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Our investigations are framed by two overlapping problems: finding the right 
axiomatic framework for so-called cofinality spectrum problems, and a 1985 question 
of Dow on the conjecturally nonempty (in ZFC) region of OK but not good 
ultrafilters. We define the lower-cofinality spectrum for a regular ultrafilter D
on λ and show that this spectrum may consist of a strict initial segment of 
cardinals below λ and also that it may finitely alternate. We define so-called 
‘automorphic ultrafilters’ and prove that the ultrafilters which are automorphic 
for some, equivalently every, unstable theory are precisely the good ultrafilters. We 
axiomatize a bare-bones framework called “lower cofinality spectrum problems”, 
consisting essentially of a single tree projecting onto two linear orders. We prove 
existence of a lower cofinality function in this context and show by example that it 
holds of certain theories whose model theoretic complexity is bounded.
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1. Introduction

Recall that two models M , N are elementarily equivalent, M ≡ N , if they satisfy the same sentences of 
first-order logic. A remarkable fact is that elementary equivalence may be characterized purely algebraically, 
without reference to logic:

Theorem A (Keisler 1964 under GCH; Shelah unconditionally). M ≡ N if and only if M , N have isomorphic 
ultrapowers, that is, if and only if there is a set I and an ultrafilter D on I such that M I/D ∼= N I/D.
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To prove this theorem, Keisler established that ultrafilters which are both regular and good exist on 
any infinite cardinal and that they have strong saturation properties. For transparency in this introduction, 
all languages (e.g. vocabularies) are countable and all theories are (first-order) complete. Regularity is an 
existential property of filters, showing a kind of strong incompleteness: a filter on I is regular if there exists 
a family X = {Xi : i < |I|} ⊆ D, called a regularizing family, such that the intersection of any infinitely 
many elements of X is empty. To motivate the definition of good, Definition 1.1 below, we finish outlining 
the proof of Theorem A in the GCH case. If D is regular and good, and |M | ≤ |I|, then M I/D is of size 2|I|
(since D is regular) and is |I|+-saturated (since D is in addition good). So choosing |I| ≥ max{|M |, |N |}
and assuming the relevant instance of GCH, the ultrapowers M I/D, N I/D are elementarily equivalent, of 
the same cardinality, and saturated in that cardinality, therefore isomorphic.

Given a model M and an ultrafilter D, let us abbreviate ‘M I/D is |I|+-saturated’ by writing ‘D satu-
rates M ’. In the proof just sketched, the saturation properties of good ultrafilters are tempered by regularity 
as follows. A good ultrafilter on I will saturate any M which is itself |I|+-saturated (this may be taken as 
a definition of good ultrafilter, but see also Definition 1.1 below). If D is regular, then D saturates a model 
M if and only if it saturates all N ≡ M (see Keisler [6] Theorem 2.1a). Since a good ultrafilter saturates 
some model in every elementary class (e.g. any one which is sufficiently saturated), a good regular ultrafilter 
saturates all models.

The usual definition of good filters is combinatorial. Call a function monotonic if u ⊆ v implies f(v) ⊆
f(u), and multiplicative if f(u) ∩ f(v) = f(u ∪ v). In the following definition, it would suffice to consider all 
monotonic functions.

Definition 1.1 (Good filters, Keisler). Let D be a filter on I. We say D is κ-good if for every ρ < κ, every 
function f : [ρ]<ℵ0 → D has a multiplicative refinement, i.e. there is g : [ρ]<ℵ0 → D which is multiplicative 
and such that g(u) ⊆ f(u) for all u ∈ [ρ]<ℵ0 . We say D is good if it is |I|+-good.

This has proved to be a very fruitful definition. The existence of good regular ultrafilters, proved by 
Keisler under GCH and by Kunen unconditionally, may be understood as asserting existence of ultrafilters 
which are ‘maximal’ or ‘complex’ in at least two senses: in the sense that all functions have multiplicative 
refinements, or in the sense of being strong enough to saturate any model. As a result, proposed weakenings 
of this definition have traditionally taken either a more set-theoretic form or a more model-theoretic form. 
An interesting example of the first is the notion of an ‘OK’ ultrafilter; see Dow 1985 [2], p. 146 for the 
history. Note that the cardinal parameter differs from Definition 1.1, i.e. a κ+-good filter is κ-O.K.

Definition 1.2 (OK filters). Let D be a filter on I. We say D is κ-OK if every monotonic function f :
[κ]<ℵ0 → D which satisfies |u| = |v| =⇒ f(u) = f(v) has a multiplicative refinement. We say D is OK if it 
is |I|-OK.

It has been surprisingly difficult to distinguish OK from good. It follows from the existence of an 
ℵ1-complete (non-principal) ultrafilter that there exist regular ultrafilters on any sufficiently large λ which 
are OK but not good (see for example Theorem 4.2 (4) � (5) and Theorem 7.4 of [12]). We do not know 
of any ZFC proofs.

However, in his paper Dow raises a stronger question: “the question of whether there can be α+-OK 
ultrafilters which are not α+-good.”

Question 1.3 (Dow, cf. [2] 4.7). Do there exist α+-OK ultrafilters which are not α+-good?

This question frames much of our present work. The theorem already quoted answers it assuming a 
measurable cardinal, and in fact allows for an arbitrary separation:



JID:TOPOL AID:5910 /FLA [m3L; v1.185; Prn:25/08/2016; 9:50] P.3 (1-30)
M. Malliaris, S. Shelah / Topology and its Applications ••• (••••) •••–••• 3

Sh:1070
Theorem B ([12] 7.4, in the present language). Assume ℵ0 < κ < λ, 2κ ≤ λ, κ measurable. Then there 
exists a regular ultrafilter D which is λ-O.K. but not (2κ)+-good.

However, Question 1.3 remains open in ZFC. One of the themes of this paper will be the apparent richness 
of the region between OK and good. To explain this, we return to the second direction mentioned after 
Definition 1.1, weakenings of goodness arising from model theory.

Recall that a regular ultrafilter D saturates a model M iff D saturates all N ≡ M . This means we 
can simply speak of D saturating a complete theory T (if D saturates one, equivalently all, of its models), 
and we may naturally compare theories T , T ′, by asking whether any regular D which saturates T must 
saturate T ′. If so, following [6], we say that T ′ � T in Keisler’s order. Among the regular ultrafilters, the 
good ultrafilters are those which can saturate any theory; moreover, there exist theories which are only 
saturated by good ultrafilters. This tells us Keisler’s order has a maximum class. An early surprise was that 
this maximum class includes all theories of infinite linear order.1

Theorem C (Shelah 1978 [20] VI.2.6, in our language). If D is a regular ultrafilter on I and D saturates 
(ω, <), then D is good.

In particular, following [13], one can define the cut spectrum of a regular ultrafilter D on I. Say that 
N = (ω, <)I/D has a (κ1, κ2)-cut if κ1, κ2 are regular and there exist sequences (〈aα : α < κ1〉, 〈bβ : β < κ2〉)
of elements of N such that for all α < α′ < κ1 and β < β′ < κ2, aα < aα′ < bβ′ < bβ , but there does not 
exist c such that aα < c < bβ for all α < κ1 and β < κ2.

Definition 1.4 (The cut spectrum of D [13] 2.1). For D a regular ultrafilter on I,

C(D) = {(κ1, κ2) : κ1 + κ2 ≤ |I| and (ω,<)I/D has a (κ1, κ2)-cut.}

Then when D is regular, C(D) = ∅ if and only if D is good, and we may try to understand the possible 
distance of a given ultrafilter from goodness by asking whether its cut spectrum is nonempty (and if so 
how).

Here too model theory can help in proposing weakenings of goodness, by again leveraging Keisler’s order. 
Choose a theory or a family of theories which appear to be, at least a priori, less difficult to saturate 
than linear order (or any other theory in the maximum class). Identify a property of ultrafilters which 
corresponds to saturation of that theory (or family of theories) and try to compare this new property to 
goodness. This was the approach taken in our recent paper [13] (see also [14]), which also led to a proof 
that the cardinal invariants p and t are equal. That work began from the question of whether theories with 
a certain model-theoretic tree property, called SOP2, were maximal in Keisler’s order. We first proved that 
a necessary condition for a regular ultrafilter D on I to saturate some theory with SOP2 is the following: 
whenever T is a tree (i.e. a partially ordered set such that the set of predecessors of any given element is 
well ordered), any strictly increasing |I|-indexed path in the ultrapower N = T I/D has an upper bound in 
N . When this holds, say that D has treetops (really, |I|+-treetops). We then investigated the distance of 
this property from goodness by asking: if D has treetops, is C(D) = ∅?

The surprising answer was yes [13, Theorem 10.1]. Its proof involved a systematic analysis of properties 
of cuts in C(D) with the local aim of eventually ruling all cuts out. We believe, however, that in contexts 
much more general than that paper, carefully revisiting this analysis under weaker hypotheses than treetops 
may give much more information. A property of particular interest appears to be “uniqueness,” essentially 
the property that if (κ, θ) and (κ, θ′) belong to C(D) then θ = θ′. This property motivated many of the 

1 A consequence of regularity, requiring a brief argument, is that a regular ultrafilter D saturates (ω, <) if and only if it saturates 
(X, <) where X is any infinite linear order.
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problems in our recent open questions paper [19], and it is the focus of Sections 2 and 4 of the present paper. 
Its conjectural relation to the existence of internal maps (another key driver of problems in [19], which will 
be explained in due course below) will connect it to our remaining topic and to Section 3.

Towards explaining this remark, we now discuss how a further open question in this framework fits an 
interesting model theoretic picture into Dow’s question 1.3 above. To begin, here is a partial map of classes of 
theories in Keisler’s order. The filled-in regions are classified, and the lines represent some known divisions. 
Along the top are some properties of theories, and along the bottom are some properties of ultrafilters.

After [13] established the maximality of SOP2, a key question is whether or not all non-simple theories 
are maximal. This amounts to asking whether there are theories with a model theoretic property called TP2
which are non-maximal. By Tfeq we will mean the model completion of the theory of a parametrized family 
of independent equivalence relations, as in [23] Definition 1.7. (Any non-simple theory has at least one of 
SOP2 or TP2.) We know that among the TP2 theories Tfeq is minimal, and that the following property of 
a regular ultrafilter is necessary and sufficient for saturating Tfeq [10, Lemma 6.7–Theorem 6.10]. (Given 
an ultrapower N = M I/D, fix in advance a lifting M I/D → M I so that for a ∈ N , t ∈ I the coordinate 
projection a[t] is well defined.)

Definition 1.5 (Good for equality, defined in [10] and named in [11]). Call the regular ultrafilter D on I good 
for equality if whenever M is an infinite model and A ⊆ M I/D, |A| ≤ I, there is a map f : A → D such 
that for all t ∈ I, the sequence 〈a[t] : a ∈ A satisfies t ∈ f(a)〉 is without repetition.

The picture above also reflects that in [10] a property of ultrafilters called ‘flexible’ which is equivalent 
to OK, and which has model theoretic content, was discovered. Moreover, good for equality implies flexible 
(= OK) [10, Lemma 8.7 and 8.8]. For our present purposes, this tells us that the conjectural distance 
between good for equality and good is contained in that between OK (= flexible) and good.2 So Dow’s 
question 1.3 may be illuminated by advances in understanding the structure of Keisler’s order. For example, 
recently [16, Theorem 8.2], which separated the simple from the non-simple theories in Keisler’s order under 
a large cardinal hypothesis, also gave a new OK but not good for equality – thus, not good – ultrafilter; and 
moreover the so-called optimal ultrafilters built there yield a new family of examples answering Question 1.3, 
assuming existence of a supercompact cardinal, as explained in [16, Conclusion 5.18].3

Having explained these three interrelated areas arising from the problem of weakening goodness – the 
question of good versus OK, the problem of the cut spectrum of D and in particular the question of 
uniqueness, and the question of good versus good for equality – we now outline our main results. In Section 2, 
we formalize and investigate uniqueness spectra, primarily of regular ultrapowers. We prove that uniqueness 
can hold precisely on certain initial segments of cardinals and that it may alternate. In Section 3, we show 

2 Note that the line corresponding to “OK” is not if-and-only-if. That is, it is necessary that any regular ultrafilter which 
saturates a theory to the right of the drawn line (in model-theoretic language, a non-low simple theory or a non-simple theory) be 
OK. However, this is not sufficient.
3 Somewhat more is currently known about the structure of Keisler’s order that what is shown on the map above: for example, on 

the simple theories, in the region to the left of the “OK” line: see [17]. A further discussion of connections between model-theoretic 
properties of theories and set-theoretic properties of ultrafilters may be found in [12] §4.
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that in the distance between good for equality and good there arises an automorphism problem which 
aligns the increasing complexity of first order theories with the increasing complexity of internal maps 
in ultrapowers. Investigating this problem we are able to give a new characterization of goodness: D is 
good if and only if D is so-called automorphic for all unstable theories (defined below). As a result we 
can re-frame several open questions. In Sections 4–5, we present an axiomatic approach, showing that even 
under very weak notions of order and filters one can recover certain uniqueness phenomena. We discuss 
some model-theoretic examples and limitations of such results.

We thank the referee for a careful reading and for many comments which have significantly improved the 
presentation of the paper.

2. The uniqueness spectrum

In this section we define and investigate lower cofinality spectra in ultrapowers. The specific phenomenon 
we study is the following. Specializing to the case of ultrapowers, [13, Theorem 3.2] says that under the 
hypothesis of treetops the following ‘uniqueness’ phenomenon arises.4

Fact 2.1 (Cf. [13] Theorem 3.2). Let D be a regular ultrafilter on I, with |I|+-treetops. Then for each regular 
κ ≤ |I|, there is precisely one θ such that (ω, <)I/D has a (κ, θ)-cut.

Note that regularity of D implies that (ω, <)I/D has a (κ, θ)-cut iff it has a (θ, κ)-cut so without loss of 
generality we have focused on the first coordinate.

Definition 2.2 (Internal, in ultrapowers). Let N = M I/D be an ultrapower. Let M+ denote the expansion of 
the theory of M by adding all possible relations, functions, and constant symbols. Then the internal functions 
and relations are precisely those definable in N+ := (M+)I/D, recalling that ultrapowers commute with 
expansion and reduction.5

One strong reason that uniqueness can arise is if there is an internal order preserving map between any 
two monotonic κ-indexed sequences in the ultrapower. This may seem like a lot to ask, but in fact when 
the ultrafilter is good this is what happens6:

Fact 2.3 (Special case of [13] Corollary 3.8). Let D be a good regular ultrafilter on I. Suppose κ is regular 
and κ ≤ |I|, and let N = (ω,<)I/D. Let a = 〈aα : α < κ〉 and b = 〈bα : α < κ〉 be two strictly monotonic 
sequences of elements of N . Then there is a monotonic, internal partial one-to-one map f in N whose 
domain includes {aα : α < κ}, and such that f(aα) = bα for all α < κ.

Remark 2.4. The proof of Fact 2.3, i.e. of [13] Corollary 3.8, also shows that existence of the map f corre-
sponds to realization of a type in a larger language. Let M = (ω, <). Let M+ be M expanded to a model of 
sufficient set theory: in this model, we have not only ω but also the set of all partial functions with domain 
an initial segment of ω, and range a subset of ω×ω strictly increasing in both coordinates. This set naturally 
has the structure of a tree, partially ordered by inclusion; call it (T , 	). Note that given an element of T , 
its range may be thought of as the graph of a partial function between two strictly increasing subsequences 

4 Fact 2.1 and Corollary 2.3 both translate a result originally stated for so-called cofinality spectrum problems to ultrafilters. The 
specifics of such a translation are justified in [13] 10.17–10.21. Regarding ‘treetops,’ recall from the introduction that this means: 
whenever T is a tree, any strictly increasing |I|-indexed path in the ultrapower N = T I/D has an upper bound in N .
5 Equivalently, we say that a relation R ⊆ Nk is internal if for each t ∈ I we may expand M = Mt by interpreting a new k-ary 

relation symbol P in such a way that ∏t(Mt, P )/D = (N, R). We say that a partial function f : Nk → N is internal if its graph 
is an internal relation which is the graph of a function.
6 By [13, Theorem 10.1], the hypothesis “D has with |I|+-treetops” is here replaced by “D is good” in the quotation of Fact 2.3.
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of ω. Ultrapowers commute with reducts, so we have that N = M I/D expands naturally to N+ ≡ M+. 
In this ultrapower, ω is nonstandard and so is T . Consider the type of an element of T whose range is the 
graph of a partial function extending aα �→ bα. For a more general argument, see Observation 3.11 below.

This discussion directs our attention to three related spectra.

Convention 2.5. For the remainder of the section, fix some sufficiently large (so uncountable) regular χ. 
By H(χ) we mean7 the sets hereditarily of cardinality < χ. Let A = (H(χ), ∈). We use M to denote a 
sufficiently saturated model of Th(A). In this case “internal” has the usual meaning.

Definition 2.6 (Lower cofinality spectra of ultrafilters or models of set theory).

(1) For M as in Convention 2.5 and � = 0, 1, 2, let LcfSp�(M) be the set of κ = cf(κ) such that κ is an 
ordinal of M and whenever ā, b̄ are two strictly increasing sequences of length κ in M:
(a) (if � = 0) ā, b̄ have the same coinitiality in M.
(b) (if � = 2) there is an internal order preserving map π in M such that π(aα) = bα for α < κ.
(c) (if � = 1) there is an internal order preserving map in M such that for some unbounded U ⊆ κ we 

have: if α < δ are from U , then π(aα) < bδ and π−1(bα) < aδ.
(2) Let D be a regular ultrafilter on I. For � = 0, 1, 2, let LcfSp�(D) be the set of κ = cf(κ) ≤ |I| such that 

κ ∈ LcfSp�((ω, <)I/D).

We write LcfSp for LcfSp0.

Discussion 2.7. In Definition 2.6(2), the assumption that D is a regular ultrafilter entails that we could 
replace (ω, <) there by M, or by another infinite model of linear order. The reason to cut off LcfSp�(D) at 
|I| is because we are often interested in measuring how far the ultrafilter is from good, as explained in the 
introduction. In general, however, we might simply have said:

“Given D a not necessarily regular ultrafilter on I, � = 0, 1, 2 and any regular cardinal κ, we say that 
κ ∈ LcfSp�(D) when (for � = 0, 2, 1 respectively) Definition 2.6(1)(a), (b) or (c) hold in the case where M
there is assumed to be of the form BI/D for some κ+-saturated B ≡ A.”

Observation 2.8.

(1) Let D be an ultrafilter8 on I. Then

LcfSp2(D) ⊆ LcfSp1(D) ⊆ LcfSp0(D).

(2) If D is κ+-good, κ = cf(κ), then κ ∈ LcfSp2(D).
(3) If D is not ℵ1-complete, then ℵ0 ∈ LcfSp2(D).
(4) If M is κ+-saturated then κ ∈ LcfSp2(M).

Proof. (1) follows from the definitions. To see that the second inclusion holds, let π be as in Definition 2.6, let 
A = {aα : α < κ} and let C = {c : c > aα for all α < κ} be the set of A-nonstandard elements. Likewise let 
B = {bα : α < κ} and let D be the set of B-nonstandard elements. Let C≤c denote {x ∈ C : x ≤ c}. Observe 
that for no c ∈ C can we have that dom(π) ∩C≤c ⊆ A, as then {x : (∃y ∈ dom(π))(y > x)} would define the 

7 More precisely, define H(χ) to be the set of all x such that the cardinality of the transitive closure of x is < χ. Then A = (H(χ), ∈)
will be a model of ZFC minus the power set axiom.
8 See previous discussion for the non-regular case.
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cut given by (A, C≤c). Likewise, for no c ∈ C can we have that for some d ∈ D, range(π � C≤c) ∩D≤d ⊆ B, 
as then we could define the cut (B, D≤d). This shows that for any (c, d) with c ∈ C and d ∈ D there is 
(c′, d′) with c > c′ ∈ C, d > d′ ∈ D and π(c′) = d′, which is enough to show that the co-initiality of C and 
of D are the same.

(2) is by Fact 2.3 above.
In (3), we can always build a monotonic partial internal map between any two monotonic ω-indexed 

sequences.
(4) follows from the observation that the existence of such a map may be expressed as a partial type, see 

Remark 2.4. �
Next we prove that LcfSp can be any cofinite initial segment of the regular cardinals ≤ |I|. This requires 

two ingredients. The first is a theorem of the second author that explains how to set the coinitiality of the 
diagonal embedding9 of κ in (|I|, <)I/D, denoted lcf(κ, D), for finitely many values of κ (all regular and 
≤ |I|).

Definition 2.9 (See [20] Definition 3.5, p. 357). For an ultrafilter D on I and a regular cardinal κ we define 
lcf(κ, D) to be the smallest cardinality λ such that there is a subset of

{a ∈ κI/D : κI/D |= α < a for each α < κ}

which is unbounded from below, and has cardinality λ.

Theorem D ([20] Theorem VI.3.12). Suppose ℵ0 = λ0 < λ1 < · · · < λn = λ+, each λi is regular, and 
λ�+1 ≤ μ� ≤ 2λ, μ� regular, for � < n. Then for some regular λ1-good but not (λ1)+-good ultrafilter D over 
λ, lcf(κ, D) = μ� whenever λ� ≤ κ < λ�+1.

The second ingredient is our recent proof that the failure of goodness is always witnessed by a symmetric 
cut.

Theorem E (From [13] Theorem 10.26). Let D be a regular ultrafilter on λ which is λ-good and not λ+-good. 
Then C(D) has a (λ, λ)-cut.

In other words, recalling from the introduction that λ ≤ |I| implies C(D) is λ-good if and only if 
C(D) ∩ (λ × λ) = ∅, “the first cut is symmetric”:

Corollary 2.10 ([13] Theorem 10.25). For D a regular ultrafilter, if κ = min{κ1 +κ2 : (κ1, κ2) ∈ C(D)} then 
(κ, κ) ∈ C(D).

The interaction of Theorems D and E gives the result about initial segments.

Claim 2.11. Suppose ℵ0 < κ < λ where κ is regular and λ = κ+n for some finite n ≥ 1. Then there exists a 
regular ultrafilter D on λ such that

LcfSp(D) = {μ : μ = cf(μ) and μ < κ}.

Proof. Apply Theorem D in the case where for each 0 ≤ � < n, λ1+� := κ+� and for each 0 ≤ � < n, 
μ1+� = κ+�+1. In this ultrafilter D, we know that (κ�, κ+�+1) ∈ C(D) for 0 ≤ � < n. Since D is κ-good, 

9 By regularity of D, the cut spectrum computed with (ω, <) or (|I|, <) is the same, but the meaning of ‘the diagonal embedding 
of κ’ is clearer in the second case.
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every regular μ < κ belongs to LcfSp(D). By Theorem D D is not κ+-good, so by Theorem E we know that 
C(D) has a (κ, κ)-cut. Since (κ, κ+) ∈ C(D), this proves κ /∈ LcfSp(D). For 1 < � < n, we have that both 
(κ+�, κ+�+1) and (κ+�+1, κ+�+2) belong to C(D), so clearly κ+� /∈ LcfSp(D), which completes the proof. �
Corollary 2.12. For any uncountable κ there is a regular ultrafilter D on κ such that κ /∈ LcfSp(D) witnessed 
by the existence of a (κ, ρ1)-cut and a (κ, ρ2)-cut where ρ1 �= ρ2 and min{ρ1, ρ2} ≥ κ.

Proof. Just as in the proof of Claim 2.11, using λ1 = κ and μ1 = κ+. The resulting D will be κ-good and 
not κ+-good so there will be a (κ, κ)-cut by Theorem E and a (κ, κ+)-cut by construction. �

Now we ask: it possible to alternate? That is, can we find a regular ultrafilter D on λ and λ0 < · · · <
λn ≤ λ such that λn ∈ LcfSp(D) iff n is even? To obtain alternations, we will appeal to weakly compact 
cardinals (which will give a clean and direct proof that alternation is possible, though it is unlikely they are 
essential to this result). Here the reason for � = 1 appears.

Definition 2.13 (see e.g. Kanamori [5] Theorem 7.8, p. 76). The cardinal κ is said to be weakly compact if 
for every f : κ ×κ → {0, 1} there is U ⊆ κ, |U| = κ and t ∈ {0, 1} such that for all ε < ζ from U , f(ε, ζ) = t. 
If κ is weakly compact and uncountable, it follows that for any n < ℵ0, ρ < κ and f : [κ]n → ρ there is 
U ⊆ κ, |U| = κ such that 〈f(α1, . . . , αn) : α1, . . . , αn from U〉 is constant.

First we show that for I small relative to some weakly compact κ, subsequent ultrapowers over I cannot 
destroy uniqueness for κ.

Claim 2.14. Let D be an ultrafilter on I. Suppose κ > |I| is a weakly compact cardinal and κ ∈ LcfSp1(M). 
Then κ ∈ LcfSp1(MI/D).

Proof. Let N = MI/D. Suppose we are given f �
α ∈ IM for α < κ, � ∈ {1, 2}, so that for � = 1, 2 the 

sequence 〈f �
α/D : α < κ〉 is strictly increasing in N . By Łos’ theorem, for each pair α < β < κ let

A�
α,β := {s ∈ I : f �

α(s) < f �
β(s)} ∈ D.

Recall that any weakly compact cardinal is strongly inaccessible, so there are |P(I)| < κ possible choices 
for A�

α,β. As κ is weakly compact, we may assume that for each � there is A� ∈ D and U� ⊆ κ, |U�| = κ

such that α < β ∧ α ∈ U� ∧ β ∈ U� =⇒ A�
α,β = A�. Let A∗ = A1 ∩ A2 ∈ D. By construction and 

Łos’ theorem, for each s ∈ A∗, � ∈ {1, 2} the sequence f̄ � = 〈f �
α(s) : α ∈ U�〉 is strictly increasing. After 

renaming if necessary, we may assume each U� = κ. By hypothesis, for some unbounded subset U of κ, in 
M there is an order preserving map πs such that α < δ ∈ U implies that πs(f1

α(s)) < f2
δ (s) and also that 

π−1
s (f2

α(s)) < f1
δ (s). When s /∈ A∗, let πs be the identity. Let π be the internal order-preserving map of N

given by 〈πs : s ∈ I〉 ∈ IM. So whenever α < δ ∈ U ,

N |= “π(f1
α/D) < f2

δ /D ∧ π−1(f2
α/D) < f1

δ /D)”

which satisfies Definition 2.6(1)(c) so completes the proof. �
Second we show that if I is small relative to some κ for which uniqueness fails (witnessed by large λ1, λ2), 

subsequent ultrapowers over I will not resolve this.10

10 Some different results on the case of (κ1, κ2)-cuts in ultrapowers where κ1 +κ2 > 2λ, and the index model M is quite saturated, 
have been recently obtained by Golshani and Shelah [3].
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Claim 2.15. Let D be an ultrafilter on I. Suppose that M has (κ, λ1) and (κ, λ2)-cuts where κ, λ1, λ2 are 
regular, |P(I)| < min{κ, λ1, λ2} and λ1 �= λ2. Then κ /∈ LcfSp0(MI/D).

Proof. While the claim is stated for easy quotation (“witnesses to κ /∈ LcfSp(M) persist in an ultrapower 
provided the index set is small”), in fact all that we need to prove is that (κ, λ)-cuts are not filled in an 
ultrapower N = MI/D provided that κ, λ are regular and κ > 2|I| and λ > |I|. Let (ā, ̄b) be a (κ, λ)-cut 
in M. For each α < κ, let a∗α ∈ N be the image of aα under the diagonal embedding, and likewise let b∗β be 
the image of bβ for β < λ. Suppose for a contradiction that c ∈ MI/D is such that α < κ ∧ β < λ implies 
N |= a∗α < c < b∗β . For each α < κ, let Aα := {t ∈ I : M |= aα < c[t]} ∈ D. This amounts to coloring the 
elements of κ with at most |P(I)| < κ colors, so by the regularity of κ, there must be some U ∈ [κ]κ and 
A∗ ∈ D such that α ∈ U =⇒ Aα = A∗. Now by Łos’ theorem, for each β < λ, there is some tβ ∈ A∗ such 
that M |= c[t] < bβ . By regularity of λ, there are V ∈ [λ]λ and t ∈ A∗ ⊆ I such that β ∈ V implies tβ = t. 
But then c[t] realizes the cut 〈ā, ̄b〉 in M, a contradiction. �
Conclusion 2.16. Suppose μ0 < · · · < μn are regular cardinals < λ and μk is weakly compact when k is 
even. Then for some regular ultrafilter D on λ we have that for each � ≤ �n2 �, μ2� ∈ LcfSp1(D) ⊆ LcfSp0(D)
and μ2�+1 /∈ LcfSp0(D).

Proof. Let μn+1 = λ. For each � ≤ �n+1
2 �, let D� be a regular ultrafilter on μ� such that:

• if � is even, then D� is good, i.e. μ+
� -good.

• if � is odd, then for any model M of Th(A), the ultrapower Mμ�/D� has both a (μ�, λ�+1) and a 
(μ�, λ�+2)-cut for some λ�+1 �= λ�+2 > μ�−1.

Having chosen such a sequence of ultrafilters, let

D = Dn ×Dn−1 ×Dn−2 × · · · · · · × D0

where the products are taken from left to right. By Claim 2.15, the failures of uniqueness built at odd stages 
persist in the product, noting that � ≥ 2 and μ� weakly compact implies that 2μ�−1 < μ�. By Claim 2.14
the cardinals added to LcfSp1 at even stages persist in the product as well. This completes the proof. �
Conclusion 2.17. This analysis shows that uniqueness at a given cardinal κ is consistently strictly weaker 
than κ+-goodness, since goodness cannot alternate.

To complement this, we conclude by recording the addition of the relevant new conditions onto [13]
Theorem 10.26 using the language of LcfSp just introduced. This requires a short fact from our recent paper 
about open problems on ultrafilters. Its proof checks that from an internal map between cofinal sequences 
of the two sides of a symmetric cut, one can conclude the cut is definable and therefore realized.

Fact 2.18 ([19] 3.2). Let D be a regular ultrafilter on λ and let κ ≤ λ be regular. Suppose that in (ω, <)I/D
there is a monotonic partial internal map between cofinal subsequences of any two strictly monotonic 
κ-indexed sequences [i.e. suppose κ ∈ LcfSp1(D)]. Then (κ, κ) /∈ C(D).

Theorem 2.19. For D a regular ultrafilter on λ the following are equivalent.

(a) D has λ+-treetops.
(b) κ = cf(κ) ≤ λ implies κ ∈ LcfSp1(D).
(c) κ = cf(κ) ≤ λ implies κ ∈ LcfSp2(D).
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(d) κ ≤ λ =⇒ (κ, κ) /∈ C(D), i.e. C(D) has no symmetric cuts.
(e) D is λ+-good.

Proof. (a) iff (d) iff (e) is the full statement of [13] Theorem 10.26, quoted in part as Theorem E above.
(e) =⇒ (c) is Fact 2.3.
(c) =⇒ (b): Observation 2.8(1).
(b) =⇒ (d): is Fact 2.18. �
We emphasize the interesting question of whether there can exist a regular ultrafilter D on λ which is 

not good, yet has uniqueness for all regular κ ≤ λ (evidently not all witnessed by the existence of internal 
order-preserving maps).

Problem 2.20. Prove that for some infinite cardinal λ there is a regular ultrafilter D on λ such that {κ : κ =
cf(κ) ∧ κ ≤ λ} ⊆ LcfSp0(D) but D is not λ+-good.

3. Automorphic ultrafilters

In this section we first review how the distance between good for equality and good represents the in-
creasing strength of internal partial automorphisms in theories. We then introduce the idea of “automorphic 
ultrafilters” as a way of stratifying this conjecturally nonempty region by mapping the class of all complete 
countable first order theories into it.

Using this language we prove a new characterization of good ultrafilters (via unstable theories), and 
reframe several open questions.

Convention 3.1. Throughout this section,

(a) D is a regular ultrafilter on I, which we sometimes identify with λ;
(b) λ will denote |I|;
(c) if we are given a model M and A ⊆ M I/D, we will say “A is small” to mean |A| ≤ |I|.

Recall the definition “D is good for equality,” Definition 1.5 above. It had been observed that this 
definition can be restated in terms of existence of certain internal maps in ultrafilters.

Fact 3.2 ([11] Theorem 5.21). For a regular ultrafilter D on λ the following are equivalent:

(1) D is good for equality.
(2) For any infinite M , N = Mλ/D and A, B ⊆ N with |A| = |B| = λ, there is an internal partial map 

f : N → N which is injective and which takes A to B (in this case we say “D admits internal maps 
between sets of size λ”).

Proof. For completeness, and to motivate Definition 3.6, we sketch a proof.
(2) implies (1): Fix an infinite model M . First observe that since D is regular, it is always possible 

to find some small set A ⊆ M I/D admitting a map h : A → D such that for all t ∈ I, the sequence 
〈a[t] : t ∈ h(a)〉 is without repetition. Call such a map h a “good distribution for A.” [For example, we 
may begin with a regularizing family {Xi : i < λ}, so by definition for all t ∈ I, Zt := {i < λ : t ∈ Xi}
is finite. Then choose {ai : i < λ} ⊆ M I so that for each t ∈ I, 〈ai[t] : i ∈ Zt〉 is without repetition, 
which is possible as M is infinite. Letting ai =

∏
t∈I ai[t]/D for each i < λ, the set A = {ai : i < λ}

and the map h taking ai �→ Xi are as desired.] Suppose then that (2) holds. Let A be the small set just 
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built and let B be any other small set. Let f : N → N be the internal map given by (2). Enumerate 
B = 〈bi : i < λ〉 so that f(ai) = bi. Since f is internal, we may assume that we can find Ft (t ∈ I) such that 
each Ft : M → M and 

∏
t∈I(M, Ft)/D = (N, f). (We can also ask only that the Ft are relations and let 

X = {t : Ft is a function} ∈ D. So in the first case, X = I.) Then the map g : B → D taking bi �→ X ∩h(ai)
is a good distribution for B. Since B was arbitrary, this proves (1).

(1) implies (2): Let A and B be as in the claim, |A| = |B| = κ ≤ λ. Let {ai : i < κ} list A with no 
repetition, and let {bi : i < κ} list B with no repetition. Let h : A → D be a good distribution for A
and let g : B → D be a good distribution for B. For each t ∈ I, the map ai[t] �→ bi[t] is a bijection from 
{ai[t] : t ∈ h(ai) ∩ g(bi)} to {bi[t] : t ∈ h(ai) ∩ g(bi)}, so let ft : M → M be any bijection extending this 
one. Then the map f :=

∏
t∈I ft/D is as desired. �

Remark 3.3. Notice that the proof of Fact 3.2 shows something stronger, namely that we may choose the 
map f to take ai �→ bi after fixing any enumeration of A, B without repetition.

Convention 3.4. We will say D is κ+-good for equality, κ not necessarily equal to λ, when we may take 
|A| = |B| = κ in Fact 3.2.

Compare Fact 2.3 above.
Now we introduce a way of studying this region via model theory. A natural question, suggested by 

Scanlon, following a talk of the first author, is the following:

Question 3.5. What can be said about regular ultrafilters which admit internal maps between small elemen-
tary submodels in any ultrapower of M |= T , for a given complete countable T?

We will first make this problem concrete and then give an answer in the case where T is unstable, 
Theorem 3.23.

Definition 3.6 (Automorphic ultrafilters). Let D be a regular ultrafilter on λ and T a complete countable 
theory.

(1) We say that D is automorphic for T if whenever M |= T , ||M || ≤ λ, N = Mλ/D, M0, M1 are elementary 
submodels of N with ||M0|| = ||M1|| ≤ λ and f ′ : M0 → M1 is an (external) isomorphism, then there 
exists an internal function f such that:
(a) f extends f ′, thus f maps M0 to M1.
(b) f is an internal partial one-to-one map which respects all formulas of the language.
(c) dom(f) and range(f) are internal sets.

(2) Let Δ be a finite set of formulas of T . We say that D is Δ-automorphic for T if (1) above holds with 
condition (1)(b) replaced by “f is an internal one-to-one partial map which preserves the truth of all 
formulas in Δ.” So automorphic is Δ-automorphic in the special case where Δ is all formulas of the 
language.

In the language of Definition 3.6, Fact 3.2 is naturally restated as follows.

Conclusion 3.7. Let D be a regular ultrafilter on λ. Then D is good for equality if and only if it is automorphic 
for the theory of an infinite set.

Corollary 3.8. If D is automorphic for any theory with infinite models it is necessarily automorphic for the 
theory of an infinite set, and thus, good for equality.
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The analogous restatement of Fact 2.3 will require some intermediate claims.
First, we will use the following saturation properties of ultrafilters which are good for equality. (In fact, 

more is true, namely, D being good for equality is necessary and sufficient for saturating Tfeq. However, we 
will use this fact only indirectly, in the language of Conclusion 3.7 and Corollary 3.8 and of the next Fact.)

Fact 3.9. If D is a regular ultrafilter which is good for equality then D saturates the theory of the random 
graph, and in addition D saturates any countable stable theory.

Proof. See the summary theorem [12] Theorem 4.2, p. 8154, specifically (5) → (3) → (2) → (1) of that 
theorem. This shows that any ultrafilter which is good for equality has three other properties. In Theorem G, 
p. 8153 of the same paper, it is recorded that those properties called (3) and (1) are sufficient for saturating 
the theory of the random graph and for saturating all stable theories, respectively. �

Recall that in model-theoretic terminology, a ϕ-type is a partial type consisting of positive and negative 
instances of a single formula.

Fact 3.10 (Local saturation suffices, [8] Theorem 12). Suppose D is a regular ultrafilter on I and T a 
countable complete first order theory. Then for any M I/D, the following are equivalent:

(1) M I/D is λ+-saturated.
(2) M I/D realizes all ϕ-types over sets of size ≤ λ, for each formula ϕ in the language of T .

Observation 3.11. Let D be a regular ultrafilter on λ, T a complete first-order theory of cardinality ≤ λ, 
M |= T , N = Mλ/D, and Δ a finite set of formulas of LT . Let M0, M1 be two elementary submodels of N
of size ≤ λ which are externally isomorphic via some function f . Then the existence of an internal partial 
map

g such that M0 ⊆ dom(g), M1 ⊆ range(g), g : M0 → M1 and g is a partial one-to-one map which extends 
f and respects all formulas in Δ

can be expressed in terms of a partial ϕ-type [i.e. a type in positive and negative instances of a single 
formula] over a set of size ≤ λ in a related first-order theory. Thus, internal maps of this kind will exist in 
any good regular ultrafilter.

Proof. We sketch two different ways to represent the existence of g in terms of realization of a type (over 
a set of size ≤ λ) in an expansion of the model M to a model M+ in a larger, countable language. Since 
ultrapowers commute with reducts, we may then expand N naturally to N+ ≡ M , and any good ultrafilter 
will ensure that N+ is saturated, therefore that g exists. This justifies the last clause of the observation.

First, let M+ be a model of sufficient set theory, say, (H(χ), ∈) for some sufficiently large χ, so ω ∈ M+

and M ∈ M+. Consider the set T of partial one to one maps which respect all formulas in Δ (since Δ is 
finite this is a first order statement). Similarly to Remark 2.4 above, T is partially ordered by inclusion, 
and the existence of a map g as in the statement of the claim corresponds to realizing a type describing a 
certain element of T .

Second, we can consider T = Th(M∗) where M∗ is the following two-sorted structure: the first sort 
contains a resplendent model11 M |= T , the second sort A contains an infinite set. We add a new ternary 
relation symbol fΔ(x, y, z) and add infinitely many axioms to ensure the following: (1) for each x ∈ A, 

11 Call M resplendent if whenever a Σ1
1 formula is satisfiable in some elementary extension of M , it is already satisfiable in M . 

Each model has a resplendent elementary extension of the same cardinality. We assume this as otherwise M may be rigid.
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fΔ(x, y, z) = fΔ
x (y, z) is a partial function which is a partial automorphism of M and respects all of the 

formulas in Δ, and (2) for any n < ω and sets 〈b1, . . . , bn〉, 〈c1, . . . , cn〉 realizing the same Δ-type over the 
empty set in M , there is a ∈ A such that 

∧
i≤n f

Δ
a (bi, ci). �

Conclusion 3.12. If D is a regular ultrafilter on λ, then D is automorphic for every complete countable 
theory iff D is good.

Proof. Suppose D is good. Let T be complete and countable, and fix suitable M0, M1 and f . By the proof of 
Observation 3.11, for each finite set Δ of formulas of the language of T we may write down a partial ϕ-type 
pΔ in an expanded language expressing the existence of an internal partial one-to-one map extending f . The 
union q =

⋃
Δ pΔ of these partial types is a consistent partial type whose realization would tell us that D is 

automorphic (in this instance) for T . By the statement of Observation 3.11, as D is good, each of the types 
pΔ are realized. By Fact 3.10, their union q is also realized. Since M0, M1, f were arbitrary, this shows D
is automorphic for T .

In the other direction, suppose D is automorphic for the theory Tdlo := Th(Q, <). Then in the notation 
of Definition 2.6, κ = cf(κ) ≤ λ implies κ ∈ LcfSp2(D). By Theorem 2.19 (c) implies (e), D is good. �

Combining Conclusion 3.7 and Conclusion 3.12, we have a possible spectrum of complexity focused on 
the non-simple theories: it arises with the minimum non-simple theory in Keisler’s order and is completely 
resolved by the time we get to the Keisler-maximal theory.

We now work towards a characterization of those ultrafilters which are automorphic for unstable theories. 
We will use the characteristic sequences of [9].

Definition 3.13. For a given formula ϕ and T , recall:

(1) the characteristic sequence of hypergraphs for ϕ is given by 〈Pn : n < ω〉 where

Pn(y1, . . . , yn) = (∃x)
∧

1≤i≤n

ϕ(x, yi)

(2) we call a set A a positive base set if, identifying the predicates Pn with their interpretations in the 
monster model, we have that An ⊆ Pn for all n < ω. So A is a positive base set iff {ϕ(x, a) : a ∈ A} is 
a consistent partial type.

(3) We call the formula ϕ 2-compact if the characteristic sequence depends on 2, or equivalently, if any set 
of positive instances of ϕ is consistent iff every subset of size 2 is consistent.

Fact 3.14 (Essentially 5.2 of [7]). Let T be a complete countable theory. To show that D saturates T , it 
would suffice to show that for every formula ϕ(x̄, ȳ) of T and for every A ⊆ (Mλ/D)�(ȳ) such that |A| ≤ λ

and A is a positive base set for the characteristic sequence of ϕ, there exists a map g : A → D such that 
writing

mt = |{a[t] : a ∈ A, t ∈ g(a)}| < ℵ0 for t ∈ λ

we have that for all m ≤ mt, PM
m is a complete hypergraph on the vertex set

{a[t] : a ∈ A, t ∈ g(a)}.

Proof. We start with two reductions. First, by Fact 3.10, it suffices to show we can realize all ϕ-types 
over small sets. Second, we may assume that these ϕ-types consist only of positive instances of the given 
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formula. (Why? We can always code ϕ as a formula θ(x; y, z, w) = (ϕ(x, y) ∧ z = w) ∨ (¬ϕ(x, y) ∧ z �= w)
with the property that a ϕ-type may always be expressed as a set of positive instances of θ. Since we are 
quantifying over all formulas, this will be enough.) So in what follows let us fix a formula ϕ(x, y) of T
(note that �(x̄), �(ȳ) need not be 1), fix M |= T , N = Mλ/D and let p(x) = {ϕ(x, a) : a ∈ A} be a 
ϕ-type we wish to realize, which by the above we may assume consists only of positive instances of our 
given formula. Let 〈Pn : n < ω〉 be the characteristic sequence of ϕ. By definition of the characteristic 
sequence, A is a positive base set. Suppose A has a distribution of the kind stated in the Fact. For each 
t ∈ I, the set {ϕ(x, a[t]) : a ∈ A, t ∈ g(a)} is a consistent partial type. Let bt realize it. Then by Łos’ 
theorem, b := 〈bt : t ∈ I〉/D realizes the type p(x), as desired. �
Corollary 3.15. If ϕ is a formula of T and ϕ is 2-compact, Fact 3.14 reduces to saying: it would suffice to 
show that any positive base set A in Mλ/D with |A| ≤ λ, there is a sequence 〈Ct : t ∈ I〉 such that each Ct

is finite and is a complete graph for the edge relation P2 in M and 
∏

t Ct/D ⊇ A. In this case we say “A is 
covered by an ultraproduct of complete P2-graphs.”

Before continuing we recall some facts about Keisler’s order. As explained in the introduction, for D
regular, “D saturates T” means that M I/D is |I|+-saturated for some (equivalently, by regularity, every) 
model M of T . The reader may wish to refer to the picture on page 4.

Definition 3.16. Keisler’s order is the pre-order on complete countable theories given by: T1 	 T2 if and only 
if for all regular ultrafilters D, if D saturates T2 then D saturates T1.

Fact 3.17 (For history and discussion of these results, see [12] §4.).

(1) The theory of (Q, <) is maximal in Keisler’s order.
In fact, any theory with a definable linear order is maximal. See [12] Theorem F, pp. 8152–8153 or [20]
Theorem 4.3, p. 371.

(2) The maximal class in Keisler’s order consists precisely of those theories T such that for a regular 
ultrafilter D, D saturates T if and only if D is good.
See [1] Theorem 6.1.8 and [6] Theorem 3.4.

(3) If T1 is stable and T2 is unstable, then T1 	 T2 in Keisler’s order.
See [20] Theorem 0.3, p. 323.

(4) The theory of the random graph is minimum among the unstable theories in Keisler’s order.
See [10] Conclusion 5.3.

(5) The (unstable) theory Tfeq is minimum among the non-simple theories in Keisler’s order.
See [13] Theorem 13.1.

Claim 3.18. Let D be a regular ultrafilter on I. Suppose D is automorphic for the random graph. Then D is 
good.

Proof. Let M = (Q, <). Let “small” mean ≤ λ = |I|. By quantifier elimination, an ultrapower N = M I/D
is |I|+-saturated if and only if every positive ϕ-type over a set of size ≤ |I| is realized where ϕ = ϕ(x; y, z) =
y > x > z. This formula is 2-compact, so we apply Corollary 3.15. We would like to show that for every 
small positive base set A ⊆ N2 w.r.t. the characteristic sequence of ϕ, A is covered by an ultraproduct of 
complete P2-graphs.

Let {Xα : α < λ} ⊆ D be a regularizing family (so the intersection of any infinitely many elements of 
this family is empty). Enumerate A as 〈aα : α < λ〉. Recalling that each aα ∈ A ⊆ N2 is a pair (a1

α, a
2
α), 

define d : A → D by:
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aα �→ {t ∈ I : M |= (∃x)(a1
α < x < a2

α)} ∩Xα.

Henceforth we forget the a’s are pairs and write simply aα[t] for the element of M2 corresponding to 
a1
α[t], a2

α[t]. For each t ∈ I, let Bt = {aα[t] : α < λ, t ∈ d(aα)}. By the definition of the Xα’s, each Bt is a 
finite set of ‘vertices’ of PM

1 , thus a finite graph in PM
2 .

Since the random graph G is universal, for each t ∈ I there is a partial isomorphism ht whose domain 
is Bt (considered as a PM

2 -graph) and whose range is some finite graph Gt in G. For each t ∈ I and α < λ

define rα,t ∈ G to be ht(aα[t]). For each α < λ let rα := 〈rα,t : t ∈ I〉/D ∈ GI/D. By Łos’ theorem, 
{rα : α < λ} is a complete graph in GI/D. Henceforth we refer to its coordinate projections as rα[t].

Next, choose in the ultrapower of the random graph a set of distinct vertices {cα : α < λ} which is 
a complete graph in GI/D and which is covered by an ultraproduct of complete graphs, as follows. By 
regularity, some ultraproduct of finite sets, say 〈nt : t ∈ I〉 will have size ≥ λ mod D. Since the random 
graph is universal for finite graphs, for each t we may find a complete graph Ht ⊆ G on nt vertices. Then 
H =

∏
t Ht/D is a complete graph of size ≥ λ. Let C = {cα : α < λ} ⊆ H be a subset of size λ.

Now we have assumed D is automorphic for the random graph, so there is an internal partial one-to-one 
map g sending rα �→ cα for all α < λ. Consider the map d∗ defined by, for each α < λ,

rα �→ (d(aα) ∩ {t ∈ I : cα[t] ∈ Ht}) ∈ D.

This has accomplished our goal because for each t ∈ I, {cα[t] : t ∈ d∗(rα)} is a complete graph and 
ht � {rα[t] : t ∈ d∗(rα)} is a partial graph isomorphism onto it. So necessarily {rα[t] : t ∈ d∗(rα)} is a 
complete graph for almost all t, which means {aα[t] : t ∈ d∗(rα)} is a complete PM

2 -graph for almost all t. 
We have shown explicitly that A is covered by an ultraproduct of complete PM

2 -graphs, which completes 
the proof. �
Definition 3.19. For � = 1, 2 suppose T1, T2 are complete countable theories. We say that T2 captures the 
atomic relational patterns of T1 when for every relation R(x1, . . . , xn) of τT1 there are a formula ϕ(x̄1, . . . , ̄xn)
of LT2 and a constant m, such that i ≤ n =⇒ �(x̄i) = m, such that whenever M� |= T� for � = 1, 2, and 
whenever k < ω and 〈ai : i < k〉 ∈ kM1 is a finite sequence of elements, there is a 〈b̄j : j < k〉 ∈ k(mM2)
such that for all η ∈ nk,

M1 |= R(aη(0), . . . , aη(n−1)) ⇐⇒ M2 |= ϕ(b̄η(0), . . . , b̄η(n−1)).

Observation 3.20. Let D be a regular ultrafilter and let T1 be a complete countable theory which eliminates 
quantifiers, such as Tdlo := Th(Q, <) or Trg, the theory of the random graph. Suppose T2 is a complete 
countable theory which captures the atomic relational patterns of T1. If D is automorphic for T2, then D is 
automorphic for T1.

Claim 3.21. Let T2 be a theory with the independence property, i.e. with a formula ϕ(x, ȳ) such that in some 
model M2 |= T2, there is a sequence 〈b̄i : i < ω〉 of elements of �(ȳ)M2 such that for any σ ⊆ ω,

{ϕ(x, b̄i) : i ∈ σ} ∪ {¬ϕ(x, b̄j) : j ∈ ω \ σ}

is a consistent partial type. Then T2 captures the atomic relational patterns of Trg, the theory of the random 
graph.

Proof. Let 〈ai : i < k〉 be a finite set of elements in a model of Trg. We may choose by induction a sequence 
〈b0i b1i : i < ω〉 of pairs of elements of M2, all distinct, with the property that ϕ(b0i , b1j ) iff aiRaj holds in the 
random graph. [Let b1i be the element bi from the definition of independence property, and choose each b1i
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to realize the appropriate ϕ-type.] Note that by compactness, we may choose any finite initial segment of 
such a sequence in any model of T2, simply because once we’ve found such a finite sequence in the given 
M2 its existence is first order expressible (fixing ϕ) and so transfers to any other elementarily equivalent 
model. �

The analogous result is also straightforward. (Note that the last line of the previous proof applies here 
too: Definition 3.19 asks for finite patterns, so it will indeed be satisfied in any model of a T2 with s.o.p., 
not only the M2 from Claim 3.22.)

Claim 3.22. Let T2 be a theory with the strict order property, so by compactness, for some formula ϕ(x̄, ȳ)
and M2 |= T2 there is an indiscernible sequence 〈b̄i : i < Q〉 of elements of �(ȳ)M2 such that for any two 
disjoint sets σ, τ ⊂ Q,

{ϕ(x̄, b̄i) : i ∈ σ} ∪ {¬ϕ(x̄, b̄j) : j ∈ τ}

is consistent if and only if for all α ∈ σ and for all β ∈ τ , α < β. Then T2 captures the atomic relational 
patterns of Th(Q, <).

Theorem 3.23. Let D be a regular ultrafilter on λ. If D is automorphic for some unstable theory, then D is 
good.

Proof. Let T be such an unstable theory, so either T has the strict order property or T has the independence 
property. If T has the independence property, then it captures the atomic relational patterns of the theory 
of the random graph: apply Claim 3.21 followed by Observation 3.20 followed by Claim 3.18. Likewise, if 
T has the strict order property, then it captures the atomic relational patterns of T ′ = Th(Q, <), so D is 
automorphic for T ′. Now apply Theorem 2.19(c) → (e). �
Conclusion 3.24. Let D be a regular ultrafilter on λ. To the equivalent conditions of Theorem 2.19 above, 
we may add:

(f) D is automorphic for some countable unstable theory.
(g) D is automorphic for every countable unstable theory.
(h) D is automorphic for the theory of linear order.
(i) D is automorphic for the theory of the random graph.

Proof. Recall that condition (e) of that Theorem is that D is good. Since the theory of linear order and 
the theory of the random graph are both unstable, we have that (g) → (h) → (f) and (g) → (i) → (f). 
Theorem 3.23 gives (f) → (e) and Conclusion 3.12 gives (e) ↔ (g). �
Corollary 3.25. Let T be a countable complete first order theory and D a regular ultrafilter. If D is automor-
phic for T then D saturates T .

Proof. Suppose T is stable. As all ultrapowers of finite models are saturated, we may assume T has infinite 
models. By Corollary 3.8, D is good for equality. So by Fact 3.9, D saturates all countable stable theories, 
including T .

Suppose that T is unstable. If D is automorphic for T , then by Theorem 3.23, D is good, i.e. λ+-good. 
We know from [6] Theorem 1.4 that if M is a model of any countable theory and D is regular and λ+-good 
then Mλ/D is λ+-saturated. Thus, D saturates T . �
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Corollary 3.26. For a complete countable theory T the following are equivalent:

(a) Any regular ultrafilter D which saturates T is automorphic for T .
(b) Any regular ultrafilter D which saturates T is good.
(c) T is in the maximal Keisler class.

Proof. (b) iff (c) is Keisler’s characterization of the maximal class in Keisler’s order.
(b) implies (a): If D is good then D is automorphic for T by Conclusion 3.12.
(a) implies (b): There are two cases. In the first case, T is unstable. Then any regular D which saturates 

T is also automorphic for T , so apply Conclusion 3.24 to conclude (b). In the second case, we assume for 
a contradiction that T is stable. In this case, the assumption (a) entails that every regular ultrafilter D
which saturates T is automorphic for T , and thus by Corollary 3.8 must be good for equality. However, it is 
known that there exist regular ultrafilters (in ZFC) which saturate all stable theories but are not good for 
equality (see e.g. [15] Theorem 12.1). This contradiction shows the second case cannot occur, so we finish 
the proof. �
Corollary 3.27. There is more than one non-simple class in Keisler’s order iff there is a regular ultrafilter 
D on some λ which is automorphic for infinite sets but not automorphic for the random graph.

Corollary 3.28. There is a non-maximal non-simple theory in Keisler’s order iff there is a regular ultrafilter 
D which saturates Tfeq but not automorphic for Tfeq.

We conclude with a curious restatement. By [10] saturation of Tfeq, the minimum non-simple theory, 
depends on formulas which are 2-compact and whose associated P2 may, after adding finitely many param-
eters, be assumed to be stable. Thus, invoking 5.2 of [7] or just Fact 3.14, we record here that the problem 
of showing Keisler’s order has more than one class on the non-simple theories – in other words, the problem 
of proving that “good for equality” does not imply “good” – has the following surprising form.

Definition 3.29. Let D be a regular ultrafilter on λ. Say that a graph G is D-coverable if every complete 
induced subgraph of Gλ/D of size ≤ λ is covered by an ultraproduct of complete graphs.

Conclusion 3.30. To prove that there are at least two non-simple classes in Keisler’s order, i.e., to prove that 
good for equality does not imply good:

(1) it would suffice to prove that there exists a regular ultrafilter D such that every stable graph is 
D-coverable and the random graph is not D-coverable.

(2) it would suffice to prove that there exists a regular ultrafilter D which is automorphic for the theory of 
equality but not for the theory of linear order.

4. Lower cofinality spectrum problems

Here we take an axiomatic approach.
More precisely, in this section we build a bare-bones framework consisting of two orders and a single tree 

and prove we may still recover a version of uniqueness in Lemma 4.21 below. Once again, two motivations 
converge here: one model-theoretic and one set-theoretic. The first notes that the analysis of cofinality 
spectra has strong consequences for cuts in models of Peano arithmetic; for instance, in [18] we use cofinality 
spectrum problems to prove that a model of PA is κ-saturated iff it has cofinality at least κ and the reduct 
to the language of order has no (κ′, κ′)-cuts for κ′ < κ. Contrast this with the case in real closed fields, 
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where there is great freedom in determining which pairs of cardinals (κ1, κ2) appear as the cofinalities of 
cuts [21]. It is therefore natural to ask: at what point along the route from o-minimality to Peano arithmetic 
does substantial control of cuts appear?

The second arises from the fact that our proof that p = t, in [13] Theorem 14.1, proceeded by an analysis 
of cut spectra in pairs of models with sufficient set theory. Yet that ZFC proof required a forcing argument, 
revolving around the fact that if we assume for a contradiction that p < t, a so-called peculiar cut would 
appear, contradicting our (ZFC) analysis of the cut spectrum. It would be very nice to remove the forcing 
argument from this proof, and we conjecture that an axiomatic analysis of the argument is the way to 
proceed.

To begin, we take the definition of ‘peculiar cut’ apart.

Definition 4.1 (Cuts in partial orders). For a partial order (L, <L),

(1) We say that the sets (A, B) represent a cut in (L, <L) when:
(a) (∀a ∈ A)(∀b ∈ B)(a <L b), i.e. A <L B.
(b) there does not exist c ∈ L such that A <L c <L B.

(2) We say that the pair of sequences (a, b) represent a cut in (L, <L) when:
(a) a is <L-increasing
(b) b is <L-decreasing
(c) (range(a), range(b)) represent a cut in (L, <L).

(3) For a partial order (L, <L) and disjoint nonempty sets A, B,
(a) we say a pair (A, B) represents a rising cut when: for every c ∈ L

∧

a∈A

a <L c =⇒
∨

b∈B

b ≤L c.

(b) we say a pair (A, B) represents a falling cut when: for every c ∈ L

∨

a∈A

c ≤L a ⇐=
∧

b∈B

c <L b.

(c) we say a pair (A, B) represents a peculiar cut if it represents both a rising and a falling cut.
(4) Just as in (3), but replacing the sets by sequences.

Convention 4.2. Throughout this section, if we say “(A, B) represents a cut” we will mean that A �= ∅ or 
B �= ∅ unless otherwise stated. If the given cut is additionally a rising or falling cut, it follows that B �= ∅
and/or A �= ∅, respectively.

Example 4.3. Assume L is a linear order. Then every cut is a peculiar cut.

Example 4.4. Let (T , 	) be a partially ordered set such that the set of predecessors of any given node is 
linearly ordered. Then every cut is a falling cut.

Definition 4.5. Let (L, <L) be a partial order and a a strictly monotonic sequence. Then cf(a) denotes 
the cofinality of a, i.e. the cofinality is the ordinal lg(a) i.e. the minimum size of a cofinal subsequence in 
the relevant order. This is always either 0, 1 or a regular infinite cardinal, and note that by the previous 
convention we generally avoid the case of 0.
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We now investigate the coinitiality of a given increasing sequence. Recall that what makes the next 
Claim 4.6 nontrivial is that (L, <L) is allowed here to be a partial order, so a priori we may have multiple 
descending sequences of different cofinalities approaching the given ā.

Claim 4.6. Let (L, <L) be a partial order and κ = cf(κ) ≥ ℵ0. Suppose that (a, b1) represents a cut, (a, b2)
represents a rising cut and cf(a) = κ. Then

cf(b1) = cf(b2).

Proof. Let θ� = cf(b�) for � = 1, 2, so each θ� is a regular cardinal or 1. Suppose θ1 �= θ2. Let a = 〈aε : ε < κ〉. 
For every α < θ1,

∧

ε<κ

aε < b1α

so as (a, b2) represents a rising cut, for each α < θ1 there is β(α) < θ2 such that b2β(α) <L b1α. As θ1 �= θ2, it 
follows they are not both 1, so there is β(∗) < θ2 such that the set

U = {α < θ1 : β(α) ≤ β(∗)}

is unbounded in θ1. [Recall θ1 �= θ2 are both regular. If θ1 = 1 we are done, and if they are both infinite, 
then either θ1 < θ2 or θ2 < θ1, and in each case we are done. If θ1 is infinite and θ2 = 1, then let b∗ witness 
that θ2 = 1. Now either we can choose the assignment α �→ β(α) so that a cofinal sequence of elements of b̄1
are <L-strictly above b∗, in which case the result is true, or not, in which case cofinally many elements of b̄2
are equal to b∗. Since Definition 4.1 requires that b̄2 be a monotonic sequence, this means b̄2 is eventually 
constant and equal to b∗, and so θ1 = 1 = θ2, contradicting our assumption.]

Thus b2β(∗) satisfies

α < θ1 ∧ ε < κ =⇒ aε <L b2β(∗) <L b1min(U\α) ≤L b1α

This contradicts the assumption that (a, b1) represents a cut. �
The parallel version of Claim 4.6 holds in the other direction:

Claim 4.7. Let (L, <L) be a partial order and κ = cf(κ) ≥ ℵ0. Suppose that (a1, b) represents a cut, (a2, b)
represents a falling cut and cf(b) = κ. Then

cf(a1) = cf(a2)

Proof. Analogously to the proof of Claim 4.6. �
Example 4.8. Let N be a nonstandard model of Peano arithmetic, and let x|y be the partial order given by 
“x divides y.” Let p be a prime and let ψ(x) say that p is the only prime divisor of x. Let ā be cofinal in 
the standard elements ψ(N) and let b̄2 be a sequence of elements of ψ(N) so that (ā, ̄b2) represents a |-cut, 
thus a rising |-cut. So if b̄1 is any sequence of elements of N such that (ā, ̄b1) represents a |-cut, necessarily 
cf(b̄1) = cf(b̄2).

Discussion 4.9. In each case the directionality of Claims 4.6 and 4.7 was crucial; if we suppose e.g. κ =
cf(κ) ≥ ℵ0, and let (a, b1), (a, b2) represent a cut and a falling cut, respectively where cf(a) = κ then it 
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need not be the case the case that cf(b1) = cf(b2). There is also as yet no leverage for comparing κ-indexed 
sequences.

In order to compare different cuts (perhaps in two different partial orders), we now introduce a tree. 
For the intent of the following Definition 4.10, see Discussion 4.12. We have used r for a lower cofinality 
spectrum problem to distinguish from s, the default name for a cofinality spectrum problem in [13]. Some 
examples will be built in the next section.

Definition 4.10. We say r is an LCSP (lower cofinality spectrum problem) when r consists of:

(M,L1, <1, L2, <2, T ,�T , F1, F2, r1, r2)

which satisfy:

(1) M is a model.
(2) for � = 1, 2, (L�, <�) is a partial order definable in M , with a root, i.e. minimum element, rt(L�) named 

by the constant r�. We may write L� for (L�, <�).
(3) (T , 	T ) is a tree definable in M , i.e. a partially ordered set where the set of predecessors of any given 

element is linearly ordered and x �T y means (x 	T y) ∨ (x = y).
(4) for � = 1, 2, F� is a homomorphism from (T , 	T ) to (L�, <�), i.e. s 	T t =⇒ F�(s) <� F�(t).
(5) (Guided extension) if s ∈ T and F�(s) <� a1

� <� a2
� <� a3

� for � = 1, 2 then for some t ∈ T we have: 
s 	T t and a1

� <� F�(t) <� a
3
� for � = 1, 2.

(6) (Weak surjection) if a1
� <� a2

� <� a3
� for � = 1, 2 then for some t ∈ T we have a1

� <� F�(t) <� a3
� for 

� = 1, 2.
(7) T has a root rt(T ), and for � = 1, 2 we have that F�(rt(T )) = rt(L�).
(8) We will assume unless otherwise stated that r is nontrivial, meaning that L1, L2 and T are infinite.

Convention 4.11. In what follows, r will denote an L.C.S.P.

Discussion 4.12 (Intent of Definition 4.10). Continuing with the nominal analogy of “LCSP” to the “CSP” 
of [13], these remarks compare Definition 4.10 to [13] 2.3–2.4. The reader of just this paper may feel free to 
skip these remarks.

4.10(3) Note that we do not ask for the tree to be pseudofinite or well ordered, only that the set below any 
node is linearly ordered.

4.10(4) The projection functions F�(x) are the parallel to x(max dom(x), �) for CSP. Other than the re-
quirements on the given projection functions F�, the linear orders in the tree and the orders (L, <L)
may be quite different; e.g. one may be discrete, the other dense.

4.10(5) This is a substitute for successor: whereas for c.s.p.s it was important that the orders be pseudofinite, 
here we do not even assume the partial orders are discrete. We simply ask that for any element 
s ∈ T and any nontrivial interval above its projection to L�, we may find t ∈ T above s whose 
projection is in the given interval.

4.10(6) If in Definition 4.10(5) we let s = rt(T ) and allow F�(s) ≤ a� for � = 1, 2, then Definition 4.10(6) 
follows. So condition (6) adds something only when 

∧2
�=1 F�(a1

�) = rt(T ).

We now define the cut spectrum and several related invariants of r, analogues of [13] Definition 2.8.

Definition 4.13 (The cut spectrum of an LCSP). For an LCSP r, w ⊆ {↗, ↙}, � ∈ {1, 2}, let Cr(w, �) be 
the set of pairs (κ, λ) such that for some (a, b):
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(1) (a, b) is a pair of sequences of elements of L�

(2) κ, λ ∈ Reg∪{1} but {κ, λ} �= {1}
(3) a is strictly <�-increasing of length κ
(4) b is strictly <�-decreasing of length λ
(5) aα <� bβ when α < κ, β < λ

(6) for no c ∈ L� do we have that α < κ ∧ β < λ =⇒ aα <� c <� bβ
(7) if (↗∈ w) then the cut is rising, i.e. for any c ∈ L�:

if
∧

α<κ

aα <� c then
∨

β<λ

bβ ≤� c

(8) if (↙∈ w) then the cut is falling, i.e. for any c ∈ L�:

if
∧

β<λ

c <� bα then
∨

α<κ

c ≤� aα

Definition 4.14 (Related invariants).

(B) Let pr(w, �) = min{κ + λ : (κ, λ) ∈ Cr(w, �)}, i.e. the cardinality of first occurrence of a (rising, falling, 
or peculiar, depending on w) cut in L�.
Let pr(w) = min{pr(w, 1), pr(w, 2)}.

(C) Size of paths whose projections have no natural upper bound.
Let x ⊆ {1, 2}. Let Tr,x be the set of regular cardinals κ such that for some sequence t = 〈tα : α < κ〉
of elements of T ,
(a) tβ �T tα when β < α < κ

(b) for � ∈ x ⊆ {1, 2}, if there are a′�, a� ∈ L� such that F�(tα) <� a
′
� < a� for each α < κ, then there is 

no t ∈ T such that: (i) α < κ =⇒ tα �T t and (ii) � ∈ x =⇒ F�(t) <� a�.
(c) if � ∈ {1, 2} but � /∈ x or if no such elements a′�, a� exist, then there is no t ∈ T such that 

α < κ =⇒ tα �T t.
(D) Let tr,x = min(Tr,x), and tr = min{tr,∅, tr,{1}, tr,{2}, tr,{1,2}.}
(E) Spectrum of cardinals which are robust under projection.

Let Θr(w, �) be the set of regular infinite cardinals κ ≤ ||M || such that if for some t ∈ T , there is a 
sequence (a, b) with cf(a) = κ which represents a w-cut of the linear order

T�T (r, t) := ({s ∈ T : s �T t}, 	T )

i.e. a cut which is rising if w = {↗}, falling if w = {↙}, and peculiar if w = {↗, ↙}, then the 
projection

(〈F�(aα) : α < cf(a)〉, 〈F�(bβ) : β < cf(b)〉)

likewise represents a w-cut of (L�, <�).
(F) Θr(w) = Θr(w, 1) ∩ Θr(w, 2).
(G) Smoothness.

(a) r has upper bounds when for any t1, t2 ∈ T the set T�T (r, t1) ∩ T�T (r, t2) has a last element.
(b) For � ∈ {1, 2} we say r is �-smooth if for any a, b ∈ L� we have that {x ∈ L� : x ≤� a} ∩ {x ∈

L� : x ≤� b} has a ≤�-last element.
(c) r is smooth when: if � ∈ {1, 2}, t ∈ T and a� ∈ L� satisfies F�(t) ≮� a�, then there is s ∈ T such 

that s 	T t, F�(s) <� a�, and if s1 	T t ∧ F�(s1) <� a� then s1 	 s.
(H) r is endless when (∀s ∈ T )(∃t ∈ T )(s 	T t).
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Claim 4.15. Assume r is a LCSP and has upper bounds in the sense of Definition 4.13(G)(a). If t ∈ Tr then 
every cut of (Tr,≤t, 	T ) is a peculiar cut of (Tr, 	r).

Proof. Note that every cut (ā, ̄b) of (Tr,≤t, 	T ) is a peculiar cut of (Tr,≤t, 	T ) since this is a linear order, 
recalling Example 4.4. The claim is that it is a peculiar cut in the tree itself. It is a falling cut in the tree by 
Example 4.4. To see it is a rising cut, suppose c ∈ T is such that α < lg(ā) =⇒ aα 	c. Let T�c denote the set 
of elements in T below c, which is linearly ordered by 	, and likewise for T�b0 . Having upper bounds implies 
that T�c ∩ T�b0 has a 	-greatest element c∗. By assumption, α < lg(ā) =⇒ aα 	 c∗ 	 c. But by construction 
c∗ 	 b0, and since (ā, ̄b) is a cut there must be some β < lg(b̄) such that bβ 	 c∗. So bβ 	 c, which shows that 
the cut (ā, ̄b) is rising and therefore peculiar, recalling that c was arbitrary. �
Observation 4.16. For � = 1, 2,

(1) If r is smooth, then:
(a) Tr,∅ ⊆ Tr,{�} ⊆ Tr,{1,2}.
(b) tr,∅ ≥ tr,{�} ≥ tr,{1,2}.

(2) Cr(∅, �) ⊆ Cr({↗}, �) ∩ Cr({↙}, �) ⊆ Cr({↗}, �) ∪ Cr({↙}, �).

Proof. (1) (b) follows from (a), and for (a), by Definition 4.13(C)(c) if � ∈ x then the sequence t̄ is 
unbounded in T , so Definition 4.13(C)(b) will be immediately satisfied. Note that smoothness says more: 
given any strictly increasing t̄ in T , if 〈F�(t) : t ∈ t̄〉 is bounded by a� for � = 1, 2, then if there is any upper 
bound t∗ of t̄ in T , even if F�(t∗) ≥ a� for � = 1, 2 then smoothness will give an element t contradicting 
Definition 4.13(C)(b).

(2) Immediate from the definition. �
Definition 4.17. Let r be an LCSP.

(1) We call r reflective when: if � ∈ {1, 2} and a <� b then for some c <� d the partial orders (a, b)L�
:=

({x ∈ L� : a <� x <� b}, <�) and (c, d)L�
are anti-isomorphic.

(2) We call r symmetric when (L1, <1) and (L2, <2) are isomorphic, and strongly symmetric if they are 
equal.

Claim 4.18. Let r be an LCSP and � ∈ {1, 2}. If r is reflective and �-smooth then:

(1) (κ1, κ2) ∈ Cr(∅, �) ⇐⇒ (κ2, κ1) ∈ Cr(∅, �).
(2) (κ1, κ2) ∈ Cr({↗}, �) ⇐⇒ (κ2, κ1) ∈ Cr({↙}, �).
(3) (κ1, κ2) ∈ Cr({↗,↙}, �) ⇐⇒ (κ2, κ1) ∈ Cr({↗, ↙}, �).

Claim 4.19. Let r′, r be LCSPs, w ⊆ {↗, ↙}.

(1) Suppose that (L�, <�)r = (L�, <�)r
′ for � = 1, 2. Then for � = 1, 2:

(a) Cr(w, �) = Cr′(w, �).
(b) pr(w, �) = pr′(w, �).

(2) For �, m ∈ {1, 2}, if (L�, <�)r and (Lm, <m)r′ are isomorphic then Cr(w, �) = Cr′(w, m).
(3) For �, m ∈ {1, 2}, if (L�, <�)r, (Lm, <m)r′ are anti-isomorphic then (κ1, κ2) ∈ Cr(w, �) ⇐⇒ (κ2, κ1) ∈

Cr′(w, m).
(4) Assume r is a symmetric LCSP. Then Cr(w, 1) = Cr(w, 2), so we may write simply Cr(w).
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Claim 4.20. Let r be an LCSP.

(1) If there is in (L�, <�)r a strictly increasing sequence 〈aα : α < δ〉, δ a limit ordinal then there is such a 
sequence in (L3−�, <3−�)r when δ ≤ ts,{�}.

(2) If δ is a limit, r is endless and 〈aα : α < δ〉 is <�-increasing and δ < tr,{�} then there is a <3−�-increasing 
sequence of length δ + ω.

Proof. (1) We choose tα ∈ T by induction on α such that:

• β < α =⇒ tβ 	T tα
• if α is a successor then a2α <� F�(gα) < a2α+2

In the case α = 0 apply Definition 4.10(6), and in the case α successor apply Definition 4.10(5).
For α limit we apply the hypothesis that δ ≤ tr,{�}, Definition 4.13(D). Note that we use 2δ = δ for every 

limit δ, so α < δ =⇒ 2α < δ.
This completes the induction, and 〈F3−�(tα) : α < δ〉 is <3−�-increasing, as desired.
(2) Having chosen 〈tα : α < δ〉 which is <T -increasing as above, we can choose t0, 

∧
α<δ tα <T tδ as 

δ < T3,{t}. We can moreover choose tδ+m by induction on n > 0 such that n = m +1 implies tδ+m <T tδ+n, 
using the assumption that r is endless. Once more, 〈F3−�(tα) : α < δ + ω〉 is as required. �

The main result of this section is the following general version of Uniqueness. Informally, Lemma 4.21
says: Suppose there is a ordinary (κ, θ1)-cut, a priori not necessarily either rising or falling, in the first order 
L1 and likewise an ordinary (κ, θ2)-cut in the second order L2, and suppose that κ is one of the cardinals 
whose “projections are ↗-true,” meaning that any rising cut in the tree whose left side has cofinality κ
projects to a rising cut in both orders. Then θ1 = θ2.

Lemma 4.21. If (κ�, θ�) ∈ Cr(∅, �) for � = 1, 2 and κ1 = κ = κ2 < tr,{1,2} and κ ∈ Θr({↗}, 1) ∩ Θr({↗}, 2),
then θ1 = θ2.

Proof. Let (a�, b�) witness (κ�, θ�) ∈ Cr({∅}, �) for � = 1, 2, so κ�, θ� ≥ 1.
First, we try to choose tα by induction on α < κ such that:

• tα ∈ T
• β < α =⇒ tβ 	T tα
• a�2α+2 	T F (tα) �T a�2α+4 for � = 1, 2

For α = 0, apply Definition 4.10 clause (6), since the induction asks that our witness is above a�2. For 
α = β + 1, apply Definition 4.10 clause (5) with tβ here in place of s there.

For α a limit ordinal < κ, we have that α < tr,{1,2} so cf(α) /∈ Tr,{1,2}. Moreover, 〈tβ : β < α〉 is 
	T -increasing and � ∈ {1, 2} ∧ β < α =⇒ F�(tβ) <� a�2α

<� a�2α+1 <� a�2α+2. Thus, by the Defini-
tion 4.13(C)–(D) of “cf(α) < tr,{1,2},” there is t′α such that β < α =⇒ tβ �T t′α and � ∈ {1, 2} =⇒
F�(t′α) <� a

�
4α+2. Now choose tα as in the case α = β + 1.

Second, having chosen the sequence t = 〈tα : α < κ〉, since this sequence is �-increasing and F is a 
homomorphism in the sense of Definition 4.10(4), we have that 

∧2
�=1 F (tα) < b�1 < b�0. Since κ < tr there 

is t ∈ T such that α < κ =⇒ tα 	T t and 
∧2

�=1 F�(t) <� b�0. By definition of tree, the set T�t of elements 
	-below T is a linear order in which 〈tα : α < κ〉 is increasing and bounded. Hence for some θ ∈ Reg∪{1}, 
for some 	T -decreasing sequence s = 〈sα : α < θ〉 in T�t we have that the pair (t, s) represents a cut. So it 
will suffice by transitivity of equality to prove that θ� = θ for � = 1, 2.
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For each α < θ and � ∈ {1, 2}, let c�α = F�(sα) ∈ L�. Since F� is a homomorphism, necessarily c� =
〈c�α : α < θ〉 is <�-decreasing and each of its elements is <�-above a�. Since T�t is a linear order, (t, s)
represents a rising, and even peculiar, cut of T�t, recalling Example 4.3. As κ ∈ Θr({↗}, �) for � = 1, 2, we 
have by Definition 4.13(E) that the pair (a�, c�) represents a rising cut of (L�, <�) for � = 1, 2.

Thus recalling (a�, b�) represents a cut, by Claim 4.6 we have that cf(c�) = cf(b�). But θ = cf(s) = cf(c�), 
θ� = cf(b�) so θ = θ�, as desired. �
Corollary 4.22. Assuming symmetry, the same holds swapping the occurrences of “ ↗ ” for “ ↙ ” in the 
statement of Lemma 4.21.

A dual claim to Lemma 4.21 is:

Corollary 4.23. If (κ�, θ�) ∈ Cr({↙}, �) for � = 1, 2 and κ1 = κ = κ2 < tr,{1,2} and κ ∈ Θr({∅}, 1) ∩
Θr({∅}, 2), then θ1 = θ2.

Proof. In the proof of Lemma 4.21, make the obvious changes: (a) “Since T� is a linear order, (t, s) represents 
a falling, and even peculiar, cut of T�, recalling Example 4.3.” (b) “As κ ∈ Θr({↙}, �) for � = 1, 2, we have 
by Definition 4.13(E) that the pair (a�, c�) represents a falling cut of (L�, <�) for � = 1, 2.” �
Conclusion 4.24. Let r be an LCSP and w0 ⊆ w1 ⊆ {↗, ↙}, where either:

w0 = ∅ ∧ {↗} ⊆ w1 or w0 = {↗} ∧ w0 ⊆ w1 ⊆ {↗,↙}

Then:

(1) There is a function lcf(−, r) with domain {κ : κ ∈ Θr(w1) ∧ κ < tr,{1,2}} such that:
(a) lcf(−, r) is a regular cardinal ≥ pr
(b) if � ∈ {1, 2}, κ < tr,{1,2}, κ ∈ Θr(w1) and a is a strictly <�-increasing sequence of length κ then:

(i) for some b of length lcf(κ, r), the pair (a, b) is a w1-cut of (L�, <�).
(ii) if b′ is such that (a, b′) is a w0-cut of (L�, <�) then cf(b′) = κ.

(2) If r is symmetric, the parallel statement holds for decreasing sequences with ↙ in place of ↗.

Proof. (1) by Lemma 4.21, (2) by Corollary 4.23. �
Some examples of LCSPs are given in the next section.

5. Examples

This section gives several examples of LCSPs, in increasing order of model-theoretic interest. Recall 
the discussion about real closed fields versus Peano arithmetic from §4. Since we have already established 
a mild analogue of uniqueness in this case (Lemma 4.21), it is interesting to see that the main example 
of this section, Definition 5.11, shows that the basic nontrivial example of an LCSP is already much less 
complex model-theoretically than models of set theory or PA: it is “half-dependent,” i.e. not 2-independent, 
Definition 5.8 below. It would be interesting to investigate further how model-theoretically uncomplicated 
such an example may be.

Example 5.1 (The standard finite example). For a finite number n > 0, we define r = r1
n by:

(1) Lr
� = n = {0, . . . , n − 1}
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(2) <r
� is the natural order on n

(3) rt(Lr
�) = 0

(4) Let T r be the set of all η such that for some m ∈ [1, n),
• η = 〈η(�, i) : � ∈ {1, 2}, i ≤ m〉, so let lev(η) = m.
• η(�, 0) = 0
• η(�, i) < n
• i < j < m =⇒ η(�, i) < η(�, j)

(5) η <r
T σ iff η = σ � {(�, i) : � ∈ {1, 2}, i < lg(η)}

(6) F�(η) = η(�, lev(η))
(7) rt(T r) = 〈0, 0〉.

Claim 5.2. For every n > 0, rn is an LCSP, which moreover:

(1) is smooth, and also fact �-smooth for � = 1, 2.
(2) is reflective; in fact every interval in (Lr

�, <
r
�) is anti-isomorphic to itself.

(3) is strongly symmetric.

Example 5.3 (The pseudofinite case). Ultraproducts of the Mr1
n

’s, or just of models of 
⋂

n

⋃
m>n Th(Mrm), 

are smooth, strongly symmetric LCSPs.

Example 5.4 (The standard infinite example). For non-zero ordinals α, β we define r = r2
α,β as follows, with 

� ∈ {1, 2}:

(1) Lr
� = L�(r) is α

(2) <r
� is the usual order

(3) rt(Lr
�) = 0

(4) η ∈ Tr iff:
(a) η = 〈η(�, i) : � ∈ {1, 2}, i ≤ lev(η)〉
(b) lev(η) is an ordinal ≤ β

(c) i < j ≤ lev(η) =⇒ η(�, i) < η(�, j)}
(5) <Tr

is defined as above: η <Tr
ν iff:

(a) η, ν ∈ Tr

(b) lev(η) ≤ lev(ν)
(c) � ∈ {1, 2} ∧ i < 1 + lev(η) implies η(�, i) = ν(�, i)
(d) F�(η) = η(�, lev(η)).

Claim 5.5. Let α > 0 and let β be a limit ordinal. Let r = r2
α,β as in Example 5.4. Then:

(1) r is an LCSP.
(2) r is smooth and also �-smooth for � = 1, 2.
(3) if α, β are limit ordinals then r is endless
(4) r is strongly symmetric
(5) however, r is not reflective if α is infinite.

Example 5.6 (A general case). For � = 1, 2, let B� be a Boolean algebra with 0B but no 1B, or just a partial 
order with a minimal element 0B. Let β > 0 be a limit ordinal. Let r = r3

B,β be as follows:



JID:TOPOL AID:5910 /FLA [m3L; v1.185; Prn:25/08/2016; 9:50] P.26 (1-30)
26 M. Malliaris, S. Shelah / Topology and its Applications ••• (••••) •••–•••

Sh:1070
(1) L�[r] is B�

(2) <r
� is ≤B�

(3) rt(Lr
�) = 0B�

(4) Tr is the set of η such that for some lev(η) < β,
(a) η = 〈η(�, i) : � ∈ {1, 2}, i ≤ lev(η)〉
(b) η(�, i) ∈ B�

(c) i < j ≤ lg(η) =⇒ η(�, i) <B�
η(�, j)

(5) F�(η) = η(�, lev(η))
(6) rt(TR) = 〈0B1 , 0B2〉.

We now work towards Conclusion 5.19, existence of an LCSP r such that the first order theory Th(Mr)
is 1

2 -dependent.

Definition 5.7. We say the formula ϕ(x̄, ȳ, ̄z) is 2-independent in the first order complete theory T when in 
CT there exist 〈āi : i < ω〉, 〈b̄j : j < ω〉 with �(āi) = �(y) for i < ω and �(b̄i) = �(z) for j < ω, such that for 
any function F : ω × ω → {0, 1} the set of formulas

{ϕ(x, āi, b̄j) : F (i, j) = 1} ∪ {¬ϕ(x, āk, b̄l) : F (k, l) = 0}

is consistent.

Definition 5.8. We say that the theory T is half-dependent if no formula ϕ is 2-independent in any model 
of T .12

Fact 5.9 ([22] 5.66). T is 1
n -dependent when for every m, � and finite Δ ⊆ L(τT ), for infinitely many k < ω, 

we have |A| ≤ k =⇒ |Sm
Δ(A)| < 2(k/�)n .

Definition 5.10. Let τ∗ be the vocabulary consisting of:

• P1, P2, P3 unary predicates
• <1, <2, <3 binary predicates
• c1, c2, c3 individual constants
• F1, F2 are unary function symbols
• F is a binary function
• R1, R2 three-place predicates
• G a three-place function.

In the next Definition 5.11, we allow the interpretation of function symbols to be partial functions. [This 
is written to be a finite universal theory.]

Definition 5.11. Let K be the set of τ∗-models M such that

(1) PM
1 , PM

2 , PM
3 is a partition of |M |

(2) <M
� is a linear order of PM

� with first element cM� for � = 1, 2
(3) <M

3 is a partial order of PM
3 which is a tree with root cM3

(4) FM is a two place function from PM
3 into itself; FM (s1, s2) is the maximal common ≤3-lower bound

12 The notation is from [22], the idea being that reciprocals were a useful way to keep track of the negation.
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(5) FM
� is a function from P3 into P�, monotonic increasing i.e. such that s <M

3 t =⇒ F�(s) <M
� F�(t), and 

FM
� (c3) = c�.

(6) for � = 1, 2, the relation RM
� satisfies:

(a) RM
� ⊆ {(a1, a2, t) : t ∈ PM

3 , a� ∈ PM
� , a� ≤ FM

� (t)}.
(b) if s <M

3 t and a� ∈ PM
� then (a1, a2, s) ∈ RM

� iff

(a1, a2, t) ∈ RM
� ∧

2∧

�=1

a� ≤ FM
� (s)

(c) if (a1, a2, t) ∈ RM
1 , a′1 ≤M

1 a1 and a2 ≤M
2 a′2 ≤ FM

2 (t),
then (a′1, a′2, t) ∈ RN

1 .
(d) if (a1, a2, t) ∈ RM

2 , a1 ≤M
1 a′1 ≤ FM

1 (t), and a′2 ≤M
2 a2,

then (a′1, a′2, t) ∈ RN
2 .

(7) dom(G�) is named by a predicate X�

(8) dom(G�) ⊆ {(a�, t) : t ∈ PM
3 , a� ∈ PM

� , a� ≤M
� FM

� (t)} for � = 1, 2
(9) for t ∈ PM

3 and a1 ∈ PM
1 , a2 ∈ PM

2 the following are equivalent.
(a) GM

1 (a1, t) = a2

(b) GM
2 (a2, t) = a1

(c) (∃s)(s ≤3 t ∧ F1(s) = a1 ∧ F2(s) = a2)
and both conditions imply that (a1, a2, t) ∈ RM

1 ∧ (a1, a2, t) ∈ RM
2 .

(10) for every t ∈ PM
3 and � ∈ {1, 2}, a �→ GM

� (a, t∗) is a partial increasing function from PM
� into PM

3−�.

K<ℵ0 is the class of finite M ∈ K.

Example 5.12. The following structure belongs to K from Definition 5.11. Let P1, P2 name copies of (N, <)
with the usual order called <1, <2 respectively. Let P3 be the tree whose elements are finite sequences of 
natural numbers, partially ordered by inclusion, called 	. Let F take any two elements of P3 to their longest 
common initial segment. Let Pr : N × N → N be the Gödel pairing function (this is external and used 
only in defining the model). For � = 1, 2 define F� by induction on lg(t). Let F�(∅) = 0. For t ∈ T with 
lg(t) = 1, if t(0) = Pr(a1, a2) let F�(t) = a�. For t ∈ T with s 	 t and lg(t) = n + 1 = lg(s) + 1, suppose 
that s(n − 1) = Pr(a1, a2) and t(n) = Pr(b1, b2) let F�(t) = a� + b�. [Clearly this satisfies the definition 
of an LCSP.] For any (a1, a2, t) ∈ P1 × P2 × P3 and � = 1, 2, let R�(a1, a2, t) hold when a1 ≤ F1(t) and 
a2 ≤ F2(t). For each t ∈ P3, let G1(−, t) be the partial order-preserving bijection whose graph is given by 
{(F1(s), F2(s)) : s 	 t}, and let G2(−, t) be the corresponding partial order-preserving bijection in the other 
direction.

In this example, although we have independence arising from e.g. “guided extension” in Definition 4.10(5), 
freedom in the sense of Definition 5.8 is curtailed because the F� must be homomorphisms.

Note again that the functions G� in Definition 5.11 are allowed to be partial and the relations are allowed 
to be nonempty; once e.g. R1, R2 are nonempty, the closure conditions (c), (d) apply for R1, R2 respectively.

Definition 5.13. Suppose M, N ∈ K.

(a) Let M ⊆ N mean: |M | ⊆ |N |, X ∈ τ∗ =⇒ XM ⊆ XN , and M is closed under FN
� , FN but not 

necessarily under GM
� .

(b) For X ⊆ M , cl(X, M) is the closure of X ∪ {cM� : � = 1, 2, 3} and the partial functions of M .
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Claim 5.14. If M ∈ K and t∗ ∈ PM
3 , then there is N such that, for � = 1, 2,

(1) N ∈ K, M ⊆ N

(2) ||M || < ||N || ≤ ||M || + |PM
1 | + |PM

2 |
(3) GN

� (a�, t∗) is well defined iff a� ∈ PN
� and a� ≤N

� FN
� (t∗).

Claim 5.15.

(1) K is the class of models of a finite universal theory, call it T0.
(2) If M ∈ K, X ⊆ M is finite then cl(X, M) [meaning closure under F , F1, F2] has ≤ 6|X| + 3 elements. 

If we close also under the Gs, then the closure has ≤ (6|X| + 3)2 elements.
(3) If M � N ∈ K are finite, then for some M1 we have that M � M1 ⊆ N and one of the following 

occurs:
(a) there are � ∈ {1, 2} and a� ∈ PN

� \M , |M1| = |M | ∪ {a�}
(b) there is t ∈ PN

3 \M such that |M1| = |M | ∪ {t}

Proof. (1) By Definition 5.11.
(2) Recall that F gives the greatest lower bound of two elements of P3. Then X3 := cl(X ∩P3, M) ∩P3 =

{F (s, t) : s, t ∈ X ∩ P3} has ≤ 2|X ∩ P3| members. Subsequent closure under F1 adds at most X3 elements 
and likewise for F2. The three extra elements are because we are obligated to include the constants if they 
are not already in X.

(3) If PM
1 �= PN

1 choose � = 1, a� ∈ PN
1 \ PM

1 and M1 := N � (|M | ∪ {a�}) are as required in (a).
If PM

1 = PN
1 but PM

2 �= PN
2 choose � = 2, a� ∈ PN

2 \ PM
2 and M1 = N � (|M | ∪ {a�}) are as required 

in (a).
If 

∧2
�=1 P

M
� = PN

� then necessarily PM
3 �= PN

3 . Choose t ∈ PN
3 \ PM

3 such that |{s ∈ PN
3 : s <N

3 t}| is 
minimal, and finite. Let M3 = N � (|M | ∪ {t}), so this is as required in (b). �
Claim 5.16. We have that K<ℵ0 :

(1) is nonempty, in fact there is M∗ ∈ Kℵ0 embeddable uniquely into any M ∈ K.
(2) has the JEP over the individual constants.
(3) has the disjoint amalgamation property, with universe given by the union.

Proof. (1) Define M to be the model with set of elements {1, 2, 3}. For � = 1, 2, let PM
� = {�}, let FM

� (3) = �, 
let RM

� = {(1, 2, 3)}, and let GM
� (�, 3) = �. For � = 1, 2, 3, let cM� = �, and finally let FM (3, 3) = 3.

(2) Follows from (1) and (3).
(3) Assume M0 ⊆ M1 ∈ K, M0 ⊆ M1, M1 ∩M2 = M0 and the M� are finite. Recall we aren’t necessarily 

assuming closure under the Gs. By the previous claim, without loss of generality M� \ M0 has a single 
element, so the conditions are easily verified. �
Conclusion 5.17. T0 has a model completion T1 which has elimination of quantifiers and is categorical in ℵ0.

Proof. The class K<ℵ0 of finite members of K is countable, closed under isomorphism and under sub-
structure (“HP”), uniformly locally finite (we may bound the size of a model generated by n elements by 
Claim 5.15(2)), and has JEP and AP by Claim 5.16. Quoting Hodges [4] Theorem 7.4.1, p. 349, its Fraissé 
limit M has a theory T1 which is ω-categorical and has quantifier elimination. This theory is complete and 
model complete (for model completeness, see e.g. [4] Theorem 8.3.1, p. 374 (e) → (a)). Since M embeds 
all finite submodels of elements of K and since any finite subset of any N ≡ M occurs as a subset of an 
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element of K<ℵ0 , it is straightforward to show by compactness that any model of T0 may be embedded in 
some model of T1 and vice versa. So T1 is the model companion of T0 and has the required properties. �
Claim 5.18.

(1) If M ⊆ N are from K<ℵ0 , and a ∈ N \M , then there is a unique M1 such that M1 ∈ K, M ⊆ M1 ⊆ N , 
and for � ∈ {1, 2}, a ∈ PN

� =⇒ |M1| = |M | ∪{a} while a ∈ PN
3 implies |M1| = |M | ∪{a, FM

1 (a), FM
2 (a)}.

(2) If M ⊆ CT , M finite with n elements,
(a) if � ∈ {1, 2}, {p ∈ S(M) : P�(x) ∈ p} has

≤ |PM
� | + |PM

� | × (2|Pn
3−�||P

M
3 |) ≤ n2

members, or just ≤ n + (2n)n+1 ≤ (2n)n+2.
(b) if � = 3 then

|{p ∈ S(M) : P3(x) ∈ p}| ≤ max{|PM
1 ||PM

2 |, |PM
2 ||PM

1 |} ≤ (2n)log n.

Proof. (1) Follows from the axioms.
(2) For clause (a): by part (1) and the choice of T it suffices to bound

|{tpqf(b,M,N) : M ⊆ N ∈ K,N \N = {n ∈ PM
� \ PM

� }

What freedom do we have? First, N |= “c� <� b” so there are |PM
� | possible cuts which b realizes in 

(PM
� , <N

� ) over PM
� . Second, for each t ∈ PM

3 we will need to decide R1, R2 (and thus G1, G2). There are 
≤ 2|PM

3−�| possibilities, so all together we have |PM
� | × (2|PM

3−�|)|P
M
3 |.

For clause (b): We have ≤ 2|PM
� | choices for FN

� (b). For the R�, assuming i ∈ {1, 2}, |PM
i | ≤ |PM

3−i|, so 

the number of possibilities for the R� is ≤ 2|P3−i||P
M
i |, so the count follows. �

Conclusion 5.19. T1 is 1
2 -dependent.

Proof. For some real constant c, for every sufficiently large n, if A ⊆ CT , |A| = n then |S(A)| ≤ cn log n by 
Claim 5.18(2). Hence by Fact 5.9 the result follows. �
Claim 5.20. If M is a model of T , then there is a unique endless LCSP r such that Mr = M , (Lr

� , <
r
�) =

(PM
� , <M

� ) for � = 1, 2, Tr = (PM
3 , <M

3 ). Moreover, r is smooth.

Proof. We check Definition 4.10. The only non-obvious condition is (5), which follows by model completeness 
of T , as does “endless.”

To see that r is smooth: for i = 3, this holds by FN . For i = 1, 2, this is trivial as (PM
� , <M

� ) is a linear 
order. For i = 4, the point is that a �→ GM

� (a, t) is an isomorphism from (Tr)≤t onto (L�, <�)≤FM
� (t). �

In the example above (Example 5.12) we have the independence property from guided extension but not, 
as just shown, 2-independence, motivating the following problem.

Problem 5.21. Determine whether meaningful analogues of Uniqueness hold in any NIP theory extending 
the theory of linear order.
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