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Abstract

It is shown to be consistent with set theory that the uniformity invariant for Lebesgue

measure is strictly greater than the corresponding invariant for Hausdorff r-dimensional

measure where 0oro1:
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1. Introduction

The uniformity invariant for Lebesgue measure is defined to be the least cardinal
of a non-measurable set of reals, or, equivalently, the least cardinal of a set of reals
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which is not Lebesgue null. This has been studied intensively for the past 30 years
and much of what is known can be found in [1] and other standard sources. Among
the well known results about this cardinal invariant of the continuum is that it can
equally well be defined using Lebesgue measure on Rn without changing the value of
the cardinal. Indeed, equivalent definitions will result by using any Borel probability
measure on any Polish space. However, the question of the values of uniformity
invariants for other, non-s-finite Borel measures is not so easily answered. This
paper will deal with the most familiar class of such measures, the Hausdorff
measures for fractional dimension. Observe that by the previous remarks, the least
cardinal of any non-measurable subset of any s-finite set will be the same as the
uniformity invariant for Lebesgue measure. In other words, this paper will be
concerned with the uniformity invariant of the ideal of s-finite sets with respect to a
Hausdorff measure.

It will be shown that given any real number r in the interval ð0; 1Þ it is consistent
with set theory that every set of reals of size @1 is Lebesgue measurable yet there is a
set of reals of size @1 which is not a null set with respect to r-dimensional Hausdorff
measure. This answers Question FQ from D. Fremlin’s list of open questions [2].
However, the motivation was an attempt to resolve the following question posed by
P. Komjáth.

Question 1.1. Suppose that every set of size @1 has Lebesgue measure zero. Does it
follow that the union of any set of @1 lines in the plane has Lebesgue measure zero?

It is worth noting that this is really a geometric question since [9] provides a
negative answer to the version of the problem in which lines are replaced by their
topological and measure theoretic equivalents. To see the relationship between
Question 1.1 and the topic of this paper consider that it is easy to find countably
many unit squares in the plane such that each line passes through either the top and
bottom or the left and right sides of at least one of these squares. It is therefore
possible to focus attention on all lines which pass through the top and bottom of the
unit square. For any such line L there is a pair ða; bÞ such that both the points ða; 0Þ
and ð1; bÞ belong to L: If the mapping which sends a line L to this pair ða; bÞ is

denoted by b then it is easy to see that b is continuous and that if SD½0; 1�2 is a

square of side e then the union of b�1S has measure e while S itself has measure e2: In
other words, the Lebesgue measure of the union of the lines belonging to b�1X is no

larger than the one-dimensional Hausdorff measure of X for any XD½0; 1�2: In other

words, a negative answer to Question 1.1 would imply that there is XD½0; 1�2 of size
@1 which is not null with respect to linear Hausdorff measure even though every
set of reals of size @1 is null. The consistency of this will be a consequence of
Corollary 6.2.

The proof will rely partially on arguments from [7,8] in which a single stage of a
forcing iteration that would achieve the desired model was described. The material in
Sections 3 and 4 is a reorganized and simplified version of Sections 4–6 of [8] which
has been suitably modified for the current context. The approach taken here differs
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from the earlier attempt in that the forcing used is finite branching rather than
infinite branching as in [8] and this allows the use of product forcing along lines
similar to those in [3]. The new ingredient needed is described in Section 5. The
arguments presented in Section 6 use ideas explained in greater detail in [6], however
familiarity with that paper is not required in order to follow the reasoning presented
here.

To be somewhat more precise, the forcing used consists of creatures (as defined in
[6]) which consist of approximations to a cover of the ground model reals by an open
set of small Lebesgue measure—each branching node consists of finite union of
intervals, the some of whose lengths is less than some prescribed value. This is easily
seen to guarantee that the ground model reals form a null set, but another
mechanism is required to ensure that they do not form a set of finite Hausdorff-s
measure for some fixed so1: This mechanism consists of a norm, denoted by n in
Section 4, which guarantees that all approximations to a name for an open set
witnessing that the ground model has small Hausdorff-s measure can be localized
sufficiently well. For example, it will certainly be required of a creature that its open
sets form a cover because, otherwise, the generic open set obtained from the forcing
will not generically cover the ground model. Hence an assignment to each member of
the creature of an open set of small Hausdorff-s capacity should allow a thinning out
of the creature so that the sets of small Hausdorff-s capacity are well approximated
while maintaining that the creature still covers the reals. This is essentially the
content of the definition of having norm at least 1. Higher norms are simply
combinatorial product constructions allowing this property to be redundantly
encoded in the creature so that it is preserved when decreasing the norm. This was
done in [8] using infinite branching trees. The defect of this approach is that it does
not allow a product construction such as in [3] to be used. The approach presented in
this paper uses a compactness argument which does allow finite branching trees to be
used. The compactness argument can be applied only to the norm denoted by nN in
Section 4.

The logical requirements guiding the organization of the paper may not have
resulted in optimal organization for the purposes of comprehension. Some readers
may prefer to start with Section 6 after having read Section 2, Definitions 3.2 and
4.2. The main point to keep in mind is that the norm n is the one which will be used in
establishing the key result Lemma 6.2. However, nN is needed for the compactness
argument and r is the form of the norm which allows the combinatorics of Section 3
to be applied.

2. Notation

If XDR and rAð0; 1Þ then the infimum of all
P

N

i¼0ðbi � aiÞr where fðai; biÞgNi¼0 is a

cover of X by intervals of length less than e is often denoted by Hr
eðXÞ: The r-

dimensional Hausdorff capacity of X is denoted by Hr
N
ðXÞ and is defined to be the

infimum of all
P

N

i¼0ðbi � aiÞr where fðai; biÞgNi¼0 is a cover of X by arbitrary intervals.
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The r-dimensional Hausdorff measure of a set X is denoted by HrðXÞ and, when
defined, is equal to its outer measure lime-0Hr

eðXÞ: Since it can be shown4 that

Hr
N
ðX Þ ¼ 0 if and only if HrðXÞ ¼ 0; in order to establish the main result it suffices

to show that it is consistent with set theory that every set of reals of size @1 is a
Lebesgue null set yet there is a set of reals of size @1 which is not a null set with
respect to r-dimensional Hausdorff capacity. Actually, it will be more convenient to
work with measures and capacities on the Cantor set and to replace intervals by
dyadic intervals. This amounts to dealing with net measures as described in [5]. Since
r-dimensional net measures have the same null sets as r-dimensional Hausdorff
measures this will not be of significance to the results of this paper.

Notation 2.1. For the rest of this paper let r be a fixed real number such that 0oro1:

Notation 2.2. Let C denote 2N with the usual product topology. Let Q be the tree

ff pn: fAC and nANg

and for aAQ let ½a� ¼ fxAC: aDxg and for ADQ let ½A� ¼
S

aAA½a�: Let

CN

e ¼ ADQ:
X
aAA

2�jajrpe

( )

and let Ce ¼ fAACN

e : jAjo@0g: For consistency of notation, let ½Q�o@0 be denoted

by CN: Let C1
e ¼ fADQ:

P
tAA2

�jtjpeg: For XDC define lr
N
ðX Þ ¼

inffe: ð(AACN

e Þ XD½A�g: The usual product measure on C will be denoted by l:

Notation 2.3. Some notation concerning trees will be established. By a sequence will
always be meant a function f : n-X where nAN and X is some set. Sequences will
occasionally be denoted as n-tuples ðx1; x2;y; xnÞ and, in particular, singleton
sequences will be denoted by ðxÞ: If t and s are sequences the concatenation of s

followed by t will be denoted by ðs; tÞ . This is consistent with considering X k to be a

set of sequences because if xAX k and yAY m then ðx; yÞAX k  Y m: If T is a tree then
T is a set of sequences closed under restriction to initial segments. If tAT then
ST ðtÞ ¼ fx: ðt; ðxÞÞATg: Furthermore, T/tS ¼ fsAT : tDs or sDtg: If mAN then
T ½m� ¼ ftAT : jtj ¼ mg and T ½om� ¼ ftAT : jtjomg and T ½pm� ¼ ftAT : jtjpmg:

Notation 2.4. For any XDCm and zACk the set fxACm�k: ðz;xÞAXg will be

denoted by Xðz; �Þ: Similarly, if F :Cm-X is a function and zACk then Fðz; �Þ will
represent the function Fðz; �Þ :Cm�k-X defined by Fðz; �ÞðxÞ ¼ Fðz; xÞ:
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3. Continuous mappings between Lebesgue and Hausdorff measures

The goal of this section is to exploit the difference between Lebesgue measure and
r-dimensional Hausdorff measure. It will be shown that for any continuous function
from the reals to the reals there are arbitrary small sets in the sense of Lebesgue
measure whose pre-image is as large as desired in the sense of r-dimensional
Hausdorff measure. For reasons which will reveal themselves in Section 4 it will also
be necessary to consider similar results for products of the reals.

Definition 3.1. If d40 is a real number and XDC define &dðXÞ by

&dðX Þ ¼ inf lr
N
ðX \ZÞ: ZDC and lðZÞod

� �
:

Lemma 3.1. If 14g40 and e40 then there is Z40 such that for any measurable EDC

and there is m0AN such that for any measurable DDE and for all mXm0:

&ZðDÞX&gðEÞ

provided that lðD-½s�ÞXlðE-½s�Þe for each sAQ½m�:

Proof. Let Z40 be sufficiently small that

g
2� g

4
4Z
eg

and then let mAN be so large that the inequality

2mð1�rÞergr

4r

g
2� g

� 4Z
eg

� 	
4&gðEÞ

is satisfied.
Suppose that lðZÞoZ and ADQ are such that DDZ,½A� and

X
aAA

2�jajro&gðEÞ

and note that, without loss of generality, it may be assumed that ZDD: Let A� ¼
Q½pm�-A and let E� ¼ E\½A��: Let B0 ¼ fbAQ½m�: ½b�-½A�� ¼ |g and note that
E�D½B0� and that if bAB0 then E-½b� ¼ E�-½b�: Now let

B1 ¼ bAB0: lðE-½b�Þ41

2

lðE�Þ
2m


 �
:
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Notice that lðE�ÞXg because
P

aAA�2�jajro&gðEÞ and EDE�,½A��: It follows from
a Fubini argument that

jB1jX
2mlðE�Þ
2� lðE�ÞX

2mg
2� g

: ð3:1Þ

Next, let

B2 ¼ bAB1: lðZ-½b�Þ4elðE-½b�Þ
2


 �

and in order to see that

jB2jp
2mþ2Z
eg

ð3:2Þ

assume the opposite. Then the following sequence of inequalities

Z4lðZÞX
X
bAB2

lðZ-½b�ÞXe
2

X
bAB2

lðE-½b�ÞXe
X
bAB2

lðE�Þ
2mþ2

XjB2j
eg

2mþ2
XZ

yields a contradiction. (The fourth inequality uses that B2DB1:)
Let B3 ¼ B1\B2 and observe that it follows from Inequalities 3.1 and 3.2 that

jB3jX
2mg
2� g

� 2mþ2Z
eg

¼ 2m g
2� g

� 4Z
eg

� 	
: ð3:3Þ

It follows that

X
aAA

2�jajr
X

X
bAB3

X
aAA\A�;a+b

2�jajr

 !
X

X
bAB3

ðlðD-½b�\ZÞÞr

X

X
bAB3

ðlðD-½b�Þ � lðZ-½b�ÞÞr:

Since B3-B2 ¼ | it follows, using the hypothesis on D; that the last term dominates

X
bAB3

ðlðE-½b�Þe� ðe=2ÞlðE-½b�ÞÞr
X

er

2r

X
bAB3

ðlðE-½b�ÞÞr
X

er

2r

X
bAB3

lðE�Þ
2mþ1

� 	r

X
er

4r
jB3j

lðE�Þ
2m

� 	r

X
2mð1�rÞergr

4r

g
2� g

� 4Z
eg

� 	

and hence
P

aAA2
�jajr4&gðEÞ which is impossible. &

If XDC then F : X-C will be said to have small fibres if and only if lðF�1fxgÞ ¼ 0
for each xAC: The proof of Theorem 3.1 and the lemmas preceding it will rely on
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decomposing an arbitrary continuous function into a piece that has small fibres and a
piece which has countable range.

Lemma 3.2. Let 0omo1 and suppose that fXsgsAQ is an indexed family of mutually

independent f0; 1g-valued random variables, each with mean m: Suppose that CDC is a

measurable set and that Fj : C-C is a measurable function with small fibres for

1pjpn: For any e40 for all but finitely many mAN the probability that

l
\n
j¼1

[
sAQ½m�;Xs¼1

F�1
j ½s�

0
@

1
A

0
@

1
A4

mnlðCÞ
2

is greater than 1� e:

Proof. This is Lemma 3.1 in [7] or Lemma 6.2 in [8] except that it is stated here for C
rather than ½0; 1�: &

Lemma 3.3. Suppose that

* EDC is a measurable set;
* F is a finite family of measurable functions with small fibres from E to C;
* g40; 14m40:

Then there is Z40 such that for any e40 and for any mutually independent, f0; 1g-

valued random variables fXsgsAQ with mean m and for all but finitely many mAN the

probability that the inequality

&Z

\
FAF

F�1
[

sAQ½m�;Xs¼1

½s�

0
@

1
A

0
@

1
AX&gðEÞ ð3:4Þ

holds is greater than 1� e:

Proof. Let jF j ¼ n: Use Lemma 3.1 to choose Z40 and an integer k such that if
DDE is a measurable set such that for each sAQ½k�

lðD-½s�ÞXmn

2
lðE-½s�Þ

then &ZðDÞX&gðEÞ: Let e40: Now use Lemma 3.2 to conclude that for each

tAQ½k� for all but finitely many mAN and any mutually independent, f0; 1g-valued
random variables fXsgsAQ½m� with mean m; the probability that

l ½t�-
\

FAF
F�1

[
sAQ½m�;Xs¼1

½s�

0
@

1
A

0
@

1
AX

mn

2
lðE-½t�Þ
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is greater than 1� e2�k: Hence the probability that this holds for all tAQ½k� is
greater than 1� e and so the hypothesis on k guarantees that Inequality 3.4 holds
with at least the same probability. &

Lemma 3.4. If Z40 and MDCdþ1 is measurable then so is the mapping from Cd to R

defined by x/&ZðMðx; �ÞÞ:

Proof. Let BDM be an Fs such that lðM\BÞ ¼ 0: Let Z ¼
fzACd : lðMðz; �Þ\Bðz; �ÞÞ40g noting that, of course, lðZÞ ¼ 0: For xACd

\Z observe
that &ZðMðx; �ÞÞ ¼ &ZðBðx; �ÞÞ: Hence it suffices to show that the mapping

x/&ZðBðx; �ÞÞ is measurable. In other words, it must be shown that fx :
&ZðBðx; �ÞÞoxg is measurable for any xAR: But &ZðBðx; �ÞÞox if and only if there

are sequences fajgNj¼0DQ and fbjgNj¼0DQ such that

XN
j¼0

2�jaj joZ and
XN
j¼0

2�jbj jrox;

Bðx; �ÞD
[N
j¼0

½aj,bj �

and, since B is an Fs; this shows that fx: &ZðBðx; �ÞÞoxg is S1
1 and, hence,

measurable. &

Corollary 3.1. Suppose that C is a measurable subset of Cdþ1 and F is a finite family

of measurable functions from C to C such that Fðx; �Þ has small fibres for each xACd

and FAF : If m40 and g40 then there is Z40 such that for all e40 there is some

AAC1
m such that the Lebesgue measure of

xACd : &Z

\
FAF

Fðx; �Þ�1½A�
 !

X&gðCðx; �ÞÞ
( )

is at least 1� e:

Proof. This is a standard application of Fubini’s Theorem using Lemma 3.3 and the
Law of Large Numbers once it has been observed that the set in question is
measurable. But this follows directly by applying Lemma 3.4 to both sides of the
inequality and then taking the difference of measurable functions. &

Lemma 3.5. Let EDC be a measurable set and F a finite family of mea-

surable functions from E to C: Then for any g40 and any m40 there is Z40
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and AAC1
m such that

&Z

\
FAF

F�1½A�
 !

X&gðEÞ:

Proof. Let jF j ¼ n: For each FAF let YF ¼
S
fF�1fyg: lðF�1fygÞ40g and let %F be

defined by

%FðzÞ ¼
FðzÞ if zAE\YF ;

z if zAYF :




Since each %F is measurable and has small fibres it is possible to use Lemma 3.3 to
conclude that there is Z40 and an integer m and mutually independent, f0; 1g-
valued random variables fXsgsAQ½m� with mean m=3 such that the probability that

&2Z

\
FAF

%F�1
[

sAQ½m�;Xs¼1

½s�

0
@

1
A

0
@

1
AX&gðEÞ

is greater than 1
2
:

Since the mean of each Xs is m=3 it is possible to choose m so large that the
probability that

l
[

sAQ½m�;Xs¼1

½s�

0
@

1
Ao

m
2

is also greater than 1
2
: Hence there is A0AC1

m=2 such that

&2Z

\
FAF

%F�1½A0�
 !

X&gðEÞ:

Now for each FAF choose a finite set AFDC such that lðYF \F
�1AF ÞoZ=n: Then let

AAC1
m be such that ½A0�,

S
FAF AFD½A�: It follows that

&Z

\
FAF

F�1½A�
 !

X&Z

\
FAF

%F�1½A�\
[

FAF
ðYF \F

�1AF Þ
 !

X&gðEÞ

because F�1½A�+ %F�1½A�\ðYF \F
�1AF Þ for each FAF : &

For the next definition recall Definition 3.1.

Definition 3.2. If Y :N-Rþ; G :N-Rþ and XDCd then the relation &Y;GðXÞ will
be defined to hold by induction on d: If d ¼ 1 then &Y;GðXÞ if and only if
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&Yð0ÞðX ÞXGð0Þ whereas, if d41; then &Y;GðXÞ holds if and only if

&Yðd�1ÞðfxAC :&Y;GðXðx; �ÞÞgÞXGðd � 1Þ: Define YþðiÞ ¼ Yði þ 1Þ and GþðiÞ ¼
Gði þ 1Þ:

The next lemma establishes that the top–down and bottom–up definitions of the
relation &Y;G are the same.

Lemma 3.6. Let dX2: For any Y :N-Rþ; G :N-Rþ and XDCdþ1 the relation

&Y;GðX Þ holds if and only if &Yþ;GþðfzACd : &Yð0ÞðXðz; �ÞÞXGð0ÞgÞ:

Proof. Proceed by induction on d and observe that the case d ¼ 2 is immediate from

Definition 3.2. Assuming the lemma established for d let XDCdþ2: Then the
following sequence of equivalences establishes the lemma:

&Y;GðX Þ;

&Yðdþ1ÞðfzAC1: &Y;GðXðz; �ÞÞgÞXGðd þ 1Þ;

&Yðdþ1ÞðfzAC1: &Yþ;GþðfwACd : &Yð0ÞðXðz; �Þðw; �ÞÞXGð0ÞgÞgÞXGðd þ 1Þ;

&YþðdÞðfzAC1: &Yþ;GþðfwACd : &Yð0ÞðXððz;wÞ; �ÞÞXGð0ÞgÞgÞXGþðdÞ;

&Yþ;Gþðfðz;wÞAC1  Cd : &Yð0ÞðXððz;wÞ; �ÞÞXGð0ÞgÞ;

&Yþ;GþðfzACdþ1: &Yð0ÞðXðz; �ÞÞXGð0ÞgÞ: &

Lemma 3.7. If &Y;GðXÞ holds and XDCd and ZoYðiÞ for each iod and ADCd is

such that lðAÞoZd then &Y�Z;GðX \AÞ holds where ðY� ZÞðiÞ ¼ YðiÞ � Z:

Proof. Proceed by induction on d using Fubini’s Theorem. &

Theorem 3.1. Let G :N-Rþ and Y :N-Rþ be functions such that YðiÞ þ GðiÞo1

for each i: Suppose that C is a closed subset of Cd such that &Y;GðCÞ holds and that F
is a finite family of continuous functions from C to C: If m40 then there is AAC1

m and

Z :N-Rþ such that &Z;Gð
T

FAF F�1½A�Þ:

Proof. Proceed by induction on d; noting that if d ¼ 1 then this follows from
Lemma 3.5 by setting g ¼ Yð0Þ in that lemma. So assume that the lemma has been
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established for d and that C is a closed subset of Cdþ1; &Y;GðCÞ holds and F is a

finite family of continuous functions from C to C and that m40: For each FAF let

YF ¼ fðx; yÞACd  C: lðfzAC: Fðx; yÞ ¼ Fðx; zÞgÞ40g

and note that YF is closed since F is continuous. Now, for FAF define %F : C-C by

%Fðx; yÞ ¼
Fðx; yÞ if ðx; yÞeYF ;

y otherwise:




Observe that %Fðx; �Þ has small fibres for each xACd : By Corollary 3.1 there is d40

such that for all e40 there is some AAC1
m=2 such that the Lebesgue measure of

BðAÞ ¼ xACd : &d

\
FAF

%Fðx; �Þ�1½A�
 !

X&Yð0ÞðCðx; �ÞÞ
( )

is at least 1� e:
Since each of the relations YF is Borel, it is possible to appeal to Blackwell’s

Selection Theorem5 to find a finite family of Borel functions G from Cd to C such
that

X
FAF

Z
xACd

lðYF ðx; �Þ\Fðx; �Þ�1fGðxÞgGAGÞ dxo
ddþ1

2dþ1
:

It is then possible to find a closed set DDCd such that

(1) ð1� lðDÞÞ1=doYði þ 1Þ for each iod;
(2) lðDÞ41� dd=2d ;
(3) jF j � lðYF ðx; �Þ\Fðx; �Þ�1fGðxÞgGAGÞod=2 for each FAF and xAD;

(4) each GAG is continuous on D:

Letting C� ¼ fzACd : &Yð0ÞðCðz; �ÞÞXGð0Þg it follows that

&Yþ�ð1�lðDÞÞ1=d ;GþðD-C�Þ

holds because Lemma 3.6 implies that&Yþ;GþðC�Þ does. Condition 1 guarantees that

YþðiÞ4ð1� lðDÞÞ1=d for each i and C� is easily seen to be closed. It is therefore

possible to apply the induction hypothesis to Yþ � ð1� lðDÞÞ1=d ; Gþ; G and D-C�

to get A0AC1
m=2 and Z : N-Rþ such that

&Z;Gþ D-C�-
\

GAG
G�1½A0�

 !
:
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Let i be such that 0oioZðiÞ for iod: Now choose A1AC1
m=2 such that lðBðA1ÞÞ4

1� id : Then

&Z�i;Gþ D-C�-Bða1Þ-
\

GAG
G�1½A0�

 !

holds by Lemma 3.7. Note that by Condition 3

&d=2

\
FAF

%Fðx; �Þ�1½A1�\
[

FAF
ðYF ðx; �Þ\Fðx; �Þ�1fGðxÞgGAGÞ

 !
X&Yð0ÞðCðz; �ÞÞ

for every xAD-Bða1Þ and, moreover, &Yð0ÞðCðz; �ÞÞXGð0Þ for xAC�: Hence

&d=2

\
FAF

%Fðx; �Þ�1½A1�\
[

FAF
ðYF ðx; �Þ\Fðx; �Þ�1fGðxÞgGAGÞ

 !
XGð0Þ

for every xAD-C�-Bða1Þ: Let %Z be defined by

%ZðiÞ ¼
Zði � 1Þ � i if dXi40;

Zði � 1Þ if doi;

d=2 if i ¼ 0

8><
>:

and define Z to be the set of all ðx;wÞACdþ1 such that the following three conditions
are satisfied:

xAD-C�-Bða1Þ-
\

GAG
G�1½A0� ð3:5Þ

ð8FAFÞ %Fðx;wÞA½A1� ð3:6Þ

ð8FAFÞ Fðx;wÞeYF ðx; �Þ or ð(GAGÞ Fðx;wÞ ¼ GðxÞ ð3:7Þ

It follows from Lemma 3.6 that &%Z;GðZÞ: Hence it suffices to observe that if

ðx;wÞAZ then Fðx;wÞA½A0,A1�: To see this note that if Fðx;wÞ ¼ %Fðx;wÞ this is
immediate from 3.6. Otherwise Fðx;wÞAYF and hence it follows from 3.7 that there
is some GAG such that Fðx;wÞ ¼ GðxÞ: From 3.5 it can be concluded that
GðxÞA½A0�: &

Notation 3.1. For the rest of the paper, fix a pair of functions G :N-Rþ and

Y :N-Rþ such that

YðnÞ4Yðn þ 1Þ and lim
n-N

YðnÞ ¼ 0; ð3:8Þ
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ð8jÞ Yð jÞ þ Gð jÞo1; ð3:9Þ

ð8jÞ Yð jÞ þ Gð j þ 1Þo1; ð3:10Þ

the range of G is a dense subset of ð0; 1Þ: ð3:11Þ

Definition 3.3. For any dAN and for XDCd define &ðXÞ ¼ &Y;GðXÞ and define

&�ðXÞ to hold if and only if there is some Z :N-Rþ such that &Z;GðXÞ holds.

4. A preliminary norm

This section will introduce three norms6 on subsets of CN which will be denoted
by r; nN and n: The norms of [6] typically enjoy some form of sub-additivity but this
will not be the case for any of these three, at least not explicitly. Nevertheless,
Lemma 4.2 can be considered a substitute for this. The only norm used in the
definition of the partial order in Section 6 will be n: The role of the norm r will be to
establish a connection between nN and the results of Section 3. The norm nN is an
intermediary between r and n and, furthermore, it has the advantage of allowing the
compactness argument of Section 5 to work.

Notation 4.1. For any Polish space X let KðXÞ denote the space of compact subsets
of X with the Hausdorff metric and let CðX Þ denote the space of continuous C-
valued functions with the uniform metric.

Definition 4.1. Define r to be a function from PðCNÞ to N,fNg by first defining
r�ðXÞ to be

fdX1: ð8CAKðCdÞÞð8FACðCÞÞð(xAXÞ&ðCÞ ) &�ðF�1xÞg

and let rðXÞ ¼ supðr�ðXÞÞ: If r�ðXÞ ¼ | but Xa| then define rðXÞ ¼ 0:

Observe that each set r�ðXÞ is an initial segment of the integers. In order to see this

note that if d þ 1Ar�ðXÞ and CAKðCdÞ and FACðCÞ then, by considering F 0 :C
C-C defined by F 0ðx; cÞ ¼ FðcÞ; it is easily shown that dAr�ðXÞ: The following is a
direct Corollary of Theorem 3.1.

Corollary 4.1. If m40 then rðC1
mÞ ¼ N:

ARTICLE IN PRESS
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Lemma 4.1. If dX1 and functions y and g are given then fCDKðCdÞ: &y;gðCÞg is a

closed set.

Proof. Proceed by induction on d: The case d ¼ 1 is easy since an open set
witnessing the failure of &y;gðCÞ witnesses this failure for any of its subsets and,

thus, for a neighbourhood of compact sets. Assuming the result for d let CDCdþ1 be
compact and suppose that &y;gðCÞ fails. Using Definition 3.2, find C1AC%g for some

%gogðdÞ and B1AC1
%y for some %yoyðdÞ such that fxAC: &y;gðCðx; �ÞÞgD½B1,C1�:

For xAC\½B1,C1� it is possible to use the induction hypothesis to find a finite, and
perhaps empty, Cx such that Cðx; �ÞD½Cx� and &y;gðBÞ fails for any BD½Cx�: The
compactness of C yields an integer kx such that Cðy; �ÞD½Cx� for each yAC such that
ypkx ¼ xpkx: Choose a finite XDC such that f½xpkx�gxAX covers C\½B1,C1�: It is
then easy to see that for any

C0Dð½B1,C1�  CÞ,
[

xAX

½xpkx�  ½Cx�
 !

;

&y;gðC0Þ fails. This provides a neighbourhood of C disjoint from fC0DKðCdÞ:
&y;gðC0Þg as required. &

Corollary 4.2. For any dX1 the set fCDKðCdÞ: &ðCÞg is closed and fCDKðCdÞ:
&�ðCÞg is an Fs:

Proof. For the first assertion simply apply Lemma 4.1 with y ¼ Y and g ¼ G: For
the second use Definition 3.1 to see that &�ðCÞ holds if and only if there is some

Z :N-Rþ such that &Z;GðCÞ holds. But notice that Z can be assumed to be a

constant function with rational value. It follows immediately from Lemma 4.1 that

fCDKðCdÞ: &�ðCÞg is an Fs: &

Notation 4.2. The notation /z;FS will be introduced for any zAC and any function
F : W-PðQÞ to denote fwAW : ze½FðwÞ�g:

Corollary 4.3. Suppose that XDCN and B :X-PðCNÞ: Then fzAC: rð/z;BSÞojg
is analytic for any integer j:

Proof. From Corollary 4.2 it follows that the assertion

ð(xAXÞ &ðCÞ ) &�ðF�1xÞ

is Borel for XAPðCNÞ: Hence the corollary follows from Definition 4.1. &
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Lemma 4.2. Suppose that XDCN and rðXÞ ¼ jX2: Then

&Yð j�2ÞðfzAC: rð/z;FSÞoj � 1gÞoGð j � 1Þ

for each function F from X to CN

Gð j�1Þ=2:

Proof. Let S ¼ fzAC: rð/z;FSÞoj � 1g and assume that the lemma fails. In other
words, &Yð j�2ÞðSÞXGð j � 1Þ: Let

EDCKðCj�1Þ  CðCj�1Þ

be the set of all triples ðz;C; f Þ such that

&ðCÞ; ð4:1Þ

ð8xA/z;FSÞ :&�ðC-f �1xÞ: ð4:2Þ

It follows from Definition 4.1 that S is contained in the domain of E: From
Lemma 4.1 and Corollary 4.2 it follows that E is a Borel set. From Corollary 4.3 it
follows that S is measurable and so it is possible to use the von Neumann Selection
Theorem and Lusin’s Theorem to find a closed set S�DS and a continuous function
TDE with domain S� such that lðS\S�ÞoYð j � 2Þ �Yð j � 1Þ: Let TðsÞ ¼ ðCs; fsÞ
and observe that the continuity of T guarantees that C� ¼

S
sAS�fsg  Cs is a closed

set. Moreover, &Yð j�1ÞðS�ÞX&Yð j�2ÞðSÞXGð j � 1Þ: A calculation using Definition

3.2 reveals that &ðC�Þ holds. Let g be defined on C� by gðc1; c2;y; cjÞ ¼
fc1ðc2; c3;y; cjÞ recalling that jX2:

Since rðXÞXj it is possible to find xAX such that &�ðg�1xÞ: Let

W ¼ fzAS�: &�ðg�1xðz; �ÞÞg ¼ fzAS�: &�ðgðz; �Þ�1
xÞg

and note that it follows that lr
N
ðWÞXGð j � 1Þ: Since FðxÞACGð j�1Þ=2 it is possible to

choose wAW \½FðxÞ�: Then xA/w;FS and so, by Condition 4.2 in the definition of

E; it follows that &�ðgðw; �Þ�1
xÞ fails since gðw; �Þ ¼ fw: This contradicts that

wAW : &

Definition 4.2. The norms n and nN will be defined for the subsets of CN by first
using induction to define an associated sequence of sets:

N 0 ¼ NN

0 ¼ fXDCN: Xa|g;

N 1 ¼ NN

1 ¼ fXDCN: ½,X� ¼ Cg;

N jþ1 ¼ fXDCN: ð8F :X-CGð jÞ=2Þ&Yð j�1ÞðfzAC :/z;FSeN jÞgÞoGð jÞg; ð4:3Þ

NN

jþ1 ¼ fXDCN: ð8F :X-CN

Gð jÞ=2Þ&Yð j�1ÞðfzAC :/z;FSeNN

j ÞgÞoGð jÞg: ð4:4Þ
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Then define nðXÞ to be the supremum of all j such that XAN j and nNðXÞ to be the

supremum of all j such that XANN

j :

It must be noted that N j+N jþ1 for each integer j and, indeed, if X belongs to

N jþ1 then it belongs to N j in spades. To see this first observe that an easy inductive

argument, using nothing more than de Morgan’s Rule, shows that each family N j is

closed under supersets. Since Gð jÞ þYð j � 1Þo1 by Inequality 3.10, it follows that

if XAN jþ1 then taking any F :X-CGð jÞ=2 there is at least one zAC such that

/z;FSAN j : Since /z;FSDX it is immediate that XAN j : Similar reasoning shows

that NN

j +NN

jþ1 as well. Hence the supremum in Definition 4.2 is taken over an

initial segment of the integers. This will be used implicitly in what follows.

Corollary 4.4. If XDCN then rðXÞpnNðXÞ:

Proof. Proceed by induction on j ¼ rðXÞ: The case j ¼ 0 is trivial but the case j ¼ 1
is less so. To see that rðXÞ ¼ 1 implies that X covers C let zAC: Note that &ðCÞ
holds by Condition 3.10 of Notation 3.1. Letting F be the function on C with
constant value z it follows from the definition of rðXÞ ¼ 1 that there is some xAX
such that &�ðF�1xÞ holds. In particular, F�1xa| and so if wAF�1x then z ¼
FðwÞAx:

Therefore, it can be assumed that 2pj þ 1 ¼ rðXÞ and that the lemma holds for j:
In order to show that nNðXÞXj þ 1 let F :X-CN

Gð jÞ=2: By Lemma 4.2 it must be that

&Yð j�1ÞðfzAC: rð/z;FSÞojgÞoGð jÞ:

From the induction hypothesis it follows that if nNð/z;FSÞoj then rð/z;FSÞoj:
Hence

&Yð j�1ÞðfzAC: nNð/z;FSÞojgÞoGð jÞ

and this establishes that nNðXÞXj þ 1: &

5. Finding finite sets with large norm

It will be shown that for any j there is a finite X such that nNðXÞXj: This will
establish that the CðkÞ required in the definition of the partial order P in Section 6
actually do exist. Each of the next lemmas is a step towards this goal.

Lemma 5.1. If XDCN then nNðXÞpnðXÞ:
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Proof. This follows from the definitions by an argument using induction on j to
show that if nNðXÞXj þ 1 then nðXÞXj þ 1: &

Lemma 5.2. If fAngNn¼0 is an increasing sequence of finite subsets of CN then

nN
[N
n¼0

An

 !
¼ lim

n-N

nNðAnÞ:

Proof. Proceed by induction on j to show that if nNðAnÞoj for each n then

nNð
S

N

n¼0 AnÞoj: For j ¼ 0 this trivial and if j ¼ 1 this is simply a restatement of

the compactness of C: Therefore assume that jX1; that the lemma is true for j;

that nNðAnÞpj for each n yet nNð
S

N

n¼0 AnÞ4j: Let Fn :An-CN

Gð jÞ=2 witness

that nNðAnÞ5/ j þ 1: In other words, using Equality 4.4 of Definition 4.2,
&Yð j�1ÞðSnÞXGð jÞ where Sn ¼ fzAC: nNð/z;FnSÞojg:

Claim 1. If fdngNn¼0 is a sequence of positive reals and fAngNn¼0 is a sequence of

elements of CN

1 then there are two increasing sequences of integers fkngNn¼0 and

fmngNn¼0 such that, letting

Dn ¼ Amn
-Q½okn�

the following hold:

if iXn then Dn ¼ Di-Q½okn�; ð5:1Þ

l
[N
i¼n

½Ami
\Dn�

 !
odn: ð5:2Þ

Moreover, the increasing sequence fkngNn¼0 can be chosen from any given infinite set K :

Proof. Let K be given and, using the fact that 0oro1; let fkngNn¼0DK be such that

for each n

XN
i¼n

2�kið1�rÞpdn=2

and then choose the sequence fmngNn¼0 such that Conclusion 5.1 holds. Then

Conclusion 5.2 follows from the following inequalities:

l
[N
i¼n

½Ami
\Dn�

 !
p l

[N
i¼n

½Ami
\Di�,½Diþ1\Di�

 !

p
XN
i¼n

lð½Ami
\Di�Þ þ lð½Diþ1\Di�Þ
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p
XN
i¼n

X
tAAmi

\Di

2�jtj þ
X

tADiþ1\Di

2�jtj

0
@

1
A

p
XN
i¼n

X
tAAmi

\Di

2�jtjr2�jtjð1�rÞ þ
X

tADiþ1\Di

2�jtjr2�jtjð1�rÞ

0
@

1
A

p
XN
i¼n

2�kið1�rÞ
X

tAAmi
\Di

2�jtjr þ
X

tADiþ1\Di

2�jtjr

0
@

1
A

0
@

1
A

p
XN
i¼n

2�kið1�rÞð1þ 1Þpdn: &

Before continuing, let faigNi¼0 enumerate
S

N

n¼0 An and, without loss of generality,

assume that An ¼ facgn
c¼0: Using the claim and its final clause and a diagonalization

argument, find two increasing sequences of integers fkngNn¼0 and fmngNn¼0 such that

for each i and each nXi; letting Fn;i ¼ Fmn
ðaiÞ-Q½okn�; Conclusions 5.1 and 5.2 of

the claim hold for a summable sequence of d: To be more precise, Fnþ1;i is an end

extension of Fn;i and

l
[N
j¼n

½Fmj
ðaiÞ\Fn;i�

 !
o2�i�n

for any nXi: Define FðaiÞ ¼
S

N

n¼i Fn;i and note that FðaiÞACN

Gð jÞ=2 since Fn;iACGð jÞ=2
for each n and the Fn;i are increasing with respect to n:

Now let S ¼ fzAC: nNð/z;FSÞojg: Because

nN
[N
n¼0

An

 !
Xj þ 1;

it follows that &Yð j�1ÞðSÞoGð jÞ and, hence, it is possible to choose Y such that

lr
N
ðS\Y ÞoGð jÞ and lðYÞoYð j � 1Þ: Choose M so large that letting

W ¼
[N
i¼0

[N
n¼maxðM;iÞ

½Fmn
ðaiÞ\FmaxðM;iÞ;i�

0
@

1
A;

it follows that lðWÞoYð j � 1Þ � lðYÞ:
Now define F �ðaiÞ by

F �ðaiÞ ¼
FM;i if ipM;

Fi;i if i4M
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and note that F�ðaiÞDFðaiÞ: Now let S�
m ¼ fzAC : nNð/z;F �pAmSÞojg and note

that S�
m+S�

mþ1 and they are all compact. Indeed,

S�
m ¼

[
BDAm;nNðBÞoj

\
aAAm\B

½F�ðaÞ�
 !

and each ½F�ðaÞ� is compact.

Claim 2. If zeW and iXM then /z;F �pAmi
SD/z;Fmi

S:

Proof. Let ace/z;Fmi
S and assume that cpmi since otherwise it is immediate that

ace/z;F �pAmi
S: There are two cases to consider. First assume that cpM: Then

zA½Fmi
ðacÞ� but since zeW and iXM it follows that ze½Fmi

ðacÞ\FM;c�: Hence

zA½FM;c� ¼ ½F�ðacÞ�: In other words, ace/z;F�pAmi
S: If c4M a similar argument

works. &

It follows from the claim that if zeW and iXM then nNð/z;F �pAmi
SÞp

nNð/z;Fmi
SÞ: Hence, if iXM and zASmi

\W then nNð/z;F �pAmi
SÞoj: In other

words, Smi
\WDS�

mi
\W : Therefore, &Yð j�1Þ�lðW ÞðS�

mi
\WÞX&Yð j�1Þ�lðW ÞðSmi

\WÞX
Gð jÞ: Since each of the S�

mi
\W are compact it follows that

&Yð j�1Þ�lðW Þ
\N

i¼M

S�
mi
\W

 !
XGð jÞ:

Let S� ¼
T

N

i¼M S�
i : Since lðYÞoYð j � 1Þ � lðWÞ it follows that

lr
N
ðS�

\ðW,YÞÞXGð jÞ:
Since lr

N
ðS\Y ÞoGð jÞ it is possible to select zAS�

\ðS,W,YÞ: Then

nNð/z;F�pAmi
SÞoj for each iXM and so the induction hypothesis guarantees that

nN
[N

i¼M

/z;F�pAmi
S

 !
oj:

But

[N
i¼M

/z;F�pAmi
S ¼ /z;

[N
i¼M

F�pAmi
S ¼ /z;F �S

and so nNð/z;F �SÞoj: Since F�ðaÞDFðaÞ for each a it is immediate that
/z;F�S+/z;FS and so nNð/z;FSÞoj: This contradicts that zeS: &

Corollary 5.1. For any jAN and m40 there is a finite set XDC1
m such that nðXÞXj:
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Proof. Combine Corollaries 4.1 and 4.4 to conclude that nNðC1
mÞ ¼ N: Then

use Lemma 5.2 to find a finite XDC1
m such that nNðXÞXj: Finally apply

Lemma 5.1. &

6. The forcing partial order

Using Corollary 5.1 let CðnÞ be a finite subset of C1
2�n such that nðCðnÞÞXn for each

nAN: Recalling the notation concerning trees in Section 2, let P consist of all trees T

such that:

ð8tATÞð8iojtjÞ tðiÞACðiÞ; ð6:1Þ

ð8kAoÞð8tATÞð(sATÞtDs and nðST ðsÞÞ4k ð6:2Þ

and let this be ordered under inclusion. The methods of [6] can be used to establish
that P is an oo-bounding proper partial order.

Lemma 6.1. Let VDW be models of set theory and suppose that GDP-V is generic

over W : Then W ½G�FlðW-½0; 1�Þ ¼ 0:

Proof. If GDP-V is generic over W then let BGA
Q

N

n¼0 CðnÞ be the generic branch
determined by G: Note that lð½BGð jÞ�Þo2�j for each j and so lð

S
N

j¼0 ½BGð jÞ�ÞoN:

Also, for every TAP there is some tAT such that VFnðSTðtÞÞX1: Since nðST ðtÞÞX1
is equivalent to

S
STðtÞ ¼ C; and this is absolute, it follows from genericity that

C-WD
S

N

j¼m½BGð jÞ� for every m: &

Definition 6.1. Let Pk be the countable support product of k copies of P:

Corollary 6.1. If kX@1 and GDPk is a filter generic over V then in V ½G� every set of

reals of size less than k has Lebesgue measure 0.

In light of Corollary 6.1 the goal now is to establish that if Pk is the countable
support product of k copies of P and GDPk is a filter generic over V then
lr
N
ðC-VÞ ¼ 1 in V ½G�:

Lemma 6.2. Suppose that pCPk ‘‘CACN

d ’’ and do1: Then there are ADC and BDC

such that lr
N
ðAÞ þ lðBÞo1 such that pgPk ‘‘žA½C�’’ for each zAC\ðA,BÞ:

Proof. Let 14d14d and choose a monotonically increasing function d2 :N-R such

that d1 þ limn-Nd2ðnÞo1: For later use, define kðiÞ ¼
Qi

j¼0 jCð jÞj: The proof is
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based on a standard fusion argument. Induction will be used to construct pi; Si; ei; ai;
bi and Li satisfying the following conditions:

(1) piAPk and p0pp;
(2) piþ1ppi;
(3) Si : k-N is 0 at all but finitely many ordinals—these will be denoted by DðSiÞ;
(4) SiðsÞ ¼ Siþ1ðsÞ for all but one sAk;
(5) Siþ1ðsÞpSiðsÞ þ 1 for all sAk;
(6) LiAN and LioLiþ1;
(7) piþ1ðsÞ½Li� ¼ piðsÞ½Li� for each sADðSiÞ;
(8) for each tA

Q
sADðSiÞ piðsÞ½Li� there is some finite Ci;t such that

pi/tSCPk ‘‘Či;tDC and C\Či;tACN

ei
; ’’

where pi/tS is defined by pi/tSðaÞ ¼ piðaÞ/tðaÞS;
(9) aiACai

for some aiod1 and aiDaiþ1;
(10) lð½bi�Þod2ðiÞ and biDbiþ1;
(11) for each zAC\½ai,bi� there are finite trees Ts;z;i for each sADðSiÞ such that

(a) Ts;z;iDpiðsÞ½pLi�;
(b) there is a maximal antichain of sATs;z;i½oLi� such that nðSTs;z;iðsÞÞXSiðsÞ;
(c) ze½Ci;t� for any tA

Q
sADðSiÞ Ts;z;i½Li�;

(d) Ts;z;i½Li� ¼ Ts;z;iþ1½Li�;
(12) 2eikðLiÞ2iod1 � ai;
(13) limn-NSnðsÞ ¼ N for each element s of the domain of some pi:

Assuming this can be done, let A ¼
S

N

i¼0 ½ai� and B ¼
S

N

i¼0 ½bi�: Then if zAC\½A,B�
let

qzðsÞ ¼
[N
j¼0

Ts;z;j

and note that it follows from Condition 11b that qzAPk and qzpp: From Conditions
8 and 11c it follows that qzCPk ‘‘že½C�’’.

To see that the induction can be carried out, let i be given and suppose that pi; Si;
ei; ai; bi and Li satisfying the induction hypothesis have been chosen. Choose %s
according to some scheme which will satisfy Condition 13 and define

Siþ1ðsÞ ¼
SiðsÞ if sa %s;

SiðsÞ þ 1 if s ¼ %s:




Let %p0ppi be such that %p0 ¼ pi if Sið %sÞ40 and, otherwise, %p0ðsÞ ¼ piðsÞ for sa %s and
j %p0ð %sÞ½Li�j ¼ 1: Let mXSiþ1ð %sÞ be such that

GðmÞ
2

4eikðLiÞi; ð6:3Þ
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GðmÞkðLiÞod1 � ai; ð6:4Þ

Yðm � 1Þod2ði þ 1Þ � d2ðiÞ
kðLiÞ

ð6:5Þ

and for each tA %p0ð %sÞ½Li� there is some t�A %p0ð %sÞ such that tDt� and such that

nðS %p0ð %sÞðt�ÞÞXm þ 1: ð6:6Þ

Let Liþ14Li be so large that jt�joLiþ1 for each tA %p0ð %sÞ½Li�: Then let %p1p %p0 be such
that

� ft� : tA %p0ð %sÞ½Li�g is a maximal antichain in %p1ð %sÞ;
� if tA %p1ð %sÞ and LipjtjpLiþ1 then

3 jS %p1ð %sÞðt0Þj ¼ 1 if t0at� for any tA %p0ð %sÞ½Li�;
3 S %p1ð %sÞðt�Þ ¼ S %p0ð %sÞðt�Þ if tA %p0ð %sÞ½Li�;

� %p1ðsÞ ¼ %p0ðsÞ for sa %s:

Let %p2p %p1 be such that %p2ðsÞ ¼ %p1ðsÞ for seDðSiÞ\f %sg and if sADðSiÞ\f %sg choose

%p2ðsÞ such that %p2ðsÞpLi ¼ %p1ðsÞpLi and such that if tA %p2ðsÞ and LipjtjpLiþ1 then

jS %p2ðsÞðtÞj ¼ 1: Let eiþ140 be so small that 2eiþ1kðLiþ1Þ2ðiþ1Þod1 � ai � eikðLiÞ:
Choose piþ1p %p2 such that piþ1ðsÞ½Liþ1� ¼ %p2ðsÞ½Liþ1� for each sADðSiþ1Þ—this

implies that Condition 7 holds—and for each tA
Q

sADðSiþ1Þ piþ1ðsÞ½Liþ1� there is

some finite Ciþ1;t such that

piþ1/tSCPk ‘‘Čiþ1;tDC and C\Čiþ1;tACN

eiþ1
’’:

For each tApið %sÞ½Li� and xASpið %sÞðt�Þ and tA
Q

sADðSiÞ\f %sg piðsÞ½Li� let rðt; x; tÞ be the
unique element of

Q
sADðSiþ1Þ piþ1ðsÞ½Liþ1� such that rðt; x; tÞðsÞ+tðsÞ for each

sADðSiÞ\f %sg and rðt; x; tÞð %sÞ+t� and rðt; x; tÞð %sÞðjt�jÞ ¼ x: Let r�ðt; tÞ be the
unique element of

Q
sADðSiÞ piðsÞ½Li� such that r�ðt; tÞ ¼ t if Sið %sÞ ¼ 0 and, if

Sið %sÞ40 then r�ðt; tÞðsÞ+tðsÞ for each sADðSiÞ\f %sg and r�ðt; tÞð %sÞ ¼ t:
Note that Ciþ1;rðt;x;tÞ\Ci;r�ðt;tÞACei

by Condition 8. Define Ft : Spiþ1ð %sÞðt�Þ-CeikðLiÞi

by

FtðxÞ ¼
[

tA
Q

sADðSi Þ\f %sg
piðsÞ½Li �

Ciþ1;rðt;x;tÞ\Ci;r�ðt;tÞ

and observe that FtðxÞACGðmÞ=2 by 6.3 since

Y
sADðSiÞ

piðsÞ½Li�

������
������pkðLiÞjDðSiÞjpkðLiÞi:
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By 6.6 it follows that

&Yðm�1ÞðfzAC: nð/z;FtSÞomgÞoGðmÞ

for each tApið %sÞ½Li�: Let bt
iþ1 be such that lðbt

iþ1ÞoYðm � 1Þ and such that there is

at
iþ1ACGðmÞ such that

½at
iþ1�+fzAC: nð/z;FtSÞomg\½bt

iþ1�: ð6:7Þ

It follows from 6.5 and Induction Hypothesis 10 that if biþ1 is defined to be
bi,

S
tApið %sÞ½Li � bt

iþ1 then Condition 10 is satisfied by biþ1: Similarly, if aiþ1 is defined

to be ai,
S

tApið %sÞ½Li � at
iþ1 then aiþ1ACaiþ1

where aiþ1 ¼ ai þ GðmÞkðLiÞod1 by 6.4 and
Induction Hypothesis 9.

In order to verify that Condition 11 holds let zAC\½aiþ1,biþ1�: Let Ts;z;iþ1 ¼ Ts;z;i

if sa %s and let T %s;z;iþ1 be the set of all sApiþ1ð %sÞ½pLiþ1� such that spLiATs;z;i and, if

t�Ds then sðjt�jÞA/z;FtS: In order to show that Condition 11b holds it suffices to
show that

nðST %s;z;iþ1
ðt�ÞÞXm4Siþ1ð %sÞ

for any tApið %sÞ½Li�: For any given t this follows from the fact that ze½at
iþ1,bt

iþ1�
and 6.7.

In order to show that Condition 11c holds let tA
Q

sADðSiþ1Þ Ts;z;i½Liþ1�: Let %t ¼
tpðDðSiÞ\f %sgÞ: Let tApið %sÞ½Li� be such that tDtð %sÞ and note that the definition of
T %s;z;i guarantees that tð %sÞðjt�jÞA/z;FtS: In other words, ze½Ftðtð %sÞðjt�jÞÞ�+
½Ciþ1;rðt;tð %sÞðjt�jÞ;%tÞ\Ci;r�ðt;%tÞ�: Moreover, since r�ðt; %tÞA

Q
sADðSiÞ Ts;z;i it follows that

ze½Ci;r�ðt;%tÞ� by the Induction Hypothesis 11c. Hence ze½Ciþ1;t�: &

Corollary 6.2. If GDP is generic over V then V ½G�Flr
N
ðV-CÞ ¼ 1:

Proof. Suppose not and that

pCPk ‘‘CACN

d and V-CD½C�’’

and do1: Using Lemma 6.2 find ADC and BCC such that lr
N
ðAÞ þ lðBÞo1 and

qpp such that qgPk ‘‘zA½C�’’ for each zAC\ðA,BÞ: Choose any zAC\ðA,BÞ
and q0pq such that q0CPk ‘‘že½C�’’: &

7. Remarks and open questions

One might expect that the methods developed here could be used to prove that for
any two reals s and t such that 0otoso1 it is consistent that sets of size @1 are
null with respect to s-dimensional Hausdorff measure but that this is not so for
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t-dimensional Hausdorff measure. While this is true of most of the argument there
are some slippery spots. For example, the use of YF in the proof of Lemma 3.5
assumes the s-finiteness of Lebesgue measure. Lemma 3.2 might also pose some
challenges to generalization. Let ns denote the least cardinal of a set which is not null
with respect to s-dimensional Hausdorff measure. Hence the following questions
remain open:

Question 7.1. Is it consistent that 0otoso1 and ntons?

Question 7.2. Is it consistent that 0ouovowo1 and nuonvonw?

Question 7.3. How big can the cardinality of fnsgsAð0;1Þ be?

However, the main open problem in this area still remains Question 1.1. It would be
interesting to know what the answer to this question is in the model described in
Section 6.
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