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P ÉTER KOMJÁTH1† and SAHARON SHELAH2‡
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If ϕ is a scattered order type, and µ is a cardinal, then there exists a scattered order type

ψ such that ψ → [ϕ]1µ,ℵ0
holds.

In this note we prove a Ramsey-type statement on scattered order types. A trivial fact on

ordinals implies the following statement. If µ is an infinite cardinal, then µ+ → (µ+)1µ. It

is less trivial but still easy to show that, if ϕ is an order type, and µ is a cardinal, then

there is some order type ψ such that ψ → (ϕ)1µ holds. We can say that these results show

that the classes of ordinals and order types are both Ramsey classes in the natural sense:

given a target element and a cardinal for the number of colours, there is another element

of the class which, when coloured with the required number of colours, always has a

monocoloured copy of the target. We can wonder which other classes have similar Ramsey

properties. A natural, and well-investigated, class in between is the class of scattered order

types. For this class, the Ramsey property fails for the following well-known and simple

reason. There is some scattered order type ψ such that, for every scattered ϕ, we have

ϕ �→ [ψ]1ω . See Lemma 1.

In this paper we show that this is the most that can be proved in the negative direction,

that is, for every scattered order type ϕ and cardinal µ there exists a scattered order type

ψ such that ψ → [ϕ]1µ,ω holds.

In a further paper we will prove the corresponding variant of the Erdős–Rado theorem,

that is, for any scattered order type ϕ, natural number r, and cardinal µ, there is a

scattered order type ψ such that ψ → [ϕ]rµ,ω holds.
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We notice, however, that the full Ramsey result can be proved if the number of colours

is finite, that is, for every scattered order type ϕ and natural number n, there is a scattered

order type ψ such that ψ → (ϕ)1n holds. Then ψ is simply the n-fold lexicographic product

of ϕ, ψ = ϕ× · · · × ϕ. An inductive argument gives the Ramsey property. In fact, the

lexicographic µth power of any ϕ has the Ramsey property with µ colours and ϕ as the

target type. What is specific about scattered types is that, if |ϕ| � 2, then the lexicographic

µth power of ϕ is no longer scattered for µ � ω.

Notation. We use the standard axiomatic set theory notation. If ϕ, ψ are order types,

then ϕ � ψ denotes that there is an order-preserving embedding of ϕ into ψ, that is, every

ordered set of order type ψ has a subset of order type ϕ. If ϕ is an order type, then ϕ∗

denotes the reverse order type, that is, if ϕ is the order type of (S,<), then ϕ∗ is the order

type of (S,>). Here ω is the ordinal of the set of natural numbers, (N, <), and η is the

order type of the set of rational numbers, (Q, <).

If ϕ, ψ are order types, and µ is a cardinal, then ϕ → (ψ)1µ denotes the following

statement. If (S,<) is an ordered set of order type ϕ and f : S → µ, then for some i < µ

the subset f−1(i) contains a subset of order type ψ. That is, if a set of order type ϕ is

coloured with µ colours, then there is a monochromatic ψ. If the statement does not hold,

we cross the arrow: ϕ �→ (ψ)1µ.

If ϕ, ψ are order types, and λ, µ are cardinals, then ϕ → [ψ]1λ,µ denotes the following

statement. If (S,<) is an ordered set of order type ϕ and f : S → λ, then there is a subset

X ⊆ λ of cardinality µ such that the set {x ∈ S : f(x) ∈ X} contains a subset of order type

ψ. Again, crossing the arrow denotes the negation of the statement: ϕ �→ [ψ]1λ,µ. Notice

that ϕ → (ψ)1µ is equivalent to ϕ → [ψ]1µ,1.

If ϕ, ψ are order types, and µ is a cardinal, then ϕ �→ [ψ]1µ denotes the following

statement. If (S,<) is an ordered set of order type ϕ, then there is a function f : S → µ

such that, on every subset of S of order type ψ, f assumes every value. If the statement

fails, that is, we have a positive statement for every function f : S → µ, then we do not

cross the arrow: ϕ → [ψ]1µ.

The order type ϕ is scattered if and only if η �� ϕ. Hausdorff proved that the class

of scattered order types is exactly the smallest class containing 0, 1, and closed under

well-ordered and reverse well-ordered sums (see [1], [2], [3]).

Lemma 1. If S is an ordered set with the scattered order type ϕ, then there is some f :

S → ω such that f−1(n) has no subset of order type (ω∗ + ω)n. Therefore, ϕ �→ (ψ)1ω , where

ψ = 1 + (ω∗ + ω) + (ω∗ + ω)2 · · · .

Proof. The second statement obviously follows from the first one. In order to prove the

first statement, using Hausdorff’s characterization of scattered order types, it suffices to

show it for (S,<) which is the well-ordered sum of the ordered sets {(Si, <) : i < α}, and

we have the required function fi : Si → ω for every i < α.

Define f : S → ω by f(x) = fi(x) + 1 when i < α is the unique ordinal such that x ∈ Si.

If we now have a set of order type (ω∗ + ω)n+1 in colour n+ 1, then all but finitely many
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A Partition Theorem for Scattered Order Types 623

of the ω∗ copies of (ω∗ + ω)n on its left-hand side must be in the same Si, of colour n,

which contradicts the assumption on fi.

Before proceeding to our main theorem we need to show a technical result.

In what follows, for an ordinal λ, we let FS(λ) denote the set of all finite decreasing

sequences from λ, that is, an element s is of the form s = s(0)s(1) · · · s(n− 1) with λ >

s(0) > s(1) > · · · > s(n− 1). Here n = |s| is the length of s. The extension of the string s

with one ordinal γ is denoted by sγ. We therefore identify the finite subsets of λ with

decreasingly ordered strings.

If α is an ordinal, then an α-tree is a system of ordinals {x(s) : s ∈ FS(α)} with the

following properties:

x(sγ) < x(sγ′) < x(s) for γ < γ′ < min(s).

Theorem 2. Assume that α is an ordinal and µ is a cardinal. Set λ = (|α|µℵ0 )+. Assume that

F : FS(λ+) → µ. Then there exist an α-tree {x(s) : s ∈ FS(α)} and a function c : ω → µ, such

that

F(x(s(0)), x(s(0)s(1)), . . . , x(s(0)s(1) · · · s(n))) = c(n)

holds for every element s = s(0)s(1) · · · s(n) of length n+ 1 of the tree.

Proof. We define, for every s ∈ FS(α) and for every function c : ω → µ, a rank rc(s) as

follows. Assume that s = s(0)s(1) · · · s(n− 1). rc(s) = −1 if, for some 0 � i < n, we have

F(s(0)s(1) · · · s(i)) �= c(i). Otherwise, we declare that rc(s) � 0. Then we define by induction

on ξ when rc(s) � ξ holds: we set rc(s) � ξ if and only if, for every ν < ξ, we have

λ � tp({γ < min(s) : rc(sγ) � ν}).

Naturally, rc(s) = ξ holds if rc(s) � ξ but rc(s) � ξ + 1 is not true.

Assume first that, for some function c : ω → µ, we have rc(∅) � α. In this case we can

select the α-tree as required in the theorem, with the additional property that

rc(x(s(0)), x(s(0)s(1)), . . . , x(s(0)s(1) · · · s(n))) � s(n).

To show this we have to show that, if we are given an s with rc(s) � β, then we can select

the ordinals {xγ : γ < β} with xγ < xγ′ < min(s) for γ < γ′ < β and with rc(sxγ) � γ for

γ < β. To this end, we let δγ be the supremum of the first λ ordinals x with the property

that rc(sx) � γ. Notice that δγ′ � δγ for γ′ < γ and the cofinality of is δγ is λ. We are

going to select by transfinite recursion the elements xγ < δγ as required. At step γ we have

the elements {xγ′ : γ′ < γ} selected, and as sup({xγ′ : γ′ < γ}) � sup({δγ′ : γ′ < γ}) � δγ
we have sup({xγ′ : γ′ < γ}) < δγ and so we can choose xγ .

Assume now that for every function c : ω → µ we have rc(∅) < α.

In this case we construct by induction on 0 � n < ω the ordinals

{x(n, γ, s) : γ < λ+, s : k → λ, k � n},
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the ordinals d(n) < µ, and for every c : ω → µ, the values −1 � ξ(n, c) < α with the

following properties:

x(n, γ, sτ) < x(n, γ, sτ′) < x(n, γ, s)(1 � |s| < n, τ < τ′ < min(s)), (1)

γ < x(n, γ, s). (2)

Finally, if γ < λ+, s : n → λ, 1 � k � n, and we set yi = x(n, γ, s|i), then

F(y0, . . . , yk) = d(k) (3)

and

rc(y0, . . . , yk) = ξ(k, c) (4)

hold for every c : ω → µ.

Initially, we select λ+ ordinals x(0, γ, ∅) (γ < λ+) such that the value F(x(0, γ, ∅)) is the

same (let this be d(0)), and for every c : ω → µ the value rc(x(0, γ, ∅)) is the same (this will

be ξ(0, c)). This is possible by the pigeon hole principle, counting possibilities.

Assume that we have the result for some value n and we have the corresponding

system {x(n, γ, s) : γ < λ+, s : k → λ, k � n} with γ < x(n, γ, s). Thinning out this system,

and re-indexing, we can achieve γ + λ < x(n+ 1, γ, s).

We can define x(n+ 1, γ, sτ) < x(n, γ, s) for τ < λ satisfying (1) and (2). Thinning and re-

indexing, we can modify this system so that, if we set yi = x(n+ 1, γ, s|i) for i � n+ 1, then

F(y0, . . . , yn+1) = d(n+ 1) and rc(y0, . . . , yn+1) = ξ(s, c) hold for every s : n → λ, c : ω → µ,

that is, the colour and the rank do not depend on the last value.

Repeating this, again thinning and re-indexing, we find that the value of rc(y0, . . . , yn+1)

depends only on c, so it is a value ξ(n+ 1, c), as claimed.

For the above function d : ω → µ we have that

ξ(0, d) > ξ(1, d) > · · ·

a contradiction.

In order to handle scattered order types we represent them.

If α is an ordinal then let H(α) be the set of all functions f : α → {−1, 0, 1} for which

the set D(f) = {β < α : f(β) �= 0} is finite. Order H(α) as follows: f < f′ if and only if

f(β) < f′(β) holds for the largest β with f(β) �= f′(β). This clearly orders H(α).

Lemma 3. The order type of (H(α), <) is scattered.

Proof. Assume that the mapping q → fq is an order-preserving injection for q ∈ Q. Let

β < α be the least ordinal that occurs as the largest ordinal where fq , fq′ differ, for some

q < q′. Now choose the rational numbers q′′, q′′′ with q < q′′ < q′′′ < q′. Then all four

functions fq ,fq′ , fq′′ ,fq′′′ agree above β, and some two at β, too, a contradiction.

Lemma 4. Every scattered order type can be embedded into some (H(α), <).
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Proof. Using Hausdorff’s characterization, it suffices to show that if some order types

can be so represented then any well-ordered and reverse well-ordered sum of them can

also be so represented. For this, it suffices to show that the antilexicographic products

H(α) × β and H(α) × β∗ can be embedded into H(α+ β). Indeed, if we map the pair (f, γ)

to the function g which is f restricted to α and in the interval [α, α+ β) is everywhere

zero except at α+ γ where it is 1, then this is the required embedding for H(α) × β. For

the other case we use extensions that assume −1 at exactly one place.

Given an α-tree {x(s) : s ∈ FS(α)} ⊆ λ+, we define an injection Φ : H(α) → H(λ+)

as follows. If f ∈ H(α), D(f) = {β0, . . . , βn} in decreasing enumeration, then set γj =

x({βj, . . . , β0}) for 0 � j � n. Now Φ(f) = g where D(g) = {γ0, . . . , γn} and g(γj) = f(γj).

Lemma 5. This mapping Φ : H(α) → H(λ+) is order-preserving.

Proof. Assume that f, f′ ∈ H(α), D(f) = {β0, . . . , βn}, D(f′) = {β′
0, . . . , β

′
m} in decreasing

enumeration. Let r be the largest index such that βi = β′
i and f(βi) = f′(βi) hold for

i < r. For some β we have f(β) < f′(β), where either β = βr = β′
r or β = βr /∈ D(f′) or

β = β′
r /∈ D(f).

Set γj = x({βj, . . . , β0}) for j < r and γ = x({β, βj−1, . . . , β0}). Then the functions Φ(f)

and Φ(f′) agree above γ and Φ(f)(γ) < Φ(f′)(γ), and we are done.

Theorem 6. If ϕ is a scattered order type, and µ is a cardinal, then there exists a scattered

order type ψ satisfying

ψ → [ϕ]1µ,ℵ0
.

Proof. By Lemmas 3 and 4, it suffices to show that, if α is an ordinal, and µ is a cardinal,

then for some λ the ordered set (H(λ+), <) has the property that, for every colouring with

µ colours, there is a subset isomorphic to (H(α), <) that is coloured with only countably

many colours.

Select λ as in Theorem 2. Assume that G : (H(λ+), <) → µ is a colouring. Let F be the

following colouring of FS(λ+). If s = s(0)s(1) · · · s(n− 1) is an element of it, let F(s) be

the following function defined on {−1, 1} × · · · {−1, 1}: F(i0, . . . , in−1) = G(f), where f

is the function with D(f) = s and f(s(j)) = ij .

Notice that this is a colouring with µ colours. By Theorem 2 there is an α-tree

{x(s) : s ∈ FS(α)} such that

F(x(s(0)), x(s(0)s(1)), . . . , x(s(0)s(1) · · · s(n))) = c(n)

holds for some function c.

If we now consider the corresponding mapping Φ : H(α) → H(λ+), then it gives a subset

of (H(λ+), <) isomorphic to (H(α), <) getting only µ colours.
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