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1 On normal filters 

In [Sh355, Sect. 4] and [Sh400, Sects. 3, 5] we have computed cov(A, ),, 0, or) when 
0 > ~r = c f ~  > R 0, using tcf [ I  A J J, for ~r-complete ideals J and cr =< ~ < 0. 

i<t~ 
In [Sh371, Sect. 4] we deal with a similar theorem where we restrict ourselves to 
normal ideals, namely prc, but its computation, using pp 's ,  did not always yield exact 
values (i.e. the upper and lower bound tend not to match). Here we give reasonably 
exact values for prca(f , /2) ,  using the true cofinalities of I~ Iz~/J1, where J1 is a 

i<t~ 
normal filter on t~ extending J and for i < ec, #~ is a regular ordinal satisfying 
#i <= >~ <= f(i). We also give a sufficient condition for the existence of normal ideal J 
on ~ such that for some sequence (k i :i < t~} of regulars, we have t~ = tlim(A i :i < ~}, 
# = tcf 1-I ki /J .  

{<~ 

2 On measures of the size of 5<~(A) 

We mainly investigate cardinals like 

Man ( l ~ l :  . 9  c_ J<0(A) and for every Z E .~__<~(A) there is a sequence 
/ 

of  subsets of Z such that Z = ~J  z n and : n  < 0) 
n<co 

(Vn < co)(Vy c Y<o(Z,~))(3z E ~ ) [ y  c_ z ] } .  

We also give sufficient conditions for the strong covering to hold for a pair (W, V) 
of universes. 
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400 S. Shelah 

3 p e f -  inaccessibility and characterizing the existence 
of non <j-decreasing sequences (for topology) 

We restate various results using pcf  inaccessibility and present more consequences of 
the proofs in [Sh400, Sect. 2, Sect. 4]. We characterize those n < ~r < 0 for which 
there is a sequence (f,~:a < 0) of  members of  ~ r  such that a < /3 ~ f~ f f~; 
answering a question of Gerlits, Hajnal and Szentmiklossy. 

4 Entangled orders - narrow order boolean algebras revisited 

We show that for a class of  cardinals A there is an entangled linear order of  cardinality 
A +. This holds for ), if there is a n such that n+4 _< cfA < A _< 2 '~. 

5 prd: Measuring 1-[ f(i) by a family of ideals 

and a family of sequences (B~:i  < t~), IBi[ < #i  

This generalizes Sect. 1, replacing normality by an abstract property; we also present a 
generalization of the concept of  a normal filter, and deduce p rd j ( f , /2 )  __< p rd j ( f , / 2 )  + 
and prdd(Rf/2) <= ~(prdj(f,#))+ under suitable conditions. 

6 The existence of strongly almost disjoint families 

We characterize such existence questions by pp 's .  An example is the question of the 
existence of a family of  A+ subsets of  A > e; ~0, each of cardinality ~ (>  R0) such 
that  the intersection of any two is finite. 

1 On normal filters 

The following Lemma 1.1 is similar to [Sh355, 5.4; [Sh400, 3.5], but deal with normal 
ideals (see [Sh371], Sect. 4, in particular Definition 4.1, Claim 4.6). Remember  prc is 
defined in [Sh371], Sect. 4 as: 

1.0 Definition. 1) For a regular uncountable cardinal ~;, normal ideal J on t~, /2 a 
n-sequence of cardinals > ~, and f E '~ Ord, we define: 

p rc j ( f , /2 )  = Min ( I ~ [ :  ~ is a family of  t~-sequences of  sets of  ordinals, 
( D = (Bi:i < t~), IBil < #i or at least 

{i < ~: IBm] > #i} ~ J ,  such that: for every g C ~ Ord, 

9 < j  f there is a sequence (.4r :~ < ~) of members 

satisfying {i  < ~ : g ( i )  ~ U A~ } E J } . 
r 

2) We may write f as a sequence of ordinals say (A i : i < ~), and if A i = A for 
each i, we write A. 

3) p r c~ ( f , # )  is defined similarly b u t / )  = (B~:i < ~), IBI < ~. 
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More on cardinal arithmetic 401 

Remark. See there [Sh371, 4.2, 4.3] for some basic properties. But 1.1 below 
substantially improves [Sh371, Claim 4.6] there. 

1.1 Lemma. 1) Let n be a regular uncountable cardinal, f : n ---+-ordinals, J a normal 
ideal on ~, and f~ = (#i :i < n) a sequence of regular cardinals. Then 

prcj(f,/2) = sup tcf #i /  J~ : J~ a normal ideal on e; extending J, 

such that the tcf is well defined and 

{ i  < n o t  = < = cf.'  = < f(i)"} �9 J[  
J 

provided that." 

(a) #~ = # > n. 

2) We can replace assumption (r by (~) below, and A #i > ~. 
i 

3) We replace (~) by (~) and in the sup, replace tcfby nor-cf (see [Sh371], Def. 4.4) 
where 

(~) #~ strictly increasing, #i > t~ and for limit i: if i = ~ #j is regular then )+ i = #~, otherwise #~ = #j 

1.1A Remark. 1) On getting =+ see [Sh420, 6. I(C)] and [Sh430, Sect. 4]. The problem 
is when pcf(a) has an accumulation point which is inaccessible. 

2) In the case (~) holds, if #* = (#* :i < ~} is (strictly) increasing continuous, 

sup#* = sup#~ then prc(f, # ) +  #i = prc(f, # * ) +  #~ , by [Sh371, 
i<~  i<~  
4.10(2); Sh355, 2.1]. 

3) If in ([~) we place "#~ > n" by sup #i = t~, A #i < t~ (so t~ is inaccessible" 
then we can get: ~<~ i<~* 

prc j ( f ,#)  = sup ~nor-cf 1-- [ #: /J :  {i:#i  <= #'i = cf#'~ =< f(i)} E J~ .  
) 

Proof The inequality >=: 
Same proof as that of ",k(1) <__ •(2)" in the proof of [Sh371, 4.6]. 

The inequality =.<" 
Let ,k* be the successor of the sup. 

1.1B Fact. There is a family ~ *  such that." 
(i) members of ~ *  are of the form 

( B i , ~ . ' i < n , ( < ( ~ )  or (<Bi , ; :  C < ~  > : i < n )  

where ~ < #i and each B~,r is a non-empty subset o f f ( i )  + 1. 
(ii) ]3" I < )~*; 

(iii) /f (B~,~.'i < ~ , (  < (i} �9 ~ * ,  9 E l~ ( f ( i )  + 1), A C_ ~ and for 
i<t~ 

i �9 A, {i < (i andg(i)  �9 Bi,~ then there are E, ( A j : j  < ~} and for j < t~, 

[3J = (BJ,r < ~, r < r (~J .'i �9 Aj)  such that." 

(a) E C_ ~ and t~\E �9 J; 
(b) A n E =  {i  < ~:i �9 U Aj~;  

j < i  ) 
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402 S. Shelah 

(c) /)J c ~ * ;  
(d) for i E Aj we have: ~3 i < ~J and B~,(~j) C_ Bi,~ and 

i --_ i [IBi,<)l > [Bi.<)l < 

Hi . ,  (e) for i E Aj we have g(i) E i,(~)' 

(iv) ((f(i) + 1} :i < ~) E ~ *  (so ~ = 1 here). 

Proof of the Inequality from the Fact. Let us define a family :~': 

~/___ { ( U { B i , r 1 6 2  < ~ and [Bi,r < # i } : i  < @:(Bi ,r  < a ,~  < ~ ) E  ~ * } .  

Now each member of ~ '  has the right form as each #i is regular and (Bi, r :i < 
~,~ < r E :5 a* implies ~i < Pi and IB~,r < &. Also the cardinality o f ~ '  is < A* 
[by (ii) of  I. 1A]. 

Let g _-< f and it is enough to find (B~: i  < ~) E ~ '  for e < ~; such that 

We choose by induction on n, for every ~ E ~a the following: /),7 = {Bi~r < 

~, ~ < ~ )  E ~ * ,  (~/v : i E Au} with ~/~ < r and A ,  C_ ~ such that: 

(a) J~() = (< I ( i )+  1 >: i < n}, r = 1, ~}) = 0 ,  A() = n, 

B c B  71, (~) [i E Au^(j) ~ g(i) E i,(e~^(j>) - 

/ :~r/^ij} (3') [i E Av-(j)&IB~,e: I > #i r --i,(efO)) < IB~,e7[] and 

(5) {i r Av:i  r U Av^(y)} E J .  
j < i  

The induction step is by (iii) of the fact; in the end let for ~ E ~~ and 
�9 $ i < = :  U{B:r162 < C and < , 5 .  

Clearly for each r/ E ~>~ we have (B*#:i < a) E ~ ' ;  let us enumerate 
~>g as {ee:x  < a} such that ( 0 < 0 e  ~ e ~ {~)r162 < e}], and let us define 
/)e = { B *  i :i  < ~;} ~ ~ ' ,  hence by Definition 1.0 it is enough to show that 

E---- :~ i  < g:g( i )  ~ U B* ~ belongs to J .  W e k n o w  that f o r e v e r y ~  E ~>~ c9 s , i  
l ~ < i  J 

the set X ,  = : { i  ~ A,~:i ~ U Av^(j} } belongs to J .  Also the sets 
j < i  

Y =  : { 5 < t ~ : 5  

limit and ~(gr [e < (5 ~ ~)e ~ ~>5]} 

X = " {i < g: if i ~ Y then for some r /E  ~~ we have i E X,~} 

belongs to J .  It suffices to show 

(*) for every 5 r g \ X ,  for some rl ~ ~o>(5 we have (5 ~ By# } . 

Why (.)  holds? Choose by induction on n < w &~ E n(5 such that: (5 E Ao, ~. For 
n = 0 remember A() = a. For n + 1, as (5 ~ Aon and (5 ~ X clearly (5 ~ Xo, ~ so 
necessarily (5 E U Ao~^(j)- 

j < i  
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More on cardinal arithmetic 403 

on co) is non-increasing [by ([~) above] hence is eventually Now (IBa,~nl:n < 
Qn constant hence [by (T) above] for some n, I < ~ ,  hence 9(5) c Ba~,a. So (*) 

holds and we have finished proving the inequality from the fact. 

Proof of the Fact l . lA.  It suffices to prove that for any B* = (Bi*r :i < n, ~ <r  
satisfying the requirements in (i), we can find ~ B .  satisfying (i) + (ii) and (iii) for 
the given ])* and any g, ( ~ : i  < n) as there. Let Y0 i = {~ < Ci:]Bi*r < #i},  

Y1 ~ -- {~ < ~i:[B~*~[ > #i > cf]B*~l} and Y2 ~ -- {4 < ~ :  cflB*~[ > #i} (for each 
i<~,~<r  

Clearly (Y~,Y~,Y2 ~) is a partition of {~:~ < (i}, now for ~ c Y~ U Y2/, let 
#~ = :  cflB*~l, and (B*~,~ :~ < #~) be an increasing continuous sequence of subsets 

of  B*r of  cardinality < IB~*~l and U Bi,~,~ i,~" 
r  

Now let a = : {#~ :i < n, ff E Y2i}, so a is a set of  regular cardinals. Assume for a 
while assumption (a) of  1.1; so a is a set of  < # + n +  = # regular cardinals, each >__ #, 
so the pcf  analysis of  [Sh371, Sect. 2] apply. Let us get (<  0. f ~ . ~  < 0 > :0 E pcf(a)). 

Now for each 0 E p c f ( a ) U  {1} which is < A* and a < 0, we choose 
j ~ 0 , a  0 , a  �9 0 o~ = (Bi, ~ :z < n ,~  < ~i '  ) such that: 

{Bo2 :r < : { < ,  :r yo u < Y(} 

U {Bi,r162 r Y2* and 0 r pcf(a) (i.e. 0 =~ 1)}. 

Let .~B, = :{ /}~ r A* ~ p c f a  and a < 0 or 0 = 1, a = 0}, it is as required 
( [ ~ *  I < A* as sup(A* pcfa)  < A* as A* is a successor cardinal). The proof assuming 
([3) is similar but we partition a to n sets; i.e. without loss of  generality each r is a 
cardinal hence ~i --< U / ~ j + l  "}- #0" So for every limit i < n, ~i __< U #j .  Remember  

j<i j<~ 
< [J #i and even e; < #0 and let for j < n: 

i<e ;  

aj = :{#~:~  ~ Y~ and ~ < #j  and j < i}. So lajl =< n + #j  < Mina j  and 

if (~i:i < n) ~ I ] ( 1  + ~ i )  then we can define h : n  --4 ~, h(i) < 1 + i  such that: 
i<e ;  

[i < n & i  l i m i t ~ # ~  ~ ah(i) ]. 711.1 

The following lemma generalizes [Sh371, 1.5]. 

1.2 L e m m a .  Suppose o-~ < o- 2 <= e~ < 0 < A are cardinals, o-~,a2, n are regular, 
A > cfA = ~ > ~o, A < # = c f #  < pp+(o,~2)(A), and for every large enough )( < A, 
[(9" 1 = cfA t < 0 ~ ppF(o,q)(A t) < A]. 

Then there is an increasing sequence (#~ :i < n) of regular cardinals < A, 
A =  sup #i and an ideal J on n , A =  t l imj  # i , # =  t c f (  [I # i / J ]  such that." 

i<t~ \ i <~ ? 
(a) J is o-2-complete and extend jba,. 
(b) ~fn _> (7+ and (ga  < n) [cov(lal,  o-2, (71,2) < n] then J is normal; 
(c) if o-1 = R 0 then J = O~ d. 

Proof. For (c) see [Sh371, 1.6], so we can assume o- l > ~0 as otherwise we have 
there gotten a conclusion stronger than (a) and (b). 

Let a C_ Reg ~), have cardinality < 0, be unbounded in A, I a a2-complete ideal 

on u, and (gk '  < k ) [ a ~  A' ~ I ]  and p = t c f ( V [ a / I ) .  As cfA = n < 0 < A , , - -  -- / 
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404 S. Shelah 

without loss of generality 0 = cf(0) < Min a, and let (Ai:i < t~) be increasing 
continuous with limit A, ~o < cf(A~) < ~ (remember t~ > R0); without loss of 
generality 0 < A o < Min a and ppr(o,~l)(A~) < Ai+ 1 and, if i > 0 is a limit ordinal 
then a N A~ is unbounded in A i. Also without loss of generality (using [Sh355, 2.3]) 
for every i < ~: 

[A o _-< A ~ < Ai&(z 1 __< cfA ~ < 0 ~ ppr(o,~l)(A ~) < Ai+ l] 

hence 

(*)0 b C_ (A0, Ai)&(b)  < 0 ~ suppcf~l_complete(b ) < Ai+ I. 

Let (b~[a]:~ E pcfa)  be a generating sequence (exists by [Sh371, 2.6]) and 
without loss of generality # = maxpcfa .  By [Sh345a, 3.6 (and 3.1(7))] without loss 
of generality cr C bx[a] ~ b~[a] C_ bx[a ]. Let i < t~ satisfy cf(i) _>- r as [a[ < 0 and 

ppr(o,al)(Ai) < Ai+I, for some #i < Ai we have suppcf~l_complete(A i 0 a\#i) < Ai+l, 
2 hence for some c~ we have: c i C_ A~+ t N pcf(a ~ A~)\#~, [c~l < cr~ and af~ A~\#i C 
U b0[a] (otherwise we can find a (71-complete proper ideal J on A i M a\# i such that 

OEci 
[o- < pp+(o,,~)(A~)&o- E pcf(A i n u i \# i )  ~ b~[c~] A (Ai n a~\#i) E J ] ) .  

Note that c i C (#i, Ai+l). 
Let S O = {(~ < t~: cf6 => al},  so for some i ( . )  < a we have: 

S~ = {6 E So: % NA 6 c_ Ai(,) and/_t~ < Ai(.) } 

is a stationary subset of n .  

By renaming, without loss of generality i(*) = 0, and for i E S 1 let ((0i,r ei,r ( < C,i) 
list {(0, bo[a]):O E c~}; so: 

(*)1 a M Ai C_ ~J ei, r maxpcfe~,r = Oi, r A i < 0i,r < Ai+I, and Oi, r C 
r162 

pcf,~ oomp~tr (a ~ A~). 

1.2A Fact. There are finite 0~,r C_ pcfe~,r for i ~ S 1, ~ < ~ and stationary 
S 2 C_ S~ such that letting 0~= {Q 0~,r we have: t f S  C_ S~, ~ = s u p s  then 

~ PCf~r~-c~ ( i6sU (oi)~./ r 

Proof of l.2 from the Fact. Now the preliminary part of 1.2 is easy; as Oi C_ (Ai, Ai+I), 
and [~i[ < ~1 < ~ = e f t ,  clearly 0 = : U 0i has order type ~, and by 1.2A # 

iES 1 
PCfc~a-complete(i~ 0i ) andby(*)oabove, f~ ~i~Aj); 
also/~ = max pcf~. So we are left with parts (a) + (b). Let ~e = {Ae,r : ( < (e < ~ }, 
as cr~ < s,  clearly without loss of generality for some ~(,) 

S~ = {6 ~ S~:~e = ~(*)} is stationary. 

For each ~ < ( ( , )  let 

= :{S _c S~: maxpcf{Ae,r ~ S} < #} .  

We may have said that so (by Fodor lemma) without loss of generality sup pcf,,t_comp~ete(A i M a) < 
A~+~ 
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More on cardinal arithmetic 405 

If  for some ff < ~(*), the normal ideal on t~ which ~ generates is proper, we have 
finished. If  not, for each ~ < ~(.)  there are members Sr < t~) of ~ and club Cr 
of  t~ such that: 

i<6 

Clearly C = D Cr is a club of ~, now remembering S 3 _C S o we know that on 
r162 

S 3 M C, 6 ~ sup{Min{i:~ E Sr  < if(*)} is a pressing down function, so for 
some stationary S 4 c_ S 3 and ordinal j (*)  < Min S 4 < ~ we have: 

~ E S4"(=} A V ~ E C[~S~ , i J  " 
r162 j<j(*) 

But as cov(lj(*)l,~r2, cry, 2) < ~, there is w C j ( , )  such that Iwl < ~2 and ~ is a 
stationary subset of  e; where 

r162 �9 

Let b = {Ar for some j and ~ we have i E Sr j E w and ~ < ~(*)}, it is the union 
of < a2 sets (be# = {Ar :i E Sr for j E w, ff < ~(.)), each with m a x p c f  < #. 

This contradicts the fact (1.2A). 

Proof of Fact l.2A. Similar to the proof of  [Sh371], 1.5. D1. 2 

2 On measures of  the size of  ~<,~(A) 

Improving a little [Sh400, 5.9]. 

2.1 Claim.  Assume A > cfA = ~0, A > 20 and [A' < A& cfA ~ = 0 ~ ppo(A') < A] 
and ppA < coy(A, A, R1,2). Then {# : A < # = ~ < ppo(A)} has order type >= O. 

We shall return to this in [Sh430, Sect. 1] so we do not elaborate. 

2 .2Cla im.  Suppose 0,~ are regular, Ro < 0 _ -< n < A =< A 1 __< A*, and 
(V#)[A =< # =< A t & c f #  < 0 ~ PP<o(#) <= A*] and cov(~, 0, 0, 2) = t~. Then 
there is a family ~ of < A* subsets of )'1, each of cardinality < A such that: 

(*)1 for every Y C A1, IYI _<- ~ there are Zn(n < co) such that: Y c U Zn, 
IZn l  = ~ and for each n n<~ 

(vz) [g c_ z~ & IZl < 0 ~ (3x �9 ~)  [z c_ x ] ] ,  

(*)2 for every Y C_ )~1' IYl <-_ ~ and 01 < O there is X E ~ such that: X N Y 
has cardinality > 01. 

Remark. Here and later we can replace <= A* by < A* -- cfA*. 

Proof. It suffices to prove (*)1 as (*)2 follows. Let O = {#: ), <- > =< )'1 and 
c f #  < 0}. Clearly if 69 -- 0, the conclusion is straightforward (by induction on A1). 

Without loss of  generality A* = sup{pp<o(#): # E O}. Now each PP<o(#) (for 
# E 69) has cofinality >__ 0, and if 5 < 0, (#~:i < 6) increasing, (pp<o(#O:i < ~5) 
strictly increasing then PP<o( U # i ~  > ~ pp<o(#i), hence cfA* > 0 and, by 

\ i < 6 ]  i<6 
[Sh355, 2.3], without loss of generality A* = A 1. Let X be regular large enough and ~3 
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406 S. Shelah 

be an elementary submodel of (H(x), C, <*) of cardinality A* such that A* + 1 c f13. 
let 

= {X E ~3: X C A* and IXI < :~}. 

Now repeat the proof of ]Sh400, 3.5], noting 

2.2A Observation. Suppose: 
(i) a is a set of regular cardinals ]a I < Mina; 

(ii) the function b ~-+ (f~:c~ < maxpcfo) (for b G a) is as in [Sh371, Sect. 1]; 
i.e. satisfies: 

(*)1 f~ c l i b ,  we stimulate f~ F (a/b) = 0a/b and (f~:c~ < 0) 

is <d<m~xpcf~(b]-increasing and cofinal in ( r I  b, <d<maxpcfbEb] )' and 

(vg c I-[ b) (3% < e) ]g < 

(*)2 if ~ < 0 E pcfa, cf~ E (IbI,Minb] and ~r E a\{cf6} then 
f~(a) = Min l ~ ~ccU f~(cr): C a club of 6}. 

(iii) a _C A*, A __< A*, and 

(vu) [u c < 0 a  supb _>_ A& supb ~ b ~ suppcfj~d b _<_ A*]. 

(iv) We let for p E pcfa, and a < p : f ~  = f~'[~]. 
Then for every {a~:i < n} C_ {b:b _c a,[b I < 0}, gi c I~ai (i < n ) w e  can 

find g and A~ < A such that: g E I-[ a, for each i < n, gi --< g and for every i < 
there are A~ < A such that letting c i = a~\A~ we have g I c i is Max of finitely 
many functions from {f~ [ ci:i < n , a  < p , p  E pcfa and p < A*}. Moreover 
for some 0 _C [A,A*] M pcfa, for every # E RegN[A,A*] n 0 ,  for some A~ < A, 
9 I (b~(a]\A~) is (the suitable restriction of a) Max of finitely many functions from 
{ f ~ )  :a c (A, A*] n pcf(a\M) for every M < A}. 

Proof. Without loss of generality ~+ < Mina. Use [Sh371, 1.4] with ~+, a, (ai :i < 
~), here standing for ~5, a, (b i :i < ~*) there and we get (< Ai,l, ci, t :l __< n(i) > :i < 

~). Let A: = sup [U{ci,t: ci, l abounded subset of A}]. [Zz2 A [~2.2 

Similarly 

2.3 Claim. 1) In 2.2, ifO = ~ and (Vp) [~ < # < A 1 & cf#  < 0 ~ PP<o(#) < A*] 
(i.e. ~ = A) then we can add 

(*)3 for every ]z C_ A, Iy I =< ~ there are Z~, (Zn, i :i < O) for n < 0 such that 
Y C_ U Zn, Zn = U Zn#, JZn,il < O, (Zn,i:i < O)increasingcontinuous 

n < w  i<O 

and each Z~# belongs to ~ .  

Hence 

2.4 Cone|usion. If A > cfA = R o then there is a family 3 of sup{pp(p):p __< 
A, c f#  = A0} countable subsets of A such that: 

(*) if Y C_ A, IY[ - -  R 1 then for some Z C ~ ,  Y M Z is infinite. Moreover, we 
can find c~ (n < a;,i < 01) such that Y C_ {a~:n  < ~z,i < cJi} and for 
each n for arbitrarily large i < aft, {a2: j  < i} ~ ~ .  
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More on cardinal arithmetic 407 

2.5 Conclusion. If )~ > ~ => cf.~, and pp,~(A) < cov(.~,)ht~+,2) then pp~()~) < 
cf~ ( I-I()~ n Reg), < ~  ). 

Proof. Let X = ~3()~) +, and for ~ =< t~ + let ~3r be an elementary submodel 
of (H(x),  E, <*) of cardinality pp~(),) such that pp,~(A) C f8r162 increasing 
continuous, and (~B~ : ~ =< C) E ~3r 1. Let ~3 = ~3~+. Assume that the conclusion fail 
and we shall prove that cov(.~, )~, ~+, 2) = pp,~(A), in fact that ~ = : ~3,~+ N S<;~(A) 
exemplify it. Let a C ~, --- ~ and we shall find A E ~ such that a C A; this 
suffice. Choose by induction on ~ < cop f r  ~3 n 1-I(Reg n.k) such that letting Nr 
be the Skolem Hull of a U {f~ :{ < ~}, we have: for every large enough cr E Reg n)~, 
[~r E Nr ~ sup(or N Nr < fr Now use 2.4+proof of [Sh400, 3.5]. [:]2.5 

We now return to the issue of strong covering (from [Sh-b, Ch. XIII, Sects. 1-4]) 
R0 (better version [Sh-g, Chap. VIII). It influenced the first proof of a bound on R~ , and 

is clearly related to computing Min{ISl: S _ J=<~(A) is stationary}. 

2Ji Lernma. Suppose W C V is a transitive class of V including all the ordinals and 
is a model of ZFC. 

1) For every set Y E V of ordinals of cardinality < ~ (in V)  there are Yn ~ W 
(n < co) (so (Yn:n  < co) E V!), W ~ "Yn a set of < ~  ordinals" such that 
Y C U Y,~ provided that." 

n < w  

(*)~ (i) ~ is a regular uncountable cardinal in V, 

(ii) if a E V is a subset ofReg W \t% ]a I < ~, and 9 ~ ( l-I a) V then 

| there is a function h ~ W such that 
0 E D o m 9 ~ 9 (  O ) < h ( O ) < O ( s o  DomgC_Domh) 

or even 

(*)2 like (*)~ but in (ii) we demand only: 

|  there are functions h n E W (for n < co) such that 
(V# E D~ V< g(p) < h~(#)]. 

2) For every set Y E V of ordinals of cardinality < t~ (in V) there is Z E W,  
W t- "Z  a set of < t~ ordinals" such that Y c Z provided that: 

(% + ~ < ~. 

3) Assume ~ = R V, (*)~ holds and 

(9 0 V ~ "A a set of ordinals of power ~ " ~  (3B E W ) [ A  n B infinite 
& w ~ "IBI < ~"]. 

Then the conclusion of 2) holds. 
4) Assume ~ = ~v,  (,)~, (~+)y = (~+)w, and (*),~+. 
Then the conclusion of 2) holds. 
5) Assume 
(a) (t~+) v = (t~+) W, (*)~, (*)~+; 

(b) there is (C~:6 E (A+ 1)\(e; + 1),R 0 =< cfW8 <= ~) E W,  C 6 a club o f& 
[c~ E acc C~ ~ C a = C~ Nce] and opt C~ _-< ~. 
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Then (W, V) satisfies the n-strong covering (see [Sh-g, Chap. VII]) i.e.: 

| for every ordinal ~ and model M E V with universe ~, with countable 
vocabulary, there is N -< M of power < n, N n n an ordinal and the universe 
of N belongs to W.  

6) Moreover, in (5) 

| for any A in the game where a play last n moves, in the i th move (for i < n) 
the first and second players choose a i, b i E Y<~(A), respectively preserving 
U bj C_ a i C_ bi, thefirstplayer has a winning strategy where thefirstplayer 

j< i  

winning aplaymeans { < n." U W} (=the clubs filter(in V)). 
i<5 

Remark. 1) Note that parts (3), (4) hold for n __> ~ v ,  but this is covered already by 
part (2). 

2) Note that in part (9), tq v = ~q2 w. 

Proof. Should be straightforward (if you read till here). [Originally we say only; for 
(1) imitate the proof of  [Sh400, 3.5], for (2) - repeat the proof of  [Sh400, 3.5] by 
doing the induction for i < ~1, then use part (1). For (3) - instead using part (1) in 
the end, use the assumption, for (4), (5) imitate the proof of  [Sh400, 3.6]. 

For 1)-5), let Y be a subset of  the ordinal A, a cardinal of  V [for part (5) A is 
given], and let X = : [(2:~)+] W. Let M *  E W be (H(x)  W, E, <*)  E W. 

1) In V we choose by induction on n < w, N~, a n, h~, t, 9~ such that: 

(a) N~ -< (HO0 w,  E, <*);  
(b) V ~ ]]N,~[[ < ,~ and N~ N n = o~; 
(c) Y c_ No, {n, ;~} ~ No; 
(d) N n -~ Nn+l;  
(e) h~, z E W is a (partial) function (for l < w) and from A + 1 to A; 
(f) g~ is a function, Domg~ = ((A + 1) N RegW\~; )  N N~, 9~(0) = 

: sup(N~ n 0); 
(g) for every 0 E Domg~ for some l, g~(O) < h~,z(0); 
(h) h~, z E N~+ 1 for 1 < w. 

There is no problem to carry the definition. Let N = N~ = : U Am, c~w = 
n < c o  

U a~ = N A n .  Let for m < w, M,~ be defind as the Skolem Hull in (H(x)  , E, <* )  
n<~r 

of {i: i  < a,~} U {h~,z:n,l <,~} U {n,A}. Clearly [m < w ~ M,~ E W],  and 

[m < ~ ~ M m -~ Nr~] and V ~ "llm.~ll < n". Now m = : U m n  -< N ,  
n ~ o 3  

M n t ~  = c ~  = N N  ~ and for every 0 E (),+ n R e g  W \ n )  and n for some 
m < w, 0 E N , ~ & m  > n so for some l < w sup(N~ n 0 )  < h,~,l(0) E M 

hence sup(N N 0) = sup / sup N n n 0 / < sup(M n 0) < sup(N N 0). So by [Sh400], 
r 

k n ~ O  J 

3.3A, M N A = N N A, so Y~ = : A N M n for n < w are as required. 
2)-5) The following will be used in proving 2)-5). Let 5(*) < n be given (i.e. we 

shall choose it for each part) and we assume (.)~. 
In V we choose by induction on i < 5(*), Ni, c~i, h i, gi such that: 
(a) N i -.< (H(x)  w,  E, <*);  
(b) V ~ "HNi[[ < n" and N i N n ---- a~; 
(c) Y _ No, {n, A} c_ No; 
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(d) N i is increasing continuous; 
(e) hi E W is a partial function from A + 1 to A + 1; 
(f) gi is the function, Dom gi = ( A+ n Reg w \n )  N N i and 

gi(O) = sup(N~ n O) 

(g) 0 E Doing  i ~ gi(O) < hi(0); 
(h) h i c Ni+ I. 
There is no problem to carry the construction. We let N = N6(.) = U Ni. 

i<6( , )  

Proof of Part(2). Choose (5(.) = b~ v ,  so under the assumptions of  part (2) (5(.) < tq 
hence V ~ "HNH < td'. Apply part (1) to Y = {h i :i < 6(.)} (which is _ W),  so we 
can find Y~ E W (or even Y~ C H = : {h E W: h a partial function from A + 1 to 
A + 1}), for n < co such that V ~ "]Ynt < td' and Y C_ U Yn (well, Y is not a set 

n<to 
of ordinals, but we can code it as one). So for some n = n(*), V ~ "]Y NYn] = 121". 
Let M be the Skolem Hull in ( H ( x ) w  C, <* )  of  { a : a  < U cq } U Yn(,) U {~, A}; 

i<6(*) 
so M �9 W, V ~ "[[MII < ~" and so W ~ "IIMJl < ,r Let M '  = M n N; so 
clearly M '  -< N,  U a i c  M ' N n  C_ N A t , =  O ai .  Lasfly, i f i  < 8(*) and 

i<6(*) i<6(*) 

0 �9 (A + N Reg w \~)  N M '  then for some j �9 (i, 8(*)), 0 �9 NA and for some c we 
have j < c < 8(*)& h~ �9 Y~(,), so 0 �9 Dom h~ and sup(N i N 0) __< sup(Nj n 0) < 
sup(N~ N 0) < h~(O) �9 M'. So by [Sh400, 3.3A] we know M '  N A = N n A, so 
Y C M ' N  A �9 W,  W ~ "[[M'[[ < e; as required. 

Proof of Part (3). As in part (2), we choose 6(*) = Rv and get AT/, hi,  gi, hi [for 
i < 6(*)]. By ~)0 applied to Y = {h i :i < 8(*)} (again translating to a set of  
ordinals) there is a set B �9 W such that W ~ "[B[ < d '  and A n / 3  infinite, 
without loss of  generality B C_ Y [see proof of part (2)]. So there is a limit ordinal 

< 6(*) such that C = sup{/ < o~:h i �9 B}. Now let M be the Skolem Hull in 
(H(x) w, � 9  <* )  of {c~:~ < U c~i'~ U t3 U {tq A}, so easily M N k C_ Nr N A and as 

i<r J 
above M n A = Ng N A, so ArC N A = M C) A �9 W but Y C_ Nr and are finished. 

Proof of Part(4). We let ~5(.) = n and get N=,eei,gi, h i [for i < ~5(.)] be as 
before. Now we apply pa r t ( l )  with t~+(= (t~+) ~9 = (n+)w),  {h~:i < n} here 
standing for t~ and Y there, and get {Yn:n < co). So for some n(*) the set 
{i:hi �9 Yn(*)} is unbounded in e~. Let M be the Skolem Hull in (H(x) W, �9 <*)  of 

~'oe:c~ < U ~ UY,~(.)U{~, A}. As before N C M,  M �9 W, W b " l lV l l  < M". 
L i<6(*) J 
So W ~ "[[M][ = n" hence there is a one to one function f �9 W from {i:i < t~} 
onto M,  so for some club E �9 V of t~ (in V) 

i �9 E ~ N i <_ R a n g ( f  I 0-  

So for each i �9 E ,  Y C Rang( f  [ i) hence we are done. 
5) Given {Ni:i < t~), let N,~ = U Ni, by pa r t ( l )  there is {Yn:n < co), Yn �9 W 

such that: i<~ 

{gi :i < t~} C_ U Yn C_ H = { f  �9 W: f a partial function from 

,~<oo (A + 1) N Reg W \ ~  to A + 1} 
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and for each n, W ~ "IY~I < So for some n(*), {i < ~:hi �9 Y~(.)} is 
unbounded in ~. So in W there is a list {f~:i < ~) of Yn(.). In V, for each i < n let 
Ji < ~ be minimal such that: 

(a) h~ �9 {f r  <J i} ;  
(b) if for some ~ < n, fi =< he (i.e. Dom fi C Dom he and (V0 �9 Dom f~) [fi(0) =< 

he(0)] then there is such ~ < Jd 
(c) j~ > i + 1. 
Let E = {~ < n: for every i < ~, Ji < ~, and ~ is a limit ordinal}. Now for each 

�9 E note that 

(*) (cO {hi:i < ~} C_ {fi:i  <4};  

([~) ~<r I V  fi <-- hj J<r fi < hj]. 

As [i < j ~ h i < hi] clearly we get: 

Define for ~ =< ~ a function f~ as follows: 

D o m f /  = U{Dom fi: i < ~ and fi --< he}, 

f[(O) = sup{fi(0): i < ~ and fi < he}. 

So clearly f [  �9 W, and even for {f[ :  ~ < ~ limit) �9 W for ~ E E. Let us define for 
<= n a function g~: 

D~ = U D~ C_ ()~ + 1) M Reg w \~ ,  
i<r 

9 (o) = U 
i<r 

Clearly for ~ limit: 
Dom9~ = ()~ + 1) M Reg w MNr 

and 

0 E Dom9~ ~ 9~(0)= U{g~(O):i < ~,0 E Ni} = U{hi(O):i < 4,0 E N~} 

---- U{s  < ; and f/ __< he} = f~(O). 

(So for limit ~ we have 9~ C_ f~). 

For every 0 E N~ N ((A + 1)MReg w \ ( n +  1)), 9~(0)is an ordinal E 0% 0) C_ (n, A) 
of cofinality tq so Cg~(o) is a set of ordinals of order type t~; let C~(o ) = {a~: ~ < n}, 
(increasing); it is strictly increasing continuous and has limit 9~(0); also {9~ (0) :~ < n} 
is also strictly increasing continuous with limit 9~(0). Clearly E o = {~ < t~: 
limit ordinal and a~ = 9~(O)(soO E Nr is a club of n (in V; as V ~ "n 
regular uncountable"). So for ~ E E o, C~o = Cg~(O) N ~o C Nr hence 

[~ E accE 0 ~ Cg~(O) f l a  ~ C_ N(]. Let E* = {( E E:(Vi < 0(Y0 E Ni)[O E 
()~ + 1) A Reg w \(n + 1) ~ ( E accE0}. So for ( E E*, r is a limit ordinal and: 

0 E ArC N ((A + 1) 0 Reg w \(~ + 1)) ~ CQ(o) = C9~(o ) = Cy~(o) M 9~(0) c Nr 
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Now we shall show that for C E E*,  Nr N A E W. For ( E E* we define by 
induction on n < w; M~: 

M~ is the Skolem Hull in (H(x) W, E, <*) of {a:c~ < c~r 

Let M~ +1 be the Skolum Hull in (H(x) W, ~, <x) of 

M~ U U{cf~:(o): 0 E (A + 1) n Reg w \(n + 1) and 0 6 M~ n Dom f~ } .  

Let Me = U M~, clearly Me E W (as f~ C W) we can prove by induction on 

n that M~ C_ Nr hence: Me C_ Nr Also ar C_ Me N ~ C_ Nr n ~ ---- ar and: 

0 E McN((A + 1) N Reg w \(~ + 1)) ~ Cg~(o) is an unbounded of subsets 

of both Nr N 0, Me n 0 

So by [Sh400, 5.1A(1)] we get Nr = Me. 
6) The winning strategy for the first player is to choose "on the side" also 

Ni, ai ,  hi, 9i, as in the common part of the proof of parts (2)-(5) and guaranteeing: 
a i include U (Nj N A) U U Bj,  Ni+ 1 include b i and N~ n A is the universe of an 

j<i j<i 

elementary submodel of M*. D2. 6 

2.6A Remark. l) We can put A as a parameter of the Lemma2.6, then in (,),~, 
a C (A § l) N Reg W\n ,  etc., [so we may write ( , ) j  and Y C A [in parts (1)- 
(4)] and a ~ A [in | of part (5)]. 

2) Note that (,)~ follows easily from the relevant covering property in [Sh-g, 
Chap. VII]: 

( ,)  if a E V, a C_ A, V ~ "la I < a" then for some b E W, a c b, 
w ~ "lbl < ,~". 

3 pcf inaccessibility and charactrizing the existence 
of non <-decreasing sequences (for a topological problem) 

3.1 Definition. 1) We say A is (#, 0, ~r)-inaccessible if A > # __> 0 > cr and for any 
a c Reg we have: if lal < 0, Mina > # and ct C C_ A, even supa < A and I is a 
(r-complete ideal on a then A ~ tcf ( I~ a/I) (when tcf is well defined). 

2) If we write �9 instead of # we mean "for some #, 0 =< # < A". 
3) If we omit ~r we mean cr = ~0" 
4) "accessible" is just the negation of "inaccessible". 
We now rephrase various old results. 

3.2 Claim. 1) For A regular, in the definition, "and a-complete 1, A ~ tcf ( l~ a/I)" 
can be replaced by "A ~ pcfc~_complete(a)" and also by "A ~ t c f ( y [  a/I) for any 
a C Reg N(p, A), la[ < O, I a-complete"; also if cf(A) ~ [a, 0) then "sup a < A" is 
not necessary just "'A r a". 

2) Assume A > # >= 0 > cr and cfA ~ ~r. Then A is (p, O, cr)-inaccessiblke iff 
[A' E (#, A) & cr __< cfA' < 0 ~ ppr(o,~)(A ~) < A]. 
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3) I f  A = cfA > # => 0 = cfO > o-, A is (#, O, cr)-accessible then there is a set 
a C_ Reg N(#, A) of (#, O, ~r)-inaccessible cardinals each >#, a of  cadinality <0 such 
that A E PCfo-_complete(a ). 

4) I f  A = cf A ->_ ~ > # __> O < o- = cf cr, and 

(3a) [a _ Reg n(#, ~)& [al < 0 & A E pCfo-_complete(a)] 

then there is a set a of  < 0 (#, O, o-)-inaccessible cardinals E (#, ~) such that 
A = maxpcfa, and A C pcfo-_complete(a). I f  ~ is (#, O, cr)-inaccessible then sup a = t~, 
jbd _C J<;~[a]./f cr = lq0, also there is a tree of  cardinality <_<_ t~ and >->_ A branches 
((cf t~)-branches if ~ is (#, O, ~r)-inaccessible). 

5) / fA  = maxpcfa, t~ = ]a I __< # < Mina, j~d ___ J<~[a] and each 0 E a 
is (#, n +, 2)-inaccessible then there is a tree of  cardinality sup ct and __> A cf(otp a)- 
branches. I f  we have n pairwise disjoint subsets of  a not in J<~[a], 2 ~ _-> sup a or on 
each 0 E a there is an entangled linear order then there is an entangled linear order 
of  cardinality A. 

6) I f #  < A < pp+(#), then there is a tree with < # nodes and >-_ A branches. I f #  
is (*, (cf #)+, 2) -inaccessible we can demand "> (cf #)-branches". 

Proof. 1) Easy (using pcs analysis and [Sh355, Sect. 1]). 
2) Easy, too (use [Sh355, 2.4]). 
3) Prove by induction on A using [Sh345a], 1.10 (so in [Sh345a, 1.12] we can 

replace pcf by pcfa_complete ). 
4) Similar to (3). 
5) By [Sh355, Sect. 4]. 
6) Easy, too. D3. 2 
We state some variants of [Sh400, Sects. 2, 4]; specifically combining [Sh400, 2.4, 

4.2]: 

3.3 Claim. Suppose 
(i) (Ar :~ < ~(*)) is a strictly increasing sequence of  regular cardinals > ~r. 

(ii) f o r r  Ar = (~<Ur A~) + 
(iii) Ar pcf(a) 
(iv) a _c Regn(~r+, A0) and [a[ < or, a regular. 
Then ((*) < a +3. 

Similarly combining [Sh400, 2.4, 4.2] 

3.4 Claim. Suppose: 
(i) (Ar :~ < ~(.)) is a strictly increasing sequence of  regular cardinals > ~," 

A +" (ii) f~  ~ limit, A r  ( U<r ~) , 

(iii) Ar pcfo-_complete(aff), O" regular," 
(iv) ar C RegN(,~+, A0), lar < ~, ,~ regular. 

(v) ar C_ b and if (/zr .'~ =< m+2) is strictly increasing sequence of  regular. 

a c_ b, lal < {#r162 < ~+2} c pcf(a), p k §  : maxpcf{#r < t~ +2} 

( )+ and A o + ~ #r < #,~+2 < U {Ar :C < t~+3}, then there are #r < #r regular, 
i<~+2 ~<( 

as for ~ <= ~+2 and a' C_ b with the same properties and y~{#r .'( < t~ +2} = 
< 
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Then ~(.) < Max{t~ +3, cov(b C i% n, o')+2}. 

3.5 Claim. The following is impossible: 
(i) o- < ~ < 0 < # are regular, ~+ < O; 

(ii) (Ar .'~ < u} is a strictly increasing sequence of regular cardinals > p; 

(iii) S = {e < #: cfe = 0 and for some club C of~, sup pcfa_complete{Ar ." ~ E 

C} < ~ Ar is stationary; 
~<~ J 

(iv) (a) if5 < p, cf5 = ~ then for every club C of S, there is a E C such that 

suppcf~_complete {Ar E a N C }  > U Ar 
r 

o r  

(b) /~ff E pcf~r_complete(a), 0 > Io[. 

3.6 Claim. Assume [a[ < Mina, then 

cf<la I ( H p c f ( a ) )  =< maxpcfa.  

Proof More is proved in [Sh371, Sect. 3]. 

The following answers a question of Gerlits, Hajnal, and Szentmiklossy in [GHS]. 
They dealt with "n-good topological space X"  (i.e. every subset is the union of __< n 
compact sets) and "weakly n-good spaces" (every Y C_ X of cardinality > ~ contains 
a compact subset of cardinality > t~). [GHS] has the easy implication. 

3.7 Theorem. The following conditions on t~ < o- < 0 are equivalent: (~ is an infinite 
cardinal, o- and 0 are ordinals) 

(A) . . . .  o there are functions f~ :~ --+ o-for a < 0 such that: 

</3 ~ V f~(i) < fz(i) 
i<g  

(B)~,~, o 2 ~ _-> [0[ or for every regular #1 <-- O for some singular cardinal A* =< o- 
we have: 

cfA* =< t%A* > 2'~,pp+(A *) > #1" 

Proof First note 

3.8 Observation. Let n < o-, ~ an infinie cardinal, o-, 0 are ordinals. If for every 
regular 01, o- < 01 < 0 the statement (A) . . . .  01 holds and 0 is singular (e.g. 0 > [0[), 
then (A)~,~, 0 holds. 

Proof We prove this by induction on 0; if 0 _-< o--trivial: use the constant functions. 
As 0 is singular 0 = ~ 0~ where 0(*) < 0, 0~ < 0, 0~ increasing continuous, 

a<0(*) 
0 0 = 0. By the assumption for each c~ < 0(.), there is a sequence (f~ :i < 0~} 
as required in (A!,~,~,o~, [why? if 0~ is singular by the induction hypothesis, if 0~ 
is regular by an assumption of 3.8]. Similarly there is {fi:i  < 0(.)) exemplifying 
(A),~,~,o(.). 

F o r i < 0 1 e t i =  ~ 0 ~ + j ( i ) , j ( i )  < 0 a ( i ) , a ( i ) < 0 ( . ) a n d l e t g i : t ~ - + A b e  
/~<~(i) 

r i) ( /-~ 
gi(2~) = fa(i)(~), gi(2~ + 1) = jj(~) ~ .  D3. 8 
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Continuation of the Proof of 3.7. First we do the easy direction. 

(B) ~ (A) 

First Case. 2 ~ => 101 . 
Let {As:c~ < 0} be a family of  [01 distinct subsets of  ~, let A'~ = {2i : i  E 

As}  U {2i + 1: i  ~ As ,  i < n} and let f ~ : 0  --~ {0, 1} C_ A be 

= ~ 0 if i E A~ 
fs(i) [ 1 if i~A~" 

Second Case. A* _-< (7, cfA* =< n, A* > 2% pp+(A*) > 0, 0 a regular cardinal. 
So there are regular cardinals A i < A* for i < n (such that Ai > n) and an ideal 

J on n, a ~ J such that I ]  Ai/J has true cofinality 01 __> 0. So there is a sequence 

(fs :a < 01), f s  E 1-I A~, and a < /3 ~ f s  < f ~ m ~  Now ( fs:a < 0) is a 
i<t~ 

sequence as required. 
By 3.8 those two cases suffice. 

(A) ~ (B) 

Let ( fs:a < 0) be as in (A). 
We can assume that (B) fails, (7 minimal for which this occurs (for a given n for 

some 0) and 0 minimal for the given n and (7. So 0 => (2~) +. By Observation 3.8, 0 
is a regular cardinal. So 2 ~ < 0 (hence 2 '~ < (7) and [a _ Reg N(7+\n + & lal < n 
max p c f a  < 0], and (7 < 0. 

As 0 is a regular cardinal necessarily cf(7 __< t~ (otherwise for some a 1 < (7 the 
set {a  < 0: Rang f s  C_ (71 } is unbounded in 0, contradicting the minimality of  a). 
Also (7 is a limit ordinal as 2 ~ < 0 = cf0  (as if (7 = /3 + 1, for some A c n, 

B = ~ a :  A [ i  E A ~ f~( i )  = /3]~ has cardinality 0, so {fa  I ( ~ \ A ) : a  c B}  
k i < n  ) 

essentially contradicts the minimality of (7). 
Let X be regular large enough. We choose by induction on i < (2~) +, a model N i 

such that: 
N~ -~ (H(x), c, <~); 
IiNiiI = 2~; 
2'~ c_ N0; 
n,(7,0 E X 0, (f~:c~ < 0) C No; 
i < j ~ N~ / Xj; 
(Nj :j <= i) ~ Ni+l; 
N i increasing continuous. 
Let 5i = : sup(0 M Ni) so ((5 i :i < (2~) +) is strictly increasing continuous (as 0 is 

regular, 0 > (7 and (7 > 2% necessarily 5 i < 0). We define for i < (2'~) +, a function 
gi C no by 

&(~) = Min(N~ n (7\fe~ (~)) 

(it is well defined as (7 E N o C_ N i and N M (7 is unbounded in (7 as cf(7 -_< n). 
Now i < (2'~) +, cf(i) = g+ implies N i = U Nj and Rang gi _C U Nj  

j<i  j<i  
hence V [Ranggi C_ Nj]; but every subset of Nj of cardinality _-< t~ belongs to 

j< i  
Nj+ l, hence 9i E U Nj .  SO by Fodor Lemma for some stationary subset S of  

3<i 
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{i < (2'~) + : cf(i) = t~ + } and some g* :~ -~ cr and some A C_ ~ and some i(*) < (2~) + 
we have: [i E S ~ 9i = g*], (Vi E S)(V~ < t~) [fe~(~) = 9*(4) r ~ r A] and 

g* E Ni(,); note A E N O C_ Ni(,) as A C_ a. 

Clearly i E S & C  E A r cf[g*(~)] > 2 ~ (otherwise g*(O -- sup(Ni M g*(~) (as 
N i -~ (H(x), c, <*),  2 '~ + 1 C_ N O C_ Ni) and easy contradiction). Also, as the fc~'s 
are pairwise distinct, clearly A :~ 0. 

EIEIA cf[g* (~)]J ? Question. What is c f [  
r L 

(I.e. cofinality of the partial ordered set). 
By [Sh355, 3.1] it is maxpcf{cf[g*(~)] : C c A}, which by an assumption is < 0, so 

there is a family G c I-[ g*(~) of cardinality > 0  such that (V f  e I] g*(~)~(39 E 
~EA ~EA ] 

G) [ f  < 9]. As the parameters in the demands on G belongs to Ni(.), without loss of 
generality G E Ni(.). 

Now we can define a partial function H from the family G to 0: 
if g E G and for some a the condition (*) below holds then H(g) is such an 

ordinal 
if g c G and for no c~ the condition ( , )  below holds then H(g) is not defined 
where 

( , )  a < 0 ,  f~ F ( ~ \ A ) = g *  F ( ~ \ A ) , a n d g = g  I A < f ~  IA_-<g* IA.  

Now we can choose an ordinal j ( , )  such that 

i(*) < j(*)  < (2~) +, j (*)  E S 

[possible as S is a stationary subset of (2'~)+]. 
We know that there is a function h E G such that f6~(.) I A < h. 

Question. Is H(h) well defined? 

Possibility A. The answer is yes. 
Then H(h) < U{H(g) + l : g  E ( D o m H )  C G}. This union is an ordinal < 0 

(as [G[ < 0 and R a n g H  C 0 and 0 is regular); also this union belongs to Ni(.) (as 
G, H E Ni(.)), hence the union is an ordinal < 8i(.) < 8j(.). So H(h) < 8j(.). 

But (by the choice of h for the first inequality, and definition of H(h) for the 
second inequality) 

| f~j(,) I A < h I A <= fH(h) I A 

and [by the definition of H for the first equality, choice of 9" and j(*) E S for the 
second]: 

| fH(h) I (a\A)  = g* I (a\A)  = fe5(*) I (~\A) .  

Now | | together implies f~j(,) <= fH(h), but as said earlier H(h) < 8j(,) < 0, 
together they contradict the choice of (f~ : c~ < 0). 

Possibility B. The answer is no. 
So H(h) is not well defined and without loss of generality h E N3(,)+1 (as all 

parameters in the requirements on it are in Ny(,)+I). Choose j c S, j > j ( , ) ;  as 
H(h) is not well defined, no c~ < 0 satisfies the requirement in (,).  But of the three 
demands on c~, 8y trivially satisfy two and a half: "oe < 0, f a  I ( a \A)  = g* I (~\A) 
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and f~ I A =< g* I A"; so the remaining one should fail, i.e. ~[h I A < frj I A]. 
So for some ~ E A we have h(ff) > f6~ (C); now h E Nj(.)+I C_ Nj hence h(ff) E Nj 

hence h(ff) E Nj N a\fr j(~) ,  hence (by the definition of 9j), gj(~) < h(~) hence (as 

j E S) we have 9"(~) < h(ff) but h E G C H * * = - 9 (~), so h(ff) < g (if), contradiction. 
~EA 

[73.7" 

4 Entangled orders - narrow order Boolean algebra revisited 

4.1 Theorem.  1) I f  l~ +4 ~ cfA < A <= 2 ~ then there is an entgangled linear order of 
cardinality A. 

2) Moreover, if x o < A we can demand that the linear order has density character 
>= Xo (in fact, in every interval of the linear order). 

Proof. By [Sh355, 2.1] there is an increasing continuous sequence (A~ :i < cfA) of 
singular cardinals with limit A such that tcf ( < ~ i  ;~ )~+'<rbd ) = /\+ and A0 > X 0 " ~ c f ; ~  

The proof will be split to cases (one of them relies on the solution to others for 
smaller cardinals, so you may want to say we are proving 4.1 by induction on A). 
Without loss of  generality X0 > cfA. 

Casel. For i < cfA, m a x p c f { A + : j  < i} < A. 
So for some unbounded A c_ cfA we have 

i E A ~ A  + > m a x p c f { ) ,  + : j E A N i } .  

So a = {A+:i E A} is as required in [Sh355, 4.12] (with A+,cfA here standing 
for A, n there, noting that 2 cfA ==_ 2 '~ => ),). 

So we can assume: 

Assumption - not Case I. 
So there is #, X0 < # < A, c f #  < cfA, PP<cf),(#) > A. Choose a minimal such 

p, so by 3.2(2): 

( . )  a C R e g \ x 0 &  supa  < # &  lal < cf;~ ~ m a x p c f a  < A. 

Clearly (by [Sh355, 2.3]) in ( . ) ' s  conclusion we can replace " <  A" by " <  #"  i.e. 

(*)' a C R e g \ x 0 & s u p a  <  &lal < cf;  ~ m a x p c f a  < # .  

Let ~r = : c f# ,  so ppp = PP<cf~(#) (by [Sh371, 1.6(3)]) and remember pp<cf)~(/z) > 
A. 

Case H. cr > ~ (and not Case I; actually 2" > p suffices). 
First ~issume ~r > R0" As said above pp(p) > A and by [Sh371, 1.7] there is 

a strictly increasing sequence (Pi*".z < cr) of  regular cardinals, # = U pi,* and 
i<o- 

A + = m a x p c f { # * : i  < or} = tcf [ I  . * ,Tbd  (Pi*'" "z < t z i / J ~  . Now as we can replace ~r) 
i<cr 

by (#* : i  E A) for any A _C cr unbounded, without loss of  generality #* > 
maxpcf{#~  : j  < i}, so we can apply again [Sh355, 4.12] (or 3.2(5)). 

When ~r = R0, 4.1 follows from [Sh355, 4.13(1)]. 

Case IlL cf A = n +4 and ~r < n. 
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So 

sup(A) 
b i and 

(i) 

(ii) 

(iii) 
(iv) 
(v) 

0 -+4 ~ cf/~. For any C E ~ =:  { A : A  C_ cf(A),otp(A) >> n+. A closed in 
and maxpcf{A + :i E C} = (A~upA)+}; try to choose by induction on i < n +, 
3,i such that: 
b i C R e g M # \ , U b j \ X o ;  

3,~ e c \  U (3,~ + 1); 
\ j < i  

),+ E pcfb~; "gi 
Ib~l < ~; 
all members of bi are (X0, t~+, R0)-inaccessible; 

(vi) 3,i minimal under the other requirement. 

Subcase Ilia. For every C E ~ .  Min(C) > i( ,)  for some i = i(*) = C( , )  < ~+ we 
cannot define bi(,), 3,i(,). 

Let C, i( * ) be as above. Let3,* = U 3,i, so3'* E C. N o w i f 3 , E  C\3,* then 
i<i(*) 

(by [Sh355, 1.5B]) as pp~(#) _>_ ,k + > )~+, there is a.y _c RegM0t0,#),  [an[ _<- 0- such 
that ~+ E pcfa  7. By 3.2(3) there is r C_ RegM(x0,#) of cardinality __< n consisting 

of (X0, ~+, R0)-inaccessible cardinals such that ~+ E pcfc.y. Now 3,, r i *) 

( \ 2  b~)hencewithoutloss cannot serve as 3,i(,), bi(,) so necessarily ~+ ~ pcf c~ i ,) 

of generality c.y C_ U b~.So { ~ + : i E C \ i ( , ) }  C_pcf(  U bi'/, ( U bi~ --< ~. 
i<i(*) \ i<i(*) ] \ i<i(*) / 

By the proof of [Sh400, 4.2] we get a contradiction. 

SubcaseIIIb. For every j < cf,~, there is C E ~ ,  M i n C  > j such that for C, bi,3, i 
defined for every i < t~ +. 

We shall now show 

| for every i( ,)  < cf)~ there is A' E A A pcf{A + : j  < cfA}\),i(,) such that 
Ens(), I, .V) (exemplified by linear order which has density character > X0 in 
every interval). 

Why | is sufficient." So we can for i < cfA, choose #*, A~ < #* = cf#* E 
pcf( .~+:j  < cf),}, as required in | As A # *  < )~ without loss of generality 

i 
(#*: i  < cf)~} is strictly increasing. Choose inductively on e < cf)~, i(e) < cfA 
strictly increasing such that #i(E) > max pcf{#~(r < e}. 

Let i(e) be defined iff e < e(,). So e(*) is limit, .~+ = maxpcf{#~(E):e < e(,)} 
and #~(E) > max pcf{#~( )'ff < e}, * is strictly increasing, and Ens(#~),  * #i(E))" So r �9 #~(E) 
applying [Sh355, 4.12] we finish. 

Why | holds: Choose C c_ (i(,), cf)~) of order type t~ such that max pcf{)~+ :i E 
C} < A (possible by our being in subcase IIIb). Let ~ =:  (~7+ :i C C}, let 
(b0[~]:0 E pcfO) be as in [Sh371, 2.6]. Let 0 be minimal such that opt(b0[0] ) is 
a. We can find B~ G C(e < t~) such that {~+:3, C BE} C_ be[0], op tB E = ~ and 
the BE's are pairwise disjoint. Clearly maxpcf{)~+ :i E BE} = 0 as {.~.~+ :i E BE} 
is C b0[O], but is not a subset of any finite union of b0,[c], 0 p < 0. Now letting 
a* = : ~ bj, there is (by [Sh371, 2.6]) a subset a of a* such that 0 = maxpcfa  

jEC 
but 0 ~ pcf(a*\a).  Now as 0 E pcf{)~ + :3, E BE}, ),+ E pcfb.~ we have (by [Sh345a, 
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o pc (&   ),,ence by ,,,e previous se,,ten e 0 

Let % = : a A  Y bj, A ~ = O, we can apply [Sh355, 4,12] and get that there is an 
jEBe 

entangled linear order of cardinality A ~ (which is more than required, see [Sh345b]); 
and, of course, A~(,) < A ~ E A A pcf{Aj : j  < cfA}. The assumptions of [Sh355, 
4.12] holds as the % are pairwise disjoint [by (i) above], 0 E pcf{A+~:i E B~}, 

pcf U bj = pcf(%) and [01 E a ~ maxpcf(a  n 01) < 0i] as 01 is (X0,~+,~0) - 
i@Be 

inaccessible and 0 = A' ~ sup{A+ :i E C} > Ai(,) > Xo. So | holds and we finish 
Subcase IIIb hence Case III. 

Case IV. cf A > n +4 and a ~ n (and not Case I). 
For each ~ < cfA of cofinality n +4 we can apply the previous cases (or the 

induction hypothesis on A) and get an entangled linear order of power A +. So | 
holds and we finish as in Subcase IIIb. [~4.1. 

4.2 Claim. Assume n +4 = 0 = cf0,  (Ai :i < O) is a strictly increasing sequence of 
re. u,ar car,*,a,s,O = 

/ 

1) I f  sup A i <- 2 ~ then there is an entangled linear order of cardinality A o. 
i<O 

2) Ens(A0, 2'~). 

Remark. Remember that if there is an entgangled linear order in A then Ens(A, A) (so 
[Sh345b, 7(5)]). 

Proof. Same proof as 4.1. 

4.3 Claim. Assume 
(i) A is regular, uncountable; 

(ii) n < A - + 2  ~ < 2 ~ ;  
(iii) for some regular X <= 2;~ there is no linear order of cardina~ity A with >= X 

Dedeking cuts or even no tree of cardinality A and >- X A-branches. 
Then (2 <;~ < 2 :~ and)for some p for every regular X in (2 <;~, 2 )'] (Or even (p, 2)']) 

there is an entgangled linear order of cardinality X and density #, # E (A, 2<a], 
c f #  = A, PPr(a)(#) = 2~, # is (A, A +, 2)-inaccessible (the linear order is (T, <z~), 
T C_ ~> 2 has <= p nodes and >= X A-branches). 

Proof. Note: 2 <)' < 2 x [if (30 < A)(2 o = 2 <a) by (ii), otherwise cf(2 <x) = A 
and by classical cardinal arithmetic, c f2  ~ > A, hence 2 <~ < 2a]. By [Sh355, 
Lemma5.11] if the conclusion fails then for every regular X in (2<~,2 :~] there 
is #, A = c f #  < # =< 2 <;~, PPr(u)(#) >- X. Choose a minimal # such that 

A < # < 2 <~, c f #  =< cfA and pp+(p) > X (note: # does not depend on X, by 
[Sh355, 2.3]). So necessarily p is (A, A +, 2)-inaccessible. Let X E (#, 2 ;~] be regular. 
As (2<;~) <;~ = 2 <x necessarily c f #  = A, so by [Sh371, 1.6(3)] there is a strictly 
increasing sequence (#~ :i < c f #  = A) of regular cardinals, A < #i < #, # = ~-~ #~, 

i 
and X = t c f (  1-I #JJtcbd~" As # is (A, A+, 2)-inaccessible without loss of generality 

\ <z ] 
#i > maxpcf{# j  : j  < i}. So by [Sh355, 4.12] we finish. 1~4. 3 

4.4 Conclusion. 1) For a class of cardinals IZ, there is an entangled linear order of 
cardinality p+. 
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2) Assume )~ is strong limit singular. Then for some successor cardinal in (~, 2x)] 
there is an entangled linear order. 

Proof. 1) By part (2). 
2) If ~x+4 < 2 x then apply Theorem4.1 (with ~, Rx+4 here standing for n, ), 

there) so there is an entangled linear order of cardinality i'Ix+4+t (-< 2x), which is as 
required. So assume 2 x _<_ Rx+4. We know that there is a linear order of cardinality 
2:' and density character A; hence by [BoSh210] there is an entangled linear order of 
cardinality cf(2x). But as 2 x =< l~x+4 necessarily cf(2 ;~) is a successor cardinal. 

5 prd: measuring ]-i f( i )  by a family F of ideals 
and family sequences (Bi:i < ir ]Bi[ < Izi 

In [Sh371, Sect. 4], and here in Sect. 1 we have dealt with generalizations of the 
measuring [ I  f ( i ) / I ,  i.e. whereas defining cov(),, )~, 0, ~r) we cover a set a E S<0()0 

i<e; 
by < cr subsets of cardinality < 3~; there we ask that t~ belongs to the closure to a 
normal ideal of J union the family of A C n for which we succeed to cover. Here we 
replace "normal" by an abstract property/7 (and phrase the required properties). We 
also generalize normality to ideals on ~", c :~ l  ~ n, a generalization used in [Sh420, 
Sect. 4; Sh430]. 

5.0 Context. 1) n is a regular uncountable cardinal, ~"  a set, c a function from ~"  
onto n, ~ = L-t({i}), I,  J vary on ideals on ~ ' ,  F a family of proper ideals on ~ ' .  

5.1 Definition. 1) F ~  . . . .  = {J :  J a o--complete ideal on ~@/} [if (~ ' ,  0 = (n, ida) 

this s is essentially F(n +, or)]. 
2) FN,,~ = s n~ = : { J : J  a normal ideal on ,~'} [normal - see 5.2(0) below]. If 

~ / =  n, L = id we write F n~ 

5.2 Definition. 0) An ideal I on ~ is normal if: for any club C of n, U ~ E I 

andforanysequence(Ai : i<n)  o f se t s f romI ,  V ~ A i = : { x E ~ ' : x E  U A j }  
belongs to I.  (So normal implies co-complete), j<~(x) 

1) We say F is ~r-complete if every J E F is ~r-complete. 
2) We say F is normal if every J E s is normal. 
3) We say F is restriction closed when: J E F,  A C_ n, A ~ 0 rood J implies 

there is I E s J 0 {n\A}  C_ I. 
4) We say /~ is closed if for every ~ c_ ~(~,~/), c l r ( ~ )  is well defined where 

c l c ( ~ )  is the minimal member of F U {~(n )}  which include it, i.e. (VI E F)  [ ~  C_ 
I r c l r ( ~  ) C_ []. 

Note: cl c for not necessarily closed F,  is a partial function. 
5) We say F has character =< # when: 6~(~) = c1s  where ~ C_ ~ ( ~ )  implies 

that for some ~ t  C_ 2;~ of cardinality <= #, we have ~ ( n )  = c l r ( ~ ) ,  
6) The character of _P is the minimal cardinal # such that F has character __< #. 

5.3. Definition. We say F is suitable if it is 0-suitable for every 0; F is O-suitable 
when: for every ideal J E s on 9 / ,  if: 

(i) T is a (non-empty) set of finite sequences of ordinals < 0 closed under initial 
segments; 

(ii) A n C ~r for ~? E T, A() = ~/ ;  
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(iii) for each ~7 r T of length n, 

.~(t~) = c l r ( J  U {t~\An~o, . . . ,  n\Anln} U {An^(~ ) :~/^(i} E T}) ;  

(iv) ~ / < ~ u ~ A  nC_A. ;  
(v) fv :A n ~ ord ; 

(vi) if r/^(r E T and y E An^(r ), fn(y) + 0 then fn(y) > f~(r  

then 2 ( ~ )  = c l r ( J  U {f~-l({0}):T/ E T}). 

5.3A Remark. 1) Clearly for 01 =_ 02, /~ 02-suitable implies F is 01-suitable. 
2) If 0 => 21~'1 its value is immaterial, so we can omit it. 

5.4 Claim. 1) Let ~ be regular uncountable. F W .. . .  is closed, restriction closed, of 
character ~r and is suitable. For ~ C_ ~(~') ,  

c l r~  . . . .  ( ~ ) = { Z : f ~ 1 7 6  A i E ~ f ~  }" 

2) / f 3  is a family of subsets of ~', F = F n~ then ~,~ 

( 

c l r ( ~ )  = ~ Z: Z C_ ~,~ and for some club C of e; and sequence 
k 

(Ai:i < ~) of member of ~ , we have." 

Z C _ { x E ~ / : L ( x )  E C a n d x E  U A j } .  
j<L(x) 

3) /-y,~ (remember ~ = cft~ > N0) is closed, restriction closed, suitable and of 
character t~. 

4) If  1 ~ is O-suitable and has character <= O then it is suitable (we shall use this 
freely). 

Proof. 1) Let us check suitability leaving the rest to the reader; so let J, 0, (An, fn :~] E 
T)  be as in Definition 5.3. If the required conclusion in Definition 5.3 fails then there 
is a c~-complete filter I on ~ containing J U {f~-l({0}):r/  E T}.  For each 77, by 
condition (iii), for some set w n of ordinals, Iwn] < cr and B n c J we have 

(*) f / =  B n U { ~ \ A ~ r o \ . . .  \Antlgn} U {An^(r ) :r E wn} 

(and r E w n ~ r/^(r E f ) .  

Let T* = :{r/ E T:I < lg(r/) ~ r/(l) E wnrz}, as a is regular uncountable, clearly 

IT*I < ~. Let 

B = : U { B y : f / E  T*}  U U { A ~ :  E T* and A v E I}  U U{f~- l ({0}) :~ /E  T * } .  

Now B is the union of < c~ members of I and I is ~r-complete, so B E I.  Choose 
y e 2 " \ e .  
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We now choose by induction on n, ~7~ such that: 

~Tn E T * ,  

lg(7/n) = n ,  

y E A w . 

For n = 0, ~0 = ( )  so y E ~ "  = A() .  For n + l , y  r A~F~,  7/n E T*,  and 

y ~ B hence y ~ Bvn, so by (*) there is ~ E wv, ~ such that y E Avn^(r so 

~n+l = :~/~^(~n} is as required. 
In the end for each n we have fvn(Y) > 0 as f~-nl({0}) C B,  (remember T]~ E T*)  

hence by condition (vi) from 5.3, (fw(y):n < w) is a strictly decreasing seduence 
of ordinals, contradiction. 

2) Left to the reader. 
3) Again we leave the proof of restriction closed and closed and having character 

t~ to the reader and prove suitability. The proof is similar but use diagonal union. So 
by part (2) and condition (iii) of  5.3 for each ~7 E T for some B~ r J and function 
h~ from t~ ordinals such that ~?^(h~(i)) E T for i < t% we have 

(*) ~/ = Bv u(~\Av;o\Zvrl\...\Avr,gv)u {xE ~@':x E U Av'(hv(i))} 
i<~(x) 

By renaming, without loss of  generality T C ~ > a  and each h v the identity function. 

Let I be the normal ideal on ~ generated by J U {f~-l({0}):~] E T},  so we 
assume I i s  a normal proper ideal and we shall get a contradiction. 

Now define 2 "  

~J* = {x E ~ ' :  (a) ~(x) a limit ordinal < ~,  

(b) if ~/E T N ~>L(X) then x ~ B v 
(c) if ~] E T n ~>c(x) and A v E I then x r  

Clearly 9J*  ~ ~ ,~modI ,  hence we can find x ( , )  E ~J*.  Now we choose by 
induction on n ~7 E ~> L(x(*)) as in the proof of  part (1) and get similar contradiction. 

4) Left to the reader. [75. a 

5.5 Definition. 1) For/2 = (# i : i  < ~), J an ideal on ~ "  and f:~@/---+ ord we define 

prd~(f ,p)  = Min{l~l:  ~ is a family of  sequences of  the form (B~ :x E ~() ,  

each B~ a set of  ordinals, B x of cardinality 

< #~(z) such that for every g E ~ o r d  satisfying 

g =< f ,  we have: 

= c l r [ J  u {(x  c e 

: x  E 
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2) If above J C_ I, I an ideal on t~ 

prd~j (f, /2) = Min{~: .9  is a family of sequence (B x :x E ~@') 

each Bx a set of ordinals of cardinality < #~(~) 

and for every g E Nord satisfying g < f,  

we have: 

I _ c l r ( J U  {{x E ~Z:g(x) ~ B~}: (B~:x  E X) E ~ } ) } .  

3) If p is constantly #, we may write # instead. We can use also # = (#~ : x E ~ ' ) ,  
(but usually do not) with the obvious meaning. 

5.6 Claim. 1 ) / f { x  C ~ : f (x )  < c~} ~ J we can in 5.5 demand g < j f ,  and if in 
addition A f (x )  :~ 0 we can demand g < f (without changing the values). 

X 

2) I f { x : f ( x )  >= #4~)} E J then prd~(f, fi) = 1. 

3) I fA#~  = #, c f#  > 1~], { x : f ( x )  > #} E J then prd~(f ,#)  =< cf#. 
i 

4) If f 1 <j  f2 or just {x. '[fl(x) [ > If2(x)[} E J then prd~(f l ,#  ) < prdjr(f2,/2) 
(and the other obvious monotonicity properties). 

5) / f# i  = #, c f#  > ]~[  we can in Definition 5.5 demand A B~ = Bofor [~ E 
(i.e. without changing the value), xEeM 

6) If F is or-complete and restriction closed, ~( * ) < ~r , ( A~ : ~ < ~( * ) ) is a partition 
of ~2" ( J, /2 as in 5.5) then 

Z F sup prdff+(~\A~)(f ,/2) <= prdjr(f,/2) _< prdj+(~\A~)(f ,/2). 

7) If F is normal and restriction closed, A~ C_ {x E ~ : t(x) > e} for e < t~, 
(A~ :~ < ~) a partition o f ~ ' \ t - l ( { 0 } ) t h e n  

supprd (~'\A~) = < prd (f,/2) =< prdj+(~\A~)(f,/2). 

8) prd~2~ = prcj(f,/2) if J E r2 ~ 
9) Assume F is normal,/2z = (#~ :i < e;) for I = 1, 2,/21 increasing continuous 

and for each i p~ C {Pl 1+ (#i) }" Then for (any J C F and f E Nord) we have 
1" -1 prdj ( f ,  p ) + t~ = prd~(f,/22). 
10) If/2 = (Pi :i < ~) is increasing continuous with limit #, and F is normal, 

J c F then prd~(/2,/2) < # and even prdr(/2,/2) = cf(p). 
la) If A - - . ,  c f .  < INI, c = then for any-a, prdfo}(a, fi ) = 

i<t~ 

cov(lal, +, 

Proof. E.g. 
6) The first inequality should be clear. Also the second: assume it fails, let A~ = 

prdj+(~\A~)(f,/2), ~ A~ < prdar(f, #), let . ~  exemplify the definition of of A~ 
e<e(*)  

and ~ be U ~ .  As 2 A~ < prd~(f,/2), ~ cannot exemplify ~ A~ > prd~(f, fi), 
e<e(*)  e e 
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so there is a function g E ~ord exemplifying this, so there is a proper ideal I C F 
extending 

JU{{x E ~:g(x) E B~}:(Bx:x E~<) E~}. 

As P is e-complete also I is a-complete so for some s < s(*) we have A~ ~ I; 
but F is restriction closed so there is 11 C F, I U {~'\A~} E [1. So 11 E 1" extend 

[J  U {f l \A~}]  U {{x E f J :g (x)  E Bx}: (Bx :x E ~ )  E ~ }  

contradicting the choice o f . ~ .  [35. 6 

5.7 Lemma. 1) Suppose 

(*) #i = P = cfp  > ]fJI, 1" is suitable, restriction closed, f E Word and J an 
ideal on n. 

Then: 

(| p + prdjr(f,/2) = # + sup ( tcf H Ix \ I :  I an ideal on ~z" in 1" 
l �9 e~" extending J, 

# < l~ = cfA x =< f (x)}  
/ 

2) If1" is normal,/2 = (Pi :i < n), #i = 0+, (0i :i < ~) is increasing continuous, 
O{ > ~, #~ > tfJ~], p = U p~, 1" suitable and restriction closed and f E ~'ord, J an 

i < n  

ideal on f f  then (•) above holds. 

Proof. Like the proof of 1.1. 

5.8 Conclusion. 1) Suppose p, #, J are as in 5.7, f E ~ord and {x : cf[f(x)] = 
f (x )  >= P~(x)} E J then 

P + prdjF(f, #) = # + sup{prdjr(g, #):g < j  f}  

+ sup{ tc f  I I f ( x ) \ I : J  C_ I E F (and the tcf well defined)}. 

2) If in addition G c_ {g:g c Nord, g < j  f}  is cofinal or at least :~(n) = 
c l r [ I  U {{i:h(i) < g(i)} :g E G}] for every h < j  f ,  ( and e.g. A f ( i )  >= O) then 

# + prdj~(f, #) = # + sup{prdjC(g,/2) :g E G} 

+ sup {tee I I  f ( x ) / i : JC_I61"} .  
xE~" 

S.9 Claim. Suppose #,/2, F, J are as in 5.7 ((1) or (2)), 9 : f J  ---+ card and f (x)  = 
g(x) + > + = #~(~). 

Then prddr(f,/2) =< [prdjF(g, p)]+ + #. 

Proof. Let ~ exemplify the value of prd~(9, p), say I:~] = X. So for every h < j  f ,  
clearly {x E ~':]h(x)] =< g(x)} = f J m o d J ,  hence there is ~h C 1~ h(x) 

xE~ 
exemplifying prdjr(h,/2) =< prd~(g, p) = X. Assume prdd(f,/2) > X + + #; by 5.7 
there is f ' : ~ /  ~ ord, each i f (x)  a regular cardinal =>#i, f '  =< f m o d I ,  I E 1" an 
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ideal extending J such that X + < tcf I-[ f ' (x) / I .  Let (he :ff < X') be <z-increasing 
xeff 

cofinal in I-I f ' (x) / I .  As in [Sh355, 1.5] without loss of generality for some ~(*) < 
xE~ 

tcf I~ f ' (x) /1 of cofinality X + we have: (he :~ < if(*)) has a <z-eub h' such that: 
x6~ 

for 5.7(1) {x E ~/ :  cf[f(x)] < #} E I and for 5.7(2) {x E ~@': cf[f(x)] </hCx)} E I; 
without loss of generality it is he(,) and A cf[hr = #~(~), and without loss 

xE~ 
of generality: ~ < if(*) ~ h~ < he(,). For each /) = (B~:x E ~ )  E ~hr 
define a function f9:ff~(x) = sup(hr O Bx). So fo  < he(,) hence for some 
~(/)) < ~(,) we have fB < f~(~)modI. Let U ~(/)) < ~ < ff(,)-possible as the 

B 
number o f / ) ' s  is =< I~hr --< ~ < ~§ = el(C(,)). So for B ~ ~h~(.~ we have 
{x E ~/ :f~(x)  E B~} E I. But f~ < fr so we get contradiction to the choice of 

5 . 1 0  D e f i n i t i o n .  L e t  1 - cfar((% :x E ~/)) be 

s u p ( t c f I I  A~/I: J C _ I E F a n d A ~ E a  x f o r x E ~ .  
xE~ ) 

5.11 Claim. fit = (#i :i < ~I is non-decreasing, I" is a suitable restriction close family 

of ideals on ~', J E F, f E Yord and A f(x) _-> #~(~) = cf~(x), 
xE~ 

1) / fA  _-< prddr(f,/2) is regular, then for some (a x .'x E f / )  we have: 
(i) a~ C_ Reg Mf(x)+\#~(~), 

(ii) U % < # if(*) of 5.7(1) [and [a[ ] < #~(~) when 5.7(2)'s assumptions 

hold. 
(iii) A = 1 - cfff((%:x E ~')) ,  

2) if A is inaccessible, F a-complete and [X < # ~ cov(x, X0, n, a) < A] then 
without loss of generality ~:U a~ < Xo. 

Proof. 1) Like the proof of 1.1. 
2) Straight. 

5.12 Claim. Assume the hypothesis of 5.7. 
If  g E ~ord, and each g(s) is an ordinal >>_ lh(x) and f(i) = Rg(~) and let 

A = prd~(g,/2) + U lal +~ + I~l  then prddF(g,/2) <_- R;,+. 
a < #  

Proof. Assume not, so prdff(f,/2) __> R~++~ hence by 5.7 there is I ~ F, J C I, 
and f* __< f such that: each f*(x) is a regular cardinal >--#~(x) and iq;~++l =< 
t c f (  I1 f*(x) / I~.  By [Sh355, 1.5] for each a < A + such that R~ >_ I~1 (e.g. 

\ xE~ ] 
a >_- A) there is fa <z f*,  f~ <-- f*, each f~(x) a regular cardinal >#~(z) and 
tcf ( rI = Clearly L let L = so 

\ xe~  ] 
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9~ <z g, 9~ =< 9. Let ~ exemplify prdff(9, #) = A, so for each c~ < A + for some 
[3 ~ E ~ ,  { y : f ~ ( y )  E { l~j : j  E By}} ~ I (and, by 5.6(9), and normality without 

loss of generality sup IB~I < ~<~ #0" By 3.3 we get contradiction. []5.12" 
y E ~  

6 The existence of strongly almost disjoint families 

See [Sh355, Sect. 0] on the history of the subject. 

6.1 Theorem. Assume J is an ideal on n, n not the union o f ~  o members of  J ,  # > ~<~ 
where 

| cr = n + o r a t l e a s t V A  E J + 3 B  E J+[B  C A&IBI < ~] 
and ~r = cf (7 > ~0" 

Then 
3 2 1 4 T](#) < T](#) < : Tj(~) T3(~) = 

where 

TJ(#)  = T j ( # )  = sup{lFl: F is a family of  functions from n 
to # such that for  f :~g from F 
we have f ~ : j g }  

2 TJ(#)  = sup{A: there are n i < c~ for  i < ~ and regular 
Ai, l > n <~ for  i < n, 1 < n i such that: A~,l <-- # 
and A <__ maxpcf{A<z :i < e;, 1 < n~}; moreover i f  A E J+ 
(= ~ ( n ) \ J )  then A <= maxpcf{A<l :i E A, l < ni} }. 

T3(#)  is defined similarly but for  A E J+ we demand." 

A = maxpcf{l<t :i E A,  1 < h i } .  

4 { } T~](#) Min sup 2 = T j + ( n \ d n ) ( l ) .  A n C_ A n +  1 C_ n = U An,  A~ (~ J . 
n n < w  

6.1A Remark. 1) Note that usually the four terms in the conclusion of the theorem 
are equal. 

(a) If J is ~l-complete then T2(#) = T4(p) hence all are equal. 
(~) All terms are equal i f  for  (A n : n < aJ) such that A n c n, A n ~ J ,  A n c An+l, 

e~ = U An we have: for some n and B C_ A n we have (n, J), (B, J n ~ ( B ) )  are 
n 

isomorphic. 
2) The suprimum in the definition of TJ(#) is always obtained. 
[Why? If F1 ,F  2 are as there, F 1 maximal IFll < IF2I then for every f E F 2 there 

is 9f  E F,  etc.] 

Proof. T](p) = T](#). �9 
Trivially T3(#)  < Tj2(#); for the other direction let I appear in the sup defining 

T](#),  as exemplified by (< l< t : /  < n{ > :i < n); as maxpcf{A{,z:i E A,  1 < n{} 
is always regular, without loss of generality A is regular. 

By [Sh355, Sect. 1]; more elaborately, for some a C_ a* = :{l i , t : l  < n i , i  < e;} 

we have [a =~ 0 ~ I = maxpcf(a)] and I ~ pcf[a*\a] and a 4: a* ~ A < 
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maxpcf(a*\a). Define A~, z to be Ai, l if A~, z E a*. If a 4 a* let u* = {(i,I):A~, t E 
a*\a)}, J = {u c_ u*:maxpcf{A(~,t):(i,l ) c u} < A}. By [Sh355, 1.5] we 

can find regular A~, z < Ai, z for (i,I) E u* such that A = tcf 11 X~,jJ.  Now 
_ 73(#). (~,z)~* (A~j: /< hi, i < t~) exemplifies A < 

T~(#) =< TJ(#). Very easy; of course, instead F _c ~# we can have F C ~Y as long 

as IYI < #. For A, (< Ai,z:l < n i > :i < @ as in the definition of TJ(#), let 
a = {Ai,l:i < ~;,l < hi} and (f~:c~ < A) be a sequence of members of ]1 a which 
is <j<x~,~-increasing and cofinal. Now let A = ~o>(# + l) and for each a < A we 
define 9~ E ~Y as follows: 

9~(i) = :(Ai,z:I < ni)^(f,~(Ai,t):l < ni). 

We leave the checking to the reader. We now turn to the main case. 

T}(#) =< Td(/z). Let A be the right side expression -T}(#)  (so clearly A >= #), 

X =: ~3(A) + and for ff <= co + 1 let: M [  ~ (H(x), E, <*), ]]M[ 11 = A, A + 1 C_ M~, 
< ~ =< co + 1 ~ M [  E M[ .  Suppose F c_ ~# exemplify T}(#)I > A and we 

shall get a contradiction, without loss of generality F E M0*. Clearly for every 
f E '~# we have: {g E F :  ~9 =~e f}  has cardinality __< n <~ (remember | hence 
necessarily there is f* E F such that for every g c ~# n M*+~ (e.g. g E F n M*+~) 
we have f* =~j g- Moreover if A c_ t~, A ~ J, B _C #, IBI < ~<~ then 
{f  E F:{c~ E A : f ( a )  E B} r J} has cardinality __<~<~ (again, remember | 
so if in addition A , B  ~ M [  then [f  c F&{c~ C A:f (c0  E B} ~ J ~  f E M[].  

We define by induction on k < co, N~, N b, a k, fk such that: 
M~ -~ M~, N b -~ (H(x), ~, <~); 
No b is the Skolem Hull of {f*} U {i:i  < ~;<"} in (H(x), C, <*); 

N~ is the Skolem Hull of {i:i  <= ~<~} [in (H(x), E, <~), equivalently in 

(a) 

(b) 

(c) 

M0*] 
(d) Nb+l is the Skolem Hull of N b U {fn(O):O E an}; 
(e) N~+ 1 is the Skolem Hull of N~ U {f~(O):O E an}; 
(f) a n = N~ N A + N Reg\(n<~)+; 
(g) f~  c [ I  % and for each 0 E a n, fn(O) > sup(0 n Nb); 
(h) if b c as, maxpcfb <_- A and I bl < c~ then 

fn  F b E {Max{f~'z,~z F b : / <  n}: n < co, c~ l < max pcf b and A 1 E pcf a n 

and c 1 E {bo[a7%] :O E pcfa~}} 

where b ~-+ (f]  :a  < maxpcfb} for b c_ a n is a definable function (in (H(x) , E, <*), 
(f~ :ct < maxpcfb) as in [Sh371, Sect. 1]. 

By 2.2A (i.e. [Sh371, Sect. 1]) there is no problem do to it, N~ ~ N~, N~ -4 M0*, 
N~ -< N~+ 1, N b -< Nb+l and (as in [Shd00, 3.3A, 5.1A]) we get UN~ = U Nb, 

7% 7% 

hence Rang f* C_ U N~ a. Now for each i < t~ let rn(i) = min{rn:f*(i)  C N a } ,  
r t < c o  

_ _ 71/[ e ( i ) ' y ( i )  and we can find finite r C U a z,y(i) c n < ~ + 1  such that f*(i)  E.~.rn(i) 
l < r n ( i )  
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where for any e c_ U ak and y C_ t~ <~ + 1 (we define by induction of/) :  
k 

M~ '~ is the Skolem Hull of y in (H(x) , C<~),  

M{~_~ = Skolem Hull of M~ U { f~ (0 ) : r e  = 1 and 0 E e M Mz~}. 

I * ] and Clearly: e _C Uctm&r C Mr*& maxpcfe =< A&l < w ~ M~ 'y C Ml+ 1 , 

[r C 0 & y C_ z ~ M{ 'y C_ M~ 'z] and Mz e'y _C Nz ~. 
Let A~ - {i < g:m(i)  __< n}. Clearly A~ C_ A~+I, ~ = [.J A~, but g is not the 

n ~ w  

union of R 0 members of J ,  so for some n(*) < w, [n __> n( , )  ~ A n ~ J]. It suffices 
to prove: 

(,) i f m ( * ) < w ,  AC_e~, /~ m ( i ) < r e ( * ) , A ~ J t h e n m a x p c f  U e ( i ) > A  
l E A  i E A  

= 2 [as this means n(*) < n < w ~ Tj+(~\A~)(#) > A, hence (A~(,)+z:l < w) and 

(r < ~) exemplified T4(#) > A contradiction]. 
We can replace A by any subset which is not in J. 
By the assumption | without loss of generality I AI < a, and suppose A contradicts 

(*). Let e* = ~ e(i), y* = U y(i). As a is infinite, clearly le*l < a, lY*I < a, 
i E A  i c A  

A IIM~*,W II < ~ (remember o- > No)" 
n 

NM ,v C Prove by induction 1 [suffice for l __< m(*)] that e* NM(,U* E Mz~ 1, y* e* * 
e* * r * r y* Mi+ I ,andM~ ,v C_M~+] v . F o r l = O t h i s h o l d s a s M o  *'y* -<N~, ]]M 0 ' II < a ,  

and r M M~* = r M N~ is a subset of N~ of cardinality < a ,  N~ E M*, 

]IN, l] <~' = ]]N~]] _-< ~<*. Similarly for y*. For l + 1, as we know M[  ,v E Mz~_ 1 
e* y* and f l  I(r  ' ) C Ml* 1 by (h) asmaxpcfe*  < Aby an assumption hence 

e* * ~/ fe*,y* * ,y i~<a ' i~<o- -~l+1 E Mi+ a. As IIM/+ a II = le*l < a, and + 1 C_ M0* necessarily 

e* v* * e* V* M* Rang(f* ~ A) c e* v* M* e* N M]+ i E MI+ 2. So M~(,) E m(*)+l so M~(,) E m(*)+l' 
SO by the choice of f* ,  A E I. 

Proof of 6.1a(1). T4(#) <= TI(F). Let A~ C_ t~, A~ C_ A~+I, ~ = U A~, A~ ~ J, 
n<co 

and T2+(~\A~)(#) >= A. For each n, by earlier parts of the proof, there is F,~ C ~p 

such that IF~I ~ A and [f + g E F~ ~ f:=J+(~\An)'g]" 
Let F~ = {f,~:a < a,~}, a~ ~ A exemplify this. Now define f~ E ~# for a < A 

as follows: for ff < ~c let n(~) = Min{n:~ E A~} and f~(r = wf~(r + n(r 

D6.1 

6.2 Conclusion. Suppose cf~ > ~0, ~ > a => ~0 and I = 5~<,,(t~), # > t~ ~. Then 
T](#) is T~(#) hence is TI(#). 

Proof. Apply 6.1 (a + here corresponds to a there), more exactly by 6.1(A)(2). 

6.3 Remark. Asking on almost disjoint sets is an inessential change. 
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