(A \setminus B \) is finite.)

∗ e-mail: shelah@math.huji.ac.il
The unbounded number b and the groupwise density number g can be in either order, see Blass [3] and more Mildenberger and Shelah [7, 6], the latter article gives a bound on g. However, as we show in Theorem 2.3, g cannot be bigger than b^+.

Notation 1.3 Our notation is rather standard and compatible with that of classical textbooks on set theory (like Bartoszyński and Judah [2]). We will keep the following rules concerning the use of symbols.

1. A, B, \mathcal{U} (with possible sub- and superscripts) denote subsets of ω, infinite if not said otherwise.
2. m, n, t, k, i, j are natural numbers; $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \xi$ are ordinals, θ is a cardinal.

2 The result

Lemma 2.1 For some cardinal $\theta \leq b$ there is a sequence $\langle B_{\zeta,t} : \zeta < \theta, t \in I_\zeta \rangle$ such that the following hold:

(a) $B_{\zeta,t} \in [\omega]^{\aleph_0}$.

(b) If $\zeta < \theta$ and $s \neq t$ are from I_ζ, then $B_{\zeta,s} \cap B_{\zeta,t}$ is finite (so $|I_\zeta| \leq 2^{\aleph_0}$).

(c) For every $B \in [\omega]^{\aleph_0}$ the set $\{ (\zeta, t) : \zeta < \theta \& t \in I_\zeta \& B \subseteq B_{\zeta,t} \}$ is of cardinality 2^{\aleph_0}.

Proof. This lemma is a weak version of the celebrated base-tree theorem of Bohuslav Balcar and Petr Simon with $\theta = \omega$ which is known to be $\leq b$, see Balcar and Simon [1, Theorem 3.4, p. 350]. However, for the sake of completeness of our exposition, let us present a proof.

Let $(f_\zeta : \zeta < b)$ be a \leq_{pab}-increasing sequence of members of ω^ω with no \leq_{pab}-upper bound in ω^ω. Moreover we demand that each f_ζ is increasing (clearly, this does not change b). By induction on $\zeta < b$ choose sets T_ζ and systems $\langle B_{\zeta,\eta} : \eta \in T_{\zeta+1} \rangle$ such that the following hold:

(i) $T_\zeta \subseteq \zeta(2^{\aleph_0})$, and if $\eta \in T_{\zeta+1}$, then $B_{\zeta,\eta} \in [\omega]^{\aleph_0}$.

(ii) If $\eta \in T_\zeta$ and $\varepsilon < \zeta$, then $\eta \cap \varepsilon \in T_\varepsilon$.

(iii) If ζ is a limit ordinal, then

$$T_\zeta = \{ \eta \in \zeta(2^{\aleph_0}) : (\forall \varepsilon < \zeta)(\eta \cap \varepsilon \in T_\varepsilon) \& (\exists A \in [\omega]^{\aleph_0})((\forall \varepsilon < \zeta)(A \subseteq B_{\varepsilon,\eta}(\varepsilon+1))) \}.$$

(iv) If $\varepsilon < \zeta$ and $\eta \in T_{\zeta+1}$, then $B_{\zeta,\eta} \subseteq B_{\varepsilon,\eta}(\varepsilon+1)$.

(v) For $\eta \in T_{\zeta+1}$ and $m_1 < m_2$ from $B_{\zeta,\eta}$ we have $f_\zeta(m_1) < m_2$.

(vi) If $\eta \in T_\varepsilon$, then the set $\{ B_{\varepsilon,\nu} : \eta < \nu \in T_{\varepsilon+1} \}$ is an infinite maximal subfamily of

$$\{ A \in [\omega]^{\aleph_0} : (\forall \varepsilon < \nu)(A \subseteq B_{\varepsilon,\eta}(\varepsilon+1)) \}$$

consisting of pairwise almost disjoint sets.

It should be clear that the choice is possible. Note that for some limit $\zeta < b$ we may have $T_\zeta = \emptyset$ (and then also $T_\zeta = \emptyset$ for $\xi > \zeta$). Also, if we define T_\emptyset as in (iii), then it will be empty (remember clause (v) and the choice of $\langle f_\zeta : \zeta < b \rangle$).

The lemma will readily follow from the following fact.

Fact 2.2 For every $A \in [\omega]^{\aleph_0}$ there is $\xi < b$ such that $| \{ \eta \in T_{\xi+1} : B_{\xi,\eta} \cap A \text{ is infinite} \} | = 2^{\aleph_0}$.

To show Fact 2.2 let $A \in [\omega]^{\aleph_0}$ and define

$$S = \bigcup_{\zeta < b} \{ \eta \in T_\zeta : (\forall \varepsilon < \zeta)(A \cap B_{\varepsilon,\eta}(\varepsilon+1) \text{ is infinite}) \}.$$

Clearly S is closed under taking the initial segments and $\emptyset \in S$. By the “maximal” in clause (vi), we have that

(i) if $\eta \in S \cap T_\zeta$, where $\zeta < b$ is non-limit or $\text{cf}(\zeta) = \aleph_0$, then $(\exists \nu)(\eta \cap \nu \in T_{\zeta+1} \cap S)$.

Now if $\eta \in S$ and $\text{lg}(\eta)$ is non-limit or $\text{cf}(\text{lg}(\eta)) = \aleph_0$, then there are $<\text{-incomparable } \nu_0, \nu_1 \in S$ extending η, i.e., $\eta < \nu_0$ and $\eta < \nu_1$. [Why? As otherwise $S_0 = \{ \nu \in S : \eta \leq \nu \}$ is linearly ordered by $<$, so let $\nu = \bigcup S_\mu$. It follows from (ii) that $\text{lg}(\eta) > \text{lg}(\nu)$ is a limit ordinal (of uncountable cofinality). Moreover, by (iv) + (vi),

$$\text{lg}(\eta) \leq \varepsilon < \text{lg}(\vartheta) \Rightarrow A \cap B_{\text{lg}(\eta),\vartheta}(\text{lg}(\eta)+1) = A \cap B_{\varepsilon,\vartheta}(\varepsilon+1)$$

Hence, by (iii) + (ii), $\vartheta \in T_{\text{lg}(\eta)}$, so necessarily $\text{lg}(\vartheta) < b$. Using (vi) again we may conclude that there is $\vartheta' \in S$ properly extending ϑ, getting a contradiction.]
Consequently, we may find a system \(\langle \eta_\varrho : \varrho \in {}^\omega \omega \rangle \subseteq S \) such that for every \(\varrho \in {}^\omega \omega \)
1. \(k < \text{lg}(\varrho) \Rightarrow \eta_\varrho k < \eta_{\varrho+} \).
2. \(\eta_{\varrho^{-} }, \eta_{\varrho^{-} (1)} \) are \(\leftrightarrow \)-incomparable.
For \(\varrho \in {}^\omega \omega \) let
\[\zeta(\varrho) = \sup \{ \text{lg}(\eta_\varrho) : \varrho \subseteq \nu \in {}^\omega \omega \} \].
Pick \(\varrho \) such that \(\zeta(\varrho) \) is the smallest possible (note that \(\text{cf}(\zeta(\varrho)) = \aleph_0 \)). Now it is possible to choose a perfect sub-
tree \(T^* \) of \({}^\omega \omega \) such that
\[\nu \in \lim(T^*) \Rightarrow \sup \{ \text{lg}(\eta_\nu n) : n < \omega \} = \zeta(\varrho). \]
We finish by noting that for every \(\nu \in \lim(T^*) \) we have that
\[\bigcup \{ \eta_\nu n : n < \omega \} \in T^*_\zeta(\varrho) \cap S \]
and there is \(n^\ast \in T^*_\zeta(\varrho) + 1 \cap S \) extending \(\bigcup \{ \eta_\nu n : n < \omega \} \).

Theorem 2.3 \(g \leq b^+ \).

Proof. Assume towards contradiction that \(g > b^+ \).
Let \(\langle f_\alpha : \alpha < b \rangle \subseteq {}^\omega \omega \) be a \(\leq \text{cf} b^+ \)-increasing sequence with no \(\leq \text{cf} b^+ \)-upper bound. We also demand that all functions \(f_\alpha \) are increasing and \(f_\alpha(n) > n \) for \(n < \omega \). Fix a list \(\langle \vec{m}_\xi : \xi < 2^{\aleph_0} \rangle \) of all sequences
\[\vec{m} = \langle m_\ell : \ell < \omega \rangle \]
such that \(0 = m_0 \) and \(m_\ell + 1 < m_{\ell+1} \).
For \(\alpha < b \) we define:
\[n_{\alpha,0} = 0, \quad n_{\alpha,\ell+1} = f_\alpha(n_{\alpha,\ell}) \quad (\text{for } \ell < \omega), \quad \vec{n}_\alpha = \langle n_{\alpha,\ell} : \ell < \omega \rangle; \]
\[\vec{n}_0 = \langle 0, n_{0,2}, n_{0,4}, \ldots \rangle = \langle n_{0,\ell}^0 : \ell < \omega \rangle, \quad \vec{n}_1 = \langle 0, n_{0,3}, n_{0,5}, n_{0,7}, \ldots \rangle = \langle n_{1,\ell}^0 : \ell < \omega \rangle. \]

Observe that if \(\vec{m} \in {}^\omega \omega \) is increasing, then for every large enough \(\alpha < b \) we have:
(a) \(\exists \exists j < \omega \)(\(m_{\ell+1} > f_\alpha(m_\ell) \)), and hence
(b) for at least one \(\ell \in \{ 0, 1 \} \) we have
\[(\exists \exists j < \omega)(\exists j < \omega)(m_\ell, m_{\ell+1} ; n_{\alpha,j}^\ell, n_{\alpha,j+1}^\ell). \]

Now for \(\xi < 2^{\aleph_0} \) we put:
\[\gamma(\xi) = \min \{ \alpha < b : (\exists \exists j < \omega)(f_\alpha(m_\xi, j) > m_{\xi,j+1}) \}; \]
\[\ell(\xi) = \min \{ \ell : (\exists \exists \ell j < \omega)(\exists j < \omega)(m_\xi, m_{\xi,j}) \subseteq [n_{\gamma(\xi), j}^\ell, n_{\gamma(\xi), j+1}^\ell]) \}; \]
\[\mathcal{U}_\xi^\ell = \{ \ell : (\exists \exists \ell j < \omega)(m_{\xi,j}) \subseteq [n_{\gamma(\xi), j}^\ell, n_{\gamma(\xi), j+1}^\ell]) \}. \]

Note that \(\gamma(\xi) \) is well defined by (a), and so also \(\ell(\xi) \) is well defined (by (b)). Plainly, \(\mathcal{U}_\xi^\ell \) is an infinite subset of \(\omega \).
Now for each \(\xi < 2^{\aleph_0} \), we may choose \(\mathcal{U}_\xi^2 \) so that \(\mathcal{U}_\xi^2 \subseteq \mathcal{U}_\xi^1 \) is infinite and for any \(i_1 < i_2 \) from \(\mathcal{U}_\xi^2 \) we have
\[(\exists j < \omega)(m_{\xi,i_1+1} < n_{\gamma(\xi), j}^\ell & n_{\gamma(\xi), j+1}^\ell < m_{\xi,i_2}). \]

Let a function \(g_\xi : \mathcal{U}_\xi^2 \longrightarrow \omega \) be such that
\[(\star) \; i_1 \in \mathcal{U}_\xi^2 \& g_\xi(i_1) = j \Rightarrow [m_{\xi,i_1}, m_{\xi,i_1+1}] \subseteq [n_{\gamma(\xi), j}^\ell, n_{\gamma(\xi), j+1}^\ell]) \).

Clearly, \(g_\xi \) is well defined and one-to-one. (This is very important, since it makes sure that the set \(g_\xi[\mathcal{U}_\xi^2] \) is infinite.)
Fix a sequence $\bar{B} = \{B_{\zeta,t} : \zeta < \theta, t \in I_{\zeta}\}$ given by Lemma 2.1 (so $\theta \leq b$ and \bar{B} satisfies the demands in Lemma 2.1(a) – (c)). By Lemma 2.1(c), for every $\xi < 2^{\aleph_0}$, the set
\[\{ (\zeta, t) : \zeta < \theta \text{ and } t \in I_{\zeta} \text{ and } B_{\zeta,t} \cap g_\xi[U^2_\xi] \text{ is infinite} \} \]
has cardinality continuum.

Now for each $\beta < b^+$ and $\xi < 2^{\aleph_0}$ we choose a pair $(\zeta_{\beta,\xi}, t_{\beta,\xi})$ such that
\[(\ast)_2 \zeta_{\beta,\xi} < \theta \text{ and } t_{\beta,\xi} \in I_{\zeta_{\beta,\xi}} \]
\[(\ast)_3 B_{\zeta_{\beta,\xi}, t_{\beta,\xi}} \cap g_\xi[U^2_\xi] \text{ is infinite, and} \]
\[(\ast)_4 t_{\beta,\xi} \notin \{ t_{\alpha,\xi} : \epsilon < \xi \text{ or } \epsilon = \xi \& \alpha < \beta \}. \]

To carry out the choice we proceed by induction first on $\xi < 2^{\aleph_0}$, then on $\beta < b^+$. As there are 2^{\aleph_0} pairs (ζ, t) satisfying clauses $(\ast)_2 + (\ast)_3$, whereas clause $(\ast)_4$ excludes $(b^+ + |\xi|) \times \theta < 2^{\aleph_0}$ pairs (recalling that towards contradiction we are assuming $b^+ < g \leq 2^{\aleph_0}$), there is such a pair at each stage $(\beta, \xi) \in b^+ \times 2^{\aleph_0}$.

Lastly, for $\beta < b^+$ and $\xi < 2^{\aleph_0}$ we let
\[(\ast)_5 U_{\beta,\xi} = g_\xi^{-1}[B_{\zeta_{\beta,\xi}, t_{\beta,\xi}}] \cap U^2_\xi \]
(it is an infinite subset of ω) and we put
\[(\ast)_6 A_{\beta,\xi} = \bigcup \{ m_{\xi,i}, m_{\xi,i+1} : i \in U_{\beta,\xi} \}, \text{ and } A_\beta = \{ A \in [\omega]^{\aleph_0} : \text{ for some } \xi < 2^{\aleph_0} \text{ we have } A \subseteq A_{\beta,\xi}^{\ast} \}. \]

By the choice of $(\tilde{m}_\xi : \xi < 2^{\aleph_0})$, $A_{\beta,\xi}^\ast$, and A_β one easily verifies that for each $\beta < b^+$, A_β is a groupwise dense subset of $[\omega]^{\aleph_0}$. Since we are assuming towards contradiction that $g > b^+$, there is an infinite $B \subseteq \omega$ such that
\[(\forall \beta < b^+) (\exists A \in A_\beta)(B \subseteq^* A). \]

Hence for every $\beta < b^+$ we may choose $\xi(\beta) < 2^{\aleph_0}$ such that $B \subseteq^* A_{\beta,\xi(\beta)}^\ast$. Plainly,
\[\gamma(\xi(\beta)) < b \text{ and } \zeta_{\beta,\xi(\beta)} < \theta \leq b \text{ and } \ell(\xi(\beta)) \in \{0, 1\}, \]
and therefore for some triple $(\gamma^*, \zeta^*, \ell^*)$ the set
\[W := \{ \beta < b^+ : (\gamma(\xi(\beta)), \zeta_{\beta,\xi(\beta)}, \ell(\xi(\beta))) = (\gamma^*, \zeta^*, \ell^*) \} \]
is unbounded in b^+. Note that if $\beta \in W$, then
\[(1) \quad B \subseteq^* A_{\beta,\xi(\beta)}^{\ast} \]
\[= \bigcup \{ m_{\xi, i}, m_{\xi, i+1} : i \in U_{\beta,\xi(\beta)} \} \subset \bigcup \{ n_{g_{\xi}(i), j} : g_{\xi}(i) \text{ for some } i \in U_{\beta,\xi(\beta)} \} \subset \bigcup \{ n_{\gamma(\xi(\beta)), j} : j \in B_{\zeta_{\beta,\xi(\beta)}} \}. \]

[Why? By the choice of $(\beta, \xi(\beta))$, by $(\ast)_6$, and by $(\ast)_1$ as Dom$(g_{\xi(\beta)}) \subseteq U_{\beta,\xi(\beta)} \subseteq U_{\beta,\xi(\beta)}^{\ast}$; by $(\ast)_5$.]

Also, for $\beta \in W$ we have $\ell(\xi(\beta)) = \ell^*$, $\gamma(\xi(\beta)) = \gamma^*$, and $\zeta(\beta, \xi(\beta)) = \zeta^*$, so it follows from (1) that
\[B \subseteq^* \bigcup \{ n_{\gamma^*, j}^{\ast} : j \in B_{\zeta^*, t_{\beta,\xi(\beta)}} \} \]
for every $\beta \in W$.

Consequently, if $\beta \neq \alpha$ are from W, then the sets
\[\{ n_{\gamma^*, j}^{\ast} : j \in B_{\zeta^*, t_{\beta,\xi(\beta)}} \} \text{ and } \{ n_{\gamma^*, j}^{\ast} : j \in B_{\zeta^*, t_{\alpha,\xi(\alpha)}} \} \]
are not almost disjoint. Hence, as $\langle n_{\gamma^*, j}^{\ast} : j < \omega \rangle$ is increasing, necessarily the sets $B_{\zeta^*, t_{\beta,\xi(\beta)}}$ and $B_{\zeta^*, t_{\alpha,\xi(\alpha)}}$ are not almost disjoint. So applying Lemma 2.1(b) we conclude that $t_{\beta,\xi(\beta)} = t_{\alpha,\xi(\alpha)}$. But this contradicts $\beta \neq \alpha$ by $(\ast)_4$, and we are done.

www.mlq-journal.org © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Definition 2.4 We define a cardinal characteristic g_β as the minimal cardinal θ for which there exists a sequence $(I_\alpha : \alpha < \theta)$ of groupwise dense ideals of $\mathcal{P}(\omega)$ (i.e., $I_\alpha \subseteq [\omega]^{\aleph_0}$ is groupwise dense and $I_\alpha \cup [\omega]^{<\aleph_0}$ is an ideal of subsets of ω) such that

$$(\forall B \in [\omega]^{\aleph_0})(\exists \alpha < \theta)(\forall A \in A_\alpha)(B \not\subseteq^* A).$$

Observation 2.5 $2^{\aleph_0} \geq g_\beta \geq g$.

Theorem 2.6 $g_\beta \leq b^+$.

Proof. We repeat the proof of Theorem 2.3. However, for $\beta < b^+$ the family $\mathcal{A}_\beta \subseteq [\omega]^{\aleph_0}$ does not have to be an ideal. So let I_β be an ideal on $\mathcal{P}(\omega)$ generated by \mathcal{A}_β so also I_β is the ideal generated by

$${\{ A^+_{\beta,\xi,\ell,k} : \xi < 2^{\aleph_0} \}} \cup [\omega]^{<\aleph_0}.$$

Lastly, let $I_\beta = I_\beta \setminus [\omega]^{<\aleph_0}$.

Assume towards contradiction that $B \in [\omega]^{\aleph_0}$ is such that

$$(\forall \alpha < b^+)(\exists A \in I_\alpha)(B \not\subseteq^* A).$$

So for each $\beta < b^+$ we can find $k_\beta < \omega$ and $\xi(\beta,0) < \xi(\beta,1) < \cdots < \xi(\beta,k_\beta) < 2^{\aleph_0}$ such that

$$B \subseteq^* \bigcup {A^+_{\beta,\xi,\ell,k} : k \leq k_\beta}.$$

Let D be a non-principal ultrafilter on ω to which B belongs. Then for every $\beta < b^+$ there exists $k(\beta) \leq k_\beta$ such that $A^+_{\beta,\xi,\ell,k(\beta)} \in D$. As in the proof there for some $(\gamma^*, \zeta^*, \ell^*, k^*, k(+))$ the following set is unbounded in b^+:

$$W := \{ \beta < b^+ : k(\beta) = k(+), k_\beta = k^*, \gamma(\beta,k(\beta)) = \gamma^*, \zeta(\beta,k(\beta)) = \zeta^*,$$

and $\ell(\beta,k(+)) = \ell^*}. $$

As there it follows that if $\beta \in W$, then

$$\bigcup {n^*_{\gamma^*,\ell^*,\ell^*+1} : j \in B_{\zeta^*,t(\beta,k(+))}}$$

belongs to D. But for $\beta \neq \alpha \in W$ those sets are not almost disjoint, whereas $(\zeta^*, t(\beta,k(+)) \neq (\zeta^*, t(\alpha,k(+))))$ are distinct, giving us a contradiction.

Acknowledgements We would like to thank Shimon Garti and the anonymous referee for corrections. The author acknowledges support from the United States-Israel Binational Science Foundation (Grant no. 2002323). This is publication 887 of the author.

References