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Abstract

We will show that, consistently, every uncountable set can be continuously mapped onto a non
measure zero set, while there exists an uncountable set whose all continuous images into a Polish
space are meaget.2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let J be aoc-ideal of subsets of a Polish spate Assume also thaf/ contains
singletons and has Borel basis. beh(7) =min{|X|: XCY & X ¢ J}.
In this paper we are concerned with the family

NON(J) = {X S R: for every continuous mapping: X — Y, F"(X) € 7}.

Note thatNON(7) contains all countable sets. Moreov®&QN(7) is closed under
countable unions but need not be downward closed, thus it may not be an ideal. However,
NON(7) is contained in the -ideal

NON*(J) = {X S R: for every continuous mapping:R — ¥, F"(X) € J}.

It is also not hard to see thBION*(7) consists of those sets whose uniformly continuous
images are i/ .
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Let A/ be the ideal of measure zero subsets©fadth respect to the standard product
measures, and letM be the ideal of meager subsets 6f@r other Polish spackg).

We will show that

e ZFCF NON(M) contains an uncountable set.

e Itis consistent thalON*(A) = NON(N) = [R]SNo,

e Itis consistent thalON*(7) = [R]SY0 <= non(7) < 2%,

Observe that iNON*(7) = [R]S¥0 thennon(J) = ®1. On the other hand for adt-ideals
J considered in this paper, the Continuum Hypothesis implies Ni@(.7) contains
uncountable sets.

Finally notice that one can show iBFC that there exists an uncountable universal
measure zero set (see [7]), i.e., a set whose all homeomorphic (or even Borel isomorphic)
images are all of measure zero. Therefore one cannot generalize the consistency results
mentioned above by replacing the word “continuous” by “homeomorphic” in the definition
of NON(W).

2. Category

In this section we show thalON(M) contains an uncountable set. This was proved
in [9], the proof presented here gives a slightly stronger result.
For f, g € w® let f <* ¢ mean thatf (n) < g(n) for all but finitely manyn. Let

b=min{|F|: FCw” & Vhew”3f €F f L h}.

Theorem 1 [9]. Thereexistsaset X C R of size b such that
(1) every continuousimage of X into w® is bounded,
(2) every continuousimage of X into a Polish spaceis meager,
(3) if b < non(N\) then every continuousimage of X into R has measure zero.

Proof. Let Z C (w + 1)® consist of functiong such that

@) vn f(n) < f(n+1),

() ¥ (f(n) <w— f(n) < f(n+1).
Note thatZ is a compact subset qiv + 1)® thus it is homeomorphic to“2 For an
increasing sequences (w + 1)< let¢; € (w + 1)® be defined as

s(ky ifk<|s]
w otherwise

qs(k):{ fork € w.
Note that the sef) = {g;: s € ®=*} is dense inZ. PutX’' ={f,: o < b} such that
(1) Vo fo € Z,
(2) fu <* fpfora <p,
) Vfew” Ia fu L f.
Let X = X’ UQ. We will show thatX is the set we are looking for.
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(1) Suppose thall : X — »® is continuous. We only need to assume thds$ continuous
on Q. Without loss of generality we can assume for everg X, F(x) € o® is an
increasing function.

Lemma 2. Thereexistsafunction g € w® such that for every x € X and n € w,

Fx)(n)<gn) ifx(n) > gn).

Proof. Fixn € w andforeach € (w+1)" letI; C (w+ 1)® be a basic open set containing
gs such that forx € dom(F) N I;, F(x)(n) = F(qs)(n). For everys the setl;|n =
{xIn: x € I} is open(w + 1)" and the family{/; [n: s € (w + 1)"} is a cover of(w + 1)".
By compactness there are sequenges. ., s; such thatlw + 1)" = I, [n U --- U I, [n.
Find N so large that ifc (n) > N thenx € I;; for some;j < k. Define

g(n):maX{NvF(qsl)(n)v-'-vF(qsk)(n)}* o

Let g € w® be the function from the above lemma. Fiag such thatf,, £* g. Let
{un: n € w} be an increasing enumeration fof: g(n) < fy,(n)}. Puth(n) = g(u,) for
n € w and note that fop > «ag and sufficiently large: we have

F(fp)(n) < F(fp)(un) < gun) = h(n).

Since the sefF (fg): B < ao} U{F(gs): s € »=“} has size< b we conclude thaF” (X)
is bounded inv®.

(2) Suppose thak is a continuous mapping froii into a Polish spacg with metricp.
Observe thaf is not onto and fix a countable dense &gt n € w} disjoint with F”(X).
Forx € X let f, € w® be defined as

. 1
fr(n) = mln{k: p(f(x),dn) > E}

In particular,

1 1
Bld,,——— | =1z p(d,, .
fe ¢ ( fx(n>> {Z & Z)<fx<n>}

Note that the mapping — f is continuous and find a functigne »® such thatf, <*h
for x € X. Put

6= U B(d,,,ﬁ))

m n>m

and note thaG is a comeager set disjoint frofi’ (X).
(3) Let@Q < U be an open set. Definge w® as

g(0) =min{k: ¥x x(0) > k - x e U}
and forn > 0

g(n) =min{k: Vx((Vj <nx(j) <g(j) & x(n) > k) > x e U)}.
Letag be such thal,, £* g. It follows that fg € U for g > ag.
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Suppose thaF : X — R is continuous (o). Let{g,,: n € w} be enumeration af. Let
1¥ 5 g, be a basic open set such tht(7¥) has diametex 2-"~*. PutH = ", U, I¥. It
is clear thatF"”"(H) has measure zero. Fix such that for all8 > «o, fg € H. It follows
that for 8 > ag, F(fp) belongs to a measure zero 9et(H). By the assumption, the
remainder of the sef”(X) has size< non(/N') which finishes the proof. O

The setX constructed above is not hereditary, and for examplg Q can be
continuously mapped onto an unbounded family. A hereditary set having property (1) of
Theorem 1 cannot be constructedZRC. Miller showed in [6] that it is consistent that
every uncountable set has a subset that can be mapped onto an unbounded family. This
holds in a model where there are aesets, i.e., every uncountable set ha6asubset
which is notF, .

It is open whether a hereditary set having property (2) of Theorem 1 can be constructed
in ZFC.

3. Making NON(7) small
We will start with the following:
Definition 3. A set X € 2% has strong measure zero if for every functipe »“ there
exists a functiornf e (w<“)® such thatf (n) € 2™ for everyn and
Vx € X 3%n x[g(n) = f(n).

Let SN denote the collection of all strong measure zero sets.
If the above property fails for somethen we say thag witnesses thak ¢ SN.

For g € w® we will define a forcing notioi®, such that:
(1) P, is proper,
(2) there exists a familyF,: n € w} € V¢ such that
(a) Vn F,:2° — 2“ is continuous,
(b) if X €2, X € V andg witnesses thak ¢ SN then

VP = U F/'(X)=2°.
n
LetIL be the Laver forcing and suppose tlgds a Laver real oveV . It is well known that:

Lemma4 [5]. If X € 2%, X € V isuncountablethen V[g] = “ g witnesses that X does
not have strong measure zero” .

Theorem 5. Itisconsistent with ZFC that for every o-ideal 7

NON(J7) = [R]SY « non(7) < 2%.
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Proof. Let (Py, Qu: o < wp) be a countable support iteration such thatQ, ~ L x Py
for o < wp. Suppose thay is ao-ideal andVv Pez E non(J) = R1. It follows that for
somex < wy, VP2 EvPen2o g 7.

Suppose thatX C vPe2 0 22 is uncountable. Lel8 > « be such thatx n Vs
is uncountable. InV7#*L the Laver real witnesses th&f ¢ SN and soVPs+ =
U, F/(X) = 2°. Hence VP2 = | J, F/(X) ¢ J which means thatv"2 = 3n ¢
wF/'(X)¢J. O

4. Definition of Pg

Let us fix the following notation. Suppose théf,: n € w) are nonempty sets. Let
T = | J, [T/ F;. For a treeT € T™ let T[n =T N []/_gF;. Fort € T|n let
succy (t) = {x € F,: t—x € T} be the set of all immediate successors @f 7', and let
T, ={seT: s Ctort2Ds} be the subtree determined byLet stem(7) be the shortest
t € T such thatsuccy (¢)| > 1.

Fix a sequences’j‘.: j <k} such that

D) Vk0<8]6<8]{<~-~<£,]: <27k
(2) VEVj <k (ek, )3 > &k,
Jj+1 J

(3) VkVj <k elj?Jrl/Zk2 > 8]]‘..

(4) VkVj <k 8];/81]‘.Jr1 < 8]]:.
For examples’j‘. — 24 for j <k will work.

Suppose that a strictly increasing functigie »® is given. Fix an increasing sequence
(nr: k € w) such thatg =0 and

ny 2"k
g+l = g((k + 1)2% T > fork € w.
&
0
For the choice oi:’;. aboven; 1 = g(21999%) will be large enough.
Let Fi = {f: dom(f) = 2""+1 | range(f) = {0, 1}}. For A C Fj let

Al _ &
Al =max)e: — > ek b
| Frl

Consider the tree
k
™= J[]F
k j=0

LetP, be the forcing notion which consists of perfect subtrées 7™M such that

lim min{|succr (s)|: s € T Tk} = oco.

k— 00
ForT,S e P, andn € w defineT > Sif T C SandT >, Sif T > S and

Vs € S([lsuccs(s) |l < n — succg(s) = succr (s)).

Itis easy to see thalt, satisfies Axiom A, thus it is proper.
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Suppose thaG C P, is a generic filter oveV. Let (G = (fo, f1. f2,...) € [ [; F-
DefineFg :2° — 2% as

Fo(x)(k) = fi(xI[nk, nis1)) forx e2”, ke w.

First we show thaf, is »“-bounding. The arguments below are rather standard, we
reconstruct them here for completeness but the reader familiar with [8] will see that they
are a part of a much more general scheme.

Lemma 6. Supposethat 7 C V isa countable set, n € w and T Ikp, a € I. There exists
S >, T and k € w such that for every t € S|k thereexistsa, € I such that S; IFp, a = ay.

Proof. Let S C T be the set of alt € T such thatT; satisfies the lemma. In other words
S={teT: I ecwdl 2, T, VseT [k Ja; el T;\Fpgdzas}.

We want to show thadtem(7) € S. Notice that ifs ¢ S then
[succs(s)|| < ekl

Suppose thadtem(T') ¢ S and by induction on levels build a tree>, T such that for
seSs,

succy (s) if ||succr ()] < n,
succs(s) = .
succr (s) \ succs(s) otherwise.
Clearly § € P, since||succg(s)|| = [Isuccy(s)|| — 1 for s containingstem(7T’). That is a

contradiction sinceS N S = @ which is impossible. O
In our case we have even stronger fact:

Lemma 7. Supposethat T Ip, A € 2<¢. There exists S > T such that for all but finitely
many n, for every ¢ € S[n thereexists A, € 2" suchthat §; IFp, Aln = A;.
In particular, if T Ikp, x € 2 then there exists S > T such that for every for all but

finitely many n, for every ¢ € Sn there exists s, € 2" suchthat S; I-p, X [n = s;.

Proof. It is enough to prove the first part. By applying Lemma 6 we can assume that
there exists an increasing sequerke n € w) such that for every € T [k, there exists
A; € 27" such thatl; lkp, Aln = A,.

Letng = |stem(T")|. Build by induction a family of tree§T;, ;: n > no,n <1 < k,} such

that
Vs € Tpill JA; € 2" (Ty0)s Ibp, Aln = Ay.

Let Thgtr1h =T and suppose thdt, ; has been constructed.ll=n let T, 11 4,., =
T,.n, Otherwise construdt, ;1 as follows—Dby the induction hypothesis foe 7, ;[ — 1
and everyf € succr, , (s), there existsA;~ ¢ C 2" such that

(Tn))s~f IFp, Aln=Ag~y.
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Fix A suchthaf f: A;~; = A} has the largest size and put

{f esucer,, (s): A~y =A} ifseT -1,

succr, ,_,(s) = )
i succy, , (s) otherwise.

Finally let S =), T,.». Clearly S has the required property provided that it is a member
of P,. Note that for an elemente Sk,
|SUCCTk,k (S)|
oKz
By the choice of sequenc&;‘: k, 1), it follows that ||succs(s)|| > |succr(s)|| — 1 if
Is| > |stem(S)|. ThusS € P, which finishes the proof. O

|succs(s)| >

Next we show thaf?, adds a continuous function which maps sets that do not have
strong measure zero onto sets that are ngt.in
LetQ = {x € 2¥: ¥*°n x(n) = 0} be the set of rationals in2

Theorem 8. Suppose that g witnesses that X € V N 2%, X € V does not have strong
measure zero. Then lbp, F2(X) +Q=2%.
In particular,

Vi eQF)(X) ¢,
where F, : 2¥ — 2* isdefined as F, (x) = F;(x) + ¢ for x € 2°.

Proof. We start with the following:

Lemma9. Supposethat1/2>¢ >0, I C wisfiniteand A €22, |A|/|22'| > . Let

{f €At f(s) =iy} ﬂ
<& .
122/

Z:{seZ’: i, € {0, 1}
Then |Z| < 1/.

Proof. Suppose otherwise. By passing to a subset we can assumgthal/c. Let
A'={feA:VseZ f(s)=is}.
By the assumption
|A] 1 4 s &
E}s—g-s =c—¢ >§.
On the other hand the selis= {f € 22" f(s) =0}, s € 2! are probabilistically independ-
ent and have “measure’/2. It follows that
|A| _1 e
22 S22 T

which gives a contradiction. O
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Lemma 10. Supposethat T I-p, z € 2. There exists a sequence (Ji: k € w) such that for
everyk € w

(1) Ji € 2mometn)

(2) 1l < 25,
andifxeVn 2‘% and x [[ng, ni+1) ¢ Ji for all but finitely many k thenthereexists S > T
such that

Slkp, Fe(x) ="z.

Proof. Suppose thal I-p, z € 2”. Letko = [stem(T)|. By Lemma 7, we can assume that
Vk > ko Vt € Tk 3i; € {0, 1} Ty IFp, 2(k) = ir.

Fork > ko ands € T |k let
Ji = {x e2mem1): 3i € (0,1} |{ f e sucer(s): f(x)=i}| < |sucer(s)| —1}.

By Lemma 9, J;| < 1/eg. PutJy = U,cry, J¢ @nd note that

k-1 Mk
1 2i+17 " 2k
|Jk| < x | | 2 < %
£ )
0 ;=0 0

Suppose that [[ng, ng+1) & Ji for k > k* > ko. DefineS > T

{f esucer(t): f(xIlnk, niy1) =ir} if s € Tk andk > k*,
succr (s) otherwise.

By the choice ofx, ||succs(s)|| > [lsuccr(s)|| — 1 fors € S. ThusS € P,, and

Slp Yk > k* Fg(x) (k) = z(k). a

succs(t) = {

Suppose thal IFp, z € 2 and let{Ji: k € w} be the sequence from Lemma 10. Let
U={se2° 3k |s| =nis1 & sllng, nk+1) € Ji}.

Let s, s2, ... be the list of elements df according to increasing length. Note that by the
choice ofg, |sx| > g(k) for k € w. Sinceg witnesses thax ¢ SN (and any bigger function
witnesses that as well) therexise X such that

Vk x [dom(sg) # sk.

Since initial parts of, s exhaust all possibilities it follows that for sufficiently large w,
x [[ng, ng+1) # si[[ng, nk+1) forall I such thats;| = ng41.

In particular,
Yk x [[nk, ngy1) ¢ Ji.

By Lemma 10 we conclude thétp, F¢;(x) =" z. Sincez was arbitrary, it follows that
Ip, Fg (X)+ Q=2 As J is ac-ideal we conclude that

\Fpgﬂqe(@Fg(X)+q§éj. a
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5. Measure

Theorem 5 is significant only if in the constructed model there are some interesting
ideals.7 such thaton(7) < 2%. We will show some examples of such ideals, the most
important being the ideal of measure zero s¥éts

Definition 11. Afamily A C [w]® is called a splitting family if for every infinite s&® C w
there existsA € A such that

AN B| = |(®\ A)N B| =Ro.

We say that4 is strongly non-splitting if for evenB € [w]® there existC € B which
witnesses thatl is not splitting.

Let
S={X C[w]: X is strongly non-splitting.

Itis easy to see th& is ac-ideal.

Theorem 12. It is consistent that for every uncountable set X C 2“ there exists a
continuous function F:2? — 2% such that F”(X) does not have measure zero. In
particular, it is consistent that

NON(AN) = NON(S) = SN = [R]S™o.

Proof. Let VP2 be the model constructed in the proof of Theorem 5. To show the
first part it is enough to show that Pez = non(N) = R1. Since is well known that
non(S) < non(), it follows that NON(S) = [R]S™. This was known to be consistent
(see [1]). Finally, itis well known that ik € SA andF : X — 2¢ is uniformly continuous
thenF”(X) € SN C N. ThusSN = [R]SMo,

To finish the proof we have to show that 2 = non(\) = R1. By theorem 6.3.13
of [2], in order to show that it suffices to show that b&thandL satisfy certain condition
(preservation of="andom which is an iterable version of preservation of outer measure.
Theorem 7.3.39 of [2] shows thatsatisfies this condition. Exactly the same proof works
for P, provided that we show:

Theorem13. If X C2?, XeVandV =X ¢ NthenVPs =X ¢ V.

Proof. The sketch of the proof presented here is a special case of a more general theo-
rem [8, Theorem 3.3.5].

Fix 1 > § > 0 and a strictly increasing sequenég: n € w) of real numbers such that

(1) sup, 8, =34.

(2) Y*°n 8,41 — 6 > €)1
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Suppose thatp, X ¢ V. Without loss of generality we can assume thais forced to
have outer measure one. Létbe alPg-name such thdtp, A C2<® & u([A)) = $ and
suppose thatf' IFp, X N [A] =¥. Letng = |stem(T)|. By Lemma 7, we can assume that

Vn>noVteTIn3A, C2" T, Ibp, Aln = A,.
Fix n > ng and define by induction setd}: r € T [m, ng < m < n + 1} such that
(1) Arc2tlforreT,
(2) |A? .21 > 5, fort e T'im.
Fort e TTn+1let A} = A;. Suppose that set$} are defined for € T'[m, m > ng. Let
t € TIm — 1 and consider the famil{,/A;Lf: f €succr(¢)}. By the induction hypothesis,
AL |- 2"1>5,. Let

Al ={se2" ||{f: s € Ap}|| > |sucer ()| — 1}.

A straightforward computation (recall Fubini theorem) shows that the requirement that
we put on the sequenc@,: n € w) implies that|A}| - 2771 > 5, 4. In particular,
Alemry - 271> 8y for all n. Let B = {x € 2”1 3%n xn + 1€ Al ;). Clearly
w(B) = 6,9, SOBN X #P. Fixx € BN X. We will find § > T such thatS IFp, x € [A]
which will give a contradiction.

For each such thatr € A¢, | 7,

(1) stem(S,,) =stem(T),

(2) foreveryr € S,, no < |t| <n, ||succs, ()| > ||succr (2)|l,

(3) foreveryr € S,, |t|=n,x € A;.
The existence of5, follows from the inductive definition ofA}’'s. By Konig lemma,
there existsS C T such that for infinitely many, S[n = S,. It follows that S € P, and
Slkp, 3°n xIn € Aln. SinceA is a tree we conclude thati-p, x € [A]. O

let S, € T|n be afinite tree such that

6. Moreon NON(7)
In this section we will discuss the model obtained by iterating the for€inglone.

Theorem 14. It is consistent with ZFC that for every o-ideal 7 such that non(7) < 2%,
NON(J) € NON(SA) C [R]<2.

Proof. Elements ofNON(SN) are traditionally calledC’-sets. As we remarked earlier,
SN = NON*(SN). However, in [3] it is proved that assumii@H, NON(SAN) C SN.

Let V be a model satisfyingH and let{g,: o < w1} € w® be a dominating family. Let
{Sy: a < w1} be such that

(1) SaNSg =0 fora # B,

(2) So S {& < w2: cf(§) = w1},

(3) Sy is stationary for albx.

Let (Py, Qu: @ < w2) be a countable support iteration such thatfos S, IFg Q',g ~
P, If B ¢, S let Qg be trivial forcing.
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Suppose thay is ac-ideal andv Pez Enon(J) = R1. It follows that for somer < wo,
VP myPen2eog¢ 7.

Suppose thak C vPe2 N 2% is uncountable.

Casel.|X| =81 andVF2 = X ¢ NON(SN).

Let 8 > « be such that

(1) XeVvPs,

(2) there is a continuous functiali : X — 2*, H € VF# such thatV"s = H"(X) ¢

SN,

(3) BeS, andV7e2 |= g, witnesses thall” (X) ¢ NON(SN).

It follows from the properties oP,, that VPe+1 = U, F/(H"(X)) =2". HenceV ez =
U, F/(H"(X)) ¢ J, which means thay Pez EdnecwF/(H' (X)) ¢J.

Case?2. |X| =2%0 =Ry,

It is well known (see [4] or [2, Theorem 8.2.14]) in a model obtained by a countable
support iteration ofv®-bounding forcing notions there are no strong measure zero sets of
size 2. In particular,VPﬂ’z E= X ¢ SN. Letgg be awitness to that. Lefg = X N VP,
Standard argument shows that

C=ly <wz VP =X, ¢ SN}

is awy-club. Fixé € C N Sg and argue as in the case 10
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