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ABSTRACT
‘We show in §1 that the Ax—Kochen isomorphism theorem [AK] requires
the continuum hypothesis. Most of the applications of this theorem are
insensitive to set theoretic considerations. (A probable exception is the
work of Moloney [Mo].) In §2 we give an unrelated result on cuts in
models of Peano arithmetic which answers a question on the ideal structure
of countable ultraproducts of Z posed in [LLS]. In §1 we also answer a

question of Keisler regarding Scott complete ultrapowers of R (see 1.18).
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Introduction

In a previous paper [Sh326] we gave two constructions of models of set theory in

which the following isomorphism principle fails in various strong respects:

(Iso 1) Ir M, A are countable elementarily equivalent structures and F is a
nonprincipal ultrafilter on w, then the ultrapowers M*, N* of M, N/
with respect to F are isomorphic.

As is well known, this principle is a consequence of the continuum hypothesis.

Here we will give a related example in connection with the well-known isomor-

phism theorem of Ax and Kochen. In its general formulation, that result states

that a fairly broad class of Henselian fields of characteristic zero satisfying a

completeness (or saturation) condition are classified up to isomorphism by the

structure of their residue fields and their value groups. The case that interests
us here is:

(Iso 2) If 7 is a nonprincipal ultrafilter on w, then the ultraproducts [[, Z,/F
and []F,[[t]]/F are isomorphic.

Here Z, is the ring of p-adic integers and F, is the finite field of order p.
It makes no difference whether we work in the fraction fields of these rings as
fields, in the rings themselves as rings, or in the rings as valued rings, as these
structures are mutually interpretable in one another. In particular, the valuation
is definable in the field structure (for example, if the residual characteristic p is
greater than 2 consider the property: “1+pz? has a square root” ). We show that
such an isomorphism cannot be obtained from the axioms of set theory (ZFC).
As an application we may mention that certain papers purporting to prove the
contrary need not be refereed.

Of course, the Ax-Kochen isomorphism theorem is normally applied as a step
toward results which cannot be affected by set-theoretic independence results.
One exception is found in the work of Moloney [Mo] which shows that the ring
of convergent real-valued sequences on a countable discrete set has exactly 10
residue domains modulo prime ideals, assuming the continuum hypothesis. This
result depends on the general theorem of Ax and Kochen which lies behind the
isomorphism theorem for ultraproducts, and also on an explicit construction of
a new class of ultrafilters based on the continuum hypothesis. It is very much
an open question to produce a model of set theory in which Moloney’s result no
longer holds.

Our result can of course be stated more generally; what we actually show here
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may be formulated as follows.

PRroPOSITION A: It is consistent with the axioms of set theory that there is an
ultrafilter F on w such that for any two sequences of discrete rank 1 valuation
rings (R%)n=12,.. (i = 1,2) having countable residue fields, any isomorphism
F:11,RL/F — Il, R%/¥ is an ultraproduct of isomorphisms Fn: R, — RZ
(for a set of n’s contained in F). In particular most of the pairs RL, R? are

isomorphic.

In the case of the rings F,([t]] and Z,, we see that (Iso 2) fails.

From a model theoretic point of view this is not the right level of generality
for a problem of this type. There are two natural ways to pose the problem:

(1) Characterize the pairs of countable models M, A such that for some ul-

trafilter F in some forcing extension [[M“/F ¥ [[N/F;

(2) Characterize the pairs of countable models M, N with no isomorphic ul-
trapowers in some forcing extension;

(there there are two variants: the ultrapowers may be formed either using one
ultrafilter twice, or using any two ultrafilters).

(3) Write M < A if in every forcing extension, whenever F is an ultrafilter on
w such that N’/ F is saturated, then M®/F is also saturated. Characterize
this relation.

This is somewhat like the Keisler order [Ke, Sh-a or Sh-c Chapter VI] but does
not depend on the fact that the ultrafilter is regular. We can replace Ng here by
any cardinal x satisfying k<% = k.*

However the set theoretic aspects of the Ax—Kochen theorem appear to have
attracted more interest than the two general problems posed here. We believe
that the methods used here are appropriate also in the general case, but we have
not attempted to go beyond what is presented here.

With the methods used here, we could try to show that for every M with
countable universe {and language), if P3 is the partial order for adding X3-Cohen
reals then we can build a P3-name for a non principal ultrafilter F on w, such
that in V¥ M®/F resembles the models constructed in [Sh107]; we can choose
the relevant bigness properties in advance (cf. Definition 1.5, clause (5.3)). This
would be helpful in connection with problems (1,2) above.

* We shall return to those problems in [Sh507], answering in particular a question
of Jarden: if F. is a finite field for | < 2, n < w, F} % F2 then [] FrjF 2
Hocw F2/F.

n<w
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In §2 of this paper we give a result on cuts in models of Peano Arithmetic which
has previously been overlooked. Applied to X;-saturated models, our result states
that some cut does not have countable cofinality from either side; and, in general,
the two cofinalities are equal. As we explain in §2, this answers a question on
ideals in ultrapowers of Z which was raised in [LLS]. The result has nothing to do
with the material in §1, beyond the bare fact that it also gives some information

about ultraproducts of rings over w.

The model of set theory used for the consistency result in §1 is obtained by
adding N3 Cohen reals to a suitable ground model. There are two ways to get a
“suitable” ground model. The first way involves taking any ground model which
satisfies a portion of the GCH, and extending it by an appropriate preliminary
forcing, which generically adds the name for an ultrafilter which will appear
after addition of the Cohen reals. The alternative approach, which we prefer and
called model-theoretic is to start with an L-like ground model and use instances of
diamond (or related weaker principles) to prove that a sufficiently generic name
already exists in the ground model (a complete proof of the case used here is
included in the appendix). The theme is that forcing an object is a transparent
way to build an object with no undesirable subsets (or expansions), so it is nice
to prove that if some forcing argument proves that such an object exists then it
really exists, provided that the original universe satisfies suitable principles. For
1-morasses this is the point of Shelah Stanley [ShSt112]. For ¢, (with A = R,)
this is the principle we use: it is weaker than the one corresponding to a 1-morass,
but its assumption is weaker: e.g GCH+ A =cfA >R, or A=A<* >3, or A =
A<A > 3, implies (by [Sh460]) (DI} which is a weakening of <)y, and suffices for
the principle. That was the method used in §3 of [Sh326], which is based in turn
on [ShHL162] (see also the earlier [Sh82] [Sh107]) which has still not appeared
as of this writing. Also the formalism as presented in [ShHL162], or [Sh326],
though adequate for certain applications, turns out to be slightly too limited for
our present use. More specifically, there are continuity assumptions built into that
formalism which are not valid here and cannot easily be recovered. The difficulty,
in a nutshell, is that a union of ultrafilters in successively larger universes is not
necessarily an ultrafilter in the universe arising at the corresponding limit stages,

and it can be completed to one in various ways.

After a complaint on the earlier version we give in the appendix a proof of the
case where ¢y is assumed (rather than the weaker (DI),) which is the case used.
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So the family App defined below can be reused as an actual forcing notion for the
most part so a reader can read the paper with this in mind omitting the parts
speaking on the second approach. However we will then take note of matters
relevant to the more refined argument based on a variant of the model-theoretic
method, spesifically based on A6-10 here (fitting the theme above). In addition
the exposition in [Sh326, §3] includes a very explicit discussion of the way such
a result may be used to formalize arguments of the type given here, in a suitable
ground model (in the second sense}.

Notation: Note that we used trees with linearly ordered levels, necessarily well
ordered.

1. Obstructing the Ax—Kochen isomorphism

1.1 DiscussioN. We will prove Proposition A as formulated in the introduction.
We begin with a few words about our general point of view. In practice we do
not deal directly with valuation rings, but with trees. If one has a structure
with a countable sequence of refining equivalence relations £, (so that E,;
refines E,,) then the equivalence classes carry a natural tree structure in which
the successors of an E,-class are the E,,;-classes contained in it. Each element
of the structure gives rise to a path in this tree, and if the equivalence relations
separate points then distinct elements give rise to distinct paths. This is the
situation in the valuation ring of of a valued field with value group Z, where
we have the basic family of equivalence relations: E,(z,y) < v(z —y) > n.
(Or better: E(z,y;2) = “v(z — y) > v(z)”.) Of course an isomorphism of
structures would induce an isomorphism of trees, and our approach is to limit
the isomorphisms of such trees which are available.

1.2 THE MAIN RESULT FOR TREES. We consider trees as structures equipped
with a partial ordering and the relation of lying at the same level of the tree. We
will also consider expansions to much richer languages. We use the method of
[Sh326, §3] to prove:

PROPOSITION B: It is consistent with the axioms of set theory that there is a
nonprincipal ultrafilter F on w such that for any two sequences of countable trees
(T)n=1.2,.. fori=1,2, with each tree T} countable with w levels, and with each
node having at least two immediate successors, if T* = [[_ T:/F, then for any

- n



Sh:405

356 S. SHELAH Isr. J. Math.

isomorphism F: T' ~ T2 there is an element a € T such that the restriction of F

to the cone above a is the restriction of an ultraproduct of maps F,;: T} — T?2.

1.3 Proposition B implies Proposition A: Given an isomorphism F between
ultraproducts R*, R? modulo F of discrete valuation rings R!, we may consider
the induced map F on the tree structures 7!, T? associated with these rings, as
indicated above. We then find by Proposition B that on a cone of T!, F, agrees
with an ultraproduct of maps F; ,, between the trees T associated with the R .
On this cone F is definable from F,, in the following sense: F(z) = y iff for
all n, F, (z mod (m1)"™) = y mod (m3)", where m; generates the maximal ideal of
R and we identify R'/ (wi)" with the n-th level of T%. (This is expressed rather
loosely; in the notation we are using at the moment, one would have to take n
to vary on integers in the sense of the ultraproduct, so including nonstandard
integers. After formalization in an appropriate first order language it will look
somewhat different.) Furthermore F is definable in (R!, R?) from its restriction
to this cone: the cone corresponds to a coset of some principal ideal (a) of R!
and F(z) = F(ax + b)/F(a) for any fixed choice of b from the cone. Summing
up, then, there is a first order sentence valid in (R!, R%; F) (with F, suitably
interpreted as a parametrized family of maps R!/n7 — R?/7}) stating that
an isomorphism F: R! — R? is definable in a particular way from F; so the
same must hold in most of the pairs (R}, R2), that is, for a set of indices n which
lies in F. In particular in such pairs we get an isomorphism of R! and R2. |

1.4 CONTEXT. We concern ourselves solely with Proposition B in the remainder
of this section. For notational convenience we fix two sequences (77:),«,, of trees
(¢ = 1 or 2) in advance, where each tree T} is countable with w levels, no maximal
point, and no isolated branches. The tree T7 is considered initially as a model
with two relations: the tree order and equality of level. Although we fix the two
sequences of trees, we can equally well deal simultaneously with all possible pairs
of such sequences, at the cost of a little more notation.

As explained in the introduction, we work in a Cohen generic extension of a
suitable ground model. This ground model is assumed to satisfy 2% = 8, .,
for n = 0,1,2. If we use the partial order App defined below as a preliminary
forcing, prior to the addition of the Cohen reals, then this is enough. If we wish
to avoid any additional forcing then we assume that the ground model satisfies
¢s for § = {6 < N3: cof § = Ny}, and we work with App directly in the ground



Sh:405

Vol. 85, 1994 THE AX-KOCHEN ISOMORPHISM THEOREM 357

model using the A6-10 in the Appendix. The model-theoretical proof requires
more active participation by the reader.

Let P be the Cohen forcing adding N3 Cohen reals. An element p of P is a
finite partial function from X3 X w to w. For A C X3, and p € P, let p|.A denote
the restriction of p to A X w and P[A = {plA: p € P}. Let z 5 be the 8"
cohen real. The partial order App is defined below. ”

We deal with a number of expansions of the basic language of pairs of trees.
For a forcing notion @ and G being Q-generic over V, we write ¢(T}, T?) for the
expanded structure in which for every k, every sequence (r,)n<. of k-place rela-
tions 7, on (T}, T2) is represented by a k-place relation symbol R (i.e., R(r, in<w))s
that is, R is interpreted in (T}, T'?) by the relation r,,. This definition takes place
in V[G]. In V we will have names for these relations and relation symbols. We
write Q(T!, T2) for the corresponding collection of names. In practice Q will be
P|.A for some A C w3 and in this case we write 4(T)}, T2).

Typically we will have certain subsets of each T} singled out, and we will want
to study the ultraproduct of these sets, so we will make use of the predicate
whose interpretation in each T? is the desired set. Really we want to deal with

P(T},T?), but this is rather large, and so we have to pay some attention to
matters of timing.

1.5 Definition: As in [Sh326], we will set up a class App of approximations to the
name of an ultrafilter in the generic extension V[P)}. In [Sh326] we emphasized
the use of general method of [ShHL162] to construct the name F of a suitable
ultrafilter in the ground model. ~

The elements of App are triples ¢ = (A, F,¢) such that:

(1) Ais a subset of N3 of cardinality NI;N

(2) _7-" is a P[.A-name of a nonprincipal ultrafilter on w, called ]—' [A;

(3) e = (eq: @ € A), with each ¢, € {0,1}, and ¢, =0 whenever cfa < Ry;

(4) For 3 € A we have: []f N{a: a a P{(ANB)-name of a subset of w}] is a

P[(AN @)-name;
(5) If cf3 =Ry, B € A, e5 =1 then P[A forces the following:
(5.1) 5/ F is an element of ([],,,, n/]-' A)VPIAL whose level is above all

levels of elements of the form z / ]—‘ for x PI(AN B)-name;
(5.2) x5 induces a branch B on (Hn<w 71/_7-' (AN B))VIPHANS which has

elements in every level of that tree (such a branch will be called full) and
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which is a P[(A N B)- name (and not just forced to be equal to one); so
B is a P[(A N B)-name of a member of V[G] and if G C PJAN 6 is

generic over V, then B[G] ={y:yeViGn@®PNANB))], y €[]
y/ FIGl<zg/ F}is "full,
(5.3) The branch B intersects every dense subset of

n<w

[T Ta /17 A g EIAnD)

which is definable in ([T, 4™(T}, T2)/IF Fi(ANnB) )V PIHANS),

Note in (5.3) that the dense subset under con&derat:on will have a P[(AN j3)-
name, and also that by Lo$’ theorem a dense subset of the type described extends
canonically to a dense subset in any larger model. The notion of “bigness” alluded
to in the introduction is given by (5.3).

We write g1 < g2 if g2 extends ¢; in the natural sense. We say that g, € App is
an end extension of q;, and we write ¢; <eng 92, if @1 < g2 and A%~ A% follows

A% . Here we have used the notation: ¢ = (A9, F9,¢9).

1.6 Remark: The following comments bear on the version based on the model
theoretic method. In a previous version of this method, rather than examin-
ing each x 3 separately, we would really group them into short blocks Xz =
(zg4¢: € ~< R,), for B divisible by ¥y. Then our assumptions on the ground
m~ode1 V allow us to use the method to construct the name F in V. One of
the ways g will be used is to “predict” certain elements ps ENP [6 and certain
P[é-names of functions F' s which amount to guesses as to the restriction to a

part of [[ T+ of (the name of) a function representing some isomorphism F
modulo F. However in A6 this is already taken into account.

1.7 LEMMA: If (g )¢« is an increasing sequence of at most Xy members of App
such that g¢, <end q¢, for {1 < (2, then we can find ¢ € App such that 47 =
U( A% and qc <end ¢ fOTC < E

Proof: We Iﬁay suppose £ > 0 is a limit ordinal. If cf(£) > Ny then UC <9 will
do, while if cf(¢) = Ro then we just have to extend {J, F % to a P[(lJ, A%)-name

of an ultrafilter on w, which is no problem. (cf. [Sh326, 3.10]). b7

1.8 LEMMA: Suppose q € App, v > sup.A¢, and B is a P[.A%-name of a branch
of (T],, T/ F9)VPIA'. Then:
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1. We can find an r, ¢ < r € App with A" = A7U {v}, and a (P[A")-name
« of a member of [1,,Tz/ ]-‘" which is abtove B.
2. We can find an r € App WJth g <end T and .A’ A?U [v,7 + w1), and
a (P].A™) -name B’ of a full branch extending B, which intersects every
definable dense su~bset of ([T, A TZ)VPIATl) ]?T.N
3. In (2) we can also ask that any particular t;;pe p over [[A(T}, T2)/ ¢
(in V[P[.A9)) is realized in (], A T5)VIPIAT)/ Fr )

Proof: 1. Make z ., realize the required type, and let ¢, = 0.

2. We define 7'C~= r[(A%U[y,v4+()) by induction on ¢ < w;. For limit ¢ use 1.7
and for successor ¢ use part (1). One also takes care, via appropriate bookkeeping,
that B’ should intersect every dense definable subset of ([, 4" 75/ F ")V IPIAT by
arranging for each such set to be met in some specific ([, A TS/ F7¢)VP1A™]
with ¢ < ;. ”

3. We can take a € [,y + w1) with cof a # Ry and use z,, to realize the type.

Bs

1.9 LEMMA: Suppose 4o, 41,92 € APP, 90 = ¢2[05, g0 < q1, A" C S.
1. If A2\ A% = {8} and sqﬁ” = 0, then there is g3 € App, q3 > q1,q2 with
AQS = A% U A9,
2. Suppose A%\ A% = {f}, cf(8) = Ry, e’ = 1, and in particular sup A% <
B. Assume that B, is a P|.A%-name of a full branch of

[z poyveee)

intersecting every dense subset of this tree which is definable in ([],, 4™ (T!
T2)/ F )V[PIA"] such that B, contains the branch B, which 5 induces
accorging to q3. Then there i; q3 > q1,qo with A% =':4‘71 0] {ﬁ}? such that
according to g3, Z s induces B on ([] T}/ FlAn)VIPIAT]

3. If AN AT = {8}, cf(8) = Ry, ef = 1, and sup A" < 7 < B with
cfy # Ny, then there is g3 € App with q; < g3, g2 < g3, A% = A% U A2 U
[v, 7 4 w1).

4. There are g3 € App, q1,q2 < g3, 0 that A% (A% U A%) has the form
U{les 7e + wi1): ¢ € A N AP, ¢f(() = No} where 7¢ is arbitrary subject
to sup(A®=[() < < (.
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5. Assume §; < Ny, 3 < Vs, that (p;)i<s, is an increasing sequence from App,
and that g € App[f satisfies:

Fori<éy:p[B<q.

Then there is an r € App with ¢ <eng 7 and p; < r for all 1 < 1.

6. Assume &1, 8y < Ry, (8j)j<s, is and increasing sequence with all 8; < Nj,
that (p;)i<s, is an increasing sequence from App, and that g¢; € Applp5; ,
for j < 69 where 63 < N3 satisfy:

Fori < é1,J < 82: pilB; < q;5 For j < j' < b2: ¢; <end gjr-
Then there is an r € App with p; < r and ¢; <end 7 for all ¢ < §; and
j < ba.
Proof: 1. The proof is easy and is essentially contained in the proofs following.
(One verifies that F U F 9 generates a proper filter in V[P[(A% U A%)].)
2. Let A; = A% and let]-'ﬁ fq‘ fori=1,2,and A3 = A; UA; = A; U{S}.

The only non obvious part is to show that in V[P[.As] there is an ultrafilter
extending F ; U F o which contains the sets:

{n:T} k= z(n) <zg(n)} for T € B1, ¢ a Pl A;-name.

If this fails, then there is some p € P[ A3, a Pl A;-name a of a member of
]—'1, a P{Az-name b of a member of ]—'2, and some z € B1 such that p -
anpne= =0 where c = ={n: a:( ) < :vg( )} for some (P [A‘“)-name x, such

that pl .Al[ Iz € B1” and wlogl “z €[], T,”. Why only those three
sets? by the amount "of closure under 1ntersect10n we have. Let p; = pJA4; for
i=0,1,2, and let H° C P[.Ag be generic over V, with po € HC.
Let:
A}L[HO] = {y € T}: For some p;,p1 < p} € P[A, pilAo € H?

and pj IF “c(n)<y,and n€a” }

Then A1 is a Pl Ap-name. Let Al = (]I, A}l/]-‘ 0)VIP1Al Now 4! is not
necessarlly dense in ([[, T/ FlA o)V P14l but the set

= {y e ([[13/ Foo)VBMAl .y € 41, or

¥ is incompatible in the tree with all ¥’ € A1}
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is dense, and it is definable (in [, (Pi40) TL / F9), hence not disjoint from B g.
Fix¥ € A*NBo. AsP[A; forces (IFp 4, ) that x € B, clearly  and ¥ cannot

(PrAy) Tl)

be be incompatible (in [T, , 50, clearly p1[A; forces (IFp;4,) that z,

y are compatible in [] ¥'#° 7%, and thus ¥ € A1,

The following sets are in 7 V[H’);

A = {n: for some p},p1 < p} € P[4, p} 14, € H°

~

and py Ik “z(n) <y (n),and n € a”}.

B = {n: for some p},p2 < py € P[ Ay, pylAg € H°

~

and py IF “y (n) < zs(n),and n € p”}.

For example, A is a subset of w in V[H°] which is in F 7. As the complement
of A cannot be in F o [HY], A must be in F % [HO).

Now for any n E A N B we can force n €an b ne by amalgamating
the corresponding condltlons P}, Ph; as said above thls ﬁnlshes the proof of the
existence of ¢3.

3. Let Bo be the P{.A%-name of the branch which Z 5 induces. By 1.8 (2)

there is g7, A% = AT Uy, y+wy), @ < q} € App and there is a P[.4% -name
B1 2 By of an appropriate branch for ¢;. Now apply part (2) to go, ¢}, g2-
" 4. As in [Sh326, 3.9(2)], by induction on the order type v of (A% N An): Tf
v = 0 trivial; If ¥ = 2 + 1, § last member of A%, ¢§ = 0 use part (1); If
v =+v"+1 and 8 last member of 492, s =1 use part (3). If v is a limit ordinal,
use part (6) below.

5, 6. Since (6) includes (5), it suffices to prove (6); but as we go through the
details we will treat the cases corresponding to (5) first. We point out at the
outset that if 05 is a successor ordinal or a limit of uncountable cofinality, then
we can replace the g; by their union, which we call g, setting 8 = sup; B;, so all
these cases can be treated using the notation of (5).

We will prove by induction on v < wjy that if all 3; < v and all p; belong to
Applv, then the claim (6) holds for some r in App(y.

We first dispose of most of the special cases which fall under clause (5) (so for
the present, ¢ is well defined). If §; = 8y + 1 is a successor ordinal it suffices to
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apply (1) on (3) to ps, and ¢. So we assume for the present that é; is a limit
ordinal. In addition if v = 3 we take r = ¢, so we will assume § < ~ throughout.

THE CASE v = 79 + 1, A SUCCESSOR: In this case our induction hypotheses
applies to the p;[ve, ¢, B, and 7o, yielding 7o in App[vye with p;[v0 < ro and
q <end To- What remains to be done is an amalgamation of o with all of the
p;, where dom p; C domr U {70}, and where one may as well suppose that 7q is
in dom p; for all 4. This is a slight variation on 1.9 (1) or (3) (depending on the

value of e?*, which is independent of 7).

THE CASE ¥ A LIMIT OF COFINALITY GREATER THAN Nj: Since §; < Ng there
is some vy < % such that all p; lie in App[vo and 8 < 7y, and the induction
hypothesis then yields the claim.

THE CASE 7 A LIMIT OF COFINALITY X;: Choose v; a strictly increasing and
continuous sequence of length at most wy with supremum -, starting with o = 4.
By induction choose r; € Apply; for i < w; such that:

(0) To=4¢;
(1) Tj Send Ty for j < j' < wy;
(2) pilv; <rjfor i < 6; and j < wy.

At successor stages the inductive hypothesis is applied to p;[v;+1, 7, 75, and
vj+1. At limit stages j we apply the inductive hypothesis to p;[v;, r; for j' < j,
7+ for j' < j, and +;; and here (6) is used, inductively.

Finally let r = {Jr;.

We now make an observation about the case of (5) that we have not yer treated,
in which 7 has cofinality w. In this case we can use the same construction used
when 7 has cofinality Ry, except for the last step (where we set r = |Jr;, above).
What is needed at this stage would be an instance of (6), with the r; in the role
of the ¢; and 62 = w.

This completes the induction for the cases that fall under the notation of (5),
apart from the case in which + has cofinality w, which we reduced to an instance of
(6) with the same value of v and with cfé; = w. Accordingly as we deal with the
remaining case we may assume cfé; = w. In this case ¢ = |Jg; is a well-defined
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object, but not necessarily in App, as the filter F ¢ is not an ultrafilter (there are
reals generated by P[(domg¢) which do not come from any P[(domg;)).

Now we prove part (6), so by the cases already treated, é; is a limit ordinal.
We distinguish two cases. If 3 = : sup §; is less than v (remember g; € App[f;),
then the induction applies, delivering an element ro € App|8 with p;[8 < r¢ and
all g; <end 7o. This 79 may then play the role of ¢ in an application of 1.9 (5)
for the same +, and either it has already been proved or it is the last case above
which was reduced to a case of 1.9 (5) in which § = ~, a case treated below.

In some sense the main case (at least as far as the failure of continuity is
concerned) is the remaining one in which 8 = . Notice in this case that although
pilB; < g; it does not follow that p;[3 < ¢ (for the reason mentioned above: p;[3
includes an ultrafilter on part of the universe, while the filter associated with
g need not be an ultrafilter). Al that is needed at this stage is an ultrafilter
containing all ]—' Py ]—' 9. As this is a directed system of filters, it sufficed to

check the COmpatlblhty of each such pair, as was done in 1.9(2). [ IS

1.10 CONSTRUCTION, FIRST VERSION. We force with App and the generic
object G gives us a P-name of an ultrafilter in V[App|(P] = V[G][P]. The
forcing is Ng-complete by 1.9 (6). We also claim that it satisfies the Rz-chain
condition (see below), and hence does not collapse cardinals and does not affect
our assumptions on cardinal arithmetic. (Subsetes of Ry are added, but not very
many). Let F ¢ = U{]-" ":r € G}, it is a P-name of an ultrafilter on w, it belongs
to V[G]. In partlcular for each member r of the generic subset of App we have
FICINPWVIE™ = £(6] 0 Pw) P4 and (] *'(T3,T2)/ F7)V P14
both are P 4"-names, not depending on forcing with App, i.e. on G,

We now check the chain condition. Suppose we have an antichain {q,} of
cardinality R3 in App, where for convenience the index a is taken to vary over
ordinals of cofinality Ry. We claim that by Fodor’s lemma, we may suppose that
the condition ¢, [a is constant. One application of Fodor’s lemma, allows us to
assume that v = sup(A% N a) is constant. Once v is fixed, there are only R,
possibilities for go[v, by our assumptions on the ground model, and a second
application of Fodor’s lemma allows us to take g, [v to be constant.

Now fix o of cofinality Ny (or more accurately, in the set of indices which
survive two applications of Fodor’s lemma), and let ¢'; =: ¢,,, 8 = sup A%, and

take az > 3 of cofinality Ry. We find that ¢’y =: ¢,, and ¢, are compatible, by
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1.9(4), and this is a contradiction.
Let G? = G N (App!B) and FP = | J{F": r € G} (for B < R3).

1.11 CONSTRUCTION, SECOND VERSION. As we wish to apply the model theo-
retic method (over a suitable ground model) and build the name of our ultrafilter
in the ground model, we proceed as follows. For a < N3 we choose G* C Applea,
directed under <, increasing with «, inductively as in A 22 making all the com-
mitments we can; more specifically, take N, < (H(3} +1), €) of cardinality RN,
with a € Ny, Ny C N, N, includes the sequence of the first o moves and is
(< Wy)-complete, increasing with «, and the oracle associated with {g belongs
to Ny, and in stage a if the Guelf will make all the commitments known to A,
then G® is in the ground model but behaves like a generic object for App|a in
V, and in particular gives rise to a name F*. Note that V[G,] = V here.

The lengthy discussion in [Sh326] is usgful for developing intuition. Here we
will just note briefly that what is called a commitment here is really an isomor-
phism type of a commitment, in a more conventional sense: this is a device for
compressing Ng possible commitments into a set of size N,.

The axioms in the appendix have been given in a form suitable to their ap-
plication to the proof of the relevant combinatorial theorem, rather than in the
form most convenient of verification. 1.9 above represents the sort of formulation
we use when we are actually verifying the axioms.

We will now add a few details connecting 1.9 with the eight axioms of paragraph
A6. The first three of these are formal and it may be expected that they will be
visibly true of any situation in which this method would be applied. The fourth
axiom is the so-called amalgamation axiom which has been given in a slightly
more detailed form in 1.9(4). The last four axioms are various continuity axioms,
which are instances of 1.9(6). We reproduce them here:

5. If (pi)i<s is an increasing sequence in App of length less than A, then it has

an upper bound gq.

6. If (p;)i<s s an increasing sequence of length less than A of members of

App[(B+1), with 8 < A* and if ¢ € App| [ satisfies p;[3 < ¢ for all i < 6,
then {p;: i < 6} U {¢} has an upper bound 7 in App with q <ena 7.
7. If (B;);<s is a striclty increasing sequence of length less than A, with each
B; < A*, and p € App, ¢; € ApplB;, with p[B; < ¢;, and p;/18; = p; for
j < j' <6, then {p} U {g;: i < 6} has an upper bound r with all g; <enq 7.
8'. Suppose 3, 67 are limit ordinals less than A, and (8;);<s, is a strictly
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increasing continuous seqeuence of ordinals less than A*. Let I(6y,62): =
(61 + 1) x (62 + 1) ~{(61,82)}. Suppose that for (i,j) € I(81,62) we have
pi; € ApplB; such that

i <&'= pi; < pirj
J < i = pij = pij 163
Then {pi;: (¢,5) € I(61,62)} has an upper bound = in App with r|3; = ps, ;
for all § < é;.
The first three are visibly instances of 1.9(6). In the case of axiom (8’) we set

Pi = Pi,s, for i < 6; and g; = ps, ; for j < 62. Then p;[8; = p;; < g;, 50 1.9(6)
applies and yields (8’).

1.12 LEMMA: Suppose § < X3, cf(6) = Ry, and H® C P[§ is generic for P[6.
Then in V[G®][H®] we have:

1, °(T}, T2)/ 7 °[HY] is Re-compact.

Proof:  Similar to 1.8(3). We can use some z g with 3 of cofinality less than N,
to realize each type. In the forcing version, ;his means App forces our claim to
hold since it can’t force the opposite. In the alternative approach, what we are
saying is that the commitments we made include commitments to make our claim
true. As 2% = R, in V[H?] we can “schedule” the commitments conveniently, so
that each particular type of cardinality ®; that needs to be considered by stage
¢ in fact appears before stage 6. | IRD)

1.13 KILLING ISOMORPHISMS. We begin the verification that our filter F satis-
fies the condition of Proposition B. We suppose therefore that we have a P-name
F and a condition p* € P forcing:
“F is a map from [, T} onto [],T;? which represents an isomorphism
modulo F.
We then have a stationary set S of ordinals § < Rj of cofinality N, which satisfy:
(a) p* € PJé.
(b) For every P{é-name x for an element of [[, T}, F (f) is a P[é-name.
(c) Similarly for F 1. ”
If we are using our second approach, over an L-like ground model:
(d) At stage 6 of the construction of the G*, the diamond “guessed” p® = p*
and Fg = F[6.
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(In this connection, recall that the guesses made by diamond influence the choice
of “commitments” made in the construction of the G®.) Let ¥ * =: F'(z 5). Then:

“y* induces a branch in ([], T2/ F )V
(%)y - p* I+ which is the image under F g

of the branch which x 5 induces on ([], 7.1/ F)V[®Il.»

Now we come to one of the main points. We claim that there is some ¢* € G
such that: ¢*18 € G?, z s, y* are (P[A9 )-names, and with the following property:
(t)s Given ¢; € G¢ with ¢*[6 < ¢, and P|.A%-names (E,g) with T € [1734,
Ye [1 72, then for any ¢} € App with ¢1,¢* < ¢4 and ¢4[6 € G4, we have:

z,Y are (P I A%!8)-names and p*[A% forces (i.e. 1 : Aqg.) the following:

(a) “Ify = Fa(f) then: z <z, iffy <Y and
(b) if yNandNF (f) are 1nc0mparable, then £ < 25 implies y £ Y >

Notice hNere thz;: ¢4 need not be in G.

The reason for this depends slightly on which of the two approaches to the
construction of G we have taken. In a straight forcing approach, we may say that
some ¢* € G forces (x)y+, and this yields (1)s. In the second, pseudo-forcing,
approach we find that our “commitments” include a commitment to falsify (%) «
if possible; as we did not do so, at a certain point it must have been impossigle
to falsify it, which again translates into (f)s.

We now fix ¢* satisfying (1)s, and we set gg = ¢*[6. At this stage, (1)s
gives some sort of local definition of F [, on a cone in ([]4(T}/ F )V Pl (the
cone is determined by ¢o). The next~result allows us to put this~deﬁnition in a
more useful form (and this is nailed down in 1.15). One may think of this as an

elimination of quantifiers.

1.14 LEMMA: Suppose that:
(1) qo,41,42, 93 are in App with qo = q2[f0 < q1 <end ¢3, and ¢z < gs.
(2) qo < ro € App with AT C A™ C .
Let A; = A% fori=0,1,2,3, and suppose that
(3) fo is a P[A™-name of a partial map from ([] (T}, T2))Y P14l into

(H (T}, T2))VIBIA™] representing a partial elementary embedding of

nI n
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([T, A (T3, T/ FIAYVEIAT into ([T, Ao(T), TR)/ F 1AT) VIPIA™]
which is equal to the identity on ([, (T}, T2)/ F 4o e M"
Then there is an r € App with: go < 7; 79 <end T, .Ag CA"; A" NGy =A"; and
there is a P-name f of a function from ([, (T}, T2))VP14s] into

([I(za, z2yveeran
n
representing an elementary embedding of (JT\*(T1,T2)/ F | A3s)V 144} into
H Az(Tl T2 /f[A’I‘)V(P[Ar]

which is the identity on ([, (T, T2)/ F [ Ag)V P14zl

Proof: It will be enough to get f as a partial elementary embedding, as one

may then iterate 1.8(3) R; times.
We may suppose Gy = inf (A3 ™ .A™). Let A3\ By = (8;)i<¢ be enumerated
in increasing order. We will construct two increasing sequences, one of names f ;

and and one of elements r; € App, indexed by i < £, such that our claim holds
for fi,42(0:, q3[0i, i, and in addition A™ C B; and r; is <eqq-increasing. At the
end we take r =1¢ and f = f,.

THE CASE ¢ = 0: Initially ro and fq are given.

THE LIMIT CASE:  Suppose first that ¢ is a limit ordinal of cofinality 8¢, and let
A=, A%, In this case |J; i 777 is not an ultrafilter in V[P[.4] and the main
point will be to prove that there is a P[A-name for an ultrafilter f i extending

F P and U, ; F™, such that
(*) The map f; defined as the identity on ([[, (T}, T2))VIPI(42N8:)] and as

Uj <ifj on the latter’s domain is a partial elementary map from

(T 47T T/ 7 Hda 0 i) VP12

into
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So it will suffice to find F; making (*) true. This means we must check the finite
intersection property fo; a certain family of (names of) sets. Suppose toward a
contradiction that we have a condition p € P[.A forcing “g NpNe =0, where
for some j < i: -

(A) a is a P{A"-name for a member of ¥

(B) b is a P1.A%!% name for a member of F 25

(C) c¢ is the name of a set of the form:

{n: AHTLT E e (x(n), £ 5(5) ()}

(note: f;(¥)is a (P[A™)-name).
Cl) x,¥ are finite sequences from T, T2))VIPIA%] 4nd Dom f,; C
=0 n\tnstn N]

(I1,.(TL, T2))VIPI(ANE)] pespectively.
(C2) ¢ is a PA%!Pname for a formula in the language of [],, An2thi (T}, T2)

(C3) ¢ (x,¥) holds in (T[, “*"*(T1,T2)/ F [(As 0 ;)Y P14,

ﬁe;e ;< 1 arises as the supremum ofNﬁnitely many values below i. Note
that as 7 is a limit ordinal, we have no “bigness” condition. As x can be absorbed
into the language, we will drop it. ”

Now let H be generic for P[(A2 N §;) with p[(A2 N §;) € H, and define:

An =: {u:for some ps > p[(A2N 3;) in PA2085 with p, (A2 N B;) € H,

p2F “n€ b and A" (TL, T2) £ ¢ (u).”)

An is a P[(A2 N B;)-name of a subset of 7. Note ( A n)n<w 18 a relation in
[14%" (T}, T2). By hypothesis {n: A”"(TL T2) = 0 (¥ (n))} € F9% and
this set is contained in the set 5’ =:{n: y(n) € An},~hgnce p forc;s ¢’ to be
in Fé 18 But ¢’ isa (PrA%® %) -name. NTherefo;e c'€ Fe % and ;pplying
f j, we find:

i {n £57)0) € Ay e F7.

Hence we may suppose that p forces: for n € a, fi(¥)(n) € A,. But then

any element of a can be forced by some extensio; ofN p to lieNin b Nc, by

amalgamating a;propriate conditions over A; N ;. T
Limits of larger cofinality are easier.
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THE SUCCESSOR CASE: Suppose now that ¢+ = j + 1. We may suppose that
B; € Ay as otherwise there is nothing to prove. If sqﬁi_ = 0 we argue as in the

previous case. So suppose that s‘” = 1. In particular 3, has cofinality R,.
J
Using 1.8(3) repeatedly, and the limit case, we can find B, g, f’ such
that (remember that by the first sentence in the proof we look for f/ with ‘domain
18;

(Dom f 5) U T (T, T) VA= ):

( ) q3 fﬂ] >end q11 Aq; - ﬂ]a

(2) Ty <end 7' ATI c 163‘3

(3) f'isamap from [[ (T}, T2)VPI4" ] onto [], (T}, T2)VFI4" ] representing
A (T, 72) ) F)VPIAGT ngo

(T} TZ)/fTI)V[P'ArI] extending f;;

n? n

an elementary embedding of (J]

(Hn

(4) B is a P|.A%-name of a branch of (], Tl/}“h) PLA%] which is suffi-
c1ent1y generic;

(5) f'[B]is a PIA™ -name of a branch of ([], T/ ™' )VPI4"1 which is suf-

ficiently generic.

n

Aszﬁ

(6) B includes {z: z isa P | A218;_name of a member of [], T} which is
gelow Z p; according to go10;}, (remember that this is a P [ .A4%'% name
by the definition of App).

Let ¢ satisfy g3[0; < g5, ¢7 <end ¢5, With A% C f3; such that according
to g4 the vertex Z p; lies above B (using 1.9(2)). We intend to have r; put
z g, above f'[B] (to meet conditions (5.2, 5.3) in the definition of App), while
meeting our o&ler responsibilities. As usual the problem is to verify the finite
intersection property for a certain family of names of sets. Suppose therefore
toward a contradiction that we have a condition p € P forcing “anp N cnd = 8,7
where:

lR

. ’ 7
is a Pl A" -name of a member of 77 ;

o

is a P.A%21% _name of a member of F az1B:,
is the name of a set of the form

{n: ATLT) b (2, (0,2, /() ()}
is {n: Ty £ 2 (n) < 2 g,(n)}

2O

e
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where in connection with ¢ and ¢ we have:

n? n

Yy is a finite sequence from ([T, (T T2))VIP rA"i]’

is a finite sequence from [[,, (T, T2)VP1A™'*]

TN

¢ (zg,,2 Y) is defined and holds in (], A2"%(T3, Tﬁ)/]—‘qé)V[PMqé},

~

z is a P[A%-name for a member of f '[B] (in connection with d ).

We can absorb the parameters z occurring in ¥ into the expanded language

which is associated with (T} T2)A”w’ as individual constants so w.l.o.g z

disappears.
Let H* C P be generic over V with H C H* and p € H*. So H =
H*[A%!5 and set H; = H*[A%, and H; = H*[A%. In V[H] we define:

é}, =: {(z,u): For some p; € P[A”, with p; > plA” and p;[A%!% € H,
p1 forces: “n€ a, z(n) =1z, f’(z)(n) =u}
é?x =: {(z*,u): For some p; € P[A%" with p > p{As N Bi)
and p2{(A2 N B;) € H,
p2 forces: “n € 2, z g; (n)=2z", and f(x*,u).”}

In V[H] there is no n satisfying:
(*n) (3z,z*,u)[(z,u) € A} & (z*,u) € AL & z < z*)]

Otherwise we could extend p by amalgamating suitable conditions pi, pg, to
forcesuchannintoa Nph Nec Nd.

~

For n < w and u € T} let
AZ(w) = {z € T (e, u) € 42)
éf’l(u) =: {z € T}): Either (z,u) € éf, or there is no z’ above z
in T! for which (z’,u) € ,:1%}

Then A3 (u) is dense in T}, and hence A 3=11 A 3/ F %18;[H] is a dense subset
of (H T,}/}“h lﬂ.‘)V[P[qu rﬂJ].
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Let 7 = (T, T?% A?, A%) be the ultraproduct

(T1(T2, 725 A%, A%/ F o) VIS,

n

Now ¢ [z g,,¥] holds in [, 2" (T}, T2)/F%[Hs], so = 5, [Hs] € A%(Y [Ha))
(using Lo$’ theorem to keep track of the meaning of A? in this model). By the
choice of B, B[H;] meets A3(Y [H;]) (as the later is dense) and indeed:

(1) AS(Z H;])n B [H;] is unbounded in B [H,].

For z € A3(y [H1])N B[Hy), as z < x 3, we have also z € A%(Y [H])n B [H,).

Hence in V[H,;] we have:
(2) A%[y]n B[H,] is unbounded in B [H;].

Hence A%(f'(¥)) N f'[B][H*.A"] is unbounded in f'[B][H*[.A™'], and we can
find 2 € A%(f'(Y [Hy])) N f'[B][H"[A"] with ¢ < 2 (all in the ultraproduct

[1,TL/F"[H*IA"] as f' is an elementary embedding). In particular for some
n € a [H*], we have z (n)[H*] < z (n)[H*] in T, and z (n) € A*(Y¥ (n)). Letting

v = 2 (m[H), 2 = 2(n)[H], and w = £(¥)()HIA"), we find that (x,)
holds in V[H], a contradiction. [ T

1.15 WEAK DEFINABILITY.

PROPOSITION: Let § < N3 be an ordinal of cofinality R, satisfying conditions
1.13 (a-d). Suppose q1,q2 € G, q216 = qo < q1, AT C 6,6 € A%, y* s a

P|A%-name of an element of [ T2, and €¥* = 1. Suppose further that z', ="

n n

and y', y" are P{ A% -names, p € P, p; = pJA% (i = 1,2), and:

p2 ”_uF(f&) — y:«”

P1 ”_&tfl’fll c Hn T,%, and gl,gu c Hn TT'.L)n;

p1 Ik “The types of (z',y') and of (x",y") over {z / F: = a P|A%-name of a
member of [],, #* (T}, T2)} in the model ([, ™ (T2, TL)/ F o )VIPL1A"]

are equal.”
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Then the following are equivalent.
1. There is r° € App such that q;,q2 < r°, 7°}6 € G, and

ph[IT/ 7" E @' /7" <24/ F) and
ﬁTf/{-"’ E W ET <y Y
2. There is ! € App such that q;,q, < 7!, r'[6 € G® and
p [IT/ 7" E @/ F" <24/ F") and
77" E@ 177 </ 77)”

Proof: By symmetry it suffices to show that (1) implies (2). Take H® C P[§
generic over V with p; € H%, and suppose that 70 is as in (1). Let r¢ = r°[§ and
let f o be the extension of the identity map on ([]T.})V P14 by: f o) =z,
f 0(73\/{ "y = g" . Writing 8y = 6 and taking g3 provided by 1.9(4), v:e recover the
;ssumptions of 1.14, which produces a certain 7 in App, an end extension of r°[6;
here we may easily keep r[§ € G® (cf. 1.11). It suffices to take r! = r. | IR

1.16 DEFINABILITY. We claim now that F is definable on a cone by a first
order formula. For a stationary set Sy of § < Rz of cofinality Ny, we will have
conditions (a-d) of 1.13 which may be expressed as follows:

Both F [(P[é — names) and F ~![(P[é — names) are P[6-names;
When working with {g:
$s guessed the names of these two restrictions and also guessed p* correctly;

and hence for suitable ¥ 5 and g; we have the corresponding conditions (*)y , and

(1)s (with ¢; in place of ¢*). By Fodor’s lemma, on a stationary set S; C Sy we
have go = ¢;[é is constant, and also the isomorphism type of the pair (q},¥ s)
over A% is constant. ~
So for 6 in S;, we have the following two properties, holding for z’ in
VP[] and ¥’ = F (z')), by (f)s and 1.15 respectively: ”
1. The de~cision~ to put g’ below s implies that Y " must be put below g*;
and
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2. This decision is determined by the type of the pair (ff DY’} in

I 4°(T4,72)/ 7 Ve, )

As 57 is unbounded below N3 this holds generally.

This gives a definition by types of the isomorphism F above the branch in
[17}/ 7 V®PIA%] which the condition ¢} says that the vertex 2 5 induces there
(using 1~.9(2)), and this branch does not depend on 8. Note that this set contains a
cone, and the image of this cone is a cone in the image. Now by Ns-compactness
equivalently Ro-saturation, of [], 4" (T1,T2)/ F VIPIA®] we get a first order
definition on a smaller cone; this last step is written out in detail in Lemma 1.17

below. This proves Proposition B.

1.17 LEMMA (true definability): Let M be a A-saturated structure, and A C M
with |A| < A. Let (D1;<1), (D2;<2) be A-definable trees in M; that is, the
partial orderings <; are linear below each node. Assume that every node of D
or Dy has at least two immediate successors. Let F: D1 — D, be a tree

isomorphism which is A-type-definable in the following sense:

[f(l‘) =y& tp((x, y)’A) = tp((x’,y'),A)] = f(iE') = y/-

Then f is A-definable (i.e. by a first order formula with parameters from A), on
some cone of Dy.

Note: We do not require a relation eq meaning equality of level exists. Before
entering into the proof, we note that we use somewhat less information about F
(and its domain and range) than is actually assumed; and this would be useful
in working out the most general form of results of this type (which will apply to
some extent in any unsuperstable situation). We intend to develop this further
elsewhereT, as it would be too cumbersome for our present purpose. Note that
this fits well with the framework of [Sh72], [Sh107)]—also there there is a lemma
saying every type definable object of a specific kind in a quite saturated model
is definable. See more in [Sh384].

The proof may be summarized as follows. If a function F is definable by
types in a somewhat saturated model, then on the locus of each 1-type, it agrees
with the restriction of a definable function. If F is an automorphism and the

locus of some 1-type separates the points in a definable set C in an appropriate

t See [Sh384], [Sh482)
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sense, then F can be recovered, definably, on C. Finally, in sufficiently saturated
trees of the type under consideration, some 1-type separates the points of a cone.

Details follow.

Proof: If we replace M by a M-saturated elementary extension, the definition of
F by types continues to work (and the extension is an elementary extension for
the expansion by F'). In particular, replacing |M| by a more saturated structure,
if necessary, but keeping A fixed, we may suppose that X > |T|, |A], Ro.
We show first:
(1) There is a 1-type p defined over A such that its set of realizations p[D;] is
dense in a cone of Dy,
i.e., for some a in D; we have that any element above a lies below a realization
of p. Why? For any 1-type p over A, if p{D;] does not contain a cone of D; then
by saturation there is some ¢ € p with:

Va3b > a -3z > b o(z)

So if (1) fails we may choose one such formula ¢, for each 1-type p over A, and
then it is consistent (hence true) that we have a wellordered increasing sequence

ap (in the tree ordering) such that for each 1-type p, above a, we have:
-3z > ap pp(x)

By saturation there is a further element a above all a,, (either by further increasing
A or by paying attention to what we are actually doing) and we have arranged
that there is no 1-type left for it to realize. As this is impossible, (1) holds. We
fix a 1-type p (which is a complete type over A) and an element ay in D; so that
the realizations of p are dense in the cone above ag. It is important to note at
this point that the density implies that any two distinct vertices above ag are
separated by the realizations of p in the sense that there is a realization of p lying
above one but not the other (here we use the immediate splitting condition we
have assumed in the tree D).

Let a realize the type p, and let ¢ be the type of the pair (a, F(a)) over A.
If b is any other realization of p, then there is an element ¢ with the pair (b,¢)
realizing ¢, and hence F(b) = ¢ so in particular F(a) is definable over A U {a}
and by the assumption of the lemma p determines ¢ uniquely. So each realization

a of p determines a unique element d such that the pair (e, d) realizes ¢, and by
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saturation there is a formula ¢(z,y) € ¢ so that ¢(z,y) = 'z ¢(x, 2). Hence

pU{e}te.
Now the following holds in M:

p(z) Up(e') U {o(z,y), 02", y)} = (z <2’ <y <)

and hence for some formula 9(z) € p the same holds with p replaced by 1.
Increasing ¢ we may suppose ¢(z,y) = ¥(x) and conclude that ¢(x,y) defines
a partial isomorphism f. Let B be {a > ag : Iyp(a,y)}. Now f coincides with F
on the set of realizations of p above a, and the action of F' on this set determines
its action on the cone above a by density (or really by the separation condition
mentioned above), so f coincides with F' on B. Furthermore the action of F on
B determines its action on the cone above ag definably, so F' is definable above
a.

The definition ¢*(z,y) of F on the cone above a obtained in this manner

may easily be written down explicitly:
“V.’I?/,yl [QO(l'I, yl) = (CL’ < II,” - y < y/)] ” '1.17

For the application in 1.15 we take A = Rj. 016

Here we have finished proving the main theorem 1.2 and proposition A from
the Introduction. I

1.18 ProposITION: P forces: In [[, T}/ F (F = F[G*?)), every full branch is

an ultraproduct of branches in the original trees T!.

First Proof (in brief): Following the line of the previous argument we argue as

follows: If B is a P-name for such a branch, then for a stationary set of ordinals

6 < R of cofinality Ry, B N ([],, T2/ F)V®P!"] will be a full branch and a P[é-
name, guessed correctly Af)y Os. We t;ied to make a commitment to terminate
this branch, but failed, and hence for some ¢* and y*, witnessing to the failure,
we were unable to omit having ¢*§ € G® where ¢* is essentially the support of
“y* is a bound”. Using 1.13 one shows that the branch was definable at this point
by types in R; parameters, and by R,-compactness we get a first order definition,

which by Fodor’s lemma can be made independent of 6. IR

Filling in the details in the foregoing argument constitutes an excellent,
morally uplifting exercise for the reader. However the more pragmatic reader
may prefer the following dull derivation of the proposition from Proposition B.
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Second Proof: We can derive the result from Proposition B. In the first place,
we may replace the trees T'! in the proposition above by the universal tree of this
type, which we take to be T = Z<“ (writing Z rather than w for the sake of the
notation used below). Now apply Proposition B to the pair of sequences (T.}),
(T?) in which T = T for all i,n. Using the model of ZFC and the ultrafilter
referred to in Proposition B, suppose B is a full branch of T* = [[T2/F (in
V[G®#]), and let Z* = Z¥/F, N* = N¥ /F. For each i € N* let B; be the i-th node
of B; this is a sequence in (Z*)[%% which is coded in N*. Define an automorphism
fp of T* whose action on the i-th level is via addition of B; (pointwise addition
of sequences). Applying Proposition B and Lo§’ theorem to this automorphism,
we see that fp is the ultraproduct of addition maps corresponding to various
branches of T, and that B is the ultraproduct of these branches. 018

1.19 COROLLARY: It is consistent with ZFC that R¥ /F is Scott-complete for
some ultrafilter F.

Here R¥/F is called Scott-complete if it has no proper dedekind cut
(A, B) in which inf{b—a:a € A,b€ B} is 0 in R“/F. Now 1.18 is sufficient for
this by Keisler Schmere {KeSc, Prop. 1.3]. This corollary shows that a positive
answer to Question 4.3 of [KeSc, p. 1024] is relatively consistent with ZFC.

1.20 Remark: In the proof of 1.2 the predicate “at the same level” may be
omitted from the language of the trees T throughout as the condition on x s
that uses this (the “full branch” condition) follows from the “bigness” condition:

meeting every suitable dense subset.

2. Cuts in models of Peano arithmetic

2.1 INTRODUCTION. We refer to a proper Dedekind cut (A, B) in a linear order
as a gap. We refer to the cofinality of A and the coinitiality of B as the left and
right cofinalities of the gap, respectively. For results provable in ZFC see [Sh-
a, Sh-c, VI 3.12 p. 357]; for example, in N*/F, F in ultrafilter on w, if we
take A = N (C N¥/F) and B its complement then any regular cardinal in the
interval (g, 2] can be the right cofinality of this cut. In general the possible
values of these cofinalities in ultrapowers of the linearly ordered set N, or other
reduced products, depend heavily on the set-theoretic background. (See [DW]
for background information.) However we show here by a simple argument:
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2.2 THEOREM: Let N be a nonstandard model of Peano arithmetic. Then there
is a gap in N whose left and right cofinalities are equal.

As a corollary, any Nj-saturated elementary extension of N, and in partic-
ular any ultrapower N7 /F with respect to an w-incomplete ultrafilter, has a gap
whose left and right cofinalities are both uncountable. This answers a question
posed in a slightly different formulation in [LLS] (and, as we have lately learnd,

by Renling Jim), which we review in 2.5 below.

2.3 CONSTRUCTION. We will write expx for z*.
We will construct elements aq n, bo,» in N for n < w and a < g for some

limit ordinal ~yg, such that for all n and for all a < 8 < 4q:

(1) Gam < 8 < bgn < ban;

(2) exp(ba,n+l) < aa-{-l,n - aa,'n,~

The construction is by induction on limit ordinals . At each stage we
construct all of the elements a, » and b, ,, for o < v, as long as this is possible.

To initiate the construction, with v = w, we first choose infinite elements
d, € N for n finite such that for all n we have expd,,; << d,, where we
write z << y if kx < y for all finite k. We let a;, = dny1 + 7 exp(d,y1) and
b; n = dn — 1 — 1. In particular a, ,, < [d,,/2] < b; ,, for i,n finite.

2.4 THE INDUCTIVE STEP. Now suppose the elements a, , and b, , have been
chosen for o < v with v a limit ordinal. Let 4,,, B, be the ranges of the sequences
Gan, ban (for a < ) respectively. If one of the pairs (A,, B,) determines a
gap in N, then it is the desired gap (i.e. the gap ({z: (3y € An)(z < )},
{z: (3y € B,)(y < z)}). Assume therefore:

For all n there is an element ¢, with A, <c¢, < B,
ie. (Vo€ A,)(Vy € Bu)lz < e, <yl

Under this assumption we will continue the construction by defining a4, and
by4in for all finite 4, n.

We set ¢, = ¢, — expcp4y and we observe that A, < ¢/, (i. e. (Vz €
Ap )z < ) since:

!
Gon < Got1,n —€XP(bant1) < Gagin —€XPCni1 < Cn—€XP Cpy1 = ), for a < 7.
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We set (for i,n < w):
p
Qytin =: Cp + 1 exp(cnt1 — 1);

7 .
bytin =10, + Cnt1 - €xp(Cryr — 1) — 4.

Condition (1) clearly remains valid: a.,4i increase with ¢ [by its definition],

for @ < 7, Gam < Gytin [8S Gan € A, hence by a previous statement a,,, <

]

' and trivially ¢/, < Gy4in], alsO Gytin < byjin [8S Cny1 is nonstandart],

c
b.+i,n decrease with ¢ [check definition] and for & < v, bytin < ba,n (88 Caq1 -
exp(cns1 — 1) < expcnyr (by the definition of exp) so by the definition of ¢,
bytin Wwe have byyin < ¢, + expcng1 = ¢, but by the choice of ¢, we have
¢n < ban]. Furthermore since cpy1 - exp(cny1 — 1) < expenpy1 — 1 we have
ban < ¢ntexpent1 —1=c,—1 (for « =41 for i <w), hence exp(ba,n+1) <
exp(cn+1 — 1) = ag41,n — Ga,n and this yields condition (2). L P

2.5 Discussion: by G. Cherlin. We recall briefly the way the question was posed
in [LLS]. Let Z = Z“/F be an ultrapower of the ring of integers. Each prime
ideal lies below a unique maximal ideal in this ring, and the set of prime ideals
below a given maximal ideal is linearly ordered under inclusion. In [LLS] the
question is posed, whether in such a ring the following holds for every maximal

ideal m:
There is a prime ideal below m which is neither a union nor an intersection

of countably many principal ideals.

It was shown above that this is true, and now we want to make this more explicit.
This requires two steps. The analysis is simplest in the case in which m is
principal, and the general case will reduce to this one. The background for what
follows is given in [Ch].

Suppose first that m is principal. Then each prime ideal p below m has
a representation as p = m? where J is an initial segment of ' =: N¥/F and
m’) = MNaeym". Here J must be closed under addition, or equivalently under
multiplication by 2, and conversely for J additively closed, m” is prime. We
associate to J the initial segment logJ =: {n € N : 2" € J} and we find that
J is additively closed if and only if logJ is closed under addition of 1, or in
other words logJ is the left half of a gap in A. Conversely a gap (Jy, J1) in N
corresponds to an additively closed initial segment J = {n: (Im € Iy)[n < 2™]}
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and hence to a prime ideal below m. Furthermore this correspondence (is one
to one into and) preserves left and right cofinalities. So the result proved above
shows that in an wj-saturated model, our claim holds below a principal maximal
ideal.

If m is nonprincipal it is necessary to use more machinery. The details of
this machinery, which involves a reduction of general ideals to principal ideals by
passage to a definable ultrapower of NV, are given in [Ch, §4]. What interests us
here is the following: the prime ideals below m are again classified by gaps in an
order, but the order is not the order on N rather it is the order on a definable
ultrapower N'* of N taken with respect to a bounded ultrafilter on the definable
sets of N [Ch, Theorems 4.5 and 4.8]. By “bounded” we simply mean that the
ultrafilter contains some bounded set.

To conclude, it suffices to prove that the model A™* is again w,-dense. This
follows from Lemma 2.1.1 of [Ri]; in [Ri] it is also shown that the w;-density
condition implies w;-saturation in models of Peano arithmetic. For the reader’s

convenience we give a self-contained proof of the density condition.

2.6 PROPOSITION: Let N be an wi-saturated model of PA, and let F be an
ultrafilter on the (Boolean algebra of the) definable subsets of N that contains
the bounded definable set A. Then the definable ultrapower N'* := Def(N)/F

is w1-dense.

Proof: We take elements m;, n; in N'* with m; < mg < --- < ny < n;. These
elements are represented by definable functions f;, g; in NV, and actually it suffices
to take the restrictions of f;, g; to A, which are coded by elements of . By the
saturation hypothesis, there are sequences of functions of length K with K € N/
infinite, which extend the given two sequences and are again coded in N. (We
have now verified the hypothesis of [Ri, Lemma 2.1.1], and could therefore stop
at this point.) So we may speak of f; and g; for i < K, as functions defined on
A.

For z € A let i(x) be the largest i < K such that:
fi(2) < falz) < -+ < fulw) < gi(x) <+ < ga(x) < ga(2).

Observe that for i finite, {x : i(z) > i} € F. We may also suppose that i(x) > 1
on A.
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Set f(x) = fiz)(x) for x € A and observe that this definition makes sense
in /. Accordingly f represents an element m of A'*, and by the construction

m; < m < n; for all finite 1. ks

s
Appendix

OMITTING TYPES. This appendix bears only on the version of §1 that depends
on the ideas of [ShHL162]. On the one hand, we wish to recall explicitly what
those ideas are. On the other hand, we will propose a variant of the formalism
of [ShHL162| more suitable for the present purpose. All in all we consider three
variants for framework in Al, A6 and inside Al1.

In the context of this paper, the formalism of [ShH1162] is intended to pro-
vide a combinatorial refinement of forcing with App, which gives a P3z-name F
in suitalbe ground model for an ultrafilter which will have the desired prope;-
ties in a Ps-generic extension. We now review this material. Our discussion
complements the discussion in [Sh326], which focussed more on filling the gap
between the intuitive notion of “sufficiently generic” and the formalism given in
[ShHL162]. Here the focus of our discussion is more technical: we discuss the
replacement of the continuity axiom of [ShHL162] by a more flexible setup. For
the reader who wants to understand how to apply the method and is not familiar
with [ShHL162] the discussion in the appendix to [Sh326] should be more useful
than the present discussion.

In sections A1-A5 we are presenting the material of [ShHL162| as it was
summarized in [Sh326]. An alternative setup is presented in sections A6-A10.
The axioms given in section A6 below should supercede the axioms given in
section Al, and one would check that the proofs of [ShHL162] work with these new
axioms. For completeness we give a proof under somewhat weaker set theoretic
condition which applies in the case of §1.

A1l UNIFORM PARTIAL ORDERS. We review the formalism of [ShHL162].
With the cardinal A fixed, a partially ordered set (P, <) is said to be stan-
dard At -uniform if P C X x Py (A1) (we refer here to subsets of AT of size strictly
less than A), has the following properties (if p = (@, u) we write dom p for u, and
we write Py for {p € P: domp C §}):
1. If p £ ¢ then domp C domg.
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2. For all p € P and o < AT there exists a ¢ € P with ¢ < p and domgq =
domp N «; furthermore, there is a unique maximal such ¢, for which we
write ¢ = pla.

3. (Indiscernibility) If p = (a,v) € P and h : v — v/ C At is an order-
isomorphism onto v’ then (a,v’) € P. We write h[p] = («, h[v]). Moreover,
if ¢ < p then h[g] < hlp].

4. (Amalgamation)Jr For every p,q € P and o < AT, if pla < gand domg C a,
then there exists » € P so that p,q <r.

5. For all p,q,7 € P with p,q < r there is v’ € P so that p,q < r' and
dom 7’ = domp U domgq.

6. If (p;)i<s is an increasing sequence of length less than A, then it has a least
upper bound ¢, with domain Ui<5 dom p;; we will write ¢ = Ui<6 pi, OT
more succinctly: ¢ = p<s.

7. For limit ordinals 6, p[é = |J, 4 pla.

8. If (pi)i<s is an increasing sequence of length less than A, then (|, s Pi)la =
Uics(pila).

It is shown in [ShHL162] that under a diamond-like hypothesis, such partial
orders admit reasonably generic objects. The precise formulation is given in A5
below.

A2 DENSITY SYSTEMS. Let P be a standard At-uniform partial order. For
a < A, P, denotes the restriction of P to p € P with domain contained in
«. A subset G of P, is an admissible ideal (of P,) if it is closed downward, is
A-directed (i.e. has upper bounds for all small subsets), and for every pin P, N G
some ¢ € G is incompatible with p (in P,). For G an admissible ideal in P,,
P /G denotes the restriction of P to {p € P : pla € G}.

If G is an admissible ideal in P, and a < 8 < A*, then an (a, 8)-density
system for G is a function D from pairs (u,v) in Px(A1) with « C v € Py(AT)
into subsets of P with the following properties:

(i) D(u,v) is an upward-closed dense subset of {p € P/G : domp C v U B};
(ii) For pairs (u1,v1), (ug,v2) in the domain of D, if uy N 3 = uy N 3 and

1 Actually this implies that we can weaken the demand domg¢ C « to (domp) N
{dom ¢) = (domp) N «; this holds also for the framework in A11(2) as we can find
n<w ap<a <o <an=AT from W5 (see there) such that (domp) N ag C
dom {¢g)Na1, and for € (1,n—1), (domp)Nlai, aut1) # 0 < (domg)N]ar, cuy1) #
@. Not so in A6.
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v1 NG = voN G, and there is an order isomorphism from v; onto v, carrying

u; to ug, then for any v we have (v,v1) € D(u,v1) iff (v,v2) € D(ug,vz).

An admissible ideal G’ (of P, ) is said to meet the (a, §)-density system D
for G if vy > o, G’ D G and for each u € Py(7) there is v € Py(y) containing u
such that G’ meets D(u,v).

A3 THE GENERICITY GAME. Given a standard A*-uniform partial order P, the
genericity game for P is a game of length At played by Guelfs and Ghibellines,
with Guelfs moving first. The stages of the game are a < A such that 8 < a =
B < a (see below). The Ghibellines build an increasing sequence of admissible
ideals meeting density systems set by the Guelfs. Consider stage a. If o is a
successor, we write a~ for the predecessor of a; if « is a limit, we let = = a. Now
at stage o for every 8 < o an admissible ideal G in some Ppg is given, and one
can check that there is a unique admissible ideal G- in P,- containing <o GB'
(remember A 1(5)) or [Lemma 1.3, ShHL 162]. The Guelfs now supply at most
A density systems D; over G,- for (a, 3;) and also fix an element g, in P/G,-.
Let o' be minimal such that g, € P, and o' > sup B;. The Ghibellines then
build an admissible ideal G, for P, containing G- as well as g,, and meeting
all specified density systems, or forfeit the match; they let G, = G4 Na’ when
a < a” < o’. The main result is that the Ghibellines can win (i.e. not forfeit at
any stage) with a little combinatorial help in predicting their opponents’ plans,
see A4 below.

For notational simplicity, we assume that Gs is an Nj-generic ideal on
App|é, when cfé = Ry, which is true on a club in any case.

A4 DIy. The combinatorial principle DI states that there are subsets @, of
the power set of a for @ < A such that |{@Q,| < A, and for any A C A the set
{a: ANa € Q,} is stationary. This follows from ¢ or inaccessibility, obviously,
and Kunen showed that for successors, D] and ¢ are equivalent. In addition DI,

implies A< = \.
A5 A GENERAL PRINCIPLE.

THEOREM: Assuming DIy, the Ghibellines can win any standard At*-uniform
P-game.

This is Theorem 1.9 of [ShHL 162].
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A6 UNIFORM PARTIAL ORDERS REVISITED. We introduce a second formalism
that fits the setups encountered in practice more closely. In our second version
we write “quasiuniform” rather than “uniform” throughout as the axioms have
been weakened slightly.

With the cardinal A fixed, a partially ordered set (P, <) is said to be stan-
dard A\t -quasiuniform if P C Ax Py(AT) has the following properties (if p = (a, u)
we write domp for u, and we write Pg for {p € P: domp C §}):

1. If p < q then domp C domg.

2'. For all p € P and a < At there exists a ¢ € P with ¢ < p and domgq =
domp N «; furthermore, there is a unique maximal such ¢, for which we
write ¢ = pla and then we write g <gnq p-

3. (Indiscernibility) If p = (a,v) € P and h : v —» v C At is an order-
isomorphism onto v’ then (a,v') € P. We write h[p] = (a, h[v]). Moreover,
if g < p then hlg] < A[p].

4'. (Amalgamation) For every p,q € P and a < A\*, if pla < ¢, cf(a) = X and
domg C a, then there exists » € P so that p,q <r.

5. If (p;)i<s is an increasing sequence of length less than A, then it has an
upper bound gq.

6'. If (pi)i<s is an increasing sequence of length less than A of members of
Pg41, with 8 < At and if ¢ € Py satisfies p;[8 < ¢ for all i < §, then
{pi: i < 6} U {q} has an upper bound r in P with ¢ = r[8.

7. I (8:)ics is a strictly increasing sequence of length less than A, with each
B; < A*, and g € P, p; € Pg,, with ¢[8; < p;, then {p;: i < 6} U {¢} has an
upper bound r with p; = r[3; for all j < é.

8'. Suppose 61,62 are limit ordinals less than A, and (8;)i<¢ is a strictly in-
creasing continuous sequence of ordinals less than A*. Let I(§,6;) :=
(61 +1) x (82 + 1) ~{(61,62)}. Suppose that for (3,5) € I(61,62) we have
pij € P[B; such that

i <1 = pi; <py;
J <3 = pij <pij 1B

Then {p;;: (i,5) € I(81,82)} has an upper bound r in P with r[5; = ps, ;
for all j < é5.

These axioms apply in the case of the partial order App by 1.9.
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A7 REMARK. We can weaken the end extension requirements in the conclusions

of these axioms but this does not seem useful.

A8 DENSITY SYSTEMS REVISITED. Let P be a standard A*-quasiuniform par-
tial order. A subset G of P, is a quasiadmissible ideal (of P,,) if it is closed down-
ward and is A-directed (i.e. has upper bounds for all small subsets) and for every
P € Py > G some ¢q € G is incompatible with p (in P, ). For G a quasiadmissible
ideal in Pq, P/G denotes the restriction of P to {p € P: pla € G}. If (G,: a < B)
is increasing, G, quasiaddmessble ideal of P, then P/(J, . g Ga = {p:pla € G,
for a < B}

If @ = (G4: 7 < a) is an increasing sequence, G, is a quasi-admissible ideal
in P, and a < 8 < A1, then an (o, B)-density system for G is a function D from
sets u in Py(A1) into subsets of P with the following properties:

(i) D(u) is an upward-closed dense subset of P/ . ., G+;

(ii) For pairs (u3,v1) and (ug, v2) with ug, us in the domain of D, and v1, v, €
Py(At) with u; C v, up Cwg, ifus NB=usnNBand vy NG =wvy,N G, and
there is an order isomorphism from v; onto v carrying u, to ug, then for
any v we have (v,v1) € D(u1) iff (7,vs2) € D(uz).

For v > a, a quasiadmissible ideal G’ of P, is said to meet the (a, §)-
density system D for G if (G' D U, <o G+ and) for each u € Py(7) G’ meets
D(u).

A9 THE GENERICITY GAME REVISITED. Given a standard At-quasiuniform
partial order P, the genericity game for P is a game of length A™ played by Guelfs
and Ghibellines, with Guelfs moving first. The Ghibellines build an increasing
sequence of quasi admissible ideals meeting density systems set by the Guelfs.
Consider stage a. Now at stage o for every 8 < a an admissible ideal G in Pg
is given. The Guelfs now supply at most A density systems D; over Uz, Gs
for (a, ;) and also fix an element g, in P/Us , G5 Let & be minimal such
that g, € Po and o’ > sup ;. The Ghibellines then build an admissible ideal
G for Py containing J s<a G as well as g,, and meeting all specified density
systems, or forfeit the match; they let Go» = G4 Na” when a < o’ < o'. The
main result is that the Ghibellines can win with a little combinatorial help in

predicting their opponents’ plans.

A10 THEOREM. Assuming DIy, the Ghibellines can win any standard \*-

uniform P-game.
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A1l CrLAamM. For proving A10, (for a given A) it is enough:

(1) to prove it for a framework as in A6 reduced to closed u € P,(A1) and 8’s

in Wy =: {6 < AT: cf(6) = A} (we call this the closed A*-quasi uniform
setting). (We call u C A% closed if 0 € u and [6 = sup(u N §)& § is a limit
ordinal = 6 € u]. We define the closure of u, cl(u) naturally.

(2) to prove it when the following stronger version (i.e. with stronger require-

ments) holds. Let W = {a < A*: -[Rg < cf(R) < A]}.
A partially ordered set (P, <) is said to be standard \*-semiuniform if

P CAx{wuC A Ju < A, uis closed} has the following properties (if
p = (a,u) we write domp for u, and we write Pg for {p € P: domp C 3}):

17,
2",

4",

5.

6".

7.

8,

If p < ¢ then domp C domg.
For all p € P and a € W there exists a ¢ € P with ¢ < p and domgq =
domp N a; furthermore, there is a unique maximal such ¢, for which we

write ¢ = pJa and then we write ¢ <cngq .

. (Indiscernibility) If p = (o,v) € P and h : v — v/ C At is an order-

isomorphism onto v’ and v’ is closed then (a,v') € P. We write hlp] =
(a, h[v]). Moreover, if ¢ < p then h[g] < h[p].

(Amalgamation) For every p,q € P and a < A%, if pla < ¢, a € Wy
and domg C a, then there exists r € P so that p,q < r and Domr =
(Domp) U (Domg).

If (p;)i<s is an increasing sequence of length less than A, then it has an
upper bound ¢ and Dom(g) = cl(|J; s Dom p;).

If (pi)ics is an increasing sequence of length less than A of members of
Psy1, with 8 € W’y and if ¢ € P satisfies p;[3 < ¢ for all ¢ < 6, then
{p: : 1 < 8} U {q} has an upper bound r in P with ¢ = r]38 and Dom(r) =
cl[(Domgq) UJ; s Domp;].

If (B;)i<s is a strictly increasing sequence of length less than ), with each
B; € Wy, and g € P, p; € Pg,, with ¢[5; < p;, then {p;: i < §}U{q} has an
upper bound r with all p; = r[8; and Domr = cl[Domgq U | J; s Dom(p;)].
Suppose 81, 8, are limit ordinals from W, and (8;)i<¢ is a strictly increasing
sequence of ordinals from Wy. Let I(61,62) := (61 +1)x (62+1) ~{(61,62)}-
Suppose that for (¢, j) € I(é1,62) we have p;; € P[B; such that

1 <i = pi; < pirj

7 < i = pij < pijelBys
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Then {pi;: (4,j) € I(61,62)} has an upper bound r in P with r8; = ps, ;
for all j < 6, and Dom(r) = cl(U{Dom(p; ;: (4,7) € Is, s, })-

These axioms apply in the case of the partial order App by 1.9.

In the paralel of A8 (density system) we use only closed u and also the
game is defined as in A4 and we define admissible ideals of P, (for a € WY).

Proof:

(1) Easy, as this framework includes more cases.

(2) We are give a framework as in A1 and we shall “translate” to a new one. Of
course instead P C AT x Py (A1) we can use P C A x P(AY) for any set A
of cardinality A. Let A = {(a,(,?): & < A and ¥ has the form (v.: € < (),
¢ < A not limit and v. is a subset of A of cardinality < A} (possibly
empty). For z = (a,(,7) € A and u C A% closed of order type ¢, we let
ultl = My +ityeuic Votp (ynu) }- Let P’ = {(z,u): z = (0, (,7) € A,
u C At has order type ¢, u is closed and (a, ul®) € P},

We define a function from P’ onto P:

f(z,u) = (0, u®l) when z=(a,(,7)€ A

We define the partial order < on P’ such that f is an isomorphism i.e.:
p < qiff f(p) < f(g). We now show that P’ satisfies (1)"—(8)".

It is straightforward to check (1)”, (2)”, (3)".

For (4)” the point in that if for p, ¢, & are as there, we know that f(p), f(q)
has a common upper bound, 7. By the indiscernibility condition w.l.o.g, if o €
Domr, letting 6 < a < § + A, § divisible by A, we have § € ¢l(Dom f(p)) or
8 € cl(Dom f(q)) (remember D € (Domp) N (domg) a by the definition of a
closed set). So we can find 7, f(¥) = r, with the right domain. [ PRI

A12 Notation: From now we will work toward proving Al0, in the content
A11(2), this suffices concentrating on A > Ry.
(1) For sets a, b of ordinals, let OF, ; be the function: OP, y(a) = B iff a € a,
B € b and otp(a N a) = otp(bN B) so dom (OP, ) is an initial segment of
a, rang(OP, ;) is an initial segment of b, and in at least one case we have
equality.
(2) @ is a A-representation of A if @ = (a;: i < A) is increasing contintuous,
a; CA=U;on a5 lail <A
(3) p is a candidate for P, (or a-candidate) if = (pi:¢ < A) andi < j< A=
pi < pj € Po.
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(4) If oy € ag, 7' an a;-candidate then §* < 52 means A;< Vi pi < p]2- [oeq.

(5) p represents G, (for a) if p is a candidate for P, and G, = {q € Ps: Vica
g < p1} and we write G, = G,[p]. Let p! =~ p° iff G, [p*] = Ga,[P?] and
a1 = ay. See A13(2).

(6) p' = p* iff Aicigpr Vjcigpr i < P5 and Aicigpe Vjcigpt 7 < pj (so & is an
equivalence relation).

(Y If p = (pi: © < t*), p; € P, h a partial funcion from A* to A* then:
h(p) = (h(pi): i < i%).

(8) Let S be a family of A+ subsets of A, [S1,S2 € S = |[S1N S| <A & A=
sup S1] and g (when A > Rg) for S € S (see A13(4)).

A13 CramM:

(1) If a < M\*, G, an addimissible ideal of P,, (or is just a A-directed subset
of P, ), then for some candidate p for P,, p represents G, (for a).

(2) Ifa < A*, and p*, p? are candidates for P, both representing one G then
p* =~ p?, if in addition X is uncountable then {6 < \: p* 6 = p?|6} is a club
of A.

(3) In A12(6) if G[p"] is addmissible for P,, then A; V; p} < p? suffices.

(4) If O holds (or A = Ny) then S exists.

Al4 CrLamM: Assume S C X is stationary, { and 8 < AT then we can find
p = (s, Ss,P5: 6 € S) such that:

(@) () <A
(i) Ps = (psi: i < 6)
(iii) ps; € P
(iv) Domps; C BU[B, B + 7s)
(V) i <J = pei < ps,
(vi) (U;csdom (ps;:): 6 € S) is increasing continuous
(vil) ss C[B,8+s)
(B) ify € S, p = (pi: i < A generates an addmissible ideal of P,, and
(@it i < A) is a A-representation of v then {§ € S: v5 = otp(as) and
Ni<sOPpuag puip,8++s)(Pi) = Ps,i} is a stationary subset of \.
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A15 Definition: We say ¢ is an explicit 3-commitement if:

() B< AT

(B) ¢ consists of 5, v, p" = (7%, s§, D5: 6 € S¢) and
q° = (q5: 6 € 5°)  of course p; = (ps;: i < 6)

(7) p°is as in Al4

(8) for 6 € S,q5 € P,Domqs C BU[B, B+ 7s)
and qj is an upper bound of {pg;: i < &}

A16 Definition: Let ¢ be an explicit S-commitment, 3 < o € W}, and § a
candidate for P,, @ = (a;: i < A), a; 2 U{Domp;: j < t} @ is a representation of
«. We say p satisfies ¢ if: for some club E of A, for every 6 € SN E for some
v < 7§ we have

(1) OPpu(p,6++5),8uas (P5) ~ (Piz i < 6) = OPpup,6+~5),8uas (45) = Ps

(ii) for every 7' € [8,7) we have: Rg < cf(v') < A & OPsyipiq:),puas (V) €

5

A17 CramM: For S € S there is an expticit of commitement ¢ = ¢[S]| with
S¢ = S, such that: if « < A, § a candidate for P,, p satisfies ¢ then G,[p] is an
addmissible ideal of P,,.

A18 Notation: T denotes a function with domain a subset of S of cardinality
< A, each I'(S) an explicit S-commitement for some 8 < a, ST(5) = S, one of
them is the one from A17 above. We say p (an a-candidate for some o € WY)
satisfies I if it satisfies every I'(S) for S € DomT.

A19 CLamM: Assume a < o are from WY,
(1) Ifpis an a-candidate satisfying I’ then there is an o’ -candidate p’ satisfying
T withp < 7.
(2) Moreover if r € Py, 1 [ a € G, [p] then we can demand r € G [p].

A20 CLamM: Assume § < AT, Ro < k= f(6) < A\, w C 6§ = sup(w), (p*: a € w)
is such that each p* is an a-candidate, [a! < a® € w = < 13"2], (Cy: a € w)
is increasing, p* satisfies P, (for o € w) then
(1) there is a 6-candidate p satisfying | J,¢,, [a, Such that Apewp™ < .
(2) if 6 < o < AY, p € Pa, AyewP | @ € G[p*] then we can find an o-
candidate p satisfying |J .., T'« such that A 5% <P and p € G[p].

atw
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A21 CrAaIM: As in A20, when cf(8) = A

A22 CLamM: (1) Assume « € WY, p an a-candidate, G, = G,[p] is an admissible
ideal of P,. For any («, 3)-density system D over G, and S € S there is a 3-
explicit -commitement ¢ satisfied by Gg with S° = S, such that:

ifo <8, p <P are o'-candidate such that G, = G,[p] is an addmissible
ideal on P, and P’ satisfies ¢ then G [p'] meets D.

(2) We can replace in (1) G, by (Go: &' € anNWY), G, increasing with «

A23 Proof of Theorem A10 when ) holds: The Ghibellines in addition to
choosing for a € Wy an addmissible ideal G, (increasing with «), choose on the
side 'y, increasing with «, such that G, satisfies I',. The previous claims do the
job.
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