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Abstract

It is shown to be consistent with set theory that the uniformity invariant for Lebesgue
measure is strictly greater than the corresponding invariant for Hausdorff r-dimensional
measure where 0 <r<1.
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1. Introduction

The uniformity invariant for Lebesgue measure is defined to be the least cardinal
of a non-measurable set of reals, or, equivalently, the least cardinal of a set of reals
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which is not Lebesgue null. This has been studied intensively for the past 30 years
and much of what is known can be found in [1] and other standard sources. Among
the well known results about this cardinal invariant of the continuum is that it can
equally well be defined using Lebesgue measure on R” without changing the value of
the cardinal. Indeed, equivalent definitions will result by using any Borel probability
measure on any Polish space. However, the question of the values of uniformity
invariants for other, non-o-finite Borel measures is not so easily answered. This
paper will deal with the most familiar class of such measures, the Hausdorff
measures for fractional dimension. Observe that by the previous remarks, the least
cardinal of any non-measurable subset of any o-finite set will be the same as the
uniformity invariant for Lebesgue measure. In other words, this paper will be
concerned with the uniformity invariant of the ideal of o-finite sets with respect to a
Hausdorff measure.

It will be shown that given any real number r in the interval (0, 1) it is consistent
with set theory that every set of reals of size N; is Lebesgue measurable yet there is a
set of reals of size N; which is not a null set with respect to r-dimensional Hausdorff
measure. This answers Question FQ from D. Fremlin’s list of open questions [2].
However, the motivation was an attempt to resolve the following question posed by
P. Komjath.

Question 1.1. Suppose that every set of size X; has Lebesgue measure zero. Does it
follow that the union of any set of N, lines in the plane has Lebesgue measure zero?

It is worth noting that this is really a geometric question since [9] provides a
negative answer to the version of the problem in which lines are replaced by their
topological and measure theoretic equivalents. To see the relationship between
Question 1.1 and the topic of this paper consider that it is easy to find countably
many unit squares in the plane such that each line passes through either the top and
bottom or the left and right sides of at least one of these squares. It is therefore
possible to focus attention on all lines which pass through the top and bottom of the
unit square. For any such line L there is a pair («, b) such that both the points (a,0)
and (1,b) belong to L. If the mapping which sends a line L to this pair (a,b) is
denoted by f then it is easy to see that f§ is continuous and that if S<]0, l]2 is a
square of side ¢ then the union of f~''S has measure ¢ while S itself has measure ¢2. In
other words, the Lebesgue measure of the union of the lines belonging to f~' X is no
larger than the one-dimensional Hausdorff measure of X for any X =10, 1]2. In other

words, a negative answer to Question 1.1 would imply that there is X =0, l]2 of size
N; which is not null with respect to linear Hausdorff measure even though every
set of reals of size N; is null. The consistency of this will be a consequence of
Corollary 6.2.

The proof will rely partially on arguments from [7,8] in which a single stage of a
forcing iteration that would achieve the desired model was described. The material in
Sections 3 and 4 is a reorganized and simplified version of Sections 4-6 of [8] which
has been suitably modified for the current context. The approach taken here differs
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from the earlier attempt in that the forcing used is finite branching rather than
infinite branching as in [8] and this allows the use of product forcing along lines
similar to those in [3]. The new ingredient needed is described in Section 5. The
arguments presented in Section 6 use ideas explained in greater detail in [6], however
familiarity with that paper is not required in order to follow the reasoning presented
here.

To be somewhat more precise, the forcing used consists of creatures (as defined in
[6]) which consist of approximations to a cover of the ground model reals by an open
set of small Lebesgue measure—each branching node consists of finite union of
intervals, the some of whose lengths is less than some prescribed value. This is easily
seen to guarantee that the ground model reals form a null set, but another
mechanism is required to ensure that they do not form a set of finite Hausdorff-s
measure for some fixed s< 1. This mechanism consists of a norm, denoted by v in
Section 4, which guarantees that all approximations to a name for an open set
witnessing that the ground model has small Hausdorff-s measure can be localized
sufficiently well. For example, it will certainly be required of a creature that its open
sets form a cover because, otherwise, the generic open set obtained from the forcing
will not generically cover the ground model. Hence an assignment to each member of
the creature of an open set of small Hausdorftf-s capacity should allow a thinning out
of the creature so that the sets of small Hausdorff-s capacity are well approximated
while maintaining that the creature still covers the reals. This is essentially the
content of the definition of having norm at least 1. Higher norms are simply
combinatorial product constructions allowing this property to be redundantly
encoded in the creature so that it is preserved when decreasing the norm. This was
done in [8] using infinite branching trees. The defect of this approach is that it does
not allow a product construction such as in [3] to be used. The approach presented in
this paper uses a compactness argument which does allow finite branching trees to be
used. The compactness argument can be applied only to the norm denoted by v* in
Section 4.

The logical requirements guiding the organization of the paper may not have
resulted in optimal organization for the purposes of comprehension. Some readers
may prefer to start with Section 6 after having read Section 2, Definitions 3.2 and
4.2. The main point to keep in mind is that the norm v is the one which will be used in
establishing the key result Lemma 6.2. However, v is needed for the compactness
argument and p is the form of the norm which allows the combinatorics of Section 3
to be applied.

2. Notation

If X =R and re (0, 1) then the infimum of all Y~ 7 (b; — a;)" where {(a;,b;)};2, is a
cover of X by intervals of length less than ¢ is often denoted by H.(X). The r-
dimensional Hausdorff capacity of X is denoted by H’, (X) and is defined to be the
infimum of all "2 (b; — a;)" where {(a;,b;)}.2, is a cover of X by arbitrary intervals.
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The r-dimensional Hausdorff measure of a set X is denoted by H'(X) and, when
defined, is equal to its outer measure lim,_ o7, (X). Since it can be shown* that
H',(X) =0if and only if H"(X) = 0, in order to establish the main result it suffices
to show that it is consistent with set theory that every set of reals of size N is a
Lebesgue null set yet there is a set of reals of size X; which is not a null set with
respect to r-dimensional Hausdorff capacity. Actually, it will be more convenient to
work with measures and capacities on the Cantor set and to replace intervals by
dyadic intervals. This amounts to dealing with net measures as described in [5]. Since
r-dimensional net measures have the same null sets as r-dimensional Hausdorff
measures this will not be of significance to the results of this paper.

Notation 2.1. For the rest of this paper let r be a fixed real number such that 0<r<1.

Notation 2.2. Let C denote 2V with the usual product topology. Let @ be the tree
{fIn: feC and neN}

and for aeQ let [a] = {xeC: a=x} and for A=Q let [4] =, 4]a]. Let

Cr = {Ag@: > 2"”<s}

aeA

and let C, = {4eC*: |4]<Xy}. For consistency of notation, let [Q] " be denoted
by C.,.. Let Cl={4c0: Y, ,27<e}. For XcC define 2 (X)=

inf{e: (34eC.”) X =[A]}. The usual product measure on C will be denoted by 4.

Notation 2.3. Some notation concerning trees will be established. By a sequence will
always be meant a function f :n— X where neN and X is some set. Sequences will
occasionally be denoted as n-tuples (xj,xz,...,x,) and, in particular, singleton
sequences will be denoted by (x). If 7 and s are sequences the concatenation of s
followed by ¢ will be denoted by (s, #) . This is consistent with considering X* to be a
set of sequences because if xe X* and ye Y” then (x,y) e X* x Y. If T is a tree then
T is a set of sequences closed under restriction to initial segments. If reT then
Sr(t) = {x: (t,(x))e T}. Furthermore, T{t) = {seT: t=s or s=t}. If meN then
Tim|={teT: |t| =m} and T[<m] = {teT: |t|<m} and T[<m] = {teT: |t|<m}.

Notation 2.4. For any X<=C" and zeCF the set {xeC"™*: (z,x)e X} will be
denoted by X(z,-). Similarly, if F:C"— X is a function and zeC* then F(z,-) will
represent the function F(z,-):C" % - X defined by F(z,-)(x) = F(z,x).

4See Lemma 4.6 in [5] for example.
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3. Continuous mappings between Lebesgue and Hausdorff measures
The goal of this section is to exploit the difference between Lebesgue measure and
r-dimensional Hausdorff measure. It will be shown that for any continuous function
from the reals to the reals there are arbitrary small sets in the sense of Lebesgue
measure whose pre-image is as large as desired in the sense of r-dimensional
Hausdorff measure. For reasons which will reveal themselves in Section 4 it will also

be necessary to consider similar results for products of the reals.
Definition 3.1. If >0 is a real number and X =C define [J5(X) by

Os(X) = inf {4 (X\Z): Z=C and A(Z)<4}.
Lemma 3.1. If'1>7y>0 and ¢>0 then there is >0 such that for any measurable E<C
and there is myeN such that for any measurable D < E and for all m>=my:

0,(D)> 0, (E)

provided that (DN [s]) = A(E n|s))e for each se Qm].
Proof. Let >0 be sufficiently small that

4
V>77

2—y ¢

and then let meN be so large that the inequality

om(l=r) grr \ 4
i A (. S B W '
4 2—y &y !

is satisfied.
Suppose that A(Z)<n and A<= Q are such that D= Z U[A] and

> 2Tl <O,(E)

acA
and note that, without loss of generality, it may be assumed that Z<= D. Let A* =

Q[<m]nA4 and let E* = E\[4*]. Let By = {beQ[m]: [b]n[4*] =0} and note that
E*<[By] and that if be By then En[b] = E*n[b]. Now let

;L(E*)}'

1
Bl = {bGB(): )V(Eﬁ[b])>§ om
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Notice that 2(E*) >y because >
a Fubini argument that

27lr <O, (E) and E< E* U[4*]. It follows from

aeA

2]‘)1&(E*) > 2m,y

|Bl|>2_/1(E*)/2_V. (3.1)
Next, let
= {beBlz )L(Zm[b])>w}
and in order to see that
B2 < 2’”2" (3.2)

assume the opposite. Then the following sequence of inequalities
n>un2)=> Z MZ ] Z MEN[b])>e Z 2m+2 /| By 2m+2/
beB, beBz beB,

yields a contradiction. (The fourth inequality uses that B, = B;.)
Let B; = B)\B, and observe that it follows from Inequalities 3.1 and 3.2 that

2m 2m+2 4
1B5| >3 ST (2%__’7> (3.3)
-7 &y Y&

It follows that

DREREES Z( 3 2"”>> > (UDapN2))
ac A\A*,a=2b

aecA beBs
> Y (DA~ AZA b)),

b€B3

Since B; N B, = () it follows, using the hypothesis on D, that the last term dominates

S GBI~ G/2HEAE) > 5 S GEB) =5 3 (507

beB; beB; be B;

& IE* r 2m(]—r)8r r 4
> gy (MEDY L2
4r om 47 2_')) gy

and hence Y, ,271"> 0, (E) which is impossible. [

If X =C then F : X - C will be said to have small fibres if and only if A(F~!{x}) = 0
for each xeC. The proof of Theorem 3.1 and the lemmas preceding it will rely on
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decomposing an arbitrary continuous function into a piece that has small fibres and a
piece which has countable range.

Lemma 3.2. Let 0<u<1 and suppose that {X,},_q is an indexed family of mutually
independent {0, 1 }-valued random variables, each with mean u. Suppose that C=C is a
measurable set and that F;: C—C is a measurable function with small fibres for
1<j<n. For any ¢>0 for all but finitely many meN the probability that

AAl U g ) seAe

j=1 \seQm],X,=1
is greater than 1 — ¢.

Proof. Thisis Lemma 3.1 in [7] or Lemma 6.2 in [8] except that it is stated here for C
rather than [0,1]. O

Lemma 3.3. Suppose that

® EcC is a measurable set;
® F is a finite family of measurable functions with small fibres from E to C;
® >0, 1>u>0.

Then there is n>0 such that for any ¢>0 and for any mutually independent, {0,1}-
valued random variables { X} with mean p and for all but finitely many meN the
probability that the inequality

O, () F U 8] ]=0.8 (3.4)

FeF seQm],X,=1
holds is greater than 1 — e.

Proof. Let |F| =n. Use Lemma 3.1 to choose #>0 and an integer k such that if
DcE is a measurable set such that for each se Q[k]

(DA [s])?%ni(Em [s])

then O0,(D)>0,(E). Let ¢>0. Now use Lemma 3.2 to conclude that for each
teQ[k] for all but finitely many meN and any mutually independent, {0, 1}-valued
random variables {X},.q, With mean u, the probability that

m]

un e U w5 aEamn
FeF seQ[m], X;=1
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is greater than 1 —¢27%. Hence the probability that this holds for all e Q[k] is
greater than 1 — ¢ and so the hypothesis on k guarantees that Inequality 3.4 holds
with at least the same probability. [

Lemma 3.4. If >0 and M =C**" is measurable then so is the mapping from C? to R
defined by x+— O, (M(x,")).

Proof. Let BcM be an F, such that A(M\B)=0. Let Z=
{zeC?: A(M(z,-)\B(z,-)) >0} noting that, of course, A(Z) = 0. For xe C*\Z observe
that O,(M(x,-)) = O,(B(x,-)). Hence it suffices to show that the mapping
x— O,(B(x,-)) is measurable. In other words, it must be shown that {x:
0, (B(x,-)) <&} is measurable for any e R. But [, (B(x,-)) << if and only if there
are sequences {a;};2y =@ and {b;} 2, =Q such that

o0 o0
2714l <y and Z 27l < &,
J=0 Jj=0

S

B(x, )= | lajvb)]
=0

and, since B is an F,, this shows that {x: O,(B(x,-))<¢&} is 2! and, hence,
measurable. [

Corollary 3.1. Suppose that C is a measurable subset of C**' and F is a finite family

of measurable functions from C to C such that F(x,-) has small fibres for each xeC?
and FeF. If u>0 and y>0 then there is n>0 such that for all e>0 there is some

A GCL such that the Lebesgue measure of
{xe@d: O, ( N Flx, ~)1[A}> >0,(C(x, .))}
FeF

is at least 1 — ¢.

Proof. This is a standard application of Fubini’s Theorem using Lemma 3.3 and the
Law of Large Numbers once it has been observed that the set in question is
measurable. But this follows directly by applying Lemma 3.4 to both sides of the
inequality and then taking the difference of measurable functions. [

Lemma 3.5. Let EcCC be a measurable set and F a finite family of mea-
surable functions from E to C. Then for any y>0 and any u>0 there is n>0
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and Ae CL such that

0, < N F! [A]) >0, (E).

FeF

Proof. Let |F| = n. Foreach FeF let Yr = J{F '{y}: A(F'{y})>0} and let F be
defined by

_ F(z) if ze E\YF,
F =
@) {z if ze Yp.

Since each F is measurable and has small fibres it is possible to use Lemma 3.3 to

conclude that there is #>0 and an integer m and mutually independent, {0, 1}-
valued random variables { X}, g, with mean p/3 such that the probability that

(Nl U W) ]eom
FeF s€Q[m],X,=1
is greater than 1.

Since the mean of each X| is u/3 it is possible to choose m so large that the

probability that
U
se Qm],X,=1

is also greater than 1. Hence there is A’ e@}t /> such that
P < M F' [A’]) >, (E).
FeF

Now for each F e F choose a finite set 47 = C such that A(Y\F~'4r) <n/n. Then let
AeCL be such that [4'|U Up. r Ar < [4]. It follows that

Dn<ﬂ F'[A]) >Dn<ﬂ F | <YF\F1AF>) >0, (E)

FeF FeF FeF

because F~[A]2F '[A]\(YF\F'4F) for each Fe F. O
For the next definition recall Definition 3.1.

Definition 3.2. If @ : N - R*, I': N—>R* and X =C“ then the relation (g r(X) will
be defined to hold by induction on d. If d =1 then Og (X) if and only if
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O (X)=>I'(0) whereas, if d>1, then g r(X) holds if and only if
Oow-1{xeC: Do r(X(x,-))})=I(d —1). Define (i) = O(i+ 1) and I'* (i) =
ri+1).

The next lemma establishes that the top—down and bottom—up definitions of the
relation (g are the same.

Lemma 3.6. Let d>2. For any ©® :N—->R", I':N>R" and X =C*! the relation
Oe.r(X) holds if and only if O r+({zeC: Dog)(X(z,-))=T(0)}).

Proof. Proceed by induction on d and observe that the case d = 2 is immediate from
Definition 3.2. Assuming the lemma established for d let X =C%*2. Then the
following sequence of equivalences establishes the lemma:

De.r(X),
DOowin({zeC': Do r(X(z,-))=I(d +1),

Dowin({zeC': Do p+ ({weC: Oy (X(z,-)(w,)) =T (O)H})=T(d + 1),
Do+ ({zeC's Ot p-({weC”: Oog)(X((z,w),) =T (0)})}) =T (d),
Oo-r+({(z.w)eC! x % Do) (X((z,w),)) =T'(0)}),

Do r-({zeC™: Do(X(2,-)21(0)}). O
Lemma 3.7. If Oo.r(X) holds and X =C and n<O(i) for each i<d and A=C? is

such that 2(A)<n then Og_, r(X\A) holds where (@ — n)(i) = O(i) — 1.

Proof. Proceed by induction on d using Fubini’s Theorem. [

Theorem 3.1. Let I': N—R" and @ :N—R* be functions such that ©(i) + I'(i)<1
for each i. Suppose that C is a closed subset of C? such that Oe.r(C) holds and that F
is a finite family of continuous functions from C to C. If u>0 then there is A ECL and
n:N->R" such that O, r(Nper F[A]).

Proof. Proceed by induction on d, noting that if d =1 then this follows from
Lemma 3.5 by setting y = @(0) in that lemma. So assume that the lemma has been
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established for d and that C is a closed subset of C?*!, Tl (C) holds and F is a
finite family of continuous functions from C to C and that u>0. For each FeF let

Yr = {(x,y)eC? x C: i({zeC: F(x,y) = F(x,2)}) >0}
and note that Y is closed since F is continuous. Now, for Fe F define F: C—C by

F(X,y) if (xvy)¢YF7
y otherwise.

Fir) = {

Observe that F(x,-) has small fibres for each xeC“. By Corollary 3.1 there is >0
such that for all >0 there is some AECL /> such that the Lebesgue measure of

FeF

B(A) = {xeCd: Os ( ﬂ F(x, )I[A]> = O (C(x, ))}

is at least 1 —e.
Since each of the relations Yy is Borel, it is possible to appeal to Blackwell’s

Selection Theorem® to find a finite family of Borel functions G from C¢ to C such
that

d+1
Fz; /xea:d AP NV (x, ')_1 {G(¥)}geg) dx<W.

It is then possible to find a closed set D=CY such that

(D) (1= A(D)""<O(i +1) for each i<d;

() 4D)y>1-067)2¢;

3) |F| - A(YE(x, \NF(x, ~)71{G(x)}GEg)<5/2 for each FeF and xeD;

(4) each Ge@ is continuous on D.

Letting C* = {zeC%: O (C(z,-))=T(0)} it follows that
D@+,(1,g(D))‘/",F+(DmC*)

holds because Lemma 3.6 implies that (I g+ -+ (C*) does. Condition 1 guarantees that
Ot ({i)>(1 - )L(D))l/d for each i and C* is easily seen to be closed. It is therefore

possible to apply the induction hypothesis to @ — (1 — )v(D))l/d, I'*,Gand DnC*
to get AoECL/z and 7 : N—>R" such that

0, r (Dm ()G [A0]> :

Geg

3See Corollary 18.7 on p. 122 of [4].
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Let 1 be such that 0<i1<#(i) for i<d. Now choose 4, GCL/Z such that A(B(4;))>
1 — 4. Then

O, (Dm C*nB(a))n ﬂ G_I[Ao}>
Geg
holds by Lemma 3.7. Note that by Condition 3
Os)2 ( ﬂ F(x, )7 A\ U (Yr(x, )\F(x, ')I{G(X)}Geg)> = Og)(C(z,))
FeF FeF

for every xe Dn B(a;) and, moreover, (g (C(z,-))=T'(0) for xe C*. Hence

FeF FeF

Dé/2<ﬂ Fl, ) [ (Yr(, ~)\F(x7')l{G(X)}ceg)> >1(0)

for every xe Dn C*n B(a;). Let i be defined by

ni—1)—1 if d=i>0,
(i) =q ni—1) if d<i,
6/2 ifi=0

and define Z to be the set of all (x, w)eC?*! such that the following three conditions
are satisfied:

xeDNC* nB(a))n (] G4 (3.5)
Geg
(VFeF) F(x,w)elA,] (3.6)
(VFeF) F(x,w)¢ Yr(x,-) or (3GeG) F(x,w) = G(x) (3.7)

It follows from Lemma 3.6 that O;r(Z). Hence it suffices to observe that if
(x,w)eZ then F(x,w)e[4yuA;]. To see this note that if F(x,w) = F(x,w) this is
immediate from 3.6. Otherwise F(x,w) € Y and hence it follows from 3.7 that there
is some GeG such that F(x,w)= G(x). From 3.5 it can be concluded that
G(x)e[do]. O

Notation 3.1. For the rest of the paper, fix a pair of functions I': N—R" and
O :N - R" such that

On)>Om+1) and lim O(n) =0, (3.8)

n— oo
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(%) @) +I()<1, (3.9)
(%)) O() + T+ 1)<, (3.10)
the range of I' is a dense subset of (0,1). (3.11)

Definition 3.3. For any deN and for X =C? define [(X) = e (X) and define
0.(X) to hold if and only if there is some #: N—R" such that [, r(X) holds.

4. A preliminary norm

This section will introduce three norms® on subsets of C., which will be denoted
by p, v* and v. The norms of [6] typically enjoy some form of sub-additivity but this
will not be the case for any of these three, at least not explicitly. Nevertheless,
Lemma 4.2 can be considered a substitute for this. The only norm used in the
definition of the partial order in Section 6 will be v. The role of the norm p will be to
establish a connection between v* and the results of Section 3. The norm v* is an
intermediary between p and v and, furthermore, it has the advantage of allowing the
compactness argument of Section 5 to work.

Notation 4.1. For any Polish space X let (X)) denote the space of compact subsets
of X with the Hausdorff metric and let C(X) denote the space of continuous C-
valued functions with the uniform metric.

Definition 4.1. Define p to be a function from P(C.) to Nu{co} by first defining
p*(X) to be

{d=1: (YCeK(CH)(VFeC(C))(AxeX)O(C) = O.(F'x)}
and let p(X) = sup(p*(X)). If p*(X) = 0 but X#0 then define p(X) = 0.
Observe that each set p*(X) is an initial segment of the integers. In order to see this
note that if d + 1€p*(X) and CeX(C?) and FeC(C) then, by considering F': C x

C— C defined by F'(x,c¢) = F(c), it is easily shown that d € p*(X). The following is a
direct Corollary of Theorem 3.1.

Corollary 4.1. If u>0 then p(C)) = 0.

©This is the terminology of [6]. The exact meaning of the term “norm” is not required for the arguments
used here.
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Lemma 4.1. If d>1 and functions 0 and y are given then {C<K(C?): Oy, (C)} is a
closed set.

Proof. Proceed by induction on d. The case d =1 is easy since an open set
witnessing the failure of Oy, (C) witnesses this failure for any of its subsets and,

thus, for a neighbourhood of compact sets. Assuming the result for d let C=C%*! be
compact and suppose that [y, (C) fails. Using Definition 3.2, find C; € C; for some
7<y(d) and By eC} for some 0<0(d) such that {xeC: Oy, (C(x,-))} = [B1UCi].

For xe C\[B; u(y] it is possible to use the induction hypothesis to find a finite, and
perhaps empty, C, such that C(x,-)=[C.| and [y, (B) fails for any B<|[C,]. The
compactness of C yields an integer k, such that C(y,-) =[C,| for each yeC such that
vl ke = x[ky. Choose a finite X =C such that {[x[k\]|},.y covers C\[B,UC]. It is
then easy to see that for any

CIE([BlkJCl] X C)U (U [er),] X [Cr])a

xeX
[, (C') fails. This provides a neighbourhood of C disjoint from {C’' <=k (C%):
Op,(C")} as required. O

Corollary 4.2. For any d>1 the set {C<K(C?): O(C)} is closed and {C =K (C):
O0.(C)} is an F,.

Proof. For the first assertion simply apply Lemma 4.1 with 6 = @ and y = I'. For
the second use Definition 3.1 to see that [J,(C) holds if and only if there is some
n:N—->R" such that 00, (C) holds. But notice that  can be assumed to be a
constant function with rational value. It follows immediately from Lemma 4.1 that

{ceKr(Cc?): O.(C)Yisan F,. O

Notation 4.2. The notation {z, F') will be introduced for any ze C and any function
F:W—-P(Q) to denote {we W :z¢[F(w)]}.

Corollary 4.3. Suppose that X=C., and B: X >P(C.,). Then {zeC: p({z,B))<j}
is analytic for any integer j.

Proof. From Corollary 4.2 it follows that the assertion
(AxeX) O(C) = O.(F 'x)

is Borel for XYeP(C,,). Hence the corollary follows from Definition 4.1. O
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Lemma 4.2. Suppose that X=C., and p(X) =j=2. Then
Ooj-2({z€C: p({z,F))<j—1H<I(j-1)

for each function F from X to Cff(jfl)/z.

Proof. Let S ={zeC: p({z,F))<j— 1} and assume that the lemma fails. In other
words, Og(;—2)(S)=T'(j —1). Let

EcCx K(© ) xe@™)

be the set of all triples (z, C,f) such that
=[te) (4.1)

(Vxe{z, F)) =0, (Cnf'x). (4.2)

It follows from Definition 4.1 that S is contained in the domain of E. From
Lemma 4.1 and Corollary 4.2 it follows that E is a Borel set. From Corollary 4.3 it
follows that S is measurable and so it is possible to use the von Neumann Selection
Theorem and Lusin’s Theorem to find a closed set S*<.S and a continuous function
T = E with domain S* such that A(S\S*)<@©(j —2) — O(j—1). Let T(s) = (Cs, fs)
and observe that the continuity of 7" guarantees that C* = J,_¢.{s} x Cy is a closed
set. Moreover, O g(;_1)(S*) = Og(j—2)(S)=I'(j —1). A calculation using Definition
3.2 reveals that [J(C*) holds. Let g be defined on C* by g(ci,c2,...,¢) =
Je (€2, 03, ..., ¢;) recalling that j>2.

Since p(X)>j it is possible to find xe X such that (J,(g~'x). Let

W ={zeS*" O.(g"x(z,))} = {zeS*: O.(g(z,-) 'x)}

and note that it follows that 2, (W)>T'(j — 1). Since F(x) e Cr(,_)/, it is possible to
choose we W\[F(x)]. Then xe {w, F) and so, by Condition 4.2 in the definition of

E, it follows that [J,(g(w,-)"'x) fails since g(w,-) =f,. This contradicts that
weW. O

Definition 4.2. The norms v and v* will be defined for the subsets of C., by first
using induction to define an associated sequence of sets:

No=Ny ={X<C.,: X#0},
Ny =N ={xcC,: [uX]=C},
Nig ={XcCy: (VF:X>Cr(jjn)Do-1)({zeC: (2, FY ¢N)})<I())}, (4.3)

Nﬁrl ={XsCu: (VF: X>Cp ) n)0e(-1)({z€C: (7, F> ¢N/w)})<r(j)}- (4.4)
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Then define v(X) to be the supremum of all j such that XeN; and v* (X) to be the
supremum of all j such that X e]\f_ ;’C.

It must be noted that N;2N ;4 for each integer j and, indeed, if X' belongs to
Nj41 then it belongs to NV; in spades. To see this first observe that an easy inductive
argument, using nothing more than de Morgan’s Rule, shows that each family A is
closed under supersets. Since I'(j) + @(j — 1) <1 by Inequality 3.10, it follows that
if XeNj, then taking any F:X—Cp(;, there is at least one zeC such that
{z,F)eN;. Since {z,F) =X it is immediate that X e \;. Similar reasoning shows
that A/ joc =N ;f;] as well. Hence the supremum in Definition 4.2 is taken over an
initial segment of the integers. This will be used implicitly in what follows.

Corollary 44. If X<=C,, then p(X)<v*(X).

Proof. Proceed by induction on j = p(X). The case j = 0 is trivial but the case j = 1
is less so. To see that p(X) = 1 implies that X covers C let ze C. Note that [(C)
holds by Condition 3.10 of Notation 3.1. Letting F be the function on C with
constant value z it follows from the definition of p(X’) = 1 that there is some xe X’
such that OJ,(F~'x) holds. In particular, F~'x#0 and so if weF~!x then z =
F(w)ex.

Therefore, it can be assumed that 2<j + 1 = p(X) and that the lemma holds for j.
In order to show that v (X) >/ + L let F: X > C[ ;) . By Lemma 4.2 it must be that

Oej-1y({z€C: p(Lz,F))<j})<I(j).

From the induction hypothesis it follows that if v ({z, F))</j then p({z, F))<j.
Hence

Oogj-n({zeC: v (2, F)) <j}) <I'(j)

and this establishes that v (X)>j+ 1. O

5. Finding finite sets with large norm
It will be shown that for any j there is a finite X such that v*° (X)) >;. This will

establish that the €(k) required in the definition of the partial order P in Section 6
actually do exist. Each of the next lemmas is a step towards this goal.

Lemma 5.1. If X<C,, then v (X)<v(X).
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Proof. This follows from the definitions by an argument using induction on j to
show that if v°(X)>=j+ 1 then v(X)=j+1. O

Lemma 5.2. If {A,},°, is an increasing sequence of finite subsets of C, then
[e)
0 _ 1 o0
v (,,L_Jo An> = nliné v (Ay).

Proof. Proceed by induction on j to show that if v*(A,)<j for each n then
v (U2 An) <j. For j =0 this trivial and if j =1 this is simply a restatement of
the compactness of C. Therefore assume that j>1, that the lemma is true for j,
that v*(A,)<j for each n yet v*(U,2) Au)>j. Let F,: A, —C[;,, witness
that v*(A,)#%j+ 1. In other words, using Equality 4.4 of Definition 4.2,
D@(j—l)(Sn)>F<j) where Sn = {ZEC: V%(<Z,Fn>)<j}.

Claim 1. If {6,},-, is a sequence of positive reals and {A,},_, is a sequence of
elements of C{° then there are two increasing sequences of integers {k,},-, and
0 .
{mn},—o such that, letting
D, = Ay, nQ[<k,]

the following hold:
if izn then D, = D;nQ[<k,], (5.1)

AU [An\Dy] | <0 (5.2)
(Y

Moreover, the increasing sequence {ky},- can be chosen from any given infinite set K.

Proof. Let K be given and, using the fact that 0<r<1, let {k,},-, <K be such that
for each n

o0
Z 27k,»(17r) <5n/2
i=n

and then choose the sequence {m,},-, such that Conclusion 5.1 holds. Then
Conclusion 5.2 follows from the following inequalities:

A (O[Am,\Dn]> < i(

< S 2 dn D) + A(Dis\ D)

i

s

(A \Di] U [Di+1\Di]>

Il
3

n
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00
S R S
i=n IEA,,,I\D[ teDiy1\D;
00
<[ 3 2wt S gy
i=n \ 1€ A \Dj teDi\D;
o0
S BRG] I SRS S
i=n te Ami\D,‘ te D,ur]\D[

2RIy 1)<, O

N

{
3

Before continuing, let {g;};”, enumerate | J,, .4, and, without loss of generality,
assume that A, = {a,},_,. Using the claim and its final clause and a diagonalization
argument, find two increasing sequences of integers {k,},-, and {m,},-, such that
for each i and each n>i, letting F,; = F,,, (a;) nQ[<k,], Conclusions 5.1 and 5.2 of
the claim hold for a summable sequence of 6. To be more precise, F,;, is an end

extension of F,; and
o .
) (U[ij(a[)\Fn,[O <27

i—n

for any n>i. Define F(a;) = U, Fn; and note that F(a;) e(C Y since Fy;€Cr(

for each n and the F,; are increasing with respect to .
Now let S = {zeC: v*({z,F))<j}. Because

0
ve <U An) =j+ I,
n=0

it follows that Cg(;_1)(S)<I'(j) and, hence, it is possible to choose Y such that
A, (S\Y)<I'(j) and A(Y)<O(j—1). Choose M so large that letting

W= [an (ai)\Fmax(M,i)‘i] )

it follows that A(W)<O(j—1) — A(Y).
Now define F*(a;) by

Frlay — { P T,
@) = Fi‘i if i>M



S. Shelah, J. Steprans | Advances in Mathematics 192 (2005) 403-426 421

and note that F*(a;) S F(«a;). Now let S = {zeC:v*({z, F*| Ay ))<j} and note

m
that S; =28, .| and they are all compact. Indeed,

sv= U (ﬂ W(@])
B A v* (B)<j \acA,\B

and each [F*(a)] is compact.
Claim 2. If z¢ W and i=M then {z,F*| Ay, > =<z, F,, ).

Proof. Let a,¢ <z, F,,»> and assume that /<m; since otherwise it is immediate that
as¢ <z, F*| A, >. There are two cases to consider. First assume that /<M. Then
z€[Fy,(as)] but since z¢ W and i=M it follows that z¢[F,,(a,)\Fu ). Hence
z€[Fay) = [F*(as)]. In other words, as ¢ {z,F*| A, >. If /> M a similar argument
works. [

It follows from the claim that if z¢ W and i=M then v*(<{z,F*[ A, >)<
v ({z,Fp, ). Hence, if i=M and zeS,\W then v*({z, F*| Ay, >)<j. In other
words, S,,L.\WES%\W. Therefore, D@(_/_l)_l(w)(S;i\W)> D@(j_])_;v(w)(smi\ W)Z
I'(j). Since each of the S* \W are compact it follows that

m;

f]ﬁAW>>Hﬁ-
=M

=

D@(jw(W)(

Let S*=NZ,S;. Since AMY)<O(j—1)—Ai(W) it follows that
7 (SNW U Y)ST()).

Since A7, (S\Y)<I'(j) it is possible to select zeS*\(SUWuUY). Then
ve ({z, F*l Ay, >) <j for each i M and so the induction hypothesis guarantees that

e (O <Z,F*fAmi>> <J.

i=M
But

o0

U <G F 1AL =<2 FrlAn) = (G F
—M M

i=

L

and so v*(<z,F*))<j. Since F*(a)=F(a) for each a it is immediate that
{z,F*>2{z,F) and so v¥*({z,F)»)<j. This contradicts that z¢ .S. O

Corollary 5.1. For any jeN and >0 there is a finite set XE(CL such that v(X)=j.
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Proof. Combine Corollaries 4.1 and 4.4 to conclude that v‘”(CL) = 0. Then

use Lemma 5.2 to find a finite XQCL such that v*(X)>;. Finally apply
Lemma 5.1. O

6. The forcing partial order

Using Corollary 5.1 let €(n) be a finite subset of Cj_, such that v(€(n)) = n for each
neN. Recalling the notation concerning trees in Section 2, let [P consist of all trees T
such that:

(Vee T)(Vi<|t]) 1(i)eC(i), (6.1)

(Vkew)(VteT)(Ase T)t<s and v(Sr(s)) >k (6.2)

and let this be ordered under inclusion. The methods of [6] can be used to establish
that P is an w®-bounding proper partial order.

Lemma 6.1. Let V= W be models of set theory and suppose that GSP NV is generic
over W. Then W[G]=A(W n[0,1]) =0.

Proof. If GSP NV is generic over W then let Bge [[,-, €(n) be the generic branch
determined by G. Note that A([Bg(/)]) <27 for each j and so A(UZ, [Bs(/)]) < 0.
Also, for every T e P there is some te T such that VEv(S7(t)) = 1. Since v(Sr(f)) =1
is equivalent to |JS7(f) = C, and this is absolute, it follows from genericity that
CowecUL,[Be()) for every m. O

Definition 6.1. Let P* be the countable support product of x copies of P.

Corollary 6.1. If k=X, and G<=P" is a filter generic over V then in V|G| every set of
reals of size less than x has Lebesque measure 0.

In light of Corollary 6.1 the goal now is to establish that if P* is the countable
support product of x copies of P and G=P" is a filter generic over V' then
A (CnV)=1in V[G].

Lemma 6.2. Suppose that pltpc “CeC5°” and d<1. Then there are A=C and B=C
such that 27, (A) + A(B) <1 such that p ¥ p*Z€[C]” for each ze C\(AU B).

Proof. Let 1>9; >0 and choose a monotonically increasing function d; : N— R such
that J; + lim,_, ,02(n) <1. For later use, define k(i) = H;:o |€()|. The proof is
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based on a standard fusion argument. Induction will be used to construct p;, S;, &;, a;,
b; and L; satisfying the following conditions:

(1) pieP* and po<p

() piv1<pi;

(3) S;:k—Nis 0 at all but finitely many ordinals—these will be denoted by D(S;);
(4) Si(6) = Si;+1(0) for all but one oek;

(5) Si+1(0)<Si(0) + 1 for all vex;

(6) L;eN and Li<Li+l;

(7) piv1(0)[Li] = pi(o)[Li] for each o€ D(S);

(8) for each te [[,.p(s, pi(0)[Li] there is some finite C;. such that

pi<‘E> ||‘[|:le“él'7rgc and C\éi7T€C§,”

where p; (1) is defined by p;{t) (&) = p;i(o) {t(a) >;
(9) a;eC,, for some o;<d; and a; S a;yy;

(10) ;L([bl])<52(l) and bigbi+1;

(11) for each zeC\[a; Ub;] there are finite trees T, .; for each g€ D(S;) such that
(a) T(r,z,igpi(a)[<[‘i]v
(b) there is a maximal antichain of se T, . ;[ < L;] such that v(St,_,(s)) = Si(0),
() z¢[Cic] for any t€ [ [, ps,) To.zilLil,
(d) To-ilLi] = Tz i1 [Li],

(12) 28,’]{(L,‘)2i<51 — 0

(13) lim,_, », S,(cg) = oo for each element o of the domain of some p;.

Assuming this can be done, let A = |J.2, [a;] and B = |J;2, [b:]. Then if ze C\[4 L B]
let

o0
QZ(J) = U TJJ;[
=0

and note that it follows from Condition 11b that ¢. e P* and ¢. <p. From Conditions
8 and llc it follows that ¢ IFpr “Z¢[C]”.

To see that the induction can be carried out, let i be given and suppose that p;, S;
&, a;, by and L; satisfying the induction hypothesis have been chosen. Choose ¢
according to some scheme which will satisfy Condition 13 and define

Si(0) if 0#4,

&M@{&Q%H if 0 =g.

Let o <p; be such that py = p; if S;(6) >0 and, otherwise, jy(c) = p;(c) for ¢ # & and
|Po(6)[Li]| = 1. Let m=S;;1(G) be such that

¥>8,‘k(lq)i, (63)
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I'(m)k(L;)<dy — oy, (6.4)
(i +1) — 62(i)
- l)<——7 .
O(m—1)< L) (6.5)
and for each repy(6)[L;] there is some t* €py(G) such that r=¢* and such that
V(S5 (7)) =m + 1. (6.6)

Let L;; > L; be so large that |*| < L;y for each 1€ p(6)[L;]. Then let 5, <py be such
that

o {1 :tepy(d)[L;]} is a maximal antichain in p(G);
° 1ftep1( 7) an Li<|t|<Li+1 then
o |Sp(o)(#)] = Vif %1 for any repo(e)[Li;
° Spi( ( ") = Spo(a) (1) if 1€po(G)[Li];
* pi(o ) Po(o) for a# 4.

Let > <p; be such that p,(o) = pi(o) for o¢ D(S;)\{¢} and if 6 € D(S;)\{d} choose
p2(0) such that p,(o)| L; = pi(o)[ L; and such that if t€ p,(0) and L; <|t|< L;y then
|S5,() ()] = 1. Let &;1>0 be so small that 2¢;,1k(L L))" <8 — o; — eik(Ly).
Choose p;1 <p, such that p;i(0)[Liy1] = p2(0)[Li1] for each g€ D(S;|)—this
implies that Condition 7 holds—and for each t€ [[,.p(s,.,) Pi+1(0)[Lit1] there is

some finite C;;;, such that

pis1 ) Fp“Cip1,=C and CO\Ciyy,€CE 7.

Eit1

For each rep;(6)[L] and xS, (1) and t€ [ [, p(s,) ey Pi(0) [Li] let p(2, x, T) be the
unique element of [],p l+1)p1+1( 0)[Li+1] such that p(t,x,7)(0)=21(6) for each
ceD(S;)\{6} and p(t,x,7)(6)=2¢ and p(t,x,7)(6)(]¢*]) = x. Let p*(¢,7) be the
unique element of HJGD o pi(o )[Li} such that p*(¢,7) =t if S;(6) =0 and, if
S;(6) >0 then p*(z,7)(0)21(0) for each o€ D(S;)\{¢} and p*(t,7)(6) = t.

Note that Cii (xr)\Cip (1) €Cs, by Condition 8. Define F; : Sle(g)(l*)—)CSik(Li)f
by

Ft(x) = U Ci+l,p(t,x,r)\ci,p*(t,r)
Te HGED(S,-) (@ P1(9)ILi]

and observe that F;(x)eCp,),» by 6.3 since

I Pl <k(L)”S) <k(Ly"

ceD(S))
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By 6.6 it follows that
D@(l‘ﬂ*l)({zee: V(<Z7 F,>)<Wl}) <F<m)

for each tep;(6)[L;]. Let b!

i1 be such that (b}, ) <@(m — 1) and such that there is
aj,, € Cr(y) such that

laf,]2{zeC: v(z,F, ))<m}\[b},,]. (6.7)

It follows from 6.5 and Induction Hypothesis 10 that if b;,; is defined to be
b;u Ulep L b,+1 then Condition 10 is satisfied by b;. ;. Similarly, if a;y; is defined
to be a; L Utep L) ai, thena; ;1 €C, , where oy = o; + I'(m)k(L;) <6y by 6.4 and
Induction Hypothesis 9.

In order to verify that Condition 11 holds let ze C\[a;+; U b;1]. Let Ty - i1 = Tyz
if o#6 and let T5. ;41 be the set of all sep;1(6)[< Lit1] such that s| L;e T, -; and, if
t*<s then s(|7*|) e {(z, F; ). In order to show that Condition 11b holds it suffices to
show that

V(ST;.,, (1) =m>S;,1()

for any tep;(6)[L;]. For any given ¢ this follows from the fact that z¢[a,, UbL, ]
and 6.7.
In order to show that Condition 11c¢ holds let te HJGD@_+1> Ty i[Liy1]. Let T=

1 (D(S;)\{6}). Let tep;(d)[L;] be such that t=1(g) and note that the definition of
T,”, guarantees that t(6)(|t*|)e<z,F;>. In other words, z¢[F;(t(d)(|7*]))]=
[Cit1,p(15@)(|)),5)\Cipr(1,5)]. Moreover, since p*(¢,7) e HaeD(S;) Ts-; it follows that
z¢[Cj - (1.5] by the Induction Hypothesis 11c. Hence z¢[Ciy1.]. O

Corollary 6.2. If GS P is generic over V then V|G|= (VnC) = 1.
Proof. Suppose not and that
plp“CeCy’ and VnC<[C]”

and < 1. Using Lemma 6.2 find 4=C and B<C such that A°, (4) + A(B)<1 and
g<p such that gW¥p*“ze[C]” for each zeC\(4uUB). Choose any zeC\(AuUB)
and ¢’ <gq such that ¢'IFp“2¢[C]”. O

7. Remarks and open questions

One might expect that the methods developed here could be used to prove that for
any two reals s and ¢ such that 0<s<s<1 it is consistent that sets of size N; are
null with respect to s-dimensional Hausdorff measure but that this is not so for
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t-dimensional Hausdorff measure. While this is true of most of the argument there
are some slippery spots. For example, the use of Yz in the proof of Lemma 3.5
assumes the o-finiteness of Lebesgue measure. Lemma 3.2 might also pose some
challenges to generalization. Let iy denote the least cardinal of a set which is not null
with respect to s-dimensional Hausdorff measure. Hence the following questions
remain open:

Question 7.1. Is it consistent that 0<r<s<1 and n,<n,?
Question 7.2. Is it consistent that 0<u<v<w<1 and n,<n,<n,?

Question 7.3. How big can the cardinality of {n},. ) be?

However, the main open problem in this area still remains Question 1.1. It would be
interesting to know what the answer to this question is in the model described in
Section 6.
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