Notre Dame Journal of Formal Logic Volume 29, Number 1, Winter 1988

Some Notes on Iterated Forcing With $2^{\aleph_0} > \aleph_2$

SAHARON SHELAH*

Introduction By Solovay and Tenenbaum ([7]) and Martin and Solovay ([3]) we can iterate c.c.c. forcing with finite support. There have been many works on iterating more general kinds of forcings adding reals (e.g., [4]), getting generalizations of MA, and so on, but we were usually restricted to $2^{\aleph_0} = \aleph_2$. Note only this is a defect per se, but there are statements that we think are independent but which follow from $2^{\aleph_0} \le \aleph_2$.

Some time ago Groszek and Jech (in [2]) got $2^{\aleph_0} > \aleph_2 + MA$ for a family of forcing wider than c.c.c. but for \aleph_1 dense sets only.

In Section 1 we generalize RCS iteration to κ -RS iteration.

In Section 2 we combine from [4], X, XII (i.e., RS iteration and some properness and semicompleteness) with Gitik's definition of order ([1]). (He uses Easton support, each Q ({2}, κ_i) -complete where for important i, $\kappa_i = i$. His main aim was properties of the club filter on inaccessible: precipitousness and approximation to saturation.)

In Section 3 we get MA-like consequences (strongest-from supercompact). In Section 4 we get that, e.g., for Sacks forcing (though not included), and in the models we naturally get, for every \aleph_1 dense subset there is a directed set intersecting all of them.

In Section 5 we solve the second Abraham problem.

The main result was announced (somewhat inaccurately) in [6].

1 On κ -revised support iteration We redo [4], Ch. X, Section 1, with " $< \kappa$ " instead countable.

Remarks 1.0:

(1) Now if $P_1 = P_0 * Q_0$, q_1 a P_1 -name, $G_0 \subseteq P_0$ generic over V, then in $V[G_0]$, q_1 can be naturally interpreted as a Q_0 -name, called q_1/G_0 ,

^{*}The author would like to thank the NSF for partially supporting this research.

- which has a P_0 -name q_1/Q_0 , or q_1/P_0 ; but usually we do not care to make those fine distinctions.
- (2) Using $\bar{Q} = \langle P_i, Q_i : i < \alpha \rangle$, P_{α} will mean RLim \bar{Q} (see Definition 1.2).
- (3) If D is a filter on a set J, $D \in V$, $V \subseteq V^{\dagger}$ (e.g., $V^{\dagger} = V[G]$) then in an abuse of notation, D will denote also the filter it generates (on J) in V^{\dagger} .
- (4) D_{κ} is the closed unbounded filter on κ .

Definition 1.1 We define the following notions by *simultaneous induction* on α :

- (A) $\bar{Q} = \langle P_i, Q_i : i < \alpha \rangle$ is a κ -RS iteration (RS stands for revised support)
- (B) a \overline{Q} -named ordinal (or $[j, \alpha)$ -ordinal)
- (C) a \overline{Q} -named atomic condition (or $[j, \alpha)$ -condition), and we define $q \upharpoonright \xi$, $q \upharpoonright \{\xi\}$ for a \overline{Q} -named atomic $[j, \alpha)$ -condition q and ordinal ξ .
- (D) the κ -RS limit of \bar{Q} , $R \operatorname{Lim}_{\kappa} \bar{Q}$ which satisfies $P_i < \tilde{R} \operatorname{Lim}_{\kappa} \bar{Q}$ for every $i < \kappa$ and we define $p \upharpoonright \beta$ for $p \in R \operatorname{Lim}_{\kappa} \bar{Q}$, $\beta < \alpha$. (We may omit κ .)
- (A) We define " \bar{Q} is a κ -RS iteration"
 - $\alpha = 0$: no condition.
 - α is limit: $\overline{Q} = \langle P_i, Q_i : i < \alpha \rangle$ is a κ-RS iteration iff for every $\beta < \alpha$, $\overline{Q} \upharpoonright \beta$ is one.
 - $\alpha = \beta + 1$: \bar{Q} is an RCS iteration iff $\bar{Q} \upharpoonright \beta$ is one, $P_{\beta} = R \operatorname{Lim}_{\kappa}(\bar{Q} \upharpoonright \beta)$, and Q_{β} is a P_{β} -name of a forcing notion.
- (B) We define: ζ is a \overline{Q} -named $[j,\beta)$ -ordinal above r. It means $r \in \bigcup P_i$ (where $\gamma = \min\{\beta, l(\overline{Q})\}$) and ζ is a function such that:
 - (1) Dom (ζ) is a subset of $\bigcup \{P_i: i < \gamma\}$
 - (2) for every $q \in \text{Dom}(\zeta)$ for some i, $\{q,r\} \subseteq P_i$ and $P_i \models r \leq q$.
 - (3) for every $q_1, q_2 \in Dom(\zeta)$, if for some $i < \alpha \{q_1, q_2\} \subseteq P_i$ and in P_i they are compatible then $\zeta(q_1) = \zeta(q_2)$.
 - (4) if $q \in \text{Dom}(\zeta)$, $q \in \bigcup_{i < \alpha} P_i$ and $i = \tilde{i}(q)$ is the minimal i such that $q \in P_i$ then $\zeta(q)$ is an ordinal $\geq i, j$ but $<\gamma, \beta$.

We define " ζ is a \overline{Q} -named ordinal above r" as " ζ is a \overline{Q} -named [0, $l(\overline{Q})$) ordinal above r". We omit "above r" when $r = \emptyset$ (i.e., we omit demand (2)).

- (C) We say "q is a \bar{Q} -named atomic $[j, \alpha)$ -condition above r" if
 - (1) q is a pair of functions (ζ_q, cnd_q) with a common domain $D = D_q$:
 - (2) $c\vec{n}d_q$ satisfies (1) and (3) above and:
 - (3) ξ_q is a $(\bar{Q} \upharpoonright \alpha)$ named $[j, \alpha)$ ordinal above r
 - (4) For $p \in D_q$, $cnd_q(p)$ is a $P_{\underline{\zeta}_q(p)}$ -name of a member of $Q_{\underline{\zeta}_q(p)}$. We omit " $[j,\alpha)$ -" when j=0, $\alpha=\ell(\overline{Q})$ and we omit "above r" when $r=\emptyset$. If $\ell(\overline{Q})>\alpha$ we mean $\overline{Q}\upharpoonright\alpha$. We define $q\upharpoonright\xi$ as $(\underline{\zeta}_q\upharpoonright D_1,\ cnd_q\upharpoonright D_1)$ where $D_1=\{p\in D_q\colon \underline{\zeta}_q(p)<\xi\}$. We define $q\upharpoonright\{\xi\}$ as $(\underline{\zeta}_q\upharpoonright D_2,\ cnd_q\upharpoonright D_2)$ where $D_2=\{p\in D_q\colon \underline{\zeta}_q(p)=\xi\}$.
- (D) We define $R \operatorname{Lim}_{\kappa} \overline{Q}$ as follows: if $\alpha = 0$: $R \operatorname{Lim}_{\kappa} \overline{Q}$ is trivial forcing with just one condition, \emptyset .

if $\alpha > 0$: we call q an atomic condition of $R \operatorname{Lim}_{\kappa} \overline{Q}$, if it is a \overline{Q} -named atomic condition.

The set of conditions in $R \operatorname{Lim}_{\kappa} \overline{Q}$ is

 $\{p: p \text{ a set of } \lambda \text{ atomic conditions for some } \lambda < \kappa; \text{ and for every } \beta < \alpha, \ p \upharpoonright \beta =^{dsf} \{r \upharpoonright \beta: \ r \in p\} \in P_{\beta}, \text{ and } p \upharpoonright \beta \Vdash_{P_{\beta}} \text{ "the set } \{r \upharpoonright \{\beta\}: \ r \in p\} \text{ has an upper bound in } Q_{\beta}"\}.$

We define $p \upharpoonright \beta = \{r \upharpoonright \beta : r \in p\}$.

The order is inclusion.

Now we have to show $P_{\beta} < R \operatorname{Lim}_{\kappa} \overline{Q}$ (for $\beta < \alpha$). Note that any \overline{Q} -named $[j,\beta)$ -ordinal (or condition) is a \overline{Q} -named $[j,\alpha)$ -ordinal (or condition), and see Claim 1.4(1) below.

Remark 1.1A: Note that for the sake of 1.5(3) we allow κ to be not a cardinal and then we really use $|\kappa|^+$.

Remark 1.1B: We can obviously define \bar{Q} -named sets; but for conditions (and ordinals for them) we want to avoid the vicious circle of using names which are interpreted only after forcing with them below.

Definition 1.2

- (1) Suppose \overline{Q} is a κ -RS iteration, ζ is a \overline{Q} -named $[j, \alpha)$ -ordinal above r, $\beta \leq \alpha$, $r \in G \in \text{Gen}(\overline{Q})$ (see Definition (3) below). We define $\zeta[G]$ by:
 - (i) $\zeta[G] = i$ if for some $\gamma \le \beta > \alpha$ and $p \in Dom(\zeta) \cap G_{\gamma}$ we have $\zeta(p) = i$.
 - (ii) otherwise (i.e., $G \cap D_{\zeta} = \phi$ or $r \notin G$) $\zeta[G]$ is not defined.

For a \overline{Q} -named $[j, \alpha)$ -condition above r, q, we defined q[G] similarly.

- (2) We denote the set of $G \subseteq \bigcup_{i < \alpha} P_{i+1}$ such that $G \cap P_{i+1}$ is generic over V for each $i < \alpha$ by $Gen(\bar{Q})$.
- (3) For ζ a \overline{Q} -named $[j,\alpha)$ -ordinal (above r) and $q \in \bigcup_{\alpha} P_i$ let $q \Vdash_{\overline{Q}}$ " $\zeta = \xi$ " if for every $G \in \text{Gen}(\overline{Q})$ such that $r \in G$: $q \in G \Rightarrow \zeta[G] = \xi$.

Remark 1.3: From where is G taken in (2), (3)? e.g., V is a countable model of set theory, G taken from the "true" universe.

Now we point out some properties of κ -RS iteration.

Claim 1.4: Let $\bar{Q} = \langle P_i Q_i : i < \alpha \rangle$ be a κ -RS iteration, $P_{\alpha} = R \lim_{\kappa} \bar{Q}$.

- (1) If $\beta < \alpha$ then: $\tilde{P}_{\beta} \subseteq P_{\alpha}$; for $p_1, p_2 \in P_{\beta}$, $P_{\beta} \models p_1 \leq p_2$ iff $P_{\alpha} \models p_1 \leq p_2$: and $P_{\beta} < P_{\alpha}$. Moreover, if $q \in P_{\beta}$, $p \in P_{\alpha}$, then q, p are compatible iff $q, p \upharpoonright \beta$ are compatible.
- (2) If ζ is a \overline{Q} -named $[j,\alpha)$ -ordinal $G, G' \in \text{Gen}(\overline{Q})$ $G \cap P_{\xi} = G' \cap P_{\xi}$ and $\zeta[G] = \xi$ then $\zeta[G'] = \xi$; hence we write $\zeta[G \cap P_{\xi}] = \xi$.
- (3) If β, γ are \overline{Q} -named $[j, l(\overline{Q}))$ -ordinals, then $\max\{\beta, \widetilde{\gamma}\}$ (defined naturally) is a \overline{Q} -named $[j, l(\overline{Q}))$ -ordinal.
- (4) If $\alpha = \beta_0 + 1$, in Definition 1.1(D), in defining the set of elements of P_{α} we can restrict ourselves to $\beta = \beta_0$. Also in such a case, $P_{\alpha} = \beta_0$

SAHARON SHELAH

- $P_{\beta_0}*Q_{\beta_0}$ (essentially). More exactly, $\{p \cup \{q\}: p \in P_{\beta_0}, q \text{ a } P_{\beta_0}\text{-name}\}$ of a member of Q_{β_0} is a dense subset of P_{α} , and the order $p_1 \cup$ $\{q_1\} \le p_2 \cup \{q_2\}$ iff $p_1 \le p_2$, $p_2 \Vdash q_1 \le q_2$ is equivalent to that of P_{α} ; i.e., we get the same Boolean algebra.
- (5) The following set is dense in P_{α} : $\{p \in P_{\alpha}; \text{ for every } \beta < \alpha, \text{ if } r_1, r_2 \in A\}$ p, then $\Vdash_{P_{\beta}}$ "if $r_1 \upharpoonright \{\beta\} \neq \emptyset$, $r_2 \upharpoonright \{\beta\} \neq \emptyset$ then they are equal"}. (6) $|P_{\alpha} \leq (\Sigma_{i < \alpha} 2^{P_i})^{\kappa}$, for limit α .
- (7) If $\|P_i\||Q_i| \leq \lambda$, α a cardinal, then $|P_{i+1}| \leq 2^{|P_i|} + \lambda$ (assuming, e.g., that the set of elements of G is λ).

Proof: By induction on α .

Lemma 1.5 The Iteration Lemma

- (1) Suppose F is a function, then for every ordinal α there is one and only one κ -RS-iteration $\overline{Q} = \langle P_i, Q_i : i < \alpha^{\dagger} \rangle$, such that:
 - (a) for every i, $Q_i = F(Q \mid i)$,
 - (b) $\alpha^{\dagger} \leq \alpha$,
 - (c) either $\alpha^{\dagger} = \alpha$ or $F(\bar{Q})$ is not an $(R \operatorname{Lim}_{\kappa} \bar{Q})$ -name of a forcing notion.
- (2) Suppose \bar{Q} is a κ -RS-iteration, $\alpha = l(\bar{Q})$, $\beta < \alpha$, $G_{\beta} \subseteq P_{\beta}$ is generic over V. Then in $V[G_{\beta}]$, $\bar{Q}/G_{\beta} = \langle P_i/G_{\beta}, \tilde{Q}_i : \beta \leq i < \kappa \rangle$ is a κ -RS-iteration and $R \text{Lim}_{\kappa}$ $\tilde{Q} = P_{\beta} * (R \text{Lim } \bar{Q}/G_{\beta}) \text{ (essentially)}.$
- (3) The Associative Law: If $\alpha_{\xi}(\xi \leq \xi(0))$ is increasing and continuous, $\alpha_0 = 0$; $\bar{Q} = \langle P_i, \tilde{Q}_i : i < \alpha_{\xi(0)} \rangle$ is a κ -RS-iteration, $P_{\xi(0)} = R \operatorname{Lim}_{\kappa} \bar{Q}$; then so are $\langle P_{\alpha(\xi)}, q_{\alpha(\xi)} \rangle$ $P_{\alpha(\xi+1)}/P_{\alpha(\xi)}$: $\xi < \xi(0)$ and $\langle P_i/P_{\alpha(\xi)}, Q_i : \alpha(\xi) \le i < \alpha(\xi+1) \rangle$; and vice versa.

Remark 1.5A: In (3) we can use α_{ξ} 's which are names.

Proof: (1) Easy.

- (2) Pedantically, we should formalize the assertion as follows:
- There is a function F (= a definable class) such that for every κ -RS-iteration \bar{Q} and $l(\bar{Q}) = \alpha$, and $\beta < \alpha$, $F_0(\bar{Q}, \beta)$ is a P_{β} -name of \bar{Q}^{\dagger} such that:

 - (a) $\Vdash_{P_{\beta}}$ " \bar{Q}^{\dagger} is a κ -RS-iteration of length $\alpha \beta$ ". (b) $P_{\beta} * (\bar{R} \text{Lim}_{\kappa} \bar{Q}^{\dagger})$ is equivalent to $P_{\alpha} = R \text{Lim}_{\kappa} \bar{Q}$, by $F_{1}(\bar{Q}, \beta)$ (i.e., $F_1(\bar{q},\beta)$ is an isomorphism between the corresponding completions to Boolean algebras)
 - (c) if $\beta \leq \gamma \leq \alpha \Vdash_{P_{\beta}} "F_0(\bar{Q} \upharpoonright \gamma, \beta) = F(\bar{Q}, \beta) \upharpoonright (\gamma \beta)"$ and $F_1(\bar{Q}, \beta)$ extends $F_1(\bar{Q} \upharpoonright \gamma, \beta)$ and $F_1(\bar{Q} \upharpoonright \gamma, \beta)$ transfer the P_{γ} -name Q_{γ} to a P_{β} -name of a $(R \operatorname{Lim}_{\kappa}(\bar{Q}^{\dagger} \upharpoonright (\gamma - \beta)))$ -name of $Q_{\gamma-\beta}^{\dagger}$ (where $Q_{\gamma-\beta}^{\dagger} =$ $\langle Q_{\beta+i}^{\dagger}: i < \gamma - \beta \rangle$).

The proof is the induction on α , and there are no special problems.

(3) Again, pedantically the formulation is

 $R \operatorname{Lim}_{\kappa} \bar{Q}^{\dagger}$.

(**) For \bar{Q} is an RCS-iteration, $l(\bar{Q}) = \alpha_{\xi(0)}$, $\bar{\alpha} = \langle \alpha_{\xi} : \xi \leq \xi(0) \rangle$ increasing continuous, $F_3(\bar{Q}, \bar{\alpha})$ is a κ -RS-iteration \bar{Q}^{\dagger} of length $\alpha_{\xi(0)}$ such that (a) $F_4(\bar{Q}, \bar{\alpha})$ is an equivalence of the forcing notions $R \operatorname{Lim}_{\kappa} \bar{Q}$.

(b) $F_3(\bar{Q} \upharpoonright \alpha_{\xi}, \alpha \upharpoonright (\zeta + 1)) = F_3(\bar{Q}), \bar{\alpha}) \upharpoonright \zeta$

(c) Q_{ξ}^{\dagger} is the image by $F_4(\bar{Q} \upharpoonright \alpha_{\xi}, \bar{\alpha} \upharpoonright (\xi + 1))$ of the $P_{\alpha_{\xi}} = R \operatorname{Lim}_{\kappa}(\bar{Q} \upharpoonright \alpha_{\xi})$ -name $F_0(\bar{Q} \upharpoonright \alpha_{\xi+1}, \alpha_{\xi})$.

The proof again poses no special problems.

Claim 1.6: Suppose we add in Definition 1.1(B) also:

(5) if α is inaccessible, and for some $\beta < \alpha$ for every γ satisfying $\beta \le \gamma < \alpha$, $\|P_{\beta}\| |P_{\gamma}/P_{\beta}| < \alpha$ " then $(\exists \beta < \alpha)$ [Dom $\zeta \subseteq P_{\beta}$].

Then nothing changes in the above (only we have to prove everything by simultaneous induction on α), and if λ is an inaccessible cardinal $> \alpha$ and $|P_i| < \lambda$ for every $i < \lambda$ and $\bar{Q} = \langle P_i, Q_i : i < \lambda \rangle$ is a κ -RS iteration, then

- (1) every \bar{Q} -named ordinal is in fact a $(\bar{Q} \upharpoonright i)$ -named ordinal for some $i < \alpha$,
- (2) like (1) for \bar{Q} -named conditions.
- $(3) P_{\kappa} = \bigcup_{i < \kappa} P_i.$
- (4) if κ is a Mahlo cardinal then P_{λ} satisfies the λ -c.c. (in a strong way).

2 The k-finitary revised support We deal with forcing notions Q satisfying:

Definition 2.1 Let γ be an ordinal, $S \subseteq \{2\} \cup \{\lambda : \lambda \text{ a regular cardinal}\}$. Now Q satisfies $(S, \gamma) - Pr_1$ if

- (i) $Q = (|Q|, \le, \le_0)$
- (ii) as a forcing $Q = (|Q|, \leq)$
- (iii) \leq_0 is a partial order
- (iv) $[p \le_0 q \Rightarrow p \le q]$
- (v) for every cardinal $\kappa \in S$ and Q-name τ , such that \Vdash_Q " $\tau \in \kappa$ " and $p \in Q$ for some $q \in Q$, $l \in \kappa$, $p \leq_0 q$ and $q \Vdash_Q$ "if $\kappa = 2$, $\tau = l$ and if $\kappa \geq \aleph_0$, $\tau \leq l$ "
- (vi) for each $q \in Q$ in the following game player I has a winning strategy: for $i < \gamma$ player I chooses $p_{2i} \in Q$ such that $q \le_0 p_{2i}$: $\land \bigwedge_{i < 2i} p_j \le_0$

 p_{2i} and then player II chooses $p_{2i+1} \in Q$, $p_{2i} \le_0 p_{2i+1}$. Player I loses if he has sometimes no legal move which can occur in limit stages only.

Let $(S, \gamma) - Pr_1^-$ means $(\{\kappa\}, \gamma) - Pr_1$ for every $\kappa \in S$.

Fact 2.2:

- (1) If $\kappa < \gamma_1, \gamma_2 < \kappa^+$ then $(S, \gamma_1) Pr_1$ is equivalent to $(S, \gamma_2) Pr_1$.
- (2) If $\kappa + 1 \leq \gamma < \kappa^+$ and \square_{κ} (i.e., there is a sequence $\langle C_{\delta} : \delta < \kappa^+ \rangle$, $C_{\delta} \subseteq \delta$ closed unbounded) $[\delta_1 \in C_{\delta}, \delta_1 = \sup \delta_1 \cap C_{\delta} \to C_{\delta_1} = C_{\delta} \cap \delta_1]$ and Q satisfies $(S, \gamma) Pr_1$ then Q satisfies $(S, \kappa^+) Pr_1$.
- (3) If Q satisfies $(S, \gamma) Pr_1$, $\lambda \le \gamma$, and $\lambda \in S$ then in V^Q λ is still a regular cardinal and when $\lambda = 2$, Q does not add bounded subsets to γ .

(4) If Q satisfies $(S, \gamma) - Pr_1, \lambda \in S$, λ regular, and for every regular μ , $\gamma \leq \mu < \lambda \Rightarrow \Vdash_Q "\mu$ is not regular" (e.g., $[\gamma, \lambda)$ contains no regular cardinal) then λ is regular in V^Q .

Proof: Straightforward.

Definition 2.3 $(S, <\kappa) - Pr_1$, will mean $(S, \gamma) - Pr_1$ for every $\gamma < \kappa$. Fact 2.4: The following three conditions on forcing notion Q, a set $S \subseteq \{2\} \cup \{\lambda: \lambda \text{ a regular cardinal}\}$ and regular ordinal κ are equivalent:

- (a) there is $Q' = (Q', \le, \le_0)$ such that (Q', \le) , (Q, \le) are equivalent and Q' satisfies $(S, \kappa) Pr_1$.
- (b) for each $p \in Q$, in the following game (which last κ moves) player II has a winning strategy:

in the ith move player I chooses $\lambda_i \in S$ and a Q-name τ_i of an ordinal $< \lambda_i$ then player II chooses an ordinal $\alpha_i < \lambda_i$.

In the end player II wins if for every $\alpha < \kappa$ there is $p_{\alpha} \in Q$, $p \le p_{\alpha}$ such that for every $i < \alpha$ $p_{\alpha} \Vdash$ "either $\lambda_1 = 2_i$, $\tau_i = \alpha_i$ or $\lambda_i \ge \aleph_0$ $\tau_i < \alpha_i$ ".

(c) like (a) but moreover (Q, \leq_0) is κ -complete.

Proof: (c) \Rightarrow (a): trivial.

Proof: (a) \Rightarrow (b): Choose $q \in Q'$ which is above p. We describe a winning strategy for player II: he plays on the side a play (for q) of the game from 2.1 (vi) where he uses a winning strategy (whose existence in guaranteed by (a)). In step i of the play (for 4.2(b)) he already has the initial segment $\langle p_j : j < 2i \rangle$ of the play for 2.1(vi). If player II plays λ_i , χ_i in the actual game, he plays $p_{2i} \in Q'$ in the simulated play by the winning strategy of player I there and then he chooses p_{2i+1} , $p_{2i} \leq_0 p_{2i+1} \in Q'$, which forced the required α_i (exists by 2.1(v)) and then plays α_i in the actual play.

Proof: (b) \Rightarrow (c): Find winning strategy for player II in the game from 2.9(b). We define $Q': Q' = \{(p, \langle \lambda_i, \tau_i, \alpha_i : i < \xi \rangle) : p \in Q, \text{ and } \langle \lambda_i, \tau_i, \alpha_i : i < \alpha \rangle \text{ is an initial segment of a play of the game from 2.4(b) for <math>p$ in which II uses his winning strategy.

The order \leq_0 is:

$$(p, \langle \lambda_i, \tau_i, \alpha_i : i < \xi \rangle) \leq_0 (p', \langle \lambda_i', \tau_i', \alpha_i' : i < \xi' \rangle)$$

iff (both are in Q') and

$$Q \models p = p', \xi \le \xi', \text{ and for } i < \xi$$

 $\lambda_i = \lambda_i', \tau_i = \tau_i', \alpha_i = \alpha_i'$

and the order \leq on Q' is

$$(p, \langle \lambda_i, \tau_i, \alpha_i : i < \xi \rangle) \leq (p', \langle \lambda_i', \tau_i', \alpha_i' : i < \xi' \rangle)$$

iff (both are in Q' and) $Q \models p \le p'$. Moreover, $p' \Vdash_Q \text{``} \lambda_i = 2$, $\tau_i = \alpha_i \text{ or } \lambda_i \ge \Re_0$, $\tau_i < \alpha_i$ " for $i < \xi$.

The checking is easy.

Definition 2.5

- (1) Let $Gen(\bar{Q}) = \begin{cases} G: G \subseteq \bigcup_{i \in I} P_i \text{ is directed, } G \cap P_i \text{ generic over } V \end{cases}$ for $i < \alpha$. Let $\text{Gen}^r(\bar{Q}) = \left\{ G : \text{ for some (set) forcing notion } P^*, \right.$ $\bigwedge_{i < \alpha} P_i < P^* \text{ and } G^* \subseteq P^* \text{ generic over } V \text{ and } G = G^* \cap \bigcup_{i < \alpha} P_i \right\}.$ (2) If $\bar{Q} = \langle P_i : i < \alpha \rangle$ or $\bar{Q} = \langle P_i, Q_i : i < \alpha \rangle P_i$ is <-increasing we define
- a \overline{Q} -name τ almost as we define $\left(\bigcup_{i<\alpha}P_i\right)$ -names, but we do not use maximal antichains of $\bigcup_{i<\alpha}P_i$, $G\subseteq\bigcup_{i<\alpha}P_i$:
- (*) τ is a function, $Dom(\tau) \subseteq \bigcup P_i$ and every directed $G \in Gen^r(\bar{Q})$, $\tau[G]$ is defined iff $\operatorname{Dom}(\tau) \cap G \neq \emptyset$ and then $\tau[G] \in V[G]$ [where "every $G \dots$ is taken? e.g., V is countable, G any set from the true universel and τ is definable with parameters from V (so τ is really a first-order formula with the variable G and parameters from V).
 - (3) For $p \in \overline{Q}$ (i.e., $p \in \bigcup_{i < \alpha} P_i$), \overline{Q} -names $\tau_0, \dots, \tau_{n-1}$, and (first-order) formula ψ let $p \Vdash_{\overline{Q}} \psi(\tau_0, \dots, \tau_{n-1})$ means that for every directed $G \in \overline{Q}$ Gen^r(\bar{G}), with $p \in G$, $V[G] \models \psi(\tau_0[G], \ldots, \tau_{n-1}[G])$.
 - (4) A \overline{Q} -named $[j,\beta)$ -ordinal ξ is a \overline{Q} -name ξ such that if $\xi[G] = \xi$ then $j \le \xi < \beta$ and $(\exists p \in G \cap \tilde{P}_{\xi \cap \alpha}) p \Vdash_{\bar{Q}} \text{ "} \zeta = \xi$ " (where $\alpha = l(\bar{Q})$). If we omit " $[j, \beta)$ " we mean $[0, l(\bar{Q}))$.

Remark 2.5A: We can restrict in the definition of $Gen^r(\bar{Q})$ to P^* in some class K, and get a K-variant of our notions.

Fact 2.6:

- (1) For \bar{Q} as above and \bar{Q} -named $[j,\beta)$ -ordinal ζ and $p \in \bigcup P_i$ there are ξ , q and q_1 such that $p \leq q$, $q \Vdash_{\bar{Q}} "q_1 \in Q"$, $q_1 \in P_{\xi}$, $\xi < \alpha$, and $q_1 \Vdash_{\bar{Q}} "\zeta = \xi"$ or $q \Vdash_{\bar{Q}}$, " ζ is not defined". (2) For \bar{Q} as above, and ζ, ξ \bar{Q} -named $[j, \beta)$ -ordinals, also $\min\{\zeta, \xi\}$,
- $\max\{\zeta,\xi\}$ (naturally defined) are \bar{Q} -named $[j,\beta)$ -ordinals.
- (3) For \overline{Q} as above and \overline{Q} -named ordinals ξ_1, \ldots, ξ_n and $p \in \bigcup P_i$ there are $\zeta < \alpha$ and $q_0 \in P_{\zeta}$, $p \le q$, $q \Vdash_{\bar{Q}}$ " $\zeta = \text{Max}\{\xi_1, \dots, \xi_n\}$ ". Similarly for Min.

We define and prove by induction on α the following simul-**Definition 2.7** taneously:

- (A) $Q = \langle P_i, Q_i : i < \alpha \rangle$ is a κ -Sp₂-iteration.
- (B) A \overline{Q} -named atomic condition q (or $[j,\beta)$ -condition, $\beta \leq \alpha$) and we define $q \upharpoonright \xi$, $q \upharpoonright \{\xi\}$ for a \overline{Q} -named atomic condition q and ordinal $\xi < \alpha$ (or \overline{Q} -named ordinal ξ).
- (C) If q is a \overline{Q} -named $[j,\beta)$ -atomic condition, $\xi < \alpha$, then $q \upharpoonright \xi$ is a $(\overline{Q} \upharpoonright \xi)$ -named [j, Min[β , ξ])-condition and $q \upharpoonright \{\xi\}$ is a P_{ξ} -name of a member of Q_{ξ} or undefined (and then it is assigned the value \emptyset , the minimal member of Q_{ξ} similarly for ξ).

- (D) The κSp_2 -limit of \bar{Q} , Sp_2 -Lim, \bar{Q} , and $p \upharpoonright \xi$ for $p \in Sp_2$ -Lim, \bar{Q} , ξ an ordinal $\leq \alpha$ (or \bar{Q} -named ordinal).
- (E) $P_{\beta} < Sp_2 \operatorname{Lim}_{\kappa} \overline{Q}$ (if $\overline{Q} = \langle P_i, Q_i : i < \alpha \rangle$ is a κSp_2 -iteration, $\beta < \alpha$, P_i , Q satisfying (i)-(iv) of Definition 1.2). In fact $P_{\beta} \subseteq$ Sp_2 -Lim_{κ} \bar{Q} (as models with two partial orders, even compatibility is preserved) and $q \in P_{\beta}$, $p \in Sp_2 \operatorname{Lim}_{\kappa} \overline{Q}$ are compatible iff $q, p \upharpoonright \beta$ are in P_{β} .

Proof:

- (A) $\bar{Q} = \langle P_i, Q_i : i < \alpha \rangle$ is a κ -Sp₂-iteration if $\bar{Q} \upharpoonright \beta$ is a κ -Sp₂-iteration for $\beta < \alpha$, and if $\alpha = \tilde{\beta} + 1$ then $P_{\beta} = Sp_2 \operatorname{Lim}_{\alpha}(\bar{Q} \upharpoonright \beta)$ and Q_{β} is a P_{β} -name of a forcing notion as in Definition 2.1(i)-(iv).
- (B) We say q is a \overline{Q} -named atomic $[j,\beta)$ -condition when: q is a \overline{Q} -name, and for some $\zeta = \zeta_q$ a \bar{Q} -named $[j,\beta)$ -ordinal $\Vdash_{\bar{Q}}$ " ζ has a value iff q has, and if they have then $\tilde{\xi} < \text{Min}(\beta, l(\bar{Q})), g \in Q_{\xi}$. Now $\tilde{g} \upharpoonright \xi$ will have a value iff ξ_q has a value $\langle \xi \rangle$ and then its value is the value of q. Lastly, $q \upharpoonright \{\xi\}$ will have a value iff ξ_q has value ξ and then its value is the value of q (similarly for ξ).
 - (C) Left to the reader.
 - (D) We are defining $Sp_2 \operatorname{Lim}_{\kappa} \overline{Q}$. It is a triple $P_{\alpha} = (|P_{\alpha}|, \leq, \leq_0)$ where
 - (a) $|P_{\alpha}| = \{\{q_i: i < i(*)\}; i(*) < \kappa, \text{ each } q_i \text{ is a } \overline{Q}\text{-named atomic con-}\}$ dition, and for every $\xi < \alpha$, $\Vdash_{P_{\xi}}$ " $\{q_i^e \upharpoonright [\xi]: i < i^*\}$ has an \leq_0 upper bound in Q_{ξ} "}.
 - (b) $P_{\alpha} \models p_1 \leq_0 p_2$ iff for every $\zeta < \alpha \Vdash_{P_{\zeta}} \{q_i^l \upharpoonright \{\zeta\}: i < i^l(*)\}$ are equal for l = 1, 2 or for some $i < i^2(*)$ for every $j_1 < i^1(*) \models$ $q_{\gamma_1}^1 Q_{\zeta} \models q_{j_1} \le_0 q_i^2 \text{ where } p_i = \{q_i^! : i < i^l(*)\}\$ (c) $P_{\alpha} \models p^1 \le p^2 \text{ iff:}$
 - - (i) for every $\zeta < \alpha$ $(p^2 \upharpoonright \zeta) \Vdash_{P_{\zeta}} p^1 \upharpoonright \{\zeta\}, p^2 \upharpoonright \{\zeta\}$ are equal as subsets of Q_{ζ} (remember (F)) or for some $i < i^2(*)$ for every $j < i^{1}(*) \Vdash_{P_{\xi}} Q_{\xi} \models q_{j}^{1} \le q_{i}^{2}$ where $p^{l} = \{q_{i}^{l}: i < i^{l}(*)\}$
 - (ii) for some $n < \omega$ and \overline{Q} -named ordinals ξ_1, \ldots, ξ_n for each $\zeta < \infty$ $l(\bar{Q}): p_2 \upharpoonright \Vdash_{\bar{Q}}$ "if $\zeta \notin \{\xi_1, \ldots, \xi_n\}$ then for some $r \in p_2$, $\zeta_r[Q] = \zeta$ and for every $s \in p_1 [\zeta_r = \zeta \Rightarrow s \leq_0 r]$ ". We then say: $p_1 \le p_2$ over $\{\xi_1, ..., \xi_n\}$.

Remark: We could use names for n too, but as it is finite this is not necessary.

Now for $\xi \leq \alpha$, and $p \in Sp_2 \operatorname{Lim}_{\kappa} \overline{Q}$, let us define

$$p \upharpoonright \xi = \{r \upharpoonright \xi \colon r \in p\}$$
$$p \upharpoonright \{\xi\} = \{r \upharpoonright \{\xi\} \colon r \in p\}.$$

Proof of (E): Let us check Definition 2.1 for $P_{\alpha} =_{df} Sp_2 \operatorname{Lim}_{\kappa} \overline{Q}$:

 $\leq^{P_{\alpha}}$ is a partial order: Suppose $p_0 \leq p_1 \leq p_2$. Let $n^l, \, \xi_0^l, \ldots, \xi_n^l$ appear in the definition of $p_l \le p_{l+1}$. Let $n = n^0 + n^1$, and

$$\zeta_{\ell} = \begin{cases}
\xi_{l}^{0} & \text{if } l < n^{0} \\
\xi_{l-n^{0}}^{1} & \text{if } l \ge n^{0}.
\end{cases}$$

Now $\Vdash_{\bar{Q}} p_l \upharpoonright \{\zeta_\ell\} \le p_{l+1} \upharpoonright \{\zeta_\ell\}$, "hence $\Vdash_{\bar{Q}} p_0 \upharpoonright \{\zeta_\ell\} \le p_2 \upharpoonright \{\zeta_\ell\}$ ".

Also $\Vdash_{\bar{Q}}$ "if $\zeta \notin \{\zeta_0, \dots, \zeta_{n+1}\}$ then $p_0 \upharpoonright \{\zeta\} \leq_0 p_1 \upharpoonright \{\zeta\} \leq_0 p_2 \upharpoonright \{\zeta\}$ ". So we finish.

 \leq_0 is a partial order: As in I.

 $p \leq_0 q \Rightarrow p \leq q$: By the definition; easy.

So in Definition 2.1, (i), (ii), (iii), and (iv) hold. We leave the checking of the rest to the reader.

Remark 2.8: This is a combination of [4], X with the recent Gitik ([2]) (which uses Easton support, each Q is ({2}, κ_i)-complete, where for the important i's $\kappa_i = i$: as his aim was mainly cardinals which remain inaccessible).

Lemma 2.9 Suppose γ is an ordinal and $\bar{Q} = \langle P_i, Q_i : i < \alpha \rangle$ is a κ -Sp₂-iteration.

- (1) if $p \le q$ in $P_{\alpha} = Sp_2 \operatorname{Lim}_{\kappa} \overline{Q}$ then for some n ordinals $\xi_1 < \ldots, < \xi_n, r \in P_{\alpha}, q \le r$, and $p \le r$ above $\{\xi_1, \ldots, \xi_n\}$.
- (2) If γ is successor cardinal (or not a cardinal) then the parallel of 1.4, 1.5, 1.6 holds.
- (3) If κ is inaccessible but \Vdash_{P_i} " κ is a regular cardinal" for each $i < \alpha$ then the parallel of 1.4, 1.5, 1.6 holds.

Proof: Left to the reader.

Lemma 2.10 Suppose $\overline{Q} = \langle P_i, Q_i : i < \alpha \rangle$ is a κ -Sp₂-iteration, $\kappa > \aleph_0$ a regular cardinal, $S \subseteq \{2\} \cup \{\mu : \aleph_0 \le \mu \le \kappa, \mu \text{ regular}\}$ and each Q_i (in V^{P_i}), has $(S, < \kappa) - Pr_1$, then:

- (1) $P_{\alpha} = Sp_2$ -Lim_{κ} \bar{Q} has $(S, < \kappa) Pr_1$, and if each Q_{α} has $(S, \kappa) Pr_1$ then P_{α} has it.
- (2) If $\kappa \in S$ and $cf(\alpha) = \kappa$ then $\bigcup_{i < \alpha} P_i$ is dense in P_{α} .
- (3) If $\kappa \in S$, α strongly inaccessible, $\alpha > |P_i| + \kappa$ for $i < \alpha$ then P_{α} satisfies the α -chain condition (in a strong sense).
- (4) If each Q_i has a power of $\leq \chi$, then P_{α} has a dense subset of power $\leq (|\alpha| + \chi)^{\leq \chi}$.
- (5) If $|Q_i| \le \chi$, $\chi^{<\chi} = \chi$, $l(\bar{Q}) = \chi^+$ then \bar{Q} satisfies the χ^+ -c.c.
- (6) If $S = \{\kappa\}$, (1) works even for $(S, \kappa) Pr$ which is defined as the game definition of semiproperness; i.e., using Fact 2.4(b) with winning means:

$$\bigwedge_{\alpha} (\exists p_{\alpha}) p_{\alpha} \Vdash \mathop{\operatorname{Sup}}_{i < \alpha} \tau_i \leq \mathop{\operatorname{Sup}}_{i < \alpha} \alpha_i$$

Proof:

(1) Let us check Definition 2.1. Now (i)-(iv) hold by 2.7.

For (v) let $\mu \in S$, \Vdash_{P_n} " $\tau < \mu$ ", $p \in P_\alpha$. For simplicity $\mu \neq 2$. We define by induction on p_n , $p = p^0$, $p^n \leq_0 p^{n+1}$. For each n let $\{\xi_i^n : i < \gamma_n < \kappa\}$ be the domain of p^n (i.e., $\{\zeta_r : r \in p^n\}$) and define by induction on $i < \gamma_n p_i^n$, $p_0^n = p_n$. p_i^n is \leq_0 -increasing (in i).

If p_i^n is defined let (writing a little inaccurately) $G \subseteq P_{\xi_i^n+1}$ be generic over V. In V[G] if there are $\alpha_i^n < \mu$, $r \in P_{\alpha}$, $r \upharpoonright (\xi_i^n + 1) \in G$, $p_i^n \leq_0 r$, such that $r \Vdash_{P_{\alpha}/G} "\tau \leq \alpha_i^n "$, let $r_i^n[G]$ be like that; otherwise, let $r_i^n = p_i^n$. So r_i^n , α_i^n are $P_{\xi_i^n+1}$ -names. Now in $V[G \cap P_{\xi_i^n}]$, $Q_{\xi_i^n}$ is a forcing notion, α_i^n a name of

Sh:250

an ordinal $<\mu$; hence there are $\beta_i^n < \mu$, q_i^n , $p_i^n \upharpoonright \{\xi_i^n\} \le_0 q_i^n \in Q_{\xi_i^n}$, $V[G \cap$ $P_{\xi_i^n}$] \models " $q_i^n \Vdash_{Q_{\xi_i^n}}$ " $\alpha_i^n \leq \beta_i^n$ ". So β_i^n is a $P_{\xi_i^n}$ -name, \tilde{q}_i^n a \bar{Q} -named atomic condition. Now define p_{i+1}^n as $p_{i+1}^n = p_i^n \cup r_i^n \upharpoonright [\xi_i^n + 1, \alpha) \cup \{q_i^n\}$.

We have an obvious flaw – why is there a limit for $p_i^n(i < \delta)$? (or $p^n(n < \delta)$) ω)). For this, use (v) of Definition 2.1, i.e., increase p_{i+1}^n albeit according to the winning strategy. Now p_{n+1} will be $_0 \ge p_{\gamma_n}^n$ according to the strategy too. So there is p^* , $p^n \le _0 p^*$ for each n. Dom $p^* = \bigcup$ Dom p_n . We claim

that for some $\alpha < \mu$, $p^* \Vdash_{P_{\alpha}} "\tau \le \alpha$ ". If not, let $q \in P_{\alpha}, q \ge p^*$, and $\beta < \mu$ be such that $q \Vdash_{P_{\alpha}} "\tau = \beta$ ". So by 2.9(3) w.l.o.g. $q \ge p^*$ above some $\{\xi_0, \ldots, q \ge p^* \}$ ξ_{n-1} , $\xi_0 < \ldots < \xi_{n-1}$. Choose such number n, and ordinals $\xi_l(l < n)$ with minimal ξ_{n-1} (or n=0 is best of all). If n>0, w.l.o.g. for some $m<\omega q \upharpoonright \xi_{n-1}$ $\Vdash_{P_{\xi_{n-1}}}$ " $\xi_n \in \text{Dom } p^m$ " and we get contr. to the choice of p^{m+1}

- (vi) is left to the reader.
- (2), (3) are left to the reader.
- (4), (5) Like [4], Ch. III x.x, use only names which are hereditarily $\langle \kappa \rangle$

We define Sp_3 iteration \bar{Q} and Sp_3 Lim, \bar{Q} like κ - SP_2 with **Definition 2.10** only one change: instead $p \in P_i$ being of cardinality $\langle \kappa, w \rangle$ require:

for every $p \in P_{\alpha}$, $\lambda \leq l(\bar{Q})$ which is strongly inaccessible, and $(\forall i < 1)$ κ) $||P_i| < \lambda$] $\Vdash_{\bar{Q}} \upharpoonright \lambda$ "the domain of $p \upharpoonright \lambda$ is bounded below λ ". Hence, for each $\lambda \bigcup_{i \leq \lambda} P_i$ is dense in P_{λ} .

Claim 2.11: The parallel of Definition 2.10 holds.

We can get from the lemma of preservation of forcing with $(S, \gamma) - Pr_1$ by κ -Sp₂ iteration (and on the λ -c.c. for then) Martin-like axioms. We list below some variations.

Notation 3.1: Reasonable choices for S are

- (1) $S_{\kappa}^{0} = UR \ Car_{\leq \kappa} = \{\mu : \mu \text{ a regular cardinal, } \aleph_{0} < \mu \leq \kappa\}$
- (2) $S_{\kappa}^{1} = RCar_{\leq \kappa} = \{\mu : \mu \text{ a regular cardinal, } \aleph_{0} \leq \mu \leq \kappa\}$
- (3) $S_{\kappa}^2 = \{2\} \cup Car_{\leq \kappa}$
- (4) If we write " $< \kappa$ " instead $\le \kappa$ (and $S_{<\kappa}^l$ instead S_{κ}^l) the meaning should be clear.

Fact 3.2: Suppose the forcing notion P satisfies $(S, \gamma) - Pr_1$

- (1) If $2 \in S$ then P does not add any bounded subset of γ .
- (2) If μ is regular, and $\lambda_i (i < \mu)$ are regular, and $\{\mu\} \cup \{\lambda_i : i < \mu\} \subseteq S$, D is a uniform ultrafilter on μ , $\theta = cf\left(\prod_{i < \mu} \lambda_i / D\right)$ (λ_i -as an ordered set) then P satisfies $(S \cup \{\theta\}, \gamma') - Pr_1$ whenever $\mu \gamma' \le \mu$. (We can do this for all such θ s simultaneously.)
- (3) If $\lambda \in S$ is regular, $\mu < \gamma$ then for every $f: \mu \to \lambda$ from V^P for some $g: \mu \to \lambda$ from V for every $\alpha < \mu$, $f(\alpha) < g(\alpha)$.
- Claim 3.3: Suppose $MA_{<\kappa}$ holds (i.e., for every P satisfying the \aleph_1 -c.c. and

dense $D_i \subseteq P$ (for $i < \alpha < \kappa$) there is a directed $G \subseteq Q$, $\bigwedge_{i < \kappa} G \cap D_i \neq \emptyset$). Then the following forcing notions have expansions (by \leq_0) having the (*U RCar*, κ) $-Pr_1^0$.

- (1) Silver forcing: $\{(w, A): w \subseteq \omega \text{ finite, } A \subseteq \omega \text{ infinite}\}\$ $(w_1, A_1) \leq (w_2, A_2) \text{ iff } w_1 \subseteq w_2 \subseteq w_1 \cup A_1, A_2 \subseteq A_1.$
- (2) The forcing from [5], Section 2 (changed suitably).

Proof: (1) Let P' be the set of (w, A, B) satisfying: $w \subseteq \omega$ finite, $B \subseteq \omega$ infinite, $B \subseteq A \subseteq \omega$, with the order

$$(w_1, A_1B_1) \le (w_2, A_2, B_2)$$
 iff $(w_1, A_1) \le (w_2, A_2)$
and $B_2 \subseteq^* B_1$ (i.e., $B_2 - B_1$ finite)
$$(w_1, A_1, B_1) \le_0 (w_2, A_2, B_2)$$
 if $w_1 = w_2$
$$A_1 = A_2$$
$$B_2 \subseteq * B_1.$$

Let us check Definition 2.1: (i)-(iv) easy.

Note that $\{(w, A, A): (w, A, A) \in P\}$ is dense in P.

- (iv) Let $\mu > \aleph_0$ be a regular cardinal, τ a P'-name, \Vdash_P " $\tau < \mu$. Let p = (w, A, B) be given. Choose by induction on $i < \omega, n_i, A_i$ such that
 - (a) $A_0 = B(\subseteq A)$
 - (b) $n_i = \text{Min } A_i$
 - (c) $A_{i+1} \subseteq A_i \{n_i\}$
 - (d) for every $u \subseteq \{0, 1, 2, ..., n_i\}$ for some $\alpha_{i, u} < \mu$, (u, A_{i+1}, A_{i+1}) $\Vdash_{P'}$ " $\tau = \alpha_{i+1}$ " or for no $B \subseteq \omega$ and $\alpha < \mu(u, B, B) \Vdash$ " $\tau = \alpha_{i, u}$ ". There is no problem to do this, now $q = d_f(w, A, \{n_i : i < \omega\})$

satisfies:

- (e) $p \le q \in P'$ and even $p \le_0 q$.
- (f) $q \Vdash_{P'} " " \tau \in \{\alpha_{i,u} : i < \omega, u \subseteq \{0, 1, 2, \dots, n_i\}\}.$

So q is as required.

- (v): Suppose $p_i(i < \gamma)$ is \leq_0 -increasing so $p_i = (w, A, B_i)$ $B_i \subseteq A$, B_i is *-decreasing. It is well known that for $\gamma < \kappa$, $MA_{<\kappa}$ implies the existence of an infinite $B \subseteq \omega$, $(\forall i < \gamma)$ $B \subseteq *B_i$.
- Claim 3.4: The following forcing notions have the $(URCar, \kappa) Pr_1$:
 - (1) \aleph_1 -c.c.
 - (2) κ -complete
 - (3) $\{f: f \text{ a function from } A \text{ to } \{0, 1\}, A \subseteq \omega, A = \phi \text{ mod } D\}$ where D is a filter on ω , containing the co-finite sets, such that if $A_i \in D$ for $i < i^* < \kappa$ then for some $B \in D \bigwedge_{i < i^*} B \subseteq *A_i$

Discussion 3.5: Let $\kappa < \lambda$, λ regular. Each of the following gives rise naturally to a generalized MA, stronger as λ is demanded to be a larger cardinal (so if λ is supercompact we get parallels to PFA).

Case I: We use \bar{Q} of length λ , a κ -SP₂ iteration, \Vdash_{P_i} " $|Q_i| < \lambda$ ", each Q_i having $(S_{\kappa}^l, \kappa) - Pr_1^-$.

Now $P_{\lambda} = \kappa - SP_2 \operatorname{Lim}_{\kappa} \overline{Q}$ have the $(S_{\kappa}^{l}, \kappa) - Pr_1$ by 2.10, so all regular $\mu \leq \kappa$ remain regular and usually every $\lambda' \in (\kappa, \lambda)$ is collapsed. But λ is not collapsed if it is strongly inaccessible (by 2.10(3)) and also if $(\forall \chi < \lambda)(\chi^{<\kappa} < \lambda)$ (by 2.10(5)). If $2 \in S_{\kappa}^{Q}$, no bounded subset of κ is added.

Case II: Like Case I with $(\kappa + 1) - Sp_2$ iteration $Sp_2 \operatorname{Lim}_{\kappa+1}$ and every $\lambda' \in (\kappa, \lambda)$ is collapsed. Here we need λ to be strongly inaccessible.

Case III: \bar{Q} is Sp_3 -iteration, has length κ , $|Q_i| < \kappa$ for $i < \kappa$, κ is strongly inaccessible, and Q_i have $(S, \gamma_i) - Pr_1^-$.

By 2.11 $P_{\kappa} = Sp_3$ Lim \overline{Q} has the κ -c.c. (and $|P_i| < \kappa$ of course). Let $S = \{\mu < \kappa; \mu \text{ regular and for some } i, \Vdash_{P_i} \text{"} \mu \text{ is regular and } \mu \in S_j, \mu \le \gamma_j, \text{ for } j > i\}$ then $\Vdash_{P_{\infty}}$.

Fact 3.6: Suppose λ is strongly inaccessible, limit of measurables, $\lambda > \kappa$, κ regular. Then for some λ -cc forcing P not adding bounded subsets of κ , $|P| = \lambda$, and $\|\cdot\|_P$ " $2^{\kappa} = \lambda = \kappa^+$, and for every $A \subseteq \kappa$ there is a countable subset of λ not in L(A).

Proof: We use κ -SP₂-iteration $\langle P_i, Q_i : i < \lambda \rangle$, $|P_i| < \lambda$. For i even: let κ_i be the first measurable $> |P_i|$, (but necessarily $< \lambda$) and τ . Then Q_i is Prikry forcing on κ_i and Q_{i+1} is Levi collapse of κ_i^+ to κ .

4

Lemma 4.1 Suppose

- (i) R is an \aleph_1 -complete forcing notion.
- (ii) For $r \in R$, $\bar{Q}^r = \langle P_i^r : i \leq \alpha_{\alpha}^r \rangle$, P_i^r is $\langle \circ \rangle$ -increasing in i and if $i \leq \alpha^r$ has cofinality ω_1 , then every countable subset of $V^{P_k^r}$ belongs to $V^{P_k^l}$ for some $i < \alpha$.
- (iii) If $r^1 \le r^2$ then $\bar{Q}^{r^1} \le \bar{Q}^{r^2}$.
- (iv) If $r \in R$ and Q is a $P_{\alpha_r}^r$ -name of a forcing notion, then for some $r^1 \ge r$

 $P_{\alpha_{\mu}+1}^{r_1} = P_{\alpha_{\mu}}^{r_*} Q$ or $\Vdash_{P_{\alpha_{M}}^{r_1}} Q$ does not satisfy the c.c.c.

(v) If $r^{\zeta}(\zeta < \delta)$ is increasing, $\delta \leq \omega_1$, then for some r

$$\bigwedge_{\zeta<\delta}r^{\zeta}\leq r \ and \ \alpha_r=\bigcup_{\zeta<\delta}\alpha_{r^{\zeta}}.$$

Let $P[G_R]$ be $\bigcup \{P_i^r : r \in G_R, i \le \alpha_r\}$, so it is an R-name of a forcing notion. Then $\Vdash_R [\Vdash_{P[G_R]}]$ "for any \aleph_1 dense subsets of Sacks forcing, there is a directed subset of Sacks forcing not disjoint to any of them"].

Remark: $Q_{Sacks} = \{\tau \colon \tau \subseteq^{\omega} \geq 2 \text{ is closed under initial segments nonempty and } (\forall \eta \in \tau)(\exists v)(\eta < v \land v \land \langle 0 \rangle \in T \land v \land \langle 1 \rangle \in T) \text{ and } \tau_i \leq \tau_2 \text{ if } \tau_2 \subseteq \tau_1.$

Proof: Let Q_i be $R^*P[Q_R]$ -name of dense subset of $Q_{Sacks}^{R^*P[Q_R]}$ for $i < \omega_1$ (Q_{Sacks}^V is Sacks forcing in the universe V).

For a subset E of Sacks forcing let var(E) be $\{(n, T): T \in E, n < \omega\}$ ordered by $(n_1T_1) \le (n_2, T_2)$ iff $n_1 \le n_2$, $T_2 \subseteq T_1$, and $T_1 \cap^{n_1 \ge 2} = T_2 \cap^{n_1 \ge 2}$. We now define by induction on $\zeta \le \omega_1$, $r(\zeta)$, and D_{ζ} such that:

- (a) $r(\zeta) \in R$ is increasing, $\alpha_{r(\zeta)}$ -increasing continuous.
- (b) D_{ζ} is a $P_{\alpha_r(\zeta+1)}^{r(\zeta+1)}$ -name of a countable subset of Q_{Sacks} .
- (c) If $T \in D_{\zeta}$, $\eta \in T$ then $T_{[\eta]} =_{df} \{v : \eta \cap v \in T\}$ belongs to D_{ζ} . (d) If $T_1, T_2 \in D_{\zeta}$ then $\{\langle \rangle, \langle 0 \rangle \cap \eta : \eta \in T_1\}$, $\{\langle \rangle, \langle 1 \rangle \cap \eta : \eta \in T_2\}$ and their union belongs to D_{ζ} .
- (e) Let $\xi < \zeta$, then for $T_1 \in D_{\xi}$ there is $T_2 \in D_{\zeta}$, $T_1 \ge T_2$ and for $T_2 \in D_{\zeta}$ there is $T_1 \in D_{\xi}$, $T_1 \ge T_2$.
- (f) If $T \in D_{\zeta+1}$ then for some *n* for every $\eta \in {}^{n}2 \cap T$, $T_{(\eta)} =_{df} \{v \in T: dg \in T\}$ $v \le \eta$ or $\eta \le v$ } belongs to \mathcal{D}_{ζ} .
- (g) Suppose ζ is limit, then $P_{\alpha_r(\zeta)+1}^{r(\zeta+1)} = P_{\alpha_r(\zeta)}^{r(\zeta)} * T_{\zeta}$, T_{ζ} is $\left[\operatorname{var} \bigcup_{\xi < \zeta} p_{\xi} \right]$ if $\zeta < \zeta$ ω_1 and T_{ζ} is $\left[\operatorname{var} \bigcup_{\xi < \zeta} D_{\xi} \right]^{\omega}$ if $\zeta = \omega_1$ (the ω -th power, with finite sup-

Next the generic subset of T_{ζ} gives a sequence of length ω of Sacks conditions closing the set of those conditions by (c) + (d) we get D_{ζ} . We have to prove that T_{ζ} satisfies the \aleph_1 -c.c. in $V^{R^*P_{\alpha_{r(\zeta)}}}$: When $\zeta < \omega_1$ this is trivial (as T_{ζ} is countable). Let $\zeta = \omega_1$. It suffices to prove that $\left[\operatorname{var} \bigcup_{\xi < \zeta} D_{\xi} \right]^n$ satisfies the \aleph_1 -c.c.where $n < \omega$. So let I be a $R * P_{\alpha_{r(\zeta)}}^{r(\zeta)}$ name of a dense subset of $\left[\operatorname{var}\bigcup_{\xi<\zeta}D_{\xi}\right]^{n}. \text{ We can find a } \xi<\zeta, \text{ cf } \xi=\aleph_{0} \text{ such that } I_{\xi}=\{x:x\in V^{R*P_{\alpha_{r}(\zeta)}^{r(\zeta)}} \text{ and every } p\in R*P_{\alpha_{r}(\zeta)}^{r(\zeta)}/R*P_{\alpha_{r}(\zeta)}^{r(\zeta)} \text{ force } x \text{ to be in } I\} \text{ is predense in } \left[\operatorname{var}\bigcup_{\gamma<\xi}D_{\gamma}\right]^{n}$ (exists by (e)). Check the rest.

Remark: This argument works for many other forcing notions like Laver.

5

Let S be a subset of $\{2\} \cup \{\lambda : \lambda \text{ is regular cardinal}\}$, D a filter on a cardinal λ (or any other set). For any ordinal γ , we define a game $Gm^*(S, \gamma, D)$. It lasts γ moves. In the *i*-th move player I choose a cardinal $\lambda \in$ S and function F_i from λ to λ_i and then player II chooses $\alpha_i < \lambda_i$.

Player II wins a play if for every $i < \gamma$,

$$d(\langle \lambda_j, F_j, \alpha_j : j < i \rangle) =_{df} \{ \zeta < \lambda : \text{ for every } j < i \ [\lambda_i = 2 \Rightarrow F_j(\zeta) = \alpha_i] \\ [\lambda_i > 2 \Rightarrow F_j(\zeta) < \alpha_i \} \neq \emptyset \mod D.$$

Remark 5.1A:

- (1) See [4], Chapter X on this.
- (2) If not said, otherwise we assume that $\lambda \{\zeta\} \in D$ for $\zeta < \lambda$.
- (3) If D is an ultrafilter on λ , $(|\gamma| + \kappa^+)$ -complete for each $\kappa \in S$ then player II has a winning strategy.

Definition 5.2 For **F** a winning strategy for player II in $Gm^*(S, \gamma, D)$, D a filter on λ (we write $\lambda = \lambda(D)$), we define $Q = Q_{F,\lambda} = Q_{F,S,\gamma,D}$, $Q = (|Q|, \leq,$ \leq_0).

Part A: Let $(T, H) \in Q$ iff

- (i) T is a nonempty set of finite sequence of ordinals $< \lambda$.
- (ii) $\eta \in T \Rightarrow \eta \upharpoonright \ell \in T$, and for some n and $\eta: T \cap {^{n \ge \lambda}} = \{\eta \upharpoonright \ell: \ell \le n\}$, $|T \cap {^{n+1}\lambda}| \ge 2$; we denote $\eta = stam(T) = stam(T, H)$ (it is unique).
- (iii) H is a function, $T \{stam(T) \mid \ell : \ell < lg(stam(T))\} \subseteq \text{dom } H \subseteq \omega > \lambda$.
- (iv) for each $\eta \in \text{Dom } H$, $H(\eta)$ is a proper initial segment of a play of the game $Gm^*(S, \gamma, D)$ in which player II use his strategy **F** so $H(\eta) = \langle \lambda_i^{H(\eta)}, F_i^{H(\eta)}, \alpha_i^{H(\eta)} : i < i^{H(\eta)} \rangle$, and $i^{H(\eta)} < \gamma$.
- (v) for $\eta \in T$, $d(H(\eta)) = \{ \zeta < \lambda : \eta \cap \langle \zeta \rangle \in T \}$.

Part B: $(T_1, H_1) \le (T_2, H_2)$ (where both belong to Q) iff $T_2 \subseteq T_1$ and for each $\eta \in T_2$, if $stam(T_2) \le \eta$ then $H_1(\eta)$ is an initial segment of $H_1(\eta)$.

Part C: $(T_1, H_1) \le_0 (T_2, H_2)$ (where both belong to Q) if $(T_1, H_1) \le (T_2, H_2)$ and $stam(T_1) = stam(T_2)$.

Remark 5.2A: (1) So if $(T, H) \in Q_{\mathbf{F}, \lambda}$ and \mathbf{F} , $S(\gamma, D)$ are as above, $\eta \in T$, $\eta \ge stam(T)$ then $d(H(\eta)) \ne \emptyset \mod D$.

(2) We could restrict H to T in (iii).

Notation 5.2B: For $p = (T, H) \in Q_{\mathbf{F}, \lambda}$ and $\eta \in T$ let $p^{[\eta]} = (T^{[\eta]}, H)$, $T^{[\eta]} = \{ \nu \in T: \nu \leq \eta \text{ or } \eta \leq \nu \}$. Clearly $p \leq p^{[\eta]} \in Q_{\mathbf{F}, \lambda}$.

Lemma 5.3 If $Q = Q_{\mathbf{F},S,\gamma,D}$, D a uniform filter on $\lambda(D)$ then $\Vdash_Q cf$ $\lambda(D) = \aleph_0$.

Proof: Let $\eta_Q = \bigcup \{stam(p) : p \in \mathcal{G}_Q\}.$

Clearly if $(T_{\ell}, H_{\ell}) \in G_Q$ for $\ell = 1, 2$ then for some $(T, H) \in G_Q$, $(T_{\ell}, H_{\ell}) \leq (T, H)$; hence $stam(T_{\ell}) \leq stam(T)$, hence $stam(T_{1}, H_{1}) \cup stam(T_{1}, H_{2})$ is in $\omega > \lambda$. Hence η_Q is a sequence of ordinals of length $\leq \omega$. It has length ω , as for every $p = (T, H) \in Q$, and n, there is $\eta \in T \cap {}^{n}\lambda$, hence $p \leq p^{\{\eta\}} \in Q$ (see 5.2B), and $p^{\{\eta\}} \Vdash {}^{n}lg(\eta_Q) \geq n^{n}$ because $\eta \leq stam(p^{\{\eta\}})$ and for every $q \in Q$, $q \Vdash_{Q} {}^{n}stam(q) \leq \eta_{Q} {}^{n}$. Obviously, $\Vdash_{Q} {}^{n}Rang(\eta_{Q}) \subseteq \lambda^{n}$. Why \Vdash_{Q} sup $Rang(\eta_{Q}) = \lambda$? Because for every $(T, H) \in Q$ and $\alpha < \lambda$, letting $\eta = {}^{n}stam(T)$, clearly $d(H(\eta)) \neq \emptyset \mod D$ (see Definition 5.12) but D is uniform, hence there is $\beta \in d(H(\eta))$, $\beta > \alpha$, so $\eta \cap \langle \beta \rangle \in T$, and $(T, H) \leq (T, H)^{\{\eta \cap \langle \beta \rangle\}} \in Q$, $(T, H)^{\{\eta \cap \langle \beta \rangle\}} \Vdash_{Q} {}^{n}\eta \cap \langle \beta \rangle \leq \eta_{Q} {}^{n}$ hence $(T, H)^{\{\eta \cap \langle \beta \rangle\}} \Vdash_{Q} {}^{n}sam(\eta_{Q}) \geq \beta^{n}$, as $\alpha < \beta$ we finish.

Lemma 5.4 If S, γ, D are as in Definition 5.1, $\aleph_0 \notin S$, \mathbf{F} a winning strategy of player II in $Gm^*(S, \gamma, D)$, $cf \gamma > \aleph_0$, then Q satisfies $(S, cf \gamma) - Pr_1$ (see Definition 2.1).

Proof: In Definition 2.1, parts (i), (ii), (iii), (iv), (vi) are clear. So let us check (v). Let $\kappa \in S$, τ be a Q-name, \Vdash_Q " $\tau \in \kappa$ " and $p = (T, H) \in Q$. We define by induction on n, $p_n = (T_n, H_n)$ such that:

- (i) $p_0 = p, p_n \le_0 p_{n+1}, T_n \cap {}^{n>} \lambda = T_{n+1} \cap {}^{n>} \lambda$
- (ii) if $\eta \in T_n \cap {}^n \lambda$, and there are q, α satisfying
- (*) " $p_n^{[\eta]} \leq_0 q \in Q$, $\alpha < \kappa$, $q \Vdash$ "if $\kappa = 2$, $\tau = \alpha$, if $\kappa \geq \aleph_0$, $\tau < \alpha$ " then $p_{n+1}^{[\eta]}$, α_n satisfying this.

(iii) if $\eta \in T_{n+1} \cap {}^{n}\lambda$ and there are q, β satisfying

(*) $p_{n+1}^{[\eta]} \leq_0 q \in Q$, and for every $r, \beta < \kappa$,

$$[q \leq_0 r \in Q \to \neg (\exists r_1) (r \leq r_1 \in Q \land r_1 \Vdash \text{if } \kappa = 2, \, \underline{\tau} = \beta, \, \text{if } \kappa \geq \aleph_0, \, \underline{\tau} < \beta'']$$

then $p_{n+1}^{[\eta]}$ satisfies (*).

Let p_{ω} be the limit of $\langle p_n : n < \omega \rangle$, i.e., $p_{\omega} = (T_{\omega}, H_{\omega})$, $T_{\omega} = \bigcap_{n < \omega} T_n$, $H_{\omega}(\eta)$

is the limit of the sequences $H_n(\eta)$ (for $\eta \in T_\omega - \{stam(T) \mid \ell : \ell \}$). It is well defined as $cf(\gamma) > \aleph_0$.

Now for each $\eta \in T_{\omega}$, $H_{\omega}(\eta)$ is a proper initial segment of a play of the game $Gm^*(S, \gamma, D)$, and it lasts $i^{H_{\omega}(\eta)}$ moves. Player I could choose in his $i^{H_{\omega}(\eta)}$ -th move the cardinal κ and the function $f_{\eta} : \lambda \to \kappa$,

$$f_{\eta}(\zeta) = \begin{cases} \alpha_{\eta \land (\zeta)} & \text{if defined (which is } < \kappa) \\ 0 & \text{otherwise.} \end{cases}$$

So, for some β_{η} , $H_{\omega}(\eta) \cap \langle \alpha, f_{\eta}, \beta_{\eta} \rangle$ is also a proper initial segment of a play of $Gm^*(S, \gamma, D)$ in which player II use the strategy **F**. So there is $p_{\omega+1} = (T_{\omega+1}, H_{\omega+1}) \in Q, p_{\omega} \leq_0 p_{\omega+1}, \text{ and for each } \eta \in T_{\omega+1} - \{\nu : \nu < 1\}$ stam(T), $H_{\omega+1}(\eta) = H_{\omega}(\eta) \cap \langle \kappa, f_{\eta}, \beta_{\eta} \rangle$.

We can easily show

Fact 5.4A: If $p = (T, H) \in Q$, $\kappa \in S$, $f: T \to \kappa$, then for some $p_1 = (T_1, H_1) \in S$ $Q, p \le p_1$, and for every $\eta \in T_1$, $[\kappa = 2 \land f \upharpoonright Suc_{T_1}(\eta) \text{ is constant}] \text{ or } [\kappa \ge 1]$ $\aleph_1 \wedge f \upharpoonright Suc_{T_1}(\eta)$ is bounded below κ].

[*Proof:* Define by induction r^n , $p \le_0 r^n \le_0 r^{n+1} \in Q$, r^{n+1} satisfies the conclusion of 5.4A for η of length n, now any $r^{\omega} \in Q$, $(\forall n)r^n \leq_0 r^{\omega}$ is as required].

Fact 5.4B: If $p = (T, H) \in Q$, $A \subseteq T$ then there is $p_1 = (T_1, H_1) \in Q$, $p \le_0 p_1$ and for every $\eta \in T_1$, and $k < \omega$:

$$(\exists \nu \in A) \left[\nu \in T_1 \land \eta \le \nu \land lg(f) = k \right] \rightarrow (\forall q) \left[q \in Q \land p_1^{[\eta]} \le_0 q \rightarrow (\exists \nu \in A) (\nu \in q \land \eta \le \nu A lg(\nu) = k) \right]$$

[Proof: Define by induction on $n r^n$, $p \le_0 r^n \le_0 r^{n+1} \in Q$, r^{n+1} satisfies the conclusion of 5.4B for η of length $\leq n$ and $k \leq n$. Now any $r^{\omega} \in Q$, $(\forall n)r^n \leq 0$ r^{ω} is as required.]

Let $A = \{ \eta \in T_{\omega+1} : \alpha_{\eta} \text{ well defined} \}$, and let $q, p_{\omega+1} \le q \in Q$ be as in 5.4B. Now for every $\eta \in T^q$ there is $r \in Q$, $q^{[\eta]} \le r$, and r force a value for $\underline{\tau}$. So $stam(r) \in A$ (as $p_{\omega} \le q$, see the definition of the p_{η} 's), and $p_{\omega}^{[stam r]}$ force a value to τ ; hence, $q^{[stam r]}$ does, and let k_n be lg(stam r) for such r with minimal lg(stam(r)). So by 5.4B,

For every $\eta \in T^q$, and $r, q^{[\eta]} \leq_0 r \in Q$, for some $\nu \in q^{[\eta]}, \eta \leq \nu$, $lg(\nu) =$

Now for each q_1 , $q \le_0 q_1 \in Q$, $\eta \in T^{q_1}$ we can, by k_η applications of 5.4A, get an ordinal $\alpha < \kappa$ and q_2 , $q_1^{[\eta]} \le_0 q_2$, and

(*) $(\forall q_3 \in Q) [q_2 \leq_0 q_3 \rightarrow (\exists \nu \in A) (\nu \in T^{q_3} \land lg(\nu) = k_\eta \land \alpha_\nu \leq \alpha)]$ (or if $\kappa = 2, \, \alpha_{\nu} = \alpha$).

But this shows that β_{η} is defined for every $\eta \in T^q$. Finishing alternatively by repeated application of 5.4A we can define by induction on $n, q(n) \in Q$ q(0) = q, $q(n) \le_0 q(n+1)$ and β_{η}^n for $\eta \in T^{q(n)}$ such that:

- (a) $\beta_{\eta}^{0} = \beta_{\eta}$ (b) when $\kappa \geq \aleph_{0}$: $\eta \cap \langle \zeta \rangle \in T_{n+1} \Rightarrow \beta_{\eta}^{n+1} \geq \beta_{\eta}^{n} \wedge \langle \zeta \rangle$
- (c) when $\kappa = 2$: $\eta \cap \langle \zeta \rangle \in T_{n+1} \Rightarrow \beta_{\eta}^{n+1} = \beta_{\eta \wedge \langle \zeta \rangle}^{n}$.

Let $q_{\omega} \in Q$ be such that $q_n \leq_0 q_{\omega}$ for $n < \omega$.

Now if $\kappa > \aleph_0$ (is regular), we claim

$$q_{\omega} \Vdash_{Q} \underline{\tau} \leq \bigcup_{n < \omega} \beta_{\langle \, \rangle}^{n}$$

Clearly $p \leq_0 q_\omega \in Q$, $\bigcup \beta_{\langle \rangle}^n < \kappa$ so this suffices. Why does this hold? If not, then for some $q', q_{\omega} \leq q' \in Q, q' \Vdash_{Q} "_{\mathcal{I}} \geq \bigcup_{n} \beta_{\langle n \rangle}^{n}$. Let $\eta = stam(q')$, so $\eta \in$ T^q , and $\alpha_{\eta}\omega$ is well defined, and as $p_{\omega}^{[\eta]} \leq_0 (q')^{[\eta]}$, $\alpha_{\eta} > \bigcup_n \beta_{\langle \cdot \rangle}^n$. But as $\eta \in$ $\bigcap T^{q(n)}, \beta_{\langle i \rangle}^{lg(n)} \ge \beta_{\eta}$, and we get a contradiction.

If $\kappa = 2$, we note just that if $\eta \in T^{q(1)}$, $\beta_{\eta} = \beta_{\eta}^{0} = \beta_{\eta}^{1}$.

Suppose $\bar{Q} = \langle P_i, Q_i : i < \lambda \rangle$ is a κ -Sp₂-iteration, $|P_i| < \lambda$ for $i < \lambda$, each Q_i has $(S, < \kappa) - Pr_1$ and $(S, \sigma) - Pr_1 \sigma \le \kappa$ regular, $S \subseteq \{2\} \cup \{\theta : \}$ θ regular uncountable $\leq \kappa$ and in V, D is a normal ultrafilter on λ (so λ is a measurable cardinal). Then $\Vdash_{P_{\lambda}}$ "player II wins $Gm^*(S, \kappa, D)$ ".

Remark: Also for κ - Sp_3 .

Proof: Let $A = \{ \mu < \lambda : (\forall i < \mu) | P_i | < \mu, \mu \text{ strongly inacessible } > \kappa \}.$ Let $G_{\lambda} \subseteq P_{\lambda}$ be generic over V, $G_{\alpha} = G \cap P_{\alpha}$.

W.l.o.g. player I choose P_{λ} -names of functions and cardinals in S. Now we work in V and describe player II's strategy there. For each $\mu \in A$ the forcing notion P_{λ}/P_{μ} has $(S, \sigma) - Pr_2$; hence, player II has a winning strategy $F(P_{\lambda}/G_{\mu}) \in V[G_{\kappa}]$, so $F(P_{\lambda}/G_{\mu})$ is a P_{κ} -name, $\langle F(P_{\lambda}/G_{\mu}) : \mu \rangle$ a P_{λ} -name. Let us describe a winning strategy for player II.

So in the *i*th move player I chooses $\theta_i \in S$ and $f_i : \lambda \to \theta_i$. Player II chooses in his *i*-th move not only $\alpha_i < \theta_i$ but also A_i , f_i , γ_i , $\langle\langle p_j^{\mu}: j \leq i \rangle: \mu \in A_i \rangle$ such that γ_i is an ordinal $< \lambda$,

- (1) $j < i \Rightarrow \gamma_j < \gamma_i$. (2) $A_i \in D$, $A_i \in V$, $A_i \subseteq \bigcap_{j < i} A_j$ and $A_\delta = \bigcap_{j < \delta} A_j$ (3) \Vdash " f_i : $\lambda \to \theta_i$, $\theta_i \in S$ ".
- (4) for $\mu \in A_i$,

$$\langle p_j^{\mu} \colon j \le 2i + 2 \rangle$$

is a P_{κ} -name of an initial segment of a play as in (vi) of 2.1, for the forcing P_{λ}/G_{κ} , $p_{2j+1}^{\mu} \Vdash_{P_{\lambda}/G_{\mu}} "f_{i}(\mu) = \alpha_{i}$ if $\theta_{i} = 2$, $f_{i}(\mu) < \alpha_{i}^{\mu}$ if $\theta_{i} \geq$ \aleph_0 ", α_i^{μ} a P_{α_i} -name.

In the *i*-th stage clearly $A_i^0 =_{df} \bigcap_{i \geq i} A_j \cap A$ is in D, and let $\gamma_i^0 = \sup_{i \leq i} \gamma_i$, so $\gamma_i^0 < \lambda$ and choose $\gamma_\mu^1 \in (\gamma_\mu^0, \lambda)$ such that θ_i is a $P_{\gamma_\mu^1}$ -name. For every $\mu \in$ $A, \mu > \gamma'$, we can define P_{μ} -names $p_{2i}^{\mu}, p_{2i+1}^{\mu}, \alpha_i^{\mu}$ such that:

- (a) $\Vdash_{P_{\mu}}$ " $\langle p_j^{\mu} : j < 2i + 2 \rangle$ is an initial segment of a play as in (v) of 2.1 for P_{λ}/P_{μ} in which player II uses his winning strategy $F(P_{\lambda}/Q_{\mu})$.
- (b) $p_{2i+1}^{\mu} \Vdash_{P_{\lambda}/P_{\mu}} "f_i(\mu) = \alpha_i^{\mu} \text{ if } \theta_i = 2, f_i(\mu) < \alpha_i^{\mu} \text{ if } \theta_i \ge \aleph_0".$

Now α_i^{μ} is a P_{μ} -name of an original $< \kappa \le \mu$, it is $P_{\beta[\mu]}$ -name for some $\beta[\mu] < \mu$ (as P_{μ} satisfies the μ -c.c. see 2.x). By the normality of the ultrafilter D, on some $A_i^1 \subseteq A_i^0$, $\beta[\mu] = \beta_i$ for every $\mu \in A_i^1$. Let $\gamma_i = \gamma_n^1 + \beta_i$.

Easily for each $i < \sigma$, $\Vdash_{P_{\lambda}}$ " $\{\mu \in A_i : p_{2i+1}^{\mu} \in \mathcal{G}_{\lambda}\} \neq \emptyset \mod D$ ", so we finish.

Now we can solve the second Abraham problem.

Conclusion 5.6: Suppose λ is strongly inaccessible $\{\mu < \lambda : \mu \text{ measurable}\}\$ is stationary, $\kappa < \lambda$, $S \subseteq \{2\} \cup \{\theta : \theta \leq \kappa \text{ regular uncountable}\}\$. Then for some forcing notion $P: |P| = \lambda$, P satisfies λ -c.c. and $(S, \kappa) - Pr_1$ (and $(S, \kappa) - Pr_1$, if we want), and $\|P\| = \|K\| + \|K\|$

Remark 5.6A: We can also prove (by the same forcing) the consistency of D_{λ} + $\{\delta < \lambda : cf \ \delta = \aleph_0\}$ is precipitous: if in addition there is a normal ultrafilter on λ concentrates on measurables.

REFERENCES

- [1] Gitik, M., "Changing cofinalities and the non-stationary ideal," a preprint, first version, Fall, 1984.
- [2] Groszek, M. and T. Jech, announcement.
- [3] Martin, D. and R. M. Solovay, "Internal Cohen extensions," *Annals of Mathematical Logic*, vol. 2 (1970), pp. 143-173.
- [4] Shelah, S., "Proper Forcing," Springer Verlag Lecture Notes, vol. 840 (1982).
- [5] Shelah, S., "On cardinal invariants of the continuum," *Proceedings of the 6/83 Boulder Conference in Set Theory*, eds. J. Baumgartner, D. Martin and S. Shelah, *Contemporary Mathematics*, vol. 31 (1984), pp. 183-207.
- [6] Shelah, S., Abstracts of AMS (1984).
- [7] Solovay, R. M. and Tenenbaum, "Iterated Cohen extensions and Souslin's problem," Annals of Mathematics, vol. 94 (1971), pp. 201-245.

Institute of Mathematics The Hebrew University Jerusalem, Israel

and

Departments of Mathematics and Computer Science University of Michigan Ann Arbor, MI 48109