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Abstract 

Shelah, S., C. Laflamme and B. Hart, Models with second order properties V: A general 

principle, Annals of Pure and Applied Logic 64 (1993) 169-194. 

We present a general framework for carrying out the constructions in [2-IO] and others of the 

same type. The unifying factor is a combinatorial principle which we present in terms of a game 

in which the first player challenges the second player to carry out constructions which would be 

much easier in a generic extension of the universe, and the second player cheats with the aid of 

0. Section 1 contains an axiomatic framework suitable for the description of a number of 

related constructions, and the statement of the main theorem 1.9 in terms of this framework. In 

Section 2 we illustrate the use of our combinatorial principle. The proof of the main result is 

then carried out in Sections 3-5. 

Contents 

1. Uniform partial orders 
We describe a class of partial orderings associated with attempts to manufac- 

ture an object of size A+ from approximations of size less than A. We also 
introduce some related notions motivated by the forcing method. The underlying 
idea is that a sufficiently generic filter on the given partial ordering should give 
rise to the desired object of size A+. 
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170 S. Shelah et al. 

We describe a game for two players, in which the first player imposes genericity 
requirements on a construction, and the second player constructs an object which 
meets the specified requirements. The main theorem (1.9) is that under certain 
combinatorial conditions the second player has a winning strategy for this game. 

2. Illustrative application 
We illustrate the content of our general principle with an example. We show 

the completeness of the logic .JF”, defined by Magidor and Malitz [2] for the 
A+-interpretation assuming the combinatorial principles DIA and Oh+. 

3. Commitments 
We give a preliminary sketch of the proof of Theorem 1.9. We then introduce 

the notion of ‘basic data’ which is a collection of combinatorial objects derived 
from Din and an object called a commitment describing the main features of the 
second player’s strategy in a given play of the genericity game. We state the main 
results concerning commitments, and show how Theorem 1.9 follows from these 
results. 

4. Proofs 
We prove the propositions stated in Section 3 except we defer the proof of 

Propositions 3.6 and 3.7 to Section 5. We use Din to show that a suitable 
collection of ‘basic data’ exists. Then we verify some continuity properties 
applying to our strategy at limit ordinals. 

5. Proof of Proposition 3.7 
We prove Proposition 3.7 as well as Proposition 3.6. 

Notation 

If (A,: a < 6) is a increasing sequence of sets we write AC8 for UacbAa. 
(Note the exception arising in Lemma 1.3.) 

Throughout the paper, A is a cardinal such that ileA= A. 

p<,(A) = {B GA: IB( < 12}. 
otp(u) will mean the order type of u. Trees are well-founded, and if T is a 

tree, r] E T, we write len(n) for otp{v E T: Y < q} (the level at which 11 occurs in 

T). 
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1. Uniform partial orders 

We will present an axiomatic framework for the construction of objects of size 

A+ from approximations of size less than A, under suitable set-theoretical 

hypotheses. The basic idea is that we are constructing objects which can fairly 

easily be forced to exist in a generic extension, and we replace the forcing 

construction by the explicit construction of a sufficiently generic object in the 

ground model. 

We begin with the description of the class of partial orderings to which our 

methods apply. Our idea is that an ‘approximation’ to the desired final object is 

built from a set of ordinals u E il+ of size less than A. Furthermore, though there 

will be many such sets u, there will be at most A constructions applicable to an 

arbitrary set u. We do not axiomatize the notion of a ‘construction’ in any detail; 

we merely assume that the approximations can be coded by pairs (a, u), where 

(Y < A is to be thought of as a code for the particular construction applied to u. An 

additional feature, suggested by the intuition just described, is captured in the 

‘indiscernibility’ condition below, which is a critical feature of the situation- 

though trivially true in any foreseeable application. 

Definition 1.1. A standard A+-uniform partial order is a partial order s defined 

on a subset P of il x PC-(/I’) satisfying the following conditions, where for 

p = (a, u) in P we write domp = u, and call u the domain of p. 

1. IfpSq then dompsdomq. 

2. For all p, q, r E P with p, q d r there is r’ E P so that p, q i r’ G r and 

domr’=dompUdomq. 

3. If (Pih<h is an increasing sequence of length less than A, then it has a least 

upper bound q, with domain Ui<la domp,; we will write q = IJiChpir or more 

succinctly: q = pCb. 

4. For all PEP and CXY<+ there exists a q E P with q 6p and dom q = 

domp fl a; furthermore, there is a unique maximal such q, for which we write 

q=p Ia: 
5. For limit ordinals 6, p r 6 = IJaCbp 1 cr. 

6. If (P;)~<* is an increasing sequence of length less than A, then 

7. (Indiscernibility) If p = (a, v) E P and h :v-+ u’ G A+ is an order- 

isomorphism then (a; v’) E P. We write h[p] = (a, h[v]). Moreover, if q up then 

h[ql~Ol. 
8. (Amalgamation) For every p, q E P and cx < h+, if p 1 cr G q and dom p fl 

dom q = domp II LX, then there exists r E P so that p, q 5 r. 

It should be remarked that a standard A+-uniform partial order comes with the 

additional structure imposed on it by the domain and restriction functions. We 
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will call a partial order A+-uniform if it is isomorphic to a standard h+-uniform 
partial ordering. It follows that although a h’uniform is isomorphic to a standard 
one as a partial order, there will be an induced notion of domain and restriction. 
The elements of such a partial order will be called approximations, rather than 
‘conditions’, as we are aiming at a construction in the ground model. 

Observe that p 1 a =p iff domp c cx Note also that for p =G q in P, 
pr”~q4r.(Aspr~~,qr(~~q,thereisr~qinPwithpr~~,q~(~~rand 
domr=domp 1 aUdomq 1 a=domq 1 a; hence r=q 1 a: by maximality of 

q 1 o, andp 1 asq 1 a.) 
It is important to realize that in intended applications there will be k-many 

comparable elements of a il+-uniform partial order which have the same domain 
(see the first example of the next section). 

Typically the only condition that requires attention in concrete cases is the 
amalgamation condition. It is therefore useful to have a weaker version of the 
amalgamation property available which is sometimes more conveniently verified, 
and which is equivalent to the full amalgamation condition in the presence of the 
other (trivial) hypotheses. Such a version is: 

Weak Amalgamation. For every p, q E P, and cx < Iz+, if p r a =s q, damp E 

LY + 1, and dom q E CX, then there exists r E P with p, q s r. 

To prove amalgamation from weak amalgamation, we define a continuous 
increasing chain of elements rLj E P for p 3 a, so that 

1. dom(r[$) c_ p, and 

2. 3 2~ r PI 4 1 P. 

Let r, = q 1 a. For limit ordinals, use conditions 3 and 5 of the definition of 
uniform partial order. 

Suppose we have defined rf3 and /3 $ dam(p) U dam(q). Let rLj+, = 3. 
If /I E dam(q) \dom(p) then p 1 f3 + 1 = p 1 p. Applying weak amalgamation to 

rfi and q r/3. Using condition 2 of the definition now, we can define r r p + 1. 
If p E dom(p)\dom(q) then we can apply weak amalgamation to p l/3 + 1 and 

3 . 
Since these are all the possibilities, let y = sup(dom(p) U dam(q)) and so 

r,, 2 p, q. This verifies amalgamation. 

Notation. For p, q E P we write p Csd q to mean p s q and dom p = dom q . (Here 
‘sd’ stands for ‘same domain’.) If p, q E P then we write p I q if p and q are 
incompatible, i.e., there is no r so that p c r and q s r. 

We define the collapse pCO’ of an approximation as h[p] where h is the 
canonical order isomorphism between dom p and otp(dom p). 
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Convention. For the remainder of this section we fix a standard A+-uniform 
partial order P, and we let 

P,={pEP:dompEa} 

for (Y < A+. Note that PA+ = P’. 

Be forewarned that the following definition does not follow the standard 
set-theoretic use of the term ‘ideal’. 

Definition 1.2. 1. For cy< A+, a h-generic ideal G in [ID, is a subset of P, 
satisfying: 

(a) G is closed downward; 
(b) if Q E G and [Q[ <A then Q has an upper bound in G; and 
(c) for every p E P,, if p 4 G then p is incompatible with some q E G. 

Gen(P,) is the set of A-generic ideals of P,. 
2. If G E Gen(P,) then 

P/G = {p E P: p is compatible with every r E G}. 

NotethatpEP/Giffp rang. 
3. We say an increasing sequence (gi: i < A) is cofinal in G E Gen(P,) if 

G = {r E P,: for some i, r s g,}. Every G E Gen(P,) has a cofinal sequence of 
length i\. (possibly constant in degenerate cases). We will often write (g,)8 to 
mean (g,: 6 <A). 

4. We will say that G is generic if G E Gen(P,) for some a. 

Lemma 1.3. Let G, E Gen(P,,) f or i < 6 be an increasing sequence of sets, and 

Ly = SUpi Cu,. Then there is a unique minimal A-generic ideal of P, containing 
UjCs Gj. This ideal will be denoted GCh. 

Proof. We may suppose that 6 is a regular cardinal, 6 <A. If 6 = A then it is 
clear that Uich Gj E Gen(P’,). Suppose now that 6 <A. For i < 6 fix an 
increasing continuous sequence (g;& cofinal in G,. Fix i <j < 6. There is a 
club C, in A such that for all y E C,, g; = g$ r a;. Let C = n;+ C,. If p E C 
then define g,+ = Uich gb E P,. Then the downward closure of (gs: /? < A) is the 
required generic set in Pru. 0 

The notion of A-genericity is of course very weak. In order to get a notion 
adequate for the applications, we need to formalize the notion of a uniform 
family of dense sets. 

Definition 1.4. 1. For a < A’ and G E Gen(P,) or G = 0 (in which case, in what 
follows, read P for P/G) we say 

D : {(CL, w): u s w E P<A(;l+)}+ 9”(P) 
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is a density system over G if: 

(a) for every (u, w), D(u, w) s {p E P/G: domp E w}; 

(b) for every p, q E P/G, if p ED(u, w), p~q and domq cw then q E 

D(u, w): 
(c) (Density) for every (u, w) and every p E P/G, with domp E w, there is 

q up in D(u, w); and 

(d) (Uniformity) for every (u,, w,), (u2, w2), if wI n (Y = w, fl (Y and there is an 

order-isomorphism h : wl+ w2 such that h[u,] = u2, then for every p E P/G with 

domp c wl 

p E D(u,, w) iff h[pl E Nu2, WI. 

The term ‘density system’ will refer to density systems over some G E Gen($,), 

for some a, and we write ‘O-density system’ for density system over 0. 

2. For G E Gen(P,) and D any density system, we say G meets D if for all 

u E P<,(y) there is 21 E R&y) so that u G v and G n D(u, V) #0. 

We give now two examples of density systems which will be important in the 

proof of Theorem 1.9. Both examples use the following notion. A closed set X of 

ordinals will be said to be A-collapsed if 0 E X and for any a 6 sup X, 

[a, CIZ + A] n X # 0. An order-isomorphism h : Y * X between closed sets of 

ordinals will be called a A-isometry if for every pair a, s p in Y and every 6 <J., 

j3 = (Y + 6 iff h(P) = h(cr) + 6. Every closed set of ordinals is &isometric with a 

unique h-collapsed closed set; the corresponding A-isometry will be called the 

A-collapse of Y, and more generally the h-collapse of any set Y of ordinals is 

defined as the restriction to Y of the h-collapse of its closure. Observe that a 

A-collapsed set of fewer than A. ordinals is bounded below il x il (ordinal product). 

Example 1.5. We shall show that there is a family 63 of at most A O-density 

systems such that for any (Y < A+, if G E Gen(P,) meets all D E 53 then P/G is 

again I2+-uniform. (The amalgamation property must be verified.) 

Construction. For p, q E Pkxh and 6 < A x A (where A x h is the ordinal product), 

we define a density system DP,rl,s as follows. Let u = (domp U dom q) fl6. For 

u’ & w’ E ??<,(A’), 

if there is an order-isomorphism h : w ’ + w G 6 with h[u’] = u , then let 

Dp,+(u’, w’) = {r : dom r E w’ and either there does not exist 

s ap, q, h[r], or there exists s zp, q 

so that s r 6 = h[r]}. 

This definition is independent of the choice of h. 
If there is no such h then let Dp,q,h (u’, w’) = {r: domp E w’}. We claim that 

D P,4.6 is a O-density system. It suffices to check the density condition for 

u E w c 6, and this is immediate. 

Sh:162



Models with second order properties, V 175 

Application. We will now show that if G E Gen(P,) meets every density system 

of the form D_* then PIG is A’-uniform. In order to view P/G as encoded by 

elements of A x 95,(A’), we let h : A’\ CY- A’ be an order-isomorphism, and 

replace (p, u) in P/G by (/3’, h[u\cu]) w ere h /3’ is just a code for the pair 

(/I, u n a). We need only check the amalgamation condition 8 of the definition. 

Let p, q E P/G, p < A+ with p 1 p c q and dom q fl dom p = domp n p. We 

must find r ap, q with r E P/G. Let X = domp U dom q U {CY} and let ho:X-, 
X’ be the A-collapse of X. Let p’ = h,,[p], q’ = h,,[q], a’ = h,,(a), and u = 

dom q fl a. Now choose w E CK with Iw( <A. and r E G n D,,,,y,.nc(u, w). Since X’ 

is &isomorphic with X, we can extend h,, to an order-isomorphism 

h:XUw+X’Uw’ with h[w] = w’ 5 a’. 

We claim that there is s 3 p’, q’, h[r]. If suffices to find some s ap, q, r. Since 

p~a,q~~,rareallinG,wemaytaker’~p~a,q~cr,rinG.Sinceq~~/G 

and r’ E G then by amalgamation we can find $3 q, r’ with dom 4 = dom q U 
domr’.Butnowdompndomg=dompnpandp r/3~~,sowecanfinds~p, 

4. This is the desired s. 

As r E DpJ,yt,n,(~, w), it now follows that there exists s sp’, q’ so that 

s 1 a’ = h[r], and hence h-‘[s] “p, q and (h-‘[s]) 1 cy = r. So h-‘[s] E P/G and 

h-‘[s] up, q, verifying condition 8 for P/G. 

Example 1.6. The next example will be useful in the following situation. Suppose 

we have G E Gen(P’,), 0 > LY, and we want to build G’ 2 G with G’ E Gen(Pp). 

To ensure the genericity of G’ we must arrange that for all q E Pp, either q E G’ 
or else q is incompatible with some g E G’. We will find another family of at most 

A. O-density systems D,,y,~,cl which make it possible to construct a suitable G’ 2 G 

if G meets all D,,y,h (from Example 1.5) and D,,.y.r.b. 

Construction. For p, q, r E PAxA, 6 < A x A such that: 

p rt?Cr; domrc6; and there does not exist s ap, q, r, 

we define D,,,rl,r,h as follows. 

Let u = (domp U dom q) f? 6. For u’s w’ E PCh(n’), if there is an order- 

isomorphism h : w’+ w where w E 6 and h[u’] = u then let 

D ,J.y,r,D(~‘, w’) = {s: dom s c w’ and h[s] is incompatible with r, 

or h[s] B r and there is some t up so that 

t 1 6 s h[s] and t is incompatible with q}. 

If there is no such h then let D,,y,r,h(~‘, w’) = {s: dom s E w’}. 

We claim that D’p,Y,r,h is a O-density system. Again we check only the density 

condition for u c w s 6. So we have s E IP, dom s E w, and s is compatible with 

r. We seek s’ 2s in Dp.y,r,h(~, w). 
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Choose s ’ ~r,swithdomaindomrUdoms;sodoms’~6.Thens’z=r~p IS 

and doms’ndomp=dompnc?, so we can choose ~BS’, p so that dam(t)= 

dom s’ U damp, and hence t is incompatible with q (since there is no t’ ap, q, r). 
Now t rd~s’>r,s, so if S”=t 16 then ~“br,~, and .sf’~Dpqr6(~‘, w’) as . I 
desired. 

Application. We return to the situation in which we have G E Gen([FD,), p > (Y, 

and we want to build G’ 2 G with G’ E Gen(pp), assuming that G meets all 

D P.y,~ and DPZq.+ We will naturally take G’ to be the downward closure of a 

sequence (&T,)i<A which is constructed inductively, taking suprema at limit 

ordinals. At successor stages, suppose that the ith term of our sequence has just 

been constructed, and let p = gi. Suppose q E Pp is fixed. We wish to ‘decide’ q: 
that is, we seek @ >p so that either fi is incompatible with q, or else @ 3 q. 

If p is already incompatible with q then let p =p. Otherwise, let X = domp U 

domqU{cu} and let h:X -tX’ be the &collapse of X. Let p’ = h[p], q’ = h[q], 
and (Y’ = h(a). If u =X n cy, choose w 2 u and r E G II D,,f,qf,or,(u, w). Extend h 
to an order-preserving function from X U w to X’ U w’ c_ LY’, and let r’ = h[r]. 

Suppose first that there is some s 2 p ‘, q ’ with s 1 cd c r' . We may suppose 

that doms=domp’Udomq’. In this case let@=h-‘[s]. Asp r adr, we have 

B E p/G, and q is decided by @. 

Now suppose alternatively that there is no s ap’, q’, r’. We may assume that 

p 1 (Y =S r since p 1 a E G and G is directed. Let: 

Y=dompUdomqUdomrU{a}, 

and let k: Y+ Y” be the h-collapse of Y. Let p” = k(p), q” = k(q), r” = k(r), and 

(Y” = k(a). Then p” r a” s r”, and there is no s 2 p”, q”, r”. 
Let 21 = (dom q U dom r) n a, and choose z 2 u and s E G n D,,..,4f.,r,S.aS(~, z). 

We can extend k to an order-isomorphism from Y U z to Y” U z” with k[z] = z” c 

a”. Let s” = k[s]. 
Certainly r” and s” are compatible since r, s E G. As s belongs to 

D pfC,qf,,rSf.aS,(~, z), we have k[s] 2 r”, and there is some t” 3~” so that t” 1 (Y” d S” 

and t” is incompatible with q”; in other words, s 2 r, and there is some p 3 p so 
that p 1 a s s and p is incompatible with q. Then ~5 E p/G, and fi decides q. 0 

We now introduce the generic@ game. Our main theorem will state that the 

second player has a winning strategy in this game, under certain combinatorial 

conditions. 

Definition 1.7. Let P be a A+-uniform partial order. The genericity game for $ is 

the two-player game of length jlc played according to the following rules: 

1. At the cuth move, player II will have chosen an increasing sequence of 

ordinals cfi < A+, and will have defined an increasing sequence of h-generic ideals 

Go on P,,, for all /3 < (Y. Player I will choose an element g, E p/G,, and will also 

Sh:162



Models with second order properties, V 177 

choose at most ;1 density systems D,? over G,,. Note that G,, E Gen(Pt<,) by 

Lemma 1.3. 

2. After player I has played his cuth move, player II will pick an ordinal c, and 

a A-generic ideal of P,*. 

Player II wins the p-game if the sequences ca and G, are increasing, and for all 

a, and all indices i occurring at stage LY: g, E G,, and for all 0 2 a, G[< meets DIN. 

Our main theorem uses the following combinatorial principle. 

Definition 1.8. Suppose il is a regular cardinal. D& asserts that there are sets 

tie 5 ??‘(a), ]tia( < )3. for every LY < ;1, such that for all A s A: 

{a E k A fl LY E da} is stationary. 

Easily, O* or A strongly inaccessible (or even A = X0) implies Dlh. Also, 

Kunen showed that Din+ implies OA+. Gregory has shown that if GCH holds and 

cf(K) > X0 then OK+ holds. It is useful to note that Dl* implies a<” = il. 

Theorem 1.9. Din implies that player II has a winning strategy for the P-game. 

This theorem will be proved in Sections 3-5. We illustrate its use in the next 

section. 

2. Illustrative application 

In this section we give an example of an application of the combinatorial 

principle described in Section 1. 

In [2], Magidor and Malitz introduce a logic Z<“’ which has a new quantifier 

Qn for each n E w, in addition to the usual first order connectives and quantifiers. 

The K-interpretation of the formula Qn q(xl, . . . , x,, j) is 

“there is a set A of cardinality K so that for any x,, . . . , x, E A, 

Q)(x,, . . . 9 x,, j) holds.” 

They then give a list of axioms which are sound for the K-interpretation when K is 

regular, and show that these axioms are complete for the X,-interpretation under 

the assumption of Oh‘,. They ask whether these axioms are complete for the 

ilf-interpretation. We will show that their axioms are complete when both DIA 

and 0n+({8 <;1+: cf(6) = )3}) hold. This will explain a remark at the end of [5]. 

See Hodges [l] for a treatment in the same vein for the X,-interpretation. 

Fix a complete TcO’ theory T, 1 T( c A. Let Q = Q ’ . We may assume that 

associated to each formula Q, with free variables x,, . . . , x,, y,, . . , y,, _Y 

contains an (m + 1)-ary function F,, so that T proves QX (X =x) and, for any 
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fixed y,, . . . > Ym, &A-> Y,> . . . , ym) is one-to-one and 

Q’5 cp(x,, . . . ,x,, YI, . . . , Y,)- 

Strictly, it is not necessary to make this conservative extension to our language 

and theory but it is convenient when handling the inductive step corresponding 

to Qn. 

We add new constants {y,: (Y < A+} and {xg: a < il+, i < A} to 9, to obtain a 

language 22,. The set of constants {y,} U ($7 i < A} is called the set of 

a-constants and y, is called the special a-constant. A constant is said to be a 

w-constant if it is a p-constant for some p E w; in particular a constant is a 

(<a)-constant if it is a p-constant for some p < LY. 

We define a partial order P as follows: p E P iff 

1. p is a set of Z;‘fu sentences consistent with T; 

2. lpl<k 
3. p is closed under conjunction and existential quantification; and 

4. if q(ya, 2) EP and the Z are (<cu)-constants, then Qy cp(y, 2) up. 
We now indicate how P may be viewed as a standard A+-uniform partial order. 

We order P’ by inclusion. Let P, be 

{p E P: all constants occurring in a formula of p are (<a)-constants}. 

The elements of Pn will be called templates. For any template p, there is a least fi 

so that all formulas in p use only constants from {y;: i < /3} U {xj: i < /3, j < A}. 

Call this &. 

For any template p and any w c A+ so that otp(w) = /3,,, fix an order- 

isomorphism h : p,., + w. Define p(w) as the set of formulas obtained by replacing 

xi and y; by xh(‘) I I and yhci) respectively for i < &. Every element of P can be 

obtained in this way from a template. 

Let t be any bijection between the set of templates and A. Identify P with the 

set ((4~1, w): P E PA, w E CP<,(A’) where otp(w) = fi,,} by sending (~[p], w) to 

p(w). Throughout the rest of this section we will treat P as if it were in standard 

form although in practice we will use its original definition. We claim that P is 

Il+-uniform; it suffices to check the amalgamation condition 8. 

The following notation will be convenient. If cp(y,,, 2,, y,,, Z2, . . . , y,,, Z,) is a 

formula with (Y, > a2 > . . -> a;, , and Zi is a collection of [aj+, , cu,)-constants, 

then the string S of quantifiers: 

3% Qvn . . .=I QY, 

is called standard for q where the x’s quantify over the 2’s. Its dual is denoted S*: 

VZ, lQy,, 1. . . VX, lQy,l 

If p is a set of fewer than A formulas of 2’:” which is closed under conjunction, 
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then the following are equivalent: 

1. p c q for some q E P; 

2. Sg, E T for all v, EP where S is standard for q. 

For p E P and a < A+, we have: 

p r a = {Q, E p : all constants in Q, are <a-constants}. 

To show that ln’ satisfies amalgamation, we will show that it satisfies weak 

amalgamation. Suppose p E P,+, , q E P, and p 1 a G q. 

Suppose d% ye, 2) EP where X is all the a-variables except y, and 2 is the 

<a-variables. Then 

If II, E q then 

SQY 32 (V * cp) 

where S is a standard sequence, is equivalent to 

S(V A QY 3X q). 

Since both of the conjuncts are in q, this last sentence is in T. This verifies weak 

amalgamation. 

Now the strategy is to build a set G which is the union of generics so that the 

constant structure derived from G will form a model of T under the A+- 

interpretation. More precisely, we introduce an equivalence relation - on the set 

of nonspecial constants A = {x,?: (Y < A+, j < A} by: 

a-b iff “a=b”EG. 

Let G = {al-: a E A} and define the functions and relations on G in the usual 

manner. We want to ensure that for any formula cp in 9:” we will have: 

G b q(a,/-, . . . , a,/-) iff q(a,, . . . , a,) E G. (1) 

If (1) is true, its proof naturally proceeds by induction on the complexity of 

formulas. We now describe a strategy for Player I in the genericity game which 

can only be defeated by achieving (1). In other words, we will specify density 

systems and elements g E $, to be played by Player I, such that a proper response 

by Player II ensures that G allows an inductive argument for (1) to be carried out. 

Our discussion will be somewhat informal, stopping well short of actually writing 

down the density systems in many cases. 

We begin with the treatment of the ordinary existential quantifier. Whenever 

3x ~(x, Z) E G we will want (eventually) to have some a E A so that ~(a, Z) E G. 

In particular, for every there will be some a E A so that y, = a E G. The density 

systems which ensure this condition is met will in fact be O-density systems. 

Next we consider the quantifier Q. For each formula QX q(x) which is put into 

G, at cofinally many subsequent stages we wish to add the formula q(y) for an 
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unused special constant y. The first player will play such formulas as “g,” from 

time to time. We will also have to deal with the case in which ~Qx cp(x), and we 

will return to this in a moment. 

We now consider the quantifier Qn. Suppose that the formula QH_V cp(X, J) is in 

G at some stage. This is where we use the function Fq. If G is a model of T then 

it has cardinality A+. Moreover, F,(-, J) is one-to-one. Since QnzZ ~(2, y) is in G, 

so is 

It follows that the range of F,(-, j) is homogeneous for cp. 

We are now left with the cases in which formulas of the form ~Q”x CJJ (n 2 1) 

are placed in G. We deal first with the case n = 1. For this case, we define a 

number of density systems depending on the following parameters; 

1. j, jo, . . . , jm-, <k 
2. a formula I&, yo, . . . , y,_,); and 

3. a function f : in + m. 

We associate with these data a density system D. If otp(u) # m + 1, we let 

D(u, w) be degenerate: 

D(u, w) = {p E P: dam(p) E w}. 

If otp(u) = m + 1 then let g : m + l-+ u be an order preserving map, let h = gf and 

set /I =g(m) = maxu, and: 

We will then let D(u, w) consist of those p E P for which, setting cx = min(wj, we 

have: 

1. dam(p) E w; 

2. If 1Q.x V(X) E p, then either iv@) E p or X! = ~7 E p for some i < A. 

We shall verify the density condition on D. Suppose q E P and 1Qx v(x) E q. 

The extension of q we are about to construct will only involve the adjunction of 

formulas with (up)- constants, so we may assume that q itself contains only 

(s/-I)-constants. 

If we cannot complete q U {in} t o an element of P’, then there is some 

x E q so that: 

XIX (X A Y~x)) $ T 

where S3x is a standard sequence for the formula x A 13. Note that by the 

assumption that 0 is the maximal element of dam(q), we may assume that the 

final quantifier in the standard sequence is an existential quantifier on the 

constant x in q. 

By the axioms for the Q-quantifier, for any 6 E q such that T I- 8+ x, 

S3x (0 A I@(X)) E T. 
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as ~Qx I/+) E q, repeated use of the Q-quantifier axiom: 

Qx 3y Nx, Y)+ 3~ QY Nx, Y) v QY 3~ Nx, Y) 

shows that 3x S( 8 A v(x)) E T. 
If we now choose a constant X? not occurring in q, where a = min(w), one can 

conclude that q U {x,! =x,F} can be completed to an element of P. 

It is easy to see that if the foregoing density systems are met, then we can carry 

out the argument from right to left in condition (1) above for 9 = QX q(x). We 

turn now to the treatment of the quantifiers Qn for IZ > 1. 

By applying Fodor’s Lemma to the map sending 6 to dom(f(s)) fl 6 we obtain: 

Lemma 2.1. ff S E (6: cf(6) = A} is stationary and f : S+ P then there is a 

stationary S’ E S, a template p and (J < A’ so that for 6 E S’, f (6) =p(w*) where 
w, = dom(f(8)) and w, fl6 E o. 

It will be convenient to treat conditions as if they were single formulas. 

Extending our previous notation, for p E P and S a standard sequence covering 

some of the variables in p, we will write S(p) for the set: 

{S,V cp EPI 

where S, is the standard sequence for Q, which we think of as a subsequence of 

the possibly infinite standard sequence S. 

Let (Ah)cfcbjEl be a O-sequence. For U, n sets of ordinals, we write u < u if for 

all p E u, p < min u. 

If cf(6) = A and G6 E Gen(P,), we will define certain associated density systems 

over Gb which depend on the following additional parameters: 

1. an i-C/l; 
2. a formula ~(x,, . . . , x,,, y) (we will suppress the y): 

3. some k with OCkGn; 
4. templates p, , . . . , pk ; and 

5. ordinals yi < & for 1 Cj c k. 
The density system D that depends on this particular set of parameters will be 

taken to have D(u, w) degenerate unless: 

1. U = (5) u Ul<j<k wj; 
2. 6<C<w,\S<-*.<w,\S; 

3. Wjzpp,; 

4. ulsjskpj( j) w can be extended to a member of P’; 

in which case we adopt the following notation. Let ci be the y,th element of We, 

and write zB for xf’. Note that since yj < p,,, we will have cj > 6 and hence 

C<Ck;-<. . . < 5,. Define the Set r((Y,, . . . , a&-&_I) for LY, <. . . < cu,_,_, EAT 
to be 

where S covers all the (><)-variables. 
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We now define D(u, w) as the set of q E P/G with dam(q) c w which satisfy 
one of the following three conditions: 

1. q -L Ulsj=SkPj(wj); or 
2. U,<j<kPj(Wj) C_ q and for some (Y, <. . * < CX~_~_, E A*, I(@,, . . . , 

ah-,) c 4; or 
3. IJ,,<,pj(Wj) G q and for all a, <. . . < an-k_, E Ah: 

G(q+mpk(w)~. . .+S(p,(w,)-+ 

p)(zal, . . . , tan-x+, zc, zi, . . . ) Z”l)) . * . )) E Gb. 

The third condition means that for every a, < * . . < CX~_~_~ E Ah, there is a 
x E q and qj l pj(Wj) SO that 

Slxx+SXVltk-+. . .*ST(r/J,+ 

Q)(Za,, . . . ) z(y”-*-I, ZC, zc, . . . ) z<,)) . * . )) E Ga 

where Sj covers all the (aa)-variables in ,$j for j > 0, and S,, covers all the 
(ad)-variables in x. Notice that the only overlap among the variables occur in 
the (< a)-variables. 

Now suppose C? t= Q’5 cp(Z, ti/--). We would like to argue that Q’5 ~(2, a) E G. 
For convenience we will suppress the parameters 5. We may also assume that 
Tk q(i)+ l\i<jXi #Xj. 

Since G k Q% q(2), there is a A+-homogeneous subset B E c for rp. We may 
assume there is an i < ;1 so that every b E B is of the form x,F/-- for some CC Let 
A = {a: x,F/- E B and cy is the least such in a given --class}. For any S so that 
cf(6) = A, let & = min(A \Ag). Note that if A fl6 = Ah then & > 6. 

We will now produce the following data. There will be: 
1. stationary sets S, for 0 G k s n with S,,, G S, for all k < n and 

S0={6:cf(6)=A, andAt16=Ag}; 

2. templates pk for 1 =% k S n, and ordinals yk so that yk < &,; 
3. a domain wi of the same order type as fi,,* for each 6 E Sk; a o, <S, so that 

if 6 E S, then wi fl 6 E ok; let I$ be the ykth element of w$ 
4. ForO<k<n, if S<6,<. . . < 6, E S, are chosen so that 

and D is the density system over Gs corresponding to i, Al, k, p,, . . . , pk and 

Yl,. . . 3 Yk, then 

pk+,(wi+‘) E D({[k,+‘} u wi* U. . f u w&, w$+‘) n G. 

Using Lemma 2.1 and the fact that G meets all the density systems introduced 
at stages 6 E So, this is straightforward. 

Now suppose 6, <a ..<IS,ES,, so that w”,,,\6,<.*.<wi,\o,. Let qk= 

P&G,). 
Since B is a homogeneous set for ~1, it follows that ~(z”~, . . . , z az, zChl) E G, 
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for every ~~<**.<cx~<~;S, in Aa. Since q, E G, using the density systems 

defined before, we conclude that 

ST(q,-+ cp(zCh,,, . . . , Z”l)) E G 

where S, covers the w&-variables. Proceeding by induction and using the 

definition of the density systems, we conclude that 

where S, covers the w/b-variables. 

Of course, S,,q, c G, so by the Magidor-Malitz axioms, Qn_? v(i) E G and we 

finish. 

3. Commitments 

In this section we begin the proof of Theorem 1.9. Our main goal at present is 

to formulate a precise notion of a ‘commitment’ (that is, a commitment to enter a 

dense set-or in model-theoretic terms, to omit a type). We will also formulate 

the main properties of these commitments, to be proved in Sections 4-5, and we 

show how to derive Theorem 1.9 from these facts. 

Before getting into the details, we give an outline of the proof of Theorem 1.9. 

General overview 

Suppose that we wish to meet only the following very simple constraints. We 

are given some O-density systems 0; over for i -=c A, and some g,, E P, and we seek 

a A-generic ideal Go containing g,,, and meeting each Di. Let 6 = AU 

sup(dom(g,,)), and enumerate P, as (I;: i <A). Then we may construct G,, by 

generating an increasing sequence (gs)b<l beginning with the specified g,,, and 

taking G,, to be the downward closure of (gb). We will run through this in some 

detail. 

Our first obligation is to make G,, A-generic in Plj. We will say that r E pB has 

been decided if we have chosen some g, E P, so that either r _L g, or else r sg,. 

If the sequence (g .) 6 6<1 ultimately decides every r E pls, then G,, will be A-generic 

in PO. At stage 6 + 1 we will ensure that r, is decided. This takes care of the basic 

A-genericity requirement. At limit stages we can let g, be anything greater than 

g,,. We will also take pains at limit stages to meet the specified density systems 

Di. We enumerate the pairs (u, Di) with u E F’Ch(P), using A<‘= A, assigning one 

such pair to each limit ordinal 6 < il. Suppose that (u, 0;) is considered at stage 

6. Let v=domg,,. By the density condition on Dj, we can find gs ag,, with 

& E D;(u, u). 
Thus it is easy to deal with A. constraints of the type arising in one play of our 

genericity game. Our strategy in that game will rely on this sort of straightforward 

‘do what you must when you have the time’ approach, but will encounter 
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difficulties in ‘keeping up’ at limit stages in the game. We will use Dlh to ‘guess’ 

what additional commitments should be made with regard to various density 

systems O,, so that any generic set which we construct subsequently which meets 

these commitments will meet each Di. The commitments themselves retain the 

feature that each of them can easily be met when necessary; deciding when these 

commitments should be met requires another use of DIA. 

At stage 0, Player I selects some density systems, to which we may add all the 

density systems for Examples 1.5 and 1.6. From these we construct some stage 0 

commitments (‘p, and a G,, meeting “p. 

At stage 6 in the play of the game, Player II is attempting to extend Gcb to a 

suitable Gb. (At limit stages we also will need to check that Gch continues to 

meet suitable commitments.) Since Gcb meets all the previous commitments, in 

particular it meets all the density systems of Examples 1.5 and 1.6, and therefore 

P/Cc6 is A+-uniform. Consequently the construction of G,, described at the outset 

also works in $/Gc6. Hence we need only construct new commitments ‘p, add 

them to our previous commitments, and construct Gh meeting ‘p as above. In this 

way, Player II wins the game. 

There is a certain difficulty involved in coping with the freedom enjoyed by 

Player I (in terms of obligations accumulating at limit stages in the game). There 

are a priori A+ sets u E 5”<,(A’) that may require attention. On the other hand, 

at a given stage 6 we are only prepared to consider fewer than A such sets. 

However, by uniformity, it will be sufficient to consider pairs (u, w) E ??<,(/3 + 

A) x LPcA(p + A), and hence A such pair suffice. This still leaves Player II at a 

disadvantage, but with the aid of Din, at limit stages we will guess a relevant set 

of U’S of size less than A. 

It remains to show that this strategy can be implemented, and works. 

We introduce the notion of basic data which will be provided by Dlh. 

Definition 3.1. A collection of basic data will contain 

1. trees Tb, subsets of Lon (but not suborders), with orders <*, for every 6 < il: 

2. for every generic set G E Gen($,) for some LX < h+ , two stationary subsets 

of A, S(G) and S’(G) and a club C so that C fl S’(G) G S(G); and 

3 for every 6 < A, a set U, E Y<,(h) 

with the following properties 

1. ITaI-=cA, ICJ,(<nforevery6<A, 

2. if p E Tb then len(p) = dam(p), 

3. ifp=%sqandlen(p)=cuthenp=q rcu, 

4. ifpETbandcuSdom(p)thenp ~LYET~, 
5. if (gs)b is a cofinal sequence for a generic set G E Gen(P,) then there is a 

club C so that for 6 E C I? S(G), (g<b)Co’ E T,, 
6. if G and G’ are generic sets so that G c G’ then there is a club C so that 

C II S(G’) s S(G), and 

7. (Oracle property) for a< h+ and G E Gen($,), u E L??!&(Y) and a = 
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U s<i w8 a continuous increasing union with w, E gci(a) and u E w. then there is 

a club C so that for every 6 E C fl S’(G) there is u ’ E Uh so that (We, U) = 

(otp(r%), u’). 

Remarks. 1. Although there is the possibility of confusion between the orders 

<s and < on PI, we will use < for both and the context should usually make it 

clear which we mean. 

2. The following will be true of the trees that we eventually build although this 

property will not be needed in the proof: if q E Th then there is a generic set G 

with a cofinal sequence (gh)* so that q = (g’t$ r/3 for some & and j3. 

3. If (gh)h and (s;)~ are cofinal sequences for G and G’ then there is a club C 

so that if S E C and n = dom(gyA) then g’,“1, = (g:h)cO’ r q. In condition 6, we may 

assume that for particular cofinal sequences, C satisfies this property as well as 

C tI S(G’) E S(G). W e will often use this version of condition 6. 

4. It is important to notice the following about p E Tb for which dam(p) is a 

limit ordinal. If a < dam(p) then p 1 LX E Tb and p r A! <p. Hence, any such p is 

the limit of those elements of Th which are less than it. 

Lemma 3.2 (DI,). There is a collection of basic data. 

We leave the proof of this until the next section. For the rest of the paper 

except for the proof of Lemma 3.2, we will fix a particular choice of basic data 

using the notation of Definition 3.1. 

Definition 3.3. A weak commitment is a sequence p = (pb: 6 < A) where 

p *: Th -+ PA with the following properties: 

1. p’(q) E PlenCvj (we usually write pt for p*(v)), 

2. if q c u E Th then pf, spy” r Ien( 

We define an order on weak commitments by p c q if for almost all 6 (i.e. on a 

club), P a s q a pointwise. We say that q is stronger than p. 

We will identify two weak commitments p and q if p c q and q c p. 

Notation. From the fixed collection of basic data one can extract a critical weak 

commitment. Define *p = (*p“: 6 < A) where *pi = q. 

Definition 3.4. A commitment is a weak commitment which is stronger than *p. 

Definition 3.5. Suppose G is generic with a cofinal sequence (gh)* and p is a 

commitment. We say G meets p if there is a club C in A so that for every 

6 E C rl S(G), Q =: (g<b)C”’ E Tb and there is r, E G so that dom(r,) = dom(gch) 

and 
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Remark. If h : len(r],)* dom(g,,) is an order-isomorphism then in the above 

definition the existence of r, is equivalent to saying that h[p$ E G for all q 6 Q. 

Proposition 3.6. If D,, i < A, are O-density systems and g E Pu then there is a 
commitment 9 (asp) and some G E Gen(P,), so that: 

1. LEG, 

2. G meets 9, and 
3. if y c y’ < h’ and G’ E Gen(P,,) meets q, then G’ meets each Di. 

Proposition 3.7. Suppose G E Gen($,) and G satisfies 
1. for all g E P/G, h E P there is g’ E PIG with g’ ag and either g’ 2 h or 

g’ I h, and 
2. P/G is A+-uniform. 

For i < A, let Di be a density system over G, and suppose g E P,/G where 
a~ y < A+ and p is some commitment that is met by G. Then there is a 

commitment q 2 p, and some G* E Gen([FD,), so that: 
1. GcG*, gEG*; 

2. G* meets q; 
3. if y c y’ < A+ and G’ E Gen(P,,) contains G and meets q, then G’ meets each 

Di. 

Lemma 3.8. Let (“P),<~ be an increasing sequence of commitments with K < ii'. 

Then the sequence has a least upper bound. 

Notation 3.9. With the notation of the preceding lemma, we write 

Ub “P or <bP 

for the least upper bound of the commitments “p. 

Proposition 3.10. Suppose G, E Gen(Pt,) meets “p for all IX < 6, where 6 <A+, 
and the G, and “p are increasing. Then CC6 meets <bp. 

By combining these results we immediately obtain a proof of Theorem 1.9. 

Proof of Theorem 1.9. We define a sequence of ordinals C,, a sequence of 

commitments “p, and a sequence of A-generic ideals G, E Gen([FDCa), so that: 

1. c<ol C 5,; cap< “p; Cc6 c Gs for 6 < AC; 

2. G, meets the commitment “p; 
3. if I;, =S p and G E Gen(Ps) contains G, and meets the commitment “p, then 

G meets each a-density system Di over G, proposed by Player I at stage a of the 

genericity game. 
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At stage 0, Player I provides some g,, E p and at most A many O-density 

systems. To these Player II adds all the O-density systems mentioned in Examples 

1.5 and 1.6. We now apply Proposition 3.6 to all these O-density systems and g,,. 

This will provide us with Go, f. and “p. 

At stage 6, we will have CC6, GChr <‘p defined, and by Proposition 3.10 GCh 

meets <‘p. Now since G,, E G+,, GCb meets ‘p and hence meets each of the 

O-density systems from Examples 1.5 and 1.6. It follows that GCh satisfies the 

condition on the generic set in Proposition 3.7. By Proposition 3.7 a suitable 

choice of cab;, G,, ‘p can then be made. 

Now we verify that Player II wins the genericity game using this strategy. By 

construction, g, E G, for all LY. Suppose that D is a density system over G,, 

selected by Player I at stage (Y of the genericity game, and p 3 CY. As CL3 meets 

the commitment “p, pp 3 *p, and CL3 2 G, it follows that Go meets D. 0 

4. Proofs 

In this section we give the proofs of the results stated in the previous section 

except the proofs of Propositions 3.6 and 3.7 which are deferred to the next 

section. 

Proof of Lemma 3.2. The Lemma states that there is a collection of basic data. 

Let (zJ~)~<~ be an enumeration of 9,,(A) so that u6 c 6 for all 6. Let 

V, = {2rLj : p < S} for 6 < A. Using Dll and an encoding of 

(A. x A) u (A x P<,(A)) 

by A, we can find sets 9&, E Ci’( 6 x 6) and %?* E 9( 6 x V,), such that 1 LF&, (, ) F$ ( < 

A for all 6 < A, and for any R c A x A, G c A x P,,(A), the set: 

(6: R fl(6 x 6) E 9i$, and G II (6 x V,) E 9&h) 

is stationary. 

Before defining the basic data we establish some notation. For each (Y < kc, we 

select a bijection i (y : a- (aI. For simplicity we assume IayJ = il throughout in our 

notation below. For 6 < il, let cu, be the order type of i,‘[S], and let 

7L . a fl i;‘[d] = aa, jNh = nab oi,’ : 6 - cxb. ah . 
Let 

R, = {(L(P), L(y)): P < Y < a>; 
Rmii = R, II (6 x 6) (6 <A). 

Then La : (4 R,,) = (ad, <), It will be important that ias is determined by Rmb. 
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If G is a h-generic ideal in P, with cr < df, let: 

G = {(P, Qul): (P, u) E G], 

G* = G n (6 x V,), 

Ga = {(P, u) E G: (P, kJul> E (6 x v,)}, 

G,z, = {(P, ~tols[ul): (P, u) E G,]. 

Again, we can go directly from (?a to G, by applying jo16. Observe also that zrab 

induces an isomorphism nzb: Go = Gb. We are primarily interested in this 

collapsing map nza, but G provides a better ‘encoding’ of G because the sets Ga 

increase with 6, while the sets r;b do not. 

Let C(G) be the set of 6 < il for which Gn contains a cofinal increasing 

subsequence. Then C(G) is a club in A. For 6 E C(G), G6 has a least upper 

bound, which will be denoted lJ Gh. 

We are now ready to define the basic data. For 6 < h we define Tb as: 

1 
p E P: 3cx < A’ 3G E Gen(P,) 3y: 6 E C(G), 

G6~%6,Ro,s~%?ZS, andp=[lJG’,] ly.} 

Notice that dam(p) is an ordinal for every p E T*. To see that lThl < A, we use 

the fact that G6, RLVS together determine C$, and also that any p in P has fewer 

than il distinct restrictions. For p, q E Tb, define the order by: p 6 q iff 

P = q 1 dam(p). 
Now for G a A-generic ideal in P’, with a: < A+, fix a cofinal sequence (gp),<* in 

G, and set: 

S(G) = (6 < k [g:$” E T,}, 

S’(G) = (6 <A: eb E ?I6 and RLVS E %b}, 

U, = {u: 3v E V, 3R E LYZ6 3a< A+ (6, u, R) = (a, u, <)}. 

Clearly I!/~ c P<,(J.) and 1 U61 < A. It is also straightforward to see that S’(G) is 

stationary. 

Let C, be 

1 
6 E C(G): &, = U G]. 

Then C, is a club in h, and if 6 E S’(G) n C, then (&)‘“’ E Th so S(G) is 

stationary. If (gA)s is any other cofinal sequence for G then there is a club 

c= {6:&=g$} 

and for every 6 E C n S(G), (g&)‘” E Tb. 
Let G E G* be two h-generic ideals in P,, P,. with S(G), S(G*) determined 

Sh:162



Models with second order properties, V 189 

by cofinal sequences (gz),, (gg*)* respectively. If one considers C = 

(6: gzi 1 a =gzb}, it is easy to see that C II S(G*) E S(G). 

It remains to verify the oracle property 7 of Definition 3.1. We fix (Y < A+, G 

A-generic in [FD,, u E I’<,, and we let LY = lJ b<l w, be a continuous increasing 

union with each (w, I< il and u E w,,. One some club C, otp w;, = LU, and if u, E 6 

then (Y< 6. So (wh, u) = (Q, n,,[u]). For 6 E C fl S’(G) we have 

Notation 4.1. In the next few results we make systematic use of the diagonal 

intersection of clubs. If (Ca)a<n is a sequence of clubs in A, the diagional 

intersection is defined correspondingly as: 

The diagonal intersection of such a sequence of clubs is again a club. 

Proof of Lemma 3.8. Let (“p),<, be an increasing sequence of commitments 

with K < A+. We claim that the sequence has a least upper bound. We may take 

K to be a regular cardinal, with K < A+. We deal with the case K = il; for K < A our 

use of a diagonal intersection below would reduce to an ordinary intersection. 

For p <A let C,j be a club such that for all & < /3: 

a P “d 4” pointwise for 6 E C,. 

Let C = A,Cfi. For 6 E C and rl E r>:,, let pt = lJacb “pt. Then p is a 

commitment. We have “p 4 p since “p * c p * pointwise for 6 E C \ (Y. 

Now we will check that p is the least upper bound of the sequence as a 

commitment. Let q be a second upper bound. Let 

C,*={6<A:qh2”pbpointwise}, 

and let C* = A,C,*. For 6 E C II C”, and rl E Th, we have: 

s;a u& “p::=p$ 

It follows that p is the least upper bound. 0 

We divide Proposition 3.10 into two parts. 

Proposition 4.2. Suppose that (Gj)i_ is an increasing sequence with Gi E 

Gen(P,,), K < A+, and that each Gi meets a fixed commitment p. Then Ui Gi also 

meets the commitment p. 
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Proof. Let G = lJicK G;. By consulting the proof of Lemma 1.3, we can see that 

there is a cofinal sequence (gj)j<k for G so that if gj =gj 1 LX; then (gj),<, is a 

cofinal sequence in G;. For each i <A let Ci be a club demonstrating that Gj 

meets p. In other words, for 6 E Ci n S(G,) we have r$ E G with: 

1. dom ri = dom g&, &, = (g$h)c”’ E T8 ; and 

2. [r$“’ %= pt for all q 6 rji. 

By Definition 3.1.5, we may also suppose that Ci n S(G) c S(G,). 

We consider the case K = il. (use ordinary intersection instead of diagonal 

intersection when K < A). 

Let 

C=AiCifl 6<h:supdomg,,=s;gcu, 

If 6 E C n S(G) then we can find r, E G so that r, a r6 for i < 6 and 

dom(r6) = iya dom(g&) = ,$ dom(g<, 1 4 = dom(g<b). 

Clearly, ry’ 3~:: for all n < (g<6)co’ = Q E Tb. However, since pgn 1 len( q) sp; 
for all n < ns and p& = U,,,, pi, 1 len(r), r-7’ apt,. 0 

Proposition 4.3. Suppose G E Gen(P,) meets an increasing sequence of commit- 
ments (‘p: y < K) where K < A+. Then G meets IJ,,,, yp. 

Proof. Again, we treat only the case when K = A. Let (gi);<i be a cofinal 

sequence in G. For each y, let C,, witness the fact that G meets “p. That is, for all 

6 E C, n S(G) there is rg E G so that: 

1. dom ri; = dom gcb, r], = g% E T,; and 

2. (r$)‘“‘> ‘pg for all r) S nn. 

We may also suppose that C, witnesses the relation ‘p s yp for i < y. Hence we 

may assume ri ,, s ryb for 6 E C, tl S(G). Let C = A,C,. 

For 6 E C n S(G), let r, = Ui<b rib. Then on C fl S(G), dom r, = domgcs and 
ry’ = lJicB [Qc”’ 2 Ui<,ip: = ‘“p”, for all tl s na. The last equality follows 

from the proof of Lemma 3.8. 0 

Proposition 3.10 is an immediate consequence of the preceding two 

propositions. 

5. Proof of Proposition 3.7 

We recall the statement of Proposition 3.7 
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Proposition 3.7. Suppose G E Gen(p,) and G satisfies 
1. for all g E P/G, h E [FD there is g’ E P/G with g’ ag and either g’ 2 h or 

g’ I h, and 
2. P/G is A’-uniform. 

For i < A, let D, be a density system over G, and suppose g E P,/G where 
IXC y < A+ and p is some commitment that is met by G. Then there is a 

commitment q 3 p, and some G* E Gen(p,), so that: 
1. G c G*, g E G*; 

2. G* meets q; 

3. if y 6 y’ < A’ and G’ E Gen(P,.) contains G and meets q, then G’meets each 

0;. 

We are also obliged to prove Proposition 3.6 as well. The proof is very similar 

to the proof of Proposition 3.7 and so we will only highlight the formal differences 

at the end of the proof. 

Proof of Proposition 3.7. Let y = Ubcl w, be a continuous increasing union with 

lwal <A. Set yh = opt(wa) and choose &, so that yh + & 2 ht(T*). Let 

be an order-isomorphism. 

Fix a cofinal sequence (g,), for G. Since G meets p, there is a club C so that 

for all GECIIS(G) we have g’,oX:=qhETh, and there is r, E G so that 

dom(r,) = w, fl LY and ry’ 2~:: for all r s qa. We may also assume that 

dom(g,,) = w, II a for all 6 E C. 

Now we build the commitment q. If 6 $ C fl S(G) then let q* =ph. Fix then 

GeCrlS(G). Fori<6, Ea&,anduEU*, uGy,+&,,let 

D!(u) = {r E $u,,+t_:hs[rl E QVdul, wb U [Y, Y + 5))). 

Let IFD,[ T,] be the set of functions j? : Th + PA so that 

1. p(r) E pr+n for all rl E Th, 
2. if q 6 Y then p(n) >P(Y) 1 len(r), and 

3. if q is comparable with qh then hh[p(r)] E P/G. 
We will write jj, for p(r)). 

Remark. Since G meets p, if 6 E C n S(G) then pb E lPGITh]. To see this, we 

must show that if q is comparable to qs then h*[p$ E P/G. If r) s T]~ then since 

6 E C n S(G), hh[p$ E G. Suppose q 3 Q,. Now pt r Ien 6pG, and since 

w, rl a = dom(g,,) we have h,[p$ r m c hh[pg,] so hh[p$ E P/G. 

Proposition 5.1. There is a qb E Pc;[ Th] with q A 2 pb pointwise and so that for 
every UEU*, i<6 if q’ETh, ~‘2 Q with len( q ‘) = yh + 5 and u z y& + < then 
q$ E D”(u). 
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To obtain this q“ we use a claim whose proof we postpone. 

Proof of Proposition 5.1. To get the required q*, one starts with p*, at limit 
stages take unions and at successor stages use the claim applied to some particular 
i < 6, CS &, u E U, and n* E Th. After at most lU,( . 161 . \&.,I 1 ITal stages we will 
have produced q’. 0 

Now we turn to the construction of G*, a h-generic ideal in P, meeting q with 
G c G* and g E G* , hence completing the proof of Proposition 3.7. 

Fix an enumeration (s*)~ of P,. G* will be the downward closure of an 
increasing sequence (g& which is constructed inductively starting with gX= g. 
We shall guarantee that gg E P,/G for each 6. 

At stage 6, if 6 E C n S(G), dom(&,) = w,, (gGh) 1 (Y = g,, and (g&)“” = 
q* E Tb then let h : Ien( dom(g&) be an order-isomorphism and let &, E 
P/G be chosen so that dom(&) = dom(g&), gh ag.& and & 2 h,[q$] for every 
rl s q*. This can be accomplished because [FD/G is A’-uniform by assumption and 
we guaranteed that hb[q$ E P/G when we built the commitment q. 

If any of the above conditions fail, let gb = g&. In either case, use the 
assumption on G to find g$ so that g$ E IFD,/G with gb 3 g.& and either gz 2 s6 or 

gb”ls*. 
It follows easily now that G* E Gen(p,), G c G* and g E G* . We now show 

that G* meets q. Choose C, so that C, rl S(G*) s C n S(G) and for all 6 E C,, 

dom(&) = ws and (g&) 1 a = g,,. If 6 E C, n S(G*) then (g&.,)cO’ = q* E Tb so 
from considerations at stage 6, gh E G* and (&,)‘“’ s qi for all q s n*. It follows 
that G* meets q. 

Now suppose G’ meets q, G’ E Gen($,.) contains G with y s y’ <A+. Fix a 
cofinal sequence (gA)* for G’, a density system 0, and u E 9&y’). We want to 
find w so that u E w and Di(u, w) fl G’ # 0. Write y’ \ y as a continuous increasing 
union lJbch WA with WA E 9’<n(~‘\~). 

There is a club C2 with the following properties: 
1. if 6 E C,, (g&) 1 a = g,, and dom(g&) = wh U WA; 
2. C, fl S’(G’) c C, rI S(G’) G C n S(G); 
3. for 6 E C2 rl S(G’) there is r, E G’ with dom(g&) = dom(r,), g& = r,, 

(g&)“” = r;, E Tb and r-y’ 3 qi for all n s nh; and 
4. for 6 E C2 rl S’(G’) there is u’ E iJ, so that 

f* : (otp(wa u wh), u’) = (w* u WA, u). 

This can be obtained by refering to the definition of basic data, Definition 3.1 
and Lemma 3.2. In particular, condition 4 follows from the oracle property. 
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Now choose 6 E C, fl S’(G’) with i < 6. Let 5 = otp(wA). Since dom(g&) = 

wn U wi and qk = (g&)‘“’ E Th, we have that yh + f c ht(T,). Moreover, qh = 

g”i”l, E T6 and Q, < VA. Hence, 

fb[& E wb[~‘l~ W6 u [Y, Y + 5)) 

and r’s”’ 3 q$ with rs E G’. 

By the indiscernibility of the density systems, we have 

.M&l E Q(4 w, u 4) 

since 

&hh;’ : (45 u [If, Y f 0, hb[U’l) = (WI u wh, u>. 

By the indiscernibility of P, we have r, afh[q$]. Since r, E G’, 

fs[q;nl e G’ n Q(u, w, U 4) 

so G meets 0;. 0 

It remains to prove Claim 5.2, 

Proof of Claim 5.2. Consider the set 

s = {h&J: rj 5s q*} 

which is a subset of p/G. By the compatibility condition in the definition of 

P,[q,], S is also a compatible set so we can choose r,!,* E P,cncs*j so that rG* a qv 

for all Q 6 n* and hh[rhs] E P/G since P/G is A+-uniform. 

Now choose rv* E D,?(u) so that r,,* 2 rA+. This is possible since D, is a density 

system over G. Define 

rve 1 len(n) 
FV= _ 

1 

if rj 4 n*, 

4a otherwise. 

It is easy to check that F E P,[T,]. 0 

To obtain a proof of 3.6, make the following changes in the above proof. In the 

statement of 3.6, there is no G or p so that the start of the proof, one must 

consider all 6 < A. The definition of D!(u) is the same. We replace P,[T,] with 

P[Th] which is the same as Pg[Tb] but there is no third condition. With few formal 

changes, Claim 5.2 can be proved which allows one to build the required 

4 h2 *p”. 

The rest of the proof is almost identical except that instead of refering to the 

two conditions on G in the statement of Proposition 3.7, one uses the fact that $ 

already possesses these qualities by virtue of being A’-uniform. 
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