The Journal of Symbolic Logic

On countably closed complete Boolean algebras

Thomas Jech and Saharon Shelah

The Journal of Symbolic Logic / Volume 61 / Issue 04 / December 1996, pp 1380-1386
DOI: 10.2307/2275822, Published online: 12 March 2014
Link to this article: http://journals.cambridge.org/abstract_S0022481200016959
How to cite this article:
Thomas Jech and Saharon Shelah (1996). On countably closed complete Boolean algebras . The Journal of Symbolic Logic, 61, pp 1380-1386 doi:10.2307/2275822

Request Permissions: Click here

ON COUNTABLY CLOSED COMPLETE BOOLEAN ALGEBRAS

THOMAS JECH AND SAHARON SHELAH

Abstract

It is unprovable that every complete subalgebra of a countably closed complete Boolean algebra is countably closed.

§1. Introduction. A partially ordered set $(P,<)$ is σ-closed if every countable chain in P has a lower bound. A complete Boolean algebra B is countably closed if ($\boldsymbol{B}^{+},<$) has a dense subset that is σ-closed. In [2] the first author introduced a weaker condition for Boolean algebras, game-closed: the second player has a winning strategy in the infinite game where the two players play an infinite descending chain of nonzero elements, and the second player wins if the chain has a lower bound. In [1], Foreman proved that when B has a dense subset of size \aleph_{1} and is game-closed then B is countably closed. (By Vojtás [5] and Veličković [4] this holds for every B that has a dense subset of size $2^{\aleph_{0}}$.) We show that, in general, it is unprovable that game-closed implies countably closed. We construct a model in which a B exists that is game-closed but not countably closed. It remains open whether a counterexample exists in ZFC.

Being game-closed is a hereditary property: If A is a complete subalgebra of a game-closed complete Boolean algebra B then A is game-closed. It is observed in [3] that every game-closed algebra is embedded in a countably closed algebra; in fact, for a forcing notion $(P,<)$, being game-closed is equivalent to the existence of a σ-closed forcing Q such that $P \times Q$ has a dense σ-closed subset. Hence the statement "every game-closed complete Boolean algebra is countably closed" is equivalent to the statement "every complete subalgebra of a countably closed complete Boolean algebra is countably closed".

Below we construct (by forcing) a model of $\mathrm{ZFC}+\mathrm{GCH}$ and in it a partial ordering P of size \aleph_{2} such that $B(P)$, the completion of P, is not countably closed, but $B(P \times C o l)$ is, where Col is the Lévy collapse of \aleph_{2} to \aleph_{1} (with countable conditions).

Theorem. It is consistent that there exists a partial ordering $(P,<)$ such that $B(P)$ is not countably closed but $B(P \times C o l)$ is countably closed.

[^0]§2. Forcing conditions. We assume that the ground model satisfies GCH.
We want to construct, by forcing, a partially ordered set $\left(P,<_{P}\right)$ of size \aleph_{2} that has the desired properties. We shall use as forcing conditions countable approximations of P. One part of a forcing condition will thus be a countable partial ordering $\left(A,<_{A}\right)$ with the intention that A be a subset of P and that the relation $<_{A}$ on A be the restriction of $<_{P}$. As P will have size \aleph_{2}, we let $P=\omega_{2}$, and so A is a countable subset of ω_{2}.

The second part of a forcing condition will be a countable set $B \subset A \times C o l$, a countable approximation of a dense set in the product ordering $P \times C o l$. The third part of a forcing condition will be a countable set C of countable descending chains in A that have no lower bound. Finally, a forcing condition includes a function that guarantees that the limit of the B 's is σ-closed (and so $P \times C o l$ has a σ-closed dense subset).

Whenever we use < without a subscript, we mean the natural ordering of ordinal numbers.

Definition. For any set $X, \operatorname{Col}(X)$ is the set of all countable functions q such that $\operatorname{dom}(q) \in \omega_{1}$ and range $(q) \subset X ; \operatorname{Col}=\operatorname{Col}\left(\omega_{2}\right)$.

Definition. The set R of forcing conditions r consists of quadruples $r=\left(\left(A_{r}\right.\right.$, $\left.\left.<_{r}\right), B_{r}, C_{r}, F_{r}\right)$ such that
(1) A_{r} is a countable subset of ω_{2},
(2) $\left(A_{r},<_{r}\right)$ is a partially ordered set,
(3) if $b<_{r} a$ then $a<b$,
(4) B_{r} is a countable subset of $A_{r} \times \operatorname{Col}\left(A_{r}\right)$, and for every $(p, q) \in B_{r}$, $p \in \operatorname{range}(q)$,
(5) C_{r} is a countable set of countable sequences $\left\{a_{n}\right\}_{n=0}^{\infty}$ in A_{r} with the property that $a_{0}>_{r} a_{1}>_{r} \cdots>_{r} a_{n}>_{r} \cdots$ and that $\left\{a_{n}\right\}_{n}$ has no lower bound in A_{r},
(6) F_{r} is a function of two variables, $\left\{a_{n}\right\}_{n} \in C_{r}$ and $(p, q) \in B_{r}$ such that $p \geq a_{0}$, and range $\left(F_{r}\right) \subset \omega$. If $m=F_{r}\left(\left\{a_{n}\right\}_{n},(p, q)\right)$ then for every $\left(p^{\prime}, q^{\prime}\right) \in B_{r}$ stronger than (p, q),
(*) if $p^{\prime}<_{r} a_{m}$ then $p^{\prime} \perp_{r}\left\{a_{n}\right\}_{n}$ (i.e., $p^{\prime} \perp_{r} a_{k}$ for some k).
If $r, s \in R$ then $r<_{R} s(r$ is stronger than $s)$ if
(7) $A_{r} \supseteq A_{s}$,
(8) $<_{r}$ and $<_{s}$ agree on A_{s}, and \perp_{r} and \perp_{s} agree on A_{s}; i.e., if $a, b \in A_{s}$ then $a<_{r} b$ iff $a<_{s} b$ and $a \perp_{r} b$ iff $a \perp_{s} b$ for all $a, b \in A_{s}$,
(9) $B_{r} \supseteq B_{s}$,
(10) $C_{r} \supseteq C_{s}$,
(11) $F_{r} \supseteq F_{s}$.

The relation $<_{R}$ on R is a partial ordering. We shall prove that the forcing extension by R contains a desired example ($P,<_{P}$). Assuming the GCH in the ground model, the forcing R preserves cardinals and V^{R} is a model of $\mathrm{ZFC}+\mathrm{GCH}$; this follows from the next two lemmas:

Lemma 1. R is σ-closed.
Proof. Let $\left\{r_{n}\right\}_{n}$ be a sequence of conditions such that $r_{0}>_{R} r_{1}>_{R} \cdots>_{R}$ $r_{n}>_{R} \cdots$. We show that $\left\{r_{n}\right\}_{n}$ has a lower bound.

Assuming that for each $n, r_{n}=\left(\left(A_{n},<_{n}\right), B_{n}, C_{n}, F_{n}\right)$, we let $A_{r}=\bigcup_{n=0}^{\infty} A_{n}$, $B_{r}=\bigcup_{n=0}^{\infty} B_{n}, C_{r}=\bigcup_{n=0}^{\infty} C_{n}, F_{r}=\bigcup_{n=0}^{\infty} F_{n}$ and $<_{r}=\bigcup_{n=0}^{\infty}<_{n}$; we claim that $r=\left(\left(A_{r},<_{r}\right), B_{r}, C_{r}, F_{r}\right)$ is a condition, and is stronger than each r_{n}.

The quadruple r clearly has properties (1)-(4). It is also easy to see that for every $n,<_{r}$ agrees with $<_{n}$ and \perp_{r} agrees with \perp_{n} on A_{n}. To verify (5), let $\left\{a_{n}\right\}_{n} \in C_{r}$. There is an m such that $\left\{a_{n}\right\}_{n} \in C_{k}$ for all $k \geq m$, and therefore $\left\{a_{n}\right\}_{n}$ has no lower bound in any A_{k}. Thus $\left\{a_{n}\right\}_{n}$ has no lower bound in A_{r}. Finally, to verify (6), let $F_{r}(\vec{a},(p, q))=m$ and let $\left(p^{\prime}, q^{\prime}\right)$ be stronger than (p, q). Since $\left(^{*}\right)$ holds in r_{n} where n is large enough so that $\vec{a} \in C_{n}$ and $(p, q),\left(p^{\prime}, q^{\prime}\right) \in B_{n},\left(^{*}\right)$ holds in r as well.

Therefore r is a condition and for every n, r is stronger than r_{n}.

Lemma 2. R has the \aleph_{2}-chain condition.

Proof. If W is a set of conditions of size \aleph_{2}, then a Δ-system argument (using $\mathrm{CH})$ yields two conditions $r, s \in W$ such that if $r=\left(\left(A_{r},<_{r}\right), B_{r}, C_{r}, F_{r}\right)$ and $s=\left(\left(A_{s},<_{s}\right), B_{s}, C_{s}, F_{s}\right)$, then there is a D (the root of the Δ-system) such that $D=A_{r} \cap A_{s}, \sup D<\min \left(A_{r}-D\right), \sup A_{r}<\min \left(A_{s}-D\right),<_{r}$ and $<_{s}$ agree on D, \perp_{r} and \perp_{s} agree on $D, B_{r} \cap(D \times \operatorname{Col}(D))=B_{s} \cap(D \times \operatorname{Col}(D))$, $C_{r} \cap D^{\omega}=C_{s} \cap D^{\omega}$, and $F_{r}(\vec{a},(p, q))=F_{s}(\vec{a},(p, q))$ whenever $\vec{a} \in C_{r} \cap D^{\omega}$ and $(p, q) \in B_{r} \cap(D \times \operatorname{Col}(D))$.
Moreover, there exists a mapping π of A_{s} onto A_{r} that is an isomorphism between s and r and is the identity on D.

Let $t=\left(\left(A_{t},<_{t}\right), B_{t}, C_{t}, F_{t}\right)$ where $A_{t}=A_{r} \cup A_{s}, B_{t}=B_{r} \cup B_{s}, C_{t}=C_{r} \cup C_{s}$, $<_{t}=<_{r} \cup<_{s}$, and F_{t} will be defined below such that $F_{t} \supseteq F_{r} \cup F_{s}$. We claim that t is a condition, and is stronger than both r and s; thus r and s are compatible. Properties (1)-(4) are easy to verify. It is also easy to see that $<_{t}$ agrees with $<_{r}$ on A_{r} and with $<_{s}$ on A_{s}, and \perp_{t} agrees with \perp_{r} on A_{r} and with \perp_{s} on A_{s}.

Note that if $a \in A_{r}-D$ and $b \in A_{s}-D$ then $a \perp_{t} b$. Thus if $\left\{a_{n}\right\}_{n}$ is in C_{r} but not in C_{s} (or vice versa) then $\left\{a_{n}\right\}_{n}$ has no lower bound in $A_{r} \cup A_{s}$, and so (5) holds.

In order to deal with (6), we first verify it for the values of F_{t} inherited from either r or s. Thus let $\vec{a} \in C_{r},(p, q) \in B_{r}, m=F_{r}(\vec{a},(p, q))$ and let $\left(p^{\prime}, q^{\prime}\right) \in B_{t}$ be stronger than (p, q). (The argument for s in place of r is completely analogous.) If $\left(p^{\prime}, q^{\prime}\right) \in B_{r}$ then $\left(^{*}\right)$ holds in r and therefore in t. Thus assume that $\left(p^{\prime}, q^{\prime}\right) \in B_{s}$.

Since $p^{\prime} \in A_{s}$ and $p^{\prime}<_{t} p$, it follows that $p \in D$, and since range $(q) \subseteq$ range $\left(q^{\prime}\right) \subseteq A_{s}$, we have $(p, q) \in B_{s}$. Now if $\vec{a} \in C_{s}$ then $F_{s}(\vec{a},(p, q))=$ $F_{r}(\vec{a},(p, q))$ and so p^{\prime} satisfies $\left(^{*}\right)$ in s and hence in t. If $\vec{a} \notin C_{s}$ and $p^{\prime} \notin A_{r}$ then $p^{\prime} \perp_{t} \vec{a}$ and again p^{\prime} satisfies $\left(^{*}\right)$.

The remaining case is when $p^{\prime} \in D$ and $(p, q) \in B_{r} \cap B_{s}$. Since $\left(p^{\prime}, \pi q^{\prime}\right)=$ ($\pi p^{\prime}, \pi q^{\prime}$) is stronger than $(p, q)=(\pi p, \pi q), p^{\prime}$ satisfies $\left(^{*}\right)$ in r and therefore in t.
To complete the verification of (6) we define $F_{i}(\vec{a},(p, q))$ for those \vec{a} and (p, q) that come from the two different conditions. Let $\vec{a} \in C_{r}-C_{s}$ and $(p, q) \in B_{s}-B_{r}$ (the other case being analogous) be such that $p \geq a_{0}$. We let $F_{t}(\vec{a},(p, q))$ be the least m such that $a_{m} \notin D$.

Let $\left(p^{\prime}, q^{\prime}\right) \in B_{t}$ be stronger than (p, q); we'll show that $p^{\prime} \not_{t} a_{m}$. This is clear if $p^{\prime} \in D$, by (3). If $p^{\prime} \notin D$, then we claim that p^{\prime} cannot be in A_{r}; then it follows that $p^{\prime} \perp_{t} a_{m}$. To prove the claim, note that range $(q) \nsubseteq A_{r}$ (because $(p, q) \notin B_{r}$) and hence range $\left(q^{\prime}\right) \subseteq A_{s}$. By (4), $p^{\prime} \in A_{s}$, and so $p \notin A_{r}$.

Therefore t is a condition and is stronger than both r and s.
Let G be a generic filter on R. In V_{G}, we let $P=\bigcup\left\{A_{r}: r \in G\right\},<_{P}=\bigcup\left\{<_{r}\right.$: $r \in G\}$, and $Q=\bigcup\left\{B_{r}: r \in G\right\} .\left(P,<_{P}\right)$ is a partial ordering and $Q \subset P \times \mathrm{Col}$. We shall prove that Q is σ-closed and is dense in $P \times \mathrm{Col}$, and that the complete Boolean algebra $B(P)$ does not have a dense σ-closed subset.

Lemma 3. $P=\omega_{2}$.
Proof. We prove that for every s and every $p \in \omega_{2}$ there exists an $r<_{R} s$ such that $p \in A_{r}$. But this is straightforward: let $A_{r}=A_{s} \cup\{p\}, B_{r}=B_{s}, C_{r}=C_{s}$, $F_{r}=F_{s}$ and $<_{r}=<_{s}$; properties (1)-(11) are easily verified. (Note that $p \perp_{r} a$ for all $a \in A_{s}$.)

Lemma 4. Q is dense in $P \times$ Col.
Proof. Let s be a condition and let $p_{0} \in A_{s}$ and $q_{0} \in \operatorname{Col}$. We shall find an $r<_{R} s, p \in A_{r}$ and $q \supset q_{0}$ such that $p<_{r} p_{0}$ and $(p, q) \in B_{r}$: Let p be an ordinal greater than all ordinals in A_{s}, let $q \in \operatorname{Col}$ be such that $q \supset q_{0}$ and $p \in$ range (q), and let $A_{r}=A_{s} \cup$ range $(q), B_{r}=B_{s} \cup\{(p, q)\}, C_{r}=C_{s}$, and let $<_{r}$ be the partial order of A_{r} that extends $<_{s}$ by making $p<_{r} p_{0}$. Finally, let $F_{r}(\vec{a},(p, q))=0$ for all $\vec{a} \in C_{r}$.

To see that $r=\left(\left(A_{r},<_{r}\right), B_{r}, C_{r}, F_{r}\right)$ is a condition, note that for every $\vec{a} \in C_{r}, p$ is not a lower bound of \vec{a} (because p_{0} isn't) and hence $p \perp_{r} \vec{a}$. This implies both (5) and (6). Since adding p does not affect the relation \perp on A_{s}, we have (8) and so r is stronger than s.

Next we prove that Q is σ-closed.
Lemma 5. If $u=\left\{\left(p_{n}, q_{n}\right)\right\}_{n=0}^{\infty}$ is a descending chain in Q then u has a lower bound.
Proof. Let \dot{u} be a name for a descending chain and let s be a condition. By extending $s \omega$ times if necessary (R is σ-closed), we may assume that there is a sequence $u=\left\{\left(p_{n}, q_{n}\right)\right\}_{n=0}^{\infty}$ in $\omega_{2} \times$ Col such that s forces $\dot{u}=u$, such that for every $n, p_{n} \in A_{s},\left(p_{n}, q_{n}\right) \in B_{s}$, that $p_{0}>_{s} p_{1}>_{s} \cdots>_{s} p_{n}>\cdots$ is a descending chain in $\left(A_{s},<_{s}\right)$ and that $q_{0} \subset q_{1} \subset \cdots \subset q_{n} \subset \cdots$

Let p be an ordinal greater than $\sup A_{s}$, let $q \supseteq \bigcup_{n=0}^{\infty} q_{n}$ be such that $p \in$ range $(q) \subseteq A_{s} \cup\{p\}$, let $A_{r}=A_{s} \cup\{p\}, B_{r}=B_{s} \cup\{(p, q)\}, C_{r}=C_{s}$, and let $<_{r}$ be the partial order of A_{r} that extends $<_{s}$ by making p a lower bound of $\left\{p_{n}\right\}_{n=0}^{\infty}$. Finally, let $F_{r}(\vec{a},(p, q))=0$ for all $\vec{a} \in C_{r}$ and $r=\left(\left(A_{r},<_{r}\right), B_{r}, C_{r}, F_{r}\right)$.

We shall show that for every $\vec{a} \in C_{s}, p$ is not a lower bound of \vec{a}. This implies that $p \perp_{r} \vec{a}$ and (5) and (6) follow. Since making p a lower bound of $\left\{p_{n}\right\}_{n}$ does not affect the relation \perp on A_{s}, we'll have (8) and hence $r<_{R} s$. In $r,(p, q)$ is a lower bound of u.

Thus let $\vec{a}=\left\{a_{k}\right\}_{k} \in C_{s}$. We claim that

$$
\exists k \forall n p_{n} \nless_{s} a_{k} .
$$

This implies that $p \not \Varangle_{r} a_{k}$ and hence p is not a lower bound of \vec{a}.
If $p_{n}<a_{0}$ for all n then we let $k=0$ because then $p_{n} \not{ }_{s} a_{0}$ for all n.
Otherwise let N be the least N such that $p_{N} \geq a_{0}$, and let $m=F_{s}\left(\vec{a},\left(p_{N}, q_{N}\right)\right)$.
Either $p_{n} \chi_{s} a_{m}$ for all n and we are done (with $k=m$) or else $p_{M}<_{s} a_{m}$ for some $M \geq N . \mathrm{By}\left({ }^{*}\right)$ there exists some k such that $p_{M} \perp_{s} a_{k}$ and hence $p_{n} \nless_{s} a_{k}$ for all n.

Finally, we shall prove that $B(P)$ is not countably closed.
Lemma 6. The complete Boolean algebra $B(P)$ does not have a dense σ-closed subset.

Proof. Assume that $B(P)$ does have a dense σ-closed subset D. For $a, b \in P$, we define

$$
a \prec b \quad \text { if } \quad a<_{P} b \quad \text { and } \quad \exists d \in D \quad \text { such that } \quad a<_{B(P)} d<_{B(P)} b .
$$

The relation \prec is a partial ordering of $P,(P, \prec)$ is σ-closed, $a \prec b$ implies $a<{ }_{P} b$ and for every $a \in P$ there is some $b \in P$ such that $b \prec a$.

Toward a contradiction, let s be a condition and assume that s forces the preceding statement. For each $\alpha<\omega_{2}$, there exist a condition s_{α} stronger than s, and a descending chain $\left\{c_{n}^{\alpha}\right\}_{n}$ in $A_{s_{\alpha}}$ such that $c_{0}^{\alpha} \geq \alpha$ and that for every $n, s_{\alpha} \Vdash c_{n+1}^{\alpha} \prec c_{n}^{\alpha}$.

By a Δ-system argument we find among these a countable sequence $r_{n}=s_{\alpha_{n}}=$ $\left(\left(A_{n},<_{n}\right), B_{n}, C_{n}, F_{n}\right)$ and a set E such that for every m and n with $m<n$ we have $E=A_{m} \cap A_{n}, \sup E<\min \left(A_{m}-E\right), \sup A_{m}<\min \left(A_{n}-E\right),<_{m}$ and $<_{n}$ agree on E, \perp_{m} and \perp_{n} agree on $E, B_{m} \cap(E \times \operatorname{Col}(E))=B_{n} \cap(E \times \operatorname{Col}(E))$, $C_{m} \cap E^{\omega}=C_{n} \cap E^{\omega}$, and $F_{m}(\vec{a},(p, q))=F_{n}(\vec{a},(p, q))$ whenever $\vec{a} \in C_{m} \cap E^{\omega}$ and $(p, q) \in B_{m} \cap(E \times \operatorname{Col}(E))$. Moreover, there exists a mapping $\pi_{m n}$ of A_{m} onto A_{n} that is an isomorphism between ($r_{m},\left\{c_{k}^{\alpha_{m}}\right\}_{k}$) and ($r_{n},\left\{c_{k}^{\alpha_{n}}\right\}_{k}$) and is the identity on E. We also let $\pi_{n m}=\pi_{m n}{ }^{-1}, \pi_{m m}=i d$ and assume that the $\pi_{m n}$ form a commutative system. Note that for every n and $k, c_{k}^{\alpha_{n}} \notin E$.

For each n and k, let $a_{k}^{n}=c_{2 k}^{\alpha_{n}}$ and $b_{k}^{n}=c_{2 k+1}^{\alpha_{n}}$. Let $\vec{u}=\left\{u_{n}\right\}_{n}$ be the "diagonal sequence"

$$
u_{2 n}=a_{n}^{n}, \quad u_{2 n+1}=b_{n}^{n} .
$$

We shall find a condition $t=\left(\left(A_{t},<_{t}\right), B_{t}, C_{t}, F_{t}\right)$ stronger than all r_{n} such that the diagonal sequence \vec{u} is a descending chain and belongs to C_{t}. Since $t \Vdash b_{n}^{n} \prec a_{n}^{n}$ for every n, it forces that (P, \prec) is not σ-closed. This will complete the proof.

To construct t we first let $A_{t}=\bigcup_{n=0}^{\infty} A_{n}$ and $B_{t}=\bigcup_{n=0}^{\infty} B_{n}$. Let $<_{t}$ be the minimal partial ordering extending $\bigcup_{n=0}^{\infty}<_{n}$ such that for every $n, a_{n+1}^{n+1}<_{t} b_{n}^{n}$. Before proceeding to define C_{t} and F_{t} we shall prove some properties of $\left(A_{t},<_{t}\right)$.

Lemma 7. (i) Let $m<n$ and let $y \in A_{m}-E$ and $x \in A_{n}-E$. If $x<_{t} y$ then $x \leq_{n} a_{n}^{n}$ and $b_{m}^{m} \leq_{m} y$. If x and y are compatible in $<_{t}$ then $b_{m}^{m} \leq_{m} y$.
(ii) For all m and n, if $x \in A_{n}$ and $y \in A_{m}$ and if $x<_{t} y$ then $x<_{n} \pi_{m n} y$ (and $\pi_{n m} x<_{m} y$). In particular, if $x, y \in A_{n}$ then $x<_{t} y$ if and only if $x<_{n} y$.
(iii) For all m and n, if $x \in A_{n}$ and $y \in A_{m}$ and if x and y are compatible in $<_{t}$ then x and $\pi_{m n} y$ are compatible in $<_{n}\left(\right.$ and $\pi_{n m} x$ and y are compatible in $<_{m}$). In particular, if $x, y \in A_{n}$ then $x \perp_{t} y$ if and only if $x \perp_{n} y$.

Proof. (i) The first statement is an obvious consequence of the definition of $<_{t}$, and the second follows because any z such that $z \leq_{t} x$ is in some $A_{k}-E$ where $k \geq n$.
(ii) Let $x \in A_{n}$ and $y \in A_{m}$ and let $x<_{t} y$. First assume that $y \notin E$ (and so $x \notin E$.) Necessarily, $m \leq n$ and if $m=n$ then clearly $x<_{n} y$. Thus consider $m<n$. By (i) $x \leq_{n} a_{n}^{n}<_{n} b_{m}^{n}=\pi_{m n}\left(b_{m}^{m}\right) \leq_{n} \pi_{m n} y$.

Now assume that $y \in E$ and proceed by induction on x. If $x \in E$ then $x<_{n} y$. If $x \notin E$ then either $x<_{n} y$ or there exists some $z \notin E$ such that $x<_{t} z<_{t} y$, and by the induction hypothesis $z<_{k} \pi_{m k} y$ (where $z \in A_{k}$). Applying the preceding paragraph to x and z we get $\pi_{n k} x<_{k} z$ and hence $\pi_{n k} x<_{k} \pi_{m k} y$. The statement now follows.
(iii) Let $x \in A_{n}$ and $y \in A_{m}$ and let $z \in A_{k}$ be such that $z<_{t} x$ and $z<_{t} y$. By (ii) we have $\pi_{k n} z<_{n} x$ and $\pi_{k m} z<_{m} y$. Hence $\pi_{k n} z=\pi_{m n} \pi_{k m} z<_{n} \pi_{m n} y$. The second statement follows from this and from the second statement of (ii).

Lemma 7 guarantees that t will be stronger than every r_{n}. Another consequence is that if $\vec{a} \in C_{n}$ then \vec{a} has no lower bound in ${<_{t}}_{t}$ if $x \in A_{m}$ were a lower bound then $\pi_{m n} x$ would be a lower bound in $<_{n}$.

Let $C_{t}=\bigcup_{n=0}^{\infty} C_{n} \cup\{\vec{u}\}$. Every sequence in C_{t} is a descending chain in $<_{t}$ without a lower bound (clearly, \vec{u} has no lower bound).

Lemma 8. For all k and n, if $(p, q) \in B_{k}-B_{n}$ and if $\left(p^{\prime}, q^{\prime}\right) \in B_{t}$ is stronger than (p, q) then $\left(p^{\prime}, q^{\prime}\right) \in B_{k}-B_{n}$.

Proof. Since $(p, q) \notin B_{n}$, we have either range $(q) \nsubseteq E$ or $p \notin E$, in which case $p \in \operatorname{range}(q)$ by (4) and again range $(q) \nsubseteq E$. Since $q \subseteq q^{\prime}$ it must be the case that $\left(p^{\prime}, q^{\prime}\right) \in B_{k}-B_{n}$.

We shall now define F_{t} so that $F_{t} \supset \bigcup_{n=0}^{\infty} F_{n}$ and verify (6). This will complete the proof.

First we let $F_{t}(\vec{a},(p, q))=F_{n}(\vec{a},(p, q))$ whenever the right-hand side is defined; we have to show that (6) holds in t. Let $m=F_{n}(\vec{a},(p, q))$ and let $\left(p^{\prime}, q^{\prime}\right) \in B_{k}$ be stronger than (p, q). It follows from Lemma 8 that $(p, q) \in B_{k}$. Now $\left(\pi_{k n} p^{\prime}, \pi_{k n} q^{\prime}\right)$ is stronger than $\left(\pi_{k n} p, \pi_{k n} q\right)=(p, q)$ and $\left(^{*}\right)$ holds for $\pi_{k n} p^{\prime}$ in r_{n}. If $p^{\prime}<_{t} a_{m}$ then by Lemma $7 \pi_{k n} p^{\prime}<_{n} a_{m}$ and hence $\pi_{k n} p^{\prime} \perp_{n} \vec{a}$. By Lemma 7 again, $p^{\prime} \perp_{t} \vec{a}$.

Next, let \vec{a} and (p, q) be such that $\vec{a} \in C_{n}-C_{k},(p, q) \in B_{k}-B_{n}$ and $p \geq a_{0}$. If $k<n$, we have $\pi_{k n} p \geq p \geq a_{0}$ and we let $F_{t}(\vec{a},(p, q))=F_{n}\left(\vec{a},\left(\pi_{k n} p, \pi_{k n} q\right)\right)$. To verify (6), let $m=F_{t}(\vec{a},(p, q))$ and let ($\left.p^{\prime}, q^{\prime}\right) \in B_{t}$ be stronger than (p, q). By Lemma $8\left(p^{\prime}, q^{\prime}\right) \in B_{k}$, and $\left(\pi_{k n} p^{\prime}, \pi_{k n} q^{\prime}\right)$ is stronger (in $\left.r_{n}\right)$ than $\left(\pi_{k n} p, \pi_{k n} q\right)$. If $p^{\prime}<_{t} a_{m}$ then by Lemma $7 \pi_{k n} p^{\prime}<_{n} a_{m}$ and so $\pi_{k n} p^{\prime} \perp_{n} \vec{a}$. By Lemma 7 again, $p^{\prime} \perp_{t} \vec{a}$.

If $k>n$, we let $F_{t}(\vec{a},(p, q))$ be the least m such that $a_{m} \notin E$ and that $b_{n}^{n} \mathbb{Z}_{n} a_{m}$ (such m exists as \vec{a} does not have a lower bound in A_{m}). To verify (6), let ($\left.p^{\prime}, q^{\prime}\right) \in B_{t}$ be stronger than (p, q). If $p^{\prime} \in E$ then $p^{\prime} \nless t a_{m}$ and if $p^{\prime} \notin E$ then by Lemma $7(\mathrm{i})$ $p^{\prime} \perp_{l} a_{m}$. In either case, (6) is satisfied.

Finally, we define $F_{t}(\vec{u},(p, q))$. Thus let $(p, q) \in B_{t}$ be such that $p \geq u_{0}$. Since $u_{0}=a_{0}^{0} \notin E$, we have $p \notin E$. Let n be the n such that $p \in A_{n}$. We let $F_{t}(\vec{u},(p, q))=2 n+2$. That is, the chosen u_{m} is $u_{2 n+2}=a_{n+1}^{n+1}$. To verify (6), let $\left(p^{\prime}, q^{\prime}\right) \in B_{t}$ be stronger than (p, q). Since $p \in A_{n}-E$, by Lemma 8 we have
$\left(p^{\prime}, q^{\prime}\right) \in B_{n}$ and therefore $p^{\prime} \in A_{n}-E$. But $a_{n+1}^{n+1} \in A_{n+1}-E$ and so $p^{\prime} \not \chi_{t} a_{n+1}^{n+1}$. Therefore (6) holds.

REFERENCES

[1] M. Foreman, Games played on Boolean algebras, this Journal, vol. 48 (1983), pp. 714-723.
[2] T. Jесн, A game-theoretic property of Boolean algebras, (A. Macintyre et al., editors), Logic Colloquium 77, North-Holland, Amsterdam, 1978, pp. 135-144.
[3] -_, More game-theoretic properties of Boolean algebras, Annals of Pure and Applied Logic, vol. 26 (1984), pp. 11-29.
[4] B. Velıčkoví', Playful Boolean algebras, Transactions of the American Mathematical Society, vol. 296 (1986), pp. 727-740.
[5] P. Vojtás, Game properties of Boolean algebras, Comment. Math. Univ. Carol., vol. 24 (1983), pp. 349-369.

DEPARTMENT OF MATHEMATICS THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16803, USA

E-mail: jech@math.psu.edu

SCHOOL OF MATHEMATICS
THE HEBREW UNIVERSITY JERUSALEM, ISRAEL
and
DEPARTMENT OF MATHEMATICS
RUTGERS UNIVERSITY
NEW BRUNSWICK, NJ 08903, USA
E-mail: shelah@sunrise.huji.ac.il, shelah@math.rutgers.edu

[^0]: Received April 13, 1995; revised October 10, 1995.
 1991 Mathematics Subject Classification. 03E.
 Key words and phrases. Boolean algebra, countably closed, game-closed, forcing.
 The first author has been partially supported by the U.S.-Czechoslovakia cooperative grant INT9016754 from the NSF.

 The second author has been partially supported by the U.S.-Israel Binational Science Foundation. Publication number 565.

