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We study "educed products over K-complete filters. For such products the 
structures can carry relations and functions of my arity <~¢, though nearly all our 
results attgw the relations and functions to be t ,litary. Most of our theorems come 
in two forms: (H) for K-complete filters and Horn logic, where K is regular; and 
(S) for K-complete ultrafilters and L ~  with game quantifiers, where ~ is strongly 
compact. Generally the (S) version is more elegant, but the (H) version applies in 
more situations. 

Our main result appears as Theorem 4 in Section 2. In the (H) version, it says 
that under certain set-theoretic assumptions, two structures have isomorphic 
reduced powers over K-complete filters ff and only if their K-Horn theories are 
consistent with each other. (Unpublished work of Laver shows that the set- 
theoretic assumption is consistent if there is a proper class of measurable 
cardinals.) We give several variants of this result. Both the (H) and the (S) 
versions are known to be true absolutely when K =~0; the (S) version is the 
Keisler-Shelah theorem on isomorphism of ultrapowers [16] and the (H) version 
appears as Exercise 6.2.6 in Chang and Keisler [2]. For uncountable K the 
theorem is new. 

I~ Section 3 we prove the same theorems for limit reduced products where both 
filters are required to be K-complete. This time no special set-theoretic assump- 
tions are needed. We also characterise limit reduced powers over K-complete 
filters as the most general operation which commutes with taking reducts and 
gives elementary extensions for certain languages; the (S) version generalises a 
re':ult of Keisler for K = ~O. 

Section 4 uses the results of Section 3 to deduce some infinitary model theory. 
We give interpolation and preservation theorems for Horn logic: these were 
originally proved [6] by using a more conventional proof-theoretic argument. 
When K >to, the formulae which are preserved by reduced products over K- 
complete filters are not necessarily Horn, even up to logical equNalence; we give 
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A*,gust 1978 under Science Research Council Senior Visiting Fellowship GR/At52997. 
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examples, some of which also answer a related question of Kueker, We show that 
the amalgamation property fails badly for logics with non-homogeneous infinitary 
quantifiers, Finally we describe an incompact logic which satisfies the Craig 
interpolation theorem and has tl:e Feferman-Vaught property (but it has poor 
substitution properties). 

In Sections 2 and 3 we handle the infinitary quantifiers by making two players 
play a large number of infinitary games simultaneously on separate boards. The  
idea in Section 3 is to make sure that the right player wins by making the players 
play elements of a limit product constructed from a family of independent 
functions; this idea was due to Shelah. The corresponding devices for reduced 
products ira Section 2 are an amalgam of several people 's  ideas: we thank Fred 
Galvin and Richard Laver' for letting us have their contributions. 

1. Preliminaries 

Throughout, K is a regular cardinal. If A is a structure, then we alwa,,,s assume 
that the relations RA and functions Fa of A have arities <K. By a K-filter we 
mean a filter which is proper and K-complete (i.e. closed under infs of <K 
elements); a K-ultrafilter is a K-complete ultrafilter. The letters ~, ,k, ~,, v are 
reserved for cardinals, while a, /3, i, j etc. are ordinals. 

1.1. Languages and games 

A pro-game is an incompletely specified game, where we know what counts as 
playing ~t, but not necessarily what counts as winning it. If players play a 
Fre-game, the result is a sequence of moves called ~t play. 

By a quantifier of length c~ we mean a map Q : c~ ~ ' t V ,  3}. A quantifier O and a 
structure A define a pro-game G(Q, A) as follows: players V and 3 pick elements 
a~ of dora A (=domain of A)  for each /3 <c~ =lenglh(Q).  Hayer  Q(/3) picks a~, 
and he is allowed to know what av (V</3) have been chosen. Thus the play is a 
sequence ~ of length ~ from dom A. We sometime~ generalise this definition a 
little by allowing the domain of Q to consist of any increasing sequence of 
ordinals of length ~. The pre-game G(Q, A)  is said to have length ~. 

Let L be a language. We shall de fne  a language ??L. The formulae of PL are 
the pairs (Q, .¢), written Q~, where Q is a quantifier and ~ is a quantifier-free 
formula of L. If A is a structure of the similarity type of L, then G(Q~9, A)  is the 
following game: players V and :t play G(Q, A), and if the resulting play is & then 
3 wins iff Ag,~[8]. A~Q,¢ means that player q has a winning strategy in 
G ( Q ~  A). 

For example, if L is L~,~, then PL essentially consists of the prenex formulae of 
L~o.  In this case PL is an extension of fi st-order logic, but note that it is not 
closed under negation (even up to logical equivalence) when K >~o. 

Another example we shall often use is Hon.~ logic. A quantifier-free Horn 
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formula of  L.~ is a conjunction of <:K formulae of form 

AO-~A~ 
v,here O, ~I t are sets of <~  atomic formulae, and ~lt is non-empty; .1. (falsehood) 
counts as atomic. H~. consists of the quantifier-free Horn formulae of L.. .  When 
we speak of Horn logic we shall mean PH~.  

1.2. Limit reduced products 

The following definitions are taken from Keisler [10, 11] or Chang and Keisler 
[2], with some slight changes. 

Let  I be a non-empty set, and for each i ~ I let A~ be a structure, all of the 
same similarity type. Then we may fo~m the product structure ~ t ~  At or more 
briefly [L A~, 

Reduced products are homomorphic images of products, got by factoring out 
proper filters D on L Precisely, let D be a proper filter on I (i.e. a proper filter on 
the boolean algebra ~I ) .  For f, g ~ l-It A ,  put f - D  g iff {i ~ 1: f(i) = g(i)} ~ D. Then 
- ~  is an equi~'alence relation on [Ix A~. If moreover D is K-complete, then ~D is a 
congruence with respect to the functions and relations of l~t A~, and by factoring 
out "~o we get a homomorphic image l Jo  A~ of [~ A~. ~Io At is called a ~-reduced 
product of the A~. 

Limit reduced products are substructures of reduced products, got from filters 
on the set of partitions of the index set I. Let  Part(I) be the set of partitions of I, 
and for ~r, p ~ Part(I) write ~r ~ p when every partition class of ¢r is included in a 
partition class of p. Then (Part(F), ~<) is a complete lattice. For each element f of 
l-[~ At, write If] for the partition w of I such that i, j lie in the same class of 7r iff 
A~ = A i and f(i)=f(j) .  Let F be a filter on Part(I) and f~l-[oAi; then we say f is 
an F-element iff f = g / ~ o  for some g ~ F L A t  with [g]EF.  Provided F is K- 
complete, the F-elements form a substructure of ] J o A ,  which we write as 
~ o  A~ I F. This structure is called a limit n-reduced product of the A~. Note that 
~D A~IF can be formed by first forming a limit product [ I r A t l F  and then 
factoring out by ~D- 

If A~ = A for each i ~ I, we say "power' instead of 'product' ,  A ~ instead of [I~ A~, 
and A ~  for ~[o A ,  Constant functions in A t are F-elements for every filter F, so 
there is a natural embedding of A into A ~  I F which takes each element of dora A 
to the corresponding constant function. 

When D is an ultrafilter, we say 'ultras' for 'reduced'.  
Note that every K-reduced product is also a limit K-reduced product, by taking 

F to be the whole of Part(I). 

1.3. Preservation and compacmess 

We say that a sentence ~ is preserved in limit ~-reduced products if[ every limit 
n-reduced product of models of ~p is again a model of q~; and likewise with other 
operations on models. 
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80 W. Hodges, S. Shelcth 

Lemma 1 (Preservation theorems-easy direction). Ever), sentence of PH,~ (PL~) 
is preserved in limit K-reduced products (limit K-ultraproducts). 

Proof, We prove only the P H ~  case. Let I'[o A~ I F be a limk K-reduced product 
of models of the sentence Qq~ of PHi , .  Then for each i ~/ ,  player B has a winning 
strategy cr~ in the game G(Oq~, A~); we may assume cr~ = ~  whenever A~ = A i. For  
G(Q,ILA~) he has the following strategy or: play cr~ at the ith coordinate, for 
each i~L We claim that c~ is also a strategy for player ::1 in G(Q,I-~A~ IF). For 
suppose ¢i v (7</3)  have been chosen from I'[rA~ IF, and O(/3)=B. Writing ~ ( i )  
for the ith element of a.~, we want :~ to choose ~ so that t~t3(i)= ~.(6w(i): 3,</3). 
But [fi~3]~</k~<t3 [6~], # < K  and F is K-complete; so he can choose this way. 

Now let player 3 play G(Oq~, 11o A~ I F) by choosing representatives of equival- 
ence classes and using o- in G(O~o, []~ A~IF). Suppose the play on l i t  Ai t F  is 
(¢]~:/3<co). Then for each i, A~¢[Ft~(i)]~<, by choice of or,. 'Fhen since ¢ is 
quantifier-free Horn and D is a r-complete filter it follows easily that ]'lo A~ 
q?[c~j-~D]~<,. But since ~ is quantifier-free, this implies that [ ~ A ~ I F ¢  
¢[a6/~o]6<.~. Hence player ~ wins G(Q~, ~Io A~ I F), and so I l~  A~ I F is a model 
of O~ as required. 

The converse of Theorem 1 is to characterise those sentences which are 
preserved in all limit ~-reduced products. We give some positive and some 
negative results on this in Section 4.1 below. 

Lemma 2 (Compactness). f f  T is a set of sentences of PH~ (PL.., where n is 
strong[y compact), such that every subset of T of cardinatity <K has a model then 
T has a model. 

Proof. By Lemma 1 and the usual ultraproduct proof of the compactness theorem 
[2. Corollary 4.1.11], it suffices to find a K-filter D on a set I and a family S of 
card(T) elements of D, such that every element of I is in fewer thin1 ~¢ elements of 
S. Take I to be the set of all sets of fewer than K elements of "/; and let S be the 
family of sets of form {t6I: s ~ t }  for s6I. Let D be the filter generated by S; 
then D is K-.complete since S is closed under intersectio,q:~ of fewer than K 
elements (by the regularity of K), and D is obviously proper, 

[.emma 2 has another proof: set up a complete cut-free proof calculus for PH,,. 
(PLy.), and show that any proof of a contradiction from sentences in PH. .  (PL~) 
has fewer than ~( premises. (For the Horn case one can use Takeuti 's complete- 
hess theore~n for negative sequents with heterogeneous quantifiers; see [17, 
Proposition 24.19].) Hence the notion of a consistent theory of Pt-I.~ or PLy. is quite 
unambiguous. 

2. Reduced products 

In this sectio~ we give necessary and sufficient conditions for two structures (or 
families of structures) to have isomorphic •-reduce0 p~'oducts or K-uhraproduct~s. 
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Infinite games and reduced products 81 

We can vary the question, for example by requiring the two filters to be the same, 
or asking for just one of them to be an ultrafilter. Some set-theoretic assum;Aions 
seem to be needed. 

2.1. The quamitier-free part 

Throughout  this paragraph the setting is as follows. For  each i ~ I a structure A, 
is given, and for each j ~ J  a structure B,. t* is a cardinal, and sequences 
(&,: y < / * ) ,  (/7.~: y < , ~ )  of elements of l-IrA,, ~-[.sB i respectively are given. For 
each i e I the sequence 

(a , ( i ) :  v < ~) 

is called the ith thread of (~y: y < t*}, and written ~ ;  similarly b*. For the moment 
we assume tkat the variables of P H ~  (PI.,~) are v~ (Y<t*).  

Lenuna 3a. 7here is a family zi of ordere.d pairs (0, "O) of quantifier-free formulae 
of PHil ,  not depending on (t~v: 3,<1,), (/7~: "/<Ix}, such that the follow~ing are 
equivalent: 

(i) for every pair (0, ~1} in A, either there is i ~_ I such that A~ g -7 O[a ~ ] or there is 
] ~ J  such that Bi~-~l[/~J]; 

(ii) there are K-fibers D, E on I, J respectively, such that for every atomic fommla 

ProoL To make later variants easier, we shall be a little more formal than we 
need. Consider the following notion of proof. By a proof-scheme we mean a tree 
P such that (1) there is a single bottom node, (2) each node has <K nodes 
immediately above it, (3) every node has finite height, (4) each node has one 
atomic formula attached to it, (5) each node is labelled A or B. The formula 
attached to the bottom node is called the conclusion. A node N labelled A will be 
said to be correct at i iff, writing to for the formula attached at N and qb for the set 
of formulae attached :~mmediately above N, 

Smlilarly for nodes labelled B. N is everywhere correct iff N is correct at ever), i e I 
or  every j ~ J  (according as N is labelled A or B). P is valid iff all its nodes are 
everywhere correct. We write I- * ~ iff there is a valid proof-scheme with conclu- 
sion to. 

For each formula @ write 

a ( ~ )  ={i e I: & ~ ~[a*]}, 

and similarly B0¢). Define D to b,~ tke 6~*,~ .~:, i ~,enerated by all intersections of 
fewer than ~ sets At(t0) such that t. *to, and E the filter on J generated by 
intersections of fewer than K sets B(to) such that ~-* ~b. Clearly both D mad E are 
K-complete. 

Claim. For each atomic formula qJ, A (to)~ D iff t-*<b iff B(  to) ~ E. 
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By symmetry we only need prove the first equivalence. Right to left is by 
definition of D. Conversely, suppose A(~b) ~ D ;  then there is a set • of fewer than 
~¢ atomic formulae q~ such that F* ~, for which 

f'] A(q~)~ A(tO), (1) 

For each ~ ~ 4> there is a valid proof-scheme P~ with conclusion ¢. Let  P be the 
proof-scheme with conclusion tO labelled A, such that when the bottom node of P 
is removed, the segments which remain are precisely the P .  (~ ~ q~). Then P is 
valid, be,:ause the P .  are valid and (I) says that the bottom node of P is 
everywhe re correct. Hence ~- * tO, and the claim is proved. 

The claim implies that for every atomic formula tO, I'IDei ~tO[gtv]~, ..... iff 

Now for each proof-scheme P we can write down a pair of quantifier-flee Horn 
formulae (Oe, tie}, not depending on the 6 w and the b'v, so that P is valid if[ 

for all i~ I ,  As~Oe[fi~], 
and 

for all j~,l ,  B~rtp[1)i]. 

Take 2~ to be the set of all pairs (0p,'rie) such that P is a proof-scheme with 
conclusion 1 .  Then clause (i) of the lemma saTs that no such P is valid, or in 
other words: not ~-* ±.  

If not ~-* ±, then by the claim, the empty set A(±)  = B(J.) is not in D or E, and 
hence D and E are proper. By what we have already proved about D and E, it 
follows that they are K-filters satisfying (ii). Thus (i) implies (ii). 

Conversely suppose that D',  E '  a. e n-filters, on L J as in (ii). Then for every 
atomic formula ~b, A (tO) ~ D '  iff B (to) 5, E ' .  Now let P be a valid proof-scheme and 
N a node of P labelled A ; let q5 be the set of atomic formulae immediately above 
N, and to the formula attached at N. The condition that N is everywhere correct 
iraplies that (I) holds. But D '  is K-complete, so that if A(~)  ~_ D '  for every q~ 6 ¢', 
then A (+)6 D'. By induction down valid proof-schemes, it follows that for every 
atomic iormula 4¢ if ~-* ~h, then A(tO)~ D'. Since D' is a ~-filter it is proper, and 
hence not ~-* ±. Hence (ii) implies (i). 

Here follow some variants of Lemma 3a, The first is the obvious adaptation to 
~¢-ultrafilters: 

Lemm,z 3b. Let K be strongly compact. 71~ere is a family A of ordered pairs (0, :q} of 
quan¢ifier-f?ee formulae of PLy., not depending on (fly: y < tt)~ (by: Y < lz), such 
that the following are equivalent: 

(i) for every 9air (0, ~q) in A, either there is i ~ I such that At g~0[gg]  or them is 
j ~ J such that B i ~-q~t[bJ]; 

(ii) ther; ate K-ulttafilters D, E on 1, J resp, cti~ety, such that for every atomic 
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Proot.  Define A(q>), BdO) as in the proof c i Lemma 3a. Let  ~ be any set of 
fewer than K atomic formulae. Then (ii) implies the following: 

(iii) there are ~ ,  ¢b a such that 4~ = 4~ U ¢b~, and there are ,:-filters D'. E' on L 
J such that for every qteq)~, A(qs)~.D' and B(q~):~ E',  while for every qs~q~2, 
A (-ngs) e D' and B('nq/) e E'. 

Conversely [f (iii) holds for ew~ry set q~ of fewer than ~< atomic formulae, then 
the strong compactness of K aUows us to deduce (ii). So it will be enough if we fix 

and define ,:1 to make (i) and ~iii) equivalent; the union of the A defined for the 
different ~ will work for the lemma. 

Henceforth q~ is a fixed set of fewer than K atomic formulae. We define 
proof-scheme as in the proof of Lemma 3a, with the following changes. In clause 
(4), 'atomic'  becomes 'atomic or negated atomic'. We a td a new clause: (6) zero 
or  more maximal nodes of P are designated as premises. P is valid iff all its nodes 
which are nol premises are everywhere correct. We write q:~-* @ if / there is a valid 
proof~scheme whose bottom formula is ~9 and whose premise-formulae are 
elements of ~'. For each proof-scheme P we can write down a pair of quantifier- 
free formulae (0e, "q~,}, not del: ending on the ~, and the G~, so that P is valid iff 

for all i ~ I ,  A+~0,,[a+]. 
and 

for all j~J,  B~ne[6i]. 

Next, for each g ~  ~, define D,~, to be the filter on I generated by all 
intersections of fewer than ~< sets A(t0) such that g tU{-n, ,0 :q~6O-gt}l-*O;  
likewise E,v on Jr. Then D,v and Eq, are obviously ~-complete, and the same 
argument as for Lemma 3a shows: 

Claim. For each atomic or negated atomic formula ~b, A(q~)~D,~ /f/ 
~ O{-nq~: ~ O -  ~}~* ~/J i f /B(tO)eE,.  

Now by the claim, (iii) above holds provided that we have: 

(iv) there is ~ c ~  such that not gtU{-nq~: ~ q) -g :} t -*  ±.  

(Put D ' =  Dq, and E '  = F_~.) Conversely if (iii) holds, then the argument of the 
last part of the proof of Lemma 3a shows that (iv) holds too. So we have to find a 
zi which makes (i) equivalent to (iv). Define a proof-system to be a map 
p : ) (cb)  --> (proof-schemes) such that for each q: =_ 4~, p(~') is a proof-scheme 
with premises c. q," U {-n~¢: ~ ~ • -  gt} and conclusion ±.  Then (iv) is equivalent 
to: 

(v) for every proof-system p there is g : g  q> such that p(~t') is not valid. 

For each ~roof-system p define formulae 

0,,= A 0o(,, n~ = A n~(q'). 
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Then 0p, ~ are in L , ,  because ~< is strongly inaccessible. Let  it be the set 
{{0~, 7/p): p is a proof-system}. For  this A, (i) says precisely that for every 
proof-system p there is some invalid PO?); so (i) is equivalent to (v) as required. 

The next two variants of Lemma 3 need no new ideas: 

Lemma 3c. There is a family .~1 of ordered pairs (0, ~) of  quantifier-free formulae of 
PH,,,,, not depending on (&¢: V </~}, (/~.~: 3' </x) ,  such that each 0 is" a conjunction 
of atomic formulae, and the following are equivalent: 

(i) for every pair (0, rl) in zl, either there is i ~ I such that A~ h -10[g~] or there is 
j ~ J such that B i ~ r / [ b ' ~ ] ;  

(ii) there are ~c-filters D, E on I, J respectively, such that for ever3, atomic formula 
,lJ. if  HD A, ~ t~[/i,:L .... then I[E Bj ~ 0[/~],<~. 

Lemma 3d. l e t  K be strongly compact. There is a family A of ordered pairs (0, ~) of 
quantifier-free formulae of PL,~., not depending on (&~: ' , /< Ix), (/~.~: 2/< Ix), such 
that each rl is in PH.,~, and the following are equivalent: 

(i) for every pair (0, ~) in A, either there is i ~ I such that A~ ~-nO[(i ~] or there is 
] c J such that B i ~'nr~[/)i]; 

(ii) there are a ~-ultrafilter D on I and a K-filter E on J such that for ever}, atomic 
formula 6, l-Io A, ~4,[a,],<~ itI lq~ B~ ~0[~,L.~_~. 

2.2. Isomorphic reduced products 

We shall give a necessary and a sufficient condition for two structures to have 
isomorphic K-reduced powers, assuming only the GCH. The conditions are both 
local in the sense that they involve only games of length less than K on the two 
structures, but only one of them is straightforwardly syntactic. If there is a proper 
class of measurable cardinals, then it is consistent that the two conditions are 
equivalent. There are analogous results for •-reduced products of sets of struc- 
tures, f3r •-ultrapowers when ~< is strongly compact, for surjective homomorph- 
isms between K-reduced powers, and so on. 

F~rst we must weaken the notion of a winning strategy. Suppose two players V 
an~ 3 play a game G;  imagine also that they imitate the chess wizards and play G 
simt.!taneously on tx boards. (If player V makes the cdh move in G and player 3 
makes the (~ + 1)th, then player V must make his a th  move on all boards before 
player 3 makes his (a + t)th on any; and vice versa.) We can define a new game 
G"  by declaring that player V wins iff he wins G on at least one board. Obviously 
if player 3 has a winning strategy in either of G or G '*, then he wins the other too. 
But in general it ;s possible for player '4 to have a winning strategy for G "  and 
not for G. (Examples can be found along the lines cf (4) in Section 4.3 below.) 
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Theorem 4a. Let A and B be structures of the same similarity type. Then (i)::~ 
(ii) ~ (iii), where (i)-(iii) are as Iollows: 

(i) there is a regular cardinal Ix ~max(card A, card B, card(type of A, B)) such 
that t~<~ =t~ and 2 ~ = ~+, and for every pair (0, rl) of mutually inconsistent 
sentences of PHi , ,  player "q has a winning strategy for at least one of G~(O, A)  and 
G~(rt, B);  

(ii) A and B have isomorphic ~-reduced powers; 
(iii) if Ta, Tn are respectively the sets of PHil-sentences true i:; A, B, then 

Ta O Tn is consistent. 

(Note that if the GCH holds, then in (i) we can omit all the conditions on Ix 
except the last one.) 

Ftoof.  ( i i ) ~  (iii) is by Lemma l. Now we assume (i) and prove (ii). Referring 
back to the beginning of 2.1, we put I = J = ix, A~ = A and B i -= B for each i, j < ~. 
The cardinal t~ of 2.1 now becomes 2 ~ = ~+. By ! emma 3a, (ii) above is proved 
provided we can find fi, (~,<tx ~) in A"  and t~ (3"<~+) in B" such that 

(ivl for ev, ry pair (0, ~1) in zl lg-om Lemma 3a), either there is i < p~ such that 
A~"nO[g~ ~] o~ there is j < l x  sut~l that B~-n~q[/~i]; and ( ~ :  ~,<ix+), (/~: 3"<ix+) 
list the whole of A ~, B '* respectively. 

We shall make players V ana 3 choose the gv in sequence; player '8 chooses/i ,  
when y is even. Independently of this, the two players will choose the /~, in 
sequence, but here player V will choose the/7, with odd 3'. The only requirement 
on player 3 is that he chooses so that every element of A ~', B ~ is chosen at some 
point. This guarantees the last part of (iv). 

Player '8 is going to have to splice together tx different strategies for Ix+ 
different games of length < ~  on t~ different boards. To show how he can do it, we 
shall use an unpublished !emma of Galvin. We thank Galvin for permission to 
include this result. (He proved it in 1973 in answer to a question of Lavez, whether 
En(0)~ x co0 can be written as the union of an increasing c0-sequence of tree- 
orderings without branches of length co~.) 

Lemma (Galvin). Let Ix be a regular cardinal. Then ~here is a sequence (R~: j < ix) 
such that 

(2) j < k < l x ~  Ri~_Rk; 
(3) for every j < ~ ,  R i is a tree whose branches all have length <~/x; 
(4) if ~ = oo, then every branch of Rj has length ~ j +  I. 

Proof. By induction on a, construct for each a </x ÷ a function f~ :/x --, Ix, so that 

<t3 ~ I{1 < Ix: L 0 )  ~f~(j)}t< Ix. 

Sh:109



86 W. Hodges, S. Shdah 

(This is possible since/~ is regular.) Next, choose for each ct < p~ + a set C~ ~ a as 
follows: C o = 0 ;  C~.,.~ :~{a}; if ot is a limit ordinal, C,, is a cofinal subset of at of 

order-type ~<t~. 
Now we define the relation 

(a, ~ ) ~ R i (*) 

by induction on fl, simultaneously for all ct and L as follows. We define (*) to hold 

iff there is y ~ Ctj such that 
(i) (c~, 3,)~Rj or a = T ;  

(ii) f i (k)<J '~(k) for all k>>-j; 
(iii) (& ~,)~ R~ whenever 6 ~ C o C'I -y. 

Then (1), (2) are easily verified. For (3), observe that if (a,/3)~. R~, then L( / ' )<  
f~(1'). For (4), choose the ]'~ so that for each a and [, f~(j)~:,i. 

Using Galvin's lemma and the fact that g' :~ = ix, we can find a family < i  ( / <  t~) 
of partia! orderings with field tt +, such that 

(a) if ~ < i / 3  then a < ¢ l ;  
(b) each <~ is a tree whose branches all have length ~K;  
(c) if S is a subset of tz ' with cardinality o--'K, then for some j < i x, S is an initial 

part of a branch of <~. 
Now suppose the quantifier-free formula 0 of PI-t~ occurs in some pair (0, r/) in 

the set .~ of Lemma 3a. Choose a quantifier prefix 13 with domain a set of ordinals 
<~L ~ of order-type <K, such that if ,/ is an even ordinal and either v~, or v;,, 
occurs in 0, then 13(T)= V and 13(3' + 1)= 3, and no ordinals occur in the domain 
of O except as just indicated. Write 0' for 130, Similarly for each ~ choose a prefix 
O by the same rules but with 13(y)=3 and Q ( 3 , + I ) = V ,  and write ~ '  for 13r~. 
Write A' for the set of pairs (0', vl') such that (0, ~) is in A 

Claim, For each pair (0','~') from A' the sentence~ O' and ~tl' are mutually 
contradictory. 

For suppose not: fl~en both are true in some structure C. Now we can consider 
0' as defining a game of length ~x ~ on C in which player V moves at even- 
numbered steps (by adding vacuous pairs Vc,~ 3v~.t  to the quantifier); likewise ~l' 
defines a game of length ix+ in which player '¢ moves at the odd steps. By 
assumption, player 3 has winning strategies o-, ~- for these two games. Let the 
players now play G(O', C); let player 3 use hi~, winniI~g strategy er, and let player V 
use the strategy -r. Suppose /J is the resulting sequence of elements of C. Then 
C~0/~ ~[~]. Applying Lemma 3a to the situation where I, J are singletons and 
A~ = B~ = C, this implies that for some atomic formula ~g C~ q~[c~:] itI not C~ tO[t~], 
which is absurd, The claim is proved. 

By the claim and (i) of the theorem, player V has ~ winning strategy for either 
G'~(O ', A )  or G'~('~ ', B), for each pair (0, ~1) in ,~. 
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List as ¢p~ (i < t~), possibly with repetitions, all the sentences of P H ~  whose 
variables have indices <K, such that player V moves at even ~,~teps in ( J t~ ,  A)  and 
has a winning strategy for G"(q~,A),  For each G'~(q~,A) choose a Mnning 
strategy ¢r v Take a bijection g : Ix3 ~ Ix Player 'q will now choose the elements ~ 
(3' even) of A "  as follows, For each i, J < o -  the indices g(i,j, k) (k </~) form a set 
of Ix boards on which he can play G"(q~, A).  At  move ct (e~en), he plays (~n these 
indices using strategy tr~ and assuming that the previous moves on board k are 
(~ (g ( i , j ,  k)): ~5 .<i 3'}, if this is a sequence whose length is an even ordinal less 
than the length of G'~(~q, A);  otherwise he plays as he likes. Player V chooses the 
elements b'~ (3¢ odd) according to the same rubrics, but with odd and even 
reversed. 

Now we car~ prove (iv). Let (0, rl) be a pair from ZL We have seen that playr~r V 
has a winning strategy for either G~(O',A)  or G"(~I ', B); say he has one for 
G'*(O ', A). t.et S be the set of all indices of variables which occur i~t 0'. By 
collapsing S down to an initial segment of the ordinals, we get a sentence 0* of 
P H ~  whose variables all have indices <K, such that player V has a winning 
strategy for G~(O *, A).  Then 0* is q:~ for some i < Ix. Also there is j < tt ~uch that 
S is an initial segment of the partial ordering < v  From the cboice of the g.~ it 
follows that for some k < Ix, 

A t:-~0[~ ~"'i'~ ']. 

Thus (iv) is proved. 

h was only to avoid a plethora of indices that we did net straight away prove- 

Theorem 4b. Let H and K be classes of structures, all of the same similctrity type. 
Then (i) ~ fib :ff (iii), where (i)-(iii) are as follows: 

(i) there are arbitrarily large regular cardinals ~ such that /x  ~ -~ Ix and 2" = Ix', 
and for every pair (0. rl) of mutually inconsistent sentences of PH .... player V has a 
winning strategy for at legist one of the games G"(O, A)  with A ~ H or G"(~,  B) 
with B ~. K (the proof shows that a 'large enough' tx will do); 

(ii) :;nine K-reduced product o[ structures in H is isomorphic to a n-reduced 
f roduct of structures in K; 

(iii) if ~[~, T~: are respectively the sets of PHil-sentences true throughout H, K~ 
then "t]~ U 7~ is consistent. 

Proo | .  Again (ii) :~ (iii) by Lemma 1. For (i) ~ (ii), we can assume without toss 
that H and K are sets, since PH,~ has only a set of non-equivalent sentences. 
Then the argument proceeds very much as before. The cardinal ~t is chosen larger 
than the cardinalities of all structures in H U K. Instead of listing ~he winning 
strategies ~r, we list pairs (% A) such that ~r, is a winning strategy for player V in 
G"(q~, A),  arm we take A to be th~ g(i, j, k)th element (for all j, k < ix) in the 
product. 
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Since ctause (i) has exactly the same form in all the versions of Lemma 3, the 
corresponding versions of Theorem 4 can be read off automatically from 
Theorems 4a and 4b above. For example we have conditions for two structures to 
have isomorphic ~-ultrapowers. 

Next we ask when two structures have isomorphic ~:-reduced powers over  the 
same filter. This turns out to be a surprisingly strong condition. Since the filter is 
the same on both sides, it is not possible to separate out  the syntactic conditions 
on the two structures. So the work in Section 2.1 is no help. Instead we introduce 
the following game G(O, A, B). 

Let A and B be structures and • a set of atomic formulae. Then G(~ ,  A,  B) is 
played as follows, At the yth move, when y is even, player V chooses an element 
of A and then player 3 chooses an element of B. When 3' is odd, player V first 
chooses an element of B and then player :1 chooses from A. The players play thus 
until they have constructed sequences a, /7 from A, B respectively which are long 
enough to cover the variables of the formulae in ~. Player :1 wins iff for every 
~ 0 ,  

G~(~, A, B) is G(~,  A, B) played on ,k boards; player 3 wins iff he wins on all 
boards. 

Theorem 4e (GCH). Let A and B be structures. Then (i) ::), (ii) ~ (iii) .:~ (iv), where 

(i)-(iv) are as follows: 
(i) there is h such that for every set 0 o[ fewet ~Vtan K atomic fonnuloe player 3 

has a w:nning strategy in G~'(c"P, A, B), 
(ii) tl ere are a set I and a K. Olter D on I such that for every K-filter D'  on I 

which extends D, A ~D ' ~ B~/D'; 
(iii) there are a set I and a n-filter D on t such that A I / D ~  B tD;  
(iv) for every set O of fewer than ~: atomic fonnul¢ e, player V has no winning stmtegy 

in G(O, A+ ~13). 

Proof. (i) --~ (ii): by GCH, choose a regular cardinal Ix such that .~ ~ /x  ~:~ =/~ and 
2 '~ = ~ ' ~ card(A) + c~rd(B) + card(type of A, B). Players V and 3 shall play a 
pre-game of length ix ~ as follows. At tile 3,th move, whe~l ~, is even, player "q' 
chooses an element of A ~" and then player 3 chooses an element of B'-'. When 3, is 
odd, player V first chooses from B ~ and then player 3 from A'L Player V plays so 
that his moves exhaust A "  U B  ~. Let (&,: y<lZ~),  (b~: T < t x  +) be the resulting 
sequences of elements ff A" ,  B".  If (i) holds, then player 3 can use Galvin's 
lemma as in the proof o~ Theorem 4a to ensure that for every set • of fewer than 
K atomic formulae whose variables have indi~ es <t~ ~, the set 

X(O) ---. {i < ix: A ~q~[fi~] ¢:> B ~q~[b'] for all ~ ~z O} 

is non-empty. The filter D generated by the sets X(O)  will salisfy (it). 
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(ii) j (iii) is trivial. For (iii) j (iv), let 39 be a ~-filter on 1 and suppose (iv! f& 

for some @; then player d has a winning strategy o for G(@, A, Bj, and so he can 
win C(@, A’/D, S‘/Dj by playing u at every coordinate. Clearly this implies that 

AI/D and B*/R are not isomorphic. 

We make two remarks on Theorem 4c. First, when K =o the games 
G(@, A, B) are the familiar Ehrenfeucht-FraissC games, which are all determi- 
nate. So in this case conditions (ij and (iv) are equivalent, and they simply say that 

A and B are elementarily equivalent. When K > co, conditions (i) and (iv) are 
(possibly equivalent) generalisations of elementary equivalence. It is known that 

in genera1 the Ehrenfeucirt-Fraisse games of length K do not character& equival- 
encE in klri. 

Second, there ;:, no need to prove a separate version of Theorem 4c for the case 

where K is :Xmngly cor*lpact, because in this case a K-Ukrafiker can be got straight 
away from condition (iii. 

It remains to ask about the gap between the sufficient and necessary conditions 
in Theorem 4; say (i) and (iii) in Theorem 4a. There is no situation where (i) and 
(iiij are known not to be equivalent. Nevertheless we conjecture that (:I) is in 

general much stronger than (iii), and that it is almost never true in the constructi- 
ble universe. 

There are two situations in whir!] we can show that (i) is equivalent to (iii). The 
first is when K = w. The second situation is as follows. When I is an ideal on a 
boolean algebra B, we write If for the set of elements of B which are not in 1. Let 
I(A) be the statement: 

There is an ideal I on h “- which is A ’ + -complete, normal and such that I’ has 

a dense subset K with the property that every descending sequence of length <A+ 
in K has a lower bound in K. 

A theorem of Richard Laver (due also in part to Menachem Magidorj states 
that if M is a model of ZFC containing a cardinal h and a measurable greater 

than A, then A4 has a boolean extension in which A remains a cardinal, I(A) holds, 
and the GCH hoids above A. (The proof can be inferred from the case h = w 
which is described in Galvin et al. [S, Section 41.) In fact Laver shows that if there 

is a proper class of measurablzs in M, then there is a boolean model in which 
GCH holds and I(h) is true for arbitrarily large h; if M has a proper class of 
supercompact cardinals, then the boolean model can have I(h) true for all infinite 
cardinals A. 

The next theorem is essentially a remark oi Fred Galvin: 

‘l%eoren 5. Suppose I(h) and the GCH hold, where h’ amax(k, card A, card I?, 
card(type of A, II)); tken in Theorem 4a, (i) and (iii’, are equivalent. (The same 
afgtrmenr shows r/rat in l’kordf~~ 4c. (i) and (iv) nre c@ualenf.) 
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Proof. We show that ff (iii) holds, then (i) holds with /~ = A ++. Write I for the 
ideal given by I(A), and K for the dense subset of I +. We can assume that K is 
closed under intersections of descending chains of length <A +. By Ulam matrices 
and the ;t+"-completeness of 1, every set in I" can be split into Z ~ + pai:rwise 
disjoint sets which are also in 1". By the A' ~-completeness of I, every partition of 
a set in I ' into at most A ' subsets includes at least one set in I +. 

Let ,~ be an ordinal <K, and let G be a game of length ~j in which players V and 
3 alternately choose elements of a set C of cardina!ity ~<A ' ' ,  and player ~ wins iff 
the resulting sequence Iies in a given set 5;. (The games G(O, A)  and G(~, B) of 
Theorem 4a have this form.) Suppose that player 3 has no winning strategy for G. 
We show that player V has a winning strategy for G ~. 

First observe that any move ~ in G '* determines a partition of each set X ~/x, 
by putting i, J in the same partition class iff fi(i) = ~(]). Now before the a th  move 
in G '~, player 'q should choose a family F,~ of pairwise disjoint e lemews of K, so 
that if /3<c~, then each set X~F,~ is included in some YeF~.  Fo is chosen 
arbitrarily, and at limit 6 the player should choose F~ to be the set of all minimal 
non-empty intersections of sets from previous F~. At successor moves a + I where 
3 has just moved and chosen ~ E C",  player V should choose /~,+t by replacing 
each X ~ F,  by some subset of X which is in K and which lies inside one partition 
class of the partition determined by & Finally if player V is to move at stage a, 
then after choosing F,, he should split each XeF,~ into card(C) disjoint parts 
which are all in I ~ ; now he chooses t~ so as to play a different element of C on 
each part of X, exhausting C. For F,+~ he replaces each of these parts of each X 
by an element of K which is included in it, and then makes F~+~ the set of these 
elements of K. 

Now the sets in (_J,~ ~ F,  form a downwards tree in F .  By I(A), each branch b 
of this tree has non-empty intersection; pick an element 6, in the intersection. On 
these selected indices ib, player 3 is playing a constant strategy and player V is 
trying ,wery possible move against him. Since player 3's strategy was not winning, 
player V wins on at least one index. 

To make everything explicit, Theorems 4 and 5 together show that it is 
consistent (granted enough measurable cardinals) that two structures have 
isomorphic reduced powers over K-complete filters iff their Horn theories in PH,~. 
are consistent with each other. 

Does the statement 'Any two structures with consistent PH,~ theories have 
isomorphic I~-reduced powers" imply the existence of precipitous ideals? 

3. Limit reduced products 

in this section was assume only ZFC and prove the analogue of Theorem 4 for 
limit reduced products. We also give a characterisation of limit •-reduced powers 
which generalises a theorem of Keisler for K = ~o. 
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3.1. Combinatorial temmas 

The following lemma occurs under the name of Remark 3 in Engelking and 
Kar#owicz [3]. 

Engelldng--Kar,lgowiez Lemma. Suppose ix is regular and ~;~ = Ix ~card(X') .  Then 
there is a family (f~: i < 2  ~) of maps f~ : IX --~ X such that for every strictly increasing 
sequence (al: i "< ~) of ordinals ai < 2 ~, with ~ < K, and every family (x~ : i < ~) of 
elements of X, there is a j < Ix such ttlat 

fo~ (jr = x~ for all i < ~. 

A family of functions ~ :  i < 2  '~) as in this lemma will be said to be (g, K, X)-  
independent. 

Let A be a structure and choose tx >~card(A) such that /x  ":~ =/z. Let (f~: i < 2 " t  
be a (/x, K, dora A)- independent  family. Then each f~ is an element of A ~. Let F 
be the K-complete filter on Part(p,) generated by the partitions ~ ] ,  i < 2  '*. We call 
A"  I F the (/~, K)-independenl limit power of A generated by (f~: i<2~) .  If g i'; an 
element of A ~ [ F, then there is a unique smallest set Z of generators f~ such that 
[ g ] ~ A  {~]:  f~ e Z}. Z has cardinality <K. We call Z the support supp(g) of g. 

If A ~ I F is as above, and O is a quantifier of length ~ 2  ~, then eitker player in 
G((I ,  A ~ t F3 can paly by the following strategy: at the /3th  move, play the first fi. 
which is not in U {supp(g): g was the 3"th move, 3,-:/3}. We call this the~ 
independent strategy. 

Lemma 6. Let Q be a quantifier of length a ~ 2  ~, and let A ~ i F  be the (~ ,~) -  
independent limit power of A generated by (~: i<2~) .  Suppose ~hat in a play of 
G((2, A ~ 1F), player V has followed his independent strategy, and let X be a subset 
of a of power <K. Then there are Z ~_tz and a strategy cr for player 3 in 
G(O t X, A )  such that 

(i) player 3 has played o" in G(Q t X , A )  at each coordinate f E Z ;  
(if) each possible play of player V against cr in G(G I X, A )  occurs at some i ~ Z. 

Proof, Let  (a6 :/3 < a} be the play. Let Kv be {fi9:/3 ¢ X A CI-~(V)} and let K~ be 
U{supp(~r~):/3~XNO-~(3)}.  Pick any element c s d o m A ,  and put Z =  
{ i < l x : f ( i ) = c  for each f ~ K 3 - K v } .  Now for each /3~XNO-~(3) ,  gto(i)~6o(j) 
implies f(i) ~ f(j) for some f e supp(g~); assuming i, j ~ Z, this implies f(i) ~ f(I') 
where f is t~ for some 3,~Xf'lO-~(zi)ffll3. It follows that player ] adopts a 
uniform strategy cr throughout Z, proving (it. Part (if) then follows from the 
conclusion of the Engelking-Kar~Vowicz lemma, since card(Xt < ~. 

3.2. Chamcterisation of limit K-reduced powers 

We generalise Keisler's characterisation of limit ultrapowers as the most 
general operation which commutes with formation of reduet3 and preserves 
elementary equivalence. (See Theorem 6.4.10 of Chang and Keisler [2].) 
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Let us say that a structure A is K~complete iff every function of arity <K which 
can be defined on dom A is of form FA for some function symbol F of the 
language of A. 

Theorem 7a. If A and B are structures of the same similarity type, and A is 
~-complete, then the following are equivalent: 

(i) every Horn sentence of L ~  which is true in A is true in B; 
(ii) every universal Horn sentence of L ~  which is true in A is true in B; 

(iii) B is isomorphic to a limit K-reduced power of A,  

Proof. ( i i i )~( i )  is by Lemma t and (i)=~(ii) is trivial. For (ii)=>(iii), choose 
tx~card(A)  such that tx <" =/x  and 2 ' ~ c a r d ( B ) .  Let A '~ I F  be the (/x, K)- 
independent limit power of A generated by (/=: c~ <2") .  Choose any surjective 
map 0:{f~: a <2'*}--+dora B. Define D to be the filter on ~ generated by all 
intersections of fewer than K sets of form 

A(q~) = {i < ~: A t: q~[/~, (i)L <a+} 

such that q~ is atomic and Bgrp[Of,],,<2,,. 
We claim that for every atomic ~, if A(to)¢ D, then B ~[012]~<2,.. For suppose 

A (tO) ~ D. Then there are atomic ,,0, (k < - /<  ~¢) such that B ~ ~k [0f~ ]~, <2,. for each 
a < 7  and ~ < ~ A ( ~ ) c _ A ( t O ) .  If 

then by assumption (i} the same sentence holds in B, and so B#to[Of~]~..> as 
required. So we prove (1), as follows. If (1) fails, then there is a sequence ~ in A 
such that A #pk[/i] for each k < %  but A ~-ltO[~]. Since tl~, ~-' L are (#, e, dora A)-  
independent, and fewer than K variables occur in 0 and the g~k, we can find i </x 
such that the sequence (f,~(i)L<z~ agrees with 8 at the relevant places. This 
contradicts the fact that ~'tk-.-, A(~h:)-  c A(tO). The claim is proved. 

In particular D is proper, since ± is atomic. The claim also shows that 0 
induces an isomorphism between B and CTD where C is the substructure of A '~ 
which is generated by the J'i~ ( a < 2 ~ ) .  Now if c e d o m , 4 " I F ;  then for some 
Y ~ 2  ~ of cardinality <K. [c]>'-A,,~ r[~,] ;  since A is K-complete it follows that 
c e d o m C .  Hence A ' ~ l F = C a n d  A } ~ [ F = C / D ~ B .  

Essentially the same proof gives the following variant. Keisler's theorem was 
tile case K = ~. 

Theorem 7b. Let ~ be strongly compact, and let 4 and B be structures of the same 
similarity type, with A ~-con~plete, Then the fo'~'owing are equivalent: 

(i) ever), (universal) sentence o[ P L ~  which is true in A is tree in B; 
(ii) B is isomorphic to a limit K-ultrapower of A.  
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There is one further variant which we have not developed elsewhere in this 
paper, but it should be mentioned somewhere. Let  i< and * be regular cardinals 
with K ~X. Define PL~x as P L ~  but with the quantifier prefixes restricted to be of 
length < / t ;  we assume that all relations and functions have arity <~.  

Let  F be a X-complete filter on Part(/). For each partitie~ ~ ~ F, let B= be the 
boolean algebra of all sets of form U X where X~_Tr; then B~ is a complete 
subalgebra of ~ ( / ) .  B~i a (K, F)-ultra~ilter on I we mean a subset D of ( J ~ F B =  
whose restriction to each B,, is a K-complete ultrafilter. Let  A~ (i ~ / )  be a family 
of atractures ot the same similarity type. By a )t-limit K-uttraproduct of the A~ we 
mean a structure r i o  A~ t F where F is a X-complete filter on Part(/)  and D is a 
(K, F)-ultrafilter on I. The reader can easily verify that this definition makes sense, 
and that every sentence of PL~x is preserved in ,k-limit ~c-ultraproducts. 

Theorem 7e. Let K ~ X be regular cardinals. Let A and B be structures of ~.he same 
similarity type, with A X-complete. Then the following are equivalent: 

(i) every sentence of PL~x which is true in A is true also in B; 
(ii) B is isomorphic to a )t-limit ~-ultrapower of A. 

Proo|. We proceed as in the proof of Theorem 7a up to the choice of the function 
0 : {f~ : ~ < 2 "} ~ dom B. Then we take D to be the set of all sets of form 

A(~) ={i s . :  A ~,~[.L(i)L <:.~} 

such that W is quantifier-free and has fewer than 2~ variables, and B e~[0f=J.~<2,. 
Let ~r be an element of F; then there is a set J ~ 2 "  of cardinality <X such that 
,-r >~A,,J[]~.,]. Since A is h-complete iz follows tha~ every set in B,~ is of form 
A(q~) for some quantifier-free formula q~ with variab!es from v~ (a e J). Hence D 
is a (K, F)-uhrafilter. The proof that A ~ , I F - ~ B  is as before. 

3.3. Isomorphic limil reduced products 

Now we shall prove analogues of Theorem 4 for limit K-reduced products. The 
conditions for isomorphism which were proved necessary in Theorem 4 are now 
both necessary and sufficient, and we do not have to import any peculiar 
set-theoretic assumptions; ZFC alone is enough. (The analogue of Theorem 4c is 
a little more restricted.) 

Theorem 8a, Let A and B be sm~cmres of the same similarity type. Then the 
foUowing are equivalent: 

(i) A and B have isomorphic limit K-reduced powers: 
(ii) if Ta, TB are respectively the sets of PHil-sentences m4e in A,  B, then TA U TB 

is consistent. 
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ProaL (i)--~ (ii) is by Lennna !. Now we assume (ii) and prove (i). Choose a 
cardinal /x such that /x =/x <~ >~card(A)+card(B). Referring back to the begin- 
ning of Section 2. I, we put I = J = / , ,  A~ = A and B i = B for each i, j < Ix. The 
cardinal ~, of 2.1 now becomes 2 '*. Let A*,  B* be respectively (~, ~¢)-independent 
limit powers of A, B;  then A*,  B* are substructures of A ~', B '~ respectively. By 
Lemma 3a, (i) above is proved provided we can find a v ( y < 2  ~) in A "  and /7~ 
( y < 2  '*) in B ~ such that 

(iii) for every pair (0, r~) in A (from Lemma 3a), either the 'e  is i < ~ such that 
A ~ 0 [ ~  * ] or  there is [ < ~ such that B ~-7"q[/7i]; and (av: T < 2'~), {/Tr : 3" < 2 ") list 
the whole of A*, B* respectively. 

We shall make players '¢ and 3 choose the 8,~ in sequence from A*.  Player V 
chooses ~ when y is even, and he uses th,e independent strategy (cf. before 
Lemma 6). Player 3 chooses at odd 3', and he plays so as to exhaust A*.  Likewise 
the player~ choose the Gv from B*; player V uses the independent strategy at odd 
3' and player 3 chooses so as to exhaust B* at even 3'. Player 3's choices guarantee 
the last part of (iii). 

Now suppose the quantifier-free formula 0 of PH,~ occurs in some pair (0, ~) in 
the set .'.1 of Lemma 3a. Let 13 be the quantifier whose domain is the set of indices 
of variables which occur in 0, such that 13(y)=V iff 3' is even. Write 0' for 130. 
Similarly for each -q choose a prefix 13 by the same rules but with 0(3') = V iff y is 
odd. Write A' for the set of pairs (0', r~') such that (0, r~) is in zl. The following 
claim is proved exactly like the claim in the proof of Theorem 4a. 

Claim. For each pair (0', ~7'} from A', the sentences O' and ~1' are mutually 
contradicRJry. 

Now we can prove (iii). Let (0, "q) be a pair from A. By the claim and (ii) of the 
theorem, player 3 does not have winning strategies for both G(O',A) and 
G(n' ,  B); suppose he lacks one for G(O', A). Then by Lemma 6 there are a set 
Z ~ ix aqd a strategy c~ for player 3 in G(O', A) such that player 3 is playing ¢~ in 
G(O', A) at each coordinate i~ Z, and each possible play of player V in G(O', A) 
occurs at some i E Z. Since cr is not winning for :I, player V must win at some i, 
and hence A P-7016~]. Thus (iii) is proved. 

The corresponding theorem with classes of structures is proved analogously, 
using products of (/~, ~¢)-ind~:pende;nt limil powers: 

Theorem 8b. Let FI and K be classes of structures, all of the same similarity type. 
Then the following ate equivalent: 

(i) some limit ~-reduced product of structures in H is isomorphic to a limit 
~¢-reduced p,'oduct of structures in K; 

(ii) if TH, TK are respectively the sets of PHil-sentences true throughout H, K, 
then ~ U TK is consistent. 
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We leave it to the reader to supply the remaining variants of Theorem 8. For 
the counterpart of Theorem 4c (where the filter D has to be the same on both 
sides) it seems to be necessary to assume that A and B have the same cardiaality. 

4. Applications 

4. I. interpolation and de]inability for Horn logic 

From Lemma 2 (compactness) and Theorem 8b the usual ar~ ament gives: 

Theorem 9 (Interpolation theorem). Let q~, to be sentences of P H i ,  such that 
q~, to ~- L. Then there is a sentence 0 of PH, ,  containing only relation and function 
symbols which occur in both q~ and tO, such that q~-O and O, tOl-_l_. 

Then once more the usual argument gives: 

Corollary 10 (Beth ciefinability). Let T be a theory in PHK~, R a relation or 
(unction symbol occurring in T, and L a sublanguage of ~he language of T in which 
R does not occur. Suppos.'~ that if A,  B are any two models of T for which 
A I L = B ~ L, then Ra = RB. Then T entails an explicit definition V~(~ ~ R~), 
where ,¢ is a formula of PI't~ using only symbols from L. 

Isbell [8] raised the question whether there is a Beth definability theorem for 
equational theories in PHil ,  and proved such a theorem assuming an extra 
hypothesis about functoriality. (See Hodges [7] for a model-theoretic result which 
generalises Isbell's.) Corollary 10 shows that there it a reasonable definability 
theorem without the functoriality condition. Under  Isbell's assumption, 0 is 
existential. In general, can we bound the number of quantifier alternations in 0 
when T is equational? Friedman [4] showed that already when K = oJ there is no 
finite bound. The example below was as near as we could get to showing that for 
uncountable K there is no bound <~¢. 

Example 11. Sentences q~, qt of L . . . .  which are conjunctions of equational 
theories, such that q~, to ~- _1_ but there is no interpolant (as in Theorem 9") in L~<~,, ,. 

Let T~. be a set of axioms for the variety of lattices with top and bottom 
elements 1, 0; we write a ~ b for a/x b = a. Let  WFc(.f) be the set of universal 
closures of the equations: 

f(x, y)A/(y,  z ) ~  ]'(x, z), 

f(x, x) = 0, 

s(1, 1, 1 . . . .  ) ~- 0 (s is of arity o)), 

s(f(xo, xl), f ( x .  x2), f(x2, x3) . . . .  ) = 1. 
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Then '/'i. LJWFL(f) expresses that the relation f(y, x ) =  1 is a well-founded irrefle- 
xive partial ordering. Let IsL.g(]~ c, d) consist of the identities 

Vx "qy]'((:, y)Af(y, x)~-f(g(c),  ~,(y))Af(g(y), g(x)), f(d. g(c))~: 1. 

Let Init(x) be the set of all elements y such that f ( x , y )=  1. Let q~ be the 
conjunction (ff Tt., WF~.(/) and lsL.~.(f, c, d). Then q expresses that g is an isomorph- 
ism from Init(c) to a proper initial part of Init(d), and hence that c has lower rank 
than d in the partial ordering f(y, x) = 1. Let  T~:, etc. be as TL etc., but wit|~ the 
lattice operations except 1 replaced by new symbols. Let tO be the conjunctien of 
T~,, WF~,(f) and ISL'h(/, d, c). Then clearly q~, tot-±.  

Suppose cow that 0 is a sentence u~ ~ ,  in the language with symbols f, 1, c, 
d, and ¢0~-P,. The following argument shows that 0 is consistent with tO, and hence 
0 is not an interpolant herween q) and tO. For any two transfinite ordinals a a~d/3 
we can constrvct a model A of q~ by taking the disjoint union of ex and /3, and 
choosing e E ~  and c<d~13.  Then A¢O, since ¢~-0. But a result of Chang [1] 
shows that the Z "~'°, theory of the ordinal ,~x is the same for all uncount;;,ble 
cardinals ,~ of cofinality >co, and the Feferman-Vaught theorem for dis i ,int 
unions of structures hokls for L.~,2",. Hence 0 also has a model of the same form as 
A but with c of higher rank than d. 

One of the ummmbered variants of Theorem 8 says that if K is a class of 
structures and B is a structure, then there is a surjective homomorphism from a 
limit K-red~,ced product of structures in K to a limit ~-reduced power of B if and 
only if the P H ~  theory of B is consistent with the set of positive PH,,, sentences 
true throughout K. (Cf. Lemma 3c.) From this it is easy to deduce: 

Theorem 12. Let T be a theoty in PI-I~ and ~2 a sentence of PH, ,  which is 
preserr, ed in surjective homomorphisms between models of "1; and suppose [hat rag; is 
preserved in limit K.-reduced powers of models of T. Then q~ is equivalent in T to a 
positive sentence o15" t:'H~. 

We also have the analogue of Theorem 12 when K is strongly compact, PHi,, is 
replaced by PI. ..... and limit K-reduced powers become limit ~-ultrapo,vers. Note 
that every sentence of L~,, is preserved in limit K-ultrapowers. The case K := ~o 
reduces to a well-known theorem of Lyndon. Curiously there do not seem to be 
any known counterexamples to Lyndon's theorem for any interesting infinitary 
language. 

4.2. Sentences preserved in reduced products 

When K ~ co, a theorem of Keisler [12] says that a sentence of L ~  is preserved 
in reduced products iff it is logically equivalent to a Horn sentence. (Cf. Chang 
and Keisler [2, Theorem 6.2.5]; Galvin eliminat,~d Keisler's use of the continuun~ 
hypothesis.) The next two theorems partially generalise Keisler's theorem. 
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Theorem t 3 .  ta) Let ~ be a sentence preserved in limit K-reduced products, such 
that ,-ao; is preserved in limit K-reduced powers, Then ~ is logically equivalent to a 
set of sentences of PHil ,  

(b) Suf~pose K is strongly compact, and let ~ be a xe~mmce which is preserved in 
limit K-reduced products, such that "n~ is preserved in limit K-~itrapowers. Then q~ is 
equivalen~ to a set of semences of PH, , .  

(c) Suppose K is strongly compact, and let ~ be a sentence of L ~  which is 
presert, ed in limit K-reduced products. Then ~ is logically equivalent to a senW~Tce of 
PH~.  

Proof. (a) and (b) follow straightforwardly from Theorem 8. For (c) we use (b) 
and then c~mpaclness (Lemma 2) to reduce to a single sentence, 

We conjecture thai in case (c) of Theorem 13, the logically equivalent sentence 
cannot ;~ general he chosen in PHi ,  f 3 L ~  

Thc~rem 11.4. Let D be a proper ~-.comple~e non-~..saturated Jilter on the se~ I. If  q) 
is a quanti]ier-free sentence of L ~  which is preserved in reduced products modulo D, 
then ~ is equivalem to a conjunction of (possibly ~ K ) quantiIier-free Horn sentences 

Proof. By the hypothesis on D, there are paii~vise disjoim subsets X~ (i < ~) of f 
.~uch that no X~ is zero (mod D). 

Bring ,# lo con junctix~'e normal form in Lr=~. Then qo is equivalent to the 
conjunction of a set of sentences ;g of form 

where q~. ~P are sets of <~  atomic sentences. It suffices to show that for each such 
3( there is some qs c tp- such that W entails/~ 4) --~ qs. Suppose X is a counterexam- 
pie t:~ this~ so that for each ~j~ ~/t there is a model A+ of ~ /~A 4~a-ntk. Let 
f :  q ' . ~  ~ be an injection, and choose structures A~ ( i ~ I )  in such a way that 
A i =: A ,  whenever j ~ X~t,~. Our assumption on q~ implies that [I~, A~ is a model 
of ~ and clearly it is also a model of /~ q>. Now for each ~/~ qt  {i ~, I: A~ e0}~_ 
[~  Xf,,,,, so thai { i~ l :  A , ~ l s } ~ D  and hence ~ A ~ - n 4 , .  Hence q~,Aq~Zqs, a 
contradiction. 

Proper t~-complete non-n-saturated filters always exist: take the filter {K} on K. 
When ¢ is strongl¢ inaccessible, the proof of Theorem 14 does actually give a 
Horn sentence of L,:, which is equivalent to ,~. Example 15 will show that this is 
Tot always possible. Examples 15-17 illustrate three different failures of infinitary 
analogues of Keisler's theorem on sentences preserved in reduced products. 

Example 15. A quantifier-free sentence of L , ,  which is preserved in K-reduced 
prodacks but is not equivalent to any sentence of L~,, when K = ix + and ~<~" =/~. 
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For each i < t* let P~ be a distinct proposit ional letter. Let (O be the sentence of 

L,<,, which says: 

Ei ther  fewer than /x of the f~ are true, or all of them are. 

Then ~# is preserved in all ~:-reduced products,  since it is equivalent  to the 
conjunction of the set T of all sentences 

A O-~  P i (j<lx, Oc.{P~: i<p .} , ca rd{O)= /~ ) .  

Every quantifier-free Horn consequence of ~ in L.,, is equivalent  to a conjunction 
of fewer than t< sentences of T. But suppose S ~ T, card(S)-<-/.L. Then  there is a 
proper  subset X of {P~:i</.t}, with cardinality p., such that  for each formula 
/ \  • - ~  P, in & • _~ X. (List the formulae of S in order- type ~, and for each 
formula fi. • - +  P~ in turn, put one e lement  of ,;15 inside X and one  outside.) 
Choose A so that  A~P~ iff P , ~ X ;  then AI=S but A~-~tp. Hence  ~o is not 
equivalent to any quantifier-free Horn sentence of L~,. 

Ex'ample 16. A sentence of L~, which is preserved in K-reduced products but is 
not equivalent to any set of sentences of PH, , ,  when g =/x  ÷. 

Let ~0 be the Horn sentence of E ~  which defines the class of K-complete 
boolean algebras. In any boolean algebra B let I~(B) be the ideal generated by all 
sums of at most Ix atoms of B, and let qh be the s ta tement  which holds in B iff: 

Ei ther  B = I~(B) or B/I,(B) is infinite. 

~ can be written as a sentence of L,~,.. Our  example ¢ is ~oA¢~. 
We show that  ,4' is preserved in K-reduced products. Suppose that B, is a model 

of q~ for each i~  1, and D is a ~:-eomplete filter on I. Write B for I-[~)B~. We 
evidentt~v have B ~q~o since ~)  is Horn. There  are now four cases to consider. 

Case i: ~(I) /D is not atomic. Then B is not atomic, and B/t~(B) is infinite. 
Case it: ~(I) /D is atomic but contains some atom X c I such that H,/I,,(B~) is 

infinite for each i ~ X. W:rite D '  far the restriction of D to X;  then (of. Chang and 
Keisler [2. Proposition 6.2.11i B is a product with a factor B' =lira' B,. Sin:e X 
was an atom, D '  is a K-complete ultrafilter, and it follows by -l_.og's theorem that 
B'/I,(B') is infinite. Hence the same holds also for B. 

Case iii: @(1)/D is atomic with at most tx atoms, and there is no atom 
throughout  which BJI,,(B,) is infinite. Then  again we may write B as a product  of 
at most # algebras of form B ' =  ][-[D, B~ where D '  is a K-complete ultrafitter on a 
subset I '  of I and B, = I,~(B,) for all i c I'. Again by-Lo~'s theorem B '  = I ,  (B')  for 
each factor B' ,  and hence the same holds for the producl  B. 

Case iv: As Case iii. but g'(I)/D is atomic w ; h  more than ~x atoms. Then  we 
can pick out K atoms represm}ted by sets :\~ ~ I ( / <  K) which are pairwise disjoint, 
and such that B, = I~(Bi) for all i c= l j j<, Xj. Partit ion ~ into sets d,~ (a  < K), each 
of cardinality K. For each i c Ui<,, X}, choose an atom x, of 1:. Let b,, be the 
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element of I l l  B, such that b,, (i) = xi when i ~ l.J { X / J  ~ .T~,}, and b,~ (i) = 0 other- 
wise. Then each bolL) has tz ' distinct atoms below it, and (bJD)A(bt~/D)=O 
whenever a ~ B .  Hence BIIu(B) has cardinality at least K. 

Hence ~v is preserved in K-reduced products. To prove that ~ is not equivalent 
to any theory in PH,~, it will be enough (by Lemma 1) to construct a limit 
K-reduced power which fails to preserve K. 

Let 2 be the two-element boolean algebra and let 2* be the expansion of 2 with 
all possible functions of arity <K. By Theorem 7a, every reduct to the language of  
boolean algeb/as of a subalgebra of a K-reduced power of 2* is a limit K-reduced 
power of 2. This makes it easy to construct limit K-reduced powers of 2. 

Observe that 2 is a model of q~. Now partition ~ into sets Jr, K of cardinality K, 
and le t /3* be (2")", and x the element  of 13" such that x(i) is 1 iff i~ J .  Let B be 
the reduet to the language of boolean algebras of the subalgebra of B* generated 
by the atoms and x. Then we have just seen that B is a limit K-reduced power of 
2. Also B is the product of two copies of the subalgebra of Z generated by all 
sums of ~,~ atoms. Hence B/I~,(B) is the four-element algebra, and so ~; fails in 
B. 

Example 17, A first-order sentence which is not equivalent to a sentence in any 
Pt-~x~, but is preserved in all K-reduced products with K > ~o, provided there is no 
mc asurabte cardinal. 

~:or this we take the sentence ~0 which says: The structure is a boolean algebra 
an t there is a maximal atomless element, We remark that Mansfield [15] used this 
sevtence as an example of a non-Horn sentence which is preserved in direct 
products and what he calls normal submodels. We shall need the fact that ~ is 
preserved in products. 

First we show that q~ is preserved in K-reduced products provided there is no 
measurable cardinal and K > co. Let each B~ (i ~ I) be a model of q~ with maximal 
atomless element b~, and let D be a K-complete filter on L Write B = I]~ B~. ff Z 
is an atom of ~(I) /D,  then the restriction of D to Z is a K-complete ultrafilter o~? 
Z, and this ultrafilter must be principal since there are no measurable cardinals. 
Hence the atoms of O(I)/D are represented by singletons, and we can partition I 
into X U Y where X is a union of singleton atoms and Y is atomless. Write D '  for 
the restriction of D to Y, and B' for |-1o. B~. Then B'  is atemless and B is the 
product of B' and all the B~ with i c X. Since all these algebras satisfy q~, so does 
B. 

It remains to show that ,¢ ~s not equivalent to any set of sentences of any PH~.  
We use the approach and notation of Example 16. Let J, K be disjoint sets of 
cardinality K +, and put I=JLJK.  Write D for the K-complete filter on I 
consisting of those subsets X of I such that I - X  consists of fewer than K 
elements of K. Let B* be the subalgebra of lID 2* consisting of those elcments b/D 
such that b is con.~tant on all but ~K elements o f / ;  and let B be the reduct of B "~ 
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to the language of boolean algebras. The atomless elements of B are those which 
are zero throughout J, and among these elements none is maximal. Hence B is 
not a model  of .~. But 2 is a model of ~oo and as in Example I6, B is a limit 
~-reduced power of 2. 

Kueker [1 ,t] introduces the closed unbounded filter D on ~,,,(t,:), and defines 
countable approximations q< for sentences q~ of L,,.,.~ and sets s e~,~,(K). He 
shows (Theorem 4.6) that if ,¢ is Horn in L~.,o, and structures A~ are given so that 
{s s ~o~(~c): A~ k q~-~} e t9, then l Io  A~ k q~. He asks whether every sentence of L,,+o, 
with this property is Horn up to logical equiv',dence. (In our notation, his Horn 
sentences are those sentences of L,,.,o which are in PHi ,  when they are made 
prenex.) If ~ = w, then D is principal and all ~0 ' can be taken to be equal to ~; so 
the question is only interesting when K > ~o. 

Now by Jech [9, Theorem 3.4], dae filter D is atomless. It follows that if q~ is as 
in Example 17, reduced products over D preserve ~ regardless of whether there 
are measurable cardinals. Hence q; gives a negative answer to Kueker 's  question. 
If h ~ .... = K, then the quantifier-free sentence of Example 15 gives another negative 
answer. 

4.3. Elementary extensions satis]yi,qg given sentences 

We investigate the following problem, which arises because neither PL~ nor 
Pt-I,,~ is closed under negation. Write A ~L B to mean that A is a substructure of 
B and every formula in L which i,; true in A of elements of A is true in /3 too. 
For a given sentence Oq~ of PL,,~ IPH,,~) and structure A, when is there B such 
tha~ 

A ~< m o,,,el-~.~.) B and /3 kOq~ ? 

When L is fixed, let us write A ~©O~ to mean that there is i~ sm.h tha~ A ~ .  B 
and B ~t.lp. We write 0 for the dual of Q, got by replacing V and ~ and vice versa 
throughout. For any structure A and sentence Qg,, consider these six possibilities: 

(1~ AkQ~.  
(2) A k Q - ~ .  
(3) A ~©Q¢ and A t-'(>(/-n~,o. 
(4) Not (1), but A k©O¢ and A ~-n<)0-~.  
(51 Not (2), but A k<) l~qz  and A k -q~Qg~. 
(6~ A#~.f'~Qq~ and A # q©Q-q~¢. 

Theorem 18. SLq)pose ~ above is required to be atomic, and L is PL** or PH,d. 
Then (1)-(6) are mutually exclusive. If  K is strongly compc, ct and L is PL~,  then all 
of (1)-(6~ do occur. I l L  is PH,,, a,4d K >w, then only possibilities (1), (2), (3). (5) 
OCCUr. 

Proof° Lemma 1 shows that (1)-(6) are mutually exclusive. If L is PH**, we show 
as follows that Q~ is equivalent to -q©Q~w (which eliminates (4) and (6)). Q,¢ 
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entails -n<>Q~q~ by Lemma 1. Conversely, suppose A ~-nOq~; then player ::1 has 
no winning strategy for G((1q~, A). For some ~ > r ,  let A " I F  be a (p., x)- 
independent limit power of A, and let placers g and 3 play G((Iq~, A ~ ] F) with 
player V using his independent strategy. (Cf. Section 3.1.) Then by Lemma 6, 
player V wins on at least one coordinate. But since ~ is atomic, this means that 
player V wins on A ~ I F. Hence A has an elementary extension A ~ I F which 
satisfies 12-7q~, and so A ~Q-nq~.  

It remains to construct situations in which (1)-(6) do occur. We shall treat the 
case where K is strongly compact and L is PL,~, and leave the case of P H ~  to the 
reader. Note that to is not strongly compact. (Our results for strongly compact K 
in earlier sections did not use the assumption that K > to.) 

Consider a quantifier Q of length ~ and a cardinal v > O. By a v-sht~ffle of (2 we 
mean an ordinal a together with a family (x~ : i < v) of maps x~ : ~5 --~ c~ such that (i) 
c~ is the union of the images of the x. (ii) each x~ is order-preserving, and (iii) if 
x~(13) = x i ((3'), the n {3 = 13' and x~('y) = x i (~/) for all 3, </3. If $ is this ~,-shuffle, then 
G* is defined to be the quantifier of length c~ such that (1S(x~(13))= (1(/3) for each 
i < v  and /3<~. If (aa: ( 3 < a )  is a play of the pre-game G(QS, A),  then the ith 
thread g~ of this play is defined to be (a.~,,~: (3<~), for each i < v .  

Let G be the game G((1q~, A). Then we define a game G s = Gs((1q~, A):  G ~ is 
played as G((1 s, A), and player V wins iff for at least on~ i < v, A ~--ncf[fi~]. We 
call G* a x-derived game of G iff v <  K. 

The statement that player V has a winning strategy for GS((lq~, A) can be 
written in the form: Player ::1 has a winning strategy for G(O'q~', A) where (1' is a 
certain quantifier of length a and ~' is a certain disjunction of instances of --a¢. 

Lemma (K strongly compact). Let (lq) be a sentence of PL~. Then for any 
stn~cture A the following are equivalent: 

(i) A ~©Q~;. 
(ii) player V has no winning strategy for any ~-detived game of G((1~, A ). 

Proof o|  iemma. By Lemma 1 and the remark before the present lemma, if player 
V has winning strategies for all x-derived games of G((1cp, A) and B is an 
elementary extension of A, then player V has winning strategies for all K-derived 
games of G(G~, B), and so B ~ ( 1 ¢ .  This proves the ~mplication ( i ) ~  (ii). 

For the converse, assume (ii). Choose /~ ~>card(A) such that t, <'~=/z, and let 
~ ' [ F  be the (1*, K)-independent limit power of A generated by (/~:i <2~).  The 
number of sequences of length <• of elements of A ' ~ I F  is at most 2~; we 
partition 2 ~ into disjoint cofinal sets Xa indexed by such sequences ~. Let ¢r be 
the strategy for player 3 in G(Q¢, A *~ [ F) which is the same as his independent 
strategy defined in Section 3.1, except that for ' the first f~' we read '~he first f, in 
Xa (where ~ is the sequence of moves played so far)'. Thus the whole preceding 
play can be inferred from each move of player 3. 

If player V plays strategy r against player 3's or, the resulti g play of 
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(;(Oq~, A " IF) is a sequence {dj j < £ )  write 

A(~-) = {i < ~:  A ~ q,[aj(i)]j.~}. 

Let D be the filter on /x generated by all intersections of fewer than K sets A (r) 
where r ranges over the possible strategies of player V in G(Oq), A ~ I  F) .  

Clearly D is ~¢-complete. We claim that D is proper. For this it suffices to show 
that if {%: y < v }  is a set of <K strategies for player V in G(Qco, A ~ iF) ,  then 

A v<~,A(-r~) is not empty. 
Write (8wi: j < ~ )  for the play when player V plays % against o-. The choice of o" 

iI~r lies that there is a v-shuffle $ of Q with ordinal a and maps (x~: 3' < v), such 
thht if x , ( h ) < x ~ ( ] )  and 0(])---3, then 58jCsupp(fi~h). Let /~ be the sequence of 
length a whose x~(h)th element is ~iv~,. After  renumbering the f~ to match the 
order in which they appear in b, /~ becomes a play of G$(Qq~, A '~ l F) in which 
player 3 uses the independent strategy. By Lemma 6 with X = a, there is Z c ~t 
on which player V uses a fixed strategy. Now G$((lq), A )  is a K-derived game of 
G((lq~, A),  so by assumption player V has no winning strategy for it. By Lemma 6 
again, player ~ plays in every possible way against player V's fixed strategy, so 
that player ~ wins at some coordinate i, On i, each ( !~ (x~ ( j ) ) ( i ) : j<~)=  

(~.i(i): j < ~) is winning for ~ in G(Oq~, A). In short, i s  N~,<~ A(z~). The claim is 

proved. 
Hence D can be extended to a ~ultrafi t ter  D '  on /x. Then A ~eL~ AD',~ IF. 

Since each A ( ~ )  is in D',  A~; I F¢( I~ .  This p~o~es (i). 

Now we return to the theorem. Examples of (1) and (2) are no trouble to find. 
We shall construct an example of (3). C1¢~ ~vill be of form 

Vv(~ 3v ,  V w  3v3 " ' • R (v~v l  ' ' ") 

where (! has length ca and R is an ,~-ary relation symbol. The structure A wi!l be 
of form (A, RA) where A ~ h- and 2 a = A". (For example, A is the first strong limit 
number >•.) By the choice of 2~, we can list as (-q, G~) ( i < A " )  all the pairs such 
that G, is a ~-deriw'd game of G(Qq). A) or G(Cl-nq~, A),  and ~-, is a strategy for 
player V in G~. (We know how these games are played, but since R,~ is not yet 
defined we do not know what counts as winning them.) For each i <A  '°, let cr~ be 
the following strategy for player 3 in G~, defined by induction on i: at each thread, 
play a sequence from "'A wldeh is distinct from the sequences played by either 
player at any tlnead of the game when player 3 plays c~j against player V's ~'~, for 
all ] < i. 

Now by induction on i, we can ensure that cq always wins against % by putting 
some sequences from ~A into RA (when G~ is a u-derived game of G((I~, A)) or 
excluding some sequences from RA (otherwise). The definition of the cr~ ensures 
that tl~e sequences to be put in at one stage are alt different from those to be 
excluded at another. R-~ is otherwise chosen arbitrarily. Then no ~-, is a winning 
strategy for player V in G~. Hence (3) holds by the lemma. 
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Next we construct an example of (4). The sentence Oq~ and the structure A will 
have the same form as for (3); but  this time we must con~truct RA SO tha t ( i )  
player 3 has no winning strategy in G(Qq~, A),  (it) p layer  V has no winning 
strategy in any K-derived game of G(Qq~, A),  and (iii) player V has a winning 
strategy for some r-derived game of G(CI-7~o, A). 

List without repetition all finite sequences of elements of )t as co (a < k). Let $ 
be the 2-shuffle of Q with ordinal ~o, such that for each n, xo(n)=2n and 
x l ( n ) = 2 n +  i.  We shall ensure that player V wins GS(Q-'7q~,A) if he plays the 
following strategy 0: when a o , . . . ,  a ,  is the play so far, V shall play ~ where 
(ao . . . . .  a,,> = c,. Thu~ each move of player V records the entire previous history 
of the play. List as Y~ (i<;~ °') all pairs {~t~, St} where d °, ~ are respectively the 
0th and l th  thread of a play of GS(O-aq0, A)  in which player V uses p. By choice 
of 0, the Y; are pairwise disjoint and all of cardinality 2. To ensure that p wins 
G s((] -7 q~, A) for player V, it suffices that for each i < A ~, Y~ f7 RA is not empty. 

I~et (-q, G~> ( i < ) ~ ' )  list all pairs such that either G~ is G(Qq~,,A) and ~ is a 
strategy for player 3 in G~, or G~ is a ~-derived game of G(Qq~, A )  and r~ is a 
str~.tegy for player V in G~. For each i < )~% we shall defi,~e sets M~, N~ c ~3,, both 
of cardinality <K, and a strategy cr~ for the player opposed to ~ in G~. The 
definition is by induction on i, as follows. 

Case 1: G~ is a derived game of G(Qqo, A). Then ~ shall be the following 
strategy for player 3 in G~: at each thread, play a sequence ~ ~)~ which is distinct 
from every sequence played at any j < i when ~rj is played against z,. Player 3 wins 
G~ by playing ~ against ~-~ iff a certain subset M of ~;~ is in RA; put M~ - M ,  
N~ = ~. M~ has cardinality <~  < A °'. 

Case 2: G~ is G(Qq~, A). Then ~r~ shall be the following strategy for player '4 in 
G~: play a sequence ~ ~h which is distinct from all sequences that are either in 
~i<~M~ or in any Y~ (k<A~)  such that Y~f7([_ji<~Ni)~¢. Player V wins 
G(Qcg, A)  by playing ~r~ against ~ iff the resulting play /i is not in RA; put 
N, ={a}, N/, =~). 

By construction, M* = Ui<x Mi is disjoint from N* = U~<x N~, and N* does not 
include any Y~. We define R~ to be ,o)~_ N*. Then M*~_ R~, so (ii) holds; N* is 
disjoint from R~, so (i) holds; each Y~ meets R~, so (iii) holds. This makes (4) 
true. We get an example of (5) by dualising O and ta!:~ng the complement of R A. 

tt remains to give an example of (6). We choose Q¢ and A as for (3), but  with 
R~ chosen as follows. Let $ be any w-shuffle of Q with ordinal w s,ach that the x~ 
(i < o~) have pairwise diCjoint images. It suffices to choose RA SO that player V has 
winning strategies for G~(Qq~, A) and G~(CI-q,~, A). As in the construction of (4), 
we can give player 'q strategies p and (r for these two games respectively, so that 
at eve~w move he codes up the preceding play. List as Y~ ( a < ) C ' )  the sets of 
form {~th thread of t]: n <(o} where fi is some play of GS(Q¢9, A) in ,"hich player 
uses O~ let Z,~ (~ <~t "') be a corresponding list for G~(CI-7¢, A)  and (r. The Y~ 
are pz:!rwise disjoint and of eardinality (o; likewise the Z,. For p and 6- to be 
winnin.~, it suffices that (i) for each a < h  ~, Y , ~  RA, and (it) for each a <) t  °', Z~ 
meets R, .  
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Say that  Y~, Zo are close iff Y. ~ Z~ ~ 0 . . ~ e  transitive closure of closeness is 
an equivalence relation, and each equivalence class is countable.  We  procure (i) 
and (ii) on each equivalence class separately, by listing the class in order- type o~ 
and then inductively putt ing one  e lement  of each Y. or  Z,, outside or inside R/, 

as required. 

The amalgamation property for %L would say (if it were true): If A <  LB~ 
(i = 1, 2), then there is C such that  B, ~ t. C (i = 1, 2), up to isomorphism over  A. 

Corollary 19. I f  L is P H ~  with K > ,,~, or if  L is PL,~ with K strongly compact, : 

the amalgamation property fails for L. 

Froof.  This follows from possibility (3). 

4.4. Ultralimits and a logic with Craig and Feferman-Vaught properties 

From now on we assume that r is strongly compact and (except where stated) all 
relations and functions in smtctures are finitary. 

Recall Kochen's  notion oi ultraiimits [13]: if A, (i < to) are structures such that  
each A~+~ is an ul trapower A~b, of A ,  and A,, is the direct limit of the A~ under  
the natural embeddings, then we say that  A,~ is an ultralimit of Ao. We shall write 
Ao, = Utt Ao/D~. If the D~ are K-ultrafilters, we call A~ a K-ultralimit of Ao. 

The construction can be iterated beyond to. Suppose for each ordinal c~ we have 
a set /,, and an ultrafilter D~ on I~ : then for every structure A we can define 
structures A "~ by induction: 

A "~ = A. 

A - AD,, , 

A ~a'= lira A ~ when 3 is a limit ordinal. 

For all a </3  there are canonical e lementary embeddings h ~  : A "'~ --~ A " ~  which 
we use to define the limits at limit ordinals. If ¢~ < ~3 < % then h.~, = hf~vh,,t~. If 
A~"~-~B "~, then A " ~ B  tm for all f i ~ a ,  

We shall apply this idea in the case where all the ultrafilters D~ arc ~:- 
ultrafilters. Let D = (/9. : a an ordinal) be a sequence of K-ultrafitters on sets I.. 
Tben we defi~e an equivalence relation ~ - ~  on structures by: 

A -*~D~B iff for some a, A ( ~ B  ~"~. 

It is easy to see that  if ~ was to, then we could choose D so that ~ o )  coincides 
with elementary equivalence. Theorem 20 generalises this fact: 

Theorem 20. There is a sequence D of ~<-alt:afilters such that in each similarity 
type, ~.,~ has only a set of" equivalence classes. Moreover there is a proper class C of 
ordinals such that A "---'~ A <'~ for ever), structure A and every 7E C 
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The proof will rest on che following rather technical lemma: 

Lemma 21. Let )t be any cardinal. Then there is a sequence of ~-ultrafihers D~ on 
sets I~ (i < o)) such that if  A,  B are any two L~-equivalent  s~ructures of  cardinality 
<~k, in any language, then 

Ult  AID, ~ Ult BID,. 

Proof.  For  the first part of this proof, we allow structures to carry relations of any 
arity <K. 

For some cardinal )t' there exists a family of pairs of structures, ((Ay, B,): ~, < 
A'}, such that each ~% and each B~ has a subset of h as its domain, each A~, is 
L~.,-equivalent to B.y, and every pair of L~,:-equivalent structures of cardinality 
~)t differs from some pair (A~, B~) in at most ~:he choice of language. Choose a 
cardinal Ix such that tx <" = Ix and 2 '~ ~ h' ,  and partition 2 '~ into sets Y, (~y < X') of 
cardinatity ~h .  Choose a (ix, K,~t)-indepeadent family (f~: a < 2 " } .  For each 
- / < h '  and a e Y,, let g, ,  be a map from Ix to dom B,, such that if f~ ( i ) edom B~, 
then g~( i )  = f~(i). Then (g~ :  c, e Y~) forms a (Ix, K, dora B,)- independent  family 
of cardinality ~>)t. Choose an injection 0 r :domA~--->{g~: a E Y.~}. List the 
elemeuts of A ,  in order-type X (possibly with repetition.--) as fi,, and write 0fi, for 
the seqaence (0(fir(j)): j < ~.}. 

Now for each ~ ,<h '  and each atomic or negated atomic formula q~ with 
variables v,, (a < hL define 

Let D be the filter on a generated by all intersections of fewer than ~¢ sets of 
form B~(cp) such that Av~q~[fiv]. 

Clai~.  D is a K-filter. 

As usual, the burden is to show that D is proper. Suppose q~u (/3 < v < to) axe 
formulae such that A~ ~q~t~[~] for a l l / 3 < v .  Then A~, ~3~/'Xt~<,,¢P~ (,5). Since A~ 
aild B~ ai'e L~-equivalent ,  there is a sequence /7~ in B so that B~ ~/~<~. cp~[6~]. 
Then since the g~v are (ix, K, dom B~)-independent, there is i < Ix such that (OF~,)~ 
agrees with 6, at the relevant places. Of course most generators of D involve sets 
B.~(q~) from several different 3 , < h ' ;  but the fact that the /~ were (IX,~,,~)- 
independent ensures that we can find an i < Ix which works for all these V at once. 
Hence the claim is proved. 

Let Do be a K-ultrafilter on tx which extends D. Then for each 2/< £', 0 r 
induces an embedding of A ,  into B~Do. Hence if A, B are any two L~-equivalent  
structures of cardinality ~<)t, then A is embeddable in B~,~. 

Iterating this construction, we can find Ix~ ~ Ix and a K-ultrafilter D~ on Ix~ such 
that if A, B are any two L~-equiva lent  structures of cardinality ~<,' ~, then A is 
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embeddable  in/3~9,. Then we can find ta,~ >~ t~ and a ~¢-ultrafilter D 2 on 1*2 which 
serves for structures of cardinality -<.A'*q and so on for 0J steps. 

Now let A, B be any two L~,-equivalent  structures of cardinality ~<A. Form A * ,  
B* from A, B by adding relations for all formulae of L ~ .  Then  any embedding  of 
A ~" into an L~-equ iva len t  s tructure is L~-e l emen ta ry ,  so by the  construction 

gcu- 
above we have an L~-e l emen ta ry  embedding  eo:A*- - -*Bo , , .  Then  likewise we 
have an L~-e t emen ta ry  embedding e~ .  D,, ~, so that the  diagram 

,l * ~ A .%* ' 

commutes.  Continuing the diagram to the right ,for ~0 steps (cf. [1.3]), we 
eventually reach isomorphic K-ultralimits Ult A/D~+~ and Ult B/D2~. (The non-  
finitary relations have to be dropped when we take limits.) Since the same proof  
shows that Ult A/D,_~+~ =--Ult A / D ~ ,  i. follows that  

U l t  A/D2i  ~ U l t  B/D2i , 

and so (Do, De . . . .  ) is the required sequence of ~-ultrafiiters. 

We remark that since ~ is strongly compact, Lemma 21 impIies that  if K is any 

class of structures such that both K and its complement  are closed under  
~-ultralimits, then K is defined by a sentence of L~.  

ProoI  of Theorem 20, We define the K-ultrafilters D~, by induclion, using global 
choice. Let A be 0 or an uncountable  cardinal, and suppose that  for each a < A 
the K-ultrafilter D,~ oll p,~ has been defined. Let  p. be sup{~,~ : c~ < A}. By Lemma 
21, choose D,~ ~ ( i<a~)  so that  if A, B are any two L~,~-equivalenl: structures of 
cardinality ~ 2  ~, then Ult A/D~ ~i ~- UII B/Da~ ,. Then for each ~ < A' ,  put D,, = 
D~z where a = ( A + ~ o ) -  y + ~  and l ) ~ f i < a + e . ~ .  

To show that this definition of D works for the theorem, consider a language 
with v symbols. In lifts language there are at most 2 ..... pairwise n o n - L ~ -  
equivalent structures. We claim that there are at most  2 ~*" equivalence classes of 
~¢)~ in this language. For if not, we can choose a set K of (2 . . . .  )+ structures 
which are pairwise non-equivalent  with respect to ~D~. Let A be any cardinal 
greater than the cardinalities of all the structures in K. Then there are distinct 
A, B ~ K such that  A ~ is L~-equ iva len t  to B ~a>, and both  have cardinality ~ 2  a, 
But then A ~ " ° ' ~  B ~x~-~'~ and hence A -~<~ P contradicting the choice of K. 'Ilfis 
shows that ~(D,, has only a set of equivalence classes in each language. 

Finally let C be the class of a!l transfinite ordinals of the form (h + co) • 1' with 
y < , \ + .  Then  for each /3~ (7, the see'~ences (D~: a an ordinal) and (D~+.:  a an 
ordinal) are identical, and so for an structure A, A ~ = =  A~¢~x~ = A t ~  for all 
large enough A. proving that  A ~ o ~  A~g~. 
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Given D as in Theorem 20, we can define a non-standa*:d logic Lo as follows. 
Le t  S be  a set of representat ives (up to isomorphism) of all  similarity types of 
c~d ina l i ty  <~ .  For each s ~ S  and each se* X of ~(m-equiva lence  classes of 
s-structures,  we introduce a quantifier O,~ by the  rule 

A ~O~x(qh . . . .  ) iff the ~D~-class of the structure (dom A, (q~0A, " - ") is in X. 

The  sentences of L~ in a given similarity type will be the expressions of form 
Q~(R~6, R~f~ . . . .  ) where R~, Rz . . . .  are relat ion symbols of the  similarity type. 
(For simplicity we are ignoring functions and constants.) Note  that  there  is only a 
set of such sentences.  

Sentences of L~,, are preserved in ~¢-ultratimits, and so any two ~(o~-equivalent 
structures must  have the same L,,o,-theory. It follows that  the logic Lo is not 
h -compac t  for any h < ~. Against  this bad property,  it has two good ones: 

T h e o r e m  22. Let Lr) be as defined above. Thert: 
(i) the Craig imerpolation theorem holds for Lr,; 

(ii) (Feferman-Vaught property) the Lr)-theory of a sum or product of two 
structures is determined by the Lo-theories of the structures. 

Proof.  (i) Let  s~, s2 be  similarity types with intersection s. Let  ~?~, ~9a be sentences 
of Le.(st), L~(s2) respectively, so that  q~t entails q~> We can suppose without  loss 
that  s was in the set S defined earlier, and so we can define .,~ to be  the set of all 
--~D~-equivatence classes of s-structures which contain reducts of models of ~ .  
We claim that the sentence O~x is an interpolant  in LD(s) between ~9: and q%. 

If A is any model of ~Pl, then the s-reduct  of A is in the class v,  and so A ~O~,-. 
This shows that  q~t entails 0~,~. 

Suppose B is an s2-struct~.lre which is a model  of (1~,-. Then  for some model A 
of w~, A Is ~D~ B I s. It follows that  for all large enough ordinals % (A ] s ) ( ' ~  
(B 1 s) ~''. In particular this holds for some y in (2. Since 3' is in C, A ~(o~A (~ and 
hence A ~'; is a model of q%. So B ~ can be expanded to a model of q~, and hence 
B ~'~ is a model of q~2- But  then B was also a model of q~2, because B ~ ( o ) B  (~. 
This shows that  (l~ z entails ~2, and so (i) is proved. 

(ii) is proved similarly, using the facts that  A ~ x B t " ~ . - ~ ( A x B )  ~'~ and 
A ~ + B ~ ' ~  (A + B) ~~. 
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