
ORTHOGONALITY OF TYPES IN SEPARABLY CLOSED FIELDS 

Z. Chatzidakis*, G. Cherlin*, S. Shelah***, O. Srour**, and C. Wood* 

§0. Introduction. 

As the only examples currently known of stable but not superstable fields, 

separably closed fields hold a place of some interest. In the present paper we 

concentrate on aspects of the analysis of l-types. In §I we give preliminary and 

background information, and also construct families of mutually orthogonal types of 

rank I. In §2 we give a class of more complicated examples of conjugate types 

which serves to prove that various dimensional order properties hold, hence many 

somewhat saturated models exist. In this section we also include a discussion of 

these various properties. In §3 we consider the relationship between U-rank and 

transcendence degree, and in §4 we give an example of a type of rank ~. 

Given that this paper has five authors, it should perhaps be expected that 

there is a nonstructure theorem concerning credits, but partial information is 

available. Bouscaren had raised the question of DOP for separably closed fields, 

in the context of the following problem: can one have a stable theory with stable 

pairs and with DOP (in contrast to her results for the superstable case [B]). 

Delon had observed that separably closed fields have stable pairs (indeed, that 

SCF n --see below--has a unique theory of distinct pairs, which is stable), and, 

upon Bouscaren's request, proved DOP in Fall 1985 [D]. Meanwhile, Chatzldakls, 

Cherlln and Wood were also considering separably closed fields, and Shelah spelled 

out to them what the various dimensional properties would require in this specific 

setting. In Fall 1985 (independently but after Delon), we produced the types PA 

in §2; the key insplratlon for the examples which finally worked was Cherlln's, 

according to Chatzldakls and Wood. Srour was w~rklng on the analysis of l-types 

for separably closed fields in a third part of the world; 1.2-1.4 and the 

discussion of accessible types in §3 come from his analysis. The five authors met 

in December 1985 in Chicago, and decided to amalgamate what we knew into the 

Research supported by *N.S.F. Grants DMS-8505005, DMS-8603157 & RII-8503822, 
**F.C.A.C. and the N.S.E.R.C., and ***U.S.-Israel B.S.F. 
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present paper. With regard to Bouscaren's original query, Poizat has recently 

observed that the theory of a single pairing function without loops has both stable 

pairs and DOP; this example makes very clear the crucial role of pairing. 

§1. Preliminaries. 

In this section we summarize various facts about separably closed fields. For 

further details see [Sr] or [D]. For terminology from model theory, see [S]. 

In a field F of characteristic p ~ O, the set FP of pth powers of 

elements of F forms a subfield. In describing l-types over F, it is convenient 

to regard F as a vector space over FP, so we employ the following fairly 

standard terminology [Sr]. Throughout we fix p a prime, and assume all fields 

are of characteristic p. 

Definitions. Let A c F, F a field. A p-monomlal of A is any product of the 

kl k r 
form a I ''-a r , where al, ..., a r are distinct elements of A and where 

0 ~ k i < p, for i = I,..., r. We say A is p-lndependent in F if the set of 

all p-monomlals of A is linearly independent over FP; moreover, a p-independent 

set A is a p-basls for F if every element of F is an FP-linear combination 

of p-monomials of A. Similarly, for m > I we can define pm-monomlals and 

m - n{Fpm 
pm-bases, looking at F over FP . We denote by FP (= lm < m}) the 

maximal perfect subfield of F. 

Remark. If we write [F : FP] = pn, with 0 ~ n ~ ®, then any p-basis for F 

has size n (we do not distinguish infinite cardlnalities), and p-bases always 

exist. In a language which includes + and ", "F has a p-basis of size n" is 

first order, and so n is an elementary invariant of the theory of F. 

More definitions. Given F c K fields, we say that K is separable over 

(or F c K) if p-independence in F is preserved in K. We say F is 
sep 

separably closed if F has no proper separable algebraic extensions. 

Facts. 

(I) If a is separably algebraic over F, in the usual sense that the 

minimum polynomial g of ~ over F satisfies g' ~ O, then F c F(a), and a 
sep 
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p-basls for F remains a p-basis for F(a). 

(2) If t is transcendental over F, then F c F(t), and if A is a 
sep 

p-basis for F, then A U{t} is a p-basis for F(t). 

(3) If F c K and A c F, A c B c K are such that A is a p-basis for 
sep 

F, B a p-basis for K, then B-A is algebraically independent over F. 

(4) If F c K c L, then F c L. 
sep sep sep 

From (I) and (4) above, we see that every field 

to a separable closure Fsep, a field such that F c 
sep 

F can be extended uniquely 

Fsep, F sep is separably 

closed, and Fsep is algebraic over F --hence a p-basls for F remains a 

p-basls in Fsep. From (2) we note that any non-algebralc extension which does not 

extend a p-basls must be more than a simple transcendental field extension; when 

we add t we must also add coefficients for t with respect to the original 

p-basis, and so on. It thus makes sense to incorporate into the language functions 

which pick out p-dependence coefficients. 

Deflnltions. For n > O, let {mill ~ O, .... pn-1} be some fixed indexing of the 

set of p-monomlals in variables x I, ..., x n. For each i we introduce an 

(n+1)-place function AI(I Ai, n) satisfying 

(*)i,n hi(y , Xl, .... Xn ) z cl , if x I .... x n are p-lndependent and also 

P 
y z Z c i m i , 

hi(Y, x I ..... x n) - O, otherwise. 

Let L be the language of fields (+, ', O, I, -I -) together with all the 

ll,n'S. Then any field F of characteristic p can be expanded uniquely to a 

structure F' for L such that the (*)i,n'S hold. Also, if F c K, then for 

the resulting expansions F' and K' we have F' c K' if and only if F c K. 
sep 

Also, given F c K and e ~ K, the L-substructure of K' generated by F U{e} 
sep 

is the least subfield of K containing F U {a} over which K is separable. We 

denote this L-substructure, the closure of F U {~} under the k's, by F<m>, 

reserving F(~) for the usual fleld-theoretlc extension. It should also be clear 

to the reader by now that this language is unnecessarily complicated if 

[F : FP] = pn < ®, for then all the ll,m,S are O for m > n, and 

{~i,nIO ~ i < pn} would suffice. 
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Let SCM n denote the theory of separably closed fields of characteristic 

and Invariant n, n ~ ~° The basic model theoretic result about SCFn, due to 

Ersov, can be stated in the present setting as follows. 

Theorem I. (Ersov [E]). SCF n is complete. As a theory in L, including 

(*)i,n'S, SCF n has prime model extensions (separable closures) and admits 

elimination of quantlflers. 

We remark that Dan Haran has recently worked out an elimination procedure for 

this theory. 

We now turn our attention to l-types over a model of SCF n. 

Definitions. Let ~ ~ K, where F c K, with F, K ~ SCF n. We say that ~ has 
sep 

an F-tree if the extension F<u> does not extend a p-basls of F (which is 

always the case when n < ®). In thls case the type typ(u, F) of u over F is 

completely determined by the tree of coefficients of ~ with respect to any chosen 

p-basls for F. To illustrate, let p = 2 and n - I, and take u E F-FP as 

p-basis. Then the tree of u over F looks llke: 

aO0 ~01 
I \  I \  

aO00 ~001 ~010 ~011 
I\ I\ I\ I\ 

2 2 
where aO = ~00 + aO1 u, and, for any string n of O's and 1's, 

= 2 2 

Notice this gives polynomial relations between the levels of the tree, such as 

~0 " (~O00)4 + (~010)4u + (aO01)4u2 + (aO11) 4u3. 

These can also be viewed as expressions for a in terms of the 2m-basls u of F 

over F 2m, with coefficients the ~q's where length(q) = m. 

We also define F(I)(m), the m-th level subfield of F<a>, to be the field 

F({anl length(~) - m}), so F<a> - U{F(m)(a)Im E ~}. 

It is easy to check whether a type p(x) given by such a tree is consistent, 

since one need only check that the polynomial relation on the x~'s at any level 

is consistent. 
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If p is a type with an F-tree and ~ is an automorphlsm of F fixing a 

p-basis of F, then we get a type q = ~*p conjugate to p by replacing x n by 

~(xn), for each n a finite string of O, ..., (pn-1)'s. 

In the next section we will construct types of transcendence degree I. By 

transcendence degree of p over F we mean here the usual algebraic transcendence 

degree of F<a> over F, where ~ realizes p. These will necessarily have 

U-rank I, and their convenience for us stems from the fact that "forking" means 

"becomes algebraic over". Thus the following observation, due--at least--to Delon 

and to Srour, is of use. 

Lemma 2. Let a realize p over F, where p has an F-tree and F ~ SCF n. If 

B is separably algebraic over F<a>, then B has an F-tree, all of whose entries 

are separably algebraic over F<a>. Moreover, if B has degree d over 

F(r)(a), then B~ has degree ~ d over F(r÷m)(a), where m ~ length(n). 

Proof: Our notation implies that we are working with respect to some fixed 

p-independent u I .... , u n F, and B~i is the p-th root of the i-th coefficient 

of B n with respect to Ul, ..., Un, i ~ O, ..., pn-1. Since 

F<a> - U{F(k)(a)Ik ~ w} it follows from B separably algebraic over F<~> that 

B is separably algebraic over F(r)(~), for some r. Since B is also purely 

inseparable over F(r)(~)(BP), it follows that B 6 F(r)(~)(BP). If B has degree 

d over F(r)(~), then so does 8P. Applying each A I once gives us that 
^ 

80i ~ li(F(r)(~)(sP)) c F(r+I)(~)(B) ~ F(r+I)(~)(BP). Continuing for m steps, 

we get B~ E F(r+m)(a)(BP) as above, of degree over F(r+m)(~) bounded by d. o 

Corollary 3. If B is separably algebraic over F<~>, F and ~ are as in the 

lemma, then the transcendence degree of F<B> over F is at most that of F<a> 

over F. 

Proof: Immediate. 

Corollary 4. For all n > O, there are 2 ~° palrwlse orthogonal l-types over any 

model F of SCR n. 

Proof: Let u 6 F-FP and let ~ : ~ ~ ~. We describe an F-tree with all 

coefficients of the form li( , u) --i.e., a type p~ with all entries in its tree 
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p-dependent on u: 

x 0 = xlP + (X1~(O)) p U 

(x 2 o(1))p x I x2P + u 

Xn . Xn+1 p + (Xn+ 1~(n))p 

Then Xn+ I is transcendental over 

over F(x n) --see [J]. Also, 

has transcendence degree I over 

F to a larger model. 

In order for pa and p~ 

U° 

F and algebraic of degree exactly p ~(n) 

pa has rank I, since the corresponding extension 

F. Moreover, none of this changes if we extend 

and T must be related. For example, suppose 

p~, where 8 is algebraic over F<a>, say, B 

F(k)(m) = F(ak). Then o k is algebraic over 

lemma, we have BI algebraic over F(~k+ I) of degree 

algebraic over F(B I) of degree ~ d'. By considering 

F(B) c F(B, o k) c F(B, ~k+1) c F(~I, ak+1) 

and F(B) c F(BI) c F(~I , Uk+1), we get that 

p ~(0) ~ [F(~I, ak+1) : F(B)] S d'dpa(k). 

Similarly, ~(m) ~ d'd a(k+m) and 

Thus we see that a(k+m) and 

It is easy to find 2 ~o choices of 

we get 2~-many orthogonal pa's. 

to fall to be orthogonal, then, the functions a 

a realizes p~ and B realizes 

has degree d over 

F<B>, say of degree d'. By the 

d and ak+ I is 

a(k+m) ~ d'd ~(m). 

~(m) are bounded by d'd times each other. 

a such that no pair is related in this way, 

Of course the types in the above corollary are not conjugate, having 

distinctly different "shapes", and so for DOP there remains work to be done. 

§2. Ortho~onal con~usate types. 

in the present section we describe a large family of mutually orthogonal 

conjugate types of transcendence degree I. These types will serve as witnesses 

to Shelah's "DOP" (dimensional order property), as well as to related properties: 

"DIDIP" (dimensional discontinuity property) and "~-DOP" (an inflnltary 

strengthening of both) [S, Chapter 5] and [S2, §2]. A similar family of types was 

studied independently by Delon, using a different criterion for orthogonallty. 

Sh:278



78 

Our methods require more extensive computation than Delon's, but do yield some 

additional information. It is not clear how to get the full ~-DOP with less 

computation. 

We assume that M is a monster model of SCFn, where n and p are fixed 

throughout. FIx u E M-MP. Our goai is to define a type p over MP (u) in such 

a way that its conjugates over u are mutually orthogonal. More precisely, we 

associate to each countable sequence A in MP a type PA ~ SI(AU) of 

transcendence degree I, in such a way that: 

I. If ~ ~ Aut(M/u), then P~A ~ ~*PA- 

If. If A and B are distinct sequences in MP , then PAI PB. 

The intention is that an element realizing PA wlll be pm-dependent on u 

for all m, in a way that depends on A. 

Before describing the construction in detail, we explore the model theoretic 

significance of such a family of types. Consider first the type PA associated 

with a sequence A ~ (al, a 2) of length 2. Let A i = {a i, u}, i ~ I, 2. If 

al, a 2 are independent over u, then we have the following situation: 

I. PA ~ St(At U A2). 

2. A I is independent from A 2 over AI N A2. 

3. PAI A I, PAi A 2. 

Indeed, by a general model theoretic criterion, to see that PAi Ai it suffices 

to take an independent conjugate B of A over A i and to check that PAI PB, 

which holds by II. 

Now, condltlons I.-3. constitute a rather strong form of the DOP. According 

to the definition given in [$2, §2] we should take A I, A2, and A I n A 2 to be 

quite saturated models (a, ~(T)) --saturated, in fact) and we need only have PA 

defined over the (a, ~(T)) --prime model over A I U A 2. One can easily move 

upward from the situation as we have described it by putting A I n A2, At, A 2 

inside (a, K(T)) --saturated models K O, KI, K 2 taken as freely as possible, and 

then PA can be replaced by a nonforklng extension over the (a, <(T)) --prime 

model K over K I U K 2. 

For the m-DOP, which has not previously been defined, we require a type Pk 

over the (a, ~(T))--prime model over the union of a infinite family of independent 
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models K i (all containing a fixed model KO) , satisfying Pk i U{KiIi ~ J} for 

each J. To do this with our examples we take A ~ {aiIi ~ ~} an infinite 

sequence of elements of MP ® independent over u and let A i - {al, u}, so that 

we have: 

I. p ~ SI(U{AIII ~ ~}), 

2. A i is independent from U{Aill ~ j} over u, and 

3. PAI U{Aili ~ j} for all J E ~. 

Again, this situation can be blown up to a similar situation over models. 

The DOP may be viewed as a somewhat disguised procedure for encoding an 

arbitrary binary relation into a suitable model of a given theory. Namely, one 

builds a model M* containing the model M 0 and a large family of independent 

submodels M i containing MO, with each pair Mi, Mj isomorphic to MI, M 2 for 

i ~ J. Letting PlJ be the type corresponding to Pk, we may think of the 

plj-dlmenslon of M* as an attribute of the pair M i, Mj. The orthogonality 

hypothesis amounts to the statement that these attributes are independent. Thus an 

arbitrary symmetric graph can be encoded into M* in a sense which is sufficiently 

precise to yield the existence of many nonlsomorphlc models of specified 

cardlnallty. In a similar sense the ~-DOP corresponds to an encoding of an 

arbitrary inflnltary symmetric relation into a suitable model M*. 

One special case of the ~-DOP would be relevant to the classification of 

sufficiently saturated models of a stable theory. This is the DIDIP [$2, §2]: 

there is an increasing sequence M n of (a, ~(T))-models, and a type PM over the 

(a, K(T))-prlme model M over their union, with PM i M n for all n. This 

property is independent of the DOP, and can be used to produce many quite 

saturated models of suitable cardinallty. A superstable theory cannot exhibit 

this pathology, which is of practical significance only in the absence of the DOP, 

as an alternate source of many models. 

In any case the ~-DOP provides a universal source of pathology in the 

structural analysis of separably closed fields, strictly stronger that the DOP and 

DIDIP. 

We now turn to the description of the specific types PA we have in mind. 
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For the construction and algebraic properties of PA below, we no longer need 

assume that M is highly saturated. Let G ~ (Gi)i~ 0 be a sequence of 

polynomials Gi(x) E Z(A)[x], and associate with ~ the type PA,G(X) E SI(AU) 

which expresses the condltlon: 

(*) There is a sequence x ~ x0, xl, x2, ... with x 0 transcendental over 

A U{u}, and x i s xi+1 p + Gi(xi+1)P u for all i. 

In other words, PA,~ says that x is pm-dependent on u for all m, and 

describes the associated tree of coefflcents explicitly, as in §I. Given the 

sequence G, we may produce a sequence H - (H i ) with Hi(x) E Z(A)[u,x] for 

which (*) implies x - Hi(xi) , namely: 

H0(X) - x, Hi+1(x) ~ Hi(xi+1 p + Gi(xi+1) P u). 

The equation x - Hi(x I) amounts to a description of the expansion of x with 

respect to the pl-basls {u}. Notice that PA always has transcendence degree I 

over A U{u}. 

In practice the polynomials G i will be of one of the forms: 

(GI) G i - 0, 

(G2) G i ~ aj for some J ~ J(1), 

(G3) G i - x m for some m ~ m(1). 

Once the sequence ~ if fully specified, the types p - PA,G are determined. 

We shall impose various constraints on the sequence ~, particularly with respect 

to the value of m - m(1) (when defined), in order to ensure the correctness of our 

orthogonallty assertion: PA i PB for A and B distinct sequences from MP ®. 

Our first constraint, concerning the distribution of polynomials of the 

form (G2) in the sequence ~, is quite mild. Notice first that for x a 

realization of PA,~, the type of x i (a solution of Hi(y) - x) is of the 

form pA,£1~, where £i~ - (Gi+j)j~0, a left shift of ~. If PA " PA,G, 

let us write AipA I pA,~i~" Then our first constraint is: 

(CI) For distinct sequences A, B in MP ®, and any i, J, Ai PA ~ AjPB. 

(If we are willing to consider only pairs A, B which are distinct as sets, we 

can use the simpler constraint, "for all J, {iIJ - j(1)} is infinite".) 
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The constraint (CI) is certainly necessary for the desired orthogonallty 

conditions. Our intention is to combine it with the following condition, which 

will require the most work to achieve: 

(C*) If ~ - ci, c 2 .... is a sequence of 

realizations of PAl, i ~ I, 2, ..., and if 

algebraic over MP (u, ~), then d ~. 

MP (u)-algebralcally independent 

d is a realization of PA which is 

Lemma I. If the sequence G satisfies the constraints (CI) and (C*), then for 

A, B distinct sequences in MP , PAI p B" 

Proof: By a general model theoretic principle, it suffices to check that for 

sequences c, d of independent realizations of PA, PB over MP®(u), ~ is 

independent from ~ over MP®(u). We may take ~ = d,e to be of finite length 

(so that d is of length £-I) and suppose that ~ is independent from d 

over MP®(u). It then suffices to check that the type realized by e over 

MP~(u, ~, d) is the nonforklng extension of PB to this set. 

Now u is a p®-basls for MP®(u, ~, d) (in M), and for technical reasons 

It is convenient to close this field under the coordinate functions with respect 

to {u}, getting the field L = MP~(u, cij, dlj)jE ~, where 

Hj(cij) = cl, Hj(dij) - dj. Then L is algebraic over MP®(u, ~, d), and the 

nonforklng extension of PB to L is obtained by supplementing PB by the 

clause: 

x is transcendental over L. 

Thus e is independent from ~, d over MP (u), unless e is algebraic over 

In the former case, c, d will be independent over u by the calculus of 

independence, and in the latter case e will be algebraic over MP (u, ~, d), 

and (C*) applies: e ~ ~ U d. As PA ~ PB, e ~ d, contradicting the supposed 

independence of the sequence ~. 

L. 

We have translated the original model theoretic problem into the purely 

algebraic one described by (C*). The next step will be to transform the constraint 

(C*) on PA, PB into a simpler constraint on all the translates AiPA, Alp B. For 

this we need an additional constraint on the polynomials H i . Make a slight change 
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in notation: Hi A - Hi(x, ~, u), where H i 6 Z[x, ~, z]. We require: 

(C2) lim infi~®(degzHi)/p i ~ O. 

Whenever G i ~ 0, we have degzH i - degzHi+1, so this constraint is easily met. 

Lemma 2. Let ~ satisfy the constraint (C2), and let 7, d be as described in 

(C*). Then for some i, the elements 7', d' defined by Hi(cj') - cj, Hi(d') - d 

are algebraically dependent over MP . 

Proof: We begin with an algebraic relation f(~, d, u) ~ 0 with 

f ~ MP®[~, t, z]. Let 6 be the total degree of f, and choose i so that 

6.degzH i < pl We rewrite f = 0 in terms of ~',d', u using H i , getting 

f*(~', d', u) - 0 for a suitable polynomial f* whose degree in u is less than 

pi while the cj', d' occur to powers which are multiples of pl. That is, 

f*(7', d', u) ~ Zj<pl fj*(~',d')PluJ, with fj* 6 MP®[~, t]. 

Thus fj* I 0 for all j < pl and at least one of these relations is nontrivlal. 

Remark. There is a remarkable uniformity here--the single choice of i --which 

depends heavily on the constraint (C2). Realizations c of PA or cj of 

Ajp A are related by c ~ Hj(cj), a relation that depends essentially on u. When 

the relations are shifted suitably far down the tree, however, we get the relation 

c i - (cj+i)P j, in which u has vanished. 

It remains to prove the following variant of (C*): 

Theorem 3. The sequence ~ can be chosen so that for any i, the types 

qA " AIPA satisfy: 

(C**) If c I, c 2, ... is a sequence of MP (u)-algebralcally independent 

realizations of qAi, respectively, and if d is a realization of 

which is algebraic over MP®(~), then d 6 3. 

qA 

Proof: We will impose additional constraints of the following form on PA (which 

may be easily rephrased as constraints on ~), for suitable values of I, J, k, m~ 

(C3. i,j,k,m) x i - Xk pk-i + (xkm)P k-i upJ -i" 

Specifically, for each fixed m we want a sequence of values i, J, k for which 

the constraint (C3. i,j,k,m) is valid, and so that k-j and J-i both tend 
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to infinity. There is of course no difficulty in arranging this. 

We now verify (C**). Consider the elements ~, d, which we take to be 

realizations of PA i, PB" If f(~, z) ~ MP [~, z] is an irreducible polynomial 

with f(~, d) - O, we claim first that if d ~ 5, then there is a value of m for 

which: 

(*) f does not divide Zxlm(~f/~x i) + zm(~f/~z). 

Indeed, if (*) fails for all m, we get a relation of the form: 

f.~ i U.grad f 

is a vector of polynomials and U is a van der Monde matrix. This then where 

yields: 

f divides (det U)(~f/~w), (w = x i or z). 

If f divides det U, then f is necessarily of the form z-xi, and dE 5, as 

claimed. In the remaining case, f divides ~f/~w for all w = xi, yj, or z 

and then grad f = 0. In other words, f = f*(~P, zP), f* ~ MP [~, z], which is 

certainly not irreducible, a contradiction. 

So we may fix a value of m for which (*) holds, and take a triple 

(i, J, k) for which (C3. i,J,k,m) holds, chosen such that 

(I) pJdeg f < pk and (2) pideg f < pJ. 

Consider the form of the relation f(~, d) - 0 after the substitution 

cj = Hk(Cj') , d - Hk(d'), say f*(~', d') = 0. As deguH i < pi, we have 

deguH k < pJ and hence deguf* < pk by (I). 

So f*(~' d') E~<pk f~(~* d*)u ~, where 5" ~, pk d* d'P k , i , ~ = , and thus 

f~(~*, d*) 0 for ~ < pk. As Hk(X) xP k - = + terms of higher degree in u, 

fo " f" 

Now consider g - fpj. Then g(~*, d*) is the coefficient of uP j in 

f(Hk(~'), Hk(d')), and H k Hi(xP k-i k-i upJ-i), + xmP where Hi(x) may be 

i 
written more explicitly as a polynomial of the form Hi*(xP , u), and 

i 
deguHi, < pi. As Hi*(x, u) = xP + terms of higher degree in u, 

k-i 
Hi(xP + x mpk'i uP j-i) is of the form: 

k 
xP + x mpk uP j + terms of u-degree less than pi or greater than pJ. 

By conditions (I) and (2), the coefficient of uP j in f(Hk(~'), Hk(d')) is the 
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uP j in f(~* + ~*m uP j, d* + d *m uP j), and by a Taylor same as the coefficient of 

series expansion we flnd that 

*m 
g(~*, d*) - ~c r (~f/~Xr) + d*m(3f/3z), 

where all partial derivatives are evaluated at ~*, d*. 

Now f(~*, z) is the minimal polynomial for d* over MP (~*), and hence 

divides g(~*, z). As f is irreducible and ~* are algebraically independent, 

f divides g. But m was chosen to make thls false. This contradiction finishes 

o u r  t h e o r e m ,  o 

By taking ~ to satisfy (CI), (C2), together with enough instances of 

(C3. i,J,k,m), we have the following: 

Corollary 4. For any 0 < n ~ ®, SCF n has ~-DOP, hence DOP and DIDIP. 

Proof: Immediate from the discussion at the beginning of the section. 

Remark. As a corollary of the proof of Theorem 3, we can reach conclusions similar 

to those of the theorem about types which behave llke the PA'S for arbitrarily 

long stretches; i.e., the proof applies locally. We shall make use of thls 

phenomenon in the sections which follow. 

§3. Rank and transcendence degree. 

In considering stability in an algebralc context, one question which arlses 

is the relationship of model-theoretlc rank to an algebraically "natural" rank 

(e.g., transcendence degree, in the case of separably closed fields). The aim of 

this section is to consider situations when U-rank and transcendence degree do 

not correspond; we begin by considering a condition under which the two ranks 

are the same. 

D e f i n l t i o n s ,  I. Let F c K be separably closed, and let 
sep 

subfields of K such that 

(t) K v - F(B~)sep for some B~ independent over F, 

(ll) K v c K v, for v < v', and 

(iii) K - U[K~I~ < ~}. 

Then we say that {K~I~ < K} is a tower for K over F. 

{KvI~ < K} be 
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2. Let p be a type over F, say p ~ typ(a, F). Then we say p is 

accessible from F if there exists a tower for K = F<~>sep over F. 

Examples. 

(i) 

( i i )  

If p is a type of transcendence degree I over F, then p is 

accessible. 

If p - p(x) is the generic type--the one which satisfies no incidental 

relations over F (see [D])--then p is accessible, with B 0 - {x} and 

B~ - By+ I = {~i(b)Ib 6 B~, i - 0 ..... pn-I} in case n is finlte, and 

Bu - {x} for all v when n = ~. 

Theorem 1. If a realizes an accessible type p of U-rank r over F, F 

separably closed, then the transcendence degree of F<a>sep over F is r, and p 

is a product of r accessible types of transcendence degree I over F. 

Proof: Let K - F<a>sep ~ UuF(Bu)sep as above. Since F<a>sep cannot contain 

more than r independent elements, from some u' on, card(Bu,) - card(Bu) - 

m ~ r, and card(By,) - tr deg F K. Now tr deg F K a r, since whenever p forks, 

the transcendence degree must drop. Thus card(Bu,) - r, and so every element of 

B~, is of transcendence degree I and U-rank I, giving p as the desired product.D 

We next construct examples of types where U-rank and transcendence degree 

differ, answering a question of Delon [D, p.45]. 

TheOrem 2. 

that F<a> 

Let F be separably closed, with F ~ FP. Then there exists a such 

has transcendence degree 2 over F and typ(~, F) has U-rank I. 

u E FP-F, and take A and B distinct sequences from FP , as in §2. Proof: Let 

We describe the tree of coefficients for a type q " qA,B over F: 

Start with x - Yl + z I u, where Yl and z I are algebraically independent over 

F. Next begin to build the trees of types on Yl and z I according to PA and 

PB, respectively, as in §2. Coflnally often, however, introduce the following 

twist: 

P P 
(*n) Yn " Yn+l p + Zn p u, z n - Zn+ I + Yn u, 

then begin again, this time building PA and PB on Yn+1 and Zn+ I. Notice 
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that it is Just the twist in (*n) which makes our type inaccessible. The only 

requirement on n's such that (*n) happens, is that they be sparse, so that we 

have arbitrarily long stretches in which we are constructing PA and PB" To see 

that (*n) 

I) 

2) 

is consistent, we consider three steps: 

3) 

add Yn+1, Zn+1 algebraically independent over F, 

solve for w in w - (Yn+1 + wP u)P u - Zn+ I = 0 (which is OK since 

this is separable in w), and let z n be a solution for w, and 

let Yn " Yn+1 + Zn p u. 

our type q has transcendence degree 2 over F. In order for q to fork over K, 

where F c K, the transcendence degree must drop. This makes Yn and z n 
sep 

algebraically dependent over K for some, hence all, n. But since we have built 

arbitrarily long stretches of the construction of PA and PB into the 

description of q, and since A ~ B we conclude that one, hence both, of Yn and 

z n are algebraic over K (as remarked at the end of §2). Thus the only way for 

q to fork over K is via a realization of q in K, and q has U-rank I. o 

Corollar~ 3. There exist separably closed fields F c K such that K has 
sep 

transcendence degree 2 over F, and such that there is no L with F c L c K 
sep sep 

L of transcendence degree I over F. 

with 

Proof: Take ~ realizing q as in Theorem 2, and K ffi F<~>sep. 

We remark that one can similarly concoct types of rank I and transcendence 

degree m, for any m > I. 

§ ~ , ,  Types  o f  rank w. 

Here the information about the types in §2 is used a second time to control 

rank, again answering a question of Delon [D]. 

Theorem I. Let F be separably closed, F ~ FP. Then there exists a type over 

F of U-rank ~. 

Proof: Let u 6 F - FP and let PA be as in §2, where A is any sequence from 

F P®. We construct the required type q according to the following picture: 

Sh:278



87 

Xl 

I PA p steps 

PA • PA 

/ \  / \  
x I ', x2, x 2 ' x 3 

PA • PA - PA • PA • 

i \  / \  / \  / \  
(3) (2) (2) (I) (2) (I) (I) 

Xl x2 x2 x 3 x2 x 3 x 3 

p2 steps 

p3 steps 

(o) 

X4 I !)4 steps 

m(1) 

m(2) 

m(3) 

m(4) 

To be precise, for each i ~ I and J ~ O, we follow the construction of PA 

below xi (j) for pi÷J steps, from Yl " xl(J) to ypi+J. Next introduce 

(j+1) (j) 
X i and xi+ I via ypi+J - (xi(J+1))P + (xi+ I (J))Pu, and now continue 

(j) 
with PA for pi+J+1 steps below xi(J +I) and xi+ j 

Consistency of this tree is easy to see, since for each k we can take k 

arbitrary elements Zl, ..., Zk, and build the coefficient tree back up from level 

m(k) s pk-1 + pk-2 + ... + p + k - I by letting x i - z i, i - I, ..., k. 

Next we verify that q has rank ~ m. Let ~ be a realization of a forking 

extension of q. Then at some level of the tree of coefficients for a (which we 

choose to be of the form m(k) for some k), we must find an algebraic relation 

(j) 
among the corresponding ~i 's, i + J - k. By Lemma 1.2, the algebraic 

dependence persists down the tree , so we may assume that k is large enough that, 

(j) 
using the PA'S as in Section 2, we conclude some ~i is actually algebraic. 

(j) 
Once ~i is known to be algebraic, the entire tree has finite transcendence 

a i, (J ') degree, since all the for i' > I and j' > J become algebraic once 

~i (j) is. It then follows that for all subsequent m(k') we get that 

~I (k'-l) 1(k,_i+ I ) (J-i) (0) 
, "'', ~i- , ~k'-J+~ , "'', ~k' generate this level, hence 

the transcendence degree is at worst i - I + J, for all k' E k. Thus the 
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resulting type of ~ has rank at most i - I + j, and so q has rank ~ ~. 

(j) 
To see that any finite rank is achievable, note that making x i algebraic 

(j') 
gives rise to no restriction on the choices for x i, for i' < i and J' < J, 

so that the type can continue to fork i + J - I times. Thus q has rank exactly 

~, as desired, o 

Remark. Similar constructions can be made to produce types of other countable 

ranks. 
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