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The known results about S,-completeness, P,-compactness, ordinal omitting etc. are given a 

unified treatment, which yields many new examples. It is shown that the unifying theorem is 

best possible in several ways, assuming V=L.. 

Iutroduction 

The generalizations of results from the theory of countable admissible sets and 
from definability theory for countable structures to certain uncountable sets or 
structures has been the subject of several works by Barwise, Chang-Moschsvakis, 
Green, Karp, Makkai, Nyberg, Grant and perhaps others. (Recently, while this 
paper was being written we have received a work in the same direction by S. 
Friedman.) 

The common feature of all these generalizations, which are of concrete nature, 
was that the relevant set or structures, while not countable, can be still rep- 
resented as a countable union of ‘small’ sets. Making this observation explicit we 
provide in this paper a unified treatment that contains the concrete results of all 
these authors on 2,-completeness, s,-compactness, non-definability of well- 
orderings, inductive definability of fli-relations, ordinal pinning by statements of 
L, etc. By ‘concrete results’ we mean results providing set-theoretic conditions 
on a set or a structure, that imply some definability property, as opposed to 
abstract results, asserting that one definability property implies another, e.g., that 
ZIt-reflection implies &-compactness, or that if M is a uniform Kleene structure, 
then any admissible set above A4, projectible into M is Z,-compact. 

In addition to all these results, we establish ordinal omitting theorems or in 
general type omitting theorems (for LK,++ for instance) and via such theorems 
generalize H. Friedman’s theorem [8] on the existence of models (e.g., of set 
theory) whose standard part has an ordinal CY, where (Y is any given countable 
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admissible ordinal. As an application we find (assuming V = L) a necessary and 

sufficient condition for ordinals K <a < K+ where cf (K) = o, to be of the form 

a(X) -the minimal X-admissible ordinal where Xc K. The problem of doing it 

was raised by Nyberg [22], who obtained some special cases. (S. Friedman in 

[9, lo] solved this problem independently of us. [22] influenced much of our 

earlier work on the subject of this paper.) Most of these results are included in the 

first part of this paper. In the second and third parts we verify that our results are 

in some sense the best possible. For instance, if one defines h(A) for an 

admissible set A to be the minimal ordinal not pinned down by a sentence of 

L,, fl A, then if one assumes V = L, then h(L,) = a iff this is guaranteed by the 

decomposability conditions in the first part of the paper, which imply h(A) = 

o(A). Similarly La is validity admissible iff it is guaranteed to be such by our 

decomposability condition.’ Also we provide characterization of the limit ordinals 

(Y such that L, has the Kleene property, i.e., every #-relation on L, is 

inductively definable. These results use the fine structure of V = L. 

Trying to get a similar result for &-compactness stumbles on the fact that if K 

is a regular cardinal {LY 1 a <K, L, is z,-compact} contains a closed unbounded 

subset of K. (See [l, VIII, 8.31 and [25]), hence one can find many La's which do 

not satisfy the decomposability conditions but which are .&-compact. The fact 

that one has such (Y’S seems to be completely accidental and if one strengthens the 

notion of C,-compactness to stable &-compactness, then L, is stably &-compact 

if and only if it satisfies the right decomposability conditions. The proof of this 

fact is the content of the third part of the paper.2 

PART I 

1. Preliminaries 

We work in ZFC with a class UR of elements. For applications it is often best 

to assume that every set has a one to one mapping into UR, hence UR is a proper 

class. Capital letters range only over sets (occasionally classes), not over urele- 

ments. 9(X) is the power set of X, 

X’=Cf]f:Y+X}, 

’ It is not the case, however, that L, is validity admissible iff h(L,) = 01, for all admissible ordinals cy. 
This is because h(A)=o(A) is guaranteed by having some admissible structure (A, t, R) on A 
satisfying our conditions, whereas being validity-admissible is not inherited from (A, E , R) to (A, E). 
See Part II for the details. 

’ The results of this paper were announced in the three abstracts [19]. As mentioned there the 
essential results of Parts I and II were already presented to an R-group meeting in Be’er Sheva in 
March 1978. The abstracts [19] are marred by two technical errors, corrected below in footnote 3. 
These were generated in later attempts to shorten the definitions and statements. 
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Countably decomposable admissible sets 289 

Tc(X) is the transitive closure of X, and for B E UR, 

H(K)EJ = {x 1 IWxHl < K and Tc({x}) n UR E B}, 

H(K) = H(K)+, K, h, p denote infinite cardinals. 
In admissible set theory we mainly follow the terminology and notation of 

Barwise’s book [l]. However by a transitive structure we mean a single-sorted 
structure 

&=(A, E nA*,URnA,S,, . . . ,S,) 

((A, E, S) for short), where A is a transitive set and each Si is a relation or 
operation on A. 1 is amenable if Si tl a EA for every a E A. An admissible 
structure is a transitive structure & = (A, E , S) satisfying the axioms of KPU for 
its language. An admissible set is a set A such that (A, E) (i.e., 
(A, E fl A’, UR n A)) is an admissible structure. Z,,(d) is the set of relations on 
A definable over d by a &(&)-formula (possibly including parameters from A). 
Sometimes consider more general &,(A)-formulas which may contain, besides 
parameters from A and individual free variables, also free relation ‘variables’ (in 
addition to the relation constants Si, denoting the relations Si of Sa). Such a 
formula in which the free relation variables Ti, . . . , T[ occur only positively is 
typically denoted by @ = @(x1,. . . , q,, T:, . . . , T;) = @(x, T+). Similar conven- 
tions apply to II,-formulas, IIt- or strict #-formulas etc. 

By an I-r.e. relation, where .& is an admissible structure, we mean a Z,(.& 
relation. An d-partial-recursive function is a partial function from A” into A (for 
some IZ <w) whose graph is an d-r.e. relation. The identification of r.e. with .YZi 
stipulated here is not meant as a claim that Z1 is the ‘correct generalization’ of 
r.e.; it is made simply because ,Z,-relations on SB are in the center of our interest 
in this paper. 

Denote by LV the class of all logically valid %‘_,-sentences. An admissible 
structure & is validity admissible if A nLV is .4-r.e. [l, VII 1.71. .~4 is Zi-complete 
when for every d-r.e. theory T, Cn(T) nA is d-r.e. (A theory is a set of 
Z’_,-sentences and Cn(T) is the class of logical consequences of T in I_,). d is 
x1-compact when for every d-r.e. theory T, if T has no model, then some Tog T, 
TO E A has no model. 4 is uniformly Cl-complete when there exists a C,(.&)- 
formula @(x, T+) such that for every d-r.e. theory T, Cn(T) nA = 
{a E A ) .&k@[a, T]}. (This definition differs from definition 1.1(6) of [22], but is 
equivalent to it.) As Nyberg proves [22,1.2] the following three conditions are equiv- 
alent for an admissible structure ~4: 

(1) & is validity-admissible and Ci-compact. 
(2) d is uniformly Z1-complete. 
(3) d is Zi-complete and Zi-compact. 

Denote by h(A) the least ordinal that cannot be pinned down by an Z_nA 
sentence and by h,(d) the least ordinal that cannot be pinned down by an d-r.e. 
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theory [I, VII, 3 and VII, 61. h, is the least ordinal that cannot be pinned down 

by a sentence of p-logic. By /3-logic we understand first-order logic, with distin- 

guished constants cy (y <p) and a distinguished relation symbol < , but attention 

is restricted to ‘/3-models’, i.e., models in which < linearly orders its field and the 

sentence 

is satisfied for each y =G /3. (For p = w this is essentially the familiar o-logic and h, 

is the first non-recursive ordinal.) 

For any object a we denote by HYP(a) the least admissible set containing a as 

an element. In particular, if JU = (M, E, S,, . . . , Sk) is a transitive structure, then 

HYP(.M) = HYP({M, S1, . . . , Sk}). Every structure (M, S1, . . . , Sk) where M G UR 

can be identified with the transitive structure 

and so the operation HYP applies to arbitrary structures (of finite signature) 

based on urelements. Note that for us HYP(_M) (or generally HYP(a)) is simply 

an admissible set, not a structure. Let a(a) = o(HYP(a)) = min{o(A) ) A is admis- 

sible and a E A}. In particular, if a = p (an ordinal), then by these definitions a(p) 

is the next admissible ordinal and HYP(B) = L,,,,. An admissible set of the form 

HYP(.M) is called a successor admissible set. 

Recall (from [l, VI, 03-41) that if JX is a transitive structure having an inductive 

pairing function (this is true in particular if M is closed under pairs), then 

HYP(Jl) is projectible into M and a relation R on M is inductive on .M iff R is C, 

over HYP(&). Still assuming that .M has an inductive pairing function, it is 

implicit in [22] and not hard to prove directly that (l)e(2)e(3); (4)e(5)e(6) 

and (3) j (4) where 

(1) Every fl:-relation on .M is inductive; 

(2) A = HYP(.M) is validity-admissible; 

(3) A = HYP(.M) is Z,-complete; 

(4) A = HYP(&) is &-compact; 

(5) h(A) = o(A) where A = HYP(Ju); 

(6) h,(A) = o(A) where A = HYP(.&). 

In fact (2)e(3)e(4)e(5)e(6) for every successor admissible set A. [Hint: 

(3)+(4) because A is resolvable [22, 1, 41, (4)e(6) by [l, VIII, 6.51, (2)e(3) 

and (5)e(6) because the class of models of an A-r.e. theory can be represented 

by a class of relativized reducts of models of a single JZ_,nA sentence. (2)+(l) 

is easy and (l)+(3) occurs in the proof of [22, 2.91.1 

Following Nyberg, we call a transitive structure Ju with an inductive pairing 

function satisfying (1) a Kleene structure. 
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2. Decomposability conditions and the main completeness and compactness 

results 

In the sequel, d is always an admissible structure with domain A. Following the 

observations made in the introduction, we formulate a ‘decomposability condi- 

tion’ for admissible structures meaning intuitively that every member of the set is a 

countable union of ‘small sets’ and that this decomposition is in some sense 

recognizable in the admissible structure. 

Our main theorem which will be stated in this section claims that an admissible 

structure satisfying the decomposability condition has all the nice properties one 

associates with countable admissible sets, i.e., C,-completeness, .Z,-compactness, 

theorems about ordinal pinning and ordinal omitting, etc. 

We first have to define what we mean by small sets. 

Definition 2.1. Let S E A-UR, i.e., S is a set of sets and S c A. S is a smallness 

predicate for & if 

(a) S is d-r.e. 

(b) XES+~‘(X)E.& 

(c) The relation {(x, 9(x)) ( x E S} is &r.e. 

Dethition 2.2. ~4 has the first decomposition property (DPl) if for some smallness 

predicate S for & every member of d is a countable union of members of S. 

Note that we are not assuming that the decomposition of x E A into a countable 

union of members of S is in d or even definable there. 

In Section 4 we shall show that if .& has (DPl), then one can assume that the 

smallness predicate is of the form (for some K So(d)) 

S(X)++@fgA) (%I <K) (f maps X into CYA\~ is one to one). 

(Hence the smallness predicate can be assumed to mean “X has small I- 

cardinality”.) 

The next condition claims that in some sense we know at least a trace of the 

decomposition of a general XE A into a countable union of sets whose power set 

is in A. 

Definition 2.3. A relation R G (A-UR)2 is a decomposition relation for d if 

(a) R is d-r.e. 

(b) VX 3Y R(X, Y). 
(c) For every X and Y such that R(X, Y), X is a countable union of members 

of Y whose (real) power set is a subset of Y. In symbols: X = lJ ,,+,, X,, for some 

sequence of sets X, satisfying 9(X,) E Y for all n. 

(Note again that we are not assuming that the representation of X as countable 

union of members of Y is in A.) 
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De&&ion 2.4. (a) The admissible structure I is said to have the second decom- 
position property (DP2) if it has a decomposition relation. 

(b) A is said to have the decomposition property (DP) if it has (DPI) and 
(DP2). 

Note. It will follow from the results in Section 3 that if A contains an element 
with maximal (real) cardinality, then (DP2) + (DPl) but one can find an example 
of an admissible structure satisfying (DP2) but not (DPl). 

Definition 2.5. d is said to be countably decomposable if it has the decomposition 
property and A is a countable union of members of A. 

Our main results can be stated for d having the decomposition property3, 
provided we restrict our attention to theories T such that T is a countable union 
of members of A. (Call such theories a-small.) Of course if d is countably 
decomposable, then every T GA is u-small over A. 

Theorem 2.1. Let .& have the decomposition property and let T c 22?_ rl A be 
o-small and d-r.e. Then 

(a) Cn(T) nA is d-r.e. 
(b) If T has no model, then some TO c T, To E A has no model. 
(c) The least ordinal not pinned down by T is a member of A. 

Corollary 2.2. If d has the DP, then d is validity admissible and h(A) = o(A). lf 
.s4 is countably decomposable, then d is Z,-complete and Z,-compact and h,(d) = 

o(A). 

(The implication 2.1=$2.2 is easy.) 
We shall prove 2.1 and related results in Section 5. The rest of this section 

contains examples of admissible structures which have the DP. These examples 
show that the known concrete completeness and compactness theorems are 
special cases of 2.1 or 2.2. Note that if d has DP, then every admissible expansion 
of & does. In particular if an admissible set A (i.e., the structure (A, E)) satisfies 
our condition, then so does every admissible structure with universe A. 

Example 2.3. If A c_ (KJanuR (i.e., every member of A is countable), then A has 
the decomposition property. Define S by 

S(X) e X is a singleton. 

(Hence DPl). Define R by 

(X, Y>ER~YY{{a}IaEX}U{PJ}. 

3 Our present definition of the decomposition property is a correction of the version announced in 
[19], where (DPl) was omitted because we had an (erroneous) proof that (DP2)J(DPl) always. 
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It can be easily verified that R is a decomposition relation for A. Thus d has the 

DP. If, moreover, 1 is countable, then d is countably decomposable. Thus 

Theorems 2.1 and 2.2 yield the well-known Barwise compactness and complete- 

ness theorems. 

Example 2.4. Suppose that .JQ is closed under 9 -the power set operation (i.e., 

XEA-UR+~(X)EA), and let &==((A, E,. . .) be an admissible structure such 

that 9 1 A is JQ-partial-recursive. Then .& has the decomposition property, since 

one can take S to be all the sets which are member of A (S = A - UR) and define 

R by (X, Y) E R e Y = 9(X). Thus we get from 2.1 and 2.2 the Barwise-Karp 

cofinality-w compactness theorem [l, VII, 7.41 and an associated completeness 

theorem. 

To simplify the statement of the following examples we define a cardinality- 
maximal (c-max) element of a set A to be an element D of A such that every set 

in A is an A-image of D. (For X, YE A we say that Y is an A-image of X when 

there exists a function f~ A from a subset of X onto Y.) 

Lemma 2.5. Let D be a c-max element of the admissible set A. Suppose that 

(VXE D) (9(X) c_ D) and that D = lJ,<, D,, where D, E D for each n. Then A has 

the DP. 

Proof. To verify (DPl) define 

S = {X E A 1 X is an A-image of some member of D}. 

The assumption that XE Dj9(X) E D guarantee that this is a smallness 

predicate for A (i.e., for (A, E)). Since every XEA is an A-image of D = 

U ,,<,, D,, X is a countable union of sets in S. 

To verify (DP2) define R c A2 by 

(X, Y)E RH((3f ~A)[(f:dom(f)zX) 

Adom(f)zDAY=Cf”Wl WEDAWGD}]. 

R is clearly A-r.e. For every XE A there exists YE A such that R(X, Y). (D is 

c-max hence X=f”B for some ~EA,BED, hence Y=cf”WI WED, WGD} 
satisfies R(X, Y).) 

Since D = IJ n D, and D,, E D, 9(D,,) E D we get that if (X, Y) E R, then X is a 

countable union of members of Y, whose power set is included in Y. Cl 

Lemma 2.6. Let D E A satisfy (VXE D) (P(X) ED) and let D = U,<, D,, where 
D,, ED. If A is projectible into D, then A is countably decomposable. (See [l, V, 

5.11 for definition of projectible.) 
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Proof. Let 7~ be a notation system for A such that 0, ED where 0, = 

U aaA ~(a). If XEA and Y = Uacxrr(a), then YG D and f: Y%X, given by 

f(Y) = IY I=? is a member of A, since r is A-recursive. Thus D is a c-max element 
of A, so by Lemma 2.5 A has DP. 

A is a countable union of its members since if D,, are the sets described in 
Lemma 2.5 one can define E,, = D,, r\D,. For each n E,, E A (since 9(D,,) c A). 

Hence A,, ={IY\~ ) y E E,,}EA, by z,-replacement. But A = U,<,A, because 
each a E A has a notation in E,, for some n. 0 

We now continue with our examples of structures having DP and countably 
decomposable structures. 

Example 2.7. Let K be a strong limit cardinal of cofinality w and D = H(K). Let 

A be an admissible set such that D E A and D is a c-max element of A. Clearly D 

satisfies Lemma 2.5 for A. Hence A has DP. In particular if A = Hi for any 
set B c UR, we obtain that H(K+& is validity-admissible. This is an abstract 
version of Karp’s completeness theorem for I,,+,-[16]) and we obtain also that 
the well-ordering number for single sentences of L,+, is K+. The conditions D E A 

and D is c-max in A also hold whenever (A, E) is a transitive elementary 
submodel of (H(K+&, E ) as well as when A = HYP(D), or more generally, when 
D E A and A is projectible into D. (In the latter case A is countably decomposa- 
ble, hence it is zC1-compact, by Lemma 2.6.) 

Example 2.8. Let D be a set representable in the form D = U,+,, D,,, where for 
each n D, is transitive and B(D,,)s Dn+l. Clearly Lemmas 2.5 and 2.6 are 
applicable to D. Typical examples are D = H(K) where K is a strong limit cardinal 
of cofinality w, or D = V, where cf(a) = w. By Lemma 2.5 if D is a c-max element 
of A (and A is admissible), then A has the DP. By Lemma 2.6 and our main 
theorems (2.1 and 2.2) if DE A and A is admissible and projectible into D, then 
A is z,-complete, &-compact and &(A) = o(A). This example covers all the 
major concrete applications of the main result (Corollary 2.10) of [22]. 

Example 2.9. Let A be an admissible set containing a c-max element B. Assume 
that B = lJ,<w B, for some sequence (B, ) n < W)E A (hence w E A), and that 
U,+,,8(B,) E C for some CE A (hence lJ,<,,, @B,)eA). Then A has the DP. 
Indeed (DPl) holds for 

S={XEA IX is an image of B, for some n<w}, 

and (DP2) holds for 

R = {(Y, 2) E A*) (3f~ A) cf is a function from a subset of I3 onto Y 

andZ=wWI WEC}}, 

as the reader can verify. This example gives Makkai’s compactness theorem [17, 
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5.21, which generalizes that of Green [ 111. Green’s theorem is also a special case 
of Example 2.8, as shown in [22]. Note that our result here slightly improves 
Makkai’s in requiring only @CE A) (l-l,<, g(B,) E C) rather than @CE A) 

(U n<o Bmm E C). A more useful improvement would be to discard the hypothesis 
that (B, ( n <O)E A, and this is done in the next example. 

Example 2.10. Assume that A is admissible, B is a c-max element of A, 

B = u?Z<6J B, where U,<, 9(B,) c C for some C E A. Then A has the DP. 
(DP2) is verified precisely as in Example 2.9. The proof of (DPl) is considera- 

bly more tricky, so we refer to Section 4 where we prove that (DP2)+ (DPl) 
whenever A has an element of maximum cardinality, i.e., (AXE A) (Vy E A) 
(IX\> (Yl). This is of course the case whenever A has a c-max element, as here. 

Note that this example contains both the preceding ones as special cases. 

Example 2.11. (‘Iteration of Example 2.10’). Let k 2 1 and let (E,, . . . , Ek) be a 
sequence of sets satisfying (with the notation B = E,, A = Ek) the following: 

(1) A is admissible. 
(2) For 1 s i s k - 1, Ei is a c-max element of Ei+l. 

(3) For 1 s i s k - 1, Ei has cofinality o, i.e., it is a union of countably many of 
its members. 

(4) There exist C E A and a sequence (B, 1 n <co) such that B = U,<, B, and 

U,<, %R) c C. 
Then A has the DP. 

To see this, claim first that if 0~ i G k - 1, then there exist CE A and a 
sequence (X,, ( n CO) such that Ei = U,<, X,, and lJ,<, 9(X,) c_ C. For i = 0 this 
is (4) above. Let 1 <is k - 1 and suppose the claim true for i - 1. Thus Ei_l = 

U ,,,<,,, Y,,, where Urn<, @Y,,,)s, D for some DE A. By (2) and (3), Ei is a 
countable union of sets X,, each of which is an Ei-image of some Y,,,. Therefore 

u~4xnkk”w/ g is a function, g E Ei and WE Y,,, for some m}. 

Letting C ={g”W 1 g is a function, g E Ei and WED} it follows that 
lJ,<, 9(X,,) z C and clearly C E A. This completes the proof of the claim. 

Taking i = k - 1 in the claim we see that E,_, = U,<, X,, where lJ,<, 9(X,,) E 
C for some CE A. But E,_, is a c-max element of A, so A has the DP by 
Example 2.10. 

We shall now illustrate the application of the last few examples to more specific 
cases. For the rest of this section we assume that V = L and K is a limit cardinal of 
cofinality 0, say K = suP(~, ( n <co} where (K, 1 n <a) is a strictly increasing 
sequence of infinite cardinals. Since we are assuming V= L K is a strong limit 
cardinal and the set D = L, = H(K) is as required for Example 2.8. 
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Example 2.12. L,+ has the DP, for it contains L, as a c-max element. Similarly, if 

K < 6 <K+ is an admissible ordinal and 

L*~“K is the last cardinal”, 

then Ls has the DP, as again it has L, as a c-max element. 

Example 2.13. Let K < 6 < K+ be admissible and denote S = {y 1 K G y < 8 and y 

is a cardinal of L6} (in the previous example we had S ={K}). We claim that if 

each y E S has cofinality o (in the ‘real universe’, not in Ls) and S has a last 

element, then Ls has the DP. In case S is finite this follows from Example 2.11 

(with B = L,, A = L,, B, = L,“, C = L,, E, = Ly2, where y1 < y2< . . . are the 

members of S). For the general case we argue by induction on y E S that y can be 

represented as lJ,<, X,, for some sequence (X,, 1 n <w) such that l-l,,<, 9(X,,) s 

L, (and, in fact, IX,,l< K and sup(X,) <y for each n). For y = K take X,, = L,“, 

and the induction step is left to the reader (use the fact that if y E S, then any 

bounded subset of y which is a member of L6 is already a member of L,,, by a 

well-known theorem of Gbdel relativized to La). Applying the result to the last 

element p of S we see that Example 2.10 applies to A = L, with B = /3, C = L, 

(or with B = C = LO), so Ls has the DP. 

A special case of this example is the case where 8 is the least ordinal such that 

6 > K, L8 FZF- (=ZF without the power-set axiom) and L8 b“K is not the last 

cardinal”. By the minimality of 8, L6 has just one cardinal (call it y) greater than 

K, and each a E L8 is definable in (L,, E ) by a first-order formula using ordinals 

<K as parameters. For each n <o let 

B, = {a E Ls 1 a is definable in (L,, E ) by a &-formula with ordinals 

<K, (only) as parameters}. 

As L,bZF- and there is (in ZF-, or even in KP) a truth definition for &- 

formulas, we have B, E L8 for each n, so L6 (=U,<, B,) has cofinality o. 

Similarly, B, n y is bounded below y for each n (for y is a regular cardinal in L8) 

hence cf(y)=w. Thus Example 2.13 applies and Ls has the DP and is even 

countably decomposable (hence Ci-complete etc.). 

The following example is of a similar character. 

Example 2.14. Let 6 be the least ordinal >K such that L, kZF (assuming such an 

ordinal exists), and let C, = {y < 6 ( L, b “y is a cardinal”}. The structure (L,, E , 

C,) is admissible, as L6 1ZF. We claim that (L,, E, C,) is countably decomposa- 

ble. To see this let, for each n <w, A,, = {a E L, 1 a is definable in (L,, E ) by a 

&-formula involving only K and ordinals <K, as parameters}. Since La l=ZF and 

satisfaction for &,-formulas is definable in ZF it is clear that A,, E L, for each n 

and L8 = U,,, A,, (since by minimality of 6 every member of L8 is definable 
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from K and members of K). We define R by (X, Y) E R iff 

Y = {Z ( Z c X, Z has L,-cardinality < K}. 

R is (L,, E , C,)-r.e. (not (L,, E)-r.e.) and clearly VXgY ((X, Y) E R). X= 

lJ,<,(XnA,), and clearly if (X, Y)E R, XnA,E Y, and .9(XnA,)g Y since 

the L, cardinality of Xn A, is SK,. 

Thus we have verified that A has (DP2). (DPl) can be inferred from (DP2) by 

the above-quoted result of Section 4, or verified directly by defining 

S(X)e(X has L,-cardinalityc K). 

s is clearly L,-r.e. (in the parameter K). {(x,9(x)) 1 XES} is L,-r.e. since L, is 

closed under power set, hence for x ES 

y =B(x)eS3f% <K (f maps x into ar\f is one to one 

r\vzey (zcx)AvzEL, (ZGa+f-l(Z)Ey)). 

Thus L is countably decomposable, hence x,-complete and compact. 

The kind of considerations we applied in the last examples suggest a systematic 

approach to classification of admissible ordinals in L, with respect to completeness 

and compactness. We shall pursue such a classification in the second and the third 

part of this paper. 

Sy Friedman [lOI independently obtained compactness and completeness re- 

sults for structures of the form (L,, E) where ]CK] = K and cf(K) = o. He proved 

that if a is as above and La = lJ,<, x,, where each x, E La and L, b lx,,) < K, and if 

6 is the largest Q! cardinal, then cf(6) = o, then (Y is zI-compact with ordinal 

omitting, and (L,, E , g) is &-complete for some g such that (L,, E , g) is 

admissible. Friedman’s proof gives an alternative proof of Theorem 2.1 for 

structures of the form (L,, E , . . .) 

The ordinals studied by Friedman were exactly those studied by us, and in the 

second part of the paper, we show that (L,, E , g) is countably decomposable for 

appropriate choice of g. Hence Theorem 2.2 applies and yields the sl- 

compactness, completeness and ordinal omitting results (see Section 10). Fried- 

man proved a converse theorem; see Theorem 13.2 for more clarification on the 

relation between the present paper and Friedman’s [lo]. 

3. Sutlicient conditions for Kleene structures 

Let & = (M, E , S) be a transitive structure having an inductive pairing function. 

Recall from Section 1 that _M is a Kleene structure iff HYP(.M) is validity 

admissible. By 2.2 it suffices that HYP(JQ will have the decomposition property. 

This is always the case when M is countable. Keeping in mind that HYP(.M) is 

projectible into M, Example 2.8 shows that if M = lJ,<, M, where M,, is 
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transitive and B(M,,) E M,,.l for each n, then & is a Kleene structure. This result 
is essentially due to Chang and Moschovakis [5] and is explicitly proved in [23]. 
Example 2.10 leads to a large class of Kleene structures, described in the 
following proposition. 

Proposition 3.1. Let JU = (M, E , S) be a transitive structure having an inductive 

pairing function. Suppose that there exist sets M, (n <o) such that M = U,+,, n/r, 

and U,,, B(M,) c C for some C E HYP(&t). Then .4! is a Kleene structure. 

Proof. Use Example 2.10 with A = HYP(&), B = M. 0 

A special case of Proposition 3.1 is when M = IJ,,<_ M,, and M, G M,+l, 

9(M,) E M for each n <o. This case is stated in [22, p. 1131 but the proof seems 
to require something like the methods of this paper, unless one is willing to 
assume that the sets M,, are transitive. 

Corollary 3.2. Let M be a transitive set closed under (unordered) pairs for which 

there exists a sequence (M,, 1 n co) such that M = U,<, M,, and U,<, 9(M,,) E M. 

Then every structure of the form (M, E , S) is a Kleene structure. 

It seems likely that in this situation (M, E) is a uniform Kleen structure in 
Nyberg’s sense, but this involves checking the proofs of all the results involved for 
the required uniformity, and we have not done it. 

We can get many more examples of Kleene structures by using Example 2.11 
with A = HYP(..&) and E,_, = M. The most useful case is when k = 2 so that 
B E ME A = HYP(JQ. For this case Example 2.11 shows the following 

Proposition 3.3. Let JU = (M, E , S) be a transitive structure having an inductive 

pairing function. Assume that the set M has cojinality o and has a c-max member 

B of the form B = IJ,,, B, where lJ,<, B(B,) G C for some C E HYP(&). Then Jll 

is a Kleene structure. 0 

Corollary 3.4. Let K be a strong limit cardinal of cojinality w and let M be a 

transitive set closed under pairs such that H(K) is a c-max element of M. Then every 

structure (M, E, S) is a Kleene structure. 0 

Note that if (M, E) is a transitive elementary substructure of (H(K+), E) (or of 

(H(K+),, E) for some set W of urelements) and M has cofinality w, then 
Corollary 3.4 applies to M. This, together with [25, 4.11 proves [25, 4.2(3)] i.e., 
the IIt-compactness of almost all levels of cofinality w in any cumulative 
hierarchy of length K+ whose union is Hi for some set W of urelements. 
Actually, the work reported in this paper started from the proof of Corollary 3.4 
(for M admissible) for the purpose of getting this result on n:-compactness. 
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Corollary 3.4 was first proved directly, along the lines of [5] or [23] and later 

derived from the completeness Theorem 2.1. 

In Part II of this paper we shall get a characterization of the limit ordinals (Y for 

which (IL,, E) is a Kleene structure, assuming V = L. 

4. Overture to the Proof of Theorem 2.1 

Before we prove Theorem 2.1 (in the next two sections) we shall elaborate on 

the DP and draw an equivalent form of it which will be easier to apply. 

Both (DPl) and (DP2) state that every set is a countable union of sets zi whose 

power set is still in the admissible set A, and the power set of zi can in some sense 

be effectively found. The apparent strengthenings of (DPl) and (DP2) which we 

shall consider (but which are actually equivalent to (DPl) and (DP2) respectively) 

will state that every set in A is a countable union of sets zi, such that 9(zi x Z~)E 

A, and 9(zi x zi) can be found in some effective sense. 

Definition 4.1. 1 has the strong first decomposition property (SDPl) if there is 

an d-r.e. predicate S such that {(X, .9(X XX)) ) S(x)} is d-r.e. and such that every 

member of & is a countable union of elements satisfying S. Such S is called a 

strong smallness predicate for &. 

Definition 4.2. A strong decomposition relation for d is R E A2 such that 

(a) R is & r.e. 

(b) VX3Y R(X, Y). 
(c) For every X, Y such that R(X, Y), X can be represented as a countable 

union X = IJ,,, X,, where X,, E Y and 9(X,, XX,) G Y. d has the strong second 

decomposition property (SDP2) if it has a strong decomposition predicate. 

The main result of this section is that the seemingly stronger (SDPl) and 

(SDP2) are respectively equivalent to (DPl) and (DP2). The reader who is 

satisfied with replacing (DPl) by (SDPl) in the statement of Theorem 2.1 can skip 

this section and go directly to the Proof of Theorem 2.1 in the next section. The 

only fact from this section we shall need is Lemma 4.7 which is independent from 

any thing else proved in this section. To motivate the proofs of these two main 

facts we give first a non effective version. 

Theorem 4.1. Let (A, E) be a transitive set closed under primitive recursive set 
functions (‘prim closed’). Assume that every x E A can be written as Uito Zir such 
that B(z,) E A, then every x E A can be expressed as Ui~o Zi where 9(Zi X Zi) E A. 

Proof. If every member of A is countable, then the theorem is trivial (because 

every member of A is union of singletons and for singleton zi, clearly 9(zi X zi) E 

A). 
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It is clearly enough to prove the theorem for x’s such that B(x) E A. So let x be 

an infinite set such that 9(x) E A. We first show that we can find a large enough 

member of A, whose power set is still in A. 

Lemma 4.2. Let A be as in Theorem 4.1. If 9(x) E A and x infinite, then for some 
ZEA 

Jz~z=22”” and B(z) E A. 

Proof. Since 9(x) E A, we can find zi E A such that 9(x) = Uicw zi and 9(zi) E A. 

The cofinality of IS(X)1 is bigger than w. Hence for some zi we have lzi( = )9(x)) = 

2’“‘. Since 9(zi) E A we can repeat the argument for x replaced by zi. Repeating it 

twice we get z E A 

121 = 222”’ and 9(z) E A. 0 Lemma 4.2 

The next fact states that we can find z of large enough cardinality, so that 

9’(zxz)~A. 

Lemma 4.3. Let x and A be as in Lemma 4.2. Then there exists t E A, such that 
ItI = (2’“‘)’ and P(t x t) E A. 

Proof. Let z be an element satisfying Lemma 4.2. Since A is prim closed 

z x z E A. By assumption z x z = U,<, y, where y,, E A, 9(y,) E A. Enumerate z 

in a sequence (zy (y <Izl) let [z]’ be the set of unordered pairs of elements of z. 

Then 

[z12= u WI?%,, 
~,tl<hl 

where 

W ,,,,,, = Hz,, ~1 I Y < 6, (q, 4 E Y,,, and kg, -q) E Y,}. 

By the ErdGs-Rado partition Theorem [7] and the fact that 1z12(2”“)‘, there 

exists a subset t of z such that 

1 tl = (2’“‘)+ and [t]’ E W,,, for some fixed m, n <w. 

It follows that t x t E y,,, U y,, U t’ where t’ = {(y, y) ( y E t}. (Note t’ E A since A is 

Prim closed.) Since ME A, we have t E A. Recall that 9(y,), 9(y,), P(t’) all 

belongs to A. (The later is because we have 9(t) E A, and t’ is an A image of t. 

Again we use the fact that A is prim closed.) Clearly we get 9(t X t)E 

A. Cl Lemma 4.3 

We now conclude the proof of Theorem 4.1. So given infinite x such that 

9(x)~A. Let t satisfy Lemma 4.3 with respect to x. xX t E A, hence xX t = 

U n<w z, where 9(z,) E A. 
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Every member of t, E determines a partition of x into o many parts. Since 

(tl = (2’“‘)’ and the cardinality of such partitions is 2’“‘. We get t’z t, It’1 = (2’“‘)’ 

and every 1 E t’ determines the same partition on x, namely x = can be represented 

as a union U,<, x,, where x,, x t’ E z,. 

Since \t’l> Ix,,\, there exists a function f,, from t’ onto x,,. f,, c x,, x t’, hence 

f,, E 9(z,) E A, so we get f,, E A. Recall that (t’ x t’) E A, x,, is an A image of t’. It 

follows that 9(x,, x x,,) E A. (9(x, Xx,,) is the set {R ( for some TE@(~’ x t’): 

R = {(f,(O, f,,(m)) I (1, m) E TH.) H ence X is a countable union of sets the 

powerset of whose square is in A. q Theorem 4.1. 

We now handle (DPl). 

Theorem 4.4. (DPl) implies (SDPl). 

Proof. We begin the proof by showing that the smallness predicate S may be 

assumed to be closed under A images. 

Lemma 4.5. Let S be a smallness predicate for & and let 

S={XEA ((3f, YEA)[S(Y) and f is a function from a subset of 

Y onto Xl}, 

then !? is a smallness predicate for .d, s 2 S and s is closed under A images. 

Proof. 3 is clearly _Z1(Js) since S is. Next note that if f is a function from a subset 

of Y onto X, then B(X) = cf” W ( WE 8(Y)}. Therefore g(X)+ P(X) E A as A is 

prim closed. Also {(X,9(X) I XE s} is x,(94) since 

S(X)A~=P(X)~(~~,YJEA)[S(Y)~\~=P(Y) 

ACT is a function from a subset of Y onto X) 

AZ =vw\ WE t}]. 

This shows that s is a smallness predicate for A and the rest of Lemma 4.5 is 

obvious. Cl Lemma 4.5 

It follows from Lemma 4.1 that if & satisfies (DPl), then (DPl) is witnessed for 

d by some smallness predicate S which is closed under A images. Fix such S and 

note that every subset of a member of this S is also a member of S and that every 

XE A such that 1x1s 1, is a member of S. Let K be the least ordinal such that 

is(~). Then for (Y E A, S((Y)~JCIL <K. Clearly 1 <K so(A), and it is possible that 

K = o(A). The next lemma shows that every x E A is a countable union of sets 

which are A images of some (Y <K. 

Lemma 4.6. Every X E A is a countable union of U,<, X,, where for some a, < K 

and f,, E A, X, = RACY,, and f,, is one-to-one. 
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Proof. By Theorem 4.1 we can express X as lJ,<,X,, where 9(X,, XX,)E A. 

Without loss of generality we can assume that S(X,,). (Otherwise replace each X,, 

by a decomposition of it into countable union of members of S.) X, can be 

well-ordered by some relation R,. Since R, G X, x X,,, we have R, E A. But (A, E) 

is an admissible set. Hence for some f, E A and some ordinal (Y,, we have A !=“fn 
is an order preserving function from ((Y,, E) onto (X,,, R,)“. 

By our assumption about S being closed under A images we have S(K), 

hence (Y, < K. 0 Lemma 4.6. 

Conclusion of the Proof of Theorem 4.4. We have to produce a strong smallness 

predicate for A. We define 

S={XEA IX is an A image of some a<K} 

Note that .? = {X E A I@@ < K) (Elf E A) (f : /3+X is l-l and onto)}. Hence s is 

A-r.e. By Lemma 4.6 every member A is a countable union of members of s. 

The only claim left to be verified is that {(X, 9(XxX)) ) s(X)} is &-r.e. (This 

includes the claim that for s(X), 9(XxX> E A.) 

We show first that cy <K j.C@a X a) E A and that {((Y, 8(a X a) 1 a <K} is &-r.e. 

Note that if cy is infinite, since A is admissible, we have a bijection g : a+a x a, 

hence, using 9(a) E A we get &P(cK x LY) E A. The case (Y finite is obvious. Moreover 

CI infinite Ac_r<KAY=P(a)xa)~S3z3g(g:~~c_wxcy 

is a bijectionr\Z=B(a)r\Y=Cf”z \ ZEZ}). 

Hence we get that {(a, 9(a! X a) ) a < K} is d-r.e. (Recall that CL < K --+ S(a). Now if 

S(X) we have some a<K and g:a!%X. Define g:a-+XXX by g([,;q)= 

(g(t), g(q)). Then 9(Xx X) = {$‘t ( c ~$?‘(a x a)}. Hence 

~(x)AY=~(XxX)~~S(X)A(~~,Z,gEA) 

[CY(KAZ=~((YX(Y)Ag:a~XAY={g”tItEZ}]. 

This proves that {(X,9(X, X) 1 s(X)} is d-r.e. and s was shown to be a strong 

smallness predicate 0 Theorem 4.4. 

Our subsequent use of strong smallness predicates depends on the following 

simple observation. 

Lemma 4.7. Let S be a strong smallness predicate on A. lf S(X) holds and X is an 

infinite set, then o E A and wx E A where ux = cf ( f : X+0}. Moreover, the relation 

{(X, w”) ) S(X) and X is infinite) is d-r.e. 

Proof. If S(X) holds, then all subsets of X and all binary relations on X are in A. 

If X is infinite, it has a subset X,, and a well-ordering r of X0, the order type of 

which is o. It follows that o E A and that the unique isomorphism g :(X0, r) onto 
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(w, <) is in A. Now w”={g~f(f:X-+X,}. Since P(XXX)EA it is clear that 

X~E A, hence wx E A. 

For the moreover part note that 

S(X)/\Y=wxe[3X0,g,Z, WEA][S(X)A 

AZ=, ~XXX)AX,cxAg:& is one-to-one and onto WA 

Aw={fIfEZ,f:X~Xo}AY={g OflfEW)]. 

This relation is d-r.e. because S is a strong smallness predicate on &. 0 Lemma 

14.7 

We now wish to prove that if d has (DP2), then d satisfies (SDP2). This is not 

needed for the proof of Theorem 2.1, but will be used to show that (DP2)+ 

(DPI) whenever A contains an element of maximal cardinality. Several examples 

in Section 2 depend on this fact. 

Theorem 4.8. If & satisfies (DP2), then it satisfies (SDP2). 

Proof. The idea of the proof is to have an effective version of the proof of 

Theorem 4.1. We fix a decomposition predicate for d, R. We shall assume 

without loss of generality that 

R(X, Y)~~({a}x{a})~ Y for all UEX. 

The first lemma is a variant of Lemma 4.2 except that we handle not just one x, 

but all collection of them, provided we are given a set y containing the power set 

of all of them. 

Lemma 4.9. Let & satisfy (DP2). There exists an d-r.e. predicate T such that 
(a) VY3ZT(Y, Z). 

(b) If T( Y, Z), then for every infinite ME Y such that p(M) E Y, Z contains a 
member F whose cardinality is 222M, and 9(T) E Y. 

Proof. Define p(Z, T) -the power set of Z relative to T-by 

!?qz, T)={Y( YGZ, YET}. 

P(Z, T) is clearly &-recursive. 

Define Q(Y) = {9(Z, Y) ( Z E Y}. 

R is a decomposition relation for &. 

Define T,,(Y, Z) by 

T,(Y,Z)~VTEZ~SEQ(Y)~U 

[R(S, U)ATE U]AVSEQ(Y)~U[R(S, U)AUGZ], 

i.e. T,(Y, Z) means that Z is the union of decomposition candidate for members 

of Q(Y). 

Sh:144



304 M. Magidor, S. Shelah, J. Stavi 

Note that by properties of R and the admissibility of A, tlY 32 TO( Y, 2). Note 
also that if ME Y, M infinite and P?(M) G Y, then if T( Y, 2) holds, then for some 
U, R(@(M), U) holds, and U E Z. Hence for some X,‘s, X, E Z 9(M) = U,<, X,. 

Therefore some X,, has cardinality 21”’ and P(X,,) E UE Z. 
We can now iterate the definition of T, to get 

T(Y, Z)e3Zn Z, (T,(Y, Z,) A T,,(Z,, Z,) A T,(Z,, Z)). 

T(Y, Z) is clearly &-r.e. VY 32 T(Y, Z). If ME Y, M infinite and 8(M) C_ Y, then 
if T(Y, Z) holds (witnessed by Z, and ZJ, then in Z1 one can find M, such that 
(Ml] = 21”‘, 9(M,)cZ,, hence in Z2 one can find M2, jM21 = 2iMl’, ME Z,. 

Similarly in Z one can find M,, IM31 = 2 lM2’ 9(M,) c Z. We can take F = M3 and , 

the lemma is verified. 0 Lemma 4.9 

The next lemma corresponds to Lemma 4.3. 

Lemma 4.10. Let d satisfy (DP2). There exists an d-r.e. predicate M(X, Y) such 
that 

(a) VX 3Y M(X, Y). 

(b) lf M(X, Y) holds, then for every infinite SEX, such that 9(S) E X, Y 

contains a set U, 1 UJ = (2”‘)+, 8( U x U) E Y, PP( U) E Y. 

Proof. Let T(X, Y) be the predicate satisfying Lemma 4.9. Let M*(X, Y) be the 
predicate expressing the fact that, for some Z, T(X, Z) holds and Y contains (as 
subset) U satisfying R(S x S, U) for all SE Z. Namely 

M*(X, Y) -3Z [(T(X, Z) A Z G Y A VS E Z 

~U(R(SXS,U)AU~Y)AVSEZ{(S,S)~SES}EY]. 

M*(X, Y) is x1(d) and VX 3Y M*(X, Y). (Since VX3ZT(X, Y) and VS E 
T3UR(SxS, U)). Define M(X, Y) as expressing the fact that Y contains the 
unions of all triples of elements of some Z satisfying M*(X, Z) i.e. 

M(X, Y)++dZ(M*(X, z)Atlz,, z,, Z,EZ(Z, U.&U.&E Y). 

M is the required predicate. Clearly M is J$,(Sa) and VX 3YM(X, Y). Now 

assume that M(X, Y) holds and S E X, S infinite and B(S) c X. For some Z we get 
that M*(X, Z) holds and that the union of every triple of elements of Z is in Y. 
By definition of M”, Z contains an element V, P(V) G Z such that (VI = 222’s’ 

(recall the properties of T) and Vx V = U,<, V,, where 9(V,,) E Z. By the 
arguments of the proof of Lemma 4.3 we get that for some UE V, 1 UJ = (2”‘)’ 

and for some m, n 

uxu~v,uv,u{(U,U)~uEU}. 

It follows that every subset of Ux U is the union of three elements of Z. Hence it 
is in Y. 
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It follows that Y contains an element U, IUJ = (2”‘)’ and B(Ux U) c Y, 

9(U) C X. 0 Lemma 4.10 

Lemma 4.11. Let d satisfy (DP2). There exists an d-r.e. predicate Q(X, Y) such 

that 

(a) VX3Y Q(X, Y). 

(b) If Q(X, Y) holds, then for every infinite S E X such that 9(S) E X, 

there are l-l functions in Y, f,,, (n <CO>, such that S = lJ,<, range(f,,), 

s(Dom(f,,) x Domu,,)) E Y. 

Proof. Let M(X, Y) be the predicate satisfying Lemma 4.10. Define Q(X, Y) by 

Q(X, Y)++~Z[M(X,Z)AZG YAVUEZ 

VSEX3L (R(UXS, L)ALC Y], 

i.e. Q expresses the fact that for some Z satisfying M(X, Z), Y includes as subsets 

a decomposition witness for every UX S where UE Z, SEX (i.e. L such that 

R(UX S, L)). That Q is x,(a) and that VXElY Q(X, Y) is easy to verify. Assume 

Q(X, Y) and let SEX be infinite with 9(S) GX. Let Z witness Q(X, Y), in 

particular M(X, Z) holds. By properties of M, Z contains U, such that 9(UX U) 

c Z c Y and 1 Ul = (2”‘)‘. S’ - - mce R is a decomposition relation, and Y contains 

a decomposition witness for UX S we get UX S = U,<, V,, where P(V,,) G Y. 
Now the argument is as in the conclusion of Theorem 4.1, i.e. we get that for 

some u’s U, 1 U’I = (2’)’ and some sequence S,, (n <CO), S = U S,, and u’ x S, E 

V,. Since 1 U’[ z IS,! we get the existence of a l-l function f : U,,%S, where 

U,, c_ U’. Clearly f,, E U’ x S, c_ U,,. Hence f,, E Y. The facts S = IJ,,, range@,,), 
@Dom(f,,) x DomCf,)) c Y are obvious. 0 Lemma 4.11 

The conclusion of the proof of Theorem 4.8. We shall produce a strong decom- 

position predicate using the predicate Q(X, Y) introduced by Lemma 4.11. 

R(X, Y) will express that for some T such that R(X, T), and some Z such that 

Q(T, Z), for every function f in Z the preimage of f of a set of pairs is in Y, 

namely: 

~(X,Y)~T~Z(R(X,T)AT~YAQ(T,Z)A~~~EZVLEZ 

[f is a one-to-one function from some K to N, AL G Kx K 

-W(r), f(s)> I k s)E LIE Yl). 

R(X, T) holds we get 

X = u,<, X,, where S(X,,)c T. If X,, is finite, then we can assume IX,,1 = 1. 

By the properties of Q(T, Z), each infinite X,, can be represented as X, = 

U W3-CC.J ran&fn,,) where f,,,,, E Z and B(Dom( f,,,) X Dom(f,,,)) G Z for some 

one-to-one functions f,,,. Let range f,,, =X,,,. By definition of R, since 
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~(DomK,,)x Dom(f,,,,)) E Z we get g(X,., xx,,,,,,) E Y. Hence X = U,,, X,,, 
where X,,, E Y and S(X,,, xX ,,,) s Y which proves that R(X, Y) is a strong 
decomposition relation. 0 Theorem 4.8 

The main reason for having Theorem 4.8 is 

Proposition 4.12. If A contains an element of maximal (real) cardinality, then if 
d has (DP2) it has (DPl). 

(Note: We have an example where the proposition fails if A does not contain 
an element of maximal cardinality, see Section 16.) 

Proof. Assume that .& satisfies (DP2) and let R be a strong decomposition 
relation for d (we use Theorem 4.8) and let D be an element of A with maximal 
cardinality. 

Let B satisfy R(D, B) and pick a representation D = U,<, D,, where 
9’(D, x 0,) c B. Let ID,1 = K, and K = IDI. Clearly K = sup,+,, K,. And since D is 
of maximal cardinality 2”” = IS(D,,)l =s IDI. H ence K is a strong limit cardinal 
having cofinality w. Since P(D,, X 0,) E A it is clear that P(K,) E A. (By picking a 
well-ordering of D,, of order type Kn.) 

Define the smallness predicate S by 

l-1 
s(X)++%.l<K~f(f:X+ QJ). 

S is clearly x,(a). If S(X) holds, then 9(X) E A, since P(a) c A for CY <K. In fact 
even 9(X XX) C_ A. We have to verify that (X, 9(X)) for X in S is &-r.e. But if 
WEA, XES, then 

W=B(X)~VwEW(w~x)r\3a<K3fCf:1-1-ar\ 

VY E B (Y a well-ordering of order type (Y 

-+gg[g:Dom(Y)na)A 

VZC YZEBAf-‘(g”DomZ)E WI)). 

We used the fact that relation “Y is a well-ordering of order type (Y” is 
.&recursive since it is both II,(&) and zl(&). 

Every x E A is countable union of sets in S since by R being a strong 
decomposition relation X = U X, where 9(X,, X X,,) E A. Therefore IX,1 < K, 

hence in A we can find a well-ordering of X,, of order type CY for some a < K. 

Therefore S(X,) holds. q Lemma 4.9 

5. Proof of the completeness theorem using games 

In this section we prove Theorem 2.1(a), that an admissible structure having DP 
is C,-complete for a-small theories. Upon examination of the proof, one can 
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check that it yields uniform ,X,-completeness, hence C,-compactness and one can 

deduce 2.1(b). 

The use of games or game formulas to establish C1-completeness, which 

originated with Vaught is well known today (see e.g. Makkai [18], also [17] and 

Grant [12]). 

The general idea of the proof of Theorem 2.1(a) is to characterize the relation 

cp E Cn(T) for cp E A and T a a-small A-r.e. theory by the existence of a winning 

strategy for the second player in a certain open game G,,. In this game the first 

player (call him White) attempts to produce an increasing sequence (@” ) n <co) of 

sets of sentences whose union is a Hintikka set (see [18] and below), including 

T U { -I cp}, while the second player (Black) provides him with pieces of T and with 

various challenges, especially concerning the choice of disjuncts from various 

disjunctions. If T U{i cp} has a model, then White has a strategy for facing 

Black’s challenges and hence win after w steps. If on the other hand cp E Cn(T), 

then White cannot have such a strategy and hence (since the game is open and 

therefore determined) Black has a winning strategy. 

In order to be able to express the existence of a winning strategy for Black by a 

X,-formula some assumptions must be made on the definability over d of the set 

of options available for each player. The following Corollary 4.2 takes care of the 

matter. 

First we describe the open game OG(A, P) associated with any set A and any 

set P of finite sequences from A containing the empty sequence. (i.e. BE PC 

A<“‘). The two players White and Black alternately choose elements a,, a,, a2, . . . 

of A. As soon as a position (ao, . . . , q,) $ P is reached, the player who moved last 

(White if he is even, Black if he is odd) is declared loser and the game stops. If the 

game continues for w steps so that (a,, . . . , ak) E P for all k <o, then White is the 

winner. We denote by Pw (P,J the set of all x E P of even (respectively odd) 

length. Pw (PB) is thus the set of positions at which it is White’s (Black’s) turn to 

play. Define a function Ow : Pw-+A by 

O,(x) = {Y E A I X^(Y > E PI. 

O,(x) is the set of options available to White at position x and we call Ow the 

options function of White. The options function of Black is defined similarly and 

denoted by 0,. A position x E P is called a winning position for some player 

when that player has a winning strategy in the game obtained from OG(A, P) by 

taking x, instead of $j as the initial position (where White moves first if x E Pw 

and Black otherwise). 

Lemma 5.1. Let ~4 be an admissible structure. Consider an open game OG(A, P) 

where the set P of positions is d-r.e. and the options function 0, of White is .&- 

partial-recursive. Then the set of winning positions for Black in this game is &r.e. 

Proof. The set in question is the least fixed point of the following inductive 
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definition: x E S if 

rXEPw~\vY~Ow(x))(x*(Y)ES)lU[xEP,A3Y WY>ES)l. 

Thus the set is d-r.e. by Gandy’s theorem [l]. 0 Lemma 5.1 

For later use we remark that one may assign to each winning position x for 

Black an ordinal D(x) measuring ‘how far’ Black is from winning. D(x) is simply 

the stage at which x enters into the least fixed point of the above inductive 

definition. Thus D(x)sa if 

x E PwA(VY E o,b))~bA(Y))~~lv[~ E PBA3Y (mA(Y))<a)l. 

We stipulate that D(x) = 00 for any position x which is not a winning position for 

Black. UJ is considered greater than any ordinal. 

Noting the uniformity of the above inductive definition in which P and the 

graph of 0, occur only positively, and using the obvious uniform positive version 

of Gandy’s theorem we conclude 

Corollary 5.2. There is a fixed IZl-formula p(x, X’, Y’) such that whenever d and 

P are as in Lemma 5.1 and a E A, then a is a winning position for Black in 
OG(A, P) if &t=p[a, P, O,]. (We identify Ow with its graph.) In particular (letting 
a = @) there is a S,-formula p,,(X+, Y’) such that for A and P as above, Black has 

a winning strategy in OG(A, P) if A !=pJP, Owl. 

We need a few more preliminaries on sets of L,, sentences. As far as Theorem 

2.1 is concerned there is no loss of generality in considering .5&,, sentences built 

up from atomic formulas and their negations by means of A, v, V, 3 (i.e. 

sentences in negation normal form) and in which the only nonlogical symbols 

occurring are relation symbols and individual constants. (‘= ’ is considered a 

logical symbol.) Let @ be a set of such sentences. Put 

C,(a) = {c 1 c is a constant occurring in Cp or 

is the specific constant c,}, 

C,(G) = (4 1 I,!J is a conjunct of a member of a}, 

C,(Q) = {G(c) I Vx W) E @ and c E G(@)l, 

c,(a) = {c = c 1 c E C”(@)}, 

C,(@)={c=dI‘d=c’E@}, 

C,(@)={c=eIfor some d ‘c=d’E@ and ‘d=e’E@}, 

C(@) = fi C,(a) = the set of ‘immediate logical consequences’ of @}. 
i;l 

Note that the operation C is set-primitive-recursive, hence its restriction to any 

admissible set A is A-recursive. 
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By a witnessing assignment for @ we mean a one-to-one function h such that 

dam(h) = {3x $(x) ( 3x G(x) E @ and there is no 

constant c such that I,!J(C)E @}, 

the values of h are constants outside C,(Q). We assume that some fixed 

primitive-recursive operation H has been chosen, which assigns to any set @ (of 

sentences of the form considered above). a witnessing assignment h = H(Q) for 

@. Let 

C’(Q) = Qi U{Q(c) [3x IL(x) E Dam(h) and c = h(3x C/J(X))} 

where h = H(Q). Thus @I(@) is the result of adding to @ witnesses to existential 

statements in some fixed primitive-recursive way. Note that if @ already contains 

the required witnesses, then H(@) = p and C’(Q) = @. 

Let C”(Q)= C(@)UC’(@). Call @ a Hintikka set when 

(1) @ does not contain an atomic sentence and its negation. 

(2) C”(Q) = @. 

(3) Whenever V *E @‘, some disjunct rC, E * belongs to @. 

We remind the reader that every Hintikka set has a model (cf [18]) and that every 

model of @ in which only constants from C,,(a) are interpreted can be expanded 

to a model of C’(a), hence of C”(G) (for @kc(@)). 

The main result of this section is 

Proposition 5.3. Let A be an admissible structure having the DP. Then there is a 

X1(&)-formula a(T’) such that whenever T is a-small .&r.e. (consisting of 

sentences in negation normal form without function symbols but possibly with 

constants), then 

A ha(T) if T has no model. 

This clearly implies Theorem 2.1(a) because cp E Cn(T) if TU {-IV} has no 

model and the translation to negation normal form and replacing function 

symbols by predicates are primitive recursive syntactical operations. 

Proof of Proposition 5.3. Fix S and R witnessing the fact that & has (DPl) and 

(DP2) respectively. By Lemma 4.4 we can assume that S is a strong smallness 

predicate for d. Let T be a u-small &-r.e. theory as assumed. We are going to 

describe an open Game OG(A, P) associated with T such that T has a model iff 

White has a winning strategy in this game. Then we shall use Corollary 5.2 to get 

the desired X1(.&)-formula which is independent of T (getting a uniform version 

of Proposition 5.3). 

The rules of the game are as follows: At step n White chooses an element 

a, E A and Black chooses some b, E A, each player being required to fulfill the 

condition below. The set P of positions in the game is the set of sequences 
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(a,, boy al, bl, G, W or (ao, boy.. . , 4) with the following conditions satisfied: 

a, is a quadruple a, = (F,, a,,, D,, G,), 

b, is a triple (T,, X,, Y,). 

[Informally White tries to construct @ = @,, E Qs, E - . . such that IJ,,, @, is a 
Hintikka set @, and Black forces him to include in Qjn+i a piece T,, of T, so that 
eventually @, 3 T. X, is a challenge for White to choose disjuncts for a certain 
small set of disjunctions in a,, (this set is D,,+i). G,+i is Whites reaction to this 
challenge. Usually G,+i does not give the desired disjuncts but consists of a 
promise to choose each of them after a specified number of steps. F,+i is the 
fulfillment of promises of this kind given earlier in the game. The role of Y,, is 
technical and has to do with restricting the options of White to choosing disjuncts 
in the future, so that the set of available options is a member of A, so we can 
apply Lemma 5.1. It will be helpful to note that any function choosing disjuncts 
from some members of X,, is a subset of X,, xTc(X,,).] 

Now we state more formally the type of moves White and Black can play in the 
game. 

a0 = (& 8, El, pl). 
b, = (T,, X,, Y,) 

where T, G T (T,, E A as b, E A), S(X,,) and R(X, X Tc(X,,), Y,,). 

an+1 = (F,+i, @nil, Dn+i, G,+i) 

such that 

(1) Dnt, = {cp ) q E X,, 13 @“, cp is a disjunction, such that no disjunct of cp 
belongs to a,,}. 

(2) If D,+, is finite, then G,+i is a function that chooses a disjunct from each 

~cDn+,. 
(3) If Dn+i is infinite, then G,+i : Dn+l +w - (n + 2). [Informally if G,+,(q) = j, 

it means that White promises to choose a disjunct from cp at step j.] 

(4) Fnti = (g” 1 1s i s n). If 1 s i s n and Di is an infinite set of disjunctions 
and ui : Di +w - (i + l), then fi +’ is a function that chooses a disjunct from each 
cp E Di satisfying Gi(cp) = n + 1 and frtl E Yi. For other values of i between 1 and 
n, fr+‘=@. 

(5) @“+I= C”(@,,) U T,, U lJ;=i range fr” (if D,+l is finite, we also add range 
G ,,+i to the union) such that @,,+i contains no atomic sentence and its negation. 
Clearly the set of positions in this game is .&r.e. (The distinction between D,, 
finite and infinite comes from the case o g A.) 

Lemma 5.4. The options function Ow is d-partial-recursive. 

Proof. The main point to notice is that if p E Pw (i.e. p is a position in which 
White is to move), then O,(p) is a member of A. This is clear if p = 0. So assume 
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P = (@I> b,, . . . 3 
a,,, b,,). Note that there is no freedom in the choice of Dnil which 

is a primitive recursive function of b,. Given Dntl, if it is finite, then A contains 

as a member the set of all functions from Dn+l into Tc(D,+,). (In fact there is an 

.&r.e. function mapping Dn+l into this set.) If Dn+l is infinite note that Dn+l~ 
X,,, and S(X,,). Hence P(X, XX,) E A. (We assumed that S is a strong smallness 

predicate.) In particular, if X,, is infinite, gXne A (see Lemma 4.7) and the 

function mapping XE S to w x is .&r.e. Hence we have an .&r.e. function 

computing the set of possible G,+l’s from b,. 
Remember that f:” was required to be in Yi. Hence we can find an .&partial- 

recursive function computing from (b,, . . . , b,) the set of possible 

F n+l. 0 Lemma 5.4 

It is clear from the preceding arguments and the proof of Lemma 5.4 that one 

can write &(.&)-formulas pl(x, T’) and p2(x, y, T’) which define the set of 

positions P and the graph of Ow, in the game associated with T, for any choice of 

the d-r.e theory T. (The only place T occurs is in the requirement T, _C T on 

Black’s move.) 

Let cr(T+) be the formula 

PO({X I PI(X, T+)h {(x, Y> I PAX, Y, T+N 

where p0 comes from Corollary 5.2. Then if T is d-r.e. we get 

A !=a[T] if Black has a winning strategy in the game associates with T. 

Now comes the model-theoretic part of the proof. 

Lemma 5.5. If T is u-small, then T has a model if and only if White has a winning 

strategy in the associated game. 

(We are not using the d-r.e.ness of T). 

Proof. First suppose that T has a model and let .A% be a model for T. We describe 

the winning strategy for White. At the time of choosing his move a, = 

(F,,, a,,, D,,, G,,) he also defines an interpretation in .,U of all the new witnessing 

constants appearing in @,, interpretation that extends the interpretation he 

already picked for new constants which appeared in @n-1. 

More precisely at step n White picks a 7-triple 

c, = (F,, @,,, D,, G,, -K, H,,, (h; I n < k <w>) 

of which the first four members form his move a,,, A,, is the model -lu, expanded 

by the interpretation he picked for the new constants appearing in @,,. As 

induction assumption he makes sure that .&, l=@,,. H,, and h; will be described 

below. (If n = 0 the 7-triple is (@, 8, $9, $3, A, 8, $3)). (We are not assuming c,, E A, 

just that its first 4-members are.) Assume c,, has been chosen and Black’s legal 

move is 6, = (T,, X,, Y,,). Now White has to choose c,,~. 
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D nil is of course determined by a,, and X,. By assumption JU,, l=@,,, hence 

Ju, bD,+i. Hence for every disjunction of Dn+l, some disjunct holds in &. Let 

H n+l be a function defined on D,,+, which picks such a disjunct for every member 

of Dn+i. 
Note that H n+l z X,, xTc(X,), hence that by definition of Y,, (note that 

R(X, xTc(X,), Y,) holds). H,+* is a countable union of sets whose power set 

belongs to Y,,. 

H n+l can be represented as a countable disjoint union of members of Y,,, /rLil 

(i<k<o). (h;+l is a partial function from Dn+l to Tc(D,+,).) 

If D,,+i is finite, then White picks G,+i = H,+i. If Dn+l is infinite, then White 

defines G,+i : D,,+,+w by G ,+,(p) = the unique k such that p E hz+l. (G,+l E A 

since ax,, E A.) 

where if Di was infinite, then fi = hi (hi comes from his previous choice of cj) and 

fi = fl otherwise. 

@ n+l = C”(@,,) U T, U fi range(fi). 
j=l 

(We add range (G,,,) to @,,+i if Dn+l is finite.) 

White has now to interpret the new constants appearing in @,,+i, but that can 

be easily done by expanding’&, noting that by induction assumption & b@,,+i. 

The resulting expanded model is &,+i. Note that &,,+il=@,,+i, (one has to use 

induction, noting the particular way in which hi were defined for jsn, we of 

course use JU, \ T,, since T,, G T). 

Thus we see that as long as Black plays legally, White can continue to choose 

the 7-triple c,, but then he can continue his play. So White has a winning strategy. 

Conversely assume that White has a winning strategy and we show that T has a 

model. We shall construct a sequence (b, ( II < w), b, = (T,, X,, Y,,) of legal moves 

for Black such that lJ,,, T,, = T and for all k E w, Ukcneo X,, = @, = iJ,<, @,,, 

where the sets @,, are generated by White using his winning strategy in response 

to the play bo, bl, . . . of Black. Then @, is a Hintikka set containing T. Indeed 

@ n+i 2 T,+i, @ ,,+i 2 C”(@,,), no atomic sentence and its negation belongs to @,,. 

Moreover every disjunction 6 E @,, either has a disjunct in @,, or (since it belongs 

to X,,, for some m > n) it falls in some Dm+l and then has disjunct in Qj where 

j=m+l if Dm+l is finite or in Qk where k = G,+,(6). As every Hinttika set has a 

model, T has a model. 

It remains only to show that Black can play as desired. Since T is c-small he 

can obviously pick T,, C_ T, T, E A whose union is T. Also once X,, is chosen there 

always exists a suitable Y,, since R is a decomposition relation for d. So the only 

problem is to choose X,, ES such that lJkcn+ X,, = @, holds for every k. 

Each @,, is a member of A, hence by S being a smallness predicate for d 

witnessing that .~.4 has (DPl), @,, = lJLcw 27, where S(Z;). Once White picked @,,, 
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Black picks a suitable sequence (2; 1 1 <w) and plays X, = 2; at step k where 
f(n, I) = k. (f is any l-l function from o2 onto w such that f(n, I) b n for each 
n, 1 <a) Clearly Ukcncw X,, = @, for every k > w. 0 Lemma 5.5 

Since our game is open, it is determined therefore, for a u-small theory, T, 
.&kg(T) iff T has no model. q Proposition 5.3 q Theorem 2.1(a) 

Proposition 5.3 also implies 2.1(b) (compactness), since if T is a-small and T 
has no model, then .&kc+(T). Therefore by ordinary ZI-reflection (note that T 
appears positively in u, hence c+(T) is a Z,-formula) it follows that dl=u(T’) for 
some T’ G T, T’ E A. Since T’ E A, it is trivially u-small, hence by Proposition 5.3, 
T’ has no model. Cl Theorem 2.1(b) 

(This argument is essentially a repetition of Nyberg’s proof that uniform C1- 
completeness implies C,-compactness. See [22], Proof 1.21.) 

Theorem 2.1(c) will be proved in Section 7. Actually the proof of Theorem 2.1 
gives a uniform version of this theorem, (uniform across different admissible 
structures, the only parameter changing will be the specific smallness predicate 
and the specific decomposition relation). 

Proposition 5.6. There exists a (fixed) &-formula ul(S+, R’, Q’, T+) such that if 
& is an admissible structure, S is a smallness predicate for .c& (witnessing (DPl)), R 
is a decomposition predicate for d, Q is the predicate {(x, w”) ( XE S, X infinite} 

(hence S, Q, R, are &-r.e. relations) and T is u-small d-r.e. theory, then 

T has no model if A lu,[S, R, Q, T]. 

Proof. By examining the construction of the formula u in the proof of Proposi- 
tion 5.3 and noting that if T is d-r.e. we can write (uniformally) a &-formula 
cp(x, T’) defining the theory obtained from T by replacing each function symbol 
by appropriate predicate and transforming each sentence to its negation normal 
form. We also use the fact that the transformation from a smallness predicate to a 
strong smallness predicate is uniform, as well as the proof of Lemma 
4.7 Cl Proposition 5.6 

Corollary 5.7. There exists a ,Zl-formula uz(S+, R+, Q’, T’, X) such that if 

d, S, R, and Q are as in Proposition 5.6 and T is a u-small d-r.e. theory, then 

CntT) n A = {a E A \ &kaJS, R, Q, T, a]). 

Proof. uz is obtained from a, by replacing T with T U{the negation of a}. 

Cl Corollary 5.7 

From Corollary 4.7 we immediately obtain uniform versions of the complete- 
ness theorem for any example of a class of admissible structures for which we 
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have a uniform definition of a smallness predicate witnessing (DPl) and a 

decomposition relation witnessing (DP2). Thus for instance Examples 2.3 and 2.4 

yield uniform versions of the Barwise and Barwise Karp completeness theorems 

etc. 

6. Axiom system and completeness theorem 

From the proof of Proposition 5.3 one can extract an axiom system for L,, fl A 

from which every validity can be proved in A. The first step is to analyze in 

model-theoretic terms what is the meaning of the fact that a certain position in 

the game associated with a a-small theory T is a winning position for Black. 

So let p = (a,, bo, . . . , a,,, b,) or p = (a,, bO, . . . , a,,) be a position in the game 

where ai = (Fi, @i> Di, Gi), bi = (Ti, Xi, Yi). We shall define the formula associated 

with p, W,. (qp intuitively means that if it holds in a given model of T White can 

win by playing ‘inside’ this model.) 

Define first Yi,, for i <n, m > n by 

Cf Ife Y,,DomCf)={a I S~Ditl, Gi+I(S)=ml, 

Vx E Dom(f) : f(x) is one of the disjuncts appearing in x}, 

A f(x). 
i=l m>n ftl’~,.,, xtDom(f) 

(For n = 0 we take *, to be co = co.) Note that *caI,,bu ,__., LsIj = Tcao,bc ,,..., 4, b ). 
2 n 

Lemma 6.1. p is winning position for White if T U {TD} has a model. 

Proof. Like the proof of Lemma 5.5. 0 Lemma 6.1 

Looking at the proof of Lemma 5.5 one can actually see that the proof yields 

Lemma 6.2. Let q be a position in the game at which it is Whites turn to play. Let 

JU be a model of T U {Yfq}. (Note that .nl contains interpretation for all the new 

constants in qq.) Then there exists p E O,(q) and an expansion of ./u,.M’, by 

interpreting the constants in !PP such that JU’~ PP. 

It follows from Lemma 6.1 that Black wins the game associated with T, he wins 

the game starting from any legal position p. (Otherwise T U{Tp} would have a 

model, hence T would have a model, contradicting Lemma 5.5.) 

Our axiom system for the admissible structure d having DP (where S, R 

witness it, and S is a strong smallness property) is made up of the usual axioms for 

L aul> for instance (Al)-(A7) of Barwise [l, III-41 together with the following 

scheme (which is a kind of distributive law). For each @c_ L,,n A, such that 
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@ E A, S(@) and @ is a set of disjunctions, @ infinite and for each YE A such that 

R(@xTc(@), Y) put an axiom of the form 

(A@ A @%%LfGY. ,ELL,,f’x’ Cm 

where Yd,, =Cflf’ IS a unc I n f t’o d fi d e ne on the set {cp ( cp E @, G(q) = m}, and such 

that Vq E DomCf) f(q) is one of the disjuncts appearing in cp}. Note that since 

S(@) holds, w@ E A, hence any axiom of the form (A8) is in A and the set of all 

axioms is an d-r.e. subset of L,,tl A. 

The inference rules are (Rl)-(R3) as in [l, 111-41. All axioms of the form (AS) 

are valid because assume that @ is infinite set of disjunctions, S(@) holds as well 

as R(@ xTc(@), Y). Consider a model JU of A @, we have to verify that Jt 

satisfies 

where Yd,, was defined above. By properties of R @ x Tc(@) = U X, for some 

X,, (n <o) such that X, E Y, 9(X,) c Y. Since A Qi holds in M, for every cp E @ 

we have some f(q) ~Tc(cp) which is one of the disjuncts in cp which holds in JU. 

The pair (cp, f(q)) E @ x Tc(@), so for some G(q), (cp, f(q)) E XGcqp). G will be the 

witness for the outermost disjunction above. Let m <o. f,,, = f 1 {w ( G(q) = m} is 

clearly in Y,,,. Hence by definition of f, //\xEDom~f_~ f,,,(x) holds in JU, and we 

verified that there is GE o@ such that for all m <o there is f,,, E YG,,,, 

JGC ~AXEDorn~) f(x). This proves 

&IV A V A f(x). 
Gem” m<w faY,,,, xtDom(f) 

What we have proved (together with the known facts) shows that our axiom 

system is sound. Now we prove that it is complete: 

Theorem 6.3. For a a-small theory T, and cp E L,, fl A,cp E Cn(T) ijf there is a 

proof of cp from T in our axiom system. 

Sketch of Proof. Define a theory to be &-consistent if one can not prove a 

contradiction from it in our axiom system. Assume T U{l cp} is consistent, then 

White can win the game associated with TU {lcp}. White simply makes sure that 

every position p arrived at the game TU{l cp} U{qP} is d-consistent. He can 

always do it because if the present position is p = (a,, bO, . . . , u,,, b,) and he is 

faced with b, = (T,, X,, Y,,}, then by induction assumption ‘y, is consistent with 

TU{i(p}. Note that D,,+i is a set of disjunctions such that S(D,+,) holds. We 

claim that White can pick a function G,+i : Dn+l+~ such that 

TU{l~o)U{*piU{ A V A f(x)1 
m<o ftYG,_ xtDom(f) 
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is d-consistent. (Otherwise using (A8) one gets a contradiction from TU 

{TV, yb1) Using G,, I and the consistency of @, White can complete his move. 

We leave the details to the reader. Hence if TU{lq} is consistent, White wins 

the associated game, hence TU{l cp} has a model. Contradicting cp E 

Cn(T). •i Theorem 6.2. 

7. Pinning down ordinals 

Recall [l, III-71 that a theory TE L,, tl A is said to pin down the ordinal Q! if it 

contains a symbol < such that 

(a) .4 h T implies that < interpreted in .M is a well-ordering of its field. 

(b) In some model of T, < has order type a. 

In this section we prove Theorem 2.1(c), i.e. if T is an .&r.e. a-small theory 

which pins down ordinals, then the ordinals pinned by it are bounded below o(A). 

Let 

T’= TU{c, is in the field of <}U lJ {c, <c,_,} 
lX<W 

where {c, ( n <co} is a set of new constants not appearing in T. By assumption T’ 

has no models. (Otherwise T has a non-well-ordered model.) Hence Black wins 

the game associated with T’. We shall make a small change in the game by 

restricting the moves of Black, such that on his nth move he must play T,, which 

does not mention ck for k > n and T, 2 {ci in the field of <} and ‘ci <cl_, E T,, for 

0 < i s n. (It follows that ck for k > n does not appear in @,.) It is easy to see that 

Black still wins the modified game. Recall that at the proof of Lemma 5.1 we 

assigned by &r.e. function an ordinal D(P)E A to any legal position in the game 

in which Black wins. (Hence to every position.) 

Lemma 7.1. Let p = (a,,, b,,, . _ . , b,- I, a,,) or p = (a,,, . . . , bnpl, a,,, b,) be a position 

in the modified game associated with T’. (Note that qp does not mention ck, k 2 n.) 

Consider all models of TU {qP}, then the order type of the initial segment of < 

determined in the model by the interpretation of c,_, is <D(p). (Zn case n = 0 we 

take “the order type determined by c,.~,” to mean “the order type of <“). 

Theorem 2.1(c) follows from Lemma 7.1, for n = 0. Since D(g) E A. The order 

type of < in any model of T is less than D(p)). 

Proof. By induction on D(p). We distinguish two cases: 

(a) p E PB. In this case D(p) = D(q)+ 1 for some q E O,(p). But YP~ = ?PP, 

D(q) < D(p), hence by induction assumption in any model of TU{Pq = Y$} the 

initial segment determined by c,_r has order type <D(q)< D(p). 

(b) P E Pw, P = (a,,, b,,, . . _ , a,,, b,). Let us distinguish two cases: 

(I) TU{W,} has no model. In this case the Lemma is true trivially. 
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(II) TU{qP} does have models. In this case, by Lemma 6.2, any model of 

T U {?I’,} can be expanded to a model of T U {!Pq} for some q E O,(p). 

Note that since c, did not appear in @,,, the only mention of it in @, comes 

from T,. Hence all that GQ implies about c, is that c,, is in the field of < and 

c, cc,_ 1. Assume that in some model .M of T U{*,} the order type of the initial 

segment of < determined by c,-i is 3 D(p). Ju can be expanded to a model of 

Qq for some q E O,(p). 

By definition of D, D(p) > D(q). Hence we can find in & an element x which is 

< the interpretation of c,_i, and such that the order type of the initial segment of 

< determined by x is D(q). If we re-interpret c, as x we still get a model of 

T U {Tq}. Hence we got a contradiction to our induction assumption for q, and the 

Lemma is verified. Cl Lemma 7.1 Cl Theorem 2.1(c). 

8. Ordinal omitting 

If < is a linear ordering, denote by Wf(<) the largest well-ordered initial 

segment of <. Without loss of generality we can identify Wf(<) with the ordinal 

which is its order type. The following theorem generalizes Theorem 7.5 in [l, III] 

(which is a generalization of H. Friedman’s theorem on the existence of models of 

Set Theory with a given well-founded part [8].) 

Theorem 8.1. Let d be countably decomposable. Let T be a &-theory in L-n A 
such that TF“< is a linear ordering” and for each /3 <o(A), T has a model JH 
such that Wf(<) 3 p holds in the model. Then T has a model with Wf(<) = o(A). 

Proof. Let T be the theory T expanded with the addition of the constants cp for 

@ <o(A) and the sentences 

“cp is the field of <“r\Vx (x<ca-+ V x =c,). 
a<@ 

T is clearly C,(d) and it has a model (using Theorem 2.2-compactness). We want 

to get a model of T such that the ordinal (Y = o(A) is not in Wf(<). (For p <a,@ is 

in Wf(<) by construction of T.) We expand T further to T by adding constants 

co, Cl,. . . with the sentences “ci+, < ci”. ? is consistent since otherwise T pins 

down ordinals, hence for some /3 <o(A) it can not have a model whose well- 

founded part (hence itself) has order type 20. 

We shall define a modified version of our basic game associated with T. The 

intuitive idea is that in addition to the steps in the original game, White is given at 

the nth step a small set of constants. (We assume that no constant ck, k > n, 
appeared so far.) He has to divide them into three subsets Ci, C,, C3. Cr is the set 

of those which he decides to put in the well-founded part of the constructed 

model. He has to witness it by picking an ordinal p <o(A) and putting the 
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resulting set of sentences c < cp for every c E Cr. C, is the set of those which 

White decides to put in the non-well-founded part, so he makes c,+t <c for every 

CEC,U{C&CI,.. . , c,}. (Note that the game does not satisfy the fact that O,(p) E 

A for every position p but that does not interfere with the following arguments.) 

C3 is the set of constants which White decides to put outside the field of <. 

So the formal definition of the game is that Black plays 6, = (T,,, X,, Y,,) where 

T,, X,, Y,, are the same as in our original game except that T,, does not mention 

any constant ck k > n. White’s move is 

a, = (F,+r, @,,+I, Dn+r, G,+l, C;“, C;+‘, C;+‘, P) 

where F,+r, D,,+r, G,+i are like in our original game. Define 

C “+‘= {the constants appearing in @,,} fl X,,. 

(By induction assumption C”+’ n{c,, cl, . . .> C {co, . . . , .c,,}.) Then 

c;+l”c;+l”c;+l=cn+l, c:+lnc;+l=g, ifj. 

p is an ordinal, f3 <o(A). 

@ rtltl = c”(@,) U T,, U fi range@“) U{c < cp 1 c E C;“} 
i=l 

Ukn+l <CICEC;+‘}U{C,+1 < c,} U{“c is not in the 

field of c” 1 c E C;“}. 

We put range(G,+,) in @jn+l if Dn+l is finite. Again Qjntl should not contain an 

atomic sentence and its negation. This finishes the definition of the games which 

we denote by G. 

For a position p in our present game, qr, is defined as in Section 6. The proof 

of Theorem 2.1 is divided into two parts: 

Lemma 8.2. If White has a winning strategy in the game G, then ? has a model in 

which Wf(<) = o(A). 

Proof. Since d is countably decomposable we pick X,, such that S(X,,). (S is a 

strong smallness predicate witneszing (DPl) for &) and lJ ,,_ X,, = A. We pick 

also T,, E A such that U ,,+, T,, = T but T, does not mention any C~ for k > n. We 

define Y,, to be any member of A satisfying R(X,, xTc(X,,), Y,). (R is a 

decomposition predicate witnessing (DP2).) 

At his nth move we let Black play (T,,, X,,, Y,,). Clearly White’s strategy gives a 

sequence @,, such that @, = IJ,,,,, @,, is a Hinttika set, containing T. For @,,, we 

can define a model in which every element is the interpretation of some constant 

in the language of a,,,. Each such constant, c, appears in some X,,, hence it was put 

in C;+l, C;+’ or Cq+l. In the first case for some & @jn+l contains “c < ca”, hence 

by definition of T, C determines an initial segment of < of ordertype <p <o(A). 
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If c was put in C;+i, then c is not in the well-founded part of < since. . * < 

Cn+2<C,+l KC. If c E Cz”, c is not in the field of <. So in the resulting model 

every element in Wf(<) is less than o(A), but since it is a model of T, CY E Wf(<), 

hence Wf(<) = a. 0 Lemma 8.2 

Lemma 8.3. In the game G White has a winning strategy. 

Proof. White plays such that for each position p arrived in the game f’U {‘Pp> is 
consistent. Since ?IFp does not change by Black’s move we just have to show that 

given a position p in which White is to move, White can move to a position q such 

that ? U{!Pq} is consistent. So assume p = (a,, bO, . . . , a,,, b,), where b, = 
(T,,, X,,, Y,,), let C” be defined as above. Note that ME A, 9(C” X C”)EA 
since C” c_ X,, and S(X,,) holds. Let .4 be a model of TU{W,}. We shall not 

distinguish between constants and their interpretation in JU. Let C$+l be the set of 

those constants in C”+’ which are not in the field of <. Let E = {(c, c’) ( c E C”+l, 

JH t=c <cl}. Note that C;+l and E E A. Put 

!I’ = ?I’p A/\ (‘c is not in the field of 4 1 c E C;+‘} 

A{C <c’ 1 (c, c’) E E}. 

Clearly f lJ{T} is consistent. (.& is a model for it.) We already determined C;+l. 

We next let White determine Cz+‘, C;+’ and q. 

E ‘,s an ordering of C”+’ - C;+‘. Let c be the minimal element of Wf(E) such 

that TU{!P}U{c, cc I/3 E o(A)} is consistent. (c does not necessarily exist.) 

Let D be{dI(d,c)EE} f i c exists and D = Wf(E) if c as above does not exist. 

Note D E A. (sP(C”+~) E A.) We claim that 3B <o(A) such that f U {9}t d < cp 
for all d E D. The reason is that 

Vd E D 3p ‘d <c> ECn(?U{?I’}). 

By our completeness Theorem 2.2(a) and Z,-reflection 

3/3 Vd E D ‘d <cp’ ECn(TU{p}). 

So we let White play C;+l= D, Cz+l= C”+‘- (C;” U C;+‘), and the ordinal p 

above. 

Let q be q/\AdcD d <co. Clearly ?U{q} is consistent. We claim that 

%J{~}U{c ,+l<d ldEC;+‘} 

is consistent. 

Note that C~ (k > n) is not mentioned in q, and the only way it is mentioned in 

f is in the sentences ck <ck-i and c k+l <ck. We first show that it is consistent 

with ? U {P} that some e < d for all d E Cztl such that e$ Wf( <). Otherwise, if it 

is inconsistent, it means that 
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By Theorem 2.1(c), 3~ <o(A) such that 

? U {P} t the order type of < restricted 

Since 

We get 

Since ? 
contains 

?tthe order type of the initial segment 

Stavi 

to {x 1 dc/& d} is less than y. 
2 

of c, is y, 

TU{‘P}t V d<c,. 
dtC”” 

contains the statement Vx (x < cO+ VP.+, x = c,), it is clear that Cyil 
E minimal element, which we denoted before by c. Hence 

?u{*}tc<c,, 

contradicting the definition of D and C;+‘. 
Therefore we conclude that ‘? U {!P} has a model in which some e <d for all 

d E C;+‘, where e+! Wf( <). Since ly does not mention c,,+i, we can interpret c,+i 
as e and ck for k > n + 1 as some decreasing sequence below e, which exists since 
egWf(<). 

We conclude that ‘? U { ?P} U {c “+i <d 1 d E C;“} is consistent. It has a model A. 
Since W+ VP, by the arguments of Lemma 6.2 White can now complete his move 
by picking G,,+i and F,,,, and interpret the new constants of C”(@,,) in JU, such 
that if q is the resulting position .M != !Pb. 0 Lemma 8.3 

Lemmas 8.2 and 8.3 obviously lead to 0 Theorem 8.1. 

A typical application of Theorem 8.3 is the following generalization of Fried- 
man’s Theorem. 

Corollary 8.4. Assume that there exists a standard model of Set Theory whose 
ordinals has order type >o(A) where L& is countably decomposable. Then o(A) is 
the order type of the well-founded part of the ordinals of some non-standard model 

of Set Theory. 

This gives many examples of standard parts of models of Set Theory. Note that 
if d is countably decomposable, o(A) has cofinality o. The problem of charac- 
terizing the well-founded part of non-standard models of Set Theory in uncounta- 
ble cofinality has a different flavour. See [20]. 

Another application is the problem of trying to characterize the ordinals of 
K < a < K+ such that (Y = Q!(X) where XC K. (a(X) is the minimal ordinal admissi- 
ble in X.) If Cf(K) = o, and (Y is o(A) for some countably decomposable d, then 
(Y = a(X) for some XC K. The proof is by looking at a theory T of the form (c is a 
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new constant): 

(a) KP+ < is the ordering of the ordinals. 

(b) Vx (x < cY -+Va+ x = ca) for every y <CL 

(c) Vx (XEC+XEC,). 

(d) There is no ordinal admissible in c. 

T has well-founded models where < has order type arbitrary large in K+. By 

Theorem 8.1 there is a model of T whose well-founded part is CL This model gives 

an element c which is really a subset of K, X. It is easily verified that a(X) = CL In 

the next part we shall see that in the constructible universe (Y = a(X) (where 

cofinality (Icy\ = 0). If (Y = o(A) for some countably decomposable d. This was our 

independent proof to some of the results of Sy Friedman [9,10]. (Friedman dealt 

also with the cases Ia\ regular, and cofinality (\a!])>~.) 

9. Interpolation 

It is well known that the Craig Interpolation Theorem, while holding for L,,, 

fails in general for L_. However there are some cases in which one gets an 

interpolant for L,,, provided one allows the interpolant to lie in a stronger 

language. Thus Chang’s Theorem yields [4] that if K is strong limit of cofinality o, 

that an implication in L,, has an interpolant in L,,. Under the same assumption 

an implication in L,+, has an interpolant in L,+,. 

Since the Craig interpolation holds in any admissible countable fragment of 

L o,o, naturally there arises the question whether the Chang interpolant can be 

found in an admissible structure containing cp and 4. We shall get a positive 

answer for admissible structures satisfying (DP). (By the proof of Theorem 4.4 we 

may assume in this section the smallness predicate witnessing (DPl) is always 

“having d cardinality <K” where K is the first non-small ordinal.) 

Note that if d is an admissible structure satisfying (DPl), then either K = o(A) 

or K is the maximal cardinality of a member of A, because every member of A is 

a countable union of elements having cardinality <K. 

Theorem 9.1. Let d be an admissible structure having (DP). Let K be the first 

non-small cardinal of ~4. Let cp and 4’~ L,, nA such that it is logically valid that 

cp -4. Then there exists a sentence x in L,,, XEA such that every non-logical 

symbol in x appears in both +!J and q, and it is logically valid that cp + x and x+ $. 

(We assume that equality is a logical symbol.) 

Proof. We shall define a variant of our basic game (defined in Section 5). The 

game will be in principle like the basic game except that now White is construct- 

ing two sets formulas a,,, V!n such that lJ,,, a,, U U,,<,, W,, is a Hinttika set 

containing {cp, l+}. (Of course White must fail.) In White’s construction all the 

non-logical symbols of a,, will be the non-logical symbols of cp together with the 
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new witnessing constants introduced so far. Similarly all the non-logical symbols 

of ?P,, will be the non-logical symbols of 4 together with the new witnessing 

constants. (To simplify terminology we shall assume that the type of @,, denoted 

by r(@,,) contains all non-logical symbols introduced thus far. Similarly for 

~(p,,).) At each stage n we shall have less than K new witnessing constants. 

Without loss of generality we shall assume that cp and $ contain no function 

symbols or constants. (We replace n-ary functions by n + 1 predicates, we replace 

constants by unary predicates and q by 

cp ~“a11 these predicates are functions . . . .” 

and + by 

“all these predicates are functions+ $I”. 

Upon finding the interpolant we substitute back the function symbols and the 

constants.) We also assume that whenever we mention cp and +!I, we actually mean 

their negation normal form. 

As in the basic game Black supplies a small set of disjunctions to take care of. 

White will handle disjunctions and existential statements separately for the @,, 

part and the P” part. Say for odd n’s taking care of the @, part and of the P” 

part at even steps. Since we want to have few witnessing constants we shall use 

Black’s move also to determine which existential statements should be taken care 

of at a particular stage. 

We would like to limit Black’s moves to a set in A, at each stage. For 

guaranteeing it we pick before the game starts Y such that R(X, Y) where 

X = Tc({cp, 4)). We actually would like to limit Black to playing small sets from Y, 

however there may be new witnessing constants, hence relevant formulas may not 

be in Tc(Y). Therefore we define, for a set C of constants, h(Z, C) = all formulas 

obtained from formulas in 2 by substituting constants from C for their free 

variables. 

L( Y, C) = {h(Z, C) 12 E Y}. 

A move by Black is b, = (X,, Y,) where Y,, = h( Y, C) where C is the set of all 

witnessing constants introduced so far. X., E Y such that S(X,,) holds. White’s 

move is now a 6-tuple. 

a, = (F,, @,,, q,,, I&, E,, G), 

a0 = (8, {cp>, {1@1,8> 8, fl>. 

In general we require that @, U W,, would contain no-atomic sentences and its 

negations. The specific requirements are (n > 0) 

(1) D,, = {A 1 h E X,-, f-I@“, A is a disjunction 

no disjunct of h belongs to @,,}, 
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if n is odd, and 

D, = {A 1 A E X,_, (7 ?P,,, A is a disjunction 

no disjunct of A belongs to ?P,,}, 

if n is even. 

Similarly 

E,, = {X ( A E X,_, n @,,, A has the form 3x P(X)}, 

if n is odd, and 

En = {A 1 A E X,_, n T,,, A has the form 3x k.(x)}, 

if n is even. 

(2) If D,, is finite, then G,, is a function that chooses a disjunct of A for each 

A E 0,. 

(3) If D,, is infinite, then G, : D,,-+Odd- (n + 1) if n is odd (where Odd is the 

set of odd integers). 

If n is even, then G,, : D,--+Even- (n +2) where Even is the set of even 

integers. 

(4) F, is like in the basic game. (Note that fr is empty if i = n(mod 2).) 

(5) If n is odd, then 

n-1 
@, = GnP1 U C(@,_,) U C’(E,) U lJ range@‘), 

i=l 

If n is even, then 

T,, = ly_l U C(!P,P,) U C’(E,) U lJ rangeK). 
i=l 

(6) If n is odd (even) and D,, is finite, we add range G,, to @,,(?P,,)_ (The 

operations CC’ were defined in Section 5, but note that we assume that every 

new witnessing constant ‘appears’ in both an-i and !P_i. Hence all the witnes- 

sing constants appearing so far are in C,(P,,) and C,,(@,,).) 

Recall that we assumed that the predicate S(X) simply expresses “X has A 

cardinality < K”. Hence one can easily verify by induction on n that at every stage 

in the game the set of new constants introduced so far, has cardinality <K. Note 

also that in the present version of the basic game O,(x) is also &r.e. (O,(x) is 

Black’s options at position X.) 

Following Section 6 we define for each position p in our game two sentences in 

L _,, r, and A,. Assume p = (ao, b,,, . . . , u,,, b,) or p = (ao, bO, . . . , a,) (r, and A, 

do not depend on b,,), where ai = (&, pi, !Pi, Di, Ei, Gi), bi = (Xi, Yi). Recall from 
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Section 6 the notation 

Yi,m=cfI f~ Y,,Dom(f)={6) a~Di+l, Gi+l(S)=m}, 

VX E Dam(f), f(x) is one of the disjuncts of x}. 

Then 

A f(X)> 
i=l m odd ftYrm,,_ xtDom(f) 

iodd m>n 

Ap=/l’J’v’,~ il A V A f(x)- 
i=l m>n fsYt.,,_ xtDom(f) 

i even m even 

Note that the type of r, is ~(a,) and 7(AP) = 7(?P,,). For p = g we put r, = cp, A, = 

14. 

Lemma 9.2. If White has a winning strategy in our game, starting from position p, 

then {I’,, A,} has a model. 

Proof. Like the proof of Lemma 5.5 by letting Black pick (X,, 1 n < w) such that 

U X, 2 U W@,,) U X, z U W’K), 
n<w Ft-ZW n-3.0 PI-CIA 

n even n odd 

Black can do it since R(Tc({cp}U{$}), Y) holds, and by the definition of the Y,‘s. 

It follows that U,<, @, UU,<, 4,, is a Hinttika set containing 

{cp, x,5}. 0 Lemma 9.2 

Since it is logically valid that r, -+(p and A, -+ 14 we get that {r,, Ap} has no 

model. Hence White has no winning strategy from any position in the game. 

Recall from Section 5, the function D on the positions in the game in which 

Blacks wins, into ordinals. Since every position is a winning position for Black, D 

is defined on all positions in the game. 

By recursion on D(p) we define a formula in L,,, xp such that T&,)c 

7(rP) f~ 7(Ap) and such that 

krp+Xp and t,yp-+lAp. 

As one can see from the definition below if p is a position in P&P,), then xP is a 

primitive recursive function of 

lx, I 4 E O,(P), ml) < aP)l (ix, I 4 E O,(P), ml) < WP)H. 

Hence since 0, and OS are d-r.e. the function p-x, is .&r.e. and we get 

x,gA. 
Assume first that p E Pw. Hence D(p) > D(q) for every q E O,(p). Hence x, is 

defined for every q E O,(p). Without loss of generality assume that p = 
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(a,,, boy al, bl, . . . , u,,, b,) where n is even. The treatment of the other case is 

completely analogous. For each q E O,(p) white introduced some new witnessing 

constant for existential formulas in E,+l. Let c be a sequence enumerating those 

constants. (Note that the cardinality of the new witnessing constants is less than 

K.) Note that c does not appear in A,. Hence by induction assumption 

kr,(e)+x,(c), !- xq (e) + lA, 

Hence we get 

(I) l-vx rr, (x) + x, (x)1, k&x(x)+ lA, 

where x is a vector of new variables replacing one by one the elements of c. Note 

that since n is even, we have A, = A, for every q E O,(p). 

By an argument similar to the proof of Lemma 6.2 

(II) tr,+ v 3xT,(x) 

We define xp as VqeOwCp) 3xxq(x). xi, is as required since by (I) and (II), 

trp +xp and by (I), txp + iA,. (Note that this case includes the case D(p) = 0. 

In that case p E Pw and O,(p) = 0. It means that any answer by White to Black’s 

challenge will yield an atomic sentence and its negation in an+i U qntl. It follows 

that if B is the set of all atomic sentences or their negation appearing in pn, and 

which are in T(@,,)~T(!J’,,) we have r, I- VsEB -I& hence we can take xp = 

V t-Es 16. x, clearly satisfies the requirements. 

If p E PB, then ,Y, is defined for all q E O,(p), D(q) < D(p). Note the set of all q 

such that q E O,(p), D(q)<D(p) is in A, Since D is C,(A), and for every 

q E O,(p), D is defined, hence by Z,-reflection we get XE A and Vq E 

O,(p) 3a! E X (XbD(q, a)). Now we can use A,-separation to get that {q ) q E 

O,(p), D(p) < D(q))E A. Denote this set by E(p). In the case p E Ps, rp = r,, 

A, = A, for every q E O,(p), hence if we define x, = VqEECp) x9, then tr,+x, 

and k xp + iA,. (Actually any x, for q E E(p) would have done, but we do not 

want any choice involved so that p+x, will be d-r.e.) 

We can now conclude the proof of Theorem 9.1. xg where $l is the first position 

in the game is of type T(V) n ~($1) and l-cp -+X, t X0+ C/J x0 is clearly the 

required interpolant. 0 Theorem 9.1 

PART II 

In this part we study the problem whether Theorem 2.2 is the best possible. In 

this part we shall concentrate on the problem of validity admissibility and ordinals 

pinning. (xi-compactness will be handled in the third part). We shall assume 

V = L and treat just admissible structures of the form (La, E), . . . . We feel that a 
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theorem yielding validity admissibility results for all structures of the form (L,, E ) 
for which such a result can be obtained is rather comprehensive. 

10. A fine structure detour 

In this section we prove a technical fact emerging from the fine structure theory 
of the constructible universe [14] which will be our main technical tool. This fact 
is probably implicit in some of the proofs in the fine structure theory (e.g., the 
existence of morasses, see [6]) but we were not able to find a direct reference to it. 

Lemma 10.1 (V = L). Let K be a singular cardinal. Let K <a <K+. Then there 
exists a subset of L,, D,, ID,] < K such that every element of L, is first order 
definable in (L,, E ) from K U 0,. 

Proof. We prove it by induction on (Y. The case Q! = K is obvious by taking 
D, = $3. So assume that the lemma holds for all y < (Y, i.e., for all y <CY there 
exists D,, ID,1 < K such that all members of (L,, E ) are first-order definable in 
(L,, 6 ) from D, U K. 

If (Y = 6 + 3, then one can take D, = D, U {a}. (Remember that every member 
of L, is a subset of L,, definable with parameters from La.) So we treat the case (Y 
limit. (Y is not a cardinal so let (Y G p be the first ordinal such that there is a 
Z,,(L,)-map of a subset of some y < CY onto cy. Let n be the minimal such n. Fix y, 
and a function f which is &,(Lp), such that f maps a subset of y onto (Y. Since K is 
singular fix B Gcy, (B\<K, B cofinal in (Y. 

Let p be the Z,_r-projectum of /3. (See [14] for definition though all the 
relevant facts about p will be stated below.) Jt follows from [14] that 

(0 cuGp<p (au p by definition of n). p is a limit ordinal, unless n = 1 and 
p = /3 is a successor ordinal. 

(JJ) 3A c L, (A is usually known as a &_r master code) such that (L,, E, A) is 
amenable (i.e., A n L8 E L, for all 6 <p), A is 2,. l(Lp) and a subset of L,, is X1 
over (L,, F, A) iff it is &(L,). 

We distinguish two cases: 
Case I: p is a limit ordinal. Again using the fact that K is singular and p < K+, 

we get EC p, IEI<K, E cofinal in p. 
f is &(Lp). Hence it is C,((L,, E, A)). Let p be a finite set of parameters in L, 

such that f is C1 definable in (L,, E, A) from p, by the Cl-definition 
3x @(x, y, z, A, p) where @ is &. For 6 E E, q E B define 

fs,,, = ICY, 2) 1 Y -=c Y, 2 < s 3x E L @5x, Y, z> A P)] 

(Recall that 8 E E implies 6 < p, q E B implies n < cy.) Since A 17 L, E L, and p is 
limit, f8,, E L,,. Note that fS,? E y x r). By standard arguments fs,q E L,. (Otherwise 
the minimal ordinal p such that fs,qE L,, satisfies L,,, k1pI smax(y, n) and 
a!<*.(~. Hence L,+,kjc~- <max(y, q). Contradicting f_~ <p 5 fl and the defini- 
tion of p.) 
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Note that 

We now define D, by 

D,=D&J{Y~U~~~,,~~EE, n~B1. 

Every member x of La is first-order definable in (L,, E ) from some 5 < cy. 6 is in 

the range of f, hence for some 6, n, (6 E E, q E B) and p < y, 5 = f&p). p is 
first-order definable in (L.,, E) from K U 0,. Hence it is definable in (La, E) from 
{y} U K U 0,. We conclude that x is first-order definable in (L,, E ). We verified 
that D, satisfies the requirements. 

Case II: m = 1, p = p and /3 is a successor ordinal p = 6 + 1. Remember that 
every member of L, is a subset of L,, definable from parameters in (L,, E). f is 

S,(L,) in this case, so let 3x @(x, y, z, p) be the C,-definition of f (p is a finite set 
of parameters), where @ is &,. Define for f,, (n < w, q E B), fn,, by 

fn,Tl = ICY? 2) I Y E 79 z E q, 3 (x is a &,-definable subset of 
(L,, E) such that @(x, y, x, p)}. 

Jt can be easily verified that fn,, E L, since it is a subset of L,, definable in (L,, E). 

(One should replace the parameters p by their definitions over (L,, E).) By 
arguments as above in Case I, we can show that f,,, EL,. Hence if we note again 
that f=lJ new, rltS f,,,, and we define 

Qx=D,U{~lUcf,,q In<w> TEN, 

we get a Da satisfying the requirements of the lemma. Cl Lemma 10.1 

Recall from Section 4 that if & is an admissible structure, having (DPI) then 
the smallness predicate can be assumed to be S(x) f, &1x has cardinality CK, for 

some strong limit cardinal K. Note that if K E.& then Cf(K) = to. So for (La, E) to 

have (DPl) we must have either cx is a limit cardinal, or for some K, cf(K) = o 

I&( = K. In the latter case we must have that for each p, p is a countable union of 

members of La, having cardinality <K. This observation motivates the following 

definition: 

Definition 10.1 (V= L). Let K be a cardinal in L such that cf(K) = w. Let 
K S 0 < K+. d(P) - the decomposition ordinal of /3 - is the minimal ordinal y, such 
that in (L,,, E ) one can define sets A, G /3, IA,1 < K, @ = IJ,,, A,,. (Note that we 

are not assuming that (A,, ( n <w) is definable in (L,, E), just that each A,, is 
definable.) d(p) exists since once we get y such L, !=IpI = K. Then in L, we can 

find such A,‘s. It follows that a necessary condition for (La, E) to have (DPl) is 
that d(P) s (Y for all /3 <cy. Note that if (L,, E) has (DP2), then we must have 
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d(P) < a! for all p <a since if Y satisfies R(& Y), YE L,. Then YE L, for some 

y < o( and clearly d(P) < y. 

The connection to Lemma 10.1 is 

Lemma 10.2. d(P) is the minimal ordinal y such that B <y and the minimal 

cardinality of D,, satisfying Lemma 10.1 is SW. 

Proof. Let y be the minimal such that p s y and ID,\ SW. We first show d(P) G y. 

Let (K, 1 w) be a cofinal sequence in K, and D, = (a,, 1 n <co). Define 

A,, = {a! 1 a < /3, cx is &-definable from K, U{a,, . . . , a,}}. 

Since every member of L,, hence of /3, is first order-definable from K U 

Ia,, al,. . .I we get P = U,<,d A,,. Note that A,, is definable in L, and its 

cardinality is K,. Hence by definition of d(P), d(P)cy. 

We now prove y G d(p). By definition of d(P) one can define in LdCBj subsets of 

/3, A,, for n<w, ~A,(<K and p=U,<, A,,. Each A,, is defined using a finite 

sequence of parameters p,,. Let p be the d(p) cardinality of /3, i.e., the minimal 

ordinal such that some LdCpl definable map maps p onto p. (Note that d(P) = p 

and p = @ are possible.) Let p be a finite set of parameters from which one can 

define such a map. Let D = p U{p}U tJ,+, p,,. (If p = d(P) = p we omit it.) 

Let M be the Skolem hull in LdCpj of D U K (i.e., all elements definable from 

D U K). Since M< Ldo,, M is isomorphic to a structure of the form L, for some 

6 G d(P) by the well known collapsing map h. 

Assume the claim for a while. Hence h is the identity on /3. Hence if we apply 

in L, the definition of A,,, using h(p,,) as the sequence of parameters rather than 

p,,, we get A,, again. Hence each A,, is La-definable, and since fi = U,<,, A,,, we 

get d(P)<& Therefore 6 = d(p). Let 6 = h”D. Since every member of M is 

definable in M from D U K, every member of h”M = L,,,, is definable from D U K, 

and we get that fi can be taken as a set D,,,, satisfying the requirements of 

Lemma 10.1. Since Ifi\<-w, we proved y <d(P). So we just have to verify the 

Claim. 

Since p s p p = lJ,<, (A,, fl p). Note that p, being an L,o,-cardinal, is admissi- 

ble. Also by standard facts about the constructible hierarchy, A,, tl6 E L, for 

s <p. 

It follows that the unique function mapping A,, tl p order preservingly onto 

some ordinal <K is definable in L,,,,, from p,,. (For 6 < p the function mapping 

A,, nS onto its order type is in LO by admissibility. Since this function is unique 

for each S < p, and the function for different S’s are mutually coherent, one can 

define their union which is the required function for A,,.) We conclude that every 
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ordinal less than p is definable from some p,, U K U{p}. (This ordinal is a member 

of some A,. The function mapping A,, onto some 6 <K is definable from p,,. 

Hence this ordinal is definable from some p,, and some ordinal <K.) 

Using the fact that from p one can define a map from p onto /3, we get that 

every member of fi is definable in L,,,, from D UK. Hence p CM. 0 Lemma 

10.2 

corollary 10.3. For all /3 < K+, d(d(B)) = d(P). 

Proof. By Lemma 10.2, d(d(B)) is the minimal ordinal y>d(P) such that there 

exists a set D, satisfying Lemma 10.1 for y such that lD,l~w. But y = d(P) 

clearly has all the required properties. q Corollary 10.3 

Corollary 10.3 is a special case of the next lemma. 

Lemma 10.4. Let y be the minimal admissible ordinal >d(P). Then for every 

d(P)sG<y d(6)=& 

Proof. We have to show that for every d(P)s6 < y we can find a set Ds E L8 

such that all members of L8 are first-order definable in (L,, E) from D, U K, and 

JD,JCW. The proof is by induction on 6. The case 6 = d(P) is covered by 

Corollary 10.3. If 6 = p+ 1 use the induction hypothesis by defining D, = 

D, U(p). For limit p, since p < y, p is not admissible. Since it is limit C-collection 

fails for it. Hence for some p < p, the minimal Z,-substructure of L, containing L, 

is isomorphic to L,. 

It follows that every member of L,, is &-definable from members of L,, hence 

we can take D, = DO U(p). (Dp exists by induction assumption.) 0 Lemma 10.4 

It was remarked by the referee that there is a close connection between our 

decomposition function d(P) and the critical projecta of 0, defined in [9]. There 

it is defined for each ordinal p a finite sequence {(pi, ni) ( i < l}, {pi ) i =S 1) {pi ) i S l} 

where pi is the &,_-projecturn of pi, pi is the X,-i-projecturn of pi, pi decreasing, 

Bo= P, no= 0, and (Pi+19 ni+i ) is picked to be minimal in the lexicographic order 

SO as to make pi+i <pi, and the sequence is as long as possible. Note that p1= K. 

One can show that the proof of Lemma 10.1 yields that the minimal cardinality of 

the set D, is exactly the maximal cofinality of {pi,_,, pi,, . . . , pl}U{pi, . . . , pi}, 

where j. is the minimal such that &,> p. Hence one can verify that d(P) is exactly 

pi where j is the minimal such that for j s i, cf(pi) = cf(pi) = o. 

We have noted before that being closed under the function d is a necessary 

condition for (L,, E) to have (DP2). 

Is it sufficient? It is almost sufficient as claimed by the next two lemmas: 

Lemma 10.5. Let d = (L,, E, . . . ) be an admissible structure such that K s a s K+, 
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cf(K) = w, (Y is closed under d, and let L, != . There exists a last cardinal. Then Sp has 
(DP2). 

Proof. Let 6 be the last cardinal in the sense of L,. Note that d(6) < (Y. Note that 
for a set of ordinals in L, of cardinality less than K, the function mapping it to its 
powerset is d-r.e. for 

x = 9(z) e 3g (g is one-to-one, g maps z onto some ordinal 

less than K AX ={g-‘(t) ( t E L,}). 

Note also that since (Y is admissible, there exists d(6) <p <a such that for every 
set of ordinals in Ld~G~+l~ there exists a one-to-one function in L,, mapping it onto 
some ordinal. hence the set B of all subsets of 8 belonging to LdCS)+l, having 
cardinality less than K is in Lp+,, hence in L,. Since every member of B has 
cardinality less than K, and the function mapping it to its powerset is d-r.e. we get 
B’ E L,, B c B’ and for z E B, 9(z) E B’. 

Define R(X, Y) by 

R(X, Y) -3f (f is one-to-one, f maps X onto a subset of 6 
A Y = cf~‘(z> 1 2 E B’}). 

R(X, Y) is _Zr(Sa) and for every X, 3Y R(X, Y) since 6 is a maximal cardinal in 
L,. Note that by definition of d(6), 6 is a countable union of members of B, hence 
if R(X, Y) holds, X is a countable union of members of Y whose powerset is a 
subset of y. Hence we verified (DP2). q Lemma 10.5 

We shall see later that Lemma 10.5 gives a necessary and sufficient condition 
for a structure of the form (L,, E) to have (DP2), i.e., we shall see later that if 
(L,, E) has (DP2), then L, != “there exists a maximal cardinal”. In case L, has no 
maximal element, then (L,, E) does not have (DP2), but it can always be 
expanded to an admissible structure satisfying (DP2). 

Lemma 10.6. Let cy be admissible K <a <K+, cf(K) = w, such L, I=. There is no 

largest cardinal, and a is closed under d. Then (L,, E) can be expanded by an 
additional predicate to an admissible structure satisfying (DP2). 

(We shall later see that Lemma 10.6 cannot be improved to an admissible 
structure of the form (L,, E , . . . ).) 

Lemma 10.6 was proved independently by S. Friedman. See [lo]. 

Proof. The additional predicate we introduce is the function x -+ P,“(x) where 
P:(x) is the set of all subsets of x, whose L, cardinality is less than K. Note that 
since L, has no largest cardinal P,“(x) E L, for every x E L,. (Since if x E Lo let y 
be the next La-cardinal after /3, then P,“(x) s L, and as can be easily verified 

C(x) E L,+,.) 
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We shall verify that (L,, E , P,“) is an admissible structure. The first fact to note 
is that if y is a successor of a successor cardinal in L,, then L, is closed under Pz. 

We claim that for such y, (L,, E, P: 1 L,) is a X,-elementary substructure of 
(L,, E, I’,“). Let x E L,, (say XE L, where p <y) and assume that some y E L, 
satisfies @(x, y, Pz) where @ is I&,. Let 6 be an L, successor, of a successor 
cardinal such that y E L8. In L, we can define an increasing sequence of elemen- 
tary submodels of (L,, E , P, 1 L,), (M, 1 a < K), where r7 is the successor L, cardinal 

of K, P:(M,)s M,+I, L, k IM, 1-c y, Lp U {y} E MO. Let A4 = UOL<i M,. Clearly 
L, kIMI < y, hence M is isomorphic in L, to some structure of the form (L,, E , 

Cl) where p c-y. (Note that y as a successor cardinal is supposed to be regular in 
L,.) Note also that P:(M) c M. (Remember that the length of the sequence 
(M, 1 . . .) is K.) Hence Q is really P,” r L,. Since LO E MO, x EL,,, hence if Jo is the 
isomorphic image of y, (L,,, E, P,” 1 L,)!=@(x, 1, P”: 1 L,,). Since p < y, we get 
(L,,E,PO: r L,)k@(x,jj,P: 1 L,) and we proved that (L,,E,PP: 1 L,,)-c.~(L,,E,PE) 
and thus the admissibility of (L,, E, Pz). 

The fact that (L,, E , Pz) has (DP2) is now very easily verified. Take R(x, y) 
simply to be y = P:(x). Since (Y is closed under d, every x E L, is a countable 
union of sets of cardinality less than K, hence sets in P,“(x). Note that if z has 
cardinality less than K in L,, its power set is in L,. Hence if z E P:(x), P(z) E 
P,“(x). 0 Lemma 10.6 

11. Phing down ordinals - revisited 

In this section we show (assuming V = L) that L, is closed under ordinals 
pinned down by sentences in L, n L, iff either CK is a limit cardinal or cf(la]) = w 
and (Y is closed under d. (Hence in the latter case, Lemmas 10.5 and 10.6 
guarantee that an appropriate expansion of (L,, E) satisfies (DP), hence Theorem 
2.1(c) is the best possible for this class of structures.) 

Theorem 11.1 (V = L). Let d be an admissible structure of the form (L,, E , . . . ). 

Then 
(a) h(Se) = a ifl either cy is a limit cardinal or K G CY =S K+ where cf(K) = o and CY is 

closed under d. 
(b) h,(d) = cx ifj 4 is X:,-compact and either cy is a limit cardinal or ICX~= K 

where Cf(K) = o and (Y is closed under d. 

Proof. The first fact to note is that (a) implies (b). Since if we assume that (a) is 
given, then a necessary condition for h,(d) = (Y is h(d) = cy. Moreover, d must be 
Xl-compact, otherwise one can easily pindown Q! itself by a XI-theory. (Using a 
particular counterexample to compactness.) On the other hand by Proposition 
3.3(iv) of Barwise [l, V II] if d is Z,-compact, then h,(d) = h(d), hence by (a) if 
either (Y is a limit cardinal or CI is closed under d, then h(d) = oz. (Note that if 
a! = K+, then d is not C,-compact.) 
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In proving (a) we prove first the ‘if’ part. If (Y is a limit cardinal, then by 
Barwise-Kunen [2], h(L,) < supB<, (2”)‘, but since CJCH holds in L and ar is a 
limit cardinal we get h(L,) s a. 

Now assume K < a s K+, Cf(K) = o and (Y is closed under d. Let cp be a sentence 
in L, fl L, pinning down ordinals (i.e., all the models of cp are well-ordered). 
cp EL, for some p <(Y. Since (Y is closed under d, d(fi)<a. Let y be the next 
admissible after d (@). Since a! is admissible, y < (Y. By Lemma 10.4, y is closed 
under d. (Note that if 6 s/3, d(S)cd(@)). In (L,, E) there exists a maximal 
cardinal, since every ordinal in L, can be mapped into d(p). Hence Id(S)\“? is the 
largest cardinal. By Lemma 10.5, (L,, E) satisfies (DP2) (hence (DP)). By 
Theorem 2.1(c) the ordinals which are models of cp are bounded below y, 
therefore they are bounded below LY, and the ‘if’ part of (a) is established. 

Now we prove the ‘only if’ part of (a). So assume h((L,, E )) = a. If (Y is a 
non-limit cardinal, say cy = K+, then if cf(K)>W, (Y can be pinned down by a 
sentence in L,, n L,. The construction of this sentence is by Chang’s trick, which 
is writing a sentence cp expressing 

(a) < is a linear order of the universe of the model. 
(b) U is a unary predicate such that < 1 U orders it in order type K. 

(c) f is a binary function, such that for fixed x, f(x, y) is a one-to-one function 
{y\y<x}onto U. 

(d) g is a ternary function such that for fixed x, z E U g(x, y, z) maps {y 1 y <x, 
f(x, y) < z} order preservingly into a proper initial segment of U. 

(K+t, <) can be easily expanded to a model of cp (noting that K is a cardinal), 
and any model of cp is well-ordered by < since Cf(K)>W, hence a decreasing 
sequence . ’ . < y1 < y0 must satisfy f(y,,, yi) < z for some z E U and all 0 < i (note 
that U has order type K). Hence g(x, yi, z) gives a decreasing sequence of 
members of K. Hence if a! = K+, then cf(K) = o, but then (Y is clearly closed under 
d. Hence we handled the case “CY is a cardinal”. 

If ff is not a cardinal, say K <a < K+, then Chang’s trick again yields that 
Cf(K) = co. We have to verify that Q! is closed under d. We shall establish this by 
showing that for all K <p < K+ one can construct a sentence in L,,, cpp, such that 
‘pp is a primitive recursive function of /3 and K, (hence if p < CY, qe E L, if (Y is 
admissible) and ‘pp pins down d(P). In fact ‘pp will characterize the order type of 
d(P) up to isomorphism. For the construction we need: 

Lemma 11.2. For every @ =Z y < d(B), (L,, E) can be represented as the direct limit 

of structures of the form (L,, E ) where 6 < /3, where the directed system is indexed 

by P,,(h) where h < K, (P,,,,(A) is the set of all countable subsets of h partially 

ordered by inclusion). 

Proof. Let /3 < y <d(P), and let 0, c L, be a set of minimal cardinality satisfying 
Lemma 10.1. Let A = ID,\. Note that A <K. By Lemma 10.2, since r<d(P) we 
have ID,1 >o. Let G be a one-to-one function mapping A onto 0,. For P E F’,,,,(A) 
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let I$, be the Skolem hull (in (L,, E )) of G”P U K. (M,, E) is isomorphic to a 

structure of the form (L,, E) where 6 < y. We claim that 6 < p. Let h be the 

collapsing isomorphism of M, onto L,. Note that every member of L, is 

first-order definable in (L,, E) from h”G”PU K. Hence D, can be taken to be 

countable. If p s 6 we get d(B) 6 6, which is clearly a contradiction. Hence 6 < /3. 

(L,, E) is the union of structures M,, where PE P,,(h). Hence the directed 

system induced by P,,(A), where for P we take the transitive isomorphic of M,, 

has (L,, E ) for its limit. q Lemma 11.2 

Lemma 11.3. There exists an L,, sentence qop (primitive recursive in p and K) such 
that all models of qp have the form (L,, E, . . . > for some 6 and for every 

fl =%.y< d(B), CL,, E) can be expanded to a model of qop. 

Proof. ‘pp describes the directed system given by Lemma 11.2. More specifically 

it expresses the following statements. 

(a) E is an extensional binary relation which satisfies the first-order sentence @, 

where @ is the first-order sentence, whose existence was proved by Boulos [3], 

which guarantees that our model, if it is well-founded is isomorphic to a structure 

of the form La. 
(b) cp, c,, c are individual constants which are ordinals (in the sense of E) such 

that cp is isomorphic to p, c, to K and cEc,. (c plays the role of A if Lemma 11.2.) 

(c) R is a binary relation such that if R(x, y) holds, then “y is a countable 

subset of c” such that Vyy ’ “R(x, y)~ y c y’r\ y’ is a countable subset of c -+ 

R(x, y’)” and such that Vx 3y (y is a countable subset of c AR(x, y)). 

(d) F is a binary function such that if y is a fixed countable subset of c, F(x, y) 
maps the x satisfying R(x, y) into I&, preserving E. 

By Lemma 11.2 for every /3 5 y < d(P), (L,, E) can be expanded to a model of 

‘pp. On the other hand we claim that every model of ‘pp is well-founded. This 

claim is proved as follows. Criven a model of cpp, M, (Lc, EM) is clearly 

isomorphic to (LO, E). Hence we assume without loss of generality that (LO, E)C 
(M, EM). Hence c, is realized as K and c as some ordinal less than K, A. Since K is 

a cardinal every subset of A is in L,, hence in M, and it is countable in M iff it is 

really countable. If . . . x,E”xIEMx,, then we can pick yi c A, yi countable such 

that R(xi, yi) holds, but then y = Uiio yi E M and it is a countable subset of A. By 

(b) we must have R(q, y) for i <w. But F maps {x 1 R(x, y)} into L,, preserving E. 
We get a contradiction to LB being well-founded. Hence every model of ‘pp is well 

founded. By (a) it is isomorphic to (L,, E ) for some y. 0 Lemma 11.3 

Lemma 11.3 is sufficient for the proof of Theorem 11 .l but for future 

application we need. 

Lemma 11.4. For all K < p < K+ there exists a sentence of L_I,!I~ primitive recursive 
in @ and K such that every model of I,& has the form (Ldo,, E, . . .). 
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Proof. & expresses the following statements: 

(a) E is an extensional binary relation satisfying @, (@ is as in Lemma 11.3). 

(b) R is a ternary relation, F is a ternary function cp, c, constants and c a 

unary function such that if y is an ‘ordinal’ 

0& 6 R,, F,, cp, c,, C(Y)) ~(PP 

where R, ={(z, w) 1 R(y, z, w)} and F,,(z, w) = F(y, z, w) and ‘pp is the sentence 

constructed in Lemma 11.3. 

(c) Cl, c2> c3, . . . , c,, . . . are constants such that every element is first-order 

definable from finitely many of the c, and finitely many ‘members’ of c,. (This is a 

sentence in &,.) 

Obviously by definition of d(P) a model of I/Q must have the form (Ld(pj, E 

,...). q Lemma 11.4 

The proof of Theorem 11.1 is now concluded. Since for all /3 <CY, (L,, E) 

contains a sentence pinning down d(o) (as the set of ordinals in a model of &, 

constructed by Lemma 11.4), we must have by h ((L,, E)) = a, d(P)<a and CY is 

closed under d. 0 Theorem 11.1 

Note that the proof of Theorem 11.1 was yielding some bounds on the ordinals 

which can be pinned down by sentences in p-logic, where p-logic is first-order 

logic such that the similarity type contains distinguished constants (c, 1 y < /3) and a 

binary relation < with the semantics < well-orders its domain in order type /3, 

and c, is the member of the domain of < determining an initial segment of order 

type Y, 
Let h(P) be the minimal ordinal not pinned down in p-logic. Then 

thdh’y 11.5 (v = L). If K < p < K +, cf(K) = w, then d(B)< h(p)sd#)’ (where 

d(P)’ is the minimal admissible ordinal above d(P)). 

Proof. Note that I& constructed in the proof of Lemma 11.5 is really a sentence 

in p-logic, hence d(P)< h(P). Since d(B)’ is closed under d we get h(P)< 

d(P)+. Cl Corollary 11.5 

A natural guess is that h(P) = d(P)’ however we have examples in which 

h(B) = d(P)’ as well as examples in which h(P) < d(p)‘. In fact: 

Lemma 11.6. For @ as above h(P)<d(P)’ ifl every subset of /3 which has a 

XI-definition in LdCpj) from {K, p, d(P)} is a member of LdCpj-. 

Proof. Note that LdCpj+ is closed under d and it has a last cardinal. Hence it has 

(DP). Therefore by Theorem 2.1 the set of validities in L,, f~ Ldo,+ is C1(LdcP)+), 

where the parameters appearing in the X:,-definition are those appearing in the 
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relations S and R witnessing (DPl) and (DP2) respectively. A simple observation 

(consider the proof of Lemma 10.5) will show that as parameters for a x1- 

definition of S one can take K, and for R K, 8, d(P). Hence the set of validities of 

L,, nLdcpj+ is % in IK, S, d(P)}. 
Note that if cp is a sentence in B-logic which pins down ordinals, then 

‘p*=‘P+ -[Ai<wci+l < ci] is a logical validity where {ci 1 i < w} is a sequence of 

new constants. (We are not distinguishing between cp and an equivalent statement 

in L_.) cp* is clearly in any admissible set containing /3 and it is primitive 

recursive in cp, and B. Since the logical validities of L, n Ldoj+ are sl(~, P, d(P)), 

we get that the set of all sentence in p-logic which pin down ordinals is 

X,-definable m Ldcpj+ from {K, p, d(P)}. This last set can easily be coded as a 

subset of p. Now assume that every I&(@, K, d(B))-subset of /3 is a member L,,,,+. 

In particular the set of sentences in B-logic which pin down ordinals. Denote this 

set by A. For cp in A one can define by a &(K, /3, d(P))-definition the supremum 

of all ordinals pinned down by cp. (Denote this sup by h(p).) An ordinal y is 2 

the sup of the ordinals pinned down by cp iff the sentence expressing ‘cp A “c is in 

the domain of < ” A l@,(c) (where QY is the canonical sentence of L_ 

characterizing order type y) is logically valid. Hence the minimal such y is 

X,(cp, K, @, d(p))-definable. 

By admissibility, since A E I&a)+ 

sup+(cp) I cp E A)< d(P)+, 

but clearly h(q) = sup{h(cp) 1 cp E A}, and the ‘if’ part of the lemma is verified. 

For the ‘only if’ part assume that h(P) < d(P)’ and let 3y cp(x, y, K, p, d(P)) be a 

X,-formula defining in L,o,d a subset of p which is not in Ldcpj+ (cp is 2,). Denote 

this subset of @ by B. For each S E B consider the sentence @a of @-logic expres- 

sing the following statements: 

(a) E is a binary relation for which KP holds. (KP is really an infinite theory, 

but using p-logic, in particular p SW, one can guarantee, possibly with additional 

predicates that E gives a model of KP.) 

(b) c is a constant denoting ordinal for which & holds where & is the sentence 

of p-logic, guaranteed to exist by Lemma 11.4, pinning down exactly d(B). 

(c) d is a constant, the minimal ordinal such that in Ld, there exists y satisfying 

cp(cs, Y, cg, c,, c) where c,, cB are the canonical constants of p-logic denoting K 

and p respectively. 

Clearly a model of a8 must contain an ordinal isomorphic to d(P), hence since it 

is a model of KP its well-founded part contains an initial segment isomorphic to 

L,o,+. Since 6 E B m L,(n)+ one can find y satisfying cp(S, y, p, K, d(P)), hence d in 

our model has order type which is exactly the order type of the minimal ordinal 

p(6) such that in L, there exists such a y. Hence Qjs can be used to pin down 

ordinals. 

Recall that B$ L,,,,+, hence SUP,,,~ p (6) = d(P)‘. (Otherwise we would easily 

have B E LdcPj+. ) Since p(6) for 6 E B can be pinned down by a sentence in p-logic 
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we get that h(p) = d(B)’ and we get a contradiction, proving the ‘only if’ part of 

our lemma. q Lemma 11.6 

Using Lemma 11.6 one can easily get examples both for h(b) = d(P)’ and for 

h(B) <d(P)‘. For instance if p = d(P) ( recall that d(d@))= p), then every 

member of Ldcp)+ 1s ’ sl-definable from members of p, hence one can easily find a 

X1-subset of p (no parameters are necessary) which is not in L,o,+, hence 

h(P) = P’. 
For another example take the minimal model of ZFC (actually large enough 

finite part is sufficient) containg K + 1. Let this model have the form L8. d(S) = S 

since every member of L, is first-order definable from K. Let p be the o,-th 

cardinal after K in L8 and let p be its successor in L8. We claim that d(p) = p. 

d(p) s F since every subset of p definable in L, is already in L, (recall that L8 is a 

model of ZFC), since d(6) = 6 once can find w-many members of L, of cardinal- 

ity <K whose union is p. On the other hand we cannot have d(p) < p because by 

applying Chang’s tricks inside La (using cf(p)>w) we can pin down p. Hence if 

d(p) < p, also d(p)+ < k, contradicting Theorem 11.1. Since, if pt is the next 

admissible after p, then p+ < 6, hence every subset of p definable in L,+ is already 

in L,, hence in L,. Thus by Lemma 11.6 h(p) < pt. 

12. Completeness revisited 

Corollary 2.1 asserted in particular that every admissible structure satisfying 

(DP) is validity admissible. In this section we show that this is the best possible for 

structures of the form (L,, E). Namely if such a structure is validity admissible, 

then it has (DP). Of course we cannot extend this result for structures of the form 

(L,, E,. . .) because (L,, E ) can be admissible for the validity predicate, even if L, 

does not have (DP). (For instance (Y = K+ where cf(K) > 0.) A similar question for 

&-completeness will be handled in the next part. 

Our first observation connects pinning down of ordinals and validity 

admissibility. 

Lemma 12.1. lf L, contains a sentence cp such that cp pins down some ordinal ba, 

then (L,, E) is not validity admissible. 

Proof. We show that if (L,, E) is validity admissible then every HI-predicate in 

L, is C1, which is clearly a contradiction. Let x EL, and cp a C,-formula such that 

L, klcp(x) but for some 6 > (Y, L, 1 q(x) if such exists. Without loss of generality 

fix x and cp such that 6 is minimal. Let q be a sentence in L_ 17 L, which pins 

down some /3 > cy. Let x be a sentence expressing the following statements: 

(a) E is a binary relation for which the sentence @ characterizing L,‘s holds. 

(b) c is an individual constant, “c is an ordinal”, q holds for c. (which means 

that cp holds for the order type of c). 
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(c) d is an individual constant, “d is an ordinal”. “d SC”. 

(d) e is an individual constant for which @, holds where @, is the canonical 

sentence characterizing x. (aX is defined by induction as 

. 

(e) e E Ld, Ld !=lcp(e). (In case no x an cp exists we drop (e) altogether.) 

Let p(z) be a fl,-formula. 

Claim. L, = p(z) holds for z iff the following sentence is a logical validity: 

~==x~vt(aj,(t)AtELd--f’Ld~P(t)‘). 

Proof of the Claim. Let (M, E) be a model of x. By (a), (Ly, E) is well-founded, 

hence isomorphic to some (Lp, E) (remember that ly pins down ordinals). Pick 

t E M, for which Q=(t) holds and t E L,. Since d =S c, (Ld, E) is isomorphic to some 

(L,, E ) and by our assumptions x, z E L,. 

Since L, ~TJY(X> (remember L, t=lcp(e)) we have y < 6 where 6 is the minimal 

for which L,!=q(x). By choice of x and cp, there is no &-sentence A such that 

L, klh(z) but LY bh(z). Hence we cannot have L, klp(z), but L, kp(z), hence if 

L,!=p(z) we must have L,\p(z). Therefore in our original model M we had 

Ld l= p(t). 
For the other direction if L, t=-~p(z), then one can easily construct a model of x 

which includes L, such that d = (Y, and (recall that ly pins down some ordinal ZCX) 

hence if we take t = z we get t such that G,(t) holds, t E Ld but “Ldklp(t)“. 

Hence the sentence in the claim is not a logical validity. q Claim. 

Now if LVnL, was lf,(L,) every fl,-formula p would be equivalent over L, 

to a Z,-formula, namely p(z) ++ CL, E LVn L, (Note that pZ is &-definable in L, 

from 2.) 0 Lemma 12.1 

Lemma 12.2 (V= L). Let ~4 be an admissible structure of the form (L,, E , . . . ) 

such that K<CYSK+. where cf(K) = o. Assume further that (Y is closed under the 
function d. Then A is validity admissible ifi the function d is Cl(&). 

Proof. Assume that d is C,(d), then clearly d has (DP). (DPl) because a! is 

closed under d. (DP2) because one can take as R(X, Y) the sentence 

$36 (xELyA8=d(y)AY=Ls+J. 

Hence by Theorem 2.1, Sp is validity admissible. 

For the other direction assume that d is validity admissible. Recall the sentence 

PO defined in Lemma 11.4 which characterizes the order type d(B). Also for 

y <(Y let a,, be the canonical sentence of L, characterizing order type y. (Note 
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that if p <cy, then To, @@ E L,.) Then 

y = d(P) ti “To + the ordinals of the model satisfy 

QY” is a logical validity. 

Since ‘r$ and aY are ZI-definable from q6 and @,, and since the set of logical 
validities is X,(a) we get that d is I’,(&). 0 Lemma 12.1 

Our goal is 

Theorem 12.3 (V = L). The following are equivalent (a > W, (Y admissible): 
(a) (L,, E) is validity admissible. 
(b) (L,, E) satisfies (DP). 
(C) K<CYsK+ where cf(K) = w, and a is closed under the decomposition d and d 

is &(L,). 
(d) K<asK+ where cf(K) = w, a! is closed under d, L, k there exists a last 

cardinal or K = co. 

Proof. By Lemma 10.5, if K <a <K+ where cf(K) = o, (Y is closed under d and L, 
has a last cardinal, then (L,, E) has (DP2) (hence DP). (Similarly if K = w.) By 
Theorem 2.1, (L,, E) is validity admissible. Hence by Lemma 12.1, d is ,%,(L,). 

So we proved (d) + (c). 
(c)*(b) should be obvious by now. (Actually it was proved in the proof of 

Lemma 12.2.) 
(b) + (a) is a consequence of Theorem 2.1. 
Hence we just have to verify (a) * (d). So assume that (L,, E) is validity 

admissible. Now use Lemma 12.1. It follows that no sentence in L, pins down an 
ordinal aa, i.e. h((L,, E)= a. By Theorem 11.1 either (Y is a limit cardinal or 
K<LYsK + where cf(K) = o and (Y is closed under d. Our first step in proving 
(a) + (d) is to rule out the possibility “(Y is a limit cardinal”. So assume that 
heading for contradiction that (Y is a limit cardinal and (L,, E) is validity 
admissible. 

Lemma 12.4. Let (Y be a limit cardinal, then the set of cardinals <CY is not Z,(L,). 

Proof. Suppose that the set of cardinals <(Y (denote it by Card) was Z,(L,). Then 
every IIT, would be X1(L,) because for cp, a III-formula, 

cp(x)++3~ (pECardr\xEL,AL,~cp(x)) 

which is a clear contradiction. q Lemma 12.4 

Now use the fact that the (Y is validity admissible. We claim that Card is C1(L,), 
because let F be the sentence expressing: “F is a one-to-one function of the 
domain of <, where < is a linear ordering onto a proper initial segment of 
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itself”. Then: 

p E Card c, “QD -+ 1 TV” is a logical validity. 

(@@ is the canonical sentence characterizing ordering of order type p.) 

If LVtl L, is Z,(L,) we get CardE X1(La), which contradicts Lemma 12.4. 

Hence we conclude that if (I,, E ) is validity admissible we must have K <a c 

+ where d(K) = o and (Y is closed under d. By Lemma 12.2 we get that d is 

;1(L,). The proof of (a) -+(d), hence of our theorem, will be concluded by 

showing 

Lemma 12.5. Let K <a S K + where Cf(K) = o, and K > o, a is closed under d, then 

if d is C1(L,), then L, b”there exists a last cardinal”. 

Proof. Assume that (L,, E )k“there is no last cardinal”. Let 32 cp(x, y, z, p) be a 

X,-formula defining x = d(y), where cp is &, and p is the parameter. Let p E I+ 

where fi > K and let fi’ be the L,-cardinal which is the successor of IpIL=. By 

assumption 

L, k3.z cp(P, d(B+), z, P>. 

Assume z witnesses the above statement, z EL, where y > d(P’). Consider the 

structure M = (L,, /3, d(B)‘, z, p). In L., one can find an elementary substructure 

of M, N, such that INIL- = (PI, L, EN, and such that N 0 /3’ is an ordinal having 

cofinality wl. (Here we used K >o.) 

(Note that if p’ is regular in I+, then every subset of p’ of cardinality jBIL-, is 

bounded in L,+. N is constructed by defining in L, an increasing sequence of 

elementary submodels of M, (N, I p <w,), where each of them has cardinality 

IPI”“, and such that sup(N, n/3’) E N,,,,. N is l-l,<,, N,.) 

N is the isomorphic to the structure of the form fi = (L,, q, p, 2, p) by the usual 

collapsing isomorphism. Note that n = N n/3’ and that p = p since p E L, G N. 

Since I? can be elementary embedded into M we have 

By definition of cp, p = d(q). In particular d(q)<& 

By definition of the decomposition function d, in L, there are subsets of n, A,, 

for n < o, such that IAnI < K and lJ,<, A,, = q. 

Recall that cf(n) = wl, hence for some n <CO, A,, is cofine in q, its order type 

< K =C q. Therefore 

LS bq is singular. 

But since n is mapped to @’ in the elementary embedding of fi into M, we have 
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L, bp’ is singular which is a clear contradiction. 0 Lemma 12.5 Cl Theorem 

12.3 

It follows from Theorem 12.3 combined with Lemma 10.6 that we have a 

structure of the form ~4 = (L,, E , . . . ) which has (DP) but (L,, E) does not have 

(DP). (We can find a! closed under d such that in L, there is no last cardinal. For 

instance the minimal (Y >K,: satisfying that there are w cardinals is such an a.) 

On the other hand the proof of Theorem 12.3 can show that if d = (A, E , . . . ) 

satisfies (DP), then (assuming V= L) a! = o(A) is either a limit cardinal or 

K<CY(K+ and cr closed under d. Hence (L,, E)= LA can be expanded to an 

admissible structure having (DP). 

The analysis we have done in this section allows us to give (in V= L) an 

equivalent definition of (DP) and countably decomposability for admissible struc- 

tures of the form (L,, E, . . . ). 

Theorem 12.6 (V = L). (a) An admissible structure of the form ~9 = (L,, E , . . . ) 

has (DP) ifj either (I) (Y is a limit cardinal and the function x 4 9(x) (note that in 

this case L, is closed under the function 9) is C,(a), or (II) K <a S K+ where 
cf(K) = w, cy is closed under the function d and d is c,(a). 

(b) d as above is countably decomposable ifl one of (I) and (II) above holds and 

cf(a) = w. 

Proof. (b) follows easily from (a), because if L, is a countable union of its 

members iff cf(cz) = w. Clearly if (I) or (II) holds, then I has (DP) ((I) is handled 

in Example 2.4, (II) is handled by the proof of Lemma 12.2) and the ‘if’ direction 

of (a) is verified. 

Assume that .& = (L,, E , . . . ) has (DP). By Corollary 2.2, h(A) = o(A). By 

Theorem 11.1 either cy is a limit cardinal or K <a S K+ where cf(K) = w and (Y is 

closed under d. By Corollary 2.2 again d is validity admissible, hence by Lemma 

12.2if K<(Y== K+ where Cf(K) = o we must have that d is z,(a). Hence if (Y is not 

a limit cardinal case (II) holds. If (Y is a limit cardinal we shall use 

Lemma 12.7 (V = L). Let d be a structure of the form (L,, E , . . . ) such that cy is a 

limit cardinal, then d is validity admissible ifi 9 1 L, is Z1(4. 

Proof. If 9 1 L, is X:,(a), then & has (DP), hence by Theorem 2.2 it is validity 

admissible. If d is validity admissible, then given y, x, one can (in X,(L,) way) 

find a sentence (P~,~ in L,, il L, such that y =9(x) iff (p._ is valid. (cp,,, has a 

binary relation E, and expresses the fact that if E is extensional such that 

(dam(E), E) is isomorphic to (Tc(x), E) and P is a unary predicate on dam(E), 

then P ‘appears’ in y.) 

Hence y =9(x) iff ‘pX,Y E LV, therefore y = B(x) is A-r.e. Cl Lemma 12.7 

Our theorem is established since A is validity admissible (having 

DP) q Theorem 12.6 
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13. Characterizing W(X) where X E K 

In Section 8 we got as an application for Theorem 8.1 the fact that if (Y is 0(.&e) 
for some countably decomposable structure .& where K <a < K+, then (Y = (Y(X) 
for some XG K. In this section we prove the opposite implication. (As we 
mentioned in Section 8 the results of this section were independently obtained by 
Sy Friedman .) 

Lemma 13.1 (V= L). Let cf(K) = 0 and let Xr K. Then (L,,,,(X), E) is counta- 
bly decomposable. 

Proof. 54 = (L ,&X), E) satisfies the requirements of Lemma 2.6 where for D 
one takes L,. Recall that since we assume V = L, x E L, +9(x) E L,. Also 

LK = u,<, L,, if (K, 1 n Co) is a cofinal sequence in K. Also L, is a c-max 
element of d, and d is projectable onto L,. Cl Lemma 13.1 

It follows from Lemma 13.1 that cf(a!(X)) = o. Remember that Lecx,~ 
L,,,,(X), hence by Theorem 2.1(c) no ordinal aa is pinned down by a 
sentence in L,(,,. Therefore, by Theorem 11.3, a(X) is closed under d. 

Theorem 13.2 (V=L). If K<CC<K+, a admissible cf(K) = o, then the following 
are equivalent: 

(a) Q! = a(X) for Some XG K. 

(b) cf(a) = w and cx is closed under d. 
(c) (L,, E , P) is countably decomposable for appropriate predicate P. 
(d) (L,, E) satisfies the Barwise compactness theorem with ordinal omitting. 

Proof. In Lemma 13.1 and the remarks following it we actually proved (a) -+ (b), 
(b)*(c) follows from Lemma 10.6, (c)+(d) follows from Corollary 2.2 and 
Theorem 8.1. (d) * (a) was essentially proved when we made the application of 
Theorem 8.1 in Section 8. Cl Theorem 13.2 

Sy Friedman in [lo] gave additional equivalent definitions of the ordinals 
described by Theorem 13.2, in terms of the sequence of ‘critical’ projecta of (Y. 
Also in that paper he characterizes ordinals K < a < K+, (Y = a(X), X 5 K where 
cf(K)>W. (The case K regular was handled in the first part of his paper.) We did 
not attend this problem (cf(K) #o) at all. 

PART III 

14. Stable Compactness 

As we described in the introduction, there is no hope of getting that an 
admissible structure d is Z,-compact just if it is countably decomposable. 
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Because in view of Stavi’s result [25] many L,‘s are C,-compact even though they 

definitely do not have (DP). Our feeling that this compactness is accidental and 

not an intrinsic property of the admissible structure studied, motivated the 

following definition. 

Deli&ion 14.1. An admissible structure .4= (A, RI, . . . , R,) is stably Z1- 
compact if every admissible expansion of .& (i.e., an admissible structure of the 

form (A, R1, . . . , R,, Q1, . . . , Cl,,>) is Z,-compact. Note that we just consider 

expansions of d (not extensions!), i.e., adding more relations, which must be of 

course amenable, i.e., if R is a relation introduced, then R nx E& for every 

XESJ. 

Clearly every countably decomposable admissible structure is stably X1- 

compact, because every expansion of such a structure is countably decomposable 

and hence by Corollary 2.2 it is X,-compact. 

There is another noteworthy class of stably X,-compact structures. Namely let K 

be a weakly compact cardinal (see [15] for definition) and let d be an admissible 

structure, d = (A, E , Q1, . . . , Q,,), A E H(K), IAl = K, and every subset of d of 

cardinality less than K included in an A-finite set. Then d is stably C,-compact. 

In fact the conditions imposed on d guarantee that any admissible expansion of & 

satisfies X,-separation. (Let 93 be such an expansion, x EA, cp(y, z) a A,(93)- 
formula. Since 1x1< K there exists a transitive set t E A such that (tl < K and if z E x 

and 3y E A 93 Icp(y, z), then 3y E t 93 kcp(y, z). By our assumption we can assume 

without loss of generality that t E A (if necessary we pass to a super set). Hence 

(2 I 2 E x7 93 13Y cp(z, Y)> = 12 I E x $8 b3y E 1 cp(z, y)} which by A,-separation lies in 

A.) Let TzAnL,, be _E:,(%?) where 93 is an admissible expansion of d. By 

definition of weak compactness, if T does not have a model, some b s T, lb\ < K, 

does not have a model. Note L,, fl A G L,,), but for some a E A, b E a. By 

X,-separation for 93, T n a E A. Hence some A-finite subset of T does not have a 

model and 93 was verified to be Xl-compact. 

The main theorem of this part is that these two cases exhaust all possibilities of 

stably X,-compact admissible structures of the form (L,, E, RI,. . . , R,, . . .) if 

one assumes V = L. 

Theorem 14.1 (V= L). Let d be an admissible structure of the form (L,, E, 
RI,. . . , R,). Then SQ is stably X,-compact if and only if either: 

(I) CY is a weakly compact cardinal, or 
(II) CY is a limit cardinal, cf(a) = o and 9 1 L, is S,(a). 

(III) K<Ct!<K+ where cf(K) =cf(c~) = o, CY is closed under the function d and 

d r L, is X,(4. 

Using Theorem 12.6 we get 
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Corollary 14.2 (V= L). Let d be an admissible structure of the form (L,, E , 

R,, . . . , R,). Then & is stably &-compact if and only if either ct~ is a weakly 

compact cardinal or 1 is countably decomposible. 

Proof of Theorem 14.1. The ‘if’ part of Theorem 14.1 follows from the remarks 

before the theorem (for the weak compact case) and Theorem 12.4 and Corollary 

2.2. Hence we just have to prove the ‘only if’ part. So assume that 1 is stably 

Z,-compact. 

Case I: CI is regular. If (Y is not weakly compact, then some Tc L, n L, 
witnesses that (Y is not weakly compact. Namely T does not have a model, but 

every subset of T of cardinality less than (Y has a model. But since a is regular, 

every La-finite subset of T is of cardinality <a. Hence (L,, E , RI,. . . , T) is not 

X,-compact, but it is clearly admissible, since a is regular and by well known 

facts, (we assume V = L), T fl L, E L, for p <(Y. 

Case II: (Y is singular. In this case we show that either (Y is not stably 

X,-compact or (I) or (II) holds. 

We shall use a variant of the combinatorial principle 0 introduced by Jensen 

[14] and proved by him to hold in L. See also [24]. . 

Theorem 14.3 (Jensen [14]) (V= L). One can assign to each singular limit ordinal 
(Y a set C, E (Y such that: 

(a) C, is a closed unbounded subset of CL 

(b) The order type of C, is less then a. 
(c) If 6 is a limit point of C, then L, I= /3 is singular and C, = C, 17 6. 
(d) C, is uniformly definable from (Y in Lp(orj+I where /3(a) is the first ordinal 

such that L,,,, k cx is singular. 

Note. The way Theorem 14.3 is phrased in [14] or [24] does not yield that if p is 

a limit point of C,, then L, I= fi is singular, and that C, is uniformly definable from 

Q! in &a)+1 but easy checking of Jensen’s proof show that it holds for the C,‘s 

defined by Jensen. 

For the rest of this paper we fix an assignment (C, 1 a singular) satisfying 

Theorem 14.3, and for a! singular we define y_ = the order type of C,. The 

following theorem is the main fact we need to conclude the proof. We shall delay 

its proof to the next section. 

Theorem 14.4 (V = L). Let d be an admissible structure of the form (L,, E , . . . ). 
Assume that cy is singular. (Hence C, and ‘ya are defined.) We can expand d to an 
admissible structure 99 = (L,, E , . . . , G) such that G s a! and 

(a) G is a closed unbounded subset of a. 
(b) If /3 is a limit point of G, then either Se r LO = (Lp, E, RI 1 L,, . . .> is not 

admissible or L, k /3 is singular and y. # ye. 
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Theorem 14.1 will be proved by using an appropriate forcing notion, and 

getting G from a sufficiently generic filter over &. For our given & assume that we 

picked G satisfying the conditions in Theorem 14.4 and 93 is the admissible 

structure (L,, E, RI,. . . , G). The treatment of Case II will be divided into four 

subcases which are not mutually exclusive. 

Subcase Ila: h(L,)>a. I.e., some ordinal bigger than (Y is pinned down by a 

sentence in L,, !P. In this case we claim that S is not Xl-compact. Hence d is not 

stably X1-compact. We shall construct a theory T witnessing the fact that 3 is not 

X1-compact. 

We first construct a theory T, expressing the fact that a model of it is an end 

extension of $33. (This construction applies generally to any admissible structure 

and we shall use T, for other admissible structures as well.) T, has a binary 

relation symbol E (representing E) as well as a relation symbol R for every 

relation appearing in 93. We have also a constant c, for every x E L, and another 

constant c. TB will express the following facts: 

(I) E is an extensional relation such that KP holds for E with all other 

predicates. 

(II) v = L. 

(III) For each x EL, we have a sentence Vz (z E c, H Vyax z = cy) and if R(x) 

holds, then R(c,) E TB. If -R(x) holds, then -IR(c,.) E Tgg. 

(IV) c, EC for every x E L,. TB is clearly Z,(B). Our theory T will be TB 

together with 

(V) p (recall that 9 pins some ordinals ~a). We assume that all the W 

relation symbols of v’ including ‘<’ do not appear in 93. 

(VI) f is an order preserving function from the E ordinals into the field of < . 

(VII) G is a closed unbounded class of ordinals and if x is a limit point of G, 

then either (L,, R1 1 LX,. . . > is not admissible or x is a singular ordinal such that 

if we define C, (using the uniform definition of the C,‘s) we get a closed 

unbounded subset of x having order type # q,. 

T is clearly X,(93). Every La-finite subset of T has a model because if t E L,, 

t c T, we can expand % to a model of t by interpreting c, as x, c as L, where 6 is 

large enough such that if c, appears in t x E L,, and we interpret the relations 

appearing in ?Jf such that we get a model of q with the order type of < bigger 

than a. We let f be any order preserving function from (Y into the domain of < . 

The handling of this subcase is concluded by: 

Lemma 14.5. T has no model. 

Proof. A model of T must be well-founded because 9 pins down ordinals, Hence 

it is isomorphic to a structure of the form (LO, E, RI, I&, . . . , C?). Clearly, by 

(III-IV), Ri rl L, = Ri, C? fl a! = G. Since G is unbounded in (Y, (Y is a limit point of 

G. Since (L,, E , RI fl L, R, fl L,, . . .) is admissible, we must have by (VII) that 
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L, ba! is singular. Hence if @(cl) is the minimal ordinal such that Lp(ajk~ is 

singular we have /3(a)< /3. Hence C, defined in L, is the same as the real C,. 

Therefore it has order type ?/cl. We have found a limit point of G, contradicting 

the conditions imposed on G by (VIII). 0 Lemma 14.5 q Subcase IIa. 

Subcase IZh: cf(a)> w (CY singular). Also in this case we claim that d is never 

stably X,-compact. We form %3 as before by expanding d as before using G 

satisfying Theorem 14.4. We again claim that %3 is not C,-compact, hence d is not 

stably C,-compact. The theory which will witness this is a small variant of T, 
defined above in Subcase IIa. Namely we take Tm together with (VII) of T. Like 

the previous case, every La-finite subset of T has a model. Again we finish this 

case by showing 

Lemma 14.6. T has no models. 

Proof. Suppose T has a model of the form (M, E, l?,, . . . , I?,, C?). This proof is 

different from the proof of Lemma 14.5 because (M, E) cannot be assumed now 

to be well-founded. But we know that the ordinals of M have a maximal initial 

segment which is well-founded. Without loss of generality we can assume that this 

initial segment is some ordinal @ and that L, EM. By definition of T (recall 

T%cT), paa hence L, c M and E 1 L, = E r L,, . . . We shall, in what follows, 

misuse the language by pretending that (M, E, . . . ) is a standard model of KP. For 

instance we shall systematically confuse x EM and {y 1 y Ex}. We shall use 

superscript M for relativizing different set-theoretic notions to M. Thus Ly is the 

element of M considered by M to be ‘L’ of the M ordinal z. 

We distinguish two cases: 

Case A: cy < p. Hence cy E M. Since G = G tl L, and G is unbounded in a, we 

get as in Lemma 14.5 that LEG. Since l&nL,=R, for i=l,...,n, 

(L,, E,%nL,,..., l?, 1 L,) is admissible. Hence Mt=a is singular A the order 

type of C? # Y-. 
We shall use the following fact which was called Lemma 8 in [21]. 

Fact. Let (M, E) be a model of KP+ V= L. Let c11 be an ordinal in the well- 

founded part of (M, E), with cf(a!)>o. lf (M, E)kcu is singular, then p”(a) is in 
the well-founded part of M. Hence PM(a) = p(a). (Recall that I is the minimal 

ordinal such that Lp(ajk~ is singular.) 

(The proof uses [14] to represent, in M, L$, as a directed limit of structures of 

the form (L,, E), y <a, where the direct limit is indexed by 6 <cy, ordered by 

their natural order. Since cf(a) > o every countable set of elements of the directed 

limit is already in one of the members of the directed system. Hence L$) is 

well-founded.) 

Since the real /3(a) is in M, we get by the uniform definability of Cm’s that 
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Cy = C,, and we immediately get a contradiction to our assumption that the order 

type of CE # ye. 
Case B: (Y = @. In this case we follow an argument we have used in [20]. (See 

also Section 1 in [21]. Since G is unbounded in M, we let y be a non-standard 

limit point of G. Note that since M is a model of KP, hence ‘amenable’, we get 

that Gn(y+l) as well as Riny for 1 < i G n are ‘in’ M. (What we really mean is 

that for some z E M, Vt E M, t E x H t E C? A t E y. Similarly for R,.) Since every 

limit point of G n (y + 1) is singular in M and Ml= KP, there is z E M such that 

G fl (y + l), l?, n y, . . . , &fly belongs to I,: and Lh: k“every limit point of 

G n ( y + 1) is singular”. Let H be the set of all elements of Ly first-order 

definable in (Ly, E) from y, G fl y, R, n y, and from members of CY. By Lemma 2 

in [20] we get that (H, E) is well-founded. Hence it is isomorphic to a structure of 

the form (L.,, E). Let h :(H, E)+ (L,,, E) be the collapsing homomorphism. Note 

that for 6 < cy, h(S) = 6. Hence CK < h(y) and that h(G fl y) ncz = G. Therefore, 

(L,, ~)!=a is a limit point of h(Gn(y+l)>. 

(Recall that G is unbounded in a.) 

Similarly h(J?, fl y) n L, = Ri for 1s i S n. 

By construction of z and M we get (L,,, E )k“every limit point 6 of 

h(G n (y + 1)) is either such that (L,, E , h(R, n y) fl L,, h(&n y) n 6, . . . > is not 

admissible or 6 is singular and the order type of C,# y,“. 

Hence we get 

(L,, E)I=(Y is singular and the order type of C, # ?/u. 

But C, in the sense of L, is the real C, and we get a contradiction. 0 Lemma 

14.6 q Subcase IIb. 

Subcase UC: Case II holds, i.e., (Y is singular, but Subcases IIa and IIb fail. Hence 

in this case h(L,)= (Y and cf(ar)=o. By Theorem 11.1 we know that since 

h(L,) = cx we have that either a! is a limit cardinal or K <a < K+ where cf(K) = w, 

and (Y is closed under the function d. For each of these two possibilities we shall 

need one of the following two lemmas. 

Lemma 14.7 (V = L). Let CY be a limit cardinal. Let d = (L,, E , RI, . . . , R,) be an 

admissible structure which is Xl-compact. (Note that Sp is closed under the power set 

operation x -+9(x)). Then the expansion of & by the power set operation is 

admissible. 

Proof. Since CK is a limit cardinal, the structure d expanded by the power set 

operation namely 93 = (L,, E , RI, . . . , R,,9) is amenable. So we just have to 

verify the Cl-bounding axiom. Let q(z, y) be a A,-formula in the language of 3, 

and let a EL, be such that Z!=Vz E a 3y cp(z, y). We have to show that there 
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exists a t such that 

3kVz E a 3y E t q(t, y). 

Consider the theory 

T&U {“I’ is the power set operation” (namely: 

VxVyy=P(x)++Vz(zEy++Vt(tEz~tEx))} 

U(“13t Vz E c, 3y Et cp(z, y)“}. 

(Recall that c, is the constant mean to denote a.) (T, was defined for any 
admissible structure d above in Case IIa.) 

T is clearly Z,(d). Any d-finite subset of it, T’, has a model, namely $8 
expanded by an interpretation of the constant c as some Ls (6 <a) containing all 
x’s such that c, appears in T’. We assumed that d is &-compact, hence T has a 
model.V=(M,E,R, ,..., R,,,P ,..., c). Without loss of generality L, GM. Since 
OL is a limit cardinal, the interpretation of p, restricted to L,, must be the real 
power set operation. Since L, is closed under the real power set. Let c be the 
interpretation of the constant c. Note that x E c for x EL,. Also Ri = L, n fii. 

Hence it follows by assumption that 

%‘kVz E a 3y EC cp(x, z), 

which clearly contradicts %‘l= T. Cl Lemma 14.7 

The next lemma is similar in character. 

Lemma 14.8. Let K < CK =C K+ where cf(~) = o. Assume that (Y is closed under the 

function d. Ler SB be an admissible structure of the form (L,, E , RI,. . . , R,,), which 
is &-compact. Then the expansion of I by the function d, namely 93= 

(La, E, RI, . . . , R,, d) is admissible. 

Proof. We first show that 93 is amenable. We have to show that for y <a, 
d r y E L,. If there exists a last cardinal in L,, then by Lemma 10.5, (L,, E) has 
(DP). If not then by Lemma 10.6, (L,, E) can be expanded to a structure having 
(DP). Over such a possibly expanded structure d must be & (by Lemma 12.2). 
Since d is a total function (cy is closed under d!), it is Al, hence it follows that for 
y <(Y, d r y E L,. Now we have to show X-reflection for 93. Let cp(z, y) be 
A,-formula in the language of d such that for some a EL,, Zl=Vz E a 3y cp(z, y) 
but (heading for contradiction) 

Recall that by Lemma 11.4 for all K < 0 < K+ there exists a sentence of L,, I/Q, 

which is primitive recursive in 0, and &, is consistent, all of its models have the 

form GM,~, E, . . . ) and it has a finite similarity type. Expand the language of T 

by introducing an extra symbol for every symbol appearing in the language of 
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I&‘)s, but with arity which is larger by one from the original arity. Thus if R is a 
ternary relation R introduced is quadruple relation etc. For p < cx let Q@(x) be the 
formula expressing “I& holds in (L_ E, RCS, . . . ) where RCB etc. is the cP section of 
R, namely if r is n + 1-ary it is the set of n-tuples x such that (cP, x) E R, where R 

is the relation corresponding to R. 

Consider the following theory 

T=T,u{Vx(x=d(/3)+@,(x))p<a} 

U{“At Vz E c, 3y Et cp(z, y)“}. 

(Recall that c, is the constant of Tsp mean to denote a.) 
T is I-r.e. because the function /3 + I& is d-r.e. Hence p + a6 is d-r.e. 
Like in the previous lemma every I-finite subset of T has a model. By 

&-compactness of d, T has a model. Again if V = (M, E, . . . , c, d, R, . . . ) is such 
a model we can assume L, GM and hence x E c for all x EL,. 

If %?i=x =d(p) for some p<a, then (LT, E) can be easily expanded to a model 
of $I~. Hence by the construction of & in Lemma 11.4, (Lz, E) must be 
isomorphic to (LdCpj, E). Since Ldcp, is in V, we must have x =d(B). Thus 
d 1 L, = d r L,. Therefore the interpretation of the constant c, c, is easily verified 
to satisfy %‘!=Vz E c, 3y EC cp(z, y) which clearly contradicts V!= T. Cl Lemma 
14.8 

To conclude the proof we need to use a Theorem by L. Harrington [13] which 
very elegantly replaced the previous arguments we had for the case we are 
handling. In order to state Harrington’s theorem we need 

Definition 14.2. An ordinag CY is called amenably admissible iff there is no 

function f : K -+ CY (K <a) whose range is cofinal in CY, and such that for all p < K, 

h r PEL. 

Note. If (Y is singular in L, then CY is not amenably admissible, since a function 
enumerating C, monotonically is a witness to (Y not being amenably admissible. 

Theorem 14.9 (Harrington [13]). Let d be an admissible structure of the form 

(L,, E,R,,..., R,) such that cy is not amenably admissible. Let Q be a relation on 

L, which is not .&r.e. Then for some relation T, (L,, E, RI, . . . , R,,, T) is admissi- 

ble, but (L,, E, R,, . . . , R,, T, Q) is not admissible. (In [13] Theorem 14.9 was 
formulated for the case &=(L,, E), but the proof applies as well for expanded 
structures.) 

Lemma 14.10 (V= L). Let a! be singular d an admissible structure of the form 

CL,, c,Rl,...,R,) 
(a) If (Y is a limit cardinal, then if 9 r L, is not .&r.e., then d is not stably 

&-compact. 
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(b) I~K<cx<K+, Cf(K) = w and (Y closed under d, then if d is not .&r.e., then d 
is not stably &-compact. 

Proof. (a) If 9 r L, is not &r.e. we can use Theorem 14.9 (since (Y is singular in 
L, it is not amenably admissible) and get T such that 53 = (L,, E , RI, . . . , R,, T) is 
admissible, but (L,, E , RI, . . . , R,, T, 9 1 L,) is not admissible. By Lemma 14.7, 
53 is not Z,-compact. Hence some admissible expansion of .& yields a structure 
which is not X1-compact. Hence d is not stably 2,-compact. 

(b) The proof is like in (a), replace 8 r L,, by d r L, and Lemma 14.7 by 
Lemma 14.8. Cl Lemma 14.10 

So we conclude from Lemma 14.10 that the only way &= (L,, E , R,, . . . , R,) 

can be stably 2,-compact ((Y singular) is that cf(a) = w and either (Y is a limit 
cardinal and ?? 1 L, is d-r.e. or K <a < K + and a is closed under the function d, 

which is s8-r.e. We conclude that in our case either (II) or (III) holds. 0 Case 
IIc 0 Case II 0 Theorem 14.1 (modulo Theorem 14.4) 

15. Proof of 14.4 by forcing4 

We start proving Theorem 14.4. So let the admissible structure d= 

(L,, E, R,, . . . > R,) be given, such that (Y is singular in L. 
Recall (see [14]) that pl, the Z1-projectum of d is the minimal ordinal <a! such 

that there exists an X,(a) one-to-one map of L, into pl. p1 can also be 
characterized as the minimal ordinal such that some &(.&)-subset of p, A, is not 
in L,. (Hence for p <a, every Z1(d)-subset of 0 is in L,.) Note also that 
cf(p,) = cf(a) and that if p1 < (Y, then p1 is the last La-cardinal. 

Let C = C, be the canonical closed unbounded subset of a, having order type 
<a, and such that if y is a limit point of C,, C fl y E L,. Let y = -ye be the order 
type of C. We have to introduce a closed unbounded subset of OL, G, such that 

(L,, RI,. . . > R,, G) is admissible, and for every limit point of G, 6, either 

&, E,RlnL*,..., R, nL,) is not admissible or 6 is singular in L, and the order 
type of the canonical C, is different from y. 

G will be introduced by forcing over 1. Our forcing notion will be the obvious: 
approximations to G which lie in L,, namely: 

Definition 15.1. Let (9, s) be the set of all closed bounded subsets of a, g, such 
hat g has a last element which is not a limit point of g, p, and such that for every 
limit point of g, 6, either (L,, E, RI rl L,, . . . , R, n L,) is not admissible or 6 is 
singular in L, and the order type of C, # y, 9 is partially ordered by g 5 h if g is 
an initial segment of h. ((9, 5) is clearly A,(&).) 

4 We acknowledge with thanks simplificiations in the proof suggested by the referee. 
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Our objective is to find a generic enough filter 3 in (‘9,~) such that if 

G = UgEu g we have that (L,, E, Rr, . . . , R,, G) is admissible. The fact that G 
will be unbounded in Q! will follow from the genericity of % because for any 
condition in 9, g, and for any 6 <rw, g can be extended to a condition containing 
some ordinal >6. 

Let us introduce some notations. If 3 is a filter in 9, we denote by G(S) the 
corresponding closed subset of (Y, i.e., lJgtU g. We say that 99 is unbounded if 
G(3) is unbounded. a(%) is the structure ~4 expanded by G(S), and S/Z(%) r 6 is 

(La, E,Rrf-lL,,..., R, nL,, G(S) nL,>. It also is clear that if G(S) is un- 
bounded, then for all 6 there is g E % such that 6 n G(S) = g tl6. The following 
lemma should be now obvious. 

Lemma 15.1. Let 23 be an unbounded jilter over (9, s). Let x E L, and q(x) a 

~l-formuZa in the language of d(S). Then d(%)i=q(x) ifl for some 6 <c-u, 

4%) 1 6 !=cp(x), hence for some g E 3, 

Definition 15.2. An unbounded filter 93 over (9, S) is called generic if for every 
AU-formula cp(y, z) (with parameters) in the language of ~4(%) and for every x E L, 

for some g E G either 
(a) for some y E x, for no extension h of g, no 6 < cy, and z E L8 we have 

(L,, ~7 R, r L, . . . > h)k= CP(Y, 21, 

or (b) for some 6 < cy we have 

(L,, E 9 RI 1 L, . . . > g>kVy E x 32 cp(Y, 2). 

Remark. In the definition above one could replace “for every x E La” by the 
seemingly weaker assumption “for every La-regular ordinal x”. The reason is that 
every element of L, is the image of some ordinal under a function that lies in L,. 

Hence we can restrict the definition to “x’s which are ordinals”. The reason we 
can restrict it to “an La-regular ordinal” is because if % is not generic, we let p be 
the minimal ordinal for which Definition 15.2 fails. We let cp(y, z) be the 
A,-formula witnessing it. We claim that p must be regular in L,. Otherwise let 
h : K + p be a function, h E L,, range(h) cofinal in p. Consider the AU-formula 
(which uses h as parameter) 

Ilr(t,y)++“hEL,A(L,,Rr 1 L,,...,R, b L,,Gny) 

Ny < h(t) 32 cp(y, 2)“. 

By minimality of p, Vt E K 3~ (cl(t, y). But since K <p we get that there exists 6 
such that 

Sh:144



Countably decomposable admissible sets 351 

but since h is cofinal in p we get 

(14,R1nI,,..., G n 6)bVz E P 3~ CP(Y, z), 

which is a contradiction. 0 Remark. 

So when constructing our generic filter we have to fulfil several assignments. 

Definition 15.3. (a) An assignment is a pair (p, q) where p <(Y and cp(y, z) is A0 

in the language containing symbols for E, Ri, . . . , R,, G (cp may contain parame- 

ters from L,.) 

(b) g E 9 fulfills the assignment (CL, cp) if (a) or (b) of Definition 15.2 holds for g 

(where in case (b) we can take 6 = sup g). (Note that if one 6 works for g, any 

larger 6 works. Note also that fulfilling on a given assignment is a IT,-statement 

about g.) 
By the remark above it is enough to fulfil those assignments for which p is L, 

regular. 

Our basic lemma is the following which uses arguments due to Harrington [13]. 

They replaced much more complicated arguments we had originally used. 

Lemma 15.2. Let K be an La-regular cardinal or an La-cardinal which is smaller 

than p1 (the X1-projecturn of Se). Let H = {&,, cp,) 1 p <rl} be a sequence of 
assignments, HE L, where q < K and each p.,, c K for p < 77. Let g E 9. Then some 

extension of g, h, fulfills all the assignments in H. 

Proof. We define by recursion in L, (hence by a C1 way) a sequence (8, ( 6 <x> 
(where ,y is some ordinal ~(11. We shall later use that x = a), g, E 9, for 6 < 6’ 

g, s g,, and a function fs : q -+ K + 1 such that for 6 <6’ and for p <q, fs(p) 
<f,,(p). To get started we let g, be any extension of g containing an element 

bigger than K. We let f&p) = 0 for all p <q. 
For 6 limit we try to define a common extension of all ga (/3 (8) namely we 

consider h = Up<s g,, and we try to set g, = h U {sup(h)} U {some ordinal p such 

that sup(h) is singular in L,}. The problem may be that G$ 9. (The only reason 

for that is that either sup h is regular in L, or that the order type of Csup(,,) = y 

and (Lp~h)7 R, 1 Lup(hl, . . .) is admissible.) If this happens we stop the construc- 

tion, i.e., we let x = 6. If g, E 9 we define fs(p) = ~upa<~ fp(p), for p < 7. 
For 6 = p + 1, we consider the following two questions. 

(a) Is g, E L6 and Lp bevery limit point of g, is singular? 

(b) Does there exist p < q such that f@(p) < EL,, and z E L,, g, s h E L, such that 

(&3,E,R1f-)LP,..., R, nL,, hP(pp(fa(p)> a). 

If the answer is “No” to either of these questions, then we let ga,, = g,, fp+l = 
fs. If the answer is “Yes” to both (a) and (b) we pick the minimal p0 witnessing a 

“Yes” answer to (b). For p0 we pick the minimal h EL,, witnessing a “Yes” 
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answer for (b). We define gp+i = h U(S). (Note that g,+,Eg.) We define 

&+i(~~) = fp(pO) + 1 and fn+i(~) = &(P) for P# po. 

This definition clearly gives a Ci(&)-function on some ordinal S(Y. Note that 
since fs(p) is increased by 1 at most at each step, we get that for fixed 
cfs(p) ( 6 Cx} is an initial segment of pp. 

Note also that since we increased g, just in case we already knew in L that 
every limit point of g, is singular, hence if for some limit 6 (gp 1 P < 8) is not 
eventually fixed, then the inductive definition of (ga 1 p <S), (fp 1 /3 <S), can be 
done inside (L,, E, R, fl L,, . . . ) and s~p(lJ~<~ gp) = 6. 

We claim that the (gp ( /3 CX) are defined for all p <cu (namely x = (Y) and that 
they are eventually constant. This follows from: 

Lemma 15.3. Let S=SCY be such that SB 1 fi=(L,,E,R,nL,,...,R,nL,) is 

admissible 6 > K. Then (gp 1 p <S) (if they are defined) are eventually constant. 

Our claim follows from Lemma 15.3 because if x < (Y, then (gn 1 p CX) are not 
eventually constant but then x = sup(lJa<, gn), hence by the lemma d 1 x is not 
admissible, hence UP.+ g, U(x) U{x + 1}~8 and our inductive definition goes 
behind x. 

Proof of Lemma 15.3. Assume that (gp 1 p < 8) are not eventually constant. (Note 
that this implies that g, EL, for a (6.) Let 

A={(p,p)lfor some b<&fpb)=~l. 

A E q x (K + l), A is clearly Z,(Se 1 6). (Recall that the sequence (fn 1 /3 < 8) is 
_Z,(& r 6).) Note also that for fixed p, {F ( (p, F)E A} is an initial segment of 
K +I. 

Claim. A E L,. 

Assume the claim, and use the admissibility of d r 6 to get PO < 6 such that for 
(p, p) E A, 3p <PO such that f@(p) = F. It follows that for all /3 < 6, p < q, f@(p) c 

f@,(p). Since for fixed p, f@(p) are increasing as B increases, fP = fa,, for S > So, but 
then by construction g, = gl% for fi > PO which is clearly a 
contradiction. q Lemma 15.3 modulo the Claim 

Proof of the Claim. Since A is c,(Sa r L,) the Claim is clear for the case K <pl, 

In case K is L, regular note that: 

B={p~p<~,{p}~~~A}isS~(~ 1 L,)aswellasC={pI(p,~)~A}. 

We claim that B and C are in L6. This follows from 

Lemma 15.4. Let K be a regular L,-cardinal, D a C,(.FZ r a&subset of q X K where 

q < K. Then either D E L, or for some p < q, {p ( (p, F) E D} is unbounded in K. 
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Proof. In L, one can enumerate monotonically the p’s such that in L, one 

‘generates’ a new member of D (i.e., in L, one finds for the first time evidence for 

the X1 fact that some element is a member of D). If the p’s thus enumerated are 

bounded in S, then D is Ao(A 1 S), hence DE La. Otherwise one can enumerate 

at least K + 1 such /3’s (p, ) p < K). Hence D contains a subset, D’, of cardinality K 

which is AO(d r 6). Hence D’ E L,. Since q < K, and K is regular in L, we must 

have some p E Ls such that {EL. / (p, (.L) 6 D’} has order type K. The same p works 

for D. q Lemma 15.4 

It follows from Lemma 15.4 that any subset of n, (consider it as a subset of 

n X (1) c q X K) which is Zl(Se r S) is in LB (we cannot have K-many values with a 

given p). In particular C and B are in La. Consider D = A - C X {K}- B x K. D is 

S,(.d 1 6). For every p <q, {P 1 (p, p) E D} is bounded in K (it is an initial segment 

of K + 1 and it is neither K nor K + 1 since otherwise we have p E C or p E B 

respectively). 

Hence by Lemma 15.4, DEL,, but A==DUCX{K}UBXK. Hence AE 

L,. q Claim. 

We resume the proof of Lemma 15.2. We have proved that the sequence 

(gp ( p <a> must be eventually constant. Let h be this constant, say h = gp. h is 

the required extension of g, because let &, cp,) be one of the assignments in H. 

We claim that h fulfills this assignment. If fp(p) = kp, then it means that for every 

5< pp we had some g,, and z such that 

(LP$ E, R1 “La,, * . . > go,hcp,(5, 2). 

Hence since 6 = sup(h) 2 & and h 3 g,,, we have 

V-6, E, Ri “La,, . . . , h)kcp,(S, z) 

and the assignment is fulfilled. 

If on the other hand fp (p) < I_L~, then no extension of h, h’, no 6 ( (Y and no z 

satisfy 

Because if such h’, z, 6 exist, then z belongs to La. We can assume that S > p and 

6 is large enough so that every limit point of h = g, is singular in La. Hence when 

we arrived to 6 + 1 in our definition of (g, \ 6 <c-u), we get answer “Yes” to both 

our questions, hence we must have that &+, # g,, (we added at least 6 to ga). 

Hence we got a contradiction to the assumption that h is the eventually constant 

value of (gp \ @<a). q Lemma 15.2 

For proving Theorem 14.4 we need one more fact, which follows from 0 (the 

version in Theorem 14.3). This fact, or actually much more than it, is essentially 

proved in [24] but we shall include a proof for completeness. 
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Lemma 15.5 (V= L). Let q be a regular cardinal. To each CY having cojinality IJ 
one can assign a closed unbounded subset D, of order type q such that for all B < (Y, 
D, n /3 E La. In particular in our proof we get also D, E C,. 

Proof. The proof is by induction on a. 
For a = n (which is the minimal ordinal of cofinality n) we take D,, = q. For 

genera1 cy consider C,. The order type of C, is y, where y <a. Clearly cf(y) = 
cf(a) = n. Hence D, is already defined. We let 

D,={PIPEC,, the order type of C, fl p is in 0,). 

D, is easily verified to satisfy the requirement. (Note that for /3 E C,, C, tl p E L,, 

hence if C, II p has order type p < y, D, n p E L, G L,. But then D, n p = 
(6 ( 6 EC, tl p, the order type of C,npn6ED,np}. Hence D,flpg 
L,.) 0 Lemma 15.5 

Another fact we shall need is definition by &recursion, provided we want a 
sequence of length less than the cofinality of a. 

Lemma 15.6. Let .d be as above, where cf(cr) = n. Let H be a &(&)-function. Let 
p <q. Then there exists in L, a sequence (a, 1 S < /3) such that for all 6, a, = 

H(& (a, I CL < 6)). 

Proof. We prove the lemma by induction on p. Non-limit p is easy. For limit p, 
(a, 1 6 <p) exists for p <p. Hence the sequence (a6 I 6 <p) is defined. The only 
problem is showing that (a, I 6 < P)E L,. Let H be defined by 32 q(z, x, y, t) 
where q is n,. 

By induction we define ,Y~ for p</3 XO. x0 be large enough so that for all 

P<P, (a* I S<PL)ELxo9 and in Lx,, we can find z, such that 

Il=cp(z, a,, CL, (a, I 6 -CF.)). 

x,, exists because cf(a) > p. 
For p limit we let xP be SUP*<~ ,y,. (Note x, <a because cf(a) > p x w.) 
For p = p x n + 6 + 1 (where 6 < p) we pick x0 as an ordinal bigger than x0-i 

such that & 1 x0 satisfies the following &-sentence 

~~vx(X#a*~132(P(Z,X,~,(apIP<~)). 

x,, exists by &-reflection since clearly Sk 9. Let x = supp<pXw x0. Again x < a. 
If we try to use in d r x the inductive definition like in d we get the same 

sequence (a, 1 p < 0). Hence the sequence (a, I p < p) is in L, 0 Lemma 15.6 

Proof of Theorem 14.4. We shall prove Theorem 14.4 by proving the existence 
of a generic filter in 8. Recall cf(a) = n. 
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Fix f:I+ + pt which is injective and Z,(d). By Lemma 15.5, fix D G a such 

that D is closed unbounded in (Y, the order type of D is q and for fi <a, 

D np EL,. Similarly since cf(p,) =cf(a)= rl and ~~<a fix EELS, E closed 

unbounded in pl, the order type of E is v and for p < pl, E fl fi EL,, G L,. Let 

(y@ 1 @ <q} be an increasing enumeration of the elements of E. We define by 

induction an increasing sequence (g, \ p < 7) of elements of 9. go = (q + 1). If g, is 

defined, we pick 6 > sup{g,}, 6 E D. Let h, = gB U(6). Let HP be the set of all 

assignments of the form (CL, cp) where, if a is the set of parameters appearing in cp, 

then f(a) < yp and either p < yp or in case pI is La-regular, p = pl. Clearly, since 

{x ( f(x) < yp} is C,(d) and yp < pl, {x ( f(x) < yp}~ L,, hence it is easily verified 

that HE L,. Note that the L,-cardinality of H is at most ya. Hence by Lemma 

15.2, there exists g which extends h, and which fulfills all the assignments in H. We 

let gpil be the minimal such g, (in the canonical well-ordering of L). At limit 

stage we take g, = USC0 g, U{w, x} where CL = ~up(U,,~ g,) and x is the first 

ordinal in which p is singular. (Note that since p is a limit point of D, p is 

singular in L,, because p <(Y, since p < 77 and cf(F) = cf(p) while cf(ti) = 7.) 

The sequence (g, ( 6 < /3) is in L,, because it can be defined by &,-recursion 

from D fl p and E n yp. (We use lemma 15.6.) The following observations explain 

why the recursive definition of (g, ( 6 <p) is a &-definition: from D n F and 

En%3 
(A) The condition h8 described above is A, in g, and D f7 p. 

(B) The set H,, as a set, is 2, in 6 and Eny,. 

(C) a?+1 is the minimal condition which extends h and which satisfies all 

assignments in H,. The statement a+, is an extension of h is A,, and to say that it 

satisfies all assignment in H,, is II, in 6 and E n /3 (since Ha is Z1). To express the 

fact that for every element of L,, smaller than a, it is either not a condition or 

does not satisfy all assignments in Hs is 2, in the above parameters. Hence gs+* is 

&definable from g,, 6, and D n p, En yp. 

(D) For limit 6, g, is clearly XI-definable from (g, ( p ~8). 

Hence our recursive definition is & and (8, ( 6 < /3) E La. Therefore g, E I., and 

clearly g, E 9. 

We let % be the filter in 9’ generated by (8, ( 6 <v). 92 is unbounded (G(s) 

contains 9 points of D) and every assignment of the form (p, PO> where p is 

L,-regular is fulfilled by 3, because Al. s p1 and E is cofinal in pl, hence for some 

/3 <q if a is the set of parameters of cp, f(a) <yp and either p <yp or p1 is 

regular and F = p,. Hence (p, V)E HP and therefore (P, cp) is fulfilled by 

‘3. 0 Theorem 14.4 

16. Miscellaneous 

The problem of characterizing structures having ZI-completeness is similar to 

characterizing C1-compactness. They are of course connected. 
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Lemma 16.1. If a structure of the form d = (L,, E, R, . . + R,) is &-complete then 

it is 2,-compact. 

(The converse does not hold because we have many (Y’S, o1 < CY < w2, such that 

(L,, E) is Z,-compact, but by Theorem 12.3, (L,, E) is not validity admissible, 

hence not Z,-complete.) 

Proof. Assume that .~4 is not X1-compact. Let H be a Cl(&)-theory witnessing it. 

Let q(x) define it. Consider the following theory T. T has a constant for each 

x E L,, c,, and a relation symbols E (for E), Ri for Ri (1 < i c n) also have enough 

extra relations so that one can define (uniformally in T) for every x ordinal a 

model of 

~,={~Irlr~~,LX~~(~)~. 

T also expresses KP+ V = L and “Vz(z E c, e V,,, z = c,,)" for x E L,. 

R~(c,) E T if Ri(x) holds, 

Rig T if -Ri(x) holds. 

Any model of T must have the form 

(L,,E,R~,...,R,,...). 

(It can not be an end extension of (L,, E, R,, . . . , R,, _ . . ) otherwise we get a 

model for H.) 

T is clearly X1. If the consequences of T are C,(d), we get that the truth of 

sentences in .& are C,(.&) which is clearly a contradiction. q Lemma 16.1 

Note that like the problem of compactness, we cannot expect Z,-completeness 

to imply any kind of decomposability, since if K > o is regular and (L,, E)< 

(L,, E), then if P is the predicate of being logically valid, then (L,, E, P fl La)< 

(L,, E, P), but (L,, E, Pfl L,) is E,-compact (as an elementary substructure of 

(L,, E, P) and it is validity admissible, hence by [22] it is X1-complete.) Definitely 

we can pick such (Y’S such that (L,, E, P n L,) satisfy no reasonable decomposabil- 

ity condition. 

Similarly to Definition 74.1 we can define that d is stably Z1-complete if any 

expansion of d into admissible structure is Z:,-complete. 

Like Theorem 14.1 we have: 

Theorem 16.2 (V = L). An admissible structure of the form d= 

(L, E, RI,. ‘. , R,) is stably X,-complete ifl either 

(a) CY is weakly compact and the power set function is XI(&), or 

(b) & is countably decomposable. 

Proof. If (Y is weakly compact and 9(x) is Z,(a), then d has (DP), hence it is 

validity admissible, and it is stably Xl-compact (because (Y is weakly compact). By 
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Nyberg [22] every admissible expansion of & is &-complete. If d is countably 

decomposable, then every admissible expansion of it is countably decomposable. 

Hence by Corollary 2.2 it is xi-complete. 

For the other direction, by Lemma 16.1, if d is stably &-complete it is stably 

Ci-compact. Now the theorem follows from Theorem 14.1 and the proof of 

Theorem 12.4 which shows that for a limit cardinal (Y if (L,, E, Ri, . _ . , R,) is 

validity admissible we must have that 9 r L, is si(&). 0 Theorem 16.2 

We conclude this section by providing the example (promised after Proposition 

4.12) of a structure satisfying (DP2), without satisfying (DPl). We shall construct 

our example in L. 

Let y be a limit cardinal such that (I,,, E) is a model of large enough finite 

subset of ZFC. We shall force over (I,,, E) and expand it by introducing a function 

f, defined on y, such that for every a! < y, f(a) is either CY+ or K <a < K+ where K 

is cardinal, cf(K) = w and d(cr) S f (a). The set of forcing conditions will be the set 

of all functions defined on initial segment of y satisfying the requirements on f. 
Using the fact that (I.,, E) is a model of enough axioms of set theory, one can 

prove using arguments like in Section 15 (though simpler because one has more 

axioms available) that there exists a ‘generic’ F such that (I+, E, F) is admissible. 

(L,, E, F) clearly satisfies (DP2) because one can define 

R(X, Y): 3a3f cf maps (Y onto XA Y = cf”Z ( Z E LFcorj}). 

R(X, Y) is clearly x,((L,, E, F)) and it is a decomposition predicate for this 

structure. 

Claim. The power set function X+ P(X) is not C,((L,, E, F)). 

Once the claim is verified it is clear that (L,, E, F) does not satisfy (DPl) in 

view of Lemma 12.7, because if it satisfies (DPI), it is validity admissible. 

Proof of the Claim. Assume that cp(x, y, a, F) gives a x,-definition of the func- 

tion. We shall prove that for every condition g there exists an extension h and 

some x, y in L,, such that h kcp(x, y, a, F) but y # P(x). By genericity of F, such an 

h can be assumed to be an initial segment of F, hence we get a contradiction to 

our assumption. 

Given a condition g, a, and q where cp(x, y, a, F) = 32 4(x, y, a, F, Z). By 

assumption about q, let q be a limit cardinal of cofinality o such that -q -C 6 and g, 
a E L,,. By assumption there exists an extension of g,, h whose domain is p > q 
such that 

Fix Z. Let F be a limit cardinal less than 0 such that p 6 P and 6 EL,. Let CL be 

the set of elements definable in (L,, E) from (q + 1) U{a, g, 6, p, z} and let (Lx, E) 
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be the transitive isomorph of M where k is collapsed to h. Let j be the inverse of 

the collapsing isomorphism. We shall show that h is a condition. Granted that, 

since g is collapsed to itself, h extends g (recall that G was an extension of g) and 

if p is the collapse of p and y the collapse of P(n) we get 

But Iy] = n, and therefore y# P(n), hence we got the required extension of g. So 

we just have to verify that h is a condition. h is clearly a function from 0 into D. 

Since h 1 q = 6 1 q, h 1 q satisfies the requirements. 

We have to verify that for r) <(Y < fi, d(a) s h(a). We first prove that for every 

CY such that L, l=a is a cardinal, cy > 7, then d(cy) s (a+) (where (Y+ is taken in the 

sense of &). 

This follows from the fact that since p is a limit cardinal every definable subset 

of j(a) definable over L, is an element of j(Cy+). Every element of CY is definable 

in L, from n and finitely many parameters, hence in L,- one can find a countable 

family A,, such that (A,,1 (7 and U A,, z (Y. (Recall that cf(r)) = w.) Now let (Y < p, 

in L, we have either h(a) =cx+ and in that case d(cw)<h(a) or I&~K<cE<K+ 

where K is a cardinal of cofinality w and d(cx) S h(cx). 
In the last case one can define sets B,, in LhCaj such that & b]B,,l< K and 

Q! = UK, B,. For each n, let /3, = ]B,,] in the sense of &. Where f,, : & + B,, is 

onto, and definable in L,,,,. By previous arguments, since d(&) = /3: < K we can 

define in L, AZ such that L, b IA,“1 < q and &, = U, AZ. One can now easily 

show that p’ A: is definable in L,,,, and (Y = U,,,p’ A:, hence d(a) G h(a). 

Appendix. Admissable ordinals are not immortal (by Leo Harrington) 

For Xs (Y let M,[X] be the structure (L,, E, X). 
Call a! amenably admissible if: for all Xg CY, if X is La-amenable, then M,[X] 

is admissible. 

Notice: ((Y a limit) cz is not amenably admissible iff 3K <a 3h : K -+ (Y s.t. h is 

unbounded in Q! to Vp < K (h 1 p EL,). 
Notice: if cof Q! = o, or if cy is a singular ordinal in L, then (Y is not amenably 

admissible. 

Theorem. Suppose cy is not amenably admissible. Let R s (Y be s.t. M,[R] is 
admissible and R is not A1 over L,. Then : There is Q c a! s.t. M,[Q] is admissible 
and M,[R, Q] is not admissible. 

Proof. (1) Let K = least ord <CY which demonstrates that cy is not amenably 

admissible. 

(2) Notice: K <(A2 in M,[R])-cof of a. 
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Notation: by a set of ords x we mean that x :@ +2 for some ord @ 
(p = dom x). We say that x is a subset of 0. 

Let F = {F 1 f E L,, f is a func, dom f is an ord, and V.$ <dam f (f(t) is a subset 

of 01. 
(3) For f,gEF:fSg if f=g r domf. 
For a, a set of ords, fsag if f<g and 

V[(domfS[<domg+g(t) r doma=a 15). 

Let R be as in the statement of the Theorem. 
(4) For fEF and for .$<domf let: 

df,f,)=max{~<51f(~) Ia=R 1 Sk CF-cf, 5) = limU<t.tp a@, v). 

Let AC.f)=E<domf I d.f,5)<W,5)1- 
(5) Notice (for f, g E F): 

(i) If g aRf then A(g) = A(f). 
(ii) If doma>domf, a r domf=R 1 domf, and a#R 1 doma (a in I.,), 

and if ga,f, then A(g) = A(f). 

Let P=Pk,f)if~E c E IL,, c is a set, dom c ~dom f}. For p E P, let p = (c,, f,). 
Order P by: p Sq iff c, gc4 (i.e., c, = c4 r dom c,), and f, +fq. Let 6’= 
{f E F 1 A cf) has order type <K}. Let a = {p E P 1 c, S R and f, E p}. For G a filter 
on P, let Qo = lJcf, 1 p E G}. 

Claim. There is a jilter G on P s.t. Qc has domain cy, M,[Qc] is admissible, and 

A(QG) has order type exactly K. [Notice, since A(Q,) is Ai in M,[R, QG], the 
claim yields the Theorem.] 

Proof of the Claim. For d a set, p an ord, and for Y G d x p, Y is called initial in 

d x CL if Vi E d (Yi is an initial segment of CL) [where Yi = (i < k 1 (i, j) E Y}]. 

(6) For d EL,, F -C a, d x w is called small if every initial subset of d x p, which 
is x1 in M,[R], is actually in L,. 

(7) Notice d x t.~ is small if either: 
(i) p is a regular card of L, and (a! -card of d) < p. 

(ii) (a-card of d)s p and every XI in M,[R] subset of p is actually in L,. 

Let cp be the universal &-formula. 

Fact 1. Let (c, f)E@; d x p small. Then there is g z-~ f s.t. A(g) = A(f) and s.t. for 

all i E d either (letting y = dom g): 

(a) WklbVj < p cpk i), 
(b) 3j<p s.t. WklbVk (icp(i, k), but for all g’% I yg, M~do,,~~k’l!=~cp(i, i). 

Proof. In a 2, over M,[R] way, build a sequence s, Z” (6 < 0, some 8 ~a) as 
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follows: 

g,=f, 2”= 8. 

&h=Uksl~<~~, Z” = USch Zs for A limit. 

Given g, and Zs ; if: 
(8) There are g*, i”, j* s.t.: 

*> g gs7 --c A(g*) = A(%), i”Ed, j*<t4 (i*, j”) $ Z”, 

Vk <j* (i*, k) E Z’, and Mcdom ,*,[g*]bg(i*, j*). 

Then: pick such g”, i*, j” and let gs+r = g”, Zs+’ = Z” U{(i*, j*)}. 
Let Z=IJ 6<8 Z’. Clearly Z is an initial subset of d x p, and Z is Z, in M,[R]; 

so Z is in L,. Thus 8<a, and so 8=8+1 for some 6. Let g=g_ Let y=domg. 
We have: 

izacf; A($?) =A(f). 

Let W={iEd )Vj<p (i,j)EZ}. Let V=d\W. For isV, let j(i) be the first 
j < p s.t. (i, j) $ Z. We have: 

(9) Vi E WM,[g]!=Vj < p q(i, j). 
(10) Vi E VM&]IVk < j(i) cp(i, k). 
(11) For all fzcgr if A@)=A(g), then 0@) holds [where 0(f)-ViE V 

M~~,,nL0~lcp(i, j(i)]. 
For a set in L, s.t. dom a 3 g&a 1 y = R 1 y, let fa be the unique f’ s.t. 

f’a,g&domf’=doma. Notice: by (5), ACf,)=A(g); also notice: if 
a# R r dom a, then for all f, f^a,f, j A(f) =A@) [use 5(ii)]. Thus: if 
a# R 1 dom a, then $(a) holds [where $(a) -Vi (fa,f, j e(g)]. But R is not AI 

over L,, and $ is IZ, over L,. Thus there is p 2 y s.t. +!J(R 1 /3) holds. 
Let g = fcR , @). g is as desired by Fact 1 [i.e. for i E w, (a) holds because of (9); 

for i E V, (b) holds because of (lo), and +(R 1 p)]. Cl Fact 1 

Fact 2. There is a sequence (b,), 6 < K, s. t. 

(1) (b,), 6<p, is in L, (all P(K). 

(2) bs = d6 x ~~ is small (all 8). 
(3) For all i < cy, all regular a-cards v, there is 6 s.t. i E d, & v < t_+ 

Proof. Let h : k + (Y demonstrate that cy is not amenably admissible. 
Case 1: There is no last a-card. Then let b, = hi h(6) (this is small by 

(2)(ii)). 
Case 2: There is a last a-card, @_ 

Subcase 1: Every XI over M,[R] subset of 6 is in L,. Then let b8 = h(6) x p 

(this is small again by (2)(ii)). 
Subcase 2: There is a AI over M,[R] l-l function p :(Y + p_ Then let 

4 = {i <a I p(i) < p(h(41, and let cog = p (if p is regular in L,); otherwise let pa 
be the first regular a-card >p(h(S)) (d, X~J~ is small by (2)(i)). 

These cases are exhaustive. 0 Fact 2 
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Now, build a sequence pS, 6 <K, of conditions in ? so that: 

PO = 0, PA = u Psi 
S-3 

given ps = (c, f), let g be as in Fact 1 for ds x cog (where ds x ps are as in Fact 2). 
Pick ps+I~(R r dom g, g) s.t. A(~(P,+~)) 2 A(g). The filter generated in P by 
(ps 16 <K) is easily seen to be a witness to the proof of the claim. 
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