The Journal of Symbolic Logic

http://journals.cambridge.org/JSL

Additional services for The Journal of Symbolic Logic:

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

On countably closed complete Boolean algebras

Thomas Jech and Saharon Shelah

The Journal of Symbolic Logic / Volume 61 / Issue 04 / December 1996, pp 1380 - 1386 DOI: 10.2307/2275822, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200016959

How to cite this article:

Thomas Jech and Saharon Shelah (1996). On countably closed complete Boolean algebras . The Journal of Symbolic Logic, 61, pp 1380-1386 doi:10.2307/2275822

Request Permissions : Click here

ON COUNTABLY CLOSED COMPLETE BOOLEAN ALGEBRAS

THOMAS JECH AND SAHARON SHELAH

Abstract. It is unprovable that every complete subalgebra of a countably closed complete Boolean algebra is countably closed.

§1. Introduction. A partially ordered set (P, <) is σ -closed if every countable chain in P has a lower bound. A complete Boolean algebra B is countably closed if $(B^+, <)$ has a dense subset that is σ -closed. In [2] the first author introduced a weaker condition for Boolean algebras, game-closed: the second player has a winning strategy in the infinite game where the two players play an infinite descending chain of nonzero elements, and the second player wins if the chain has a lower bound. In [1], Foreman proved that when B has a dense subset of size \aleph_1 and is game-closed then B is countably closed. (By Vojtáš [5] and Veličković [4] this holds for every B that has a dense subset of size 2^{\aleph_0} .) We show that, in general, it is unprovable that game-closed implies countably closed. We construct a model in which a B exists that is game-closed but not countably closed. It remains open whether a counterexample exists in ZFC.

Being game-closed is a hereditary property: If A is a complete subalgebra of a game-closed complete Boolean algebra B then A is game-closed. It is observed in [3] that every game-closed algebra is embedded in a countably closed algebra; in fact, for a forcing notion (P, <), being game-closed is equivalent to the existence of a σ -closed forcing Q such that $P \times Q$ has a dense σ -closed subset. Hence the statement "every game-closed complete Boolean algebra is countably closed" is equivalent to the statement to the statement "every complete subalgebra of a countably closed complete Boolean algebra is countably closed algebra.

Below we construct (by forcing) a model of ZFC+GCH and in it a partial ordering P of size \aleph_2 such that B(P), the completion of P, is not countably closed, but $B(P \times Col)$ is, where Col is the Lévy collapse of \aleph_2 to \aleph_1 (with countable conditions).

THEOREM. It is consistent that there exists a partial ordering (P, <) such that B(P) is not countably closed but $B(P \times Col)$ is countably closed.

Key words and phrases. Boolean algebra, countably closed, game-closed, forcing.

© 1996, Association for Symbolic Logic 0022-4812/96/6104-0016/\$1.70

Received April 13, 1995; revised October 10, 1995.

¹⁹⁹¹ Mathematics Subject Classification. 03E.

The first author has been partially supported by the U.S.-Czechoslovakia cooperative grant INT-9016754 from the NSF.

The second author has been partially supported by the U.S.-Israel Binational Science Foundation. Publication number 565.

§2. Forcing conditions. We assume that the ground model satisfies GCH.

We want to construct, by forcing, a partially ordered set $(P, <_P)$ of size \aleph_2 that has the desired properties. We shall use as forcing conditions countable approximations of P. One part of a forcing condition will thus be a countable partial ordering $(A, <_A)$ with the intention that A be a subset of P and that the relation $<_A$ on A be the restriction of $<_P$. As P will have size \aleph_2 , we let $P = \omega_2$, and so A is a countable subset of ω_2 .

The second part of a forcing condition will be a countable set $B \subset A \times Col$, a countable approximation of a dense set in the product ordering $P \times Col$. The third part of a forcing condition will be a countable set C of countable descending chains in A that have no lower bound. Finally, a forcing condition includes a function that guarantees that the limit of the B's is σ -closed (and so $P \times Col$ has a σ -closed dense subset).

Whenever we use < without a subscript, we mean the natural ordering of ordinal numbers.

DEFINITION. For any set X, Col(X) is the set of all countable functions q such that $dom(q) \in \omega_1$ and range $(q) \subset X$; $Col = Col(\omega_2)$.

DEFINITION. The set R of forcing conditions r consists of quadruples $r = ((A_r, <_r), B_r, C_r, F_r)$ such that

- (1) A_r is a countable subset of ω_2 ,
- (2) $(A_r, <_r)$ is a partially ordered set,
- (3) if $b <_r a$ then a < b,
- (4) B_r is a countable subset of $A_r \times Col(A_r)$, and for every $(p,q) \in B_r$, $p \in \operatorname{range}(q)$,
- (5) C_r is a countable set of countable sequences $\{a_n\}_{n=0}^{\infty}$ in A_r with the property that $a_0 >_r a_1 >_r \cdots >_r a_n >_r \cdots$ and that $\{a_n\}_n$ has no lower bound in A_r ,
- (6) F_r is a function of two variables, $\{a_n\}_n \in C_r$ and $(p,q) \in B_r$ such that $p \ge a_0$, and range $(F_r) \subset \omega$. If $m = F_r(\{a_n\}_n, (p,q))$ then for every $(p',q') \in B_r$ stronger than (p,q),

(*) if
$$p' <_r a_m$$
 then $p' \perp_r \{a_n\}_n$ (i.e., $p' \perp_r a_k$ for some k).

If $r, s \in R$ then $r <_R s$ (r is stronger than s) if

- (7) $A_r \supseteq A_s$,
- (8) $<_r$ and $<_s$ agree on A_s , and \perp_r and \perp_s agree on A_s ; i.e., if $a, b \in A_s$ then $a <_r b$ iff $a <_s b$ and $a \perp_r b$ iff $a \perp_s b$ for all $a, b \in A_s$,
- (9) $B_r \supseteq B_s$,
- (10) $C_r \supseteq C_s$,
- (11) $F_r \supseteq F_s$.

The relation $<_R$ on R is a partial ordering. We shall prove that the forcing extension by R contains a desired example $(P, <_P)$. Assuming the GCH in the ground model, the forcing R preserves cardinals and V^R is a model of ZFC+GCH; this follows from the next two lemmas:

LEMMA 1. R is σ -closed.

PROOF. Let $\{r_n\}_n$ be a sequence of conditions such that $r_0 >_R r_1 >_R \cdots >_R r_n >_R \cdots$. We show that $\{r_n\}_n$ has a lower bound.

Assuming that for each n, $r_n = ((A_n, <_n), B_n, C_n, F_n)$, we let $A_r = \bigcup_{n=0}^{\infty} A_n$, $B_r = \bigcup_{n=0}^{\infty} B_n$, $C_r = \bigcup_{n=0}^{\infty} C_n$, $F_r = \bigcup_{n=0}^{\infty} F_n$ and $<_r = \bigcup_{n=0}^{\infty} <_n$; we claim that $r = ((A_r, <_r), B_r, C_r, F_r)$ is a condition, and is stronger than each r_n .

The quadruple r clearly has properties (1)–(4). It is also easy to see that for every $n, <_r$ agrees with $<_n$ and \perp_r agrees with \perp_n on A_n . To verify (5), let $\{a_n\}_n \in C_r$. There is an m such that $\{a_n\}_n \in C_k$ for all $k \ge m$, and therefore $\{a_n\}_n$ has no lower bound in any A_k . Thus $\{a_n\}_n$ has no lower bound in A_r . Finally, to verify (6), let $F_r(\vec{a}, (p, q)) = m$ and let (p', q') be stronger than (p, q). Since (*) holds in r_n where n is large enough so that $\vec{a} \in C_n$ and $(p, q), (p', q') \in B_n$, (*) holds in r as well.

Therefore r is a condition and for every n, r is stronger than r_n . \dashv

LEMMA 2. *R* has the \aleph_2 -chain condition.

PROOF. If W is a set of conditions of size \aleph_2 , then a Δ -system argument (using CH) yields two conditions $r, s \in W$ such that if $r = ((A_r, <_r), B_r, C_r, F_r)$ and $s = ((A_s, <_s); B_s, C_s, F_s)$, then there is a D (the root of the Δ -system) such that $D = A_r \cap A_s$, $\sup D < \min(A_r - D)$, $\sup A_r < \min(A_s - D)$, $<_r$ and $<_s$ agree on D, \perp_r and \perp_s agree on D, $B_r \cap (D \times Col(D)) = B_s \cap (D \times Col(D))$, $C_r \cap D^{\omega} = C_s \cap D^{\omega}$, and $F_r(\vec{a}, (p, q)) = F_s(\vec{a}, (p, q))$ whenever $\vec{a} \in C_r \cap D^{\omega}$ and $(p, q) \in B_r \cap (D \times Col(D))$.

Moreover, there exists a mapping π of A_s onto A_r that is an isomorphism between s and r and is the identity on D.

Let $t = ((A_t, <_t), B_t, C_t, F_t)$ where $A_t = A_r \cup A_s, B_t = B_r \cup B_s, C_t = C_r \cup C_s, <_t = <_r \cup <_s$, and F_t will be defined below such that $F_t \supseteq F_r \cup F_s$. We claim that t is a condition, and is stronger than both r and s; thus r and s are compatible. Properties (1)–(4) are easy to verify. It is also easy to see that $<_t$ agrees with $<_r$ on A_r and with $<_s$ on A_s , and \bot_t agrees with \bot_r on A_r and with \bot_s on A_s .

Note that if $a \in A_r - D$ and $b \in A_s - D$ then $a \perp_t b$. Thus if $\{a_n\}_n$ is in C_r but not in C_s (or vice versa) then $\{a_n\}_n$ has no lower bound in $A_r \cup A_s$, and so (5) holds.

In order to deal with (6), we first verify it for the values of F_t inherited from either r or s. Thus let $\vec{a} \in C_r$, $(p,q) \in B_r$, $m = F_r(\vec{a}, (p,q))$ and let $(p',q') \in B_t$ be stronger than (p,q). (The argument for s in place of r is completely analogous.) If $(p',q') \in B_r$ then (*) holds in r and therefore in t. Thus assume that $(p',q') \in B_s$. Since $p' \in A_s$ and $p' <_t p$, it follows that $p \in D$, and since range $(q) \subseteq$ range $(q') \subseteq A_s$, we have $(p,q) \in B_s$. Now if $\vec{a} \in C_s$ then $F_s(\vec{a}, (p,q)) = F_r(\vec{a}, (p,q))$ and so p' satisfies (*) in s and hence in t. If $\vec{a} \notin C_s$ and $p' \notin A_r$ then $p' \perp_t \vec{a}$ and again p' satisfies (*).

The remaining case is when $p' \in D$ and $(p,q) \in B_r \cap B_s$. Since $(p', \pi q') = (\pi p', \pi q')$ is stronger than $(p,q) = (\pi p, \pi q)$, p' satisfies (*) in r and therefore in t.

To complete the verification of (6) we define $F_t(\vec{a}, (p, q))$ for those \vec{a} and (p, q) that come from the two different conditions. Let $\vec{a} \in C_r - C_s$ and $(p, q) \in B_s - B_r$ (the other case being analogous) be such that $p \ge a_0$. We let $F_t(\vec{a}, (p, q))$ be the least *m* such that $a_m \notin D$.

Let $(p',q') \in B_t$ be stronger than (p,q); we'll show that $p' \not\leq_t a_m$. This is clear if $p' \in D$, by (3). If $p' \notin D$, then we claim that p' cannot be in A_r ; then it follows that $p' \perp_t a_m$. To prove the claim, note that range $(q) \not\subseteq A_r$ (because $(p,q) \notin B_r$) and hence range $(q') \subseteq A_s$. By (4), $p' \in A_s$, and so $p \notin A_r$.

Therefore t is a condition and is stronger than both r and s.

Let G be a generic filter on R. In V_G , we let $P = \bigcup \{A_r : r \in G\}, <_P = \bigcup \{<_r: r \in G\}$, and $Q = \bigcup \{B_r : r \in G\}$. $(P, <_P)$ is a partial ordering and $Q \subset P \times Col$. We shall prove that Q is σ -closed and is dense in $P \times Col$, and that the complete Boolean algebra B(P) does not have a dense σ -closed subset.

Lemma 3. $P = \omega_2$.

PROOF. We prove that for every s and every $p \in \omega_2$ there exists an $r <_R s$ such that $p \in A_r$. But this is straightforward: let $A_r = A_s \cup \{p\}$, $B_r = B_s$, $C_r = C_s$, $F_r = F_s$ and $<_r = <_s$; properties (1)–(11) are easily verified. (Note that $p \perp_r a$ for all $a \in A_s$.)

LEMMA 4. Q is dense in $P \times Col$.

PROOF. Let s be a condition and let $p_0 \in A_s$ and $q_0 \in Col$. We shall find an $r <_R s$, $p \in A_r$ and $q \supset q_0$ such that $p <_r p_0$ and $(p,q) \in B_r$: Let p be an ordinal greater than all ordinals in A_s , let $q \in Col$ be such that $q \supset q_0$ and $p \in range(q)$, and let $A_r = A_s \cup range(q)$, $B_r = B_s \cup \{(p,q)\}$, $C_r = C_s$, and let $<_r$ be the partial order of A_r that extends $<_s$ by making $p <_r p_0$. Finally, let $F_r(\vec{a}, (p,q)) = 0$ for all $\vec{a} \in C_r$.

To see that $r = ((A_r, <_r), B_r, C_r, F_r)$ is a condition, note that for every $\vec{a} \in C_r$, p is not a lower bound of \vec{a} (because p_0 isn't) and hence $p \perp_r \vec{a}$. This implies both (5) and (6). Since adding p does not affect the relation \perp on A_s , we have (8) and so r is stronger than s.

Next we prove that Q is σ -closed.

LEMMA 5. If $u = \{(p_n, q_n)\}_{n=0}^{\infty}$ is a descending chain in Q then u has a lower bound.

PROOF. Let \dot{u} be a name for a descending chain and let s be a condition. By extending $s \omega$ times if necessary (R is σ -closed), we may assume that there is a sequence $u = \{(p_n, q_n)\}_{n=0}^{\infty}$ in $\omega_2 \times Col$ such that s forces $\dot{u} = u$, such that for every $n, p_n \in A_s, (p_n, q_n) \in B_s$, that $p_0 >_s p_1 >_s \cdots >_s p_n > \cdots$ is a descending chain in $(A_s, <_s)$ and that $q_0 \subset q_1 \subset \cdots \subset q_n \subset \ldots$

Let p be an ordinal greater than $\sup A_s$, let $q \supseteq \bigcup_{n=0}^{\infty} q_n$ be such that $p \in \operatorname{range}(q) \subseteq A_s \cup \{p\}$, let $A_r = A_s \cup \{p\}$, $B_r = B_s \cup \{(p,q)\}$, $C_r = C_s$, and let $<_r$ be the partial order of A_r that extends $<_s$ by making p a lower bound of $\{p_n\}_{n=0}^{\infty}$. Finally, let $F_r(\vec{a}, (p,q)) = 0$ for all $\vec{a} \in C_r$ and $r = ((A_r, <_r), B_r, C_r, F_r)$.

We shall show that for every $\vec{a} \in C_s$, p is not a lower bound of \vec{a} . This implies that $p \perp_r \vec{a}$ and (5) and (6) follow. Since making p a lower bound of $\{p_n\}_n$ does not affect the relation \perp on A_s , we'll have (8) and hence $r <_R s$. In r, (p,q) is a lower bound of u.

Thus let $\vec{a} = \{a_k\}_k \in C_s$. We claim that

$$\exists k \forall n p_n \not\leq_s a_k.$$

This implies that $p \not\leq_r a_k$ and hence p is not a lower bound of \vec{a} .

If $p_n < a_0$ for all *n* then we let k = 0 because then $p_n \not\leq_s a_0$ for all *n*.

Otherwise let N be the least N such that $p_N \ge a_0$, and let $m = F_s(\vec{a}, (p_N, q_N))$. Either $p_n \not\leq_s a_m$ for all n and we are done (with k = m) or else $p_M <_s a_m$ for some $M \ge N$. By (*) there exists some k such that $p_M \perp_s a_k$ and hence $p_n \not\leq_s a_k$ for all n.

Finally, we shall prove that B(P) is not countably closed.

LEMMA 6. The complete Boolean algebra B(P) does not have a dense σ -closed subset.

PROOF. Assume that B(P) does have a dense σ -closed subset D. For $a, b \in P$, we define

 $a \prec b$ if $a <_P b$ and $\exists d \in D$ such that $a <_{B(P)} d <_{B(P)} b$.

The relation \prec is a partial ordering of P, (P, \prec) is σ -closed, $a \prec b$ implies $a <_P b$ and for every $a \in P$ there is some $b \in P$ such that $b \prec a$.

Toward a contradiction, let s be a condition and assume that s forces the preceding statement. For each $\alpha < \omega_2$, there exist a condition s_α stronger than s, and a descending chain $\{c_n^\alpha\}_n$ in A_{s_α} such that $c_0^\alpha \ge \alpha$ and that for every $n, s_\alpha \Vdash c_{n+1}^\alpha \prec c_n^\alpha$.

By a Δ -system argument we find among these a countable sequence $r_n = s_{\alpha_n} = ((A_n, <_n), B_n, C_n, F_n)$ and a set E such that for every m and n with m < n we have $E = A_m \cap A_n$, sup $E < \min(A_m - E)$, sup $A_m < \min(A_n - E)$, $<_m$ and $<_n$ agree on E, \perp_m and \perp_n agree on E, $B_m \cap (E \times Col(E)) = B_n \cap (E \times Col(E))$, $C_m \cap E^{\omega} = C_n \cap E^{\omega}$, and $F_m(\vec{a}, (p, q)) = F_n(\vec{a}, (p, q))$ whenever $\vec{a} \in C_m \cap E^{\omega}$ and $(p, q) \in B_m \cap (E \times Col(E))$. Moreover, there exists a mapping π_{mn} of A_m onto A_n that is an isomorphism between $(r_m, \{c_k^{\alpha_m}\}_k)$ and $(r_n, \{c_k^{\alpha_n}\}_k)$ and is the identity on E. We also let $\pi_{nm} = \pi_{mn}^{-1}, \pi_{mm} = id$ and assume that the π_{mn} form a commutative system. Note that for every n and $k, c_k^{\alpha_n} \notin E$.

For each *n* and *k*, let $a_k^n = c_{2k}^{\alpha_n}$ and $b_k^n = c_{2k+1}^{\alpha_n}$. Let $\vec{u} = \{u_n\}_n$ be the "diagonal sequence"

$$u_{2n} = a_n^n, \quad u_{2n+1} = b_n^n.$$

We shall find a condition $t = ((A_t, <_t), B_t, C_t, F_t)$ stronger than all r_n such that the diagonal sequence \vec{u} is a descending chain and belongs to C_t . Since $t \Vdash b_n^n \prec a_n^n$ for every n, it forces that (P, \prec) is not σ -closed. This will complete the proof. \dashv

To construct t we first let $A_t = \bigcup_{n=0}^{\infty} A_n$ and $B_t = \bigcup_{n=0}^{\infty} B_n$. Let $<_t$ be the minimal partial ordering extending $\bigcup_{n=0}^{\infty} <_n$ such that for every n, $a_{n+1}^{n+1} <_t b_n^n$. Before proceeding to define C_t and F_t we shall prove some properties of $(A_t, <_t)$.

LEMMA 7. (i) Let m < n and let $y \in A_m - E$ and $x \in A_n - E$. If $x <_t y$ then $x \leq_n a_n^n$ and $b_m^m \leq_m y$. If x and y are compatible in $<_t$ then $b_m^m \leq_m y$.

(ii) For all m and n, if $x \in A_n$ and $y \in A_m$ and if $x <_t y$ then $x <_n \pi_{mn} y$ (and $\pi_{nm} x <_m y$). In particular, if $x, y \in A_n$ then $x <_t y$ if and only if $x <_n y$.

(iii) For all m and n, if $x \in A_n$ and $y \in A_m$ and if x and y are compatible in $<_t$ then x and $\pi_{mn}y$ are compatible in $<_n$ (and $\pi_{nm}x$ and y are compatible in $<_m$). In particular, if $x, y \in A_n$ then $x \perp_t y$ if and only if $x \perp_n y$.

PROOF. (i) The first statement is an obvious consequence of the definition of $<_t$, and the second follows because any z such that $z \leq_t x$ is in some $A_k - E$ where $k \geq n$.

(ii) Let $x \in A_n$ and $y \in A_m$ and let $x <_t y$. First assume that $y \notin E$ (and so $x \notin E$.) Necessarily, $m \le n$ and if m = n then clearly $x <_n y$. Thus consider m < n. By (i) $x \le_n a_n^n <_n b_m^n = \pi_{mn}(b_m^m) \le_n \pi_{mn} y$.

Now assume that $y \in E$ and proceed by induction on x. If $x \in E$ then $x <_n y$. If $x \notin E$ then either $x <_n y$ or there exists some $z \notin E$ such that $x <_t z <_t y$, and by the induction hypothesis $z <_k \pi_{mk} y$ (where $z \in A_k$). Applying the preceding paragraph to x and z we get $\pi_{nk} x <_k z$ and hence $\pi_{nk} x <_k \pi_{mk} y$. The statement now follows.

(iii) Let $x \in A_n$ and $y \in A_m$ and let $z \in A_k$ be such that $z <_t x$ and $z <_t y$. By (ii) we have $\pi_{kn}z <_n x$ and $\pi_{km}z <_m y$. Hence $\pi_{kn}z = \pi_{mn}\pi_{km}z <_n \pi_{mn}y$. The second statement follows from this and from the second statement of (ii). \dashv

Lemma 7 guarantees that t will be stronger than every r_n . Another consequence is that if $\vec{a} \in C_n$ then \vec{a} has no lower bound in $<_i$: if $x \in A_m$ were a lower bound then $\pi_{mn}x$ would be a lower bound in $<_n$.

Let $C_t = \bigcup_{n=0}^{\infty} C_n \cup \{\vec{u}\}$. Every sequence in C_t is a descending chain in $<_t$ without a lower bound (clearly, \vec{u} has no lower bound).

LEMMA 8. For all k and n, if $(p,q) \in B_k - B_n$ and if $(p',q') \in B_t$ is stronger than (p,q) then $(p',q') \in B_k - B_n$.

PROOF. Since $(p,q) \notin B_n$, we have either range $(q) \not\subseteq E$ or $p \notin E$, in which case $p \in \text{range}(q)$ by (4) and again range $(q) \not\subseteq E$. Since $q \subseteq q'$ it must be the case that $(p',q') \in B_k - B_n$.

We shall now define F_t so that $F_t \supset \bigcup_{n=0}^{\infty} F_n$ and verify (6). This will complete the proof.

First we let $F_t(\vec{a}, (p, q)) = F_n(\vec{a}, (p, q))$ whenever the right-hand side is defined; we have to show that (6) holds in t. Let $m = F_n(\vec{a}, (p, q))$ and let $(p', q') \in B_k$ be stronger than (p, q). It follows from Lemma 8 that $(p, q) \in B_k$. Now $(\pi_{kn}p', \pi_{kn}q')$ is stronger than $(\pi_{kn}p, \pi_{kn}q) = (p, q)$ and (*) holds for $\pi_{kn}p'$ in r_n . If $p' <_t a_m$ then by Lemma 7 $\pi_{kn}p' <_n a_m$ and hence $\pi_{kn}p' \perp_n \vec{a}$. By Lemma 7 again, $p' \perp_t \vec{a}$.

Next, let \vec{a} and (p,q) be such that $\vec{a} \in C_n - C_k$, $(p,q) \in B_k - B_n$ and $p \ge a_0$. If k < n, we have $\pi_{kn}p \ge p \ge a_0$ and we let $F_t(\vec{a}, (p,q)) = F_n(\vec{a}, (\pi_{kn}p, \pi_{kn}q))$. To verify (6), let $m = F_t(\vec{a}, (p,q))$ and let $(p',q') \in B_t$ be stronger than (p,q). By Lemma 8 $(p',q') \in B_k$, and $(\pi_{kn}p', \pi_{kn}q')$ is stronger (in r_n) than $(\pi_{kn}p, \pi_{kn}q)$. If $p' <_t a_m$ then by Lemma 7 $\pi_{kn}p' <_n a_m$ and so $\pi_{kn}p' \perp_n \vec{a}$. By Lemma 7 again, $p' \perp_t \vec{a}$.

If k > n, we let $F_t(\vec{a}, (p, q))$ be the least *m* such that $a_m \notin E$ and that $b_n^n \nleq_n a_m$ (such *m* exists as \vec{a} does not have a lower bound in A_m). To verify (6), let $(p', q') \in B_t$ be stronger than (p, q). If $p' \in E$ then $p' \preccurlyeq_t a_m$ and if $p' \notin E$ then by Lemma 7(i) $p' \perp_t a_m$. In either case, (6) is satisfied.

Finally, we define $F_t(\vec{u}, (p, q))$. Thus let $(p, q) \in B_t$ be such that $p \ge u_0$. Since $u_0 = a_0^0 \notin E$, we have $p \notin E$. Let *n* be the *n* such that $p \in A_n$. We let $F_t(\vec{u}, (p,q)) = 2n + 2$. That is, the chosen u_m is $u_{2n+2} = a_{n+1}^{n+1}$. To verify (6), let $(p',q') \in B_t$ be stronger than (p,q). Since $p \in A_n - E$, by Lemma 8 we have

 $(p',q') \in B_n$ and therefore $p' \in A_n - E$. But $a_{n+1}^{n+1} \in A_{n+1} - E$ and so $p' \not\leq_t a_{n+1}^{n+1}$. Therefore (6) holds.

REFERENCES

[1] M. FOREMAN, Games played on Boolean algebras, this JOURNAL, vol. 48 (1983), pp. 714–723.

[2] T. JECH, A game-theoretic property of Boolean algebras, (A. Macintyre et al., editors), Logic Colloquium 77, North-Holland, Amsterdam, 1978, pp. 135–144.

[3] ———, More game-theoretic properties of Boolean algebras, Annals of Pure and Applied Logic, vol. 26 (1984), pp. 11–29.

[4] B. VELIČKOVIĆ, Playful Boolean algebras, Transactions of the American Mathematical Society, vol. 296 (1986), pp. 727–740.

[5] P. VOJTAŠ, Game properties of Boolean algebras, Comment. Math. Univ. Carol., vol. 24 (1983), pp. 349–369.

DEPARTMENT OF MATHEMATICS THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16803, USA

E-mail: jech@math.psu.edu

SCHOOL OF MATHEMATICS THE HEBREW UNIVERSITY JERUSALEM, ISRAEL and DEPARTMENT OF MATHEMATICS RUTGERS UNIVERSITY NEW BRUNSWICK, NJ 08903, USA

E-mail: shelah@sunrise.huji.ac.il, shelah@math.rutgers.edu