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A NOTE ON MODEL  COMPLETE  MODELS
AND GENERIC MODELS1

SAHARON  SHELAH

Abstract. We prove that there are many maximum model

complete (= generic) models, and that there exists an (uncount-

able) theory with no generic models.

After Barwise and Robinson [1] we say a model M, of a (first-order)

theory T, completes T if every extension of M, which is a model of T, is

an elementary extension of M. (By [1, Theorem 3.4, p. 129], M com-

pletes Tf iff it is ^-generic.) It is known

Lemma 1. If M completes T and N is an elementary submodel of M,

then N also completes T (it follows from Theorem 1.2).

For a cardinal A let Mc(X) be the least cardinal k, such that for all T

of power ^A, if T is completed by some model of power k, then for all

,«^A there is a model which completes T and whose power is ^./u.

Theorem 2.    Mc(X)=pik (=the Hanf number of omitting a type).

Remark. For the values of p.x see,e.g., Chang [2, §2, p. 47]; he denotes

¡xx by mx.

Theorem 3. For arbitrarily large cardinals k smaller than the first

measurable cardinal there exists a complete and countable T and a model M

of power k which complete T, and no proper extension of M completes T.

Answering Question 8.1 of [1] we prove in §2:

Theorem 4.    There is an uncountable theory T with no T-generic model.

(This was also proved, independently, by P. Henrard, and later by

Macintyre.) Only in §2 knowledge of [1] is assumed.

Notation. |M| is the universe of the model M. \A\ is the cardinality

of the set A (so |L| is the number of formulas ofL). || M\\ is the cardinality

of (the universe of) M. Infinite cardinals are denoted by A, pt, k.
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1. Theorem l.l.2 Let T be a theory, p a type in a language L, and M

an infinite model of T which omits p. Then there are a language Lx, a theory

Tx and a type px in Lx and a model Mx of Tx which omits px such that :

(a) \Lx\^\L\ + X0, Tx is complete.

(b) Mx completes Tu it omits px and \\Mx\\ = \\M\\.

(c) A model of Tx completes Tx iff it omits px-

(d) If every extension of M which is a model of T realizes p then no

extension of Mx completes Tx-

(e) If T has no model of cardinality X which omits p then there is no

model which completes Tx in cardinality X.

Proof. Without loss of generality assume in L there are no function

symbols. Let />={</>¿(x):z'<|/j|}. Let us choose infinite disjoint subsets of

|Af|, Ai, i<\p\, such that |A/|=U Af.

We expand M to a model M1 by adding the following relations:

(1) PfI1 = Ai for every i<\p\ (i.e., Pfn is a one-place relation, and P¡

the corresponding predicate).

(2) A relation Rm such that (a, b) eRm iff there is i<\p\, bePf1,

M |= —¡(piia) and for every j<i, M |= <f>¡[d\.

(3) An equivalence relation JSf1 such that: aElnb iff for some i, a, b e
pM1

Now let us define a model M2. Its set of elements is

|M2| = {{a, a^aelM1!, a = co}.

Its relations and functions are:

(4) An equivalence relation E212 such that :

(a, a)£f2(/z, ß)    iff   a = b.

(5) For every zz-place relation Qvl let

Qm = {((«!, a,), • • •, (an, xn)):(ax, •■• ,an)e Qm; <x„ • • • ,a„ .<[ «}•

(6) An equivalence relation Ejn such that (a, a)E3I2(b, ß) iff

(a) a = b,

(b) <x=ß or a=2zz+l, i?=2zz or a=2zz, ß = 2n+\.

(7) For every z'< \p\ a function Ffnix, y) such that for every a,be\ M2\ :

(a) if M2 V -iaE^M-iPiia) then Ff \a, b)=a,

(b) if M2\=aE2bAPiia) then M2 iP^a, b)),

(c) if M2^aE2bAaE2cAPiia)Ab^c then M21= -¡E^F^a, b), F ¿a, c)).

2 Added in proof (May 11, 1972). In Theorem 1.1 if p is countable, we can define

Mx so that M=N implies M1=Nl. This may help to improve Theorem 3.
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Now we define the Mx we wanted as an expansion of M2 by :

(8) For every n<co, ix, ■ ■ ■ , i„<\p\ (not necessarily distinct) and form-

ula (f>(xx, • ■ ■ , xA of the language of M2, we add the relation R%1il,.... <

defined by

*&•••.<.- {<fli. ' • • ' an):M2V [Pix(ax) A • • • A Pin(an) A <p(ax, •• • > an)]}.

Now let Tx be the theory of Mx, Lx its language, andpx={-]P¡(x) : i< \p\}.

Let us now prove that:

(*) A model of Tx completes Tx iff it omits px.

By (8) it is clear that every model of Tx which omits px completes Tx.

Suppose now A is a model of Tx which realizes px, and let a e \N\ realize

px. As A is a model of Tx, by (4) and (6), there are distinct elements

c, bn, 0Sn<a>, such that:

N f b2nE3b2n+x,       N t= (Wx)(xE3c ->- x = c),

N h aE2bn   and   N (= aE2c       (for every ri).

We now define now a submodel Nx of N, whose set of elements is \NX\ =

\N\ — {c, b0}. Now Nx is not an elementary submodel of A because

Nx N (yx)(xE3bx -* x = bx),       N\= (3x)(xE3bx A x ^ bx).

On the other hand N, Nx are isomorphic: define F by:

F(c) = bxF(bn) = bn+2    (for 0 ^ n < co)

and

F(ax) = a1   for a1 e A - {c^, ¿2 ■ • •}.

Clearly, F is an isomorphism from N onto Ax.

So N, Nx are models of T, Nx does not complete T, hence also A^ does

not complete T. So we proved (*).

Now (a) is immediate; (b) follows from the definition of \M2\ = \MX\

and (*); (c) is (*); (d) is clear from (*) and (2); and for (e) we should

notice also (7) (which implies that if A is a model of Tx, which omits px,

then ||A|| is equal to the number of F^-equivalence classes in \N\). So we

prove the theorem.

The following theorem was already known to Robinson:

Theorem 1.2. For every theory T there is a set P of types (not all

l-types necessarily) such that: any model M completes T if and only if M

is a model of Tomitting every typep eP, and \P\^|T\ + X0.

Proof. Let M be a model, and |A/| = {o¿|/<a} and Diag M be the

set of sentences </>(ut¿, • ■ ■ , a„) which are satisfied by M where ^ is a

basic formula (=an atomic or negation of an atomic formula). Clearly,
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M completes T if and only if FuDiag M is a complete theory. By the

compactness theorem, this implies: M completes T if and only if: for

every formula (f>(xx, • • • , xm) and elements b\, • • • , b0m e \M\, there are

Hb\, bl, •••)."■ . Kibl, b\, ■ ■ ■) in Diag M such that

T U {#b\, ■■■),■■■, Ubnx, ■ • 0} r cpibx, ■ ■ ■, bn)

or, equivalently,

Th(v-xî---)[A^i---)-^î.--0]

(we should identify the variables x'k, xke if ak=ake). For every formula

<f>=(pixx, ■ ■ • ,xn) let r¿ be the set of formulas 0(xi, ■ • • , xn, • • ■ , xm)

which are conjunctions of basic formulas and

T r (Vx1; • • • , xm)[dixx, ■ ■ ■ , xm) -+ 4>ixx, •■• , xn)].

Let /»¿ = {-i(3xn+1) ■ • • , xm)6(xx, • ■ ■ , xn, ■ ■ ■ , xm):6 e T^}. Clearly,

M completes T if and only if for every <f>, T omits p^. So P={p<f,\<f> a

formula} satisfies the condition of the theorem.

Proof of Theorem 2. By the definitions of Mc(X), pk, clearly Theorem

1.1 implies Mc(X)^px. Suppose that M completes T, \\M\\^./ix, A=|T|. So

by 1.2, M is a model of Fand omits everyp eP. By, e.g., Chang [2, p. 47,

(D)], the Hanf number for a sentence in LX+:U) is px, and clearly being a

model of T omitting every p e P can be expressed in Lx+_a. So T has

arbitrarily large models omitting every p eP, hence by 1.2 arbitarily large

models completing T. This means Mc(X)^ptx. So Mc(X)=px.

Proof of Theorem 3. This can be proved using 1.1 and the following

(see Malitz and Reinhart [4, Theorem XX]).

Theorem. For arbitrarily large cardinals X smaller than the first

measurable cardinal, there is a model Mx, ||MA|| =X, with countable type and

with a one place relation P, Pi,/;i={c„|cre<ft»}, such that: for no proper

extension N of Mx which is elementarily equivalent to Mx, pN=pMx_

(For characterization of those X which satisfy this, see [4].)

2. Let Af be the standard model of natural numbers with addition,

multiplication and individual constant zzz for each natural number zzz. Let

T=Th(N), and the language be L*. Let A:=Fu{ci?icJ:z<y<Xx}, and its

language L, K1=Tu{ci^ci:i<j<co} and its language L\.

Theorem 2.1.    There is no K-generic model.
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Proof.   It is easy to check that P(cx, ■ • ■ , cm, ax,---, am) for both

K and Kx is a forcing condition iff

(3*i • ' OO* • • 0 POi, • • • » y» ' ' 0 A A xi 9e Xj eT

(ax, • • •, — new constants).

Let T be the set of formulas <f>(xx, ■ ■ • , xn) in L* such that for any

distinct natural numbers mx, • • • , mnNt<j>[mx, • • • , mn].

We shall prove now

, s    AÍ = T U {f{cH, ■■, cin): ix, ■ • •, in are distinct,

and <co,y>(xx,•••,xn)sY}.

Construction. Let A be a countable set of new individual constants,

let P be a forcing condition. We shall show that there is a ^-generic model,

which is a model of K{(P) = {<f> e L(A):P\r*<p} and whose reduct to L* is

N. Let {</>¿:¡'<ft>} be the set of sentences of L(A), A = {an:n<co}. We

define by induction Pn :

(1) Po=P-
(2) If P3n is defined, then there is a Q^P3n, such that ßlr</>„ or

Q\\--¡<pn. LetP3n+1=Ô.

(3) If P3„+i is defined it is easy to see that there is a natural number m

such that P3n+iU{cn=r«} is a forcing condition. Let P3„+2=P3n+iU

{cn=m}.

(4) If P3„+2 is defined, we can similarly find Psn+í^Pín+i such that for

somem, an=m e P3n+3.

As in [1, Theorem 3.3] we get a generic model N(P) which satisfies all

our conditions.

Now let us prove (*)

(a) If y> e T, and not 0 \\-*y then for some P, P\r—¡y), so N(Pjt=—¡ip.

AsipeL*, and N is the reduct of N(P) to A*, Ah-i^ contradiction so

TcA^, and as Tis complete KfxnL* = T.

(b) If <p(xlt ■ ■ ■ , x„) e Y and not 0 lr*</)(c¿i, • • • , cín) ft, •••,/„ are

distinct) then for some P, Plr -i^>(c¿l, • • ■ , c¿n) so A(/?) F —i0(ctl, • ■ • , cin),

contradiction to the definition of Y.

(c) Suppose 4>(cti, ■ ■ • , CfJ e K{ (ix, • • • ,in are distinct) (otherwise, we

can write <f> is a different way). So for every distinct natural number

mx, • • • , mn, P={ci =mx, ■ ■ ■ , cin=mn} is a forcing condition. So as

0 Ir*^, • • • , qJ,1 also P\r*<p(c\, ■■-, cit) so N(P)i<f>(mx, ■■■ , mn).

SO ^(Xl5 • • • , Xn) 6 r.
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So we prove (*). By [1, Theorem 6.1] (and here it can be seen directly)

K* = T u {fich, ■■■ , Ci):ix, ■ • • , in < Ni are distinct,

andfixx,- ■ ■ ,xn)eT};

clearly, by the definition of T, for i^j, c^Cj e K1. So let M be a K-

generic model. So it is a model of Kf [1, Definitions 3.1, 3.2] so ||M||_

Kc^zXXJ^X^Xo. Also M is model complete for KJ hence for T

(by the definition of T). This contradicts Rabin [3], that any nonstandard

model of F has an extension which is a model of F but not an elementary

extension of M.
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