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We prove parametrized partition theorem on products of finite sets equipped with sub-
measures, improving the results of Di Prisco, Llopis, and Todorcevic.

1. Introduction

The polarized partition theorems have a long history. The behavior of finite
products of finite sets is governed by the positive answer to the Zarankiewicz
problem:

Fact 1.1 ([6, Theorem 5, Section 5.1]). For every number k∈ω, every
m∈ω and every sequence rn : n∈m of natural numbers there is a sequence
of finite sets an : n ∈m such that for every partition of the product Πnan
into k many pieces, one of the pieces contains a product Πnbn, where bn⊂an
are sets of respective cardinality at least rn.

It is not difficult to provide a precise formula for the necessary size of the
sets an. The infinite version of this theorem holds as well.

Fact 1.2 ([1]). For every number k ∈ ω and every sequence rn : n ∈ ω
of natural numbers there is a sequence an : n ∈ ω of finite sets such that
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for every partition of the product Πnan into k many Borel pieces, one of
the pieces contains a product of the form Πnbn where bn ⊂ an are sets of
respective size at least rn.

Here, the space Πnan is equipped with the product topology of the dis-
crete topologies on the finite sets an. The computation of the sequence of
needed sizes of the finite sets an : n ∈ ω turned out to be more compli-
cated, and the first non-primitive-recursive estimate appeared in [2]. One
can parametrize this theorem with one more infinite dimension:

Fact 1.3 ([3]). Suppose k is a number and rn : n∈ω are natural numbers.
Then there is a sequence an : n∈ω of finite sets such that for every partition
of the product Πnan×ω into k many Borel pieces, one of the pieces contains
a subset of the form Πnbn×c where bn⊂an are sets of size at least rn, and
c⊂ω is an infinite set.

The difficult proof contains a reference to the Galvin–Prikry partition
theorem [5], and it provides no estimate for the growth of the sequence nec-
essary for the partition property to hold. We will greatly improve on these
efforts. Our theorems are more general, they offer many more applications,
and the argument yields direct primitive recursive computations. The argu-
ments differ greatly from those of [3]; they employ the powerful method of
creature forcing of [12] which promises many more applications to Ramsey
theory in the future.

One can attempt to measure the size of homogeneous products not in
terms of the cardinality of the finite sets in the product, but in terms of a
different measure or submeasure. The arguments of [3] do not work in such
a case. However, we can provide a nearly complete information.

Theorem 1.4. Suppose k ∈ ω is a number and rn : n ∈ ω is a sequence of
real numbers. Then for every sequence of submeasures φn : n ∈ ω on finite
sets, increasing fast enough, and for every partition Bi : i∈k of the product
Πndom(φn)×ω into Borel pieces, one of the pieces contains a product of
the form Πnbn × c where c ⊂ ω is an infinite set, and bn ⊂ dom(φn) and
φn(bn)>rn for every number n∈ω.

Here, the phrase “for every fast enough increasing sequence of submea-
sures” means that Player I has a winning strategy in the infinite game in
which he indicates real numbers sn : n∈ω, to which Player II responds with
submeasures φn on finite sets such that φn(dom(φn))≥ sn. Player I wins if
for the resulting sequence of submeasures, the partition property holds. It
will be clear from the proof that a rate of growth corresponding to a stack of
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exponentials of linear height is sufficient for the partition property to hold.
The proof also shows that a number of other effects can be achieved. For
example, if f : Πndom(φn)→2ω is a Borel function, then the sets bn : n∈ω
can be found such that g �Πnbn is continuous.

This fairly general theorem allows for several variations. One of them
deals with the size of the homogeneous set in the infinite coordinate. An
abstract argument based on Theorem 1.4 will show:

Theorem 1.5. Suppose k∈ω is a number, K an Fσ-ideal on ω, and rn : n∈
ω is a sequence of real numbers. Then for every sequence of submeasures
φn : n ∈ ω on finite sets, increasing fast enough, and for every partition
Bi : i∈k of the product Πndom(φn)×ω into Borel pieces, one of the pieces
contains a product of the form Πnbn×c where c⊂ω is a K-positive set, and
bn⊂dom(φn) and φn(bn)>rn for every number n∈ω.

Another possible variation arises from adding another axis to the parti-
tions. We will state and prove a measure parametrized version:

Theorem 1.6. Suppose that ε > 0 is a real number and rn : n ∈ ω is a
sequence of real numbers. Then for every sequence of measures φn : n ∈ ω
on finite sets increasing fast enough, and every Borel set B⊂Πndom(φn)×
ω× [0,1] with vertical sections of Lebesgue mass at least ε, there are sets
bn ⊂ dom(φn) with φn(bn) > rn, an infinite set c⊂ ω and a point z ∈ [0,1]
such that Πnbn×c×{z}⊂B.

For the second author, the stated theorems are really results about forc-
ing, and their main applications also lie in the realm of forcing theory. They
seem to be the strongest tool known to date for proving that various bound-
ing forcings do not add independent reals. Here, a set a ⊂ ω in a generic
extension is independent if neither it nor its complement contain a ground
model infinite subset. We get:

Corollary 1.7. Suppose that In is a σ-ideal on a Polish space Xn generated
by a compact family of compact sets, this for every number n ∈ ω. The
countable support product of posets PIn : n∈ω does not add an independent
real.

Here, the symbol PI stands for the poset of I-positive Borel sets ordered
by inclusion. The partial orders of the form described in the corollary have
been studied in [13, Theorem 4.1.8]; they include for example the Sacks
forcing, or all the tree limsup infinity forcings of [12]. Thus the corollary
can be understood as a far-reaching generalization of Laver’s theorem on
independent reals and product of Sacks reals [9].
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Corollary 1.8. The Halpern–Läuchli forcing, the E0 and E2 forcings do
not add independent reals.

The notation in this paper follows the set theoretic standard of [7]. An
atom of a partial order is an element with no elements below it. An inde-
pendent real over a transitive model of set theory is a set a⊂ ω such that
neither it nor its complement contain an infinite subset from the model. All
logarithms in this paper are evaluated with base 2. Theorems 1.3 and 1.4
can be stated in a stronger form: with an axis [ω]ℵ0 and homogeneous com-
binatorial cubes [c]ℵ0 instead of the infinite axis and a homogeneous infinite
set c. However, no such reasonable stronger form exists for Theorems 1.5
and 1.6.

2. The creature forcing

In order to prove theorems from the introduction, we need to consider a
forcing from the family of creature forcings introduced in [12]. The general
approach of that book may seem daunting to many readers; our special case
is fairly simple and still quite useful.

Definition 2.1. Let a be a nonempty finite set. A setup on a is an atomic
partially ordered set C, with a = the set of atoms of C, and an order-
preserving function nor : C→R which is constantly zero on the set a.

In the nomenclature of Ros�lanowski–Shelah, the nonatomic elements of
a setup are called creatures. The set of atoms below a given creature c∈C
is a set of its possibilities, pos(c).

Definition 2.2. Let an be pairwise disjoint finite sets, and Cn,norn a setup
on each. The forcing P consists of all functions p with domain ω such that
∀n p(n)∈Cn and the numbers norn(p(n)) tend to infinity. The ordering is
that of coordinatewise strengthening.

The partial order P will add a function ẋgen ∈Πnan defined as the unique
function in the product which is coordinatewise below every condition in the
generic filter. In the specific cases discussed in this paper, the whole generic
filter can be reconstructed from this function. Note that partitioning ω into
finitely many disjoint infinite sets one can present P as a product of finitely
many similar forcings; this feature makes P a natural tool for the investi-
gation of product forcing. The forcing P is not separative. If p,q ∈ P are
two conditions such that for every n∈ω, pos(q(n))⊂pos(p(n)), and for all
but finitely many n ∈ ω, q(n) ≤ p(n), then there is no strengthening of q
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incompatible with p, even though q≤p may fail. This feature appears to be
essential, and it will be exploited in several places.

The forcing properties of P depend on subtle combinatorial properties of
the setups. We will need the following notions.

Definition 2.3. Let ε> 0 be a real number. The setup C has ε-bigness if
for every c ∈ C with nor(c) ≥ 2 and every partition of the set a into two
parts, there is d≤c with nor(d)>nor(c)−ε such that all atoms below d fall
into the same piece of the partition.

The simplest example of a setup with ε-bigness arises from a submea-
sure φ on the set a. Define C=P(a), nor(b)=ε log(1+φ(b)) if b⊂a is not a
singleton, and nor(b)=0 if b is a singleton. Another example starts with an
arbitrary partially ordered set C with a finite set a of atoms such that every
nonatomic element has at least two atoms below it. For every nonatomic
c∈C and n∈ω consider the game of length n in which Player I plays par-
titions of the set a into two parts and Player II plays a descending chain of
nonatomic creatures below c such that the atoms below i-th condition are
all contained in the same set of i-th partition. Player II wins if he survives
all rounds. Now let nor(c)=ε· the largest number n such that Player II has
a winning strategy in the game of length n below c, and norm of the atoms
will be again zero.

The setups we will use will have to be a little more complicated, since
they have to satisfy the following subtle condition.

Definition 2.4. Let ε> 0 be a real number. The setup C has ε-halving if
for every c∈C there is d≤c (so called half of c) such that nor(d)>nor(c)−ε
and for every nonatomic d′≤ d there is c′≤ c such that nor(c′)> nor(c)−ε
and every atom below c′ is also below d′.

This may sound mysterious, but in fact there is a mechanical procedure
to adjust any setup to a setup with halving. Suppose C is a setup with a
norm norC . Let D be the partial order whose nonatomic elements are of
the form 〈c,r〉, where c∈C is not an atom and nor(c)≥ r. The ordering is
defined by 〈d,s〉≤D 〈c,r〉 if d≤C c and r≤s. The atoms of D are exactly the
atoms of C, and if i is such an atom then i≤D 〈c,r〉 if and only if i≤C c.
The norm on D is defined by norD(c,r) = ε log(norC(c)− r+1), where ε is
a real number; the norm of atoms is again zero. The adjusted setup D has

ε-halving: the half of the creature 〈c,r〉 is the creature
〈
c,r+ norC(c)−r

2

〉
. It is

not difficult to see that if 〈d,s〉 is a creature below the half, the creature 〈d,r〉
has norm ε-close to 〈c,r〉 and the same set of possibilities as 〈d,s〉.
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Another approach for building a norm function with ε-halving on a given
partial order C uses a two player game of length n. In i-th round Player I pro-
duces nonatomic creatures ci≥di and Player II responds with a nonatomic
creature ei≤ di. If Player II chooses ei = di then Player I must choose ci+1

smaller than di, and if ei < di then pos(ci+1) must be a subset of pos(ei).
Player I wins if he survives all rounds. One can then define nor(c) = ε· the
largest number n for which Player I has a winning strategy in the game of
length n with the first move equal to c.

In spite of the grammar used in this paper, the half of a creature is not
necessarily unique.

Definition 2.5. Let ε > 0 be a real number. The setup C has ε-Fubini
property if for every creature c ∈ C with nor(c) > 2 and every Borel set
B ⊂ a× [0,1] with vertical sections of Lebesgue mass at least ε there is a
creature d≤ c such that nor(d)> nor(c)−1 and a point z ∈ [0,1] such that
pos(d)×{z}⊂B.

This is a property used for preservation of outer Lebesgue measure. One
possible way to obtain a setup with the ε-Fubini property for a given real
number 0 < ε < 1 starts with a measure φ on a finite set a and defines

C=P(a), with nor(b)= log(φ(a)+1)
− logε for a non-singleton set b⊂a.

The following proposition is the heart of this paper.

Proposition 2.6. Let an : n ∈ ω be a collection of pairwise disjoint finite
sets, with a setup Cn,norn on each, and let P be the resulting partial order.

1. Let εn =1/Πm∈n|am|. If every setup Cn has εn-halving and bigness, the
forcing P is proper and bounding.

2. Let εn=1/Πm∈n2|am|. If every setup Cn has εn-halving and bigness, the
forcing P adds no independent reals.

3. Let εn = 1/Πm∈n22
n|am|. If every setup Cn has εn-halving, bigness and

Fubini property, then the forcing P adds no V -independent sequence of
sets of positive mass.

The first item is just a rehash of [12]. The third item introduces a new
forcing preservation property.

Definition 2.7. A V -independent sequence of sets of positive mass in the
generic extension is a collection Di : i ∈ ω of closed subsets of some Borel
probability space with masses bounded away from zero, such that for no
ground model infinite set c ⊂ ω and no ground model element z of the
probability space it is the case that z∈⋂

i∈cDi.
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This is a property that implies adding no independent reals and preserva-
tion of outer Lebesgue measure. The estimates for εn : n∈ω in this proposi-
tion as well as other assumptions are almost certainly not the best possible.

The proofs are essentially just careful fusion arguments. We will need
several pieces of notation and terminology. For a condition p ∈ P let [p] =
Πnpos(p(n)). If moreover a⊂ω is a finite set, then [p] �a=Πn∈apos(p(n)).
For every sequence t∈ [p] �a, p �� t is the condition q≤p defined by q �a= t
and ∀n∈ω\a q(n)=p(n).

We will proceed with a sequence of simple claims.

Claim 2.8 (the halving trick). Suppose that Di : i∈ k are open subsets
of P invariant under the inseparability equivalence. Suppose that all setups
have 1/k-halving, and suppose that p ∈ P is a condition on which all the
norms are equal to at least r>3. Then there is q≤p on which all the norms
are at least r−1, and for every i∈k either q∈Di or there is no q′≤ q with
all norms nonzero and q′≤q.

Here, an open set is invariant under inseparability if, whenever p,q are
conditions such that q has no extension incompatible with p, and p∈D, then
q ∈D. Note that if π is the natural map of P into the separative quotient
of P , and D′ is an open subset of the separative quotient, then π−1D is
invariant under inseparability. Thus, in forcing we only need to care about
the open sets that are invariant under inseparability.

Proof. By induction on i ∈ k construct a sequence of conditions pi : i≤ k
starting with p0=p using the following rules:

• if there is a condition q≤pi in Di whose norms are at least r−(i+1)/k,
then let pi+1 be such a condition;

• otherwise let pi+1 be the half of pi; that is, for every n∈ω pi+1(n) is the
half of pi(n).

In the end, the condition q= pk will satisfy the conclusion of the claim.
To see that, pick i ∈ k. If the first case occurred at i, then q ∈Di and we
are done. If the second case occurred, there is no q′ ≤ q with all norms
nonzero in the set Di. Since if such a condition q′ existed, we could find
m ∈ ω such that ∀n ≥ m norn(q′(n)) ≥ r− i/k, and use the properties of
halving to find a condition q′′≤pi such that ∀n<m pos(q′′(n))⊂pos(q′(n)),
∀n < m nor(q′′(n)) ≥ r− i/k, and ∀n ≥m q′′(n) = q′(n). Such a condition
is inseparable from q′, it therefore must be in Di, and it contradicts the
assumption that the first case failed at i.

Claim 2.9 (the bigness trick). Suppose that Oi : i ∈ k are clopen sets
covering the space Πnan. Suppose that for every n, the n-th setup has 1/k ·
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Πm∈n|am| bigness, and suppose that p ∈ P is a condition with all norms
greater than 3. Then there is a condition q ≤ p in which all the norms
decreased by at most one, and such that the set [q] belongs to at most one
piece of the partition.

Proof. Let m∈ω be a number such that the membership of any point x∈ [p]
in the given clopen sets depends only on x �m. By downward induction on
i∈m construct a decreasing chain pi : i≤m of conditions such that p=pm;

• pi = pi+1 at all entries except i and there the norm is decreased by at
most one;

• the membership of x∈ [pi] in the clopen sets depends only on x� i.
This is easily done using the bigness property. In the end, q = p0 is the

requested condition.

Now we need to introduce standard fusion terminology. Suppose that
p,q ∈ P and r ∈ R. Say that q ≤r p if q ≤ p and for every n ∈ ω such that
norn(p(n)) ≤ r it is the case that p(n) = q(n), and for all other n ∈ ω it is
the case that norn(q(n))≥ r. A fusion sequence is a sequence pi : i∈ω such
that for some numbers ri∈R tending to infinity, pi+1≤ri pi. It is immediate
to verify that a fusion sequence in the poset P has a lower bound. Finally,
a condition p∈P is almost contained in a set D if there is a number m∈ω
such that for every t∈ [p]�m, p� t∈D.

Claim 2.10. Suppose that D⊂P is an open dense subset invariant under
inseparability, p∈P , and r ∈R. Then there is q≤r p such that q is almost
contained in D.

Proof. Fix D, p, and r and suppose that the claim fails. By induction on
i∈ω construct conditions pi and numbers mi so that p0 =p and m0 is such
that ∀n≥m0 norn(p(n))≥r+1 and for all i∈ω,

• pi+1 �mi=pi �mi;
• for all mi ≤ n < mi+1, norn(pi(n)) ≥ r + i and for all n ≥ mi+1,
norn(pi(n))>r+ i+2;

• for all t ∈ [pi+1] � [m0,mi+1), no condition q′ ≤ pi+1 � t with ∀n ≥mi+1

norn(q′(n))>0 is almost contained in D.

If this has been done, consider the condition q which is the natural limit
of the sequence pi : i ∈ ω. The first and second items imply that indeed,
q exists as an element of the forcing P . Find a condition q′≤q and a number
i∈ω such that ∀n≥mi+1 norn(q′(n))> 0 and ∀t∈ [p] �m0 q′ � t∈D. Then
certainly the condition q′ is almost contained in the set D and therefore
contradicts the third item above.
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In order to perform the induction, suppose that pi, mi have been defined.
Find mi+1∈ω such that ∀n≥mi+1 norn(pi(n))≥r+i+1. Use Claim 2.8 and
halving to find a condition p′i≤pi so that ∀n≤mi p

′
i(n)=pi(n) and ∀n≥mi+1

norn(p′i(n))> r+ i such that for every sequence t∈ [p′n] � [m0,mi+1), either
(1) p′i � t is almost contained in D or else (2) there is no q′≤p′i � t such that
∀n<m0 q′(n)=p′(n), ∀n≥mi+1 norn(q′(n))>0, and q′ is almost contained
in D. Use the bigness and Claim 2.9 to thin out the condition p′i in the
interval [mi,mi+1) to find a condition pi+1≤p′i such that ∀n<mi pi+1(n)=
pi(n), ∀mi≤n<ni+1 norn(pi+1(n))>r+ i, ∀n≥mi+1 pi+1(n) = p′i(n), and
for every sequence t∈pi+1 � [m0,mi+1), whether case (1) or (2) above takes
place depends only on t � [m0,mi). Now, the induction hypothesis implies
that for no such t case (1) can hold: the condition pi+1 ��(t� [m0,mi)) would
then violate the third item of the induction hypothesis at i. Reviewing the
resulting situation, we see that the condition pi+1 and the number mi+1

have successfully been chosen in a way that makes the induction hypothesis
hold at i+1.

The properness of the forcing P now immediately follows. Suppose that
p∈P is a condition and M is a countable elementary submodel. Let Di : i∈ω
be a list of all open dense subsets of the poset P in the model M . Construct
a fusion sequence pi : i ∈ ω of conditions in the model M such that pi is
almost contained in the set Di. The fusion q will be a master condition for
the model M stronger than P . Note that every element x ∈ [q] defines an
M -generic filter; namely, the filter of those conditions p∈M such that there
exists n∈ω such that the condition q with the first n coordinates replaced
with the first n coordinates of x is below p.

The bounding property of the forcing is proved in exactly the same way.
Note that if a condition almost belongs to an open dense set, then there is
a finite subset of the dense set which is predense below the condition. Not
adding splitting reals is more sophisticated. Also note the stronger require-
ment on the growth of the numbers 1/εn : n ∈ ω. Suppose that p ∈ P is a
condition and ẋ a name for an infinite binary sequence. We need to find a
condition q≤p deciding infinitely many values of the name ẋ.

Strengthening the condition p as in the previous paragraphs we may
assume that for every number i∈ω the condition p is almost contained in
the set of conditions deciding the value ẋ(i). Now use Claim 2.8 repeatedly
to build a fusion sequence pi : i∈ω and numbers mi∈ω in such a way that
for every i ∈ ω and every sequence of sets cm : np ≤ m < mi if there is a
condition q ≤ pi with ∀n <mi pos(q(n)) = cm, ∀n≥mi nor(q(n)) > 0 and
q decides a value of ẋ(j) for some j > i, then there is such a condition q
with ∀n > mi q(n) = pi(n). Let q ≤ p be the fusion of this sequence. For
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every number j ∈ ω, use Claim 2.9 to find a condition qj ≤ q such that qj
decides the value of the bit ẋj , and qj(n)=q(n) for all but finitely many n,
and nor(qj(n)) ≥ nor(q(n)) for all n ∈ ω. Use a compactness argument to
find a condition r ≤ q and an infinite set a ⊂ ω such that the sequences
〈pos(qj(n)) : n∈ω〉 : j ∈ a converge in the natural topology to the sequence
〈pos(r(n)) : n ∈ ω〉. We claim that the condition r decides infinitely many
values of the name ẋ.

To see this, let i ∈ ω be a number. Let j ∈ a be a number such that
pos(qj(n))=pos(r(n)) for all n<mi. Consider the condition qj. It witnesses
that there is a condition s ≤ q deciding a value of the name ẋ(j) such
that ∀n < mi pos(r(n)) = pos(s(n)) and ∀n nor(s(n)) > 0. By the fusion
construction, it must be the case that already q is such a condition, and
therefore r≤q is such a condition!

The second item of the theorem can be improved to the following.

Claim 2.11. Suppose that p ∈ P , r ∈ R, u ⊂ ω is infinite, and p � Ȧ ⊂
P(ω)/Fin is open dense. Then there is q≤r p and an infinite set v⊂u such
that q� v̌∈ Ȧ.

Proof. We will provide an abstract argument in the spirit of [13] which can
be applied in many similar situations. There is also an alternative argument
which proceeds through tightening the fusion process above.

Let Q be the quotient partial order of P(ω)/Fin below u. Consider the
partial order P ×Q, with respective generic filters G ⊂ P , H ⊂ Q. The
following is easy to check.

• In V [H], H is a Ramsey ultrafilter on ω containing u;
• in V [H], P is a proper bounding forcing adding no independent reals;
• R∩V [G][H]=R∩V [G];
• H still generates a Ramsey ultrafilter in V [G][H].

The first item is entirely standard. For the second item, repeat the proof
of (1) and (2) of the theorem in the model V [H]. For the third item, note
that by a properness argument, every real in V [H][G] is obtained from a
countable collection of countable sets predense below some condition in P
which exists in the model V [H]. But countable subsets of P are the same
in V as in V [H], and therefore the real belongs to V [G]. For the last item,
use mutual genericity and the no independent real property to show that
H indeed generates an ultrafilter in V [G][H]. To check that this ultrafilter
is selective, use the bounding property of the poset P to find, for every
partition π of ω into finite sets in the model V [G][H], a partition π′ of ω
into finite sets in V [H] such that every set in π is contained in the union of
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two successive pieces of π′. Use the selectivity of H in the model V [H] to
find a set u∈H that meets every set in π′ in at most one point. Either the
set of even indexed numbers in u or the set of odd indexed numbers in u
belongs to H, and it meets every set in π in at most one point.

Now note that every Ramsey ultrafilter meets every analytic open dense
subset of P(ω)/Fin [13, Claim 4.3.4]. Working in V [H], p � there is an
element v∈H∩ Ȧ. The proof of the bounding property shows that there is
q≤r p and a finite set h⊂H such that q�h∩ Ȧ �= 0. Clearly, q� ǔ∩⋂

ȟ∈ Ȧ
as required!

Towards the proof of Proposition 2.6 (3), suppose p ∈ P , ε > 0, and
p� Ḃn : n∈ω is a sequence of Borel subsets of 2ω of Lebesgue mass greater
than ε. Passing to subsets, we may assume that all the sets on the sequence
are forced to be closed. We may also assume that there is a continuous
function f : [p] → K(2ω)ω such that p � the sequence is recovered as the
functional value at the generic point ẋgen . Find a number m0 such that
εm0 <ε and ∀n≥m0 nor(p(n))>3. Thinning out the condition p if necessary,
assume that p(n)∈an for all n∈m0.

By induction on i∈ω build conditions pi ∈P , infinite sets ui ⊂ω, finite
sets vi⊂ω, and binary sequences si : i∈ω so that:

• pi form a fusion sequence: pi+1≤i pi. The limit of the sequence will be a
condition q.

• vi strictly increase, ui strictly decrease, and vi ⊂ ui. Thus u=
⋂

iui ⊂ω
will be an infinite set.

• The sequences si are linearly ordered by the initial segment relation. The
union y=

⋃
i si will be a point in 2ω.

We want to achieve q � y̌ ∈ ⋂
n∈ui

Ḃn. For that, another induction as-
sumption is necessary. A piece of notation: whenever a P -generic filter is
overwritten on a finite set of coordinates with a sequence t of atoms, the
result is again a P -generic filter. Whenever τ is a P -name, then τ/t is the
name for the evaluation of τ according to the overwritten generic filter. Here
is the last item of the induction hypothesis.

• For every number k ∈ ui, the condition pi forces the closed set Ḃi
k =

Oti∩
⋂{Ḃn/t : n∈vi∪{k}, t∈ [pi]� [m0,m0+i)} to have Lebesgue measure

larger than εm0+i.

Suppose that pi,ui,vi have been constructed. Fix k∈ui. For every element
e ∈ [pi] � {m0 + i} and every k ∈ ui, the set Ḃi

k/e is forced by pi to have
mass at least εm0+i. Therefore, by the Fubini property of the setup Cm0+i,
the condition pi forces that there is a creature c≤ pi(m0 + i) with a large
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norm such that the set
⋂

e∈pos(c)B
i
k/e has mass at least εm0+1/2|an|. Now

we will apply the previous Claim 2.11 successively three times. First, there
is a condition p′i≤ p and an infinite set u′i⊂u such that there is a creature
c≤pi(m0 +1) which is forced to work for all k∈u′ simultaneously. Second,
there is an infinite set u′′i ⊂ u′i and a one-step extension ti+1 of the binary
sequence ti such that it is forced that the sets Oti+1 ∩

⋂
e∈pos(c)B

i
k/e have

mass at least εm0+1/2|an|+1 for all k∈u′′i . And finally, and most importantly,
by a theorem of [4] applied in the generic extension, these infinitely many
sets are going to have an infinite subcollection with pairwise intersections of
mass bounded away from zero: there is a condition p′′′i ≤ p′′i and an infinite
set u′′′i ⊂u′′i such that the sets Oti+1∩

⋂
e∈pos(c)B

i
k : k∈u′′′i are forced to have

pairwise intersections of mass at least 1
2

( εm0+1

2|an|+1

)2
> εm0+i+1. Claim 2.11

shows that the conditions p′i, p
′′
i , and p′′′i can be chosen ≤i pi. Now let pi+1 be

the condition p′′′i with its m0+i-th coordinate replaced by c, ui+1=u′′′i ∪vi,
and vi+1 = vi ∪min(ui+1 \ vi). It is not difficult to see that the induction
hypothesis is satisfied.

In the end, let u=
⋂

iui and let q≤ p be the lower bound of the condi-
tions pi. Let y=

⋃
i ti. The last item of the induction hypothesis shows that

indeed, ∀x∈ [q], ∀n∈u y∈f(x)(n), and therefore q� y̌∈⋂
n∈u Ḃn, as desired.

3. The proofs of the parametrized theorems

With the key properties of the creature forcing at hand, the parametrized
theorems follow fairly easily. Suppose that k ∈ ω is a natural number and
rn : n∈ω is a sequence of real numbers. Suppose that φn : n∈ω is a sequence
of submeasures on finite sets an : n∈ω such that, writing εn=1/Πm∈n2|am|,
the numbers εn log(log(1+sφn(an))− log(1+ rn)+1) are all defined, larger
than k, and tend to infinity. We will prove that every partition of the Pol-
ish space Πnan×ω into k many Borel pieces Di : i ∈ k, one of the pieces
contains a product of the form Πnbn × c, where bn ⊂ an are sets of re-
spective φn-mass at least rn and c ⊂ ω is an infinite set. This will prove
Theorem 1.4.

For every number n∈ω, define a setup Cn on the set an with a norm norn.
Nonatomic elements of Cn are pairs 〈b,r〉 where b⊂an, r∈R

+ and log(1+
φn(b))≥ r; the norm is defined by norn(b,r) = εn log(log(1+φn(b)− r+1)).
The ordering is defined by 〈c,s〉 ≤ 〈b,r〉 if c ⊂ b and s ≥ r. Define the
creature forcing P derived from the setups Cn on the sets an and consider
the condition p∈P such that p(n)= 〈an, log(1+rn)〉. Consider the P -name
for a partition of ω into k pieces (Di)ẋgen : i∈k obtained as a vertical section
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of the Borel partition of Πnan × ω above the generic sequence ẋgen . The
forcing P does not add independent reals, and therefore there is a condition
q≤p and an infinite set c⊂ω and an index i∈k such that q� č is a subset
of i-th piece of this partition. Reviewing the proof of Proposition 2.6 (2),
or using Claim 2.11, it becomes clear that the condition q can be found in
such a way that ∀n norn(q(n))> 0. Now let M be a countable elementary
submodel of a large enough structure containing the condition q, and find
an M -master condition q′≤q. The proof of Proposition 2.6 (1) in fact shows
that the master condition q′ can be chosen so that ∀n∈ ω norn(q′(n)) > 0
and all points in [q′] are M -generic in the sense that for every x∈ [q′] the
filter gx ={r∈M ∩P : ∃n q′ �� (x�n)≤r}⊂P is M -generic. An absoluteness
argument between M [gx] and V will show that 〈x,n〉∈Di and so [q′]×c⊂Di.
Theorem 1.4 follows.

Theorem 1.5 can now be derived abstractly. Suppose that K is an Fσ-
ideal and rn : n∈ω are real numbers. Use a theorem of Mazur [10] to find a
lower semicontinuous submeasure μ on ω such that K ={a⊂ω : μ(a)<∞}.
Suppose that φn : n∈ω is a fast increasing sequence of submeasures on finite
sets an, and Πnan×ω =

⋃
i∈kBi is a partition of the product into finitely

many Borel sets. There will be pairwise disjoint finite subsets bn : n ∈ ω
of ω such that the sequence φn,μ � bn : n∈ ω of submeasures still increases
fast enough to apply Theorem 1.4. Let Πnan×Πnbn×ω =

⋃
i∈kCi be the

partition defined by 〈x,y,n〉 ∈ Ci ↔ 〈x,y(n)〉 ∈ Bi. Use Theorem 1.4 to
find sets a′n ⊂ an, b′n ⊂ bn and c ⊂ ω such that φn(a′n) ≥ rn, μ(b′n) ≥ n,
and c is infinite, and the product Πna

′
n×Πnb

′
n× c is wholly contained in

one of the pieces of the partition, say Ci. The review of the definitions
reveals that c′ =

⋃
n∈c b

′
n is a K-positive set, and Πnb

′
n×c′⊂Bi. This proves

Theorem 1.5.

To derive Theorem 1.6, suppose that ε>0 is a real number, φn : n∈ω is a
fast increasing sequence of measures on finite sets, and B⊂Πndom(φn)×ω×
2ω is a Borel set with vertical sections of mass at least ε. Choose the setups
as in the proof of Theorem 1.4 and observe that they do have the Fubini
property. It follows from Proposition 2.6 (3) that the derived forcing does not
add a V -independent sequence of sets of mass >ε. In fact, the proof shows
that there is a condition p∈P , a point z∈2ω, and an infinite set u⊂ω such
that p� ž belongs to the vertical section of the set B corresponding to ẋgen
and any n ∈ u. Moreover, the condition p can be chosen with all norms
nonzero. Let M be a countable elementary submodel of a large structure
and find a condition q ≤ p with all norms nonzero such that the set [q]
consists of M -generic points only. Then [q]×u×{z}⊂B, and Theorem 1.6
follows.
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4. Applications

Theorem 1.4 is one of the strongest tools available to prove that certain
bounding forcings do not add independent reals.

The first application concerns the independent reals in countable support
products. Suppose that for every number n∈ω, In is a σ-ideal on a compact
space Xn generated by a σ-compact collection of compact sets in the hyper-
space K(Xn). The quotient forcings PIn of Borel In-positive sets ordered by
inclusion have been studied in [13, Theorem 4.1.8]. They include such posets
as Sacks forcing, cmin-forcing, the limsup ∞ tree forcings of [12], as well as
some more mysterious entities such as the quotient forcing of Borel non-σ-
finite packing mass sets ordered by inclusion. They are proper, bounding,
and do not add independent reals. The proof of [13, Theorem 4.1.8] easily
generalizes to show that even their finite products share these properties.
The infinite product is proper, bounding, and preserves category [13, Theo-
rem 5.2.6]. The question of independent reals in the infinite product is more
subtle:

Proposition 4.1. Countable product of quotient forcings PIn : n∈ω, where
each In is σ-generated by a σ-compact collection of compact sets, does not
add independent reals.

In fact, it is not difficult to argue that the product has the weak Laver
property, which in conjuction with this proposition and [14] shows that the
product preserves P-points.

Proof. For the simplicity of notation assume that the underlying space Xn

is always equal to the Cantor space 2ω. For every number n∈ω, fix compact
sets Kn,i⊂K(2ω) : i∈ω whose union σ-generates the ideal In; assume that
these sets are closed under taking compact subsets. Let On,i = {a ⊂ 2<ω

finite: there is a set b∈Kn,i such that ∀t ∈ a ∃x ∈ b t⊂ x}. In order to be
able to apply Theorem 1.4 in this context, we must identify the submeasures
on finite sets. Suppose T ⊂ 2<ω is a tree, n,i∈ω, and m0<m1 are natural
numbers. We will define a submeasure φ=φ(T,n,i,m0,m1) on the finite set
a(T,m0,m1) = Πs∈2m0∩T {t ∈ 2m1 ∩ T : s ⊂ t}. Denote the elements of the
set a(T,m0,m1) as functions with the domain 2m0 ∩ T . Define W = {b ⊂
a : ∃s∈2m0 ∩T {w(s) : w∈ b}∈On,i}, and then define φ(b) = the number of
sets in W necessary for covering the set b. The main claim:

Claim 4.2. For every n,i ∈ ω every In-positive tree T , every number m0

and every number r there is m1 such that the submeasure φ(T,n,i,m0,m1)
assigns a value larger than r to its domain.
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Proof. Suppose this fails for T,n,i,m0 and r. For every number m>m0

find a partition of the set a(T,m0,m) into sets bmj in the set Wm = {b ⊂
a(T,m0,m) : ∃s∈2m0∩T {w(s) : w∈b}∈On,i}. Consider the product forcing

Πs∈2m0∩TPIn �T �s. Consider the name for the function ḟ : ω→r defined by
ḟ(m)= that value of j∈r for which 	xgen �m∈bmj , where 	xgen is the product
name for the finite sequence of generic points. Since the finite product does
not add independent reals, there must be an infinite set c ⊂ ω, a number
j ∈ r, and a condition 〈Ss : s ∈ 2m0 ∩ T 〉 which forces ḟ � č to return the
constant value j. Find a number m∈C such that the sets Ss �m : s∈2m0∩T
all fall out of On,i. It must be the case then that Πs∈2m0∩TSs �m⊂bmj , which
contradicts the assumption that bmj ∈Wm.

Now suppose that Tn : n∈ω is a condition in the product of the quotient
posets, forcing that ẏ ∈ 2ω is a point. We must find a stronger condition
deciding infinitely many values of the point ẏ. Strengthening the condition if
necessary, we may assume that there is a continuous function f : Πn[Tn]→2ω

such that the condition forces the point ẏ to be the functional value of f at
the generic point. Using the claim, it is not difficult to find natural numbers
mn,i : n,i∈ω so that

• mn,0=0<mn,1<mn,2<.. . ;
• the submeasures φn,i = φ(Tn,n, i,mi,mi+1) on the sets an,i = a(Tn,mi,

mi+1) form a sufficiently fast increasing sequence of submeasures under
a suitable enumeration of all pairs (n,i)∈ω×ω in ordertype ω.

Note that every sequence x∈Πn,ian,i defines a point z(x)∈Πn[Tn] as the
unique point z such that ∀n,i z(n) �mn,i+1 = (x(n))(z(n) �mn,i). Moreover,
if bn,i ⊂ an,i are sets with φni-mass at least 2 for every pair (n,i) ∈ ω×ω,
then {z(x) : x ∈Πn,ibn,i} = Πn[Sn] for some In-positive trees Sn ⊂ Tn : n ∈
ω. Consider the partition Πn,ian,i ×ω = C0 ∪C1 defined by 〈x,n〉 ∈ C0 ↔
f(z(x))(n) = 0. Theorem 1.4 yields sets bn,i ⊂ an,i of respective φn,i mass
greater than 2, an infinite set c⊂ω and a bit b∈ 2 such that ∀x∈Πn,ibni ,
∀n∈c f(z(x))(n)=b. For every n∈ω let Sn⊂Tn be the In-positive trees such
that {z(x) : x∈Πn,ibn,i=ΠnSn}. Then the condition 〈Sn : n∈ω〉 decides the
values of the point ẏ to be equal to b at all numbers n∈ c. This completes
the proof.

It is possible to use Theorem 1.4 to show that some other, otherwise
intractable, forcings do not add independent reals or preserve P-points. All
the arguments also show that the countable support products of arbitrary
combinations of these forcings add no independent reals. It is in general
not true that not adding an independent real is preserved in product, as an
example in [14] shows.
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Ros�lanowski [11] and others considered the Halpern–Läuchli forcing.
A tree T ⊂2<ω is said to be strongly embedded if there is an infinite set c⊂ω
such that a node of T is a splitnode iff its length belongs to the set c. The
Halpern–Läuchli forcing is just the poset of strongly embedded trees with
inclusion. This is a proper and bounding forcing with the Sacks property, as
simple fusion arguments immediately show.

Proposition 4.3. The Halpern–Läuchli forcing does not add independent
reals.

Proof. Suppose T � ẏ∈2ω. We must produce a stronger condition S deciding
infinitely many values of ẏ. Strengthening the condition T if necessary, we
can find a continuous function f : [T ] → 2ω such that T forces ẏ to be the
functional value of f at the canonical generic point. By a simple homogeneity
argument we may assume that in fact T = 2<ω. Choose a fast increasing
sequence mn : n∈ω of natural numbers, and consider the sets an=2mn+1\mn

with the counting measure on each. For every point x ∈ Πnan let z(x) =⋃
nx(n) and note that whenever bn : n ∈ ω are subsets of the respective

sets an of cardinality at least 2, there is a strongly embedded tree S⊂ 2<ω

such that [S]={z(x) : x∈Πnbn}. Consider the partition Πnan×ω=C0∪C1

into two Borel parts defined by 〈x,n〉 ∈C0 ↔ f(z(x))(n) = 0. Theorem 1.4
provides sets bn ⊂ an : n ∈ ω of size at least 2 and an infinite set c ⊂ ω
such that the product Πnbn × c is wholly contained in one piece of the
partition. Obviously, if S ⊂ 2<ω is the strongly embedded tree such that
[S] = {z(x) : x∈Πnbn}, then S decides all values of the sequence ẏ on the
infinite set c.

[13] and [8] considered the E2 forcing. E2 is the Borel equivalence rela-
tion on 2ω defined by xE2y iff xn = yn for all numbers n ∈ ω except for a
summable set of exceptions; that is, Σ{1/n+1: x(n) �=y(n)}<∞. This is a
standard example of a Borel equivalence relation not Borel reducible to an
orbit equivalence relation of an action of the infinite symmetric group. Con-
sider the collection I of all Borel subsets B⊂2ω such that E �B is reducible
to such an orbit equivalence relation. This turns out to be a σ-ideal, and a
Borel set B⊂2ω is in I if and only if E �B is Borel reducible to a Borel equiv-
alence relation with countably many classes, if and only if E2 is reducible
to E2 �B. The quotient partial order PI has been investigated in [13]. It is
proper and has the Sacks property. Its combinatorial presentation is fairly
complicated.

Proposition 4.4. The E2 forcing does not add independent reals.
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Proof. The method of proof depends on a simple fact. Let E′
2 be the equiv-

alence relation on ωω of equality modulo the summable ideal. Then the
equivalence relations E2 and E′

2 are Borel bireducible to each other.
Suppose B ∈ PI is a condition and ẏ is a name for an infinite binary

sequence. We must find a stronger condition that decides infinitely many
values of the sequence ẏ. Strengthening the condition B if necessary, we
may assume that there is a Borel function f : B→2ω such that B forces ẏ to
be the f -image of the canonical generic point. Since E2 is reducible to E2 �B,
so is E′

2, via a Borel reduction g : ωω→B. Choose a fast increasing sequence
kn : n∈ω of natural numbers, each equipped with a counting measure. Note
that whenever bn ⊂ kn : n ∈ ω are sets of size at least 2, then E2 reduces
to E′

2 �Πnbn, and therefore to the set g′′Πnbn ⊂B, and this set will be I-
positive. Now consider the partition of the product Πnkn×ω=C0∪C1 into
two Borel parts defined by 〈x,i〉 ∈C0 ↔ f(g(x))(n) = 0. Theorem 1.4 yields
sets bn ⊂ kn : n ∈ ω, each containing at least two elements, and an infinite
set c ⊂ ω such that g �Πnbn is continuous and the set Πnbn× c is wholly
contained in one of the pieces of the partition. Since E2 clearly Borel reduces
to E′

2 �Πnbn, it also reduces to g′′Πnbn. A review of the definitions shows
that the set g′′Πnbn⊂B is a compact I-positive set that decides all values
ẏ(n) : n∈c as desired.

The E0 forcing studied in [13] offers a similar story. E0 is the equivalence
relation on 2ω defined by xE0y if the two binary sequences x,y agree on all
but finitely many entries. This is a canonical example of a Borel equivalence
relation that is not Borel reducible to the identity. Let I be the collection of
Borel sets such that E0 �B is reducible to the identity. It turns out that I is
a σ-ideal, and the quotient forcing is proper and has the Sacks property.

Proposition 4.5. The E0 forcing does not add independent reals.

Proof. Observe that the equivalence relation E′
0 on ωω, defined by xE′

0y if
the two sequences differ only at finitely many entries, is bireducible with E0.
The remainder of the proof is exactly the same as before.

The measure parametrized theorem can be used to prove the preservation
of outer Lebesgue measure in various products.

Proposition 4.6. The product of Miller forcing with countably many
copies of Sacks forcing preserves outer Lebesgue measure.

Proof. The key observation for this proposition is the fact that the product
of countably many copies of the Sacks forcing does not add a V -independent
sequence of sets of positive measure. To see this, suppose that p is a condition
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in the product, forcing Ḃi : i∈ω to be a sequence of closed sets of mass at
least ε> 0. We must find an infinite set a⊂ω and a point z∈ 2ω as well as
a condition q ≤ p forcing ž ∈⋂

i∈a Ḃi. By a usual proper forcing argument,
strengthening the condition p if necessary we can find a continuous function
f : (2ω)ω → K(2ω)ω such that p forces Ḃi = ḟ(	xgen)(i). By a homogeneity
argument, we may assume that p is in fact the largest condition in the
product. Now, it is not difficult to find numbers ml

k : k ∈ ω, l ∈ ω so that
ml

k : l∈ω form an increasing sequence starting with zero for every k∈ω, and

moreover the sets 2m
l
k\ml−1

k : k, l∈ω equipped with counting measures form a
sequence increasing fast enough so that Theorem 1.6 can be applied. There
will be sets blk of size at least 2 each for k, l∈ω, a point z∈2ω, and an infinite
set a⊂ ω such that for every i ∈ a and every sequence 〈xk : k ∈ ω〉 ∈ (2ω)ω

with ∀k, l xk � [ml
k,m

l+1
k )∈blk it is the case that z∈f(xk : k∈ω)(i). Consider

the condition q≤p in the product in which the k-th tree q(k)⊂2<ω consists
of those finite binary sequences s such that for every l∈ω, s� [ml

k,m
l+1
k )∈blk.

Clearly, q� ž∈⋂
i∈a Ḃi as desired.

Suppose that p is a condition in the product forcing Ȯ⊂2ω to be an open
set of mass ε<1. We must produce a condition q≤p and a point z∈2ω such
that q� ž /∈Ȯ. The proposition then follows from [13, Proposition 3.2.11].

For a Miller tree T ⊂ω<ω let πT : ω<ω→T be the natural order-preserving
map with the range consisting of all the splitnodes of T . Let εt : t ∈ ω<ω

be positive real numbers whose sum is less than 1−ε
2 . A standard fusion

argument will yield a condition p′ = 〈T,Sn : n ∈ ω〉 ≤ p such that for every
sequence t∈ω<ω there is a Sacks product name Ȯt for a clopen set such that
〈T �πT (t),Sn : n∈ω〉 forces Ȯt⊂Ȯ and λ(Ȯ\Ȯt)<εt; moreover, Ȯt is forced
to contain all basic clopen sets of radius <2−|t| that are a subset of Ȯ. For
the simplicity of notation, we will assume that T = ω<ω and Sn = 2<ω for
every number n∈ω.

For every number i∈ω, consider the product Sacks name Ṗi for the set⋃
t∈ω<ω (Ȯt�i \ Ȯt) ∪ Ȯ0. The Lebesgue measure of the set Ṗi is forced to

be smaller than ε+Σtεt <
1+ε
2 . Since the product Sacks forcing does not

add a V -independent sequence of sets of positive measure, there must be a
condition 〈S′

n : n∈ω〉 in the Sacks product, a point z ∈ 2ω, and an infinite
set a⊂ω such that the condition forces y̌ /∈⋃

i∈a Ṗi. Consider the condition
q = 〈T ′,S′

n : n∈ω〉 where T ′ is the tree of all sequences whose entries come
from the infinite set a. A review of the definitions shows that indeed, q� y̌ /∈Ȯ
as required.

The previous arguments can be repeated with a large class of other forcing
notions. Borderline unclear cases include the following:
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Question 4.7. Does the product of Laver and Sacks forcing preserve the
outer Lebesgue measure?

Question 4.8. Let I be the σ-ideal generated by finite Hausdorff 1/2-
dimensional mass sets on 2ω with the minimum difference metric. Does the
product PI×PI add an independent real?

Question 4.9. Is not adding a V -independent sequence of sets of positive
mass equivalent to the conjunction of not adding an independent real and
preserving outer Lebesgue measure for some large class of proper forcing
notions?
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Žitná 25
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