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THE JOURNAL OF SYMBOLIC LoGic 
Volume 52, Number 2, June 1987 

SEMIPROPER FORCING AXIOM 
IMPLIES MARTIN MAXIMUM BUT NOT PFA+ 

SAHARON SHELAH 

Abstract. We prove that MM (Martin maximum) is equivalent (in ZFC) to the older axiom 
SPFA (semiproper forcing axiom). We also prove that SPFA does not imply SPFA' or even 
PFA' (using the consistency of a large cardinal). 

For an ordinal ac < ?o and a property Pr of forcing notions, we make the 
following definition: 

1. DEFINITION. MAa(Pr) is the assertion that if P is a proper forcing notion 
satisfying Pr, for i < w1, Ii ' P is dense and for 3 <LX, Si a Pi-name 1k, ''i a 
stationary subset of )1,", then for some directed G c P: (i) for i < (1, G n Ii # 0, 
and (ii) for /3 < o, {I < w1: (3p E G)[p I e E EB"]} is stationary. 

By this notation, PFA (proper forcing axiom) is MAO (proper), and PFA' is MA, 
(proper). On PFA see Baumgartner [1] and Shelah [5]. 

When semiproperness was discovered and the semiproper iteration lemma was 
proved (see [4] or [5, Chapter X]) it was clear from CON(ZFC + supercompact) 
that SPFA = def MA0(semiproper) is consistent (as well as SPFA+ = MA1(semi- 
proper) or MA<,,(semiproper)). 

Foreman, Magidor and Shelah [2] proved the consistency of MM = Martin 
maximum, which is MA (not destroying stationarity of subsets of w(1). We can define 
MM+ in a natural way. 

It was proved there, in fact quite early, that MM+ and SPFA+ are equivalent; 
note that by [5] every semiproper forcing preserves stationary subsets of w01, hence 
MM+ => SPFA+; for the other direction it was proved that, assuming SPFA+, 
every forcing notion P not destroying stationary subsets of co1 is semiproper, by 
applying SPFA to the following S and forcing notion Q: Q = {f: f a function from 
some a < w into H(A)}, where A ? (2P)+, P e H(A), and S = {b: for some f E Gp, 
Dom f = 6, and Rang(f) is a counterexample to "P semiproper"}. (So MA1(Nl- 
complete) suffices for the equivalence of the two conditions on forcing notion.) 

We prove here that just SPFA implies MM. 
Magidor and Todorcevic ask whether SPFA 1/ SPFA+. Magidor proved 

that PFA If PFA+ (by forcing PFA, and then adding a stationary subset of 
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THE SEMIPROPER FORCING AXIOM 361 

{ < N2 cf(6) = No } which does not reflect). Independently, Beaudoin proved this.' 
We proved here that SPFAkf SPFA', and even SPFAk7 PFA' [see Theorem 5; by 
Remark 6A2) supercompact suffices; by 6A3), for example, MA, (semiproper) 1/ 
MA2 (semiproper); by 6A4) properness is not productive; and 6A5)), answering a 
question of Beaudoin, prove SPFA F- MA, (81-complete)]. 

For completeness we deduce the consistency of SPFA and even MA,1 (semipro- 
per) from the semiproper preservation lemma. 

2. DEFINITION. Let K be a supercompact cardinal. We call f: K-+ H(K) a Laver 
function if for every cardinal A and x E H(A), there is a normal fine ultrafilter D on 
P< K(H(K)) such that the set 

AD(X) =def {a e P<,(H(A)): x E a, a r K E K, and in the Mostowski 
collapse MCa of a, x is mapped to f (a r) K)} 

is in D. 
By [3], if K is a supercompact cardinal, we can assume that a Laver function for 

it exists. 
3. LEMMA. Suppose K is supercompact and f * a Laver function for it. Define by 

induction on C<? K an RCS iteration (see [5, Chapter X, ?1]) Q4 = <Pi, Qj: i?<,j< >, 
Q e H(K) when C < K, as follows: 

If f *(i) is a Pi-name, kp, "f *(i) semiproper", i limit, then Qi = f *(i). 
Otherwise Qi = Levy(X1,22 ). 
Then fkp,, "SPFA". 
PROOF. By the semiproperness iteration lemma, PK, is semiproper, and also it 

satisfies the K-c.c. Let Q be a PK-name of a semiproper forcing, and A a regular 
cardinal such that Q e H(A); without loss of generality IFp,, "21QI < A". Let Ii (i < w-),) 
and S, (/B < ?w) be-given as in Definition 1 (i.e., they are PK-names of such objects). 
Apply Definition 2 to x = Q, and get D as there. Choose a e AD(x) such that <Ki: i 
< ,), > and K,:< / o? > belong to a, (a, e) is isomorphic to some (H(X), ), df 

a r K K and QK e a. Easily Q, = f *(C) in VPH, and Q, is isomorphic to a rn Q, 
so we can easily finish. 

4. THEOREM. Martin maximum SPFA (i.e., proved in ZFC). 
PROOF. As every semiproper forcing preserves stationary subsets of W1, clearly 

MM => SPFA. So we assume 
(*)O SPFA. 
It suffice to prove that every forcing notion P satisfying (*), is semiproper, where 
(*), The forcing notion P preserves stationary subsets of w(o. 
We assume (*),. Without loss of generality the set of members (= conditions) 

of P is a cardinal A(O). Too generously, let A(l + 1) = (2IH(A(l))I)+J Let <* = <* 

1It is folklore that in the usual forcing for PFA (or SPFA) any subsequent reasonable forcing preserves 
PFA (or SPFA). Magidor and Beaudoin refine this, showing that starting from a model of PFA, forcing a 
stationary subset of {( < W2: cf(3) = No } by P = {h: h a function from some a < w02 to {0, 1 } such that for 
no b < wt2 is it true that cf(6) = w1 and h`I({1}) n ( is a stationary subset of (5} (ordered by inclusion) 
produces a stationary subset of {( < W2: cf(b) = NO } of W2 which does not reflect, and this still preserves 
PFA but easily makes PFA+ (and SPFA) fail. 

We can also start with V t SPFA, and force a function w (by initial segments of power N ) as produced 
in the proof of Theorem 5. The proof is much like the proof of Theorem 5. Another way is to force h: W2 

- w1 such that no h`({fo}) r) ( is stationary in (, where a < wl, b < W2, and cf ( : N1. 
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362 SAHARON SHELAH 

be a well-ordering of H(Al) extending <A(m) for m < 1. Let 

Keg =def {N: N< (H(A(2))), , < 2), IINII = No, P e N (hence AO, Al e N) and 
-(Vp e P r) N)(3q)[p < q e P and q semigeneric for (N,P)]} 

and 

KPoS =def {N: N -< (H(A(2)), e, < 2), II N! = No, P N, and 

m(3N')[N -< N' e K eg and N r) l = N' r) wl 
We now define a forcing notion Q 

Q =def {<NK: i < 0>: C < wC, Ni 
e Kp9 U KP?s 

NI e N. +1, and Ni increasing continuous}. 

A. Fact. If P e MO -< (H ((3)),e, <TO)), 11MOII = N, then there is MI, MO- 
M -< (H(A(3)),-, <A(3)), IIM11I = O, Mo r)0 = Ml r- (o and Ml [H(A(2)) e 
K neg UJ KP?s. 

PROOF. As P e Mo, A(O) e Mo; hence A(1), A(2) e Mo and Q e Mo. We can assume 
Mo [ H(A(2)) 0 KOS, so by the definition of K os there is N', Mo ` H(A2) -< N'c K ne 

IN'j = o, N' r o, = Mo tH(Ao) n o,; hence N' r co, = Mo n w1. As A(2) eMo 
and Mo t H({(2)) -< N', the Skolem hull in (H(A(3)), e, < *(3)) of Mo u (N' r) H(2(1))) 
has the same countable ordinals as N'. Let Ml be the Skolem hull of 
Mo u (N' n H(Q(1)) (exists as < A(3) is a well-ordering of H(Q(3))). So by the above 

Ml r) (01 = N' r- o0l = MO r) cql, 

Mo -< Ml -< (H(A(3)), e, <A(3)) 

IIMl, = NO (as J1M01,J IN'! = o). 

Also M, r) H(A(1)) = N' r) H(A(1)) (same reason). We can conclude that Ml 
H1(e(2)) c Kpeg (thus finishing the proof of Fact A), as: 

B. Subfact. If P e N , Nb _< (H(A(2)),e, <h*2)) are countable and N a n H(A(1)) 
- Nb r H(A(1)), then Na eK ` ,- N' e K ne9 (just check the definition of K peg) 
[really, even N' n wl c NO c= N', N -< (H(A(2)), e, < T(2)), NO 0 K'eg, implies 
N' e Kp g] 

C. Fact. Q is a semiproper forcing. 
Let Q, P e M -< (H(A(3)), , < TO)), M countable. Let p e Q r) M. It is enough to 

prove that there is a q, p < q e Q, semigeneric for (M, Q). By Fact A there is M, with 
M -< M, -< (H(A(3)), e, < b(3)), IIM, II = No, M n iol = M, r- (01 and M, [ H(A(2)) 
e Kp9 u KP's. In M, we can find an increasing sequence of qn = <NI: i < cen> 
e Q r- Ml, qn < qn + 1, qO = p, such that for every Q-name y of a countable ordinal for 
some n = n(y) and a(y) e M, qn [Q "Y = oc(y)". Now q =defK <N: i < Un< o an> with 
Nunan = Ui < Ua, Ni will be (Ml, Q)-semigeneric if (An Vm Otn < am and) Uj < u,, 1N 
e Kpng u K P?s But it is quite easy to manage that ?Cm < UnCon and that Ui<u 
- M, 

` 
H((2)), and it belongs to Kng u Kp by the choice of Ml. Now q ? qO =p; 

and, as q is (Ml, Q)-semigeneric and M -< Ml, M n o, = M, rn l, q is also (Ml, Q)- 
semigeneric, as required. 

D. Conclusion. There is a sequence<N*: i e ),> such that (Vx)[<N*: i < oc> e Q]. 
PROOF. By Fact C and SPFA (and as I = <{KN: i < oc>: a ? ao} is dense in Q for 

every oco, proved by induction on ao: for oo = 0 or xo = ,B + I by Fact A, for limit ao 
by the proof of Fact C, or simpler). 
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THE SEMIPROPER FORCING AXIOM 363 

E. Note. As Ni e N* ,clearly i c N*. 
F. DEFINITION. S = {i < w1: N* E K eg}. 
G. Fact. S is not stationary. 
Suppose it is; then for every i E S for some pi E N* r- P there is no (N ,P)- 

semigeneric q, pi < q E P. By Fodor's lemma (as N* is increasing continuous), for 
some p E UN* r- P, Sp = {i E S: pi = p} is stationary. 

If p E G c P, G generic over V, in V[G] we can find an increasing continuous 
sequence <Nj: i < w1 > of elementary submodels of (H(,(2)v),E, < G) (G as a 
predicate), NM* ' Ni. As P preserves stationary subsets of w1, and {i: M' n 0r) 
-Ni n r1 = i} is a club of w1 (in V[G]), and Sp C w1 is stationary (in V, hence in 
V[G]), it follows that there is ( E Sp with N* r- w1 = No n r 1 = 6. As this holds in 
V[G], p E G, clearly there is q E G, q ? p, such that q 1F"6 and <Ki: i < 01 > are as 
above". But q is necessarily (N, P)-semigeneric (as Ni c Nil have the same 
countable ordinals). 

H. Fact. P is semiproper. 
As S is not stationary, for some club C C w1, (V6 E C) Ni E KP'S. Now if M 

<(H(A(3)),e, <* ) is countable, and P, <KN: i < w1>, C E M, then M n 
ui< N* = N* for some cE C; hence Ni -< M [ H(4(2)) -< (H(X(2)), e, <A(2)) is 
countable, and so M [ H(A(2)) F K `e, i.e., for every p E P n M (= P r- (M [ H(A(2)))) 
there is an (M, P)-semigeneric q, p < q E P; this is enough. 

5. THEOREM. Suppose K is a supercompact limit of supercompacts. Then, in some 
generic extension, SPFA holds but PFA+ fails. 

PROOF. Let f* be a Laver function for K. Our proof will unfold as follows. 
We shall first define a semiproper iteration QK, leaving one point for the end. Now 

H-p, SPFA is as in the proof of Lemma 3. We then define in VPK a proper forcing 
notion R and an R-name So I "S C w1 is stationary". We then show, by filling the 
point left above, that for no directed G C R is S[G] well defined (i.e., (Vi < w1)(3P 
E G)[p KR"i E , orR " KR "i E 5"] and stationary (i.e., {i < w1: (3p E G) P FR 
"i E S"} is stationary). 

We define by induction on < ? K an RCS iteration (see [5, Chapter X, ?1]) 
= <Pi, Qj: i < C, j < C>, and if C : K, Qe E H(K), which is a semiproper iteration 

(i.e. for i <j ? C, i nonlimit, Pj/Pi is semiproper) and, if 6 = A,(3limit, also a PR-name 
Was as follows: 

(a) Suppose 4 is nonlimit, let KC < K be the first supercompact > I1P~, so KC is a 
supercompact cardinal even in Vp", and let QC be a semiproper forcing notion of 
power KC collapsing KC to N2 such that in VP: 

11 P-*QC "any forcing notion not destroying stationary subsets of w1 is semiproper" 

(it exists e.g. by Lemma 3 and Theorem 4; but really QC = Levy(Nj, < K,) (in Vpr) 
is okay, as 

I1 "-*Q; MAM (,1 -complete)" 
and MA1(Nl-complete) implies (by [2]) the required statement. 

(b) Suppose C is limit. If f*(C) is a P-name, JKp, "f*(i) is semiproper", then let 
= f*(C). If f*(C) is not like that, let Q' = the trivial forcing. 

- Let Qc be defined later, so that: 
(*) If < C, A E VP", A c wo, and A is stationary in Vp' (equivalently in VP" when 

4 is nonlimit), then A is stationary in VP4*Qi*Qi. 
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364 SAHARON SHELAH 

We let Qu = Q * Q * Q'; Q' is the addition of (N1 + 2o0)v Cohen reals with 
finite support. 

(c) For C limit we also have to define WT+4' . 
(i) We is a function whose domain is A, = {a: a c C + 1, C E a E V"4, and a is a 

countable set of limit ordinals}. 
(ii) For a E Al, WI(a) = <Hii(a): i < otp(a)>, where Hii(a) is a function from otp(a) 

to {O, 1} (where otp(a) is the order type of a). 
(iii) For every cE a E AZ, a r) (4 + 1) E Ag, and for i < otp(a n (+ 1)), 

H4 i(a nr (d + 1)) is Hii(a) restricted to otp(a r- (d + 1)). 
(iv) If a s Al, we use the Cohen reals from Q' to choose the values of 

H., i(a)(a) for i = otp(a r C) or a = otp(a rC) 
Clearly PI, is semiproper, satisfies the K-C.C., and IPKI = K. As in the proof of 

Lemma 3, SPFA holds in VP-. Now we want to show that PFA' fails. The 
"components" of R and of the proof are not new. In VO = VPK let T = U {A,: ( < K 
(limit)}, and let <T be the order: being initial segment. The forcing we shall get by 
composition. 

Let Ro be Levy(N1,N2) (in VO). In V1 = V~o , let R1 be the Cohen forcing; in 
V2 =def Vl~j let R2 be Levy(N1, 22). Let V3 = V2R2. Forcing with R1 * R2 does not 
add K-branches to T, so let us specialize it, ije., let {Bi: i < i* } E V1 be its K-branches 
in (VP.)Ro, so Ii*I = 

NJ in V3. Let B' C Bi for i < i* be end segments, pairwise 
disjoint, and let 

R3 = {f: f a finite function from T to Uk such that 

[x < y E TA f(x) = f(y) -* (]i)(xy E Bi)]} 

Let V4 = VR3. In V, for limit ( < w1, let q5 be an w-sequence converging to (. 
Without loss of generality q1(n) = q52(m) implies n = m and i5, [ n = 

q152 n. Let 
Z = {q: q a finite sequence of ordinals <o1, such that C. =def {( < -)1: 5 I 7<} is 
stationary}. So (Vq E Z)(3e v E Z)[iq < v]. Also C* = {1 < w1: for arbitrarily large 
n <w, for N ordinals i < w, (q5 [n)^<i> e Z} contains a club of wA, so by 
renaming (as we do not insist on ala being increasing) without loss of generality for 
every limit ( < w1, and n < w, for N ordinals i (i, p n) A <i > E Z. Now for every 
stationary A c w1l from VO, {CJ E Z: A n C, stationary} has power NJ. Hence in V1 
we can find C* stationary, for C E Z such that for every A E VO, A c wl stationary, 
for some a, I C*-AI < No, and C*,A<i> r<Cu A <j> = 0 for i #, C*A<i> A C< and 
for n < lg(?I)/2, Cu* ? i<Q(O) U(2), i(4),..-(2n-2)> So let (in V4) 

R4 = {(u, w): w a finite set of limit ordinals < wl, u a finite subset of 
Z, and w C*= 0 for i cu}. 

Easily R4 satisfies the 1-c.c.; in fact for every N conditions there are N pairwise 
compatible (and more). Let S =U {w: (3u)[(u, w) E GR2]}. It easily can be shown to 
be stationary (in VR4). 

Let 15 = V R4. 

Let <Sy: y < w1l> E V be a partition of w1, into stationary sets. In V1 let 
<4a: a < wl> be an increasing continuous sequence of ordinals converging 
to K, and for a < a1, j < i*, let Ha,) = U {H,(a):for some f <w1, a E By r 
Dom Ws,, a < otp(a)}. In V5 we now define R5: it is the product with finite support 
of R 5,i (a < ct), i < i*), where the aim of R ? is making w1, the union of No sets, on 
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THE SEMIPROPER FORCING AXIOM 365 

each of which HW/1 is constantly 0 (or 1) if 

(Iy < 01)[a SY A yeS0] (or(]y < w1)[a Sy A yTS0]). 

Now R is just the set of finite functions h from w1 to w so that on each h-1({n}) the 
coloring HWi is constantly 0 (or 1) (as required above). 

Lastly, let R = Ro * R 2 * R * R* R.. We define S such that So c S 
c SO U{I + 1: 7 < 1} and, if G c R is directed and S[G] well defined, then all 
relevant information is decided (i.e., what is needed below):2 

Fact. The forcing R is proper (in VO). 
As properness is preserved by composition, we just have to check Ri in Vi. The 

only nontrivial one is R.. For this it suffices to show that the product of any finitely 
many R i satisfies the N1-c.c. Let m < w, and let the (a,, i,) for 1 < m be distinct. It is 
easy to show that in V1 

(*) If for each 1 < m, ul and w' (y < w1) are pairwise disjoint subsets of w1, then 
for some y(1), y(2) < w1, for each even 1 < m 

[X E Ul),Y EC = 
H~J1(x9y) = 0] 

and for each odd 1 < m 

[X E Ul(,y EW(2) =- H["] (x,y) = 1].2-5 

The subsequent forcing by R1, R2, R3, R4 preserves the satisfaction of (*), and it 
implies that any finite product of R5,i satisfies the N1-c.c.3 

Clearly R is proper in VO, and KR " )S C 1 is stationary". Suppose G C R is 
directed and S[G] well defined. Then we can have that for some ( < K, G and S[G] 
over V"' are similar enough to GR and S[GR] over V'U. So VO # cf(6) = N1. But we 
have some freedom left in choosing Qu . We define it by a semiproper iteration first to 
collapse ( to N, if necessary, then (if cf ( = N,) fix the set of branches of T r- V6, 
and lastly for each 2-place symmetric function f: w1 -* {0, 1}, if there is a semi- 
proper forcing (in H(K)) producing Afn,(-- wl, such that w1 = Un Afn and f [ 
Af is constant, then such Af,, already exists. As stationarity of subsets of (01 is 
preserved, though we may have various candidates for the directed G C R, there is at 
most one candidate S' for {6: ( E S, ( < w1 limit} (as for the coding we use 
stationary Sy c W1). We shoot a club through the complement of S'. Now all the 
previous forcings were proper or semiproper, and the last one does not destroy 
stationary subsets of w1 from Up <<J(o(w1) r- V'1)(see the definitions of C* and R4), 
which is okay, because for every successor ordinal 4 < C, PN * Q4/P: does not destroy 
stationarity of subsets of w1 from V"4, hence is semiproper. 

6A. REMARKS. 1) Magidor and, independently, Beaudoin proved the consistency 
of PFA + -iPFA+ . 

2) Can we reduce the assumption to "K is supercompact"? Yes, as, say in (b) we 
let Q0 = f *(C) only if: f *(C) is a P-name, Fp, ';f *(C) is semiproper" and for some 

2Including a well ordering of w1 of order type Ca for a < wl. 

2'Because for 4 < K, {<1,u',w >:y< w,I < m} belongs to V'x and to H(4), V'xt "S = X2" and 
remembers the way we use Cohen reals to define H. 

3The least trivial is why R3 preserves it. This is because for any pi E R3 (i < w1),) there are disjoint 
uncountable S1, S2 c wt), such that if i < j for i E S1 and j E S2, then pi and pj are compatible. This suffices; 
it also holds for R1 and R4. 
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366 SAHARON SHELAH 

AL < K, f *(C) E H(%,), and C is -18(A)-supercompact. This does not change the proof 
of Lemma 3. Now we let QK = shooting a club (of order type K) through {i < K: # 
cf i = No or V # "i is strongly inaccessible in V and -18(A,)-supercompact"} (by 
initial segments). Now it is folklore that, for such QK, VPK*QK i= SPFA, and clearly 
VPK*QK i= m PFA+. But there is a small cheating above: in (b) (more exactly in the 
definition of Q' which appears in the end of the proof) as the result of an iteration 
we ask "is there a semiproper forcing in H(K) such that.. .", and this defeats our 
desire that Q' E H( 8(%)). We want to be able to "decipher" the possible "codings" 
fast, i.e., by a forcing notion of small cardinality. 

We let y)Ja j be 0 if (]y < w91)[a E S, A y E SO] and 1 otherwise, and let 

ot5,j = {(w, h): w is a finite subset of wc and h is a finite function 
from the family of nonempty subsets of w to co such that: 
if u1, u2 E Dom(h), h(u1) = h(u2) 
then JulI = IU21 and [C = u1 - u2 A E U2 - U1 A C < 4 

Now for every 3, we define QA by the following (finite) iteration: collapse 3 to Nl, 
add a Cohen real, collapse 2"1, specialize the relevant tree so we know the Hlil1 ̀  6 
(j < w1, a < s), R4, R5, and now force MA (proper forcing of cardinality Nl). 

The resulting forcing is not too large, and it essentially determines4 the T)Jaj (i.e., we 
can find To y so that if we have an appropriate G, the values of the y)Jj will be To)J So 
we have only one candidate for S[G], namely Si, and if it is not disjoint to any 
stationary subset of w1 from V"', we end the iteration by shooting a club through 
01- Sk (6 has enough supercompactness so that (P,/IPj) * Q5 is semiproper for every 
nonlimitj < 3). 

3) We can similarly prove that if a(0), a(l) < a1 and Ia(0)I < Ia(1)I, then MAa(O) 
(semiproper) AL MAa(1) (proper). 

4) Observe that properness is not productive, i.e. (provably in ZFC) there are two 
proper forcings whose product is not proper. 

[Let T be the tree (CO ' 02, - ); now one forcing, P, shoots a branch with supremum 
02, e.g., P = T (it is 81-complete). The second forcing, Q, guarantees that in any 
extension of VQ, as long as N, is not collapsed, T will have no w1-branch with 
supremum 02. Use Q1 * Q2 * Q3, where Q1 is Cohen forcing, Q2 = Levy(N1, N2) 

in VQ1 (so it is well known thaTin VQ1*Q2, cf(o2v) = w1, and T has no branch with 
supremum 0)2), and Q3 is the appropriate specialization of T. We could have used 
the tree co >2, but then we should speak of "a branch of T which is not in V".] 

5) Beaudoin asks whether SPFA 1/ MA1 (Nl-complete). This is a natural ques- 
tion. Note that the proof of Theorem 5 shows that SPFA 1/ MA1 (finite iteration of 
81-complete and c.c.c. forcing notions). 

But 81-complete forcing would be a somewhat better counterexample. We have 
Fact. SPFA F- MA1 (81-complete). 

4 By the celebrated proof (of Todorcevi6 [6]), 
(*) If f is a two-place function from 0o? to {0, 1}, then, for some proper forcing Q of cardinality XI, 

IJQ "there is an uncountable A c w1), such that for a < 3 from A, f(, 1) = 0 or there are n < co and pair- 
wise disjoint n-triples <K6 . c. > of ordinals < o0 such that for every 4 < 4 < on, for some 1?< n, 
f (O,4) = 1". 
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PROOF. Suppose V # SPFA, P is 81-complete forcing, S a P-name, and J-p 
"S C w1 is stationary". For i < w2 let (Pi, Sj be isomorphic to (P, S), and let PJ* be 
the product of Pi (i < w1) with countable support; so Pi < P*, P* is 81-complete, 
and Si is a P*-name. 

Let I = {A E V: A C w1, A stationary and JFp "S r- A is not stationary}. Let {Ai: 
i < ii} I be a maximal antichain (i.e., the intersection of any two elements is not 
stationary). 

So, by [2] and Theorem 4, Ii*I = w1, and so there is an A ' w1 such that 
(i) VP"S ~n A is not stationary", and 
(ii) for every B ' - A stationary, for some p E P, p lFp* "S r- B is stationary". 
Now w1 - A is stationary (as J-p "S is stationary"). Also, clearly, 
(iii) for each i < w1, and stationary B ' - A for some p E Pi < P*, pFrp 
r-i B is stationary". 

As P* is the product of the Pi with countable support, we have 
(iv) for every stationary B ' w) -A, I[p* "for some i, Si n B is stationary". 
Let S* be the P*-name: VKSi = {a <w1:(3i < a) as eS . So IFp* "for every 

stationary B c - A, B n S* is stationary". 
In VP let Q* be shooting a club through A u S* (i.e., Q* = {h: h an increasing 

continuous function from some nonlimit a < w, into A u S}). Now Q* does not 
destroy any stationary subset of w1 from V (though it destroys some from VP*). So 
P* * Q* does not destroy any stationary subsets of w1 from V; hence by Theorem 4 
it is semiproper. Now if G c P* * Q* is generic enough, for each i < 01, G c Pi is 
generic enough, Si[G] well-defined, and Fi S1[G] includes w1 - A on a club. So for 
some i, Si[G] is stationary, and we finish.5 
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'A similar proof works if p = pa * pb, where pa satisfies the X1-c.c. and pb is 81-complete in VP', if we 
use P* = {f, f a function from wo1 to P. f (i) = (pi, qi), I{i :pi 0}1 < ;, I{i: qi 0 Z}1 < X} In short, 
we need that some product of copies of P is semiproper. 
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