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1 On normal filters

In [Sh3553, Sect. 4] and [Sh400, Sects. 3,5] we have computed cov(A, A, , o) when
6 > o =cfo > R, using tcf [] A;/J, for o-complete ideals J and 0 < & < 0.
1<K
In [Sh371, Sect. 4] we deal with a similar theorem where we restrict ourselves to
normal ideals, namely prc, but its computation, using pp’s, did not always yield exact
values (i.e. the upper and lower bound tend not to match). Here we give reasonably
exact values for prc;(f, i), using the true cofinalities of [ u;/J;, where J, is a
i<k
normal filter on x extending J and for ¢ < k, y) is a regular ordinal satisfying
w; S pli £ f(i). We also give a sufficient condition for the existence of normal ideal J
on  such that for some sequence (), :¢ < x) of regulars, we have £ = tlim(},;:¢ < &),

p=rtcf [T A,/J.

i<k

2 On measures of the size of %2, (\)
We mainly investigate cardinals like
Min {|@( P C F24()) and for every Z € Y2, (M) there is a sequence
(Z,:n < 8) of subsets of Z such that Z = U Z, and

nw

(¥n < w) (Vy € F4(Z,)) (32 € P)ly € z]} .

We also give sufficient conditions for the strong covering to hold for a pair (W, V)
of universes.

* Done 1990. Partially supported by the Basic Research Fund, Israel Academy of Science. I thank
Alice Leonhardt for the beautiful typing Publ. 410



Sh:410

400 S. Shelah

3 pcf - inaccessibility and characterizing the existence
of non < ;-decreasing sequences (for topology)

We restate various results using pcf inaccessibility and present more consequences of
the proofs in [Sh400, Sect. 2, Sect. 4]. We characterize those x < ¢ < # for which

there is a sequence (f,:a < @) of members of *o such that o« < § = f, % Is
answering a question of Gerlits, Hajnal and Szentmiklossy.

4 Entangled orders — narrow order boolean algebras revisited

We show that for a class of cardinals A there is an entangled linear order of cardinality
AT, This holds for X if there is a % such that K1+ < of A < X < 25,

5 prd: Measuring [] f(i) by a family of ideals
i<K
and a family of sequences (B;:i < &), |B;i| < p;

This generalizes Sect. 1, replacing normality by an abstract property; we also present a
generalization of the concept of a normal filter, and deduce prd (£, z) < prd;(f, Bt
and prd ;(Rzf1) = Npra;(f,my+ under suitable conditions.

6 The existence of strongly almost disjoint families

We characterize such existence questions by pp’s. An example is the question of the
existence of a family of A* subsets of A > x™°, each of cardinality x (> Ny) such
that the intersection of any two is finite.

1 On normal filters

The following Lemma 1.1 is similar to {[Sh355, 5.4; [Sh400, 3.5, but deal with normal
ideals (see [Sh371], Sect. 4, in particular Definition 4.1, Claim 4.6). Remember prc is
defined in [Sh371}, Sect. 4 as:

1.0 Definition. 1) For a regular uncountable cardinal x, normal ideal J on «, [ a
k-sequence of cardinals > «, and f € * Ord, we define:
pre;(f, i) = Min { |Z|: 2 is a family of x-sequences of sets of ordinals,
B = (B,:i < k), |B;| < u, or at least
{i < k:|B;| Z u,;} € J, such that: for every g € * Ord,
g < f there is a sequence (AS:( < k) of members
P satisfying {z < rk:g() ¢ U Af} € J} .
¢<i

2) We may write f as a sequence of ordinals say (\,:¢ < ), and if A\, = X for
each i, we write A. _
3) prc/;(f, 1) is defined similarly but B = (B, :i < &), |B| < p.
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Remark. See there [Sh371, 4.2, 4.3] for some basic properties. But 1.1 below
substantially improves [Sh371, Claim 4.6] there.

1.1 Lemma. 1) Let & be a regular uncountable cardinal, f : k —-ordinals, J a normal
ideal on k, and [i = (u, 11 < K) a sequence of regular cardinals. Then

pre ;(f, ) = sup { tcf [H ,ug/Jl}: J, a normal ideal on k extending J,
b such that the tcf is well defined and
{i <r: not “p; S pp=cfu; < fG)7} € J}
provided that:
© py=p>k
2) We can replace assumption (o) by (B) below, and /\ My > K.

7
3) We replace (o) by (B) and in the sup, replace tcf by nor-cf (see [Sh371], Def. 4.4)
where '

(B) u, strictly increasing, p, > & and for limit i: if i = Y, 1; is regular then
i = w,;, otherwise p, = ( 3 ,uj>+. i<
j<i

1.1A Remark. 1) On getting =" see [Sh420, 6.1(C)] and [Sh430, Sect. 4]. The problem
is when pcf(a) has an accumulation point which is inaccessible.

2) In the case (B) holds, if @™ = (uf:i < k) is (strictly) increasing continuous,
sup uf = sup 1, then pre(f, it) + ( 3 M)J" = pre(f, i*) + ( > ui)+, by [Sh371,

i<

i<k K <K 1<K
4.10(2); Sh355, 2.1].

3) If in (B) we place “u; > x” by supp, =k, A p; <k (so k is inaccessible)
then we can get: i<w i<r*

pre ;(f, i) = sup {nor-cfH pif I {ipy S pp = cf i S f(D)} € J}-
i<k
Proof. The inequality 2:
Same proof as that of “A(1) £ A(2)” in the proof of [Sh371, 4.6].
The inequality <:
Let \* be the successor of the sup.

1.1B Fact. There is a family 5°* such that:
(i) members of F7* are of the form

<Bi>§"i<H’7C<<i> or << Bi,('.c<<i > .'i<l<;>

where ; < p,; and each B, . is a non-empty subset of f(@) + 1.
di) |27*| < ¥,
(ili) if (B;c:i < K,¢ < () € P, g € T[IUG + 1, A C & and for
<K
i€ A & < and g(i) € By, then there are E, (4;:5 < k) and for j < K,
BI =(B! i<k, <), (¢ i€ Ay) such that:
() ECkandk\E € J;
(b) ANE = {i</<;:z'€ U A4,

Ji<i
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(¢) BV e 7%

(d) fori € A; we have: ¢ < §’ and B . C B, .. and

il =
(B! 5| 2 15 => |B | < 1By

(e) fori € A; we have g(i) € Bt ey :

(iv) {({(f@) +1):i < k) € P* (so (, = 1 here).
Proof of the Inequality from the Fact. Let us define a family 97":

P = {<U{Bi,C:C < and |B; | < pi}ri< H>2'<Bi’gii < K¢ < () 69’*}.

Now each member of &” has the right form as each y, is regular and (BM:Z' <
K, ¢ < () € P7* implies ¢; < p, and |B; ¢| < p;- Also the cardinality of 7' is < A*
[by (ii) of 1.1A]
Let g < f and it is enough to find (Bf:i < k) € &7 for € < k such that
{z’:g(i) ¢ U Bf} eJ
e<i
We choose by induction on n, for every € "k the following: B" = (Bl,ui <

K, (< () e PH (i€ A, )withf"<§77 andA C & such that:
() BY = (< f@)+1>:1i< k), g. =1,¢&" “0,A<)=I€,
B) li € Aygy = 96) € B] 35y € Blal,

U(]) =
(y i e An‘(j>&|Bﬁ§"[ 2 e |B” é{})(g | < |BZ§;,[] and
)] {zeA g U Ay )€

i<i
The induction step is by (iii) of the fact; in the end let for n € “”x and
i<w:Bp,=:U{B/;:¢ < (' and [B]| < p}.
Clearly for each n € “>x we have (B),:i < k) € &7, let us enumerate
“’>n as {g6 € < k} such that (o< g, = 0 € {0::¢ < c}], and let us define
;10 < k) € &7, hence by Definition 1.0 it is enough to show that

{ < r:g() ¢ | B } belongs to J. We know that for every € € “k

e<q

the set X, {7, €A ig U A, } belongs to J. Also the sets

j<i
Y =:{6<kié
limit and —(Ve) [e < 6 = p, € €7 6]}
X =:{i <k ifi ¢ Y then for some n € “”¢ we have i € X, }
belongs to J. It suffices to show

(x) for every 6§ € xk\X, for some 7 € “~§ we have 6 € B} ;}.

Why () holds? Choose by induction on n < w g,, € ™§ such that: § € A, . For
n = 0 remember Ay = k. Forn+1,as6 € A, and§ ¢ X clearly § ¢ X, so

necessarily § € U Ag {4}
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Now (|B; een
constant hence [by (y) above] for some n, |B§ gen| < pg, hence g(6) € B;‘nﬁ. So (%)

|:n < w) is non-increasing [by (B) above] hence is eventually

holds and we have finished proving the 1nequa11ty from the fact.

Proof of the Fact 1.1A. 1t suffices to prove that for any B* = (B}, :i < 5,( < ()
satisfying the requirements in (i), we can find %« satisfying (i) + (ii) and (iii) for
the given B* and any g, (§;:¢ < &) as there. Let Yj = {¢ < ;1B < i},
Y ={¢ < (2Bl 2 py > cof | Bf |} and Y = {¢ < (;: cf [Bf| 2 p;} (for each
i< R, (<)

Clearly (YO,Yf,YZ> is a partition of {C ¢ < ¢}, now for ¢ € Y} UYY, let
“C = :cf|Bf C| and (B} e €< /,LC> be an increasing continuous sequence of subsets
of B} of cardinality < |Bf;|and U B, .. = B}

E<I-LZ

Now let a = :{u}:i < k,{ € Y/}, so a is a set of regular cardinals. Assume for a
while assumption (¢0) of 1.1; so a is a set of < pu+k™ = y regular cardinals, each 2 u,
so the pef analysis of [Sh371, Sect. 2] apply. Let us get (< f2:a < 8 > 10 € pef(a)).

Now for each § € pcf(a) U {1} which is < A* and o < 6, we choose
B = <BZ’¢°“ 1i <k, ¢ < CP) such that:

[BU ¢ < (0%} = {BY ¢ € Y} U{Bl e < pb C € Y)
LB, £ :¢ €Yy and 6 € pef(a) (ie. 6 + 1)}

Let P+ = :{B%*:0 € A* Npcfaand o < § or § = 1, a = 0}, it is as required
(P < A\* as sup(\* pefa) < A* as A* is a successor cardinal). The proof assuming
(B) is similar but we partition a to x sets; i.e. without loss of generality each (; is a
cardinal hence ¢; < | p;,; + tg- So for every limit ¢ < &, {; < |J p;. Remember
J<i J<i
k< U p; and even k < p, and let for j < :
i<k

a; = {us:¢ € V) and ¢ < py and j < i}. So |a;] £ K+ p; < Mina; and

f (€11 < k) € [T+ ¢;) then we can define h:x — k, h(i) < 1+ 4 such that:
1<K

[i < k& limit=pf € apl Oy

The following lemma generalizes [Sh371, 1.5].

1.2 Lemma. Suppose 0, < 0, £ & < 0 < X are cardinals, 0,,0,,& are regular,
A>cfd=r>N, A< p=cfpy< pp;(ﬂ,az)(A)’ and for every large enough N < A,
[o) ScfN < 0= pppp (A <AL

Then there is an increasing sequence (j,:1 < k) of regular cardinals <M\,
A\ = sup u, and an ideal J on k, A = tlim; p,, = tcf( I1 p,Z/J) such that:

i<k <K
(a) J is o,-complete and extend Jgd;
() if & 2 o] and (Vo < k) [cov(|a|, 05,01,2) < K] then J is normal;
(¢) if oy =R, then J = JZd.

Proof. For (c) see [Sh371, 1.6], so we can assume o; > ¥, as otherwise we have
there gotten a conclusion stronger than (a) and (b).
Let a C RegNA have cardinality < 6, be unbounded in A, I a o,-complete ideal

ona and WX < N[an XN € Iland p = tcf(Ha/I). Ascfd =k <0 < A
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without loss of generality §# = cf(f) < Mina, and let (\,:¢ < &) be increasing
continuous with limit A, X, = cf(\,) < x (remember x > R;); without loss of
generality § < Ay < Mina and PPr@,op(Ai) < Ay and, if 7 > 0 is a limit ordinal
then a N A, is unbounded in A;. Also without loss of generality (using [Sh355, 2.3])
for every z' < K!

Do SN <X\ &ap SefN <8= pppg () < Ayl
hence

(*)g b C (Mg, A;) &(b) < 8 = suppcf () < Ay

o1 —complete

Let (b [a]:0 € pcfa) be a generating sequence (exists by [Sh371, 2.6]) and
without loss of generality ;» = max pcf a. By [Sh345a, 3.6 (and 3.1(7))] without loss
of generality o € b, [a] = b,[a] C b, [a]. Let i < & satisfy cf(i) = 7y, as |a] < 6 and
ppp((,,ol)()\i) < A4y, for some p; < A; we have sup pef oy — Complem(/\ ﬂa\ul) < Ajpts

2 hence for some ¢; we have: ¢, C A, Npef@aN A )\g,, [} <oy and an X \g,; C

U bylal (otherwise we can find a o,-complete proper ideal J on A, Na\y, such that
fcc;

[o < pp}Z(e’Ul)(Ai)&a € pef(h; Na\p,) = b,[al N\ Na\p) € J).

Note that ¢; C (p;, A1)
Let Sy = {6 < k:cfé 2 o,}, so for some i(x) < Kk we have:

Sp={6 € SyicsNAs C A,y and pgs < Ay}
is a stationary subset of & .

By renaming, without loss of generality i() = 0, and for i € S| let (8, i) ¢<¢)
list {(9, bylal):6 € ¢,}; so:

)y an € U e maxpefe, . = 6, A, < 0, < Ay, and 0,
€<¢
pct

oy -complete

1.2A Fact. There are finite 0, . C pcf ei,c\)\i for i € 8, ¢ < (, and stationary
S, C 8 such that letting 0, = |J 0, . we have: if S C S,, k = supS then
S pCfaz —complete ( Us(az)) <t

S

Proof of 1.2 from the Fact. Now the preliminary part of 1.2 is easy; as 0, € (A;, A, ),

and |3, < 0, < kK = cfk, clearly ® = : |J 0, has order type «, and by 1.2A u €
€Sy
et compiete ( U o, ) and by (), above, for j < &, st & Pcf, compiere ( Lé 0, ﬂ)\j);
€8, 1€S5]

also ¢ = max pefd. So we are left with parts (a) +(b). Let 95 = {A; .:¢ < (5 < 0y},
as oy < K, clearly without loss of generality for some ((*)

Sy = {6 € 5,:(s = ((»)} is stationary .
For each ¢ < (%) let
P = {5 C Sy maxpef{A; .16 € S} < p}.

2 We may have said that so (by Fodor lemma) without loss of generality sup pcf, X Na) <

o ~complete
)‘i+1
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If for some { < (%), the normal ideal on s which ?C generates is proper, we have

finished. If not, for each ¢ < ((x) there are members S, ,(i < k) of 9‘2 and club C,
of & such that:

§€8,nC, = \/6€8,,.
i<6
Clearly C = [\ C, is a club of x, now remembering S, € S, we know that on
C<C(*)
S3NC, 6 sup{Min{i:é € S, ;}:( < ((x)} is a pressing down function, so for
some stationary .S, C S5 and ordinal j(x) < Min S, < £ we have:

seSye NV secns,.,,;.
¢<Ct) 3<I)

But as cov(]j(¥)|,05,0;,2) < K, there is w C j(x) such that |w| < o, and S is a
stationary subset of « where

S5 = {56 Sy N\ Ve Sc,i}.
¢<l(x) i€w

Letb = {)\c ,: for some j and { we have ¢ € SC pJEW and ¢ < (%)}, it is the union
of <o, sets (b, ; = {\; ;14 € S, ;} for j € w, { < ((x)), each with max pcf < p.
This contradicts the fact (1. 2A)

Proof of Fact 1.2A. Similar to the proof of [Sh371], 1.5. [,

2 On measures of the size of Z,(\)

Improving a little [Sh400, 5.9].

2.1 Claim. Assume A > cf X =Ry, A > 2% and [N < A& cf N <0 = pp,(V) < A]
and ppA < cov(A, A, R}, 2). Then {p: A < p =N, = ppy(\)} has order type 2 6.
We shall return to this in [Sh430, Sect. 1] so we do not elaborate.

2.2 Claim. Suppose 0,k are regular, N, < 9 Sk < AE XA SN, and

VWA S p S N&cfp < 0 = pp<0(u) A*] and cov(k,8,6,2) = k. Then
there is a family 93 of £ X* subsets of \,, each of cardinality < X such that:

(%), foreveryY C A, |Y| £ & there are Z,(n < w) such that: Y C \J Z,,
|Z,,| = k and for each n n<w

D) Z C Z,&|%| < 0= (@AX € P)[Z C X1,

(x), foreveryY C A, |Y| < kand 0, < 6 there is X € P such that: X NY
has cardinality 2 6,.

Remark. Here and later we can replace < A* by < \* = cf \*.

Proof. Tt suffices to prove (), as (x), follows. Let @ = {u: A < p < A and

cf o < 0}. Clearly if © = {), the conclusion is straightforward (by induction on A,).

Without loss of generality A* = sup{pp_o(p):px € ©}. Now each pp_(u) (for

w € ©) has cofinality =6, and if § < 6, (i, :9 < 6) increasing, {pp_o(1;):% < 6)

strictly increasing then pp <9( U ,udi) > Y ppoo(p,), hence cfA* = 0 and, by
i<é 16

[Sh355, 2.3], without loss of generality A* = X,. Let x be regular large enough and B
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be an elementary submodel of (H(x), €, <}) of cardinality \* such that A* 4+ 1 C 8.
let
P={XeB: X CIand |X| < A}.

Now repeat the proof of [Sh400, 3.5], noting

2.2A Observation. Suppose:

(i) a is a set of regular cardinals |a| < Mina;

(ii) the function b + { fg ta < maxpefo) (for b C a) is as in [Sh371, Sect. 1];
i.e. satisfies:

() f& € []b, we stimulate f& | (a/b) = O,/ and (fS:a0 < )
is < J<maxpcfb(b]—increasing and cofinal in ([]b, < J <max pets[b] ), and
(Vg el b) Fa < O [g < f2].

(), if 6 < 6 € pcfa, cfé6 € (|b],Minb] and o € a\{cf6} then
fé’(a)zMin{ U f8(e): C aclub of 6}.
acC

@iii) a C A%, A< )*, and
(VB)[b Ca&|b] <O& supb 2 A& supb ¢ b = suppchgd b < A*T.

(iv) We let for p € pcfa, and « < p: fF = oulil

Then for every {a,:i < k} C {b:b C a,|b] < 8}, g; € [Ta; (G < x) we can
find g and A} < A such that: g € []a, foreachi < x, g, < g and for every i < &
there are A} < A such that letting ¢ = a*\X, we have g | ¢’ is Max of finitely
many functions from {f* | ¢*:¢ < k,a < p,p € pcfa and p < \*}. Moreover
for some ® C [\, A*] N pefa, for every g € RegnA, A*] N v, for some A, <A
g I (b,(al\),) is (the suitable restriction of a) Max of finitely many functions from
{ £y :0 € (A, X1 N pef(a\N) for every N < A}.
Proof. Without loss of generality x* < Mina. Use [Sh371, 1.4] with ¥, q, (a,:4 <
k), here standing for 6, a, (b,:4 < ¢*) there and we get (< A Gl S ) > i<
k). Let A, = sup [U{ci,l: ¢;; a bounded subset of )\}} Oy, O,

Similarly
23 Claim. 1) In22,if0 = sand (Vu)[k S p S X\ & cfp <0 = pp_g(p) S A¥]
(i.e. K = A) then we can add

(¥)3 for everyY C X, Y| < & there are Z,,, {Z,, ;:i < 0) for n < 0 such that
Yyc U z,2,=UZ,,12,,;| <0.{(Z, ;i < 8) increasing continuous
i<

n<w

and each Z,, ; belongs to 7.

Hence

2.4 Conclusion. If A > cfX = R, then there is a family & of sup{pp(u):p <
A,ef = Ay} countable subsets of A such that:

(x» HY CAY| = R, then for some Z € &2, Y N Z is infinite. Moreover, we
can find o7 (n < w,% < @) such that Y C {a:n < w,i < w;} and for
each n for arbitrarily large ¢ < wy, {a}:j < i} € 2.
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2.5 Conclusion. If A > k = cf A, and pp, (N) < cov(\, A, k%,2) then pp (\) <
cf,, (TTOx NReg), < b ).

Proof. Let x = (A", and for ¢ < k7 let B, be an elementary submodel
of (H(x),¢€, <;) of cardinality pp,(\) such that pp () C B, B, increasing
continuous, and (B, :e = () € B.,;. Let B = B,,. Assume that the conclusion fail
and we shall prove that cov(X, A, k*,2) < pp, (), in fact that & = B+ N2, (N)
exemplify it. Let o C A, |o| £ k and we shall find A € & such that o C A; this
suffice. Choose by induction on ¢ < wy, f, € BN [I(RegnA) such that letting N,

be the Skolem Hull of a U {f,:£ < (}, we have: for every large enough o € RegnA,
fc e N< = sup(c N NC) < fC(O')]. Now use 2.4 + proof of [Sh400, 3.5]. [, 5

We now return to the issue of strong covering (from [Sh-b, Ch. XIII, Sects. 1-4])

(better version [Sh-g, Chap. VII]). It influenced the first proof of a bound on ij‘), and
is clearly related to computing Min{|S]: § C %2 ()) is stationary}.

2.6 Lemma. Suppose W CV is a transitive class of V including all the ordinals and
is a model of ZFC.

1) For every set Y €V of ordinals of cardinality <« (in V) there are Y,, €¢ W
n < w)(so(Y,:n <w) € V), W E Y, a set of <k ordinals” such that
Y C U Y, provided that:

nw

(®), @ & is a regular uncountable cardinal in 'V,
(i) if a € V is a subset of Reg"™ \k, |a] < &, and g € (11 a)v then

® there is a function h € W such that
# € Dom g = g(8) < h(f) < 8 (so Dom g C Domh)

or even
(), like (%), but in (ii) we demand only:

®T  there are functions h,, € W (for n < w) such that
(Vp € Dom g)[ V gl < hn(ﬂ)}-
n<w
2) For every set Y € V of ordinals of cardinality < r (in V) there is Z € W,
W F“Z a set of < k ordinals” such thatY C Z provided that:

), +8 < k.
3) Assume k=Y, (¥), holds and

®, V = "A a set of ordinals of power v”= (3B € W)[A N B infinite
&W E7|B| < k"]

Then the conclusion of 2) holds.

4y Assume k=XY, (), (cH)Y = DY, and (¥),.+.

Then the conclusion of 2) holds.

5) Assume

(a) (K'+)V = (K'+)W’ (*)/4, (*)Kﬂ—;

(b) there is (Cs:6 € A+ D\(k + 1),Ry £ ¢tV < k) € W, C; a club of 6,
[ € accCy = C, = CsNal and opt C5 < k.
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Then (W, V) satisfies the x-strong covering (see [Sh-g, Chap. VII]) i.e..

® for every ordinal o and model M € V with universe «, with countable
vocabulary, there is N < M of power < k, N Nk an ordinal and the universe
of N belongs to W.

6) Moreover, in (5)

@t for any X in the game where a play last k moves, in the i move (for i < k)
the first and second players choose a;, b, € 72 (), respectively preserving
U b; C a; C by, the first player has a winning strategy where the first player

J<i
winning a play means {6 <k: g€ W} € D, (=the clubs filter (in V)).
i<§
Remark. 1) Note that parts (3), (4) hold for x 2 NY, but this is covered already by

part (2).
2) Note that in part (9), RY =RV,

Proof. Should be straightforward (if you read till here). [Originally we say only; for
(1) imitate the proof of [Sh400, 3.5], for (2) — repeat the proof of [Sh400, 3.5] by
doing the induction for ¢ < N, then use part (1). For (3) — instead using part (1) in
the end, use the assumption, for (4), (5) imitate the proof of [Sh400, 3.6].
For 1)-5), let Y be a subset of the ordinal ), a cardinal of V [for part(5) A is
given], and let x = :[2")"]7. Let M* € W be (H()W,€,<}) e W,
1) In V we choose by induction on n < w, N, a,,, h, ,;, g, such that:
@ N, < HEY, €, <5,
) VE|N,| <xand N, Nk = q,;
() Y C Ny, {k, A} € N;
d) N, < Ny
(€) h,, € W is a (partial) function (for [ < w) and from A+ 1 to A;

(f) g,, is a function, Domg, = (A + 1) N RegW\k) N N,,, g,(0) =

n,l?

: sup(V,, N &);
(g) for every 6 € Dom g,, for some [, g,(0) < h,, ;(8);
() h,; €N,y forl<w.
There is no problem to carry the definition. Let N = N, = : |J N,,, o, =
nw
U «, = NNk. Let for m = w, M, be defind as the Skolem Hull in (H (), €, <;’Z)
n<w
of {ii < a,,} U{h,;in,l <,,} U{s, A} Cleatly [m < w = M, € W], and
[m <w= M, <N,Jand V = "|M,_|| < ”.Now M = : |J M, < N,

n<w
Mngk =a, = NNk and for every 6 € (At N Reg"” \x) and n for some
m < w, # € N, &m > n so for some [ < w sup(N, N8F) < hm’l(ﬁ) e M

hence sup(N N &) = sup [ sup N,, N 6} < sup(M N ) < sup(N N 6). So by [Sh400],
n<w

33A, MNA=NNAsoY, =:AN M, for n < w are as required.

2)-5) The following will be used in proving 2)-5). Let §(x) < & be given (i.e. we
shall choose it for each part) and we assume (x),.

In V' we choose by induction on ¢ < 6(x), N;, o, h;, g, such that:

@ N, < (HoW, €, <}

(b) ViE=“|N,|| < 7 and N, Nk = a3

(€) Y C N, {k,A\} C Ny



Sh:410

More on cardinal arithmetic 409

(d) N, is increasing continuous;
(e) h; € W is a partial function from A+ 1 to A + 1;
(f) g; is the function, Dom g; = (\* NReg" \x) N N, and

9;(0) = sup(IN; N 6)

(g) 0 € Domg, = g,(0) < h;(6);

(h) h; € Nyyy.

There is no problem to carry the construction. We let N = Ny, = (J N;.
i< 8(*)

Proof of Part(2). Choose 6(x) = NY, so under the assumptions of part (2) é(x) < &,
hence V' |= 7| N|| < &”. Apply part (1) to Y = {h,:4 < 6(x)} (which is C W), so we
can find Y, € W (oreven Y,, € H = :{h € W: h a partial function from \ + 1 to
A+1}), forn <wsuchthat V="V, | <x”and Y C |J Y, (well, Y is not a set

n<w
of ordinals, but we can code it as one). So for some n = n(x), V = “|Y NY, | = 8,".
Let M be the Skolem Hull in (H()"W, €, <*) of {a:a < U ai} UY, 0 U{k, A
1< (%)
so M eW,V M| <k”and so W | “||M| < k. Let M' = M N N; so
clearly M’ < N, |J o, SM'Nk CNNnk= | q, Lastly, if i < §(x) and
i<8(%) i<8(%)
8 € (\* NReg" \k) N M’ then for some j & (i,6(x)), 8 € N; and for some & we
have j <& < é(x)&h, €Y,,), s0 & € Domh_ and sup(N; N 6) = sup(V; N 6) <
sup(N, N 6) < h_(9) € M'. So by [Sh400, 3.3A] we know M’ N A = NN A, so
YCMnNAeW, W =“|M| < & as required.
Proof of Part(3). As in part(2), we choose §(x) = X} and get N, q;,g;,h; [for
i < 0()]. By €D, applied to Y = {h;:4 < 8(x)} (again translating to a set of
ordinals) there is a set B € W such that W = “|B| < x” and A N B infinite,
without loss of generality B C Y [see proof of part (2)]. So there is a limit ordinal
¢ < 6(x) such that ¢ = sup{s < a:h;, € B}. Now let M be the Skolem Hull in
HO)Y, €, <¥) of {a:a < U 0%} UBU{x, A}, so easily MNA C N, N\ and as
i<

above Mﬂ)\:Ngﬂ)\, SO Ncﬁ)\:Mﬂ)\EVVbutYQNC and are finished.
Proof of Part(4). We let 6(x) = k and get N, «,9;,h; [for i < 8(x)] be as
before. Now we apply part (1) with ¥ (= (x7)V = &HW), {h;:i < K} here
standing for x and Y there, and get (Y,,:n < w). So for some n(x) the set
{i:h; € Yy} is unbounded in «. Let M be the Skolem Hull in (H()W, €, <*) of

aa< U ai}UYn(*)U{n,)\}. Asbefore NC M, M e W, W E=“|M|| < &*.

1< 5(*)

So W | “||M|| = k” hence there is a one to one function f € W from {i:i < x}
onto M, so for some club E € V of k (in V)

i€ E= N, CRang(f [1).
So for each ¢+ € F, Y C Rang(f | ¢) hence we are done.

5) Given (N;:i < &), let N, = [J N, by part (1) there is (Y,:n <w), Y, € W
such that: i<k

{g,:i <K} C U Y, CH={feW: f apartial function from
n<w A+ 1D NRegW \kto A+ 1}
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and for each n, W = “|Y,| < &*”. So for some n(x), {i < k:h; € Y} is
unbounded in . So in W there is a list {f;:4 < k) of Y, ,,. In V, for each i < & let
J; < x be minimal such that:

@ h; € {fe:¢ <4k

(b) ifforsome ¢ < k, f; < h¢ (i.e. Dom f; C Dom h, and (V8 € Dom f;) [f,(0) <
he(0)] then there is such ¢ < ;3

© j; =i+ L

Let E = {{ < : for every i < (, j; < (, and ¢ is a limit ordinal}. Now for each
¢ € FE note that

() (@) {h;:i <} C{firi <(h
(@A[Vﬁ§@HVﬂ§@]

i<l | i<w i<
As [i < j = h; < hy] clearly we get:
® A [v fiéhj@fiéhg].
i<¢ Lj<¢

Define for ¢ < x a function fgf as follows:

Domfgk = U{Domfi: i<(and f; = h},
FE©@) = sup{f;0): i <  and f; S h¢}.

So clearly ff € W, and even for (fZ:¢ < ¢ limit) € W for £ € E. Let us define for
¢ £ k a function g?:

Domgz‘ = UDorngi CA+ l)ﬂRegW\n,
1<
gk® =] 9:0.
i<
Clearly for ¢ limit:
Domgz|< =+ 1)NReg"” NN Ak
and
6 € Domgf = gf(0) = | Hg:(0):i < ¢,0 € N} = | J{h,(0):i < ¢,0 € N}
= J{£:0):i < Cand £, < he} = F50).

(So for limit ¢ we have gf C f7).

For every 8 € N_N((A+ DNReg" \(k+1)), 9,.(8) is an ordinal € (x,6) C (x, \)
of cofinality x, so Cy_, is a set of ordinals of order type ; let Cooiy = {0‘2 (¢ < K},
(increasing); it is strictly increasing continuous and has limit g, (6); also { gZ‘ @:¢ < k)
is also strictly increasing continuous with limit g (6). Clearly E, = {{ < &:(
limit ordinal and ozz = gé‘(&) (s0f € Ny}tisaclubof s (in Vs as V = “

regular uncountable”). So for { € E,, C’ag = Cu.0 N ag C Ngyy, hence

[C € accE, = C, 4 mag C N Let B* = {¢ € E:(Vi < {)(V§ € N)[f €
A+ DNReg” \(k+ 1) = ¢ € acc E,}. So for ¢ € E*, ¢ is a limit ordinal and:

0 € NN + 1) NReg™ \s-+ 1) = Crriy = Gy, = g N850 € N



Sh:410

More on cardinal arithmetic 411

Now we shall show that for ¢ € E*, N, N X € W. For ( € E* we define by
induction on n < w; M C”:

Mg is the Skolem Hull in (H(x)", €, <*) of {a:a < oct.

Let M2*" be the Skolum Hull in (H()W , €, <¥) of
MIU U{Cfg(e):G €M+ 1)NRegW \(k+1)and 6 € MZN Domfc*}.

Let M, = nL<Jw Mp, clearly M. € W (as fé‘ € W) we can prove by induction on

n that sz - NC, hence: MC - NC' Also o - MC Nk C NC Nk = o, and:

0e Mcﬂ((z\ + 1) NReg"” \(k+ 1) = ng(e) is an unbounded of subsets
of both N. "¢, M, N6

So by [Sh400, 5.1A(1)] we get NC = MC‘

6) The winning strategy for the first player is to choose “on the side” also
N,,o0;, h;,g;, as in the common part of the proof of parts (2)—(5) and guaranteeing:
a; include {J (N; N ) U |J By, N,y include b; and N; N A is the universe of an

j<i j<i
elementary submodel of M*. [,

2.6A Remark. 1) We can put X as a parameter of the Lemma 2.6, then in (x),,
a € (A + 1) N Reg" \x, etc., [so we may write ()] and Y C A [in parts (1)
@) and o £ A [in ® of part (5)].

2) Note that (*)2 follows easily from the relevant covering property in [Sh-g,
Chap. VII]:

(x) ifaeV,a C ANV E “a| < k” then for some b € W, a C b,
W = “[b| < ™.

3 pcf inaccessibility and charactrizing the existence
of non <-decreasing sequences (for a topological problem)

3.1 Definition. 1) We say A is (u, 8, o)-inaccessible if A > 1 = 6 > ¢ and for any
a C Reg we have: if |a] < 6, Mina > g and o C ), even supa < A and [ is a
o-complete ideal on a then A % tef (JTa/I) (when tcf is well defined).

2) If we write * instead of u we mean “for some p, 0 < p < A

3) If we omit o we mean o = N,.

4) “accessible” is just the negation of “inaccessible”.

We now rephrase various old results.

3.2 Claim. 1) For X regular, in the definition, “and o-complete I, \ % tcf ( [Ta/D)”
can be replaced by “\ ¢ pcf, omuiee(@)” and also by “\ £ tcf (T[] a/I) for any
a C RegN(u, ), |a| < 8, I o-complete”; also if cf(X) ¢ [0,0) then “supa < X" is
not necessary just “A ¢ a”.

2) Assume A\ > p 2 8 > o and cf X Z o. Then X is (u, 0, 0)-inaccessiblke iff
Ne(@AN&oSceft)N <= ppp(gya)()\’) < Al
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DIFAN=cfd>pu260=cfld > 0o, Xis (u,0,0)accessible then there is a set
a C RegN(u, A) of (i, 0, o)-inaccessible cardinals each >u, a of cadinality <0 such
that X € pef, omprere (@)-

HIfrA=cfdAZ2r>pu20<o=cfo, and

(Ja) [a C Reg Nk, k) & |a| < & A € pef,_onpiere (@]

then there is a set a of <0 (u,0,0)-inaccessible cardinals € (u,k) such that
A = maxpefa, and A € pef, oD If & is (u, 0, 0)-inaccessible then supa = &,
JXM C J_,lal. If o = Ny, also there is a tree of cardinality <k and 2 X branches
((cf k)-branches if k is (u, 0, o)-inaccessible).

5) If A = maxpefa, k£ = |a] £ p < Mina, J2* C J_,[a] and each 6 € a
is (4, kT, 2)-inaccessible then there is a tree of cardinality sup a and > X cf(otp a)-
branches. If we have k pairwise disjoint subsets of a not in J_,[al, 2° 2 supa or on
each 0 € a there is an entangled linear order then there is an entangled linear order
of cardinality A.

6) If 4 < X < ppt(u), then there is a tree with < 11 nodes and 2 X branches. If p
is (x, (cf )T, 2)-inaccessible we can demand “> (cf p)-branches” .

Proof. 1) Easy (using pcs analysis and [Sh355, Sect. 1]).

2) Easy, too (use [Sh355, 2.4]).

3) Prove by induction on A using [Sh345a], 1.10 (so in [Sh345a, 1.12] we can
replace pCf by pCfa—compIete)‘

4) Similar to (3).

5) By [Sh355, Sect. 4].

6) Easy, too. [,

We state some variants of [Sh400, Sects. 2, 4]; specifically combining [Sh400, 2.4,
4.2]:

3.3 Claim. Suppose
() (Ac:¢ < (%) is a strictly increasing sequence of regular cardinals > 0.
Qi) for ¢ limit, A, = ( U /\£>+
(iif) A, € pef(a) £<¢
(iv) a CRegN(o™, \y) and |a| < 7, o regular.
Then ((x) < o3,

Similarly combining [Sh400, 2.4, 4.2]

3.4 Claim. Suppose:
@ <)‘C 1¢ < (%)) is a strictly increasing sequence of regular cardinals > k;

(i) for C limit, \, = ( U A\
= (&)
(it)) Ay € pef, complee(c), 0 regular;

(iv) a, CRegN(k™, Ay), |a.| < &, & regular.
) a. Cbandif (p,:¢ = k12 is strictly increasing sequence of regular.

aCh, lal <k, {#:i¢ <K} Cpofa), o =maxpef{u:¢ < w7}

and ()\0 + X ,ug)+ < gz < U AN 2 < &3}, then there are pe < pie regular,
¢<kt? ¢<¢
as for ¢ £ k%2 and o/ C b with the same properties and dApeC < A=

S {uf:C < K42},
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Then ((x) < Max{x*?,cov(b,, s, K, 0)**}.

3.5 Claim. The following is impossible:
(i) o <k <0< p are regular, kT < 6;
(ii) ()\C :¢ < V) is a strictly increasing sequence of regular cardinals > p;
(iii) S = {6 < p: cfe = 0 and for some club C of €, suppef, e {Ae ¢ €

C}< )‘C} is stationary;
(<p
(iv) (@) if 6 < u, c£6 = k then for every club C of 8, there is o € C such that

SuppCfa—complete {AC :C can C} Z U )‘C
ceC
or
(b) A € pef,

o-complete

(w), 8 > |a}.

3.6 Claim. Assume |a| < Mina, then

cfepy (H pcf(a)) < maxpefa.
Proof. More is proved in [Sh371, Sect. 3].

* * *

The following answers a question of Gerlits, Hajnal, and Szentmiklossy in {GHS].
They dealt with “k-good topological space X (i.e. every subset is the union of < &
compact sets) and “weakly x-good spaces” (every Y C X of cardinality > » contains
a compact subset of cardinality > ). [GHS] has the easy implication.

3.7 Theorem. The following conditions on k < o < 8 are equivalent: (k is an infinite
cardinal, o and 0 are ordinals)
(A)y 00 there are functions [, :r — o for o < 0 such that:

a<B=\/ f,0) < f40)
<K
(B)y.o0 2% 2 10| or for every regular p, < 0 for some singular cardinal M <o
we have:
cfA* <k, N > 25 ppt (V) >

Proof. First note

3.8 Observation. Let k < o0, x an infinie cardinal, 0,0 are ordinals. If for every
regular 6,, o £ 6, < 0 the statement (A) holds and @ is singular (e.g. 6 > |9|),
then (A), , o holds.

r,0,01

Proof- We prove this by induction on 8; if § £ o-trivial: use the constant functions.

As 0 is singular 8 = > 6, where 6(x) < 6, 6, < 0, 8, increasing continuous,
a<O(x)

6, = 0. By the assumption for each o < 6(x), there is a sequence (ff:i < 6,)

as required in (4), , 4., [Why? if 6, is singular by the induction hypothesis, if 6,

is regular by an assumption of 3.8]. Similarly there is {f,:7 < 6(x)) exemplifying

(A)K,O',g(*)‘

Fori<Oleti= 3 05+ (), j(i) < 8,4, o) < 0(+) and let g;:x — A be

B<ali)

9:20) = foi(O)r 3:2C + 1) = £, Oag
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Continuation of the Proof of 3.7. First we do the easy direction.
(B) = (4

First Case. 2% 2 |0].
Let {A,:a < 6} be a family of || distinct subsets of &, let A, = {2i:i €
AU{2i+1:i¢ A,,i<k}andlet f,:0 — {0,1} CAbe

. 0 ifie Al
fa(z)_{l if Q¢ AL

Second Case. \* < o, cf \* <k, A* > 2%, pp™(A\*) > 0, 6 a regular cardinal.
So there are regular cardinals \; < \* for i < k (such that A; > &) and an ideal

Jon k, k ¢ J such that ] A;/J has true cofinality 6, = 6. So there is a sequence
1<K
(fora <)), fo € [I A\pand a < 8= f, < fygmodJ. Now (f,:a < ) is a
i<k
sequence as required.

By 3.8 those two cases suffice.
(4) = (B)

Let (f,:a < 8) be as in (A).

We can assume that (B) fails, ¢ minimal for which this occurs (for a given « for
some @) and @ minimal for the given x and o. So # = (2%)*. By Observation 3.8, 6
is a regular cardinal. So 2% < @ (hence 2° < o) and [a C RegNo™\k" & |a] £ k =
maxpefa < 8], and o < 6.

As 0 is a regular cardinal necessarily cfo < & (otherwise for some o, < o the
set {& < #:Rang f, C o,} is unbounded in 6, contradicting the minimality of o).
Also o is a limit ordinal as 2° < @ = cff (as if 0 = 3+ 1, for some A C &,
B = {a: ANieAse fG) = ﬂ]} has cardinality 6, so {f, | (k\A):a € B}

1<K
essentially contradicts the minimality of o).

Let x be regular large enough. We choose by induction on ¢ < (2%)*, a model N,
such that:

N; < (H(0), €, <3);

V1 = 2%

2% C N();

K,0,0 € Ny, (f,:a < 8) € Ny;

i<j= N, <N

(N;:j S 1) € Nyyys

N, increasing continuous.

Let 6§, = : sup(d N N,) so (6,:i < (2%)T) is strictly increasing continuous (as 6 is
regular, # > o and o > 2%, necessarily §; < ¢). We define for i < (2%)*, a function
g; € "o by

9,(0) = Min(N;, N o\ /. ()

(it is well defined as ¢ € N, C N, and N N ¢ is unbounded in o as cfo < k).
Now i < (2)*, cf(i) = «* implies N; = (J N, and Rangg, C U N
i<i Jj<i
hence V/ [Rangg, C N,]1; but every subset of N; of cardinality <k belongs to
i<s
N,i1> hence g; € L<J'Nj. So by Fodor Lemma for some stationary subset S of
. i<
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{1 < (2")": cf(i) = k*} and some g*:k — o and some A C x and some i(x) < (2%)*
we have' €S =g =7g% eV <k [f5,(Q) = g () & ¢ ¢ Al and
Nl(*),noteAeN C N, )asACn

Clearly 1€S&(eAs cf[g (O)] > 2" (otherwise g*(() = sup(V; N g (O (as
N, < (H(x), €, <*), 2% 41 C Ny € N,) and easy contradiction). Also, as the f,’s

are pairwise dls‘unct clearly A £ 0.

Question. What is cf [ HA cf[g*(()]} ?
Ce

(I.e. cofinality of the partial ordered set).

By [Sh355, 3.17it is maxpcf{cf[g (0)}:¢ € A}, which by an assumptlon is <4, so
there is a family G C [] ¢*(¢) of cardinality > @ such that (\f fe H g (C)) 3g €

CeA

G)[f < g]. As the parameters in the demands on G belongs to NZ(*), w1thout loss of
generality G' € N,y

Now we can define a partial function H from the family G to 8:

if g € G and for some « the condition (%) below holds then H(g) is such an
ordinal

if ¢ € G and for no « the condition (%) below holds then H(g) is not defined

where

() a< fo [\ =g* [ (s\A), and g=g [AS [, A< g" | A
Now we can choose an ordinal j(x) such that
i) <jx) <@H*, jxes
[possible as S is a stationary subset of (2°)*].
We know that there is a function 4 € G such that faj(*) [ A< h.

Question. Is H(h) well defined?

Possibility A. The answer is yes.

Then H(h) < U{H(g)+ 1:g € (Dom H) C G}. This union is an ordinal <6
(as |G| < @ and Rang H C € and 6 is regular); also this union belongs to N, ixy (@S
G, H € Ny,), hence the union is an ordinal < §,,, < 6;.. So H(h) < ;.

But (by the choice of h for the first inequality, and definition of H (h) for the
second inequality)

® fgj(*)fA<th§fH(h)fA

and [by the definition of H for the first equality, choice of ¢* and j(x) € S for the
second]:

®, Froy 1 (\A) = g™ 1 (5\A) = f, 1 (5\A).

Now ®,®, together implies f5j(*) < fuy» but as said earlier H(h) < 6;,y < 0,
together they contradict the choice of (f,: o < ).

Possibility B. The answer is no.

So H(h) is not well defined and without loss of generality h € N, 0+ (as all
parameters in the requirements on it are in N, 1)+ Choose j € S, 7 > j(x); as
H(h) is not well defined, no o < 6 satisfies the requirement in (x). But of the three
demands on ¢, §, trivially satisfy two and a half: "o < 0, f, | (k\A4) = I (k\A)
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and f, | A < g* | A7 so the remaining one should fail, ie. =[h [ A < faj I Al
So for some { € A we have h(¢) > f6j(§); now h € Nj(*)+1 C N, hence h(¢) € Nj
hence h(¢) € N; N o\ féj ({), hence (by the definition of g;), g,({) < h(() hence (as

j € S) we have g*(0) S M) buth € G C ] g*(€), so h(C) < g*({), contradiction.
g€A
U 7.

4 Entangled orders — narrow order Boolean algebra revisited

4.1 Theorem. 1) If st < cf A < X\ < 2° then there is an entgangled linear order of
cardinality A.

2) Moreover, if x, < A we can demand that the linear order has density character
2 X, (in fact, in every interval of the linear order).

Proof. By [Sh355, 2.1] there is an increasing continuous sequence (\,:4 < cfA) of

singular cardinals with limit A such that tcf ( IT A< N ) = AT and Ay > Xp-
{<cf A ¢

The proof will be split to cases (one of them relies on the solution to others for

smaller cardinals, so you may want to say we are proving 4.1 by induction on M).
Without loss of generality x, > cf A.

Casel. For i <cf), maxpef{\]:j <i} <A
So for some unbounded A C cf A we have

i€ A= X >maxpcef{A]:j e Ani}.
So a = {Af:i € A} is as required in [Sh355, 4.12] (with AT, cf\ here standing

for A, s there, noting that 2¢t* > 2% > ),
So we can assume:

Assumption — not Case L.
So there is p, xp < p < A, cfpp < cf A, pp, () > A Choose a minimal such
1, 80 by 3.2(2):

(*) aCReg\xg& supa < p&|a| < cfA = maxpcefa < A.
Clearly (by [Sh355, 2.3]) in (x)’s conclusion we can replace “< \” by “< p” i.e.
(¥ a CReg\xp&supa < p&la| < cfX = maxpcfa < p.

Let o = : cfp, so ppu = pp (1) (by [Sh371, 1.6(3)]) and remember pp_ 5 (1) >
A

Casell. o 2 k (and not Case I; actually 2 = u suffices).
First assume ¢ > N,. As said above pp(1) > A and by [Sh371, 1.7] there is

a strictly increasing sequence {(u):i < o) of regular cardinals, p = J pf, and
<o
At = maxpef{p}:i < o} = tcf [ pF/J% Now as we can replace {(u):i < o)
i<o

by {(uf:i € A) for any A C o unbounded, without loss of generality u) >
max pcf{uj< :j < i}, so we can apply again [Sh355, 4.12] (or 3.2(5)).
When o = R, 4.1 follows from [Sh355, 4.13(1)].

Caselll. cfX =kt and o < k.
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So ot* < cfA. For any C € &P =: {A:A C cf()),otp(4) > k*. A closed in
sup(A) and max pef{ )} :i € C} = (A, 4)*}; try to choose by induction on i < k¥,
b, and -y; such that:

() b; S RegNu\ U b,\xo;

j<s
(i) v € C\ U &y + s
§<i
(iii) )\2;1, € pefb,;

@) 16;] < &
(v) all members of b, are (x,, k™, Ng)-inaccessible;
(vi) ; minimal under the other requirement.

Subcase llla. For every C € &. Min(C) 2 () for some i = i(x) = C(x) < kT we
cannot define b;,,, V.-

Let C, i(x) be as above. Let v* = |J ,, so v* € C. Now if v € C\v* then

i<i(x)
(by [Sh355, 1.5B]) as pp, (u) = AT > AT, there is a, C RegN(xo; ), [a,] = o such
that )\jyr € pefa,. By 3.2(3) there is ¢, C RegM(xy, p) of cardinality < consisting
of (xo, k", No)-inaccessible cardinals such that AT € pefc . Now v, ¢\ U b;
1<i(*)
cannot serve as 7y, by, so necessarily A ¢ pcf (cv\ U bi) hence without loss
i<i(%)
of generality ¢, € |J b,. So {A\:i € C\i(x)} C pcf( U bi>, ( U bi) < k.
1<Ci(*) 1<<i(*) 1<i(*)

By the proof of [Sh400, 4.2] we get a contradiction.
Subcase IlIb. For every j < cf A, there is C € &%, MinC' > j such that for C, b,,;
defined for every ¢ < xt.

We shall now show

®  for every i(x) < cfA there is X' € AN pef{AS:j < cfA}\),, such that
Ens()\’, \') (exemplified by linear order which has density character > x,, in
every interval).

Why ® is sufficient: So we can for i < cf), choose u), \, < puf = cfpuf €
pcf{/\j: j < cf A}, as required in ®. As Au} < A without loss of generality
i

(uf:i < cfA) is strictly increasing. Choose inductively on € < cf A, i(e) < cf\
strictly increasing such that g, > max pef{y,:¢ < €}.

Let i(c) be defined iff £ < (x). So &(*) is limit, AT = maxpcf{,u;k(a):s < e(¥)}
and ;u.;k(s) > max pef{pf ¢ <e}, p1y 1s strictly increasing, and Ens(u},), pui.)). So
applying [Sh355, 4.12] we finish.

Why ® holds: Choose C C (i(x),cf A) of order type x such that max pcf{/\f/i XS
C} < A (possible by our being in subcase IIIb). Let @ =: {AY :i € C}, let
(bg[0]:6 € pcfo) be as in [Sh371, 2.6]. Let § be minimal such that opt(b,[0]) is
#. We can find B, C C(¢ < x) such that {\¥:y € B.} C by[d], opt B, = « and
the B,’s are pairwise disjoint. Clearly maxpef{\? :i € B} = 6 as {\} :i € B.}
is C by[d], but is not a subset of any finite union of by [c], # < 6. Now letting
o =: b, there is (by [Sh371, 2.6]) a subset a of a® such that § = maxpcfa

j€C
but 6 ¢ pcf(a*\a). Now as 6 € pef{\}:y € B}, AT € pcfb,, we have (by [Sh345a,
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1.12]) 6 € pcf( U bw) hence by the previous sentence § € pcf (a n Y 67>.
YEBe YEBe
Let ¢, = :an {J by, A =6, we can apply [Sh355, 4.12] and get that there is an
JjE€Be
entangled linear order of cardinality A’ (which is more than required, see [Sh345b]);
and, of course, A,y < X' € AN pef{);:j < cfA}. The assumptions of [Sh355,
4.12] holds as the c_ are pairwise disjoint [by (i) above], § € pef{\f :i € B},
pef |J b; = pef(c,) and [6; € a = maxpcf(an @) < ;] as 6, is s KT, Rg)-
i€Be

inaccessible and § = A" 2 sup{A¥ i € C} > A;(,y > Xo- So ® holds and we finish
Subcase IIIb hence Case III.

CaselV. cfX > k** and o < k (and not Case I).

For each § < cf\ of cofinality x** we can apply the previous cases (or the
induction hypothesis on ) and get an entangled linear order of power Af. So ®
holds and we finish as in Subcase IIIb. [, |.

4.2 Claim. Assume ™ < 0 = cf9, (X;:5 < ) is a strictly increasing sequence of
regular cardinals, 0 < A\; £ 2" and Ay = tcf( 11 )\i/Jgd) .
i<8
1) If sup A, < 2% then there is an entangled linear order of cardinality \g.
i<8

2) Ens(A,,27%).
Remark. Remember that if there is an entgangled linear order in X then Ens(A, A) (so
[Sh345b, 7(5)D).

Proof. Same proof as 4.1.

4.3 Claim. Assume
(i) A is regular, uncountable;

(i) K < A — 27 <2

(iii) for some regular x < 2> there is no linear order of cardinality \ with > x
Dedeking cuts or even no tree of cardinality \ and 2 x A-branches.

Then (2<* < 2* and) for some u for every regular x in (2<*,2*] (ar even (11,2*])
there is an entgangled linear order of cardinality x and density p, p € (A, 2<*],
cfpu = A pproy(w) = 22, pis (A, AT, 2)-inaccessible (the linear order is (T, <izy
T CH> 2 has < p hodes and Z x A-branches).

Proof. Note: 2<* < 2* [if (30 < N (2% = 2<*) by (ii), otherwise cf2<*) = A
and by classical cardinal arithmetic, cf2* > A, hence 2<* < 2*]. By [Sh355,
Lemma 5.11] if the conclusion fails then for every regular x in (2<*,2*] there
is g, A = cofu < p <24, PPrqy(#) 2 Xx. Choose a minimal x such that

A< p L2 ofpu < cf X and ppt(u) > x (note: p does not depend on ¥, by
[Sh355, 2.3]). So necessarily p is (A, A", 2)-inaccessible. Let x € (i, 2*] be regular.
As 2<M<A = 2<* necessarily cf 2 = A, so by [Sh371, 1.6(3)] there is a strictly
increasing sequence {u,:¢ < cf = A) of regular cardinals, A\ < p; < p, p=>_ p,,

and x = tcf ( IT wi/ Jé’&). As p is (A, A1, 2)-inaccessible without loss of generality
<A
p; > maxpef{p,;:j < i}. So by [Sh355, 4.12] we finish. [, 5

4.4 Conclusion. 1) For a class of cardinals i, there is an entangled linear order of
cardinality pt.
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2) Assume X is strong limit singular. Then for some successor cardinal in (\,2)]
there is an entangled linear order.

Proof. 1) By part (2).

2) If ¥,14 < 2* then apply Theorem 4.1 (with ), X, 14 here standing for k, A
there) so there is an entangled linear order of cardinality N, +4 4 (£ 2"), which is as
required. So assume 2* < N, ;4. We know that there is a linear order of cardinality
2* and density character ; hence by [BoSh210] there is an entangled linear order of
cardinality cf(2*). But as 2* < N, ;4 necessarily cf(2*) is a successor cardinal.

5 prd: measuring [] f(2) by a family I" of ideals
and family sequences (B;:i < k), |B;| < i

In [Sh371, Sect.4], and here in Sect. 1 we have dealt with generalizations of the

measuring [] f(2)/1, i.e. whereas defining cov(A, A, 6, o) we cover a set a € %2 4(\)
<K
by < o subsets of cardinality < A; there we ask that « belongs to the closure to a

normal ideal of J union the family of A C x for which we succeed to cover. Here we
replace “normal” by an abstract property I" (and phrase the required properties). We
also generalize normality to ideals on Q , L% — K, a generalization used in [Sh420,
Sect. 4; Sh430].

5.0 Context. 1) k is a regular uncountable cardinal, %/ a set, ¢ a function from %/
onto k, %, = v~ '({i}), I, J vary on ideals on %/, I" a family of proper ideals on % .

5.1 Definition. 1) Iy . , = {J:J a o-complete ideal on ¥/} [if (¥,1) = (k,id,)
this I, , is essentially I'(x™, 0)].

) Iy, = Fg’fn = :{J:J a normal ideal on %/} [normal — see 5.2(0) below]. If
¥ =k, v = id we write I,

5.2 Definition. 0) An ideal I on & is normal if: for any club C of &, U el
igC

and for any sequence (A,:i < k) of sets from I, V, A, = :{a: eyze U Aj}

belongs to I. (So normal implies x-complete). i<uz)

1) We say I" is o-complete if every J € I' is o-complete.

2) We say I is normal if every J € I" is normal.

3) We say I is restriction closed when: J € I', A C k, A & @modJ implies
thereis I € I', JU{r\A} C I.

4) We say I is closed if for every &% C F(¥), cl(#) is well defined where
cl(#) is the minimal member of I" U {Z(x)} which include it, ie. (VI € I[P C
I & cdp(@) C I

Note: cl;- for not necessarily closed I', is a partial function.

5) We say I" has character < 1 when: PP(k) = cl () where &P C P(k) implies
that for some & C & of cardinality < p, we have (k) = cl(P).

6) The character of I" is the minimal cardinal u such that I" has character < p.

5.3. Definition. We say I is suitable if it is #-suitable for every 8; I" is -suitable
when: for every ideal J € I' on ¥/, ift

(i) T is a (non-empty) set of finite sequences of ordinals < 6 closed under initial
segments;
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(ii1) for each n € T of length n,
P() = clp(J U {E\Ay 05 - -5 KN4y} U {Aﬂi) i) € ThH;

@iv) T]<1V:>An§AU;

w) fn:An — ord;

(i) it p™(C) € T and y € A,y ((), f,(¥) + O then f, (1) > for(y®)
then P(k) = clp(J U {fn_l({O}):n eTH.

5.3A Remark.- 1) Clearly for 6, < 0,, I" 6,-suitable implies I" is ;-suitable.
2) If 9 = 21#1 its value is immaterial, so we can omit it.

5.4 Claim. 1) Let ¢ be regular uncountable. Fy’wf is closed, restriction closed, of
character ¢ and is suitable. For 77 C 9%/),

CIF%K’U(@) = {Z:for some ¢ < ¢, A; € P for i < oo we have Z C U Ai}_
i<a

2) If P is a family of subsets of %, I’ = F;’fn then

clp(@P) = )Z: Z C ¥ and for some club C of k and sequence
(A1 < &) of member of 7 , we have:
ZC{re ¥ Uzye Candz € U AJ}.

J<ulx)

3) FZ‘? (remember . = cfx > N,) is closed, restriction closed, suitable and of

character ,Ii.
4) If I is O-suitable and has character <0 then it is suitable (we shall use this

freely).

Proof. 1) Let us check suitability leaving the rest to the reader; so let J, &, {A,,], fpin€
T') be as in Definition 5.3. If the required conclusion in Definition 5.3 fails then there
is a o-complete filter I on & containing J U {f" '{0}):n € T}. For each 7, by
condition (iii), for some set w, of ordinals, ]wn| < o and Bn € J we have

Q) ¥ =B, U{r\A,;0\-- \Appgnt U{A, 1 C € w,}
(and € w, = ™) € D).

Let T* = :{n e T:l < lg(n) = n(l) € wn”}, as ¢ is regular uncountable, clearly
|T*| < o. Let

B=:U{B,ineT*}U| J{4,: € T* and A4, € I}U|J{f;'{ODin e T*}.

Now B is the union of < ¢ members of I and I is o-complete, so B € I. Choose

y € #\B.
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We now choose by induction on n,7,, such that:

770=<>7
n, €T,
lg(n,) =n,
D S001 s
yeA, .

Forn =0,7n, = () soy € ¥ =A,. Forn+l,yed
y ¢ B hence y ¢ B, , so by (+) there is {, € w
N1 = M (C,) is as required.

In the end for each n we have f, (y) > Oas f,'({0}) C B, (remember 7,, € T*)
hence by condition (vi) from 5.3, ( f’fln (y):n < w) is a strictly decreasing seduence
of ordinals, contradiction.

2) Left to the reader.

3) Again we leave the proof of restriction closed and closed and having character
x to the reader and prove suitability. The proof is similar but use diagonal union. So
by part (2) and condition (iii) of 5.3 for each n € T for some Bn € J and function
h,, from £ ordinals such that 7*(h, (i)} € T for i < x, we have

mins T € T, and
such that y € A, -~y so

M n”

(*) Y = B,U (“\AMO\AnH\ .. \Anrlgn) U {m e Wz e U An‘(%(l‘))}

i<<e(T)

By renaming, without loss of generality 7' C “~ x and each h,, the identity function.

Let I be the normal ideal on % generated by J U {f,!({0}):n € T}, so we
assume [ is a normal proper ideal and we shall get a contradiction.
Now define Z*

Y* ={z € ¥: (2) «z) alimit ordinal < &,
(b) if n € TN u(z) then x ¢ B,
© ifneTN“uz)and A, c I thenz ¢ A }.

Clearly * = %/modI, hence we can find z(x) € Z*. Now we choose by
induction on n 1 € “> (x(x)) as in the proof of part (1) and get similar contradiction.
4) Left to the reader. [ls,

5.5 Definition. 1) For i = (u,;:4 < k), J an ideal on & and f:%/ — ord we define

prd} (f, 1) = Min{|Z?|: 2 is a family of sequences of the form (B,:xz € %),
each B a set of ordinals, B, of cardinality
< 4y such that for every g € Zord satisfying

g £ f, we have:
Pr)y=clp[JU{{z € Z:g9(z) € B, }:
(Bgix € &) € PH}.
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2) If above J C I, I an ideal on &

prd”(f, @) = Min{Z”: & is a family of sequence (B, :z € %)
each B, a set of ordinals of cardinality < p,,,

and for every g € Zord satisfying g < f,
we have:
ICc ,(JU{{z e ¥:g(x)€ B,}:(B,:z € X) e P}}.

3) If fi is constantly u, we may write u instead. We can use also i = {1z € %),
(but usually do not) with the obvious meaning.

56 Claim. 1) If {z € & :f(z) <w} € Jwecan in 5.5 demand g <; f, and if in
addition \ f(z) ¥ 0 we can demand g < f (without changing the values).

) If {z: (@) 2 )} € J then prd5(f, ) = 1.
3) If/\ul = p, fp > ||, {z: f(@) > p} € J then prd} (f, i) S cf p.

4) ]ff1 Sy foorjust {z:|fi(@)| > [f,(z)|} € J then prd’ (f;, 1) < prdf (fy, 1)
(and the other obvious monotonicity properties).

5) If p; = p, cfp > |%| we can in Definition 5.5 demand )\ B, = B,for B € &
(i.e. without changing the value). z€Y '

6) If I' is o-complete and restriction closed, e(x) < 0, (A, :e < &(x)) is a partition
of # (J,fiasin5.5)then

Supprd7, o 4y (F> B S prdf(f, 1) £ prdl, o 4 ().

7) If I is normal and restriction closed, A, C {x € ¥ :Uz) > €} for € < &,
(A, :e < k) a partition of %\ ({0}) then

sup PrdJ+(g\A5) < prd} (f, ) < Z PTdJ+(g/\ Ao B

e<h

I—vnor _ _ .

8) prd;~ (f,jn) = pre,(f, @ if J € T

9) Assume I is normal, ﬂl = (,ui < k) forl = 1,2, ﬂl increasing continuous
and for each i p? € {u} ()T}, Then for (any J € T and f € Zord) we have
prd}(f, 2') + k = prdf (f, i)

10) If i = (ui 1< R) s increasing continuous with limit i, and I' is normal,
J € I then prd5 (i, i) £ p and even prd} (&, i) = cf(p).

I I Ap=pcfp < ||, T =Ty, then for any a, prd{@}(oz i) =

<K

cov(lal, i |Z1*, ).

Proof. E.g.
6) The first inequality should be clear. Also the second: assume it fails, let A\, =
prd; Ao B, 20 A < prd} (f, ), let Z exemplify the definition of of A
e<e(*)

and P be |J Z.As Z/\ < prd5(f, i), 7 cannot exemplify Z)\ > prd’ (£, ),

e<e(x*)
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so there is a function g € “ord exemplifying this, so there is a proper ideal I € I

extending
JU{{re ¥:g(x) e B,}:(B,:x € ¥) € 7}.

As I' is o-complete also I is o-complete so for some ¢ < e(x) we have A, ¢ I;
but I is restriction closed so there is I, € I, TU {#/\A,} € I,. So I, € I extend

uiz\A NUu{{zr e Z:9(x) € B,}:(B,:x € ¥) e A2}
contradicting the choice of 2. [,
5.7 Lemma. 1) Suppose

(%) p, =p=cftp>|¥| I is suitable, restriction closed, f € #ord and J an
ideal on k.

Then:
(®) ,u+prd§(f,ﬂ) = ,u—i—sup{tcf H A N\: 1 anideal on @/ in I
TEY extending J,
p< A, =cfA, < f(m)}

2) If I' is normal, i = {p; ;i < k), pb; = 07, (8, :% < k) is increasing continuous,

0, >k, p; > %], p="\U p,;, T suitable and restriction closed and f € #ord, J an
i<k
ideal on ¥/ then (®) above holds.

Proof. Like the proof of 1.1.

5.8 Conclusion. 1) Suppose p, ji,J are as in 5.7, f € Zord and {z:cf[f(x)] =
f(@) 2 pr, ) € J then ’

i+ prdg(f, o) =p+ sup{prdf;(g, m:g <y [}

+ sup { tef H f@\I:J €I €T (and the tcf well deﬁned)}.
€Y

2) If in addition G C {g:g € #ord,g <, f} is cofinal or at least (k) =
[T U{{i:h(®) < g(i)}:g9 € G}] for every h < f, ( and e.g. A\ f(i) 2 0) then

p+ prd5 (f, i) = p + sup{prd’ (9, ): g € G}

+sup{tcf H f@/ji:JCIe I‘}.
zeY

5.9 Claim. Suppose p, i, I',J are as in 5.7 (1) or (2)), g: % — card and f(z) =
gyt 2 ,ujzxy
Then prd] (f, i) < [prd} (g, DI* + p.

Proof. Let & exemplify the value of prd’ (g, 1), say || = x. So for every h < g 1
clearly {x € Z:|h(z)] £ g(x)} = Z modJ, hence there is &3, C [] h(z)
z€Y
exemplifying prd’ (h, i) < prd5(g, i) = x. Assume prd;(f, @) > x* + p; by 5.7
there is f': %/ — ord, each f'(z) a regular cardinal =y, f' < fmodI, I € T an
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ideal extending J such that x* < tcf J] f'(x)/I. Let (h.:( < x) be <;-increasing
cofinal in ] f'(z)/I. Asin [Sh355,gc ;?5/] without loss of generality for some ((x) <
tef ] f/ Z;;?j] of cofinality x* we have: (h,:§ < ((+)) has a <;-eub k' such that:
for$56.§/(1) {z € #:cflf(@)] < p} € Tand for 5.7(2) {x € ¥ : cf[f(z)] < lh(m)} el
without loss of generality it is hC(*) and mé\y cf[hc(*)(x)] > By(z)» and without loss

of generality: £ < ((x) = hg < hg,. For each B = (B,:z € %) € Prconr

define a function fz: fz(z) = sup(h;q,(z) N B,). So fz < h’C(*) hence for some

&(B) < ((x) we have fz < femymodI. Let UEB) < & < ((x)-possible as the
B

number of B’s is < |#, C(*)] < x < xt = cf(¢(*)). So for B € &, ) Ve have
{z € ¥:fe(z) € B,} € I. But f; < [, so we get contradiction to the choice of
%C(*). DS.9

5.10 Definition. Let 1 — cf5((a,:z € %)) be
sup{tcf H A/I:JCIeTl and Ay € a, forz ey}
xEY

5.11 Claim. i = (u,:i < k) is non-decreasing, I is a suitable restriction close family
ofidealson %, J €I, f € Yord and )\ f(&) 2 i = cfyipy
TEY
1) if A < prd] (£, ) is regular, then for some (a, :x € %) we have:
(i) a, C Reg ﬂf(;l?)"'\/,bb(m),
() | U a,| < pif &) of 5.7(1) [and |a]! < Wy When 5.7(2)'s assumptions
xeY
hold.
(i) A=1—cfi({a,:x € &),
2) if X is inaccessible, I' o-complete and [x < p = cov(x, Xp, &, 0) < Al then
without loss of generality | | a,| < Xg.
zEY

Proof. 1) Like the proof of 1.1.
2) Straight.
5.12 Claim. Assume the hypothesis of 5.7.
If g € Zord, and each g(s) is an ordinal 2, and f(i) = R
A=prd]} (g, )+ U |a|*® +|%/| then prd] (g, i) < Ry«
a<p

o and let

Proof. Assume not, so prdg(f, f) = Wy, hence by 5.7 there is [ € I', J C I,

and f* < f such that: each f*(z) is a regular cardinal 2 p,., and Ry, =

tcf( I f*(a:)/I). By [Sh355, 1.5] for each o < A' such that X, 2 |#/| (e.g.
Y

a = ) there is f, <; f*, f, S f*, each f,(x) a regular cardinal >y, and

tcfz Hyf*(x)/]) =N, Cleatly a £ 8 = f, +; f5. Now let f, =X, , so
zE
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9o <1 9> 9o = g. Let P exemplify prd5 (g, 5) £ ), so for each & < At for some
B* e 2 {y:f(y) e N;ije Byl ¢ 1 (and, by 5.6(9), and normality without

loss of generality sup [Bg| < /%‘)- By 3.3 we get contradiction. [ ;5.
yeY i<w

6 The existence of strongly almost disjoint families

See [Sh355, Sect. 0] on the history of the subject.

6.1 Theorem. Assume J is an ideal on k, & not the union of N, members of J, u > k<
where

® o=k" oratleastVA € Jt3B € J'[BC A& |B| < o]

and o = cfo > N,
Then
Ti(w) = T7(w) < Tj(p) < THw)

where

TYw) = T;(u) = sup{|F|: F is a family of functions from &
to p such that for f+g from F'
we have f+ g}

T3(u) = sup{\: there are n, < w for i < « and regular
iy > K57 for i <k, L <n;suchthat: \;; < p
and X\ < maxpef{), ;i < k,1 < n,}; moreover if A€ J*
(= P(k)\J) then X < maxpef{), ;11 € Al <n;}}.

T;(,u) is defined similarly but for A € J* we demand.
A=maxpcf{), ;i € Al <n}.

T4(w) = Min { SEPT3+(H\AH)(>‘):An CA,, Cr= L<J ALA, ¢ J}.
nw
6.1A Remark. 1) Note that usually the four terms in the conclusion of the theorem
are equal.
(o) If J is N;-complete then T%(u) = T%(u) hence all are equal.
(B) All terms are equal if for (A, :n < w)suchthat A, Cx, A, ¢ J, A, CA, .,
k = |JA,, we have: for some n and B C A, we have (x,.J), (B,J NZ(B)) are

isomorphic.

2) The suprimum in the definition of T'}(u) is always obtained.

[Why? If F}, F, are as there, F; maximal |F}| < |F,| then for every f € F, there
is g5 € F, etc.]

Proof. T5(p) = T3(u).

Trivially T}(u) < T%(u); for the other direction let A appear in the sup defining
T(u), as exemplified by (< A, ;:1 < n; > i < k); as maxpef{), ;:i € 4,1 < n,;}
is always regular, without loss of generality X is regular.

By [Sh355, Sect. 1]; more elaborately, for some a C a* = :{)‘i,l <ng,t < K}

we have [a #+ @ = X\ = maxpcf(a)] and A ¢ pef[a*\a] and ¢ #+ a* = )\ <
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max pef(a™\a). Define Xj; to be A, ; if A;; € a*. If a & a* let u* = {G,D: ), €
a\o)}, J = {u C w*:maxpcf{);,:(,) € u} < A} By [Sh355, 1.5] we
can find regular A, < );; for (i,]) € u™ such that A=tcf [[ X;,/J. Now
(X2l < my,i < k) exemplifies A < T3(w). G,heu*

T3(p) < TH(u). Very easy; of course, instead F' C " we can have F' C “Y as long
as |[Y] £ p For A, (< A ;:l < my > 1i < ) as in the definition of T5(), let
a={X i<kl <n}and (f,:a < A) be a sequence of members of []a which
is <j_,q-increasing and cofinal. Now let A = “>(u+ 1) and for each o < A we
define g, € Y as follows:

9o (@) = 1 (A 1L < n) (fo (N )il < my).
We leave the checking to the reader. We now turn to the main case.

Th(p) < T4(u). Let X be the right side expression —T%(u) (so clearly A = p),
x =: (W and for ¢ S w+1let: M < (H(O, €, <5), M| =X A+1C M7,
(< &S w+ 1= MF e M} Suppose F C "u exemplify Tj(u) > X and we
shall get a contradiction, without loss of generality F' € M. Clearly for every
f € "u we have: {g € F:—g %, f} has cardinality < x<7 (remember ®), hence
necessarily there is f* € F such that for every g € "un M}, (e.g. g € FN M}, )
we have f* £, g. Moreover if A C k, A ¢ J, B C p, |B|] £ £<7 then
{f € F:{a € A:f(a) € B} ¢ J} has cardinality <x<° (again, remember ®),
so if in addition A4, B € Mgk then [f e F&{ac A:f(a)e B} ¢ J= f € MC*].

We define by induction on k& < w, N}, N,g, ay, f* such that:

(@) Mg < Mg, Np < (H(x),€,<3%

(b) N¢ is the Skolem Hull of {f*} U {i:i £ x<7} in (H(x), €, <})

(c) N§ is the Skolem Hull of {i:i < k<) [in (H(x), €, <;‘Z), equivalently in
MF]

(d) N2, is the Skolem Hull of N2 U {f™(0):0 € a,};

(e) Ng,, is the Skolem Hull of N2 U {f™(#):0 € a,};

(M a, = NN AT NReg\(k<))";

(g) f*€]a, and for each 8 € a,,, f™(0) > sup(f N N?);

(h) if b C a,, maxpcfb < X and |b| < o then

S roe{Max{fy , Ib:l<n}n<w, o <maxpefband ) € pefa,
and ¢, € {by[a,]:0 € pcfa,}}

where b — (f%:ca < maxpcfb) for b C a,, is a definable function (in (H(x), €, <;'Z),
(f°:a < maxpcfb) as in [Sh371, Sect. 1].

By 2.2A (i.e. [Sh371, Sect. 1]) there is no problem do to it, N? < Nt, N& < M,
Ng < N2, Nt < NP, and (as in [Sh400, 3.3A, 5.1A]) we get N2 = JNE,

hence Rang f* C |J N2. Now for each i < & let m(i) = min{m: f*(i) € N2},

nw

and we can find finite e(?) C |J @;, y(i) C < + 1 such that f*@) € M:,(f()z)y(l)
L<mi)
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where for any ¢ C | Ja, and y C <7 + 1 (we define by induction of {):
k

Mg* is the Skolem Hull of y in (H(), €<;),

MY = Skolem Hull of M; U {f™(@):m <1 and 6 € e Mj}.

Clearly: [e C Ua,, &e € M & maxpefe S A&l < w = MY € Ml’il}, and
m

[e Co&y C 2= M) C M) and MY C N7
Let A, = {i < k:m(i) Sn}. Cleatly A, CA,,,, k= |J A,, but & is not the
nw
union of X, members of J, so for some n(x) < w, [n 2 n(x) = A, ¢ J)]. It suffices
to prove:

(x) ifmGx) <w, ACxk, A\ m@) E£mx), A¢ J then maxpef |J e(d) > A
i€A i€A

[as this means n(*) £ n < w = T§+(K\An)(,u) > A, hence (4,,,.;:1 < w) and
(e(9):i < ) exemplified T4(1z) > A contradiction].

We can replace A by any subset which is not in J.

By the assumption ® without loss of generality |A| < o, and suppose A contradicts
(¥). Let ¢* = {J e(@), y* = | y(). As o is infinite, clearly |¢*| < o, |y*| < o,

i€A i€A

AIME || < o (remember o > Ny).
n

Prove by induction [ [suffice for [ < m(x)] that " NMZ V" € Mj%,, y*NMe Y €

* ok * % * ok *
M}, and M; ¥ C M;,;¥ . For I =0 this holds as My ¥ < Ng, [|My Y || <o,

and ¢* N ME = ¢* N N is a subset of N§ of cardinality <o, N§ € M,

[ N&||<e = ||Ng]| £ x=<°. Similarly for y*. For [ + 1, as we know Mle*’y* e M},

and f' | (e* N Mle*’y*) € M}, by (h) as maxpefe* < X by an assumption hence

Ml‘fl’y* € MJ,. As ||Ml€:1’y*l\ = k<9, |¢*| < 0, and k<7 + 1 C M necessarily

* e*y" * e*y* * * URTY *
MM ¥ € MY, So My .5 € M) ., soRang(f* 1 A) C M08 € My,

so by the choice of f*, A€ I.
Proof of 6.1A(1). THy) < Tw). Let A, Cr, A, C A, .= U 4, A, ¢ J,

n<w

and T§ Sy An)(u) 2 A. For each n, by earlier parts of the proof, there is F,, C “u

such that |F, | 2 A and [f g € F,, = =70\ 4,y 9]

Let F, = {fl:a < a,}, a, = A exemplify this. Now define f, € “u for a < A
as follows: for ¢ < x let n(¢) = Min{n:{ € A, } and £ () = wfMO) + n(0).
Ls

6.2 Conclusion. Suppose cfr > Ry, & > 0 2 Ry and I = . _(k), u > k°. Then
TH(u) is T?(u) hence is T(i).

Proof. Apply 6.1 (¢ here corresponds to o there), more exactly by 6.1(A) (2).

6.3 Remark. Asking on almost disjoint sets is an inessential change.
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