
TWO CARDINAL COMPACTNESS 

BY 

SAHARON SHELAH 

ABSTRACT 

We prove that if 2 >= p~o = /~  >= I T'I and if every finite subtheory of T has 
a (2, #)-model (i.e. a model with a domain of power 2, in which a distinguished 
predicate is interpreted as a set of/z elements) then T has such a model. There 
are generalizations for #-like models (or, equivalently, to languages with gen- 
eralized quantifiers). 

Consider a first-order language L with a designated one-place predicate Q. 

A (2,/0-model for L is a model 912 = ( m ,  Q~,. . .  ), such that [ m I = 2 and 

]Q~] =/~, where ]X I is the cardinality of X and Q~ is the interpretation of 

Q in ~J~. 

Our result is (This and more are in the notice by Shelah [4]): 

THEOREM. I f  T is a theory in the language L, and 2 _> # = # ~o__> ]r I and 

if  every finite subset oj T has a (2,11)-model, then T has a (2,#)-model. 

This result is stronger than a previous result of Fuhrken (cf. [2]) that if 

2 _>- # = #~ and x ~ I T] and if every finite subset of T has a (2,/0-model then T 

has a Q.,#)-model. Morley, in [3], p. 125, proves a similar result by means of 

partitions. Our proof generalizes his proof. 

If  K(2, #, L) is the class of (2, #)-models for L, then our result is that K(2,/l, L) 

is #-compact whenever 2 ~ / l  = #~o _> [L[.  

We shall say that a theory has names for Skolem-functions if for every formula 

q~(ui, "", un, u) of the language L there is a term z~ (u j, ..., u,) such that the following 

sentences are all in T: 

(1) Vu t, "", u.[3u(a(ul, "", u., u) ~ (a(u l, " ' ,  u,,'c o(ui, .",  u.))] 

I f  T does not have this property, we can extend the language L by adding 

suitable function symbols. For every model of L one can interpret the new function 
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symbols, without adding new individuals to the domain, so that all the sentences 

of  (1) will hold. (See p. 112 in [3].) Hence it is enough to prove the result for 

theories which have names for Skolem-functions. For  such a theory, T, if 

93~ = ( M , . . . )  is a model of  T and A c M, then, if we add to A all the members 

of  the form z~(at ,  ..-, a,), where z is an n-place term of  L, z~ is its interpretation 

in 92q and at, . . . ,a, eA,  we get a set N which together with all the relations and 

functions ofgJ~, restricted to it, is an elementary submodel ofgJ~. 

Let A = {a~ : i < 2} be a set of  2 new individual constants. Consider the follow- 

ing condition on T :  

(*) There exists an equivalence relation, E, on [.J,<,~A", with # equivalence classes, 

such that equivalent sequences are of the same length and the set of all the following 

formulas is consistent with T:  

(i) a i C a  i ,  where i C j ;  

(ii) Q(a~), where i < #; 

(iii) z(b) -- z (0  ~/[--7 Q(~(b))/~-7 Q(z(0)], where, for some n z is an n-place 

term of L, b, e e A" and bEe. 

LEMMA 1. I f  IT[ < #, T has names for Skolem-functions and T satisfies (*) 

then it has a (2, #)-model. 

PROOF. With no loss of generality we can assume that the language, L, of  T 

is of  power < #. Let 93~ be a model satisfying T and (i), (ii), and (iii). To simplify 

notation we shall identify each a~ with the member which is denoted by it and, 

thus, we have A c M. 

Let ~R = ( N , - . . )  be the elementary submodel of 9J~, such that N is the union 

of  A and the set of  all elements of the form z~(bt, ..., b,), where bt, "", b, cA. 

Since there are at most # terms, we have IN[ = [A[ = 2. Now, Q~ consists of  all 

al, i < #, as well as all the members v~(bl, "", b,) which are in Q~,  where 

bt, "", b, EA. The sentences of (iii) imply that, for every n, every X which is an 

equivalence class, such that X c A", contributes at most p elements to Q~. Hence 

] Q~ [ = # and ~R is a (2, #)-model. 

LEMMA 2. I f T  has a (2,#)-model, # = #No and IT] < N0 then Tsatisfies (*). 

PROOF. Let 9R = (M,--- )  be a ()L, #)-model of T. Interpret the a~ so that they 

are the names of  all the members of M and so that the at, for i < #, are the 

names of  all the members of Q~.  Again, identify each a~ with the element denoted 

by it, so that we have M = A and Q~ = {a~: i < #}. 
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Let Lo be the countable sublanguage of L such that all the sentences of To are 

sentences in Lo. Change the model 9J~ to a model 9JV in the following way: For  

every n-place term z which is not in Lo put: z~n. (b l , . . . ,b , )= ao for all 

b l , ' " ,  b,, ~ A (as being the first member of A). The interpretation of all the predi- 

cates and all the other terms is the same as in 9JL It is obvious that 9~' is a model 

of T and that (i) and (ii) hold in it. 

Now, define an equivalence relation E by: If, for some n, b, g ~ A", then [JEg if, 

for every n-place z either T~,(b) and zm,(g) are equal or both are not in Q~, .  

It is obvious that (iii) holds and it remains to show that there are # equivalence 

classes. 

Now, DE g if in the above definition the requirement concerning z~(b) and 

z~t(0) is made only for z in Lo,  because for r not in Lo the requirement holds in 

any case. 

Let Te, be the set of all n-place terms of  Lo. For every b ~ A" let fb be the 

function from Te, to {at: i < #} t3 {e}, (where e is a new individual) defined as 

follows: 

f~(z) = a t if L~,(b) = a t and i </~ 

f~(~) = e otherwise. 

It is clear that b E g  ifff~ = fe .  Hence there are equivalence classes at most as 

there are such functions, implying that their number is < #~o. On the other hand 

every {at}, 0 < i < p forms an equivalence class, for the case n = 1, because the 

term v, where v is an individual variable, maps at to itself. Hence, there are at 

least # equivalence classes. Since/z = #~° the lemma follows. 

LEMNA 3. I f  p = #~o, [ T I =< and every finite subtheory of T satisfies 

(*) then so does r. 

PROOF. Let T = {~b o, ~bl, .-.} and let Ei be the equivalence relation such that 

all the sentences of (iii) are consistent with q5 o A " "  A qS~. Let E be defined as: 

b E g if, for every i < % b E~ 0. 

Obviously (iii) is consistent with T for E thus defined. Since each El has /~ equiv- 

alence classes, E has at mos t /~°  equivalence classes. It  has at least/z equivalence 

classes. Hence the lemma follows from # = #~°. 

LEMMA 4. T satisfies (*) iff every countable subtheory of T satisfies (*). 
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PROOF. Given T, it suffices to construct a countable subtheory To such that 

if To satisfies (*), so does T. 

Say that a sentence ~b of  L is of  the same type as a sentence ~ if there exists a 

permutation of the function symbols, mapping each n-place symbol to an n-place 

symbol, and a similar permutation of  the predicates, which keeps Q fixed, such 

that by applying these permutations and by a legitimate change of bound variables 

one can pass from ¢ to ~ (Also equality is fixed). 

Obviously, being of the same type is an equivalence relation. Its equivalence 

classes will be called types. It can be seen that there are No types (all of them 

can be represented in a countable language containing Q and containing, for 

each n, No n-place function symbols and predicates). 

Let To be the countable theory obtained in the following way: 

For each type t such that there exists q5 ~ t  which can be written as: 

q~ = qSo A " "  A ~bl, with ~bo, -.., ~bi e T, choose one such q5 and one representation 

~b = q5 o A " "  A ~bf, with ~b0, ..., ~b~ ~ T and put in To the sentences ~bo, "", q~. 

Assume that E is an equivalence relation such that the set consisting of  the 

sentences (i), (ii), and (iii) is consistent with To. We shall show, by contradiction, 

that it is consistent also with T. If  it is not consistent with T then there is a finite 

conjunction q~ of  members of  T with whom it is inconsistent. There is a finite 

conjunction ~ of members of  To which is of  the same type as ~b. We can pass 

from q~ to ¢ by applying certain permutations of  the function symbols and the 

predicates and by changing, legitimately, the bound variables. It can be easily seen 

that such permuations keep each of  the sentences of (i) and (ii) fixed and map (iii) 

onto itself. It follows that ~, is inconsistent with (i), (ii), and (iii). Contradiction. 

If  every finite subtheory of  T has a (~, p)-model and/t  = / ~ o ,  then, by Lemma 2, 

every finite subtheory satisfies (*). By Lemma 3, every countable subtheory of T 

satisfies (*) and, by Lemma 4, T satisfies (*). By Lemma 1, T has a (2, #)-model. 

This proves the theorem. 

A similar theorem is true for the class of 2-like ordered models where No is 

small for 2 (# is small for 2,if  for every ,~ < 2 i </~, 1--[~<,2~ < 4. In other words 

40 < 2 implies 2g < 2 and the cofinality of  2 is greater than #). 

A k-like ordered model is a model 932 = ( M , . . - )  for a language with a dis- 

tinguished binary relation, such that this relation is interpreted as a linear 2-like 

ordering of  M, that is, [ M[ = 2 and {x: x < b} has power < 2, for all b ~ M. 

In this case the following condition which is analogous to (*) should be used: 

(**) There exists a family {Et: l < 4} of  equivalence relation on Un<,oA n, and 
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a function h : ~_J,<o,2" ~ 2 such that each E t has less than 2 equivalence classes 

and the set of  all the following sentences is consistent with T 

(~) ai < a j for i < j < 2  

(fl) "c(ail,'", ai.) < ah(i, ... i.) 

where z is an n-place term 

(?) z(b) = z(?) k/[at  < z(b)/k at < z(?)] 

whenever b E t ~ and z is a term with the appropriate number of places. 

One can generalize the method further and obtain a similar result for 2-like 

ordered models, in which there are distinguished individuals, say b l , ' " ,  bk, which 

are denoted by constants of  the language, such that {x : x < hi} is ordered by < 

in a 2i-like order. One has to require that for each 2~, [ T[ < 2i and No is small for 

2i. (Of course, 2 i < 2, i = 1,-.. k.) 

The result for k-like ordered models implies the analogous result for the 

language with the additional quantifier: "there exist at least 2 elements such 

t h a t . . . "  provided IT 1 < 2 and No is small for 4. Similarly, one gets the result 

for languages with several quantifiers of this kind, provided that for each 2~ in 

question I T] < hi and No plus the number of quantifiers is small for hi. 

Note that the lemmas imply that for T which has names for Skolem functions 

and for 2 > # = #~° > l T[, T has a (4, ~t)-model iff (*) holds. Note also that, 

if for a certain equivalence relation E, the sentences of (iii) are not consistent 

with T then there is a finite subset of A such that an inconsistency is implied by the 

sentences of (iii) involving elements of this subset only. This leads to the following 

result : 

Define an identification as a pair (I ,  n )  where I is an equivalence relation on 

Uk<n{i:  i < n} k (n < co). Say that ( I , n )  is realized by the equivalence relation 

E on [..Jk<,oA k if there is a one-to-one embedding of {i : i < k} into A such that: 

t) i < j iff F(i) < F(j)  where F is the embedding. 

2) i f  l ' , j~Uk<n( i  : i < n) h, and r I] ,  then f , ]  has the same length, and the 

embedding carries them to sequences equivalent to E. 

We say that ( I , n )  is an identification of  the pair (2,~t) if  for every set A of  

cardinality 2 and equivalence relation E on [..Jk<,~A k with # equivalence classes, 

(I ,  n )  is realized by E. 

Now the result is : 

I f  every f inite subtheory of  T has a (41, #1)-model, every identification of  

(22,p2) is an identification of  (21,1~1) , and 42 >_ It 2 = #~2 ° >= I T I ,  then Z has 

a (42, p2)-model. 
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With little changes in the proof of the main theorem we can generalize a result 

of Ehrenfeucht [1] to (2, #)-models. The type an element a E M realizes in 992 is 

the set of formulas qS(Xo) of L such that 992 satisfies ~b(a). The set of types realized 

in 9~ is the set of types P such that for some a ~ M, P is the type a realizes in 93/. 

We can prove that : 

I f  a theory T has a (2, #)-model, 2 _>- # ~° = # _-> [ T 1, then T has a (2, #)-model 

such that the cardinality of the set of types realized in it is < 2 ~° + IT[. 

A similar result is true for 2-like models. 
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