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We study reduced products over x-complete filters. For such products the
structures can carry relations and functions of ny arity <k, though nearly all our
results allow the relations and functions to be { nitary. Most of our theorems come
in two forms: (H) for «-complete filters and Horn logic, where « is regular; and
(S) for k-complete ultrafilters and L, with game guantifiers, where k is strongly
compact. Generally the (S) version is more elegant, but the (H) version applies in
more situations.

QOur main result appears as Theorem 4 in Section 2. In the (H) version, it says
that under certain set-theoretic assumptions, two structures have isomorphic
reduced powers over x-complete filters if and only i their «-Horn theories are
consistent with each other. (Unpublished work of Laver shows that the set-
theoretic assumption is consistent if there is a proper class of measurable
carcdinals.) We give several variants of this result. Both the (H) and the (8)
versions are known to be true absolutely when k= w; the (S) version is the
Keisler~Shelah theorem on isomorphism of ultrapowers [16] and the (H) version
appears as Exercise 6.2.6 in Chang and Keisler [2]. For uncountable x the
theorem is new,

In Section 3 we prove the same theorems for limit reduced products where both
filters are required to be k-complete. This time no special set-theoretic assump-
tions are needed. We atso characterise limit reduced powers over x-complete
filters as the most gencral operation which commutes with taking reducts and
gives elementary extensions for certain languages; the (S) version generalises a
result of Keisler for « = w.

Section 4 uses the results of Section 3 to deduce some infinitary model theory.
We give interpolation and preservation theorems for Horn logic; these were
originally proved [6] by using a more conventional proof-theoretic argument.
When x>, the formulae which are preserved by reduced products over k-
complete filters are not necessarily Horn, even up to logical equivalence; we give

*The main work for this paper was done when the second author visited the first in London in
Asgust 1978 under Science Rescarch Council Senior Visiting Fellowship GR/A/52997.
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examples, some of which also answer a related cunestion of Kueker., We show that
the amalgamation property fails badly for logics with non-homogeneous infinitary
quantificrs, Finally we describe an incompact logic which satisfies the Craig
interpolation theorem and has the Feferman-Vaught property (but it has poor
substitution properties).

In Sections 2 and 3 we handle the infinitary quantifiers by making two players
play a large number of infinitary games simultaneously on separate boards. The
idea in Section 3 is to make sure that the right player wins by making the players
play elements of a limit product constructed from a family of independent
functions; this idea was due to Shelah. The corresponding devices for reduced
products in Section 2 are an amalgam of several people’s ideas: we thank Fred
Galvin and Richard Laver for letting us have their contributions.

1. Preliminaries

Throughout, « is a regular cardinal. If A is a structure, then we always assume
that the relations R, and functions F, of A have arities <x. By a «-filter we
mean a filter which is proper and w-complete (i.e. closed under infs of <«
elements); a «-ultrafilter is a x-cowmplete ultrafilter. The letters k, A, u, v are
reserved for cardinals, while «, B, i, j etc. are ordinals.

I.1. Languages and games

A pre-game is an incompletely specified game, where we know what counts as
playing it, but not necessarily what counts as winning it. If players play a
rre-game, the result is a sequence of moves called o play.

Bv a quantifier of length o we mean a map Qo —{¥, 3}. A quantifier Q and a
structure A define a pre-game G(Q, A) as follows: players ¥V and 3 pick elements
ag of dom A (=domain of A) for each 8 <a =length(Q). Player Q(B) picks a,,
and he is allowed to know what a, (y< ) have been chosen. Thus the play is a
sequence d of length « from dom A. We sometime; generalise this definition a
little by allowing the domain of Q to consist of any increasing sequence of
ordinals of length «. The pre-game G(Q, A) is said to have length .

Let L be a language. We shall define a language PL. The formulae of PL are
the pairs (Q, ¢), written Qo, where Q is a quantifier and ¢ is a quantifier-free
formula of L. If A is a structure of the similarity type of L, then G(Qep, A) is the
following game: players ¥ and 3 play G(Q, A), and if the resulting play is &, then
3 wins if AFp[al. AFQoe means that plaver 3 has a winning strategy in
G(Qe, A).

For example, if L is L., then PL essentially consists of the prenex formulae of
Ly.s- In this case PL is an extension of fi si-order logic, but note that it is not
closed under negation {even up to logical equivalence) when « > w.

Another example we shall often use is Horn logic. A quantifier-frec Homn
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formula of L, is a conjunction of <« formulae of form
ANP—->AE

vhere @, ¥ are sets of <« atomic formulae, and ¥ is non-empty; L (falsehood)
counts as atomic, H,, consists of the quantifier-free Horn formulae of L. When
we speak of Hom logic we shall mean PH,,..

1.2. Limit reduced products

The following definitions are taken from Keisler [10, 11] or Chang and Keisler
[2]. with some slight changes.

Let I be a non-empty set, and for each ie let A, be a structure, all of the
same similarity type. Then we may form the product structure [[,.; A; or more
briefly [1; A,

Reduced priducts are homomorphic images of products, got by factoring out
proper filters 12 on L Precisely, let D be a proper filter on I (i.e. a proper filter on
the boolean aigebra @1). For f, gl A, put f ~p g iff lie I; f(i) = g(i}}e D. Then
- p is an equivalence relation on [1; A;. If moreover D is k-complete, then ~p, is a
congruence with respect to the functions and relations of [], A,, and by factoring
out ~p, we get a homomorphic image [Ip A; of [T; A. [Ip A, is called a k-reduced
product of the A,

Limit reduced products are substructures of reduced products, got from filters
on the set of partitions of the index set I Let Part(I) be the set of partitions of I,
and for i, p € Part{l) write o« <p when every partition class of « is included in a
partition class of p. Then (Part(I), =) is a complete lattice. For each clement f of
[1; A, write [f] for the partition = of I such that i, j lie in the same class of = iff
A; = A; and f(iY= f(j). Let F be a filter on Part(I) and fe[lp A;: then we say f is
an F-element iff =g/~ for some gell; A, with [gle F. Provided F is «-
complete, the F-elements form a substructure of {Ip, A, which we write as
[15 A; | F. This structure is called a limit x-reduced product of the A, Note that
[l A/ | F can be formed by first forming a limit product [], A;|F and then
factoring out by ~p.

If A, = A for each i € I, we say "power’ instead of ‘product’, A" instead of [, A,,
and Al for {1, A, Constant functions in A are F-clements for every filter F, so
there is a natural embedding of A into AL | F which takes each element of dom A
to the corresponding constant function.

When D is an ultrafilter, we say ‘ultra-” for ‘reduced’.

Note that every k-reduced product is also a limit k-recuced product, by taking
F to be the whole of Part(l).

1.3. Preservation and compactness

We say that a sentence ¢ is preserved in limit x-reduced products iff every limit
x-reduced product of models of ¢ is again a model of ¢; and likewise with other
operations on maodels.
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Lemma 1 (Preservation theorem-—easy direction). Every sentence of PH,, (PL.,.,.)
is preserved in limit k~reduced products (limit k-ultraproducts).

Proof. We prove only the PH,,, case. Let [ A; | F be a limit x-reduced product
of models of the sentence Q¢ of PH, .. Then for each i e I, player 3 has a winning
strategy o, in the game G(Qe, A;); we may assume o, = o; whenever A, = A, For
G(Q,T]; A) he has the following strategy o: play o; at ihe ith coordinate, for
each i e I We claim that o is also a strategy for player 3 in G(Q,[[; A, | F). For
suppose d, (y<p) have been chosen from 1, A; | F, and Q(B)=3. Writing &, (/)
for the ith element of d,, we want 3 to chaose dg 50 that dg(i)=0:(a,(i): y<B).
But [d;]<€A,<ald,], p<« and F is x-complete; so he can choose this way.

Now let player 3 play G(Qeg, [T, A, | F) by choosing representatives of equival-
ence classes and using o in G{Oe, [l A | F). Suppose the play on [, A; | F is
(@a: B< ). Then for each i, A;F@lds(i)]s<., by choice of o,. Then since ¢ is
quantifier-free Horn and D is a x-complete filter it follows easily that [T, A F
@[ds/ ~plg-a- But since ¢ is quantifier-free, this implies that [Ip A | FE
@ldaf ~plp<.,.. Hence player 3 wins G(Qg, [Ip A; | F), and so []p, A; | F is a model
of O as required.

The converse of Theorem 1 is to characterise those sentences which are
preserved in all limit x-reduced products. We give some positive and some
negative results on this in Section 4.1 below.

Lemuma 2 (Compactness). If T is a set of sentences of PH,,. (PL... where k is
strongly compact), such that every subset of T of cardinality <« has a model, then
T has a model.

Proof. By Lemma 1 and the usual ultraproduct proof of the compactness theorem
[2. Corollary 4.1.11], it suffices to find a «-filter D on a set I and a family S of
card(T) elements of D, such that every element of I is in fewer than « elements of
S. Take I 1o be the set of all sets of fewer than x elements of T, and let S be the
family of sets of form {te: sct} for sel Let D be the filter generated by S;
then D is «-complete since S is closed under intersections of fewer than k
elements (by the regularity of «), and D is obviously proper.

Lemma 2 has another proof: set up a complete cut-free proof caleulus for PH,,
(PL...). and show that any proof of a contradiction from sentences in PH,, (PL._.)
has fewer then « premises. (For the Horn case one can use Takeuti’s complete-
ness theorem for negative sequents with heterogeneous quantifiers; see [17,
Proposition 24.19].) Hence the notion of a consistent theory of PH,, or PL_ is quite
unambiguous.

2. Reduced products

In this section we give necessary and sufficient conditions for two structures (or
families of structures) to have isomorphic k-reduced products or «-ultraproducts.
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We can vary the question, for example by requiring the two filters to i the same,
or asking for just one of them to be an ultrafilter. Some set-theoretic assurn., tions
seem to be needed.

2.1. The quantifier-free part

Throughout this paragraph the setting is as follows. For each i € I a structure A,
is given, and for each jeJ a structure B, p is a cardinal, and sequences
{d,:y<p), (li,: v<<,1) of elements of []; A, T, B, respectively are given. For
each ie 1 the sequence

{a, (i y<w)
is called the ith thread of {a,: y< u}, and written @'; similarly b'. For the moment
we assume that the variables of PH,, (PL,.) are v, (y<<p).

Lemma 3a. There is a family A of ordered pairs {8, n) of quantifier-free formulae
of PH,,, not depending on (d,: y<p), (b, vy<<p), such that the following are
equivalent:

(i) for every pair {8, n) in A, either there is i € I such that A,k —6[a‘'] or there is
jed such that B;E=iq[b'};

(ii) there are x-filters D, E on I, J respectively, such that for every atomic formula

d” HD Ai t:lli[&TL,{“ lﬁ nE Bi ‘:lp[gvjyiu'

Proof. To make later variants easier, we shall be a little more formal than we
need. Consider the following notion of proof. Ry a proof-scheme we mean a tree
P such that (1) there is a single bottom node, (2) each node has <« nodes
tmmediately above it, (3) every node has finite height, (4) each node has one
atomic formula attached to it, {3) each node is labelled A or B. The formula
attached to the bottom node is called the conclusion. A node N labelled A will be
said to be correct at i iff, writing ¢ for the formula attached at N and & for the set
of formulae attached immediately above N,

AFNDP—y)a‘]

Similarly for nodes labelled B. N is everywhere correct iff N is correct at every ie !
or zvery jeJ (according as N is labelled A or B). P is valid iff all its nodes are
everywhere correct. We write + * ¢ iff there is a valid proof-scheme with conelu-
sion i

For each formula ¢ write

Alp)={iel A Ekola'l,

and similarly B(g). Define D to be the filter o5 [ generated by all intersections of
fewer than x sets A(y) such that* * ¢, and E the filter on J generated by
intersections of fewer than « sets B(i) such that - * . Clearly both D and E are
k-complete.

Claim. For each aromic formula , Al e D iff +* ¢ iff Bly) e E.
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By symmetry we only need prove the first equivalence. Right to left is by
definition of D. Conversely, suppose A e D; then there is a set @ of fewer than
x atomic formulae @ such that-* @, for which

N AlISAW). m
wed
For each ¢ € & there is a valid proof-scheme P, with conclusion ¢. Let P be the
proof-scheme with conclusion ¢ labelled A, such that when the bottom node of P
is removed, the segments which remain are precisely the P, (¢ € ®). Then P is
valid, be.ause the P, are valid and () says that the bottom node of P is
everywhe re correct. Hence ™ ¢, and the claim is proved.

The claim implies that for every atomic formula ¢, [I, A/ Fyld,]
He BiEdlb, ], <,

Now for each proof-scheme P we can write down a pair of quantifier-free Horn

formulae {8y, np), not depending on the d, and the b, so that P is valid iff

forall iel, A;E6.[a'],

iff

oy g

and
for all jed, B Enp[b'].

Take 4 to be the set of all pairs (6p. 1p) such that P is a proof-scheme with
conclusion L. Then clause (i) of the lemma says that no such P is valid, or in
other words: not -* L.

If not+* L, then by the claim, the empty set A{L}=B(l}is notin D or E, and
hence D and E are proper. By what we have aiready proved about D and E, it
follows that they are x-filters satisfying (ii). Thus (i} implies (ii).

Conversely suppose that D', E' a:= x-filters, on I, J as in {ii). Then for every
atomic formula ¢, A{g)e D' iff B(¢r) z E'. Now let P be a valid proof-scheme and
N a node of P labelled A let @ be thie set of atomic formulae immediately above
N, and ¢ the formula attached at N. The condition that N is everywhere correct
iraplies that (1) holds. But I is x-complete, so that if Ale)e D' for every ¢ e D,
then A{¢)e D'. By induction down valid proof-schemes, it follows that for every
atomic formula 4, if +* o, then A()e D', Since D' is a «-filter it is proper, and
hence not+* L, Hence (i) implies (i).

Here follow some variants of Lemma 3a. The first is the obvious adaptation (o
w-ultrafilters:

Lemmz . Let « be strongly compact. There is a family 4 of ordered pairs (8, n) of
quaniifier-free formulae of PL,,. not depending on (4, vy <pu). (E,: vy <, such
that the following are equivalent:

(i) for every pair {8, n) in 4, either there is i € I such thatr A E—0[a'] or there is
jeJ such that B,E—n[b'];

(it} ther are k-ulrafilters D, E on I J resp: ctively, such that for every atomic
formacia g, 1, A, Edla, ], iff e B k[i;'y]‘y’-in'
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Proof. Define A(g), B(p) as in the proof «f Lemma 3a. Let @ be any set of
fewzr than k atomic formulae. Then (i) implies the following:

(iii) there are @;, @, such that @ = &, U b, and there are n-filters D'. E' on I,
J such that for every Ye®,, A(f)e D' and B()e E', while for every Yy P,,
Al{dne D and B{—)e E'.

Conversely if (iii) holds for every set @ of fewer than k atomic formulae, then
the strong compactness of k allows us to deduce (ii). So it will be enough if we fix
@ and define A to make (i) and (iii) equivalent; the union of the 4 defined for the
different @ will work for the lemma.

Henceforth @ is a fixed set of fewer than x atomic formulae. We define
proof-scheme as in the proof of Lemma 33, with the following changes. In clause
(4), ‘atomic’ becomes ‘atomic or negated atomic’. We a Id a new clause: (6) zero
or more maximal nodes of P are designated as premises. P is valid iff all its nodes
which are not premises are everywhere correct. We write WH* o iff there is a valid
proof-scheme whose bottom formula is ¢ and whose premise-formulae are
elements of ¥'. For each proof-scheme P we can write down a pair of quantifier-
free formulae (8p, mp), not depending on the 4, and the 57, so that P is valid iff

forall iel, Ak6jd'l,
and
for all jeJ, BEn[b'].

Next, for each Y <@, define D, to be the filter on I generated by all
intersections of fewer than k sets A(Y) such that Y U{—¢:oe®@—¥I+* ¢,
likewise Ey on J. Then D, and E, are obviously x-complete, and the same
argument as for Lemma 3a shows:

Claim. For each atomic or negated atomic formula ¢, A(y)eDy iff
YUl oe @ -4 iff B()e Ey.

Now by the claim, (iil) above holds provided that we have:

(iv) there is ¥ < & such that not ¥ U{g: pe @—¥}+-* L.

(Put D' =D, and E'= E,.) Conversely if (iii) holds, then the argument of the
last part of the proof of Lemma 3a shows that {iv) holds too. So we have to find a
4 which makes (i} equivalent to (iv). Define a proof-system to be a map
p: P(d) - (proof-schemes) such that for each ¥ =&, p(¥) is a proof-scheme
with premises €W U{¢: o @~ ¥} and conclusion L. Then {iv) is equivalent
10:

(v) for every proof-system p there is ¥ < @ such that p(¥) is not valid.

For each soof-system p define formulae

0,= A B, = A 7, (¥).
ved

h g~ )
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Then 6, m, are in L, because « is strongly inaccessible. Let 4 be the set
{6,,m,): p is a proof-system}. For this 4, (i) says precisely that for every
proof-system p there is some invalid p(¥); so (i) is equivalent to (v) as required.

The next two variants of Lemma 3 need no new ideas:

Lemma 3¢. There is a family 4 of ordered pairs {8, n) of quantifier-free formulae of
PH,,, not depending on {d,: y<py, (5\/: v< ), such that each 0 is a conjunction
of atomic formulae, and the following are equivalent:

(i) for every pair {6, m) in 4, either there is i € I such that A;F—8[a‘'] or there is
jeJ such that B, E—q[d'};

(it} there are k-filters D, E on I, J respectively, such that for every atomic formula
. if o AcFO{d, ), <., then Tl BiFylb,], .

Lemma 3d. Let « be strongly compact. There is a family A of ordered pairs (6, n) of
quantifier-free formulae of PL.., ot depending on {a,: y<p), {(b,: y<<p), such
that each m is in PH,,., and the following are equivalent:

(i) for every pair {8, n) in A, either there is i € I such that A, F—6[d‘] or there is
jeJ such that BE-m[b'];

(ii) there are a k-ultrafilter D on I and a «~filter E on J such that for every atomic
formula ¢, [T A; Egla,l, <, iff e B; tw[b-y}’yu(u'

2.2, Isomorphic reduced products

We shall give a necessary and a sufficient condition for two structures to have
isomorphic x-reduced powers, assuming only the GCH. The conditions are both
local in the sense that they involve only games of length less than « on the two
structures, but only one of them is straightforwardly syntactic. If there is a proper
class of measurable cardinals, then it is consistent that the two conditions are
equivalent. There are analogous results for x-reduced products of sets of struc-
tures, for x-ultrapowers when k is strongly compact, for surjective homomorph-
isms between k-reduced powers, and so on.

First we must weaken the notion of a winning strategy. Suppose two players V
anci 3 play a game G; imagine also that they imitate the chess wizards and play G
simultaneously on u boards. {If player V makes the ath move in G and player 3
makes the {« -+ 1)th, then player ¥V must make his ath move on all boards before
player 3 makes his (a+ 1)th on any; and vice versa.) We can define a new game
G* by declaring that player ¥ wins iff he wins G on at least one board. Obviously
if player 3 has a winaing strategy in either of G or G*, then he wine the other too.
But in general it is possible for player V to have a winning strategy for G* and
not for G. (Examples can be found along the lines ¢f (4) in Section 4.3 below.)
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Theovem 4a. Let A and B be structures of the same similarity type. Then (i) =>
(i1) = (iii), where (i)-(iii) are as follows:

(i) there is a regular cardinal u = max(card A, card B, card(type of A, B)) such
that p=*=p and 2* =p"*, and for every pair (8, m) of mutually inconsistent
sentenices of PH,,, player ¥ has a winning strategy for at least one of G*(6, A) and
G*{n, B);

{(it)y A and B have isomorphic k-reduced powers;

(iii) if Ta, Tp are respectively the sets of PH, -sentences frue iu A, B, then
T, U Ty is consistent.

(Note that if the GCH holds, then in (i) we can omit all the conditions on
except the last one.)

FProof. (ii) = (iii) is by Lemma 1. Now we assume (i) and prove (ii). Referring
back to the beginning of 2.1, we put I=J=p, A, = A and B; = B for each i, j < p.
The cardinal g of 2.1 now becomes 2* = ™. By T emma 3a, (ii) above is proved
provided we can find 4, (y<p*) in A* and IZ, (y<u™} in B* such that

{iv) for every pair (6, n) in 4 &om Lemma §a), either there is i <p such that
Ar=6{a'] or there is j«<<p such that BE—m[b'}; and (@,: y<p™), (b, y<u™
list the whole of A*, B* respectively.

We shall make players ¥V ana 3 choose the 4, in sequence; player V chooses d,
when v is even. Independently of this, the two players will choose the b, in
sequence, but here player ¥ will choose the li with add 4. The only requirement
on player 3 is that he chooses so that every element of A%, B* is chosen at some
point. This guarantees the last part of {iv).

Player V is poing to have to splice together p different strategies for p*
different games of length <« on wu different boards. To show how he can do it, we
shall use an unpublished lcmma of Galvin. We thank Galvin for permission to
include this result. (He proved it in 1973 in answer to a question of Laver, whether
€ M{w; X @;) can be written as the vnion of an increasing w-sequence of tree-
orderings without branches of length ,.)

Lemma (Galvin). Let w be a regular cardinal. Then there is a sequence (R;: j<u)
such that

(1) U,’<M R; ={{e, Br a<B<p’h

(2) j<k<§“$ R,‘ERk;

(3) for every j<p, R; is a tree whose branches all have length <p;

(4) if u=w, then every branch of R; has length <j+1.

Proof. By induction on a, construct for each o << p™ a function f, : o — u, 50 that

a<Blj<utfud =il <uw.
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(This is possible since p is regular.) Next, choose for each a<p* aset C, c o as
follows: Cy=0; C,., =1{a}; if o is a limit ordinal, C, is a cofinal subset of « of
order-type <=p.

Now we define the relation

(0(, B) € Ri (*)

by induction on B, simultaneously for all & and j, as follows. We define (+) to hold
iff there is y& C, such that
D {a, VVER, or a=;
) f,(k)<fg(k) for all k=];
(iii) (8, y)e R, whenever 8 G Ny,
Then (1), (2) are easily verified. For (3), observe that if (o, )& R, then f,(j) <
falj). For (4). choose the f, so that for each « and [, f{(j)=].

Using Galvin’s lemma and the fact that ™ = p, we can find a family <, (j<<u)
of partia! orderings with field u™, such that

(a) if @< B then a <p;

{b) each <, is a tree whose branches all have length <«;

(c) if S is a subset of w ' with cardinality -Z«, then for some j< g, § is an initial
part of a branch of <.

Now suppose the quantifier-free formula 9 of PH, . occurs in some pair (8, ) in
the set 4 of Lemma 3a. Choose a quantifier prefix Q with domain a set of ordinals
<p* of order-type <, such that if y is an even ordinal and either v, or v, ,,
occurs in 8, then Q(v) =V and Qv+ 1) =3, and no ordinals occur in the domain
of Q except as just indicated. Write ' for Q6. Similarly for each n choose a prefix
Q by the same rules but with Q{y)=3 and Q(y+1)=V, and write n’ for Qmn.
Write 4’ for the set of pairs {6, %) such that {6, ) is in A.

Claim. For each pair {¢'.n") from A’ the sentences 6' and n' are muiually
contradictory.

Far suppose not; then both are true in some structure C. Now we can consider
¢’ as defining a game of length ¢ on C in which player V moves at even-
numbered steps {(by adding vacuous pairs ¥, Ju, ., to the quantifier); likewise n’
defines a game of length p* in which player ¥ moves at the odd steps. By
assumption, player 3 has winning strategies o, v for these two games. Let the
players now play G(6', C); let player 3 use his sinning strategy o, and let player V
use the strategy 7. Suppose ¢ is the resulting sequence of elements of C. Then
CE8An[C] Applying Lemma 3a to the situation where I, J are singletons and
A; = B; = C, this implies that for some atomic formula ¢, CF[&] iff not Cky[F],
which is absurd, The claim is proved.

By the claim and (i} of the theorem, player ¥ has 1 winning strategy for either
G*{(6', A) or G* (v, B), for each pair (8, n) in 4.
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List as @, (i< ), possibly with repetitions, all the sentences of PH,, whose
variables have indices <k, such that player ¥ moves at even steps in Gy, A) and
has a winning strategy for G*(¢,, A). For each G*(¢, A) choose a winning
strategy o;. Take a bijection g: u® — u Player V wiil now choose the elements d,
(v even) of A" as follows. For each i, j <{u the indices g(i, j, k) (k <p) form a set
of p boards on which he can play G*{¢;, A). At move « {even), he plays cn these
indices using strategy o; and assuming that the previous moves on board k are
{Gs(g(i, ], k)): 8 <; v, if this is a sequence whose length is an even ordinal less
than the length of G* (¢, A); otherwise he plays as he likes. Player ¥ chooses the
elements b, (y odd) according to the same rubrics, but with odd and even
reversed,

Now we car prove (iv). Let (6, i) be a pair from A. We have seen that player ¥V
has a winning strategy for either G*(6, A) or G*(n’, B); say he has one for
G*(6', A). Let § be the set of all indices of variables which occur in ¢'. By
collapsing § down to an initial segment of the ordinals, we get a sentence 8% of
PH,, whose variables all have indices <k, such that player V has a winning
strategy for G*(8%, A). Then 8% is ¢, for some i < . Alsn there is j < u such that
S is an initial segment of the partial ordering <. From the choice of the a, it
follows that for some k <y,

AE-B[aH ],

Thus (iv) is proved.
It was only to avoid a plethora of indices that we did not straight away prove:

Theorem 4b. Let H and K be classes of structures, all of the same similarity type.
Then (i) => (i) = (iii), where (i)-(iii) are as follows:

(i) there are arbitrarily large regular cardinals p such that =% =y and 2* =™,
and for every pair {8, 1) of mutually inconsistent sentences of PH,, player ¥ has a
winning strategy for at least one of the games G*(6, A) with AeH or G*{n, B)
witn B = K (the proof shows that a ‘large enough’ u will do);

(ii) some k-reduced product of structures in H is isomorphic to a xk-reduced
i roduct of structures in K;

(it} if Ty, Ty are respectively the sets of PH, ~sentences true throughout H, K,
then Ty U Ty is consistent.

Proof. Again (ii) = (iii) by Lemma 1. For (i) = (ii), we can assume without loss
that H and K are sets, since PH,, has only a set of non-equivalent sentences.
Then the argument proceeds very much as before. The cardinal u is chosen larger
than the cardinalities of all structures in HU K. Instead of listing the winning
strategies o, we list pairs (o, A) such that o, is a winning strategy for player V in
G*(g;, A), and we take A to be the g(i, j, k)th element (for all j, k<) in the
product.
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Since clause (i) has exactly the same form in all the versions of Lemma 3, the
corresponding versions of Theorem 4 can be read off automatically from
Theorems 4a and 4b above. For example we have conditions for two structures to
have isomorphic x-ultrapowers.

Next we ask when two structures have isomorphic «-reduced powers over the
same filter. This turns out to be a surprisingly strong condition. Since the filter is
the same on both sides, it is not possible to separate out the syntactic conditions
on the two structures. So the work in Section 2.1 is no help. Instead we introduce
the following game G(@®, A, B).

Let A and B be structures and & a set of atomic formulae. Then G(¢, A, B) is
played as follows. At the yth move, when vy is even, player V chooses an element
of A and then player 3 chooses an element of B. When v is odd, player V first
chooses an element of B and then player 3 chooses from A. The players play thus
until they have constructed sequences &, b from A, B respectively which are long
enough to cover the variables of the formulae in &. Player 3 wins iff for every
ped,

AEglal iff BEo[h].

GM®, A, B) is G(®, A, B) played on A boards; player 3 wins iff he wins on all
boards.

Theorem 4¢ (GCH). Let A and B be structures. Then (1) = (ii) = (iti) = (iv), where
()—(iv) are as follows:

(1) there is A such that for every set @ of fewcr than x atomic formulee player 3
has a w'nning strategy in GMN®, A, B),

(i) tlere are a set I and a «-filter D on I such that for every «-filter D" on I
which extends D, A'D’ =B D';

(iii) there are a set I and a x-filter D on I such that AYYD=B'D;

(iv) forevery set @ of fewer than ik atomic formulc e, player V has no winning strategy
in G(P, A, 3).

Proof. (i) = (ii): by GCH, choose a regular cardinal w such that A < ™ =y and
2% = "=mcard(A) + card(B) +card{type of A, B). Players V and 3 shall play a
pre-game of length u* as follows. At the vth move, when v is even, player ¥
chooses an element of A* and then player 3 chooses an element of B*, When v is
odd, player ¥ first chooses from B* and then player 3 from A*. Player V plays so
that his moves exhaust A* UB*. Let {d,: y<pu™), (57: +»<u") be the resulting
sequences o elements »f A", B* If (i} holds, then player 3 can use Galvin's
lemma as in the proof of Theorem 4a to ensure that for every set & of fewer than
« atomic formulae whose variables have indives <™, the set

X(@)={i<u: Akgla’]© BEe[b'] for all P}

is non-empty. The filter D generated by the sets X(®) will satisfy (if).
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(i) = (i) is trivial, For (iii) => (iv), let L) be a «-filter on I and suppose (iv! fails
for some @; then player ¢ has a winning strategy o for G(®, A, B), and 50 he can
win G(®, A'|D, B'/D) by playing o at every coordinate. Clearly this implies that
A'/D and B'/D ate not isomorphic.

We make two remarks on Theorem 4c. First, when k= the games
G(®, A, B) are the familiar Ehrenfeucht-Fraissé games, which are all determi-
nate. So in this case conditions (i) and (iv) are equivalent, and they simply say that
A and B are elementarily equivalent. When x> w, conditions (i) and (iv) are
(possibly equivalent) generalisations of elementary equivalence. It is known that
in general the Ehrenfeuchi-Fraissé games of length « do not characterise equival-
ence in L.

Second, there is no n2ed to prove a separate version of Theorem 4c¢ for the case
wherz k is strongly corapact, because in this case a x-ultrafilter can be got straight
away {rom condition (ii).

It remains to ask about the gap between the sufficient and necessary conditions
in Theorem 4; say (i) and (iii) in Theorem 4a. There is no situation where (i) and
(iii) are known not to be equivalent. Nevertheless we conjecture that (i) is in
general much stronger than (iii), and that it is almost never true in the constructi-
ble universe.

There are two situations in which we can show that (i) is equivalent to (iii). The
first is when x = w. The second situation is as follows. When I is an ideal on a
boolean algebra B, we write I" for the set of elements of B which are not in I Let
I{A) be the statement:

There is an ideal [ on A™™ which is A" "~complete, normal and such that I'" has
a dense subset K with the property that every descending sequence of length <A™
in K has a lower bound in K.

A theorem of Richard Laver (due also in part to Menachem Magidor) states
that if M is a model of ZFC containing a cardinal A and a measurable greater
than A, then M has a boolean extension in which A remains a cardinal, I(A) holds,
and the GCH holds above A. (The proof can be inferred from the case A =aw
which is described in Galvin et al. {5, Section 41.) In fact Laver shows that if there
is a proper class of measurabizs in M, then there is a boolean model in which
GCH holds and I(A) is true for arbitrarily large A; if M has a proper class of
supercompact cardinals, then the boolean model can have I{A) true for all infinite
cardinals A.

The next theorem is essentially a remark of Fred Galvin:

Theorem 5. Suppose I{A) and the GCH hold, where A" =max(«, card A, card B,
card(type of A, B)); then in Theorem 4a, (i) and (iii) are equivalent. {The same
argument shows that in Theorem 4¢, (1) and (iv) are equivalent.)
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Preof. We show that if (i) holds, then (i) holds with w = A", Write I for the
ideal given by I(A), and K for the dense subset of I". We can assume that K is
closed under intersections of descending chains of length <A™. By Ulam matrices
and the A" -completeness of I, every set in I'" can be split into A" pairwise
disjoint sets which are also in I”. By the A" "-completeness of I, every partition of
a set in I'" into at most A" subsets includes at least one set in ™.

Let ¢ be an ordinal <k, and let G be a game of length £ in which players ¥ and
9 alternately choose elements of a set C of cardinality <A™, and player 3 wins iff
the resulting sequence lies in a given set S. (The games G(6, A) and G(n, B) of
Theorem 4a have this form.) Suppose that player 3 has no winning strategy for G.
We show that player V has a winning strategy for G*.

First observe that any move @ in G* determines a partition of each set X ¢ u,
by putting i, § in the same partition class iff a(i) = d(j). Now before the ath move
in G*, player V¥ should choose a family F, of pairwise disjoint elemen's of K, so
that if B <a, then each set XeF, is included in some YeF; F; is chosen
arbitrarily, and at limit § the player should choose F; to be the set of all minimal
non-empty intersections of sets from previous F,. At successor moves « + 1 where
3 has just moved and chosen de C*, player V should choose F, ., by replacing
each X e F, by some subset of X which is in K and which lies inside one partition
class of the partition determined by 4. Finally if player V is to move at stage a,
then after choosing F, he should split each X e F, into card(C) disjoint parts
which are all in I"; now he chooses d so as to play a different element of C on
each part of X, exhausting C. For F,, ., he replaces each of these parts of each X
hy an element of K which is included in it, and then makes F, . the set of these
elements of K.

Now the sets in U, ... I, form a downwards tree in . By I{A), each branch b
of this tree has non-empty intersection; pick an element i, in the intersection. On
these selected indices i,, player 3 is playing a constant strategy and player V is
trying overy possible move against him. Since player 3's strategy was not winning,
player ¥ wins on at least one index.

To make everything explicit, Theorems 4 and 5 together show that it is
consistent {granted enough measurable cardinals) that two structures have
isomorphic reduced powers over x-complete filters iff their Horn theories in PH,
are consistent with each other.

Does the statement ‘Any two structures with consistent PH,, theories have
isomorphic k-reduced powers’ imply the existence of precipitous ideals?

3. Limi¢ reduced producis

In this section was assume only ZFC and prove the analogue of Theorem 4 for
limit reduced products. We also give a characterisation of limit x-reduced powers
which generalises a theorem of Keisler for « = w.



Sh:109

Infinite games and reduced products 91

3.1. Combinatorial lemmas

The following lemma occurs under the name of Remark 3 in Engelking and
Kartowicz {3].

Engelking-Karfowicz Lemma. Suppose p is regular and g™ = p = card(X). Then
there is a family (f;: i <2%) of maps f, : p — X such that for every strictly increasing
sequence {o;: 1< &) of ordinals o, <2%, with £<«, and every family {x:i<&) of
elements of X, there is a j<<u such that

fd=x foralli<é

A family of functions (f;: i <<2*) as in this lemma will be said to be (u, &, X)-
independent.

Let A be a structure and choose p = card(A) such that p = = u. Let {f;: i <2%)
be a (u, x, dom A)-independent family. Then each f; is an element of A*, Let F
be the k-complete filter on Part(p) generated by the partitions [f,], i <2*. We call
A" | F the (u, «)-independent limit power of A generated by (f:i<2*). ¥ g is an
element of A* | F, then there is a unique smallest set Z of generators f; such that
[el=A{f] f e Z}. Z has cardinality <«. We call Z the support supp(g) of g.

If A“]|F is as above, and Q is a quantifier of length =<2*, then eitker player in
G(Q, A* | F) can paly by the following strategy: at the Sth move, play the first £
which is not in {J {supp(g): g was the yth move, y <8} We call this thes
independent strategy.

Lemama 6. Let Q be a quantifier of length o <2*, and let A* | F be the (i, x)-
independent limit power of A generated by (f;: i <2*). Suppose ihat in a play of
G(Q, A* | F), player ¥ has followed his independent strategy, and let X be a subset
of a of power <k. Then there are Zc u and a strategy o for player 3 in
G(Q t X, A) such that

(1) player 3 has played o in G(Q } X, A) at each coordinate ic Z,

(i) each possible play of player ¥ against o in G(Q |} X, A) occurs at some i€ Z.

Proof. Let (dz: B <a) be the play. Let K, be {d;: B¢ XNQ(Y)} and let K5 be
U {supp(dg): Be XNQ™'3)}. Pick any element cedom A, and put Z=
{i<<up: fliy=c for each fe K3—K,}. Now for each Be XNQ'3), dzli)# dg())
implies fii)+# f(j) for some fesupp(d,); assuming i, j€ Z, this implies f(i}# f(j)
where f is a, for some ye XNQ @) NB. It follows that player 3 adopts a
uniform sirategy o throughout Z, proving (i). Part (i) then follows from the
conclusion of the Engelking-Kartowicz lemma, since card{X) <«.

3.2. Charucterisation of limit k-reduced powers

We generalise Keisler's characterisation of limit ultrepowers as the most
general operation which commutes with formation of reducts and preserves
elementary equivalence. (See Theorem 6.4.10 of Chang and Keisler {2].)
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Let us say that a structure A is k-complete iff every function of arity <\« which
can be defined on dom A is of form F, for some function symbol F of the
language of A.

Theorem Ta. If A and B are structures of the same similarity type, and A is
x-complete, then the following are equivalent:
(i) every Hom sentence of L., which is true in A is true in B,
(ii) every universal Horn sentence of L,, which is frue in A is true in B;
(iii) B is isomorphic to a limit k-reduced power of A.

Proof. (ii)=> (i) is by Lemma 1 and ()= (i) is trivial. For (ii)=> (iii), choose
w=card(A) such that w=" =y and 2*=card(B). Let A*|F be the (u, «)-
independent limit power of A generated by (f,: @ <2*). Choose any surjective
map 8:{f,: a<2*}—dom B. Define I to be the filter on u generated by all
tersections of fewer than k sets of form

Alpy=li<p: Abe[f (D]ca}

such that ¢ is atomic and BE@[6f, }, o

We claim that for every atomic i, if A(¥)e D, then BE¢[6f, ], ... For suppose
A(g) € D. Then there are atomic ¢, (k <vy<x) such that BEg,[#f, ..o~ for each
a<vyand (Vo Ale S A(Y). If

ARYE( A o). M
ky
then by assumption (i) the same sentence holds in B, and so BEJ{Of. ], .o as
required. So we prove (1), as follows. If (1) fails, then therc is a sequeace @ in A
such that A Fg, [d] for each k <y, but AE—wpla]. Since the f, are {u, k, dom A)-
independent, and fewer than « variables occur in ¢ and the ¢, we can find i <p
such that the sequence (f,(i)),.»- agrees with 4 at the relevant places. This
contradicts the fact that (), ., Ale, ) € A(Y). The claim is proved.

In particular D is proper, since L is atomic. The claim also shows that ¢
induces an isomorphism between B and /D where C s the substructure of A*
which is generated by the f, {a<2*). Now if cadom A* | F, then for some
Y 2% of cardinality <«, [¢]= A..v[[. ] since A is k-complete it follows that
cedom C. Hence A* | F=(C and A |F=C/D=B.

Esscntially the same proof gives the following variant. Keisler’s theorem was
the case « = w.

Theorem 7b. Let x be strongly compact, and let A and B be structures of the same
similarity type, with A «-complete. Then the fo owing are equivalent:

(i) every (universal) sentence of PL,. which is true in A is true in B;

(i} B is isomorphic to a limit k-ultrapower of A.
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There is one further variant which we have not developed elsewhere in this
paper, but it should be mentioned somewhere. Let « and A be regular cardinals
with k 2 A, Define PL,, as PL,. but with the quantifier prefixes restricted to be of
length <A; we assume that all relations and functions have arity <A,

Let F be a A-complete filter on Part(I). For each partiticr, we F, let B, be the
boolean algebra of all sets of form |J X where X< r; then B, is a complete
subalgebra of #(I). By a (k, F)-ulirafilter on I we mean a subset 12 of |} _.-B.
whose restriction to each B, is a k-complete ultrafilter. Let A; (i€ I) be a family
Ui structures of the sarae similarity type. By a A-limit x-ultraproduct of the A; we
mean a structure [I, A; | F where F is a A-complete filter on Part(I) and D is a
(x, F)-ultrafilter on I The reader can easily verify that this definition makes sense,
and that every sentence of PL,, is preserved in A-limit k-ultraproducts.

Theorem 7c. Let « = A be regular cardinals. Let A and B be structures of the same
similarity type, with A A-complete. Then the following are equivalent:

(i) every sentence of PL,, which is true in A is true also in B;

(ity B is isomorphic to a A-limit x-ultrapower of A.

Proof. We proceed as in the proof of Theorem 7a up to the choice of the function
8 :{f,: « <2*}—> dom B. Then we take D to be the set of all sets of form

Alpy=l{iep: Abelf (D] <}

such that ¢ is quantifier-free and has fewer than A variables, and BEe[8f. ], 5.
Let 7 be an element of F; then there is a set J< 2% of cardinality <A such that
7= Auesifu} Since A is A-complete it follows tha every set in B, is of form
Ale) for some quantifier-free formula ¢ with variables from v, (e €J). Hence D
is a (k, F)-ultrafilter. The proof that A% | F=B is as before.

3.3. Isomorphic limit reduced products

Now we shall prove analogues of Theorem 4 for iimit x-reduced products. The
conditions for isomorphism which were proved necessary in Theorem 4 are now
both necessary and sufficient, and we do not have to import any peculiar
set-theoretic assumptions; ZFC alone is enough. (The analogue of Theorem 4c is
a little more restricted.)

Theorem 8a. Let A and B be structures of the same similarity type. Then the
following are equivalent:

(i} A and B have isomorphic limit k-reduced powers:

(ii) if Ta, Ty are respectively the sets of PH,, -sentences true in A, B, then T, U Ty
is consistent.
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Proof. (i) => (ii) is by Lemma 1. Now we assume (ii} and prove (i). Choose a
cardinal g such that w = p™" =card(A)+card(B). Referring back to the begin-
ning of Section 2.1, we put I=J=pu, A;=A and B;=B for each i, {<u. The
cardinal u of 2.1 now becomes 2*. Let A%, B* be respectively (p, «)~independent
limit powers of A, B; then A¥*, B* are substructures of A*, B* respectively. By
Lemma 3a, (i) above is proved provided we can find a,(y<2*) in A* and b,
(y<<2*) in B* such that

(iii) for every pair (8, ) in A (from Lemma 3a), either thewe is i <<y such that
AE—6[a'] or there is j <y such that BE~m[b']; and (a,: v <2%), {b,: v<2*) list
the whole of A*, B* respectively.

We shall make players V and 3 choose the @, in sequence from A*. Player V
chooses @, when vy is even, and he uses ths independent strategy (cf. before
Lemma 6). Player 3 chooses at odd v, and he plays so as to exhaust A*, Likewise
the players choose the b—y from B¥; player V uses the independent strategy at odd
v and player 3 chooses so as to exhaust B* at even v. Player I's choices guarantee
the last part of (iii).

Now suppose the quantifier-free formula 6 of PH,,. occurs in some pair (6, i) in
the set A4 of Lemma 3a. Let Q be the quantifier whose domain is the set of indices
of variables which occur in 8, such that Q(y)=V iff v is even. Write 8’ for Q6.
Similarly for each » choose a prefix Q by the same rules but with Q(y) =V iff v is
odd. Write A’ for the set of pairs (6', m") such that (6, n) is in A. The following
claim is proved exactly like the claim in the proof of Theorem 4a.

Claim. For each pair (8'.m') from A', the sentences 8' and ' are nuaually
contradictory.

Now we can nrove (iii). Let {6, n) be a pair from A. By the claim and (ii) of the
theorem, player 3 does not have winning strategies for both G(6', A) and
G(n', B); suppose he lacks one for G(6', A). Then by Lemma 6 there are a set
Z < u and a strategy o for player 3 in G(6', A) such that player 3 is playing o in
G(8'. A) at each coordinate i € Z, and each possible play of player ¥ in G(8', A)
occurs at some € Z. Since o is not winning for 3, player V must win at some i,
and hence A E—6[a']. Thus (i) is proved.

The corresponding theorem with classes of structures is proved analogously,
using products of (u, x)-independent limit powers:

Theorem 8b. Let H and K be classes of structures, all of the same similarity type.
Then the following are equivalent:

(i} some limit «-reduced product of structures in H is isomorphic to a limit
k-reduced product of structures in K;

(i) if Ty, Ty are respectively the sets of PH, . -sentences true throughout H, K,
then Ty U Ty is consistent.
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We leave it to the reader to supply the remnaining variants of Theorem 8. For
the counterpart of Theorem 4c¢ (where the filter D has to be the same on both
sides) it seems to be necessary to assume that A and B have the same cardinality.

4, Applications

4.1. Interpolation and definability for Horn logic

From Lemma 2 (compactness) and Theorem 8b the usual argament gives:

Theorem 9 (Interpolation theorem). Let ¢, ¢ be sentences of PH,, such that
@, Y+ L. Then there is a sentence 8 of PH,, containing only relation and function
symbols which occur in both @ and s, such that o+ 6 and 6, ¢+ L.

Then once more the usual argument gives:

Corollary 10 (Beth definability). Let T be a theory in PH,., R a relation or
function symbol occurring in T, and L a sublanguage of the language of T in which
R does not occur. Suppos: that if A, B are any two models of T for which
A} L=B1VL, then R, = Ry. Then T entails an explicit definition ¥YT(p <> RD),
where ¢ is a formula of PH,,. using only symbols from L.

Isbeli [8] raised the question whether there is a Beth definability theorem for
equational theories in PH,,, and proved such a theorem assuming an extra
hypothesis about functoriality. (See Hodges [7] for a model-theoretic result which
generalises Isbell’s.) Corollary 10 shows that there it a reasonable definability
theorem without the functoriality condition. Under Isbell’s assumption, ¢ is
existential. In general, can we bound the number of quantifier alternations in 6
when T is equational? Friedman [4] showed that already when k = @ there is no
finite bound. The example below was as near as we could get to showing that for
uncountable « there is no bound <«.

Example 11. Sentences ¢, ¢ of L, ., which are conjunctions of equational
theories, such that ¢,  +- L but there is no interpolant (as in Theorem 9) in LI51.

Let T, be a set of axioms for the variety of lattices with top and bottom
elements 1, 0; we write a=b for anb=a. Let WF_{f) be the set of universal
closures of the equations:

flx, yInfly, 2)<flx, 2),

Flx, x) =0,

$(1,1,1,..0=0 (s is of arity w),
s{f(xg, x4, f(x1, X2), f(x0, x3), .. )= 1.
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Then T, UWF, (f) expresses that the relation f(y, x)=1 is a well-founded irrefle-
xive partial ordering. Let Is;  (f, ¢, d) consist of the identities

Y Yy flc, ) A fly, 2y flgle), gy aflgly), g(x)), fld g(e)) =1,

Let Toit(x) be the set of all elements y such that f(x,v)=1. Let p be the
conjunction of T, WF, {f) and Is; _(f. ¢, d). Then ¢ expresses that g is an isomorph-
ism from Init(c) to a proper initial part of Init(d}, and hence that ¢ has lower rank
than d in the pardal ordering f(y, x) = 1. Let T}, etc. be as T, etc., but with the
lattice operations except 1 replaced by new symbols. Let ¢ be the conjuncticn of
Ty, WEL(f) and Is.. . (f, d, ¢). Then clearly ¢, - L.

Suppose row that 8 is a sentence of L2 in the language with symbols f, I, ¢,
d, and ¢+ 8. The following argument shows that 6 is consistent with , and hence
@ is not an interpolant between ¢ and . For any two transfinite ordinals « and 8
we can construct a model A of ¢ by taking the disjoint union of « and B, and
choosing ¢ € and ¢ <deB. Then Ak8, since ¢+6. But a result of Chang [1]
shows that the LZ2 theory of the ordinal A* is the same for all uncountzble
cardinals A of cofinality >w, and the Feferman-Vaught theorem for disj int
unions of structures holds for LZ2:. Hence 8 also has a model of the same form as
A but with ¢ of higher rank than d.

One of the unnumbered variants of Theorem 8 says that if K is a class of
structures and B is a structure, then there is a surjective homomorphism from a
limit x-redr.ced product of structures in K to a limit x-reduced power of B if and
only if the PH,_, theory of B is consistent with the set of positive PH,, sentences
true throughout K. (Cf. Lemma 3c.) From this it is easy to deduce:

Theorem 12. Let T be a theory in PH,, and ¢ a sentence of PH,, which is
preserved in surjective homomorphisms between models of T, and suppose that ¢ is
preserverd in limit k-reduced powers of models of T. Then ¢ is equivalent in T to a
positive sentence of PH,...

We also have the analogue of Theorem 12 when « is strongly compact, PH,,. is
replaced by PL,, and limit «-reduced powers become limit x-ultrapowers. Note
that every sentence of L, is preserved in limit x-ultrapowers. The case x =
reduces to a well-known theorem of Lyndon. Curiously there do not seem to be
any known counterexamples 1o Lyndon’s theorem for any interesting infinitary
fanguage.

4.2. Sentences preserved in reduced products

When « =, a theorem of Keisler [12] says that a sentence of L, is preserved
in reduced products iff it is logically equivalent to a Horn sentence, (Cf. Chang
and Keisler [2, Theorem 6.2.5]; Galvin eliminat:d Keisler’s use of the continuum
hypothesis.) The next two theorems partially generalise Keisler’s theorem.
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Theorem 13, (1) Let ¢ be a sentence preserved in limit x-reduced products, such
that —p is preserved in limit «-reduced powers. Then ¢ is logically equivalent to a
set of sentences of PH,_,.

(b} Suppose « is strongly compact, and let ¢ be a sertence which is preserved in
limit k-reduced products, such that ~wp is preserved in limit x-uitrapowers, Then ¢ is
equivalent to a set of sentences of PH,..

(¢} Suppose x is strongly compact, and let ¢ be a sentence of L, which is
preserved in limit ic-reduced products. Then o is logically equivalent o a sentence of
PH,..

Proof. (a} and (b) follow straightforwardly from Theorem &. For (¢} we use (b)
and then compactness (Lemma 2) to reduce to a single sentence.

We conjecture that in case {¢) of Theorem 13, the logically equivalent sentence
cannot i general be chosen in PH, ML, .

Theorem 14, Let D de a proper k-complete non-« -saturated filter on the set I If ¢
is a quantifier-free sentence of L. which is preserved in reduced products modulo D,
then ¢ is equivalent to a conjunction of (possibly k) quantifier-free Horn sentences

Of L.

Proof. By the hypothesis on D, there are pairwise disjoini subsets X, (i<k) of [
such that no X, is zero (mod D).

Bring ¢ to conjunctive normal form in L.. Then ¢ is equivalent to the
conjunction of a set of sentences y of form

Ad -\ W

where @&, ¥ are sets of <k atomic sentences. 1t suffices to show that for each such
x theve is some e ¥ such that ¢ entails A @ — . Suppose x is a counterexam-
ple to this, so that for each Y& ¥ there is a model A, of oA A P A Let
f: ¥« be an injection, and choose structures A; (i€I) in such a way that
A; = A, whenever je X,,,. Our assumption on ¢ implies that [, A; is a model
of ¢. and clearly it is also a model of A ®. Now for each $e ¥, licl: A E¢ts
[~ Xy 50 that liel: A RYtED and hence [l A/F 4 Hence o, A PH s, a
contradiction.

Proper x-complete non-x-saturated filters always exist: take the filter {x} on «.
When « is strongly inaccessible, the proof of Theorem 14 does actually give a
Horn sentence of 1., which is equivalent to ¢. Example 15 will show that this is
rot always possible. Examples 15-17 #llustrate three different failures of infinitary
analogues of Keisler's theorem on sentences preserved in reduced products.

Example 15. A quantifier-free sentence of L, which is preserved in x-reduced
prodacts but is not equivalent to any sentence of L., when k = u* and p=* = .
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For each i<_p let P, be a distinct propositional letter. Let ¢ be the sentence of
L. which says:

Either fewer than u of the P, are true, or all of them are.

Then ¢ is preserved in all x-reduced products, since it is equivaient to the
conjunction of the set T of zall sentences

AP =P (i<p ®&ciP:i<pl, cardP)=p).

Every quantifier-free Horn consequence of ¢ in L, is equivalent to a conjunction
of fewer than x sentences of T. But suppase S T, card(S) < p. Then there is a
proper subset X of {P;:i<u}, with cardinality u, such that for each formula
A®~—P in §, @ <X (List the formulae of § in order-type u, and for each
formula A\ @ — P, in turn, put one element of @ inside X and one outside.)
Choose A so that AEP, iff P,eX; then AES but Ak Hence ¢ is not
equivalent to any quantifier-free Horn sentence of L.

Example 16. A sentence of L, which Is preserved in k-reduced products but is
not equivalent to any set of sentences of PH,,, when x =pn ™.

Let ¢, be the Horn sentence of L, which defines the class of x-complete
boolean algebras. In any boolean algebra B let I, (B) be the ideal generated by all

sums of at most p atoms of B, and let ¢, be the statement which holds in B iff:
Either B=1,(B) or B/I,(B} is infinite.

@, can be written as a sentence of L. Our example ¢ is ¢on ¢,

We show that ¢ is preserved in k-reduced products. Suppose that B; is a model
of ¢ for each iel, and D is a x-complete filter on I Write B for [{, B. We
evidently have BFg, since ¢, is Horn, There are now four cases to consider.

Case i: P(I)/D is not atomic. Then B is not atomic, and B/I, (B} is infinite.

Case ii: P(IVI} is atomic but contains some atom X < [ such that B/[, (B)) is
infinite for each i € X. Write D for the restriction of I to X; then (cf. Chang and
Keisler [2, Proposition 6.2.17) B is a product with a factor B’ =[], B, Sin-e X
was an atom, D' is a x-complete ultrafilter, and it follows by £08’s theorem that
B'/1,(8") is infinite. Hence the same holds also for B.

Case iii: P(HD is atomic with at most p atoms, and there is no atom
throughout which B/L,{B,) is infinite. Then again we may write B as a product of
at most u algebras of form B’ =[[s B; where D' is a k-complete ultrafilter on 2
subset ' of I and B, = I (B,) for all ie I'. Again by L.0§’s theorem B'= [ (B"} for
each factor B', and hence the same holds for the preduct B.

Case iv: As Case iii, but 2(I)/D is atomic wi:h more than p atoms. Then we
can pick out k atoms. represented by sets X; < 1 {f < «) which are pairwise disjoint,
and such that B, = [, (B;) for all i € | J;.. X|. Partition « into sets J, (a <x), each
of cardinality . For each ie |}, X, choose an atom x, of . Let b, be the
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element of [, B, such that b, (i)=x, when i< | {X;: JeJ,}. and b, (i) =0 other-
wise. Then each b,/D has p™ distinet atoms below it, and (b,/DYA(by/D)=0
whenever a# 8. Hence B/I,(B) has cardinality at least x.

Hence ¢ is preserved in k-reduced products. To prove that ¢ is not equivalent
to any theory in PH,,, it will be enough (by Lemma 1) to construct a limit
k-reduced power which fails to preserve .

Let 2 be the two-element boolean algebra and let 2* be the expansion of 2 with
all possible functions of arity <«. By Theorem 7a, every reduct to the language of,
boolean algebras of a subalgebra of a x-reduced power of 2* is a limit x-reduced
power of 2. This makes it easy to construct limit k~reduced powers of 2.

Observe that 2 is 2 model of ¢. Now partition « into sets J, K of cardinality «,
and let B* be (2%, and x the element of B* such that x{(i)is 1 iff icJ. Let B be
the reduct to the language of boolean algebras of the subalgebra of B* generated
by the atoms and x. Then we have just seen that B is a limit x-reduced power of
2. Also B is the product of two copies of the subalgebra of 2 generated by all
sums of < atoms. Hence B/I,(B) is the four-element algebra, and so ¢, fails in
B.

Example 17. A first-order sentence which is not equivalent to a sentence in any
PH,,, but is preserved in all k-reduced products with k > w, provided there is no
mczsurable cardinal.

“or this we take the sentence ¢ which says: The structure is a boolean algebra
an i there is a maximal atomless element. We remark that Mansfield [15] used this
sertence as an example of a non-Horn sentence which is preserved in direct
products and what he calls normal submodels. We shall need the fact that ¢ is
preserved in products.

First we show that ¢ is preserved in k-reduced products provided there is no
measurable cardinal and « > w. Let each B, (ieI) be a model of ¢ with maximal
atomless element b, and let D be a x-complete filter on I. Write B={[, B,. If Z
ts an atom of P(I)/D, then the restriction of D to Z is a k-complete ultrafilter on
Z, and this ultrafilter must be principal since thore are no measurable cardinals,
Hence the atoms of P(IN/D are represented by singletons, and we can partition [
into X U'Y where X is a union of singleton atoms and Y is atomless. Write D' for
the restriction of D to Y, and B’ for [{p- B,. Then B’ is atemless and B is the
product of B’ and all the B; with i € X. Since all these algebras satisfy ¢, so does
B.

It remains to show that ¢ is not =quivalent to any set of sentences of any PH,..
We use the approach and notation of Example 16. Let J, K bte disjcint sets of
cardinality «*, and put I=JFJUK. Write D for the «-comnlete filter on [
consisting of those subsets X of I such that I-X consists of fewer than «
clements of K. Let B* be the subalgebra of [[,, 2* consisting of those el- ments b/D
such that b is constant on all but <k elements of I, and let B be the reduct of B*
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to the language of boolean algebras. The atomless clements of B are those which
are zero throughout J, and among these elements none is maximal. Hence B is
not a -model of ¢. But 2 is a model of o, and as in Example 16, B is a limit
«-reduced power of 2.

Kueker [14] introduces the closed unbounded filter D on @, (), and defines
countable approximations ¢* for sentences ¢ of L., and sets se P, («). He
shows (Theorem 4.6) that if ¢ is Horn in L -, and structures A, are given so that
{se®P, (k) A Fe’}e D, then [Ip A k. He asks whether every sentence of L,-,
with this property is Horn up to logicai equivalence. (In our notation, his Horn
sentences are those sentences of L., which are in PH,,, when they are made
prenex.) If x = w, then D is principal and all ¢° can be taken to be equal to ¢; so
the question is only interesting when k> .

Now by Jech {9, Theorem 3.4], the filter D is atomless. It follows that if ¢ is as
in Example 17, reduced products over D preserve ¢ regardless of whether there
are measurable cardinals. Hence ¢ gives a negative answer to Kueker’s question.
If k™" = &, then the quantifier-free sentence of Example 15 gives another negative
answer,

4.3. Elementary extensions satisfying given sentences

We investigate the following problem, which arises because neither PL_, nor
PH,.. is closed under negation. Write A <, B to mean that A is a substructure of
B and every formula in L which is true in A of elements of A is true in B too.
For a given sentence Qg of PL,: {PH,.. ) and stritcture A, when is there B such
hat A< e, B and BEQe?

When L is fixed. let us write AFCQe to mean that there is 5 such that A<, B
and B FQe. We write Q for the dual of Q, got by replacing V and 3 and vice versa
throughout. For any structure A and sentence Qe, consider these six possibilities:

(I AkQe.

(2) AEG .

(3) AECQe and AECQ.

(4) Not (1}, but AECQe and A E-00.

(5) Not (2), but ArOQ—1¢ and AF~0Qg.

(61 AEDQe and A E-0OQe.

Theorem 18. Suppose ¢ above is required to be atomic, and L is PL_, or PH,,.
Then (1)-(6} are mutually exclusive. If « is strongly compect and L is PL,_,, then all
of (1)=(6) do occur. If L is PH,, and « > w, then only possibilities (1), (2}, (3). (8)
oceur.

Proof. Lemma 1 shows that (1)-(6) are mutually exclusive. If L is PH, ., we show
as follows that Qe is equivalent to =1<CQ—1e (which eliminates (4) and (6)). Qo
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entails 10Q~¢ by Lemma 1. Conversely, suppose A k—1Qe; then player 3 has
no winning strategy for G(Qe, A). For some p=k, let A*|F be a (u, k)-
independent limit power of A, and let players ¥V and 3 play G(Qe, A* | F) with
player ¥ using his independent strategy. (Cf. Section 3.1.) Then by Lemma 6,
player ¥ wins on at least one coordinate. But since ¢ is atomic, this means that
player ¥ wins on A* | F. Hence A has an elementary extension A*|F which
satisfies @, andso A ECQ—e. '

It remains to construct situations in which (1)-(6) do occur. We shall treat the
case where « is strongly compact and L is PL,, and leave the case of PH,, to the
reader. Note that o is not strongly compact. (Our results for strongly compact «
in earlier sections did not use the assumption that x > w.)

Consider a quantifier Q of length £ and a cardinal »>> 0. By a v-shuffle of Q we
mean an ordinal a together with a family (x;: 1 <<») of maps x, : § ~ « such that (i}
« is the union of the images of the x;, (ii) each x; is order-preserving, and (iii) if

Q% is defined to be the quantifier of length o such that Q*(x,(B)) = Q(B) for each
i<vand B<& I (az: B<a) is a play of the pre-game G(QF, A), then the ith
thread @' of this play is defined to be (a,u,: B<§), for each i<w.

Let G be the game G{Qg, A). Then we define a game G*=G¥*Qe, A): G¥ is
played as G(Q*. A), and player V wins iff for at least onc i <v, AF~p[d‘], We
call G* a w-derived game of G iff v<«.

The statement that player V has a winning strategy for G¥(Qe, A) can be
written in the form: Player 3 has a winning strategy for G(Q'¢’, A) where Q' is a
certain quantifier of length a and ¢’ is a certain disjunction of instances of -,

Lemma (x strongly compact). Let Qo be a sentence of PL... Then for any
structure A the following are equivalent:

(iy AECQe.

(il) player ¥ has no winning strategy for any x-derived game of G(Qe, A).

Proof of lemma. By Lemma 1 and the remark before the present lemma, if player
¥ has winning strategies for all «x-derived games of G(Qg, A) and B is an
clementary extension of A, then player V has winning strategies for all x-derived
games of G(Qg, B), and so BE—Qe. This proves the implication (1) = (ii).

For the converse, assume (ii). Choose = card(A) such that w=" = g, and let
A" | F be the (u, k)-independent limit power of A generated by (f: i <<2*). The
number of sequences of length <« of elements of A* | F is at most 2%; we
partition 2* into disjoint cofinal sets X indexed by such sequences a. Let ¢ he
the strategy for player 3 in G(Qe, A* | F) which is the same as his independent
strategy defined in Section 3.1, except that for ‘the first f;” we read ‘the first f in
X, (where a is the sequence of moves played so far)’. Thus the whole preceding
play can be inferred from each move of player 3.

If player V plays strategy = against player Fs o, the resulti ¢ play of
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H{Qe, A* | F) is a sequence {G: ] <£); write
Alr)={i<p: Abe[F(Y] s

Let D be the filter on 1 generated by all intersections of fewer than « sets A(r)
where 7 ranges over the possible strategies of player V in G(Qe, A*|F).

Clearly D is x-complete. We claim that D is proper. For this it suffices to show
that if {7,: y<v} is a set of <« sirategies for player V in G{Qe, A* | F), then
N y<v A7) is not empty.

Write {d,;: j < &) for the play when player V plays r, against o. The choice of o
ir~r lies that there is a v-shuffle $ of Q with ordinal @ and maps (x,: y <v), such
thar if x,(h)<x;(j) and Q(j) =3, then Gy ¢ supp(d,,). Let b be the sequence of
length « whose x,(h)th element is 4, After renumbering the fi to match the
order in which they appear in b, b becomes a play of G%(Qe, A* | F) in which
player 3 uses the independent strategy. By Lemma 6 with X =«, there is Zc p
on which player ¥V uses a fixed strategy. Now G%(Qe, A) is a «-derived game of
G(Qe, A), so by assumption player ¥ has no winning strategy for it. By Lemma 6
again, player 3 plays in every possible way against player ¥'s fixed strategy, so
that player 3 wins at some coordinate i On {, each Bl (M) j<&)y=
(@, {i): j <& is winning for 3 in G(Qe, A). In short, i€, Alr,). The claim is
proved.

Hence D can be extended to a x-ultrafilter D on . Then A <, A% |F.
Since each A{r)is in D', A% | F¥Qe. This proves (i).

Now we return to the theorem. Examples of (1) and (2) are no trouble to find.
We shall construct an example of (3). Qe will be of form

Yoo 3v, Yo, Jus - - R{vev, - )

where Q has length w and R is an w-ary relation symbol. The structure A will be
of form (A, R,) where A =« and 2" = A“, (For example, A is the first strong limit
number >«.) By the choice of A, we can list as {7, G;) (i <A“) all the pairs such
thut G, is a k-derived game of G(Qg., A) or G{Q e, A), and 7, is a strategy for
player ¥ in G, {(We know how these games are played, but since R, is not yet
defined we do not know what counts as winning them.) For each i <A”, let o; be
the following strategy for player 3 in G,, defined by induction on i: at each thread,
play a sequence fromn “A widch is distinct from the sequences played by cither
player at any thread of the game when player J plays o; against player V’s =, for
all j<<i.

Now by induction on i, we can ensure that ¢, always wins against 7, by putting
some sequences from “A into R, {when G, is a k-derived game of G(Qg, A)) or
excluding some sequences from R, (otherwise). The definition of the o; ensures
that the sequences to be put in at one stage are all different from those to be
excluded at another. R, is otherwise chosen arbitrasily. Then no 1, is a winning
strategy for player ¥ in G, Hence (2) holds by the lemma.
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Next we construct an example of (4). The sentence Q¢ and the structure A will
have the same form as for (3); but this time we must construct R, so that (i)
player 3 has no winning strategy in G{Qe, A), (i) player V has no winning
strategy in any k-derived game of G{(Qe¢, A), and (iii) player ¥ has a winning
strategy for some «-derived game of G(Q e, A).

List without repetition all finite sequences of elements of A as ¢, (a<<A). Let §
be the 2-shuffie of Q with ordinal @, such that for each n, xy(n)=2n and
x(n)=2n+1, We shall ensure that playzr ¥ wins G*(Q—¢, A) if he plays the
following strategy p: when aq, ..., a, is the play so far, ¥V shall play o where
{ay, . . ., a,)=¢,. Thus each move of player V records the entire previous history
of the play. List as Y; (i <A®) all pairs {a°, @'} where @°, @' are respectively the
0Oth and 1th thread of a play of G¥(Q~1¢, A) in which player ¥ uses p. By choice
of p, the Y, are pairwise disjoint and all of cardinality 2. To ensure that p wins
G¥Q g, A) for player V, it suffices that for each i <<A®, Y; MR, is not empty.

Let {7, G;) (i<A®) list all pairs suck that either G, is G{Qe¢, A) and =, is a
strategy for player 3 in G, or G, is a «x-derived game of G(Qe, A) and 7, is a
strategy for player V in G,. For each i <A*, we shall define sets M, N; c“A, both
of cardinality <, and a strategy o; for the player opposed to 1, in G, The
definition is by induction on i, as follows.

Case 1: G; is a derived game of G(Qo, A). Then o; shall be the following
strategy for player 3 in G;: at each thread, play a sequence €“A which is distinct
from every sequence played at any j <<i when o; is played against 7. Player 3 wins
G; by playing o, against 7; iff a certain subset M of “A is in R4; put M; =M,
N, =$. M, has cardinality <k <A“.

Case 2: G, is G{Qg, A). Then g; shall be the following strategy for player V in
G;: play a sequence €“\ which is distinct from all sequences that are either in
UieeM or in any Y, (k<x®) such that Y, N(U;< N;)#8@. Player ¥V wins
G(Qe, A) by playing o, against 7, iff the resulting play @ is not in R,; put
N, =1d}, M, =

By construction, M* = | J,., M, is disjoint from N*=1J,., N,, and N* does not
include any Y, We define R, to be “A~N* Then M*< R,,, so (ii) holds; N* is
disjoint from R,, so (i) holds; each Y; meets R,, so (iii} holds. This makes (4)
true. We get an example of (5) by dualising Q and taling the complement of R,.

It remains to give an example of (6). We choose Q¢ and A as for (3), but with
R, chosen as follows. Let § be any w-shuffle of Q with ordinal @ such that the x;
{i < w) have pairwise dicjoint images. It suffices to choose R, so that player V has
winning strategies for G*(Qe, A) and G*Q g, A). As in the construction of (4),
we can give player ¥ strategies p and o for these two games respectively, so that
at every move he codes up the preceding play. List as Y, (a<{A®) the sets of
form {nth thread of @: n <ew} where § is some play of G*(Qe, A) in ~hich player
uses p: let Z, (& <A*) be a corresponding list for G¥(@ ¢, A) and 0. The Y,
are prirwise disjoint and of cardinality w; likewise the Z,. For p and ¢ to be
winnin>, it suffices that (i) for each a <A, Y, ¢ Ry, and (i) for each & <A®, Z,
meets R..
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Say that Y,, Z are close iff Y, NZg#§. The transitive closure of closeness is
an equivalence relation, and each equivalence class is countable. We procure (i)
and (i) on each equivalence class separately, by listing the class in order-type @
and then inductively putting cne element of cach Y, or Z, outside or inside R,
as required.

The amalgamation propenty for <, would say (if it were true): If A< B,
(i=1, 2), then there is C such that B,< _ C (i=1, 2), up to isomorphism over A.

Corellary 19, If L is PH, with k >, or if L is PL., with « strongly compaci,
the amalgamation property fails for L.

Proof. This follows from possibility (3).

4.4. Ultralimits and a logic with Craig and Feferman—Vaught properties

From now on we assume that « is strongly compact and (except where stated) all
relations and functions in structures are finitary.

Recall Kochen's notion of ultralimits [13]: if A; (i <) are structures such that
each A,,; is an ultrapower A’ of A, and A, is the direct limit of the A, under
the natural embeddings, then we say that A, is an uitralimit of A,. We shall write
A, =Ult Ay/D,. If the D, are x-ultrafilters, we call A, a x-ulwralimit of A,.

The construction can be iterated beyond w. Suppose for each ordinal a we have
a set I, and an ultrafilter D, on I,: then for every structure A we can define
structures A"’ by induction:

441““314.,
(200 {ex )t
Al = Al

A= I,LIESA(D“ when 8 is a limit ordinal.
For all @ < there are canonical elementary embeddings b,z : A“'— A® which
we use to define the limits at limit ordinals, If o << <y, then h,, = hg h,, If
A= B then A¥'=RB" for all g =a.

We shall apply this idea in the case where all the ultrafilters D, are -
ultrafilters. Let D =(D,_: « an ordinal) be a sequence of x-ultrafilters on sets I
Then we define an equivalence relation ~ ., on structures by:

A~ B iff for some o, A =B

It is easy to see that if k was w, then we could choose I so that ~;,, coincides
with elementary equivalence. Theorem 20 generalises this fact:

Theorem 28. There iy a sequence D of w-ult:afilters such that in each similarity
type, ~p, has only a set of equivalence classes. Moreover there is a proper class C of
ordinals such that A= A"’ for every structure A and every ye C.
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The proof will rest on the following rather technical lemma:

Lemma 21. Let A be any cardinal. Then there is a sequence of «-ultrafilters D; on
sets I (i < w) such that if A, B are any two L, -equivalent siructures of cardinality
<A, in any language, then

Ult A/D;=Uk B/D..

Proof. For the first part of this proof, we allow structures to carry relations of any
arity <k.

For some cardinal A’ there exists a family of pairs of structures, {((A,, B,): y<
A%, such that each A, and each B, has a subset of A as its domain, each A, is
L..-equivalent to B,, and every pair of L, -equivalent structures of cardinality
=\ differs from some pair {A,, B,) in at most the choice of language. Choose a
cardinal . such that ™" = p and 2* 2 X', and partition 2* into sets Y, (v <A") of
cardinality =X. Choose a (u, k, A)-indepeadent family (f,: a<<2"). For each
vy<A"and a€ Y, let g, be a map from y to dom B,, such that if f,(i)e dom B,,
then g, ()= f,(i). Then {g,,: @€ Y,) forms a (u, x, dom B )-independent family
of cardinality =A. Choose an injection 6,:dom A, —{g,,:acY,]. List the
clemeuts of A, in order-type A (possibly with repetitions} as d,, and write 84, for
the sequence {8(a,(j)): j<A).

Now for each v-<<A’ and each atomic or negated atomic formula ¢ with
variables v, (a<<A). define

B (¢)={i<ipn: B, Fol[6a,].

Let D be the filter on u generated by all intersections of fewer than « sets of
form B, () such that A, Fela,]

Claim. D is a «-filter.

As usual, the burden is to show that D is proper. Suppose ¢, (B<v<k) are
formulae such that A, Fg[a,] for all B <v. Then A, F3D Ag<, @5 (D). Since A,
and B, aie L,.-equivalent, there is a sequence b, in B so that B, FAs., ¢s(b,].
Then since the g, are (., x, dom B, )-independent, there is i <y such that (64,);
agrees with b, at the relevant places. Of course most generators of D involve sets
B,(¢) from several different y<A'; but the fact that the f, were (u, %, A)-
independent ensures that we can find an i < which works for all these -y at once.
Hence the claim is proved.

Let D, be z «-ultrafilter on p which extends D. Then for each y<A', 6,
induces an embedding of A, into BY;, . Hence if A, B are any two L -equivalent
structures of cardinality <A, then A is embeddable in Bj,.

Iterating this construction, we can find p, = and a «-ultrafiiter D, on u, such
that if A, B are any two L, -equivalent structures of cardinality < *, then A is
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embeddable in B%:. Then we can find u, 2 u, and a x-ultrafilter D, on p, which
serves for structures of cardinality =A":; and so on for @ steps.

Now let A, B be any two L, -equivalent structures of cardinality <A. Form A¥,
B* from A, B by adding relations for all formulae of L. Then any embedding of
A* into an L, -equivalent structure is L. -elementary, so by the construction
above we have an L., -elementary embedding e,: A* — BE". Then likewise we
have an L, -elementary embedding e, : BE*— A¥* so that the diagram

A e ndt A*‘L'
R 3

S,

g
Dy

commutes. Continuing the diagram to the right for o steps (cf. [13]), we
eventually reach isomorphic x-ultralimits Ult A/D,, , and Ult B/D,,. (The non-
finitary relations have to be dropped when we take limits.) Since the same proof
shows that Ult A/D,,  =Ult A/D,,, i follows that

Ul A/Dzi =Ul B/DZ:"

and so (D, D,....) is the required sequence of «-ultrafiiters.

We remark that since « is strongly compact, Lemma 21 implies that if K is any
class of structures such that both X and its complement are closed under
k-ultralimits, then K is defined by a sentence of L.

Proof of Theorem 20. We define the x-ultrafilters D, by induction, using global
choice. Let A be 0 or an uncountable cardinal, and suppose that for each a <A
the w-ultrafilter D, on u, has been defined. Let u be sup{u,: @ <A}. By Lemma
21, choose D, ,; (i<w) so that if A, B are any two L, -equivalent structures of
cardinality =2*, then Ult A/D,,; =Ult B/D,,,. Then for each a<A’, put D, =
Dy where a=(Atw)-vy+p and 0B <A +w.

To show that this definition of DD works for the theorem, consider a language
with » symbols. In this language there are at most %" pairwise non-L,, -
equivalent structures. We claim that there are at most 2°*" equivalence classes of
~ . In this language. For if not, we can choose a set K of (2°"¥)* structures
which are pairwise non-equivalent with respect to ~p,. Let A be any cardinal
greater than the cardinalities of all the structures in K. Then there are distinct
A, Be K such that A™ is L -equivalent to B®’, und both have cardinality =2*,
But then A® ™ =B"“** and hence A ~,, B contradicting the choice of K. This
shows that ~,, has only a set of equivalence classes in each language.

Finally let C be the class of a’l transtinite ordinals of the form (A +w) -y with
y<<A". Then for each BeC, the secuences (D,: a zn ordinaly and (Dy,.: « an
ordinal) are identical, and so for an  structure A, A® ™= AB M a AW for al]
large enough A. proving that A ~,, A%,
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Given D as in Theorem 20, we can define a non-standard logic L, as follows.
Let S be a set of representatives (up to isomorphism) of all similarity types of
cardinality <x. For each s€§ and each set X of ~,,-equivalence classes of
s-structures, we introduce a quantifier Q,z by the rule

AFQ(@y,..) HIthe ~,-class of the structure (dom A, (@)4, .. ) isin 2.

The sentences of Ly, in a given similarity type will be the expressions of form
Q. (R,%, R,0,...) where R, R,, ... are relation symbols of the similarity type.
(For simplicity we are ignoring functions and constants.) Note that there is only a
set of such sentences.

Sentences of L, are preserved in x-ultralimits, and so any two ~ ,,-equivalent
structures must have the same L,,-theory. It follows that the logic L, is not

A-compact for any A <<k, Against this bad property, it has two good ones:

Theorem 22. et Ly, be as defined above. Then:

(i) the Craig interpolation theorem holds for Ly,

(i) (Feferman—Vaught property) the Lp-theory of a sum or product of two
structures is determined by the Ly -theories of the structures.

Proof. (i) Let s,, s, be similarity types with intersection s. Let ¢,, ¢, be sentences
of Lp(s;), Liz(s;) respectively, so that ¢; entails ¢,. We can suppose without loss
that s was in the set S defined earlier, and so we can define ¥ to be the set of all
~m-equivalence classes of s-structures which contain reducts of models of ¢,.
We claim that the sentence Qg is an interpolant in L, (s) between ¢, and .

If A is any model of ¢,, then the s-reduct of A is in the class T, and so AFQ,..
This shows that ¢, entails C,,.

Suppose B is an s,-structure which is a model of Q,y. Then for some model A
of @,. Als~yp, Bls. It follows that for all large enough ordinals v, (A ]5)™ =
(B |s)”". In particular this hoids for some vy in C. Since vy isin C, A ~5,,A™ and
hence A™ is a model of ;. So B™ can be expanded to a model of ¢, and hence
B is a model of ¢,. But then B was also a mode! of ¢,, because B ~ ) B™.
This shows that Q,; entails ¢,, and so (i) is proved.

(ii) is proved similarly, using the facts that A™XB™=(AXxB)Y" and
AW)‘FBW)":V(“A +B)W},
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