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We prove that any uncountable group G of power ~, has at least 2 subgroups not conjugate in 
pairs. The paper is very self-contained, assuming no knowledge except cardinal arithmetic (and 
the definition of an (abelian) group). 

Contents 
§0. 
§1. 
§2. 
§3. 
§4. 
§5. 
§6. 
§7. 
§8. 
§9. 

§10. 
AP. 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153 
The easy facts and the case 2 ~' > Z . . . . . . . . . . . . . . . . . . . . .  155 
The case p = R 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 
Eliminating the normal subgroups with small index . . . . . . . .  . . . . . .  161 
Direct decompositions and semi-decompositions . . . . . . . . . . . . . . .  168 
A kind of derivative and required subgroups . . . . . . . . . . . . . . . .  174 
On l i m i t / ~ -  the easy cases . . . . . . . . . . . . . . . . . . . . . . . .  178 
The number of direct summands is small . . . . . . . . . . . . . . . . . .  182 
The end for/~ successor . . . . . . . . . . . . . . . . . . . . . . . . . .  190 
The end for/~ limit . . . . . . . . . . . . . . . . . . . . . . . . . . . .  194 
A generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  203 
Appendix for non-logicians . . . . . . . . . . . . . . . . . . . . . . . .  203 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206 

0. Introduction 

This article is dedicated to the proof of 

0.1. Main Theorem. I f  G is a group o f  cardinality ~, ~. an uncountable cardinal, 
/~ = Min{/z "2 ~' I> A}, then nc<~,(G) t> ~.. 

0.2. Definition. nc,,(G) is the number of pairwise nonconjugate subgroups of G 
of power x. We define nc~<,~(G), nc<,,(G) similarly. 

* The author would like to thank the BSF for partially supporting this research. 
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154 S. Shelah 

We note that 

0.3. Conclusion. I f  ~ is an uncountable cardinal, G a group of cardinality ;~, then 
G has at least ~, pairwise nonconjugate subgroups of power <~,. 

Proof of the Condusion. If/~ = Min{/~ :2 ~' I> ~} is <~,, we finish by 0.1, hence we 
have to deal with ), strong limit only. If ~, is singular, we get the result by 1.2(3). 
If ~ is regular, then necessarily ~, = Nx, and for each tr < ~, G has a subgroup G~ 
of power R~; clearly the G,,'s are pairwise nonisomorphic, hence nonconjugate. 

This paper continues [5] where the result was conjectured and proved under 
GCH, and for many cases (on)~, for every G). The motivation was a question of 
Rips; he built a group of power No with exactly three subgroups up to conjugacy, 
and he asks whether we can do something similar for higher cardinals. 

Note that by [6] if ~ = r ÷ =  2 ~, then there is a group of power ~. with ~. 
subgroups (hence <~. subgroups up to conjugacy). Rips [4] improves this to: If 
there is an algebra with countably many operations of power ~ with ~<~ 
subalgebras, then there is such a group. 

Almost no special knowledge is required to understand the paper. The facts we 
use from mathematical logic which algebraists may not know are explained in the 
Appendix. 

During the proof we prove the Main Theorem under various hypotheses on 
and then add the hypothesis eliminating those cases. 

Really, we prove the theorem by induction on ~. 
Some readers were disappointed complaining that "after at last I got an 

intuition, the class of groups we discuss disappears." We may want to look at 
classes of groups which essentially are discussed (that is, the one satisfying some 
intermediate consequences of being in ~ or ~ ) .  See 8.4. 

In Section 10 we give a generalization of 0.1, 0.3. 

Notation 

Set Theory. Let ~ , / t  be fixed cardinals as in the Main Theorem. Let [A[ be the 
power of A. Let X, r ,  0, tr denote cardinals (almost always infinite), a~, t ,  ~, i, j 
denote ordinals, 6 denote a limit ordinal and r/, v, p denote sequences of 
ordinals. Let atr be the set of sequences of length fl of ordinals <re. 
~a~= I...J~,<a ~'tr, ~ t r =  U~,~t3 err. Let X" be cardinal exponentation, X<'~= Eo<,¢X °. 

Let 7/, Q, • be the integers, rationals and reals, respectively. Let m, n, r 
denote natural numbers or integers, so n < to (i < to) means n (i) is a natural 
number, n e T /  means n is an integer. Let (at ' te  T) denote a T-indexed 
sequence. Let F, f, h denote functions. 

Group Theory. Let G, H, / ,  J, K, L, M, N denote groups. For A ~_ G let 
( A ) c  denote the subgroup of G generated by A; but ( A 1 , . . . , A , ) c  = 
(~_Jr=lAi)G, if A i ' - { a i )  we write a i instead of Ai, and let (A,: t e T ) c  denote 
( U t ~ T A t ) G  . 
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Uncountable groups have many nonconjugate subgroups 155 

Let a, b, c, d, x, y denote elements of groups, e the unit (ec of G, if confusion 
may arise) and A, B, C, D denote sets of elements of groups. 

For g e G, D g" G ~ G is the function [2g(x) = gxg -~, D g is an automorphism of 
G, and such an automorphism is called inner. So a normal subgroup of G is one 
preserved by all inner automorphisms and a characteristic subgroup is one 
preserved by all automorphisms of G (so being a characteristic subgroup is a 
transitive relation, being a normal subgroup not necessarily). 

I f B ,  A _ G ,  x e G ,  t h e n x A = { x y - y e A } , A B = { x y - x e A ,  y e B } ; i f N i s a  
normal subgroup of G, then G / N =  { x N : x  e G} is the quotient group, and for 
A ~_ G, A / N =  { x N : x  cA}.  

We say x, y commute in G if xy = yx; we say A, B ~_ G commute if every 
x e A, y e B commute. 

Let Cent G = {x e G "x commutes wi thG} .  Cent~(G) is defined by induction 

on t~: Cent°(G) = {e}, 

Cent~+l(G) = {x e G :x Cent~(G) eCent (G/Cent~(G))} ,  

Cent~(G) = l..J Cent~(G). 
~r<6 

We can prove by induction on tr that Cent~(G) is a normal (even characteristic) 
subgroup of G. 

Let Cen t®(G)=U~Cen t~(G) .  Let C m c ( A ) = { x e G : x  commutes with A}, 
this is a subgroup. 

Now G O) = ( x yx - l y  -1 :x, y e G ) c  is called the commutator subgroup of G. We 
define G (~) by induction on c~: G (°) = G, G (a+l) = (G('°) 0), G (6) = f']~<o G% 

G(=)=["]~G ~. We can prove by induction 
subgroups of G, and G / G  0) is commutative. 

Let (G :H)  be the index of H in G, i.e., 
kernel of the homomorphism h. 

that they are all characteristic 

I{xn:x e G}I. Let Ker(h) be the 

0.4. Fact. For A ~_ G, 

Cen t ( (A)c )  = ( A ) c  f7 Cm~(A) c_ Cent(Cmc(A)).  

Proof. Direct checking. 

We say that {at:t e S} forms a basis of a commutative 
G = (at:t  e S ) G ,  and e =  HT=l (ao) n(l) ( t l , . . - ,  t,, distinct, 
(at,) "(0 = e for each l [implies n(l) = 0 for each l]. 

[free] group G if 
n(l) e E) implies 

1. The easy facts and the case 2 ~ > 

Remember that 3., # are always as in the Main Theorem. We shall start to 
investigate counterexamples and 
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156 S. Shelah 

1.1. Definition. (D Let ~x = ~ =  {G :G has power 4 and nc ,u (G)  < Z}. 
(2) ~ = {G: for some L c_ Cent(G),  ILl < and G / L  e ~x). 
(3) For A, B, C ~_ G we say B, C are conjugate over A in G (or B conjugate to 

C over A in G) if some inner automorphism of G maps C onto B and is the 
identity over A. 

1.2. Fact. (1) I f  G ~ ~ ,  then G has at most 4 subgroups of  power <~#. 
(2) I f  ~ 4: ~, then for no r, 2I" < 4 < 4". 
(3) I f  2 ~ < [GI < IGI '~, then nc,,(G) = IG[ '¢ 

Proof. (1) Let {G~: i< t r}  be a maximal family of pairwise nonconjugate 
subgroups of G each of power ~<#. AS G e ~ necessarily tr < Z. Now the family 
{ElgGi :g ~ G, i < c~} contains all subgroups of G of power ~ #  and has power 

 IGI-I l = Z. 
(2) Let {a~ : i<4}  be a list of distinct elements of G; as Z<M' ,  there is a list 

{u~:a ;<  M'} of distinct subsets of 4. Let G~ = (ai:i e u~)a, so G~ is a subgroup 
of G of power r ,  and r < # (as 2" < 4 ~< 2~'). Define an equivalence relation E on 
4K: 

What is the power of {fl:c~Efl}? It is at most the number of subsets of 
{i < 4:ai  e G,,}, but  this set has power ~<[G~I = r ,  hence the number of subsets of 
it is <~2". Hence each E-equivalence class has power ~<2". As 2" < 4", the number 
of groups in {Gi: i < 4"} is 4". So G has 4" subgroups each of power <~r < #, 
hence by (1) we get a contradiction to G e ~x. 

(3) By the proofs of (1) and (2). 

1.3. Fact. For a commutative uncountable group G, and r <~ Ia l ,  nc (a) - I a l  ~ 

ProoL Easy (or see [5]): Choose by induction on a~< [G[, a~, n~ such that 
0 ~< n~ < to, a~ e G and for every m e Z, (a~) m e (a s : fl < oc) a iff (ao,) m = e iff m is 
a multiple of n~ (and a~ ~ e of course). This can be done as G is uncountable. 
Now let for S~[G[ ,  [S[<<-r, Gs=(ao~: t reS)c ,  so we have [G[ '~ distinct 
subgroups of G. But the only inner automorphism of G is the identity, so we 
finish. 

1.4. Fact. (1) I f  N is a normal subgroup of  G and 0 a cardinal >~Ro, then 
nc,o(G/N)<~nc~o(G). 

(2) nc~o(G/N) is the number of  {H:N~_H~_G,  ( H : G ) ~ O }  up to conjugacy 
inG. 

(3) I f  0 < #, G ~ ~°x, then nc~o(G) < 4. 

Proof. (1) Let r = ncJ~(G/N), and let H/ (i < r )  be pairwise nonconjugate 
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Uncountable groups have many nonconjugate subgroups 157 

subgroups of G/N each of power ~<0. Choose for each member of Hi a 
i representative, so for some x ~ e G  I), and let 

g,= IH, So gi is a subgroup of G of power  <IH, I 0, and if 
g • G, i :/: j, E] g maps Ki onto Kj, then Vi gN maps ~ onto/-/j, contradiction. So Ki 
(i < x)  exemplify x ~< nc~o(G) as required. 

(2), (3) should be dear.  

1.5. Fact. For a cardinal O, and N a subgroup of G, nc~0(N)~<nc~o(G)x 
(G'N) .  

Proof. Let x = nc~o(N) and {Hi :i < x} be a maximal family of subgroups of N, 
nonconjugatge in N, each of power ~<0. Define an equivalence relation E on x: 
i E] if/-/i, ~ are conjugate in G. 

Clearly the number of E-equivalence classes is at most nc~o(G), so it is enough 
to prove that 'each equivalence class has power <~(G :N). If S = {/':i E j}, then for 
every j e S for some gj ~ G, E]gJ maps ~ onto /-/i. If ISI > (G :N) for some 
o: :/: fl e S, g~N = g~N, hence g~lg~ • N; now 

D~g~g*)(H,,) = Ds~'(Dg.H,,) = Dg~'(/-/i) = H a; 

so H~, Ht~ are conjugate in N, contradiction. 

1.6. F a a .  I f  N is a normal subgroup of G, G e ~ ,  (G :N) = ~., then G/N e 
( form=O, 1). 

Proof. It suffices to prove the fact for m = 0. As ( G ' N ) =  4, G/N has power 3. 
and by 1.4, nc~,(G/N) <~ nov,(G)  < ~,. 

1.7. Fact. If  N is a subgroup of G, G e ~x, (G "N)< 4, then N e ~x (for 
m=0, 1). 

Proof. If m = 1, let L exemplify G e ~]  (see 1.1(2)). We know N/(L  N N) ~- NL/  
L which is a normal subgroup of G/L, and (G/L:NL/L)<~(G'N)<~.,  so we 
reduce this to the case m = 0 (remembering L c Cent(G), hence N tq L c 
Cent(N)). 

It is known that I a l - - ( G  :N) x INI, hence INI = 4. By 1.5, 

n c , , ( N )  ~< nc~, (G)  x (G :N) < Z. 

1.8. Fad .  f f  G ~ ~ ,  then 
(1) Cent(G) has power <It + R1. 
(2) Cent(G) has power ~Ro + n c ~ ( G ) .  
(3) Cent°O(G) has power <~Ro + nC~o(G). 
(4) (G:G o)) is <~ + ~. 
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158 S. Shelah 

Proof. Let L exemplify G • ~ .  
(1) If [Cent(G)l I> # + R~, then ]Cent(G)/L[ >I # + e,, hence by 1.3, Cent(G)/L 

has at least 2 ~' distinct subgroups of power ~<#. By the definition of the center, 
they are pairwise nonconjugate in G/L. So nc~, (G/L) >I 2 ~' >i ~., contradiction. 

(2) Clearly { ( a ) c : a  •Cen t (G)}  is a family of pairwise nonconjugate count- 
able subgroups of G, and if ICent(G)l > ~o, then the family has power ICent(G)l. 
On the other hand the family has power ~<nc,a0(G ). Together we get the 
conclusion. 

(3) Left to the reader. 
(4) We know that G °) is a normal subgroup of G, hence by 1.4, nc,~,(G/ 

G(x))~<nc~,(G). But G/G (1) is trivially commutative, so we can apply 1.3 (if 
m = 1 we should divide by some L, [L[ < #, so it does not matter). 

1.9. Fact. Suppose A~_G, then on the set { H : A c _ H ~ G ,  [H[<~r} the 
equivalence relation "being conjugate over A "  has at most nc~,c(G)+ K ]al 

equivalence classes (and this number is < ~, if G • ~ ,  /(Ia[ ( /~,, /( ~ ].~). 

Proof. Let 0 = nc~,~(G) + r IAI, and suppose A c Hi c__ G, IH~I ~ K for i < 0 +, and 
the/-/~'s are pairwise nonconjugate over A in G. As 0 I> nc~,~(G), w.l.o.g, the 
~ ' s  are pairwise conjugate in G, so let g~ • G, rig, maps Hi onto Ho. The number 
of possible functions rig, I A is at most the number of functions from A into Ho, 
i.e., [Ho[ lal ~ I¢ IAI <~ O, hence w.l.o.g, t--]g, r A is constant. So i-q~g~'go = rig~-lE]gl is 
the identity on A and maps HI onto/-/2, contradiction. 

1.10. Fact. (1) ff 2 IAI < 3,, A ~ G • ~ ,  then CraG(A) has power ~.. 
(2) I f  A=_G, IAI~<~, then n c , , ( C m c ( A ) / C e n t ( ( A ) c ) ) < , n c ~ , ( G ) + #  IAI 

(remember Cent( (A)  c)  ~- Cent(CmG(A)) by 0.4). 
(3) ff No<#,  #ml<A,  A ~ _ G • ~ x ,  then C m 6 ( A ) e ~  (in fact CmG(A)/ 

Cent((A)G) • ~x.) 
(4) Parts (1) and (3) are true for G • ~lx too. 

Proof. (1) Let ai e G (i < A) be distinct members of G and let 0 be any (infinite) 
cardinal such that Ro + IAI ÷ nc . . (G)  0 < A. W.l.o.g. (A, as) c (i < 0 +) are 
distinct, and by 1.9 w.l.o.g. (A, a~)G are pairwise conjugate over A. So let g~ • G, 
E] g, be the identity over A and maps (A, ao)G onto (A, a~)G. W.l.o.g. for some 
b • (A, no) for every i > 0 ,  rig,(b)= as. So g~ commutes with A, hence gi • 
CraG(A), and g~bg?l= as. As the a~'s are distinct, the g~ are distinct, hence 
CraG(A) has power >10 +. As 0 was any cardinal R0+ n c ~ , ( G ) +  IAI ~l ~< 0 < Z ,  
we finish. 

(2) Use 1.9 and the proof of 1.4. 
(3) Use (2). 
(4) Easy. For (1) if g~L (i < 3.) are distinct members of Cm6/L(A/L), then D s, 

maps each a • A  into aL. As 2 lal <~., IAI < U, hence IAL[ < U, hence for each 
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Uncountable groups have many nonconjugate subgroups 159 

0 < I ,  w.l.o.g.  D g, I A  is the same for i < O  +, hence ICm(A)l>~l(go~g~:i< 
0 + } l >  0. Hence  ICm(A) Z. 

1.11. T h e o r e m .  The main theorem holds if t < 2 ~. 

Proof.  Let  G • ~x. We choose by induction on a~ < / t ,  for every q • ~2 an 
element  a n • G such that  

(a) a n commutes  with a n r 8 for every fl < l(rl) , 
(b) an^<o > and an^<: > do not  commute .  

For c~ limit or  zero,  q • ~'2: choose a n = e. For  a~ = fl + 1, r / •  82 we have to 

define an^w>, an^<1 >. 
By 1.10(1), Cm6{a  n r~,:~,<~fl} has power I (as fl < ~, so 2181 < I ) .  Hence  it is 

enough to find there  two noncommut ing  elements.  If we cannot  find them,  

CraG{an r ~ : Y <~ fl} is a commuta t ive  subgroup of G of power 3., so by 1.3 it has 
2" subgroups of power  #, hence G has 2 ~' subgroups of power ju, contradict ion to 

1.2(1). 
So the a n are defined, and let for r / •  ~2, H n = (a n r~: o : < / ~ ) c .  Clearly H n is a 

commutat ive  subgroup of G of power  ~</u. Also ~l ~ v ::)> H n :/= H~; otherwise let 

fl = Min{fl : rl(fl) =/: v(fl)}, then a~ t(8+l) does not commute  with a n t<8+1) but 
an r <8+1) • Hn, a~ t <8+~) • H~ and  both  are commutat ive.  So G has >i 2 ~' > 3. 
subgroups of power  t ,  contradict ing 1.2(1). So there is no G • ~x. 

1.12. Fact. If A _~ G • ~ ,  IAI < #, and N is a normal subgroup o f  G which 
includes C m 6 ( A ) ,  then (G :N)  < i .  

Proof .  Cent  G ~_ N (as Cent  G ~ Cmc(A) ) .  Suppose (G :N)  = I ,  so by induction 
one chooses a i • G - ( N , A ,  a j : j< i )G .  As in the proof  of 1.10(1) for some 
i < j < I and  g • G, El s maps  (A,  ai)  c onto (A,  a i )  6 and is the identi ty on A, so 
g • C m ( A ) ~ _ N ,  and for some b • ( A ,  aj), a i = g b g - l • ( A ,  aj, g)6~_ 
(N, A,  a~" tr < i ) ,  contradict ion.  

1.13. Fact .  I f  G • ~lx then: 
(1) The number of  H, Cent  G ~_ H ~_ G, [HI up to conjugacy in G is < I. 
(2) The number of  H ~_ G, H (1) = H, up to conjugacy in G is < I. 

Proof.  (1) We know G / C e n t  G e ~x, and use 1.4(2). 
(2) This  is because for such H,  ( ( H ,  Cent G ) 6 )  (1) = H .  

2.  T h e  c a s e  ~ = }~0 

In fact this was the original quest ion (i.e.,  2. = R1) and in [5] we have proved 
nc(G) >I t when  Ro < IGI <~2 s°, however  here we want  to prove nc<_so(G) >/[GI. 
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To this end we eventually build many non-isomorphic finitely generated sub- 
groups (after analyzing a possible counterexample). 

During this section we assume # = Ro, and later assume/z > Ro. 

2.1. Fact. f f  # = Ro, then every G • ~lx has an element o f  order oo (i.e., 
(Vn > 0 )  g" =/: e). 

Proof. Let G • ~1). By 1.8, Cent=(G) has p o w e r < Z ,  hence by 1.6, G~ 
Cent=(G) e ~x. If G was a counterexample to the fact, then so is G/Cent®(G), 
hence w.l.o.g. G is with a trivial center. 

Clearly in such a G (i.e., a counterexample with trivial center): 
( , )  every finitely generated commutative subgroup of G is finite. 

We shall prove later: 

2.2. Subfact. For G as above for  each finite commutative A,  some g • G 
commutes with A ,  (g>G fq ( A )  = {e} and g q=e, o f  course. 

So we can choose by induction on n < to, an • G, a, 4= e, so that {a, : n < to} is 
a basis of a commutative subgroup of G. (Note that <am :m <~ n>G is finite by 
(*) ) .  Let { n : n < t o } = { n t : t e Q } ,  and for every real r, let H , =  {a, :t e Q ,  t <  
r}. So {Hr:r • R} is a family of 2~o I> Z subgroups of G. As G • ~x for some 
r(1) < r(2), Hr~z) is conjugate to H,o) in G. Hence for some g • G, [:Is maps Hr<z) 
into H,O) which is a proper subgroup of H,(2) (obviously Hro) =_-H,~z), but for some 
rational t, r ( 1 ) < t < r ( 2 ) ,  hence a, ,eH4z)-H,~l ) ) .  So necessarily gn4=e for 
0 < n < to, hence we prove 2.1 except that we have to prove 2.2. 

Proof of Subfact 2.2. As G has a trivial center choose a finite B, A ~ B ~_ G, such 
that each a e ( A ) ~  (except e) does not commute with some b • B (possible as 
(A)G is finite, by (*) ) .  Now by 1.9, Cmc(B)  has power Z, but by the choice of 
B, CmG(B) N (A )G  = {e}, so any g • CmG(B), g4=e is as required. 

2.3. Conclusion. Let # = Ro. I f  G • ~x, A ~ G is finite, then there is a g • 
CmG(A) such that g" ~ (A)G for  every 0 < n  < to. 

ProoL As A is finite, by 1.10(2), letting G1 ~= CmG(A), G1/Cent G1 belongs to 
~x. By 2.1 there is a g e G1 such that g Cent Ga has infinite order. So g" ~ Cent G1 
for 0 < n < to, also g • Cmc(A)  and 

(A) G n (g)  G ~-- (A > G n Cmc(A)  ~_ Cent CmG(A) = Cent G 1. 

2.4. Fact. Suppose G e ~x, # = 1%. There are b, e G (for n e 7/) and g e G such 
that: 

(1) { b , ' n  e 7/} forms a basis o f  a free commutative group. 
(2) [38b, = b,+ 1" 
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Proof. By 2.3 there are a,, e G (n < to) which form a free basis of a commutative 
subgroup of G. Let Nt (t ~ ~2), Hr (r E R) be as in the proof of 2.1 and so again 
for some r ( 1 ) < r ( 2 )  in R and g E G, D g maps Hr(2) into H,(~). Let t ~ Q, 
r(1) < t < r(2), and bm = [:]g'(a,,,) for m E 7/. The checking is easy. 

2.5. Proof of the Main Theorem for ~-" ~o. We use g, b n (n E Z) from 2.4. 
Denote H = ({b,, :n < to})G, this group has 2~o subgroups. Let X = nc<-so(G) + 
Ro, so H has X + distinct subgroups which are conjugate in pairs (by elements of 
G). For i < X + let Hi be a subgroup of H and gi e G such that i ~ j  ~ Hi :/://j and 
gJ-I,.g~ 1 =Ho. Now for every i < X  + define K~ = (bo, g~, g)G, a subgroup of G. If 
we shall find S _ X +, IS I = X + such that for i, j e S, i :/=j f f  K~ @ Kj, we clearly 
obtain a contradiction to the choice of X (non-isomorphic groups cannot be 
conjugate). 

How shall we do it? View K~ as models of group theory with three additional 
constants b, g, h (where in Ki, b is interpreted by bo, g by gi, h by g). Those 
models cannot be isomorphic since for i : / : j<X +, gi behaves on (bo, g) 
differently than gj. 

Now we use the following observation: Given a countable group it can be 
expanded by 3 new constants in only R0 ways (R 3 = ~0) (this is a special case of 
Lemma VIII 1.3 from ~7]). So there is S ~_ X +, ISI- x +, such that i # : j ~ / ~ i  @/~i 
when /~i is the reduct to the language of group theory (containing only e and 
multiplication) of Ki. 

3. Eliminating the normal subgroups with small index 

In this section we shall show that any G e ~x has a normal subgroup N with 
index <~., which has no proper normal subgroup with index <~.. We then prove 
that for any such N, N = N (1) and any x E N - Cent(N) has I>/~ conjugates in N. 

Those subgroups N (and variants) play an important role in the sequel. 

3.1. Claim. Suppose that 0 is an uncountable cardinal, and N~ (te < O) is a strictly 
decreasing sequence of  normal subgroups of  G. Then nc~o(G) ~> 2 °. 

Proof. We shall define by induction on te < O, an element a~ and an ordinal fl~ 
such that: 

(a) a. E N~ - No~+I, 
(b) < Ito + tel ÷, 
(c) for every y < te, fl~, < fl~, 
(d) ao~ (No,+lLJ{ay:Y<te})6.  
Suppose we have defined ay, fl~, for every y < te and we shall define a,,, fl,,. 

Clearly the subgroup H~ = (ar :y  < te)~ has power<  Ito + tel +, hence for some 
ordinal fl~, U~,<,, fl~, < fl~ < Ito + tel +, and H~ tq (N0. - N0.+I ) =~.  Choose a~ 
No, -N0 .+ I ;  now (a), (b), (c) ho ld  trivially. As for (d), if it fails, then a~No.+l 

Sh:192



162 S. Shelah 

belongs to (gNa. + 1: g ~ H ,  } (i.e., the homomorphic image of H~, in G/Na~ + 1 by 
the canonical homomorphism). Hence for some g e H~, gNa.+l = a~Ntj,+l hence 
a-~lg ~ N#,,+I. But a,, e Nt~ ~, Na~+I _~ Nt3 ~, so necessarily g = a¢,(a-dlg) e Nij ~, 
however g e H, H f'l Nt~ ~ = H I"! Ntis+ 1 hence g e Ntis+l, so a~ = g(g-la~) = 
g(aT, lg) -1 belongs to Na~+l, contradicting the choice of a, .  So (d) holds too, so 
we have carried successfully the definition by induction of a~, fl~. Now for any 
S G 0 we define 

n s  = (a~" o: e S)6 .  

Clearly it suffices to prove that for any distinct subsets S, T of 0, Hs is not 
conjugate to Hr.  Now as S:/=T w. l .o .g ,  for some ct, oreS,  t r ¢ T .  As 
a,, e Na. - Nab+l, and a~ e S, clearly Hs fq (Na. - Nab+l) :/: ~. On the other hand as 
0~,T, 

H r =  (a~ 'y  ~ T)  ~_ (N~.+I U {a~ • ~ T } ) 6  

c ( N ~ . + l U { a e ' y e T ,  7--< a;})6 

c_ (Nt~,,+l U {a~, : y < a~})6 

Hence H r  fq (Nt~ ~ - Nt3~+I) = 0  by the proof of (d). 
As the set Na~ -Na~+I  is preserved by inner automorphisms of G, H r  is disjoint 

to it whereas Hs is not disjoint to it, clearly Hs, Hr are not conjugates. 

3.2. Claim. Suppose that N is a normal subgroup of  G, A c_ G, [A[ <~x, 
(G :N)  < o = IGI, o is an uncountable cardinal, ~o = O, x Ial < o and tr <. 2". 

Then N has subsets Bi (for i <  a) such that Inil <-r  and the subgroups (A, Bi)6 
(for i < tr) are pairwise nonconjugates in G. 

Proof. Suppose not and there are only 00 < tr nonconjugate such subgroups. Let 
0 = 00 + x IAI + (G :N) + R0, so clearly 0 < tr. We first prove: 

(,) K = N N Cm6(A) has power tr. 

For let 01 = 0 + IKI and assume 01 < o. Let b/( i  < 0~) be distinct members of 
N (N has power o as IGI = o >  (G :N) ,  o infinite). As we have assumed that the 
claim falls and as 0o ~< 0 ~< 01, among the subgroups (A, b i )c  (i < 0~-) there are 
0~- which are pairwise conjugates in G. So w.l.o.g, all (A, bi) ( i <  0~) are 
conjugates in G. So let D g, be a conjugation which maps (A, hi)6 onto (A, b0)6. 
As r lal <~ 0 ~< 01, IA[ r ,  and I(A, bi)cl r the number of functions from A to 
(A, b0)6 is ~<01, hence w.l.o.g. E] g, [A  is constant, hence (for i, j <  Or), 
(EIs~)-ID g, = D tgi-'s') is the identity on A, which means g]lg i e Cmc(A).  

As Clg,(bi) has ~<I(A, bo)cl<~r<~01 possible values, w.l.o.g, for i > 0 ,  it is 
constant, hence (ClgJ)-lUlg,(bi) = bj. Also the number of possible cosets giN is at 
most (G : N) ~< 0 ~< 01, hence w.l.o.g, for every i > 0, giN = giN, so g7lgl e N. 
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So we have gotten that g~lg 1 (1 < i < 0~-) are 0~ distinct members of K, 
contradiction to " ( .  ) fails." So we have proved ( . )  

So  IKI = o. Now 
(* *) there are subgroups Hi of K (for i <  a) such that H / =  K N (Hi, A ) a ,  
Inil r, and the H/'s are pairwise nonconjugate in K. 

( * * ) suffices: suppose 3.2 fails. By the proof of 1.9, for some i < a for 0 ÷ j 's ,  
(A, / - / j )a  is conjugate to (A, Hi)a say by E]g% and w.l.o.g. [3 g'. r A = t h e  
identity, hence gi,j e CmG(A). 

Now O>>-(G:N), hence for some such j(1):/:j(2), gijo)N=gi.j(2)N, SO 
d e f  - -  1 _ 

g "-  g i , j ( 2 ) g i , j ( 1 ) E N  I ' I C m G ( A )  = K, and lqg maps ( A , / / / o ) ) a  onto (A,/-//(2))a, 
and as g e K ,  E] g maps (A, I t /o))ctqK onto (A,I-I/(2))aNK, but for every j, 
(A, tt/)a fq K =  I-I/. So j(1) :/:j(2) but / /Jo) ,  /-/j(2) were assumed to be nonconjug- 
ate in K, contradiction, hence ( ,  • ) really suffices. 

Proof of (* *). Now if Cent(K)/(Cent(K)fq (A)c)  has power ~>x + R1, by 
1.3, Cent(K) has at least 2"--- > a subgroups of power x extending Cent(K)tq 
( A ) c ,  trivially nonconjugates in K (being in the center), and for each such H 
easily H = (A, H)H fq K. 

So Cent(K)/(Cent(K) fq (A)6)  has power < x  + N 1 and as ( A ) a  has power < a 
(as/¢IAI < tr, O uncountable) easily Cent(K) has power < a. 

So K/Cent(K) has power a, and as "~o = fl" is a hypothesis and as 2"I-  > a, 
dearly nc<~,~(K/Cent K) is I> a. 

So let Ki (i < a) be subgroups of K of power ~< x, such that Ki/Cent K (i < a) 
are pairwise nonconjugate subgroups of K/CentK. Let Hi = (Ki, A ) a  N K; as 
( A ) c  I"1 Cma(A) ~_ Cent Cmc(A) (see 0.4) it is easy to check that the / - / / ( i  < a)  
are as required in ( * * ). (Note that Ki, A commute, (Ki, A ) c =  {xy:x eKi, y e 
A}, and Hi= {xy:x eKi, y e A N K } . )  

3.3. Fact. For any subgroups N~ (o: < fl) of N, 

(G: l'~ N~<) ~< H (G :N~). 

Proof. Trivial: Define a function Ff rom G to l-I~<# G/N~ by F(x) = (xN~, : o: < fl). 
The power of the range of F is ~<lI~<t3 IG/N l = IL<a (G Also 

F(x) = F(y) <:> (Vtr < fl)(xNo~ = yNo,) C:> (Vtr < fl)(y-lx e No,) 

¢~y-'x e. l'} N,~,c~x(l"}N~l =y(ON~). 
ot<~ \ e~ I 

So I-I~<#(G:N~)~> IRang(F)l>-(G:A~<aN~), and so the conclusion is clear. 
From now on we assume 

3.4 .  H y p o t h e s i s .  ~o  = t~ for every  u n c o u n t a b l e  o </1., and # > Ro, 2 ~' = Z. 

And for this section sometimes we assume 
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3.4A. Statement. /z is not strong limit singular (hence IAI < g : > g ' A ' < Z ,  see 
1.10(3), (4)). 

3.5. Lemma. If G ~ ~x, then 

MJn G %f n {N: N a normal subgroup of  G, (G : N) < Z } 

is a characteristic (hence normal) subgroup of  G and has index < Z. 

Proof. Being characteristic is trivial, so we shall prove the "index < 2."  
We choose by induction on tr </~ a normal subgroup N~, of G, such that 

No = G, N~ is a proper subgroup of N# for every fl < tr and (G :N~) < ;t. 
If we succeed we shall get by 3.1 that nov, (G)I>2"  but 2 t' ~>~, hence this 

contradicts G e ~x. So for some tr < # we cannot find N~ as required. If tr is a 
successor ordinal, i.e., tr = fl + 1 note that for any normal subgroup N of G with 
index < Z, N O N 8 is a normal subgroup of G with index < Z. As N O N# cannot 
serve as N~, necessarily N O N # = N  8. So N 8 is equal to MinG,  hence 
(G :M in G) - (N:N#) < ~, and we finish the proof. 

So we assume o: is a limit ordinal. Then necessarily N ~  f N # < ~ N  8 has index 
~. (in G). By 3.3, (G:N)<-.-I-Is<~(G:N8), let a s = ( G : N s ) ,  clearly o 8 <~. for 
/3 < a: and by a:'s choice II8<~ o8 I> ~ and/3 < y ::> o# ~< o r. 

Le t / t  8 = Min{ 0 : 2 0 I> a 8 }, as o 8 < Z clearly/z 8 ~</~, and obviously/3 < y < a: 

Case (a): Sup{/,# :/3 < a:}/s < / , .  Then we can find x </z such that [a:[ ~< x and 
/u 8 <~x for every /3 < ac. So for each /3 < re, o 8 ~<2~'#<~2 ", hence II#<,,o 8 ~< 
(2") I'~ = 2", contradicting ). ~< 1-I8<~ 08. 

Case (b): Not case (a) and a 8 (/3 < oc) is eventually constant. So by renaming 
w.l.o.g, o# = a for every /3 < a: and ~, ~< l-I#<~ o# = a I'~. As a: < ~, by /,'s 
definition 214 < A, hence by cardinal arithmetic 214 < a, and as a: is a limit 
ordinal, is infinite. So G/N1 has power o, is infinite, 21'~< a < Z  ~< a I~, 
hence by 1.2(3), nc~I~I(G/N1 ) >I a 14, but (see above) a 14 I> ~. and < hence 
nc~,(G/N1) >I Z. But by 1.4, nc~<~,(G) >I nc<~,(G/N1) >I Z, contradiction. 

Case (c): Not case (a) and (~8 :/3 < ~) is not eventually constant. 
Subcase (cl): 3.4A holds. So, w.l.o.g. 2~0>~/z, /~0>N0 and (/,8:/3<a~> is 

strictly increasing. We now define by induction on/3 < o: for every 77 e 1-It<# ar+l 

a subgroup H n of G such that: 
(i) Hn tr~_H,7 ~_ (H, T tr, Nr+l)cfor  y<l(rl) .  
(ii) IH, I 

(iii) If/3 = l(r/) is a limit ordinal, then H n = Ur<# Hn t r. 
(iv) The subgroups (H,^<O, Nt(,)+2>a for all i < a / ( , ) ÷ ,  (for a fix ,7) are 

pairwise nonconjugate in G. 
The induction step is-done by Lemma 3.2 (possible as/z 8 ~</, hence/a 8 < / ,  for 

every/3 < a~). With G/Nt(,7)+2, Nl(n)+ffNt(n)+2, at(n)+1, Hn, /~t(,0+, here standing 
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for G, N, o, A ,  r there respectively (note that (~.~/(r/)+l)lHnl ~ (2"o)',(:)= 2",(~)< 
ot(n)+x as necessarily 2"~ ( f l<  or) is strictly increasing too). Now for each 
r/eI-Is<~as+1, H, =[,.Jr<sH, re; clearly by (ii) IH, I--<Es<~8--<~ lel=~, by 
(i) + (iv) the Hn's are pairwise nonconjugate. So {H," r/e 1-I8<~ #8+1} exemplifies 
nc~<~,(G) >I 1-I8<~ o8+~ = 1-I8<~ o8 i> Z, contradicting G e ~z. 

Subcase (c2): 3.4A fails (i.e., # is strong limit singular). By cardinal 
arithmetic, #i, t r i<# for each i and cf or=cf #. Let # = Ei<~f, x(i), I~1 +cf~ < 
x(i), z ( i  + 1) = z(i + 1) x(i). Let fl(i) = Min{fl < or" #8 > ;t(i + 1)}, then fl(i) = 
y(i) + 1 (as < x(i)).  We can now imitate the proof of (cl). 

Case (d): For some fl < y, #8 = #, °8 < °r and for every A ~ N s / N  ~, IAI < 
the set Cm~a/N,(A) has power >1 #. Clearly in this case N s / N  ~ has a commutative 
subgroup of power #, hence by 1.3 has 2" = ~ subgroups H of power # hence by 
1.2(1) (apply to 08, # standing for Z, #) nc<~,(Ns/N~)>l,~,, hence by 1.4, 
nc<~,(N8) ~> Z, contradicting G • ~x by 1.5 (as (G : N s ) = o  8 <Z). 

Case (e): No previous cases. As not case (a) w.l.o.g. Sup{# 8 "f l< or} = #, 
hence w.l.o.g, o 8 >Ro. As not case (c) w.l.o.g. (#8"f l<  or) is eventually 
constant, so necessarily #8 = #  for every/$ large enough, and w.l.o.g. #8 = #  for 
every fl < or. As not case (b) w.l.o.g. (o  8 "fl < or) is strictly increasing, or = cf or, 
and let or( * ) =  Min{or, cf#}. Note that l-I8<~(,) 08 i> ,l: /f or( • ) =  or obviously, 
and if or(*) = cf # 4= or, then necessarily cf # < #, hence ~ = 2" = (2<~') a~' 

IIS<cf/~ 08+  1 (note that 2 <~' ~< 08+1, as  ~./8+ 1 -- # ) .  
We now define by induction on/~ < or( • ) for every 7/• [It<8 o~+~ a subgroup 

H~ of G such that: 
( i ) / - / ,  :_ (/-/, r,, for r < / (n ) .  

(ii) [Hnl is strictly smaller than #. 
(iii) If/~ = l(r/) is a limit ordinal, then Hn = [..J~<8 Hn rr- 
(iv) The subgroups (H~^<i>, N/(~)+2)o for all i <  Ol(,O+~ (for a fix r/) are 

pairwise nonconjugate in G. 
The problem is the induction step. Suppose H n is defined, l(r/)=/~, and we 

shall define H,~^<i> ( i <  08+1). Note that as (G'N~,)= o~,, o~, strictly increasing, 
clearly (N 8 "Nr) = o r for/~ < y < or( * ). As not case (d), there is a set A n ~_ Ns+~ 
such that JAn I< # and CmN~+~/N~÷~ (A,/Ns+~) has power < #. So (as in the proof 
of 1.10) there are 08+2 elements of Ns+1/Ns+2 which are pairwise nonconjugate 
over An/Ns+2. As (G:N8+l)=a8+l<08+2,  there a r e  (or8+l)  + members of 
Ns+l/Ns+ z which are pairwise nonconjugate over Hnt3An in G/Ns+ 2. As 
21H, u '%l<a8+l,  as in 1.10, we can find aieN8+l  (i<o8+1) such that the 
subgroups (H,7/N8+2 t.J A,1/Ns+ 2 t.J {aiNs+2} )6/Na+~ are pairwise nonconjugate. 

ae_~ ( H  n U A ,  U {ai})o (for i < 08+1 ) are as required. Now the subgroups Hn^<i > - 
At last the subgroups {[,_J~,<~(.) H ,  t r: 7/e 1-I8<~(.) 08+x} are pairwise noncon- 

jugate subgroups of G, each of power <~ #, and their number is 1I8<~(.) 08+1 I> 3. 
(by the choice of or( * )). This contradicts G e ~x, hence we finish case (e). 

3.6. Lemma. Suppose G e ~ ,  then (G :M in G) < ~,. 
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Proof. Let L ~_ Cent G, ILl < #, G / L  • ~x. and let K = {x • G :xL • Min(G/L)} .  
We know that G / L  • ~x, hence by 3.5, ( G / L : M i n ( G / L ) ) <  ~,, hence ( G ' K ) <  ~., 
and clearly K is a normal subgroup of G. Clearly 

Min G =/"7 { N : N  c_ K, N a normal subgroup of G and (K "N) < ~}. 

However for any such N, clearly (N, L Cl K ) c  = K hence (K :N)  ~< ILl. So, 
repeating the beginning of the proof of 3.5, (K:Min  G)~<2 I/4 < 2  ~ =  I but 
(G "K) < ~,, hence (G" Min G) < ~.. 

3.7. Detinition. Let g2" = {Min G" G • ~x} (for m = 0, 1, if m = 0 we may omit 
it). 

3.8. Lemma.  For every G • f2~' (m = 0, 1): 
(1) G • ~ .  
(2) Min G = G (hence g2Tx = { G • ~ :  G = Min G }). 
(3) G = G O). 

(4) Every x • G - Cent G has at least # conjugates (in G). 

Proof. As G e gY~x, let G = Min G*, G* • ~ ' .  
(1) Immediate:  ] G l = t  as IG*I=t ,  and by 3.5 and 3.6, t > ( G * ' M i n G * ) =  

( G * : G )  and use 1.7. 
(2) The problem is that "being a normal subgroup" is not a transitive relation. 

However being a characteristic subgroup is a transitive relation. Now G is a 
characteristic subgroup of G* (by the definition of Min in 3.5) and Min G is a 
characteristic subgroup of G (similarly), so: Min G is a characteristic subgroup of 
G*, hence Min G is a normal subgroup of G*. Now we know (G*:Min  G ) =  
( G * ' G ) ( G : M i n G ) ,  G* e ~ x  (by its choice), G e ~  (by (1)), ( G * ' G ) < I  (by 
3.5 or 3.6), ( G ' M i n G ) < ~ .  (by 3.5 or 3.6), hence ( G * : M i n G ) < L  So by the 
definition of Min G*, Min G* ~_ Min G, but Min G ~_ G = Min G*, hence G - 
Min G* -- Min G, as required. 

(3) We know that G (1) is a normal subgroup of G, and by 1.8(4), (G" G O)) < 
# + bll < I.  As G = Min G (by (2)) necessarily G (1) = G. 

(4) Suppose x • G - Cent G and A = {gxg -~ :g • G} has power <# .  Then 
KaNCmc(A)  is a normal subgroup of G (as any inner automorphisms of G 
maps A onto itself, hence Cmc(A)  onto itself). Also for a, b • G, aK = bK iff 
El" I A = O  b ~A (as both are permutations of A and they are equal iff 
l-P-I" t A = the identity, i.e., b-~a • K). So ( G ' K )  <-]{Elg t A :g • G}I ~ I{h-h is 
a permutation of A}[~2~aI<2~'=~.(21AI<2" as # = M i n { o : 2 ° ~ > 1 } ) .  So 
( G : K )  < t ,  K a normal subgroup of G, hence Min G _  K, but Min G = G, so 
K = G, but then (as x e A) x • Cent(G),  contradiction. 

3.9 Claim. ( 1 ) / f  3.4A holds, G e ~x, A ~_ B are subsets o f  G of  power <#, then 
Min Cmc(B)  ~_ Min Cmc(A).  

(2) For G e ~ ,  Min G is the maximal subgroup o f  G with no proper normal 
subgroup o f  index < I. 
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(3) I f  3.4A holds, B ~ H ~ f M i n  CmG(A), A c_ G, G • ~ ,  A and B of power 
<#, then Min CmG(A U B) = Min CmH(B). 

Proof. (1) Trivially Cmc(B)_~ Cmc(A). As Min CraG(A) is a normal subgroup 
of CmG(A) of index < 3., Cmc(B) tq Min CmG(A) is a subgroup of CmG(B), is a 
normal subgroup of CmG(B) and 

(Cmc(B) • (Cm6(B) N Min Cmc(A)) ~< (Cmc(A)" Min CmG(B)) < ~. 

Hence CmG(B)f7 Min CmG(A) includes MinCmG(B), which gives the desired 
conclusion. 

(2) Trivial: If N is such a subgroup, then N t7 Min G is a normal subgroup of N 
of index < 3., hence N 17 Min G = N, i.e., N _ Min G. 

(3) By 3.4A, 1.10, clearly all subgroups mentioned are in ~ ,  Min Cmn(B) is a 
normal subgroup of CmG(A U B) and has no proper normal subgroup of 
index < ~, hence by 3.9(2), 

Min CmH(B) ~_ Min CmG(A U B). 

By 3.9(1), Min CmG(A 13 B) G Min CraG(A) = H, hence trivially Min Cmc(A U 
B) ~_ CmH(B). As Min Cmc(A U B) has no proper normal subgroup of index < ~, 
clearly by 3.9(2), 

Min Cmc(A U B) ~_ Min CmH(B). 

Together they complete the proof. 

3.10. Fact. For every G and every cardinal O: 
(1) There is a (unique) subgroup N =  Mino G such that N is a maximal 

subgroup of  G satisfying: (o 0 N (1) =N,  and (fl) for every x e N - C e n t N ,  
I{gxg-l:g e N}I I> 0. 

(2) Mino G is a characteristic (hence normal) subgroup of  G, and 0 <-x ::> 
Min,~ G ~_ Mino G. 

(3) I f  G e ~ ,  then Min G ~_ Mino G, hence (G "Mino G) < A, also Mino G e 
(provided that 0 <~ # of  course). 

(4) There are an ordinal o~, a non-decreasing continuous function h: re---> tr such 
that h(0) = 0, h(i) <~ i, h(h(i)) = h(i), [h(i) < h(j) :> i < h(j)] and a strictly de- 

creasing continuous sequence (Ni: i <~ oc) of  subgroups of  G such that No = G, 
N,~ = Mino G, and for each i, Nh(i) is a characteristic subgroup of G and even of  
Nhtj) for j < i  and N / + I - N !  1) or. N i - ' N !  1) and N/+I=CmN,(A) for some set 
A ~_ Nh( i )  , IAI < 0, where A is the set of  conjugateS in Nh(i) of  some x • Nh(i)  --  

Cent Nh(i)  and Ni is a normal subgroup of  Nh(i). 

Proof. Easy: Let ( ~  :i ~< a~) be a maximal sequence as required in (4) (except 
N~ = Mino(G)). By the maximality, N,, satisfies (1)(a 0, (1)(fl): Also if N satisfies 
(1)(00 and (1)(fl), then we can prove by induction on i that N ~_N~, hence 
N ~_ N~,. So N,, is the maximal subgroup of G satisfying (1)(tr), (1)(fl). So we 
have proved (1) and (4). Parts (2) and (3) also cause no problem. 
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3.11. Fact. I f  G • ~2~x, then G/Cent G • I2x. 

3.12. Fact. If 3.4A holds, A c_ G • I2~, IAI < #, N a normal subgroup of G and 
Min CmG(A) ~_ N, then N = G. 

Proof. Similar to that of  1.12. Suppose N ~ G. As G • 12~t, necessarily Cent G 
has power </~, hence w.l.o.g. Cent G ~ A. As N :/: G, N a normal subgroup of 
G, G•K2~ necessarily ( G : N ) = Z .  Denote M°=efMinCma(A). We know that 

d e f  r = ( C m c ( A ) : M ) < Z ,  hence there is B _  CmG(A), IBI<Z such that for every 
x • CmG(A) for some b • B, xb -1 • M. Now we can define by induction on i < Z, 
ai • G, ai ~ ( N, B, A,  aj : j < i )o (this is possible since otherwise G /N  is generated 
by {bN:b • B }  U {aN:a • A }  U {a/N: j<i}  which has power<Z,  hence the 
group G / N  has power < Z, contradicting an assumption). 

Now (ai, A )c /Cen t  G (for i < Z) are subgroups of G/Cent G, which belong to 
Qx, hence letting X = 21AI+S° + (CmG(A)'M),  w.l.o.g. ( a u A ) c / C e n t  G (i < X +) 
are pairwise conjugate in G/Cent G. As Cent G c_A ~_ (a~. A ) c  the subgroups 
(ai, A ) c  ( i < x  +) are pairwise conjugate in G, and let E] g, map (a~,A)c onto 
(ao, A )o .  W.l.o.g. [3 g, ~A is the same as well as Dg,(ai) (for 0 < i  <X+). So for 
O < i , j < x  +, g-i-lgj•Cma(A) and VFz'gJ maps a t to ai, so a 2 •  (g21gl, al)a ~_ 
(Cm(A), al)a ~ (M, B, a, ' i  < 2 ) c  c_ (N, B, a~'i <2) ,  contradiction. 

4. Direct decomposition and semi-decomposition 

As we know that A ~ G, G e ~x, 1 t/lAI < Z implies CmG(A) • ~x, we are able to 
build groups, which are generated by pairwise commuting subgroups. If we start 
with G with no center (such G's exist in ~x) we can get direct decomposition (see 
4.1). This leads naturally to problems of the uniqueness of a decomposition and a 
common refinement of two decompositions, and for suitable G's, to the Boolean 
algebra which the direct summands form. However in our later proofs it seems 
necessary to demand only that the subgroups are commuting, thus forming a 
semi-decomposition, semi-summands, etc. We may want to divide by the center, 
but we are interested in the inner automorphisms of a larger group. 

At last we consider problems of the form: When do the groups H c_ K have 
essentially the same decompositions; the natural function is 

K = ~ K ,  ~ H=~'~(Hr'IK,) .  
t ¢  T t e T  

We complicate this by considering semi-decomposition and decompositions to 
normal subgroups of some extensions H',  K',  respectively. 

4.1. Definition. (1) G = Et~rGt (a direct decomposition) if the (7, are pairwise 
commuting subgroups of G, G =  (G,:t e T)G and G,N (Gs:s e T, s ~ t )  = {e} 

Sh:192



Uncountable groups have many nonconjugate subgroups 169 

(so every g • G, has a unique representation 1-I,~r gt where gt = e for all but finitely 
many t • T). 

The function g"->gt is denoted by Enda, a, (more exactly Endt~a,:t~r>) and is a 
homomorphism from G onto G,, which is the identity onG,.  

(2) G = E~rGt (a semi-decomposition) if the Gt are pairwise commuting 
subgroups of G, and G = (G, : t  • T )6  (so each g • Gt has a representation I-It~Tgt 
where g, = e for all but finitely many t • T, but the representation is not 
necessarily unique). We define End]at:t~r> (A) = {as: for some a • A, a = l-lt~Tat, 
at • Gt, and s • T}. Each Gt is called a semi-summand. 

(3) A semi-decomposition E~T G, is called nice if G} ~) = Gt. 

4.2. Fact. (1) I f  G = £t~ T G,, then G = £;~ T Gt. 
(2) I f  G = E~rGt ,  then Cent G = E; ,TCent  Gt, Cent~G, = £;~r  Cen t~G (for 

ol an ordinal or oo). 
(3) f f  G = E~eTG,, then G (~)= E~eTG} °0. 

(4) f f  a • G = E ~ r  G,, a = II,~Tat (see 4.1(2)), then: 
(i) C m a ( a ) =  Y',' {Cma,(at):t • T}. 

(ii) Cent CmG(a) = E'  {Cent Cmc,(at):t • T}. 
(iii) at • Cent Cma(a) .  
(iv) I f  a • G,, then Cent Cma(a )  = (Cent  Cma,(a), Cent G ) a. 

(5) I f  G =  E~TGt, then GtN (Gs:s • T, s4:t)G~_ Cent G. 
(6) I f  Nt is a normal subgroup of  G, then N = E~r  Nt is a normal subgroup 

of G. I f  in addition, Cent(G~)=_N, then G/N=Et~rGt /Nt  (more exactly 
G/N = Et,r  (G,, N) a/N and ( Gt, N)/N is canonically isomorphic to Gt/Nt). 

Proof. Left to the reader. 

4.3. Fact. Suppose G = ~t~T Ht = ~s~s Ks. Then 
(1) G /Cen t  G = Et~T,s~s(Ht/Cent G N Ks/Cent G), 
(2) G (1) = F,t~T,s~s H~ ') N K~ 1). 

Proof. (2) Let /4 = (Ht : t  • T) ,  / (  = (Ks:s • S )  (i.e., the sequences, not the 
subgroups they generate), and f0 = End~q, ,fls = End~t. Let t( * ) • T, s.t. for s • S, 
t • T ,  Ol ft~fs I Ht(.) is a homomorphism from Ht(.) into Hr. By 4.2(4)(ii) (applied to 

fo, then to f~), for all x • Ht(.) 

Cent Cmc[~fX(x)] ~_ Cent CmG[f~(x)] c_ Cent Cma(X). 

So if t 4: t( * ), by 4.2(4)(iii) and (iv), (i) 

~f~(x) • Cent Cmc(x)  = (Cent CmH,¢.~(x), Cent Gq : q • T) c. 
But 

(Cent  Cm6,c.~(x), Cent Hq : q • T)  G fq Ht = Cent Ht, 

hence o 1 f f f s (x )  • Cent Ht ~_ Cent G. Now for x, y • Ht(.), 
(f°fl(x))(f°fX~(y))(f°f~(x)-~(f°f~(y)) -~ which is e by the 

f°fX~(xyx-ly-1) = 
last sentence; so 
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0 1 f / f s  ~Ht( . )  is trivial on H~2) and it induces a trivial homomorphism from 
H,(.) /Cent H,(.) into G,/Cent G,. The rest should be clear (or see 4.8's proof). 

4.4. Fact. f f  G = G O) or Cent G = {e} and G = Et~rHt  = Es~s Ks, then 

G =  ~ H, AKs .  
t~T ,  s e S  

Proof. By 4.3(2), if G = G O) and by 4.3(1), if Cent G = {e}. 

4.5. Fact.  f f  G = G O) and G = Et~r = E's~r Ks, then G = E'~r,s~s Ht fq Ks. 

Proof. The only nontrivial point is why G c_ G'  a,=~ ( Ht A Ks " t • T, s • S ) a. 

4 . 5 A .  S u b f a c t .  G = ~ ; ~ r  H~ ~) = ~'t~r Ks("). 

This is so because G = G (') ~ '  u ( ' )  H~ ~) Ks(~) = ~ , ~ r ' ' ,  • S o  w . l . o . g .  = H ,  = Ks (as  w e  

just need that they generate G). 
It is enough to prove that every a • Ht belongs to G' .  As G = E ~ s  Ks, clearly 

a = 1-L~sas for some as • Ks, hence it is enough to prove that w.l.o.g, for each 
s • S, as • H, ( remember the as are not uniquely defined). But we have assumed 
H, = H~ 1). First suppose a is a commutator  a = x y x - l y  -~ for some x, y • H,, and 
let x = [L~sxs ,  y = 1-L~sys, where xs, Ys • Ks. Easily a = x y x - l y  -1 = 

1-L~sxsysx~-lyj 1. As x = l-h~sXs, xs • Ks, clearly for each s • S, Cent Cma(xs) ~_ 
Cent Cmc(x) ,  hence for some bs ~ Hi, b~-~xs • Cent G. 

Similarly, for some cs • H,, cTXys • Cent G. Now 

xsysx~y71  = bs (bs lxs )Cs(cs lys ) (bs lxs ) - lbs l (cs lys ) - lCs  1 

= bscsbZlc~ -1 • Ht 

and it also belongs to Ks; hence it belongs to Ht N Ks. 
So a = x y x - l y  -1 = IL  x s y s x s l y s  I = 1-I bscsb~lcj  I is as required. 

mutators in H, generate H,, the proof is complete. 
As the com- 

4.6. Definition. (1) For any group G, G = G (1) or Cent G = {e} we define the 
structure BA(G) :  its elements are the direct summands of G, i.e., {I: for some J, 
G = I + J};  its operations are union and intersection: 

I U J % f  ( l , J ) c ,  

I N J -- the usual intersection. 

(2) If G = G (1), B A ' ( G )  is the following structure: its elements are the 
semi-summands I of G satisfying I = 1 (1). The operations are as in (1). Note 
I • B A ' ( G )  is commutaWee iff it is trivial. 
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4.7. Fact. (1) BA(G)  is a Boolean algebra with zero {e}, one G, and i f  

G = I + J, I is the complement o f  J. 
(2) For I • BA(G)  there is a unique endomorphism End / G from G onto I 

which is the identity on I such that End~ = End~. 11> where G = Io + 11, Io = L 
(3) I f  G = G (1), BA ' (G)  is a Boolean algebra with zero {e}, one G; and for  

every I • B A ' ( G )  there is a unique J = j o ) ,  G = I + ' J. 

(4) For I • B A ' ( G )  we define End~ as in 4.7(2), 4.1(2). 

Proof. (1) Apply 4.4. 
(2) Follows. 
(3) Apply 4.5. 

4.8. Fact. (1) I f  G ~ g21x, then G has no nontrivial direct summand o f  power < 4, 
nor such a noncommutative semi-summand. 

(2) I f  G = Et~TGt, then for  any A c G 

CmG(A) = ~ CmG,(End~' A). 
teT 

Similarly for G = ~'t~rGt. 

(3) I f  G =  ~ t ~ r G t • ~ x ,  then for  each t •  T, [Ia l = Z G,• and M i n G =  
{Min G~'t ~ T, Ia, I = ~). Similarly for  G = ~'  o t~rGt ,  (no G O is commutative by 

1.3) and~or for  ~ .  

(4) For no G e g2x there are an infinite T and Gt (t • T) each o f  power 7~ such 
that G = E[~r G,. This holds for  G ~ g2ax too. 

(5) There is no G • ~ ,  G = G (1) or Cent G = {e}, and ai • G-{e} (for i < #)  
such that for  j < i there is a direct decomposition I + J o f  G such that ai E I ,  aj E J. 

(6) I f  in (5) a i • G-Cent G, we can use semi-decomposition even for  G • ~1. 

Proof. (1) If 1 is a direct summand of G, then for some J, G = I + J, so J is a 
normal subgroup of G, (G: J)  = III. As a - Min G, 1 < I/I < ~ is impossible. The 
proof for semi-summand is similar. 

(2) Note that a, b • G commute iff for every s ~ T, End~G,:t~r>(a) commutes 
with End~G,:t~r>(b ). 

(3) Note that subgroups of G~ are conjugate in G iff they are conjugate in G ,  
hence ( * ) for every o, nc~o(G~) ~< nc~o(G). 

So if G • ~x, Ia, I = 4, clearly Gt e ~x. For any t, Min G, + ~s#=t G s is a normal 
subgroup of G of index (Gt:Min Gt)<). ,  hence it includes Min G. We can 
conclude that: 

Min G c ~'~ {Min Gt: I atl = ~ )  

Suppose equality fails, and x e E {Min Gt" t e T) but x ~ Min G, so x = I-ItETXt, 
xt e Min Gt. Hence we can assume x e Gt for some t. Necessarily I a/I  = 4, and 
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x ~ (Min G) N Gt, but this is a normal subgroup of Gt of index < ~, hence should 
include Min G,, but x does not belong to it, contradiction. 

(4) W.l.o.g.,  T is the set of natural numbers. For each n < to, [G,I = ~, we 
know [Cent (3;,I < lz. 

We now choose for n < to, i < ~., a,,,i • G,, such that (an,i, Cent G,,)G. are 
pairwise distinct, and define for i < ~., Hi = (a,,,~:n < to}c. 

It is clear that  a,,,~ • Hi N G, ~_ (an,i, Cent G,}c.  Now suppose that i #:j  <Z ,  
g • G and F-]g maps Hi onto /-/j. Clearly for some n, g • Era<,, G,,,, apply 
End~6m:m<o~) to Hi, Hi, g and we see that rig maps (an,i, Cent Gt}6, onto (a,,,j, 
Cent Gt)c,, contradiction. For G • £2~, the same proof works. 

4.8A. Remark.  Really, the proof shows that e.g., if IT[ ~ or, e.g., Iatl >i 2 °, 

nCo(~'. G,) I> I-[ IG, l°/( the ideal of finite subsets of T). 
\ t e T  t e T  

(5) For any set S ~/z  let 

Hs = ( a i : i e S } 6 .  

By the hypothesis for j < i, ai commutes with aj, hence Hs is commutative, so 
suppose S, T are distinct subsets of #, g e G, but rig maps Hs onto Hr. As S :/: T 
w.l.o.g., there is t r e  S -  T, so as Fqg(ao~)eHT there are i l l , - - - ,  fl,, e T, and 
m ( 1 ) , . . .  , m ( n ) e T /  such that rig(a~)=FI~_-i (al3k) re(k) (remember Hs is com- 
mutative.) Note that flk :/: a~ for k = 1, n. 

For each k there is a direct decomposition G = Ik +Jk, a,~ e Ik, aak e Jk. So 
a,,:•I=def r-'l~-_l lk, I is a direct summand of G, G = I + J, and Jk _C J for k = 1, n. 
Hence at3 ~ e Jk ~ J. Now E3gao: = Ilk (al3~) re(k) is trivially contradictory (as a~ :/: e). 

(6) Similar, or  use G/Cent  G. 

4.9. Definition. (1) For a group G and A ~ _ G  let (A}~  be (gag- l :  a c A ,  
g e G } a, or equivalently the smallest normal subgroup of G which includes A. 

(2) Let c g ( G ) =  Min{IAI 'G = (A}~}. 
(3) For a group K and a normal subgroup H let 

cg r (H)  = cg(H, K) = Min{[A] :H  = (A)~}.  

4.10. Definition. (1) We say ~s~s Hs is a direct decomposition of H inside K if 
H = ~ s  H~, and each H~ is a normal subgroup of K. Similarly for semi-direct 
decompositions. 

(2) BA(H,  K) = B A r ( H )  = ( I  e B A ( H ) : I  is a normal subgroup of K} where 
H is a normal subgroup of K. 

(3) BA~(H)  = {I e B A ' ( H )  : I  is a normal subgroup of K). 
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4.11. Fact. (1) If H is a normal subgroup of K, 
subalgebra o f  BA(H). 

(2) I f  H is a normal subgroup o f  K, H = H (1), 
subalgebra o f  BA'(H).  

then B A r ( H )  is a Boolean 

then BAk-(H) is a Boolean 

Proof. (1) Clearly B A r ( H )  is closed under the operations of union and 
intersection. Obviously, {e}, H • BAr(H) .  As for complementation if I + J = H, 
I • BAr (H) ,  then I is a normal subgroup of K. So for any a • H, l-q a maps I onto 
itself, and H = I-qa(H) = UP(I) + lq~(J) = I + lq~(J), hence necessarily Da(J) = J, 
so J is a normal subgroup of K hence J • BAr(H) .  

(2) Similarly. 

4.12. Fact. Suppose H ~_ K, and for every x • H 
( * )  Cent Cmr(x)  ~_ H or even y • K  ^ CentCmr(y)~_  C e n t C m r ( x ) ~ y  • H .  
Then (1) I f  K =  Et~rKt, then H =  E t , r ( a  N K,). 

(2) I f  g =  E ~ r K t ,  then H =  E ~ T ( H A  K,). 

Remark. In (* )  the second condition is weaker than the first. 

Proof. In both cases the least trivial point is H = ( H  N Kt: t • T ) r .  For this it is 
enough to prove that if x • H, then for some xt • H t3 Kt, x = [I,~rx,. By the 
hypothesis, x = I'It, rXt for some xt • Kt. But by ( * ) x • H ::), xt • H for each t • T. 

4.13. Claim. Suppose H is a normal subgroup o f  K, and ( A ) ~ = H. 
I f  (K s, H 1) is an elementary submodel (see Ap 1) of  (K, H) ,  A ~_ H 1, then 
(* )  For any direct decomposition Et~rH~ of  H ~ inside K 1 there is a unique 

direct decomposition ~,~ r Ht o f  H inside K such that Ht A H 1 = H~. 

~ teTHt  o f  inside there is a (* *) For any nice semi-decomposition ' ~ H 1 K 1 
unique nice semi-decomposition Xt~r Ht o f  H inside K such that Ht N H x = Hit (see 
4.1(3)). 

Proof. As the proofs are similar we give them together; only (b) is for (* *)  
only, (e) for ( * ) only. 

We define Ht = (HSt)~, and let A, = {aba- l :a  • K, b • H~}. 
(a) Ht is a normal subgroup of K, H~ ~_ Hr. (This is obvious.) 
(b) Ht = H~ 1~ (for ( * * ) only). 

If c • A t ,  then c = a b a  -1, b • H ~ ,  a • K ;  and as (Hi1) O)=Ht' ,  

II~=1 

b _ . .  

Xraymxmly~n 1, Xra, Ym • H~(i.e., b is the product of commutators). Hence 

n 

aba-1 = 1-I (axma-1)(ayr,,a-1)(ax,,,a-1)-X(ayma-1) -1 • H~I); 
m = l  

hence A,  ~_ H~ 1), so Ht = H~ I). 
(c) For t ~ s (in T), Ht and Hs commutes. 
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For suppose x • Ht, y • Hs do not commute.  As x • Ht there are n < ¢o, 

Xl, • • •,  x ,  • Ht ~ and al ,  • • • ,  a ,  • K such that x = 1-[7-1 (aixiai-1). Similarly, there 
are m < to, y l , . . . ,  y,,, e H i  and bl, • • • ,  bm • K such that y = 1-I'r=~ (biyib[l). So 

(K, H)  ~ ( = i z , , . . . ,  z , ) ( = l U l , . . . ,  urn) 

zixizi -1 ujyjuf 1 ¢ ujyjuf  1 (z~x~zi -1 
L i = l  j = l  j = l  i=1  

(so x ~ , . . . ,  x , ,  Y l , - . - ,  Ym are here parameters;  the formula is satisfied as the 
al, • • • ,  a,,, bi ,  •. • ,  bm fire witnesses for the existence). 

As (K ~, H 1) is an elementary submodel of (K, H)  and as the parameters 
Xl, • • •,  x,,, Yl,.  • • ,  Y, are in H 1 ~_ K 1, also (K ~, H 1) satisfies this formula, hence 

' ' ' ' g 1 X '  , , --1 there are a l , . . .  , a,,  b l , . .  . ,  brae such that = 1-I7=1 aix~(ai) and y '  = 
H ? = I  t I --1 r t b j y j ( b j )  do not commute. As X l ,  • . . ,  x, ,  • H 1, a l ,  . . . a,, • K 1, and H 1 is a 

normal subgroup of K 1, clearly x '  • Ht  1. Similarly, y '  • Hi .  But H I, H i  commute, 
contradiction. 

(d) H '  d~j ((..Jt~TH,)H is a normal subgroup of K, is included in H, it includes 
H 1, hence A. So H = ( A )  ~ ___ ( H ' )  ~ = ( H ' )  = H '  ~_ H as required. 

(e) H t N  (I,_Js,tH~)r = {e} (for ( * )  only). The proof is like that of (c). 
(f) Uniqueness of Hr. If H~ are other candidates, first prove Ht ~_ H'~, then an 

inequality contradicts H = E t~r Ht (or H = ~ r Ht using niceness). 

5. A kind of derivative and required subgroups 

When we are dealing with G e ~x, we have found that for A ~ G, ]A I < #, 
CmG(A) e ~x. We want to exploit this to prove that every G has subgroups of 
many isomorphism types, this being proved by induction of some notion of depth 

of groups of those isomorphic types. So in stage a~, we shall try to build conjugate 
subgroups H c K of G such that CmG(H) N K includes a direct sum L of many 
subgroups of smaller depth. If D g maps K onto H, then (L,  g)G has quite a clear 
structure. Note that we do not have much control on the center (hence we shall 
divide by it in 5.1). 

In this section we deal with a suitable notion of depth. 

5.1. Definition. (1) For  any group G let 

~ v ( G )  = ({x: in G / C e n C  G, x CenC G belongs to a normal countable 

abelian subgroup))  c. 

(2) For  any group G and ordinal a~ we define ~ v  ~(G) by induction on a~: 
(o 0 ~ v ° ( G ) =  {e}, 
([3) ~v~'+l(G) = { x : x ~ v ' ~ ( G )  e ~ v ( V / ~ v " ( V ) ) ,  
(7) for a~ = ~} a limit ordinal ~ v 6 ( G )  = I,..Jt~< ~, ~vt3(G). 

(3) For  any group G, ~v°~(G) = I._J~ ~v'~(G).  
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5.2. Claim. ( 1 ) ~ v l ( G )  = ~v(G) .  
(2) @v~+a(G) = {x ~ G :xNv¢(G) c ~va(G/Nv¢(G) )} .  
(3) @v*'(G) is a normal, and even characteristic subgroup of G. 
(4) ~v°'(G) c_ ~va(G) c_ ~v=(G) if oc <~ /3. 
(5) I f  ~v~'(G) = ~v~+I(G), then ~v~(G)  = ~va(G)  for every /3 >i tr, hence 

@v'(G) = @v=(G). 
(6) For some o~ < IGI +, ~v~(G)  = ~v=(G). 
(7) ~v~(G/Cent=(G))= ~v~(G)/Cent=(G).  
(8) For any homomorphism h from G onto K, h maps ~v  ~'(G) into ~v  ~(K). 

Proof. Immediate.  

5.3. Claim. For any pairwise commuting subgroups 

any ), 

also 

Gi (i < ol) of  G, and for 

Proof. Easy. 

5.4. Delinition. We call H a )'-required group if ~ v  r+ l( H) = H =/= ~vr (G) ,  H 
has power <~ I),[ + Ro and H / C e n t  = H is indecomposable when )' > 0. 

5.5. Definition. For any group G let ),(G) be the first ordinal ), such that G has 
no/3-required subgroup for ), <~/3 < (~o + I)'l) +- 

5.6. Claim. (1) If L ~_ K, then ),(L) <<- ),(K). 
( 2 ) ) , ( G )  = ) ,(G/Cent ® G). 
(3) Any abelian nontrivial group is a )'-required subgroup for ), = O. 
(4) For any nontrivial G, 7(G)  i> 0 and ),(G) ~ [GI +, even ),(G) < N0 + IGI +. 

Proof. Trivial. 

5.7. Lemma.  For every G ~ ~ ,  for some A c_ G, [A I < # and ),(CmG(A)) < #. 

Proof. Suppose that there is no such A. We define by induction on oc < # a 
subgroup H~ of G such that: 

(i) H~ has power ~< Itrl + No, 
(ii) H~ ~_ CmG(Ua<~ Ha), 
(iii) H~ is an ) ' , :required group for some ),~ < No + loci +, y~, > o~. 

In stage tr, [Ua<~ Hal ~< Y]a<~, IHal ~< I°~l " (Ire[ + Ro) </z,  so as we have assumed 
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that there is no A as mentioned in the lemma, necessarily there is Y~, 
a ~  < )'~ < R o +  [~1 + and a y~-required subgroup H~, of Cma(Ua<~H/3),  w.l.o.g. 

7~ :/: 7t~ for tr#:fl.  
Now for any set Sc_{y :co<~y</~}  let Ks = ( H y ' y • S ) G ,  so it is enough to 

prove that Ks, Kr  are nonconjugate subgroups of G for S :/: T. We shall prove 
more: that Ks, Kr  are not isomorphic. If h is an isomorphism from Ks onto Kr, 
then it induces an isomorphism h '  from K s / C e n C K s  onto K r / C e n C  Kr. As by 
(ii) the H~,'s are pairwise commuting Ks = Y','~sH~, so by 4.2(2), C e n C K s  = 
E ~ s  Cent ® H~, and Ks/CenC Ks = E ~ s  H J C e n C  H~. The same holds for Kr ;  
so as H J C e n C H ~  is indecomposable (remember Definition 5.4) by 4.4 for some 
one-to-one function f from S onto T, h' maps H J C e n C K s  onto H1(,o/Cent ® Kr  
(for a~ e S). But by 5.2(7) this easily implies f ( a  0 = a~ (for a~ • S), hence S = T. 

5.8. Lemma.  Suppose Hm (m • 7/) are pairwise commuting subgroups of  G, F m is 
m _ .  F,  F m = F,, isomorphism from Hm onto 1t, (for n, m • 7/) Fm the identity, m k k 

H* = ( Hm : m • 7/) 6, K is a subgroup of  A m ~ } 7  Cent Hm, K :/= Ho, K = Hm fq 
( Hk : k • 7/, k :/: m ) c for each m • 7/and F~, maps K onto K for every n, m. 

Suppose further g eG,  Fm+l c_VI g for every m and let H ~ f  (H*, g ) c  and 
assume H, =/= K. Then 

(a)  L ~f Cent ® H is a subgroup of  K. 
(b) K is a normal subgroup o f  H. 
(c) H * / K =  ~'m~2V Hm/K. 
(d) K c_ ~gv(H). 
(e) (i) ~ v  ~'(Ho) :/: Ho for every y < fl implies emva(n) :/: H, (ii) ~v=(H,,,) = Hm 

implies ffm°°(H) = H, and (iii) ~v=(nm) #: Hm implies Vgv°°(n) = ~',,~_ ff)v°°(H,,,). 
(f) H /Cen t  ® H is indecomposable. 

Proof. First note that (b), (c) are trivial. 
(a) Suppose (yK) e H / K  - {eK} is in the center of H/K.  In H/K,  any yK has 

a unique representation (gK)" 1-Im~z (ymK), Ym e Hm, {m :ymK :/: K} is finite. So, 
if ymK 4: K, then for some r, Ym-r e K; as yK e Cent(H/K),  yK = D~IO'(yK), but 
the latter is an element of (Hi, K: i :/: m ) c, hence Ym e K, contradiction. Hence 
yK • {grK'r • 7/}, but for r 4= 0 trivially grK ~ Cent(H/K),  so Cent(H/K) = {K}, 

hence (a) holds. 
(d) For every a • K, Aa = {g~ag -~ :r • Z} is a subset of K (as FT, maps K onto 

K), and is closed under conjugation in G [by D g by its definition, under D b, 
b • H * ,  as Aa ~_ K ~_CentH*, and those elements generate H]. So (A~)n is a 
normal subgroup; as A~ is countable abelian, (A~)n  is countable abelian, and 
clearly (Aa)n  ~_ K (as Aa ~_ K). Hence ( A ~ ) n  _ ~v(H) .  As a • K was arbitrary, 
g ~_ ~v (H) .  

(i) By 5.2(8) w.l.o.g. K = {e}. We now prove by induction on fl that (e) 
(*) if for y < fl, ~vr(Ho) :¢: Ho then 

~va(H)  f3 Hm ~_ @vt~(Hm), ~v~(H) = ~ (~v~(H) N H~). 
m~7/ 
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For/3 = 0 or/3 limit, this is trivial. So let/3 = a + 1, so ~v  °~(Hm) 4= Hm, and it is 
easy to compute for H/~v°'(H): it has a trivial center and ~v(H/~v°~(H)) is 
generated by {x ~v°~(H): m • Z, x • Hm, x(~v°'(H) O Hm) • ~V(Hm/(~V°~(H) n 
Hm))}. Now everything is easily checked. 

Before we continue note 

5.8A. Fact. I f  h is a homomorphism from G onto K, 
included in ~v~(G), then h maps ~v°°(G) onto ~v~(K). 

This follows by 

and the kernel of  h is 

5.8B. Fact. ~v®(G) is the minimal normal subgroup K of G such that G / K  has 
trivial center and ~ v ( G / K )  = {eclr) (equivalently, G/K has no nontrivial normal 
countable commutative subgroups) and ~v=(G) = n {K: K a normal subgroup of 
G such that ~ v ( G / K )  = {e61r}}. [Note that any countable subgroup of the center 
of a group is a countable normal commutative subgroup.] 

(ii) By 5.8A w.l.o.g. K = {e}. As in the proof of (i) we can prove by induction 

on fl that 

( * ) if for ), < fl, ~v~'(H) n Ho 4= Ho then 

~vlS(H) = ~ (~v~(H) n Hm). 
rn~Z 

First assume ~v®(H)n Ho 4= Ho. Then (by 5.2(4), (6)) for every a, ~v'~(H)n 
Ho ~ ~v~(H) n Ho 4= Ho hence ~v~(H) = E,,,~z (~v~(H) n Hm). As ~v~(H) is a 
characteristic subgroup of H, D r' maps ~v°°(H) n Hm onto ~v®(H) U Hm+,. 

Clearly ~v®(H) n Ho is a proper normal subgroup of Ho. But we have assumed 
~v~(Ho) = Ho, so by 5.8B Ho/(~v°°(H)nil0) has a countable normal commuta- 
tive subgroup, and let x(~v~(H) n Ho) be a nontrivial element of such subgroup. 
Now the normal subgroup of H/~v~(H) which x~v~(H) generates, is countable 
normal and commutative, contradicting 5.8B. 

So Ho ~_ ~v®(H) hence Hm ~_ ~v~(H) for m e 7/ hence H*~_ ~v~(H). But 
H/~v®(H), being a homomorphic image of H/H*, is commutative and count- 
able, so by 5.8A ~v~(H)= H. 

(iii) Simpler than the proof of (ii). 
(f) Suppose L c 11, L ~_/2 and H/L  = I1/L + I2/L (and / I  :/: L ,  12 4: L), and let 

gL = glL + gzL where gl • 11, g2 e 12. 
First assume /1 ~_ K, and choose b e 11- L. Then bL commutes with gzL (as 

b e 11, g2 e/2) and bL commutes with glL as b commutes with ga (as both are in 
K). Hence bL commutes with gL, but (as b • K) it commutes with dL for 
d e H*, hence bL e Cent(H/L); but b ~ L, L = Cent ~ H, contradiction. 

So 11 cz K, and by the symmetry,/2 cz K. It is impossible that ga e H*, g2 • H*, 
so w.l.o.g, g~ g H*. Let x be any member of Iz - L, y any member of 11 - L. Now 
g~, x e H hence have represenatations 

gl g"l--[ 1 gk - -  am, X I - I  2 = am, n •7 / - -  {0}, 
m c Z  m e Z  
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1 2 2 k eT/, a,,,, amEHm, {m" 1 • am, am are not both e} is finite. Remember that in H/L,  
every conjugate of x commutes with g~ (and conversely). As g~ ¢ H~', n :/: 0. 

There is r e 7/s.t. [a~ ¢ e => 3 Iml + 8 < r]. Now giL, g~xg-"L commute (as they 
2 belong to I~/L, 12/L, respectively). This implies a m  ~ K for every m, so as x e 12 

was arbitrary, 12 ~_ (K, g)i-i; but/2 cz K, hence there is x2 e 12-  K. Working with 
x2 and y instead of gl,  x we can prove I~_ ( K , g ) n ,  so H~_ (K,g)i-i, 
contradiction to K :/: Ho. 

5.9. Conclusion. Suppose J c_ L ~ G, and in G, J and L are conjugates. Suppose 
further that H is a subgroup of  CmL(J) = L fq Cmc(J) ,  of power <~ 171 + ~o, H is 
not a subgroup of  Cent CmL(J) and ), is minimal such that ~ v  ~'(H) = H. 

Then G has a yl-required subgroup for some Yl, Y < Y~ < (Ro + 171) + 

Proof. Let D g map L onto J, g e G, and let 

H * = ( D ~ H : m e Z ) c ,  K l = C e n t ( O g ' ( C m L ( J ) ) . m e Z ) 6 ,  

K =  K1NH*, Hra = ([]g" H, K)c.  

The D g" H (m e 7/) are pairwise commuting (as for m > 0, D ~ H c_ J, H ~_ 
CmL(J), then use [-7 g~ for other pairs). Similarly Vlg" (CmL(J)) ( m e  7/) are pair- 
wise commuting. Hence KI = X~,~z Cent Vlg" CmL(J) = E~,~z Vlg~ Cent CmL(J) 
and H* ~ '  = m~Z E]g= H. 

If a e CmL(J) - Cent Cm~ (J), then a ¢ K1, and a ¢ (Iq~ (Cmr (J ) ) :m > 0) o. 
Clearly, KI is a commutative group, hence so is K, and K ~ _ C e n t H * =  

~ "  Cent [J~ H = ~ ,  Vlg" Cent H (by the definition of K), but K ~_ Hm ~_ H*, 
hence K ~_ Cent Hm. As K is closed under E] g" (m~ 7/), K is a normal subgroup 
of H* G (H*, g) .  Now H*/K = ~m Hm/K; for suppose am e Hm for n(0)/> m t> 
n(1), ano)$ K, but l'Im am e K, then by applying Iq g-~(" we can assume n(1)=  0 
and get a contradiction. Also H0 ~ K, otherwise H ~_ H0 _c K ~_ K~, but there is 
a e H - Cent Cmj(L),  and we have said such a is not in KI. So we can apply 5.8, 
so H + =  ( H * , g ) 6  is a subgroup of G, H+/Cent~H + is indecomposable, 
~v~'(n +) * n +, but for some /5 < (~o + I n [ )  + -< (lwl + ~o) +, ~vt~(n+) = n+. So 
by 5.8 we have completed the proof. 

Remark. We could have defined ~ v  in a finer way. 

6. O n  limit p the  easy  cases  

In this section we first show that for G e ~x, nc~,(G) >I I'Io<, 0 + (thus proving 
the main theorem for a large class of ).'s, e.g., the case # is a strong limit and # a 
limit regular cardinal)• We use for this the previous section; by 5.9 (and (5.7) we 
can build for each 0 < # an increasing sequence of subgroups of G of power 0, 
(K~:i < 0+),  no two of which are conjugate. We shall do it by induction on 0 so 
that K ° ~ _ C m c ( U { K T : j < r  +, r < 0 ) .  Now we want to show that for the 
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subgroups 

= <K.(o)O<x>G (for~Te 1--[ 0+) K, o . 
0 < / ~  z 

O are pairwise nonconjugate. For this we want to be able to reconstruct the Kn(o ) 
from the K n. So we restrict ourselves to K/° such that this is easy (0-groups); to 
get such K/° we find them as subgroups of Min[Cmc(U {KT: u < 0, j < 0+})]. 

We then proceed to deduce something for any limit/z. 

6.1. Theorem. I f  lz is a strong limit cardinal o f  power >no, then the main 
theorem holds. 

Proof. Suppose ~x q: 0. Then by Section 3 for some G ~ ~x, Min~l G = G and 
Cent G = {e} [Why? By 3.6-8, 3.11, there is G e ~2x, by 1.8(1) [Cent®(G)[ < p, so 
every x e G - C e n t G  has 1>I, conjugates in G; hence x C e n t G  has l>~u 
conjugates in G/Cent G, so G/Cent G has trivial center and by 3.11, it belongs to 
f2x], and we shall deal with this G. 

Let y* = Min{y(CmG(A)):A c_ G, [A[ </z} (see Definition 5.5). By 5.7, 
y* </~, and choose Aoc_G,  [A0[<# such that y* = y(CmG(Ao)).We shall now 
define by induction on i </z, a group/-/i, K/such that 

(a) n/  c_ G, I,_Jj<i Hj O Ao U Uj<i Kj c_ Ki ,-_ G. 
(b) I f / =  y'j1 +j2, j2< y*, then Hi is a y/-required subgroup of CmG(K/) for 

some Yi, j2 <~ Yi < (No + ~21) + (hence IHil <- No + ly*l). 
(c) /-//commutes with K/(follows from (b)). 
(d) Igil-< I~'*1 + Iaol + Iil + no and I{gxg-l:g e K/}I > no for x e Ki -- {e}, 

K! 1) = Ki. (Note that if y (G)  = ~'* the Ao would not be necessary.) 
In the ith step, we know that AolD~_Jj<it-Ijt3L..Jj<iKj has power ~<lAol + 

I~'*1 Iil + no </~, hence there is Ki, Ao U Uj<i ~ U [,.Jj</ Kj c_ K~ c_ G, Igil <- Iil + 
IAol + I~'*1 + n0 and Cent(K/) = {e}, K! 1) = Ki and every x e K i -  {e} has ~>N1 
conjugates by elements of K i. (See AP 1.3, 4.) 

By the definition of y*, there is an H/c_ CmG(K/) satisfying (b). Now (a), (c), 
(d) are immediate. 

As/z is a strong limit, there are linear orders S, T, IsI-- ~,, ITI- 2 " -  ;% s T, 
S dense in T (e.g., S=Cf~'>/z, T=Cf~'~/z, ordered lexicographically). Let 
S = {si ' i  < ~ }  and for every t e T, let M, = (Ko, Nt>G where N~ = (H~,.i+j: j < ~t*, 

s /<  t } 6. Clearly Mt = Ko + Nt. 
As G e ~x, there are distinct to~ e T -  S (for tr < #) such that the Mt~ are 

conjugate. Let rq g~ map M~ onto M~ o. 
Now by (d), ~vl (Ko)  = {e}, hence ~v(~)(Ko) = {e} whereas ~v~(Nt )=  Nt (for 

every t e T), this holds by 5.4. Hence 

So necessarily D ~ maps N~ onto Nto, hence 

M, o = Ko + N, o = F-lS.(Ko) + N, o. 
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So by 4.3(2) remembering Ko = K~o 1), hence Vlg~(Ko)= (r-lg~(Ko))°), and that the 
intersection of each of them with Nto is {e}: 

A/(1) ~t,¢O) = Ko N (I-18"Ko) + , ,  to , ~r~  t0  

but also M~o ~) = Ko + N~o ~) and Ko N Nt0 = {e}, so necessarily Ko N ([]g~Ko) cannot 
be a proper subgroup of Ko, hence Ko = []g~Ko. As [Ko[ </z,  /~ strong limit 
necessarily for some ff #: ~, E3 g~ t Ko = D ga r Ko, let g = g~g~ ,  then El g r Ko = 
the identity, hence g e Cmc(Ko), and (see above) ~g maps Nt~ onto Nta. W.l.o.g.,  
t~ <t~ and choose i < p such that t~ <s~ < t~. Now we apply 5.9 and get a 
contradiction to the choice of Y*, Ao. 

6.2. Hypothesis. tz is not strong limit. 

6.3. Fact. / f  0 < ~, then ~ o < 2. 

Proof. For some x < / ~ ,  /z<~2 " (as/z  is not strong limit), hence /z°~<2 "+°, but 
x + 0 </~ so by/z 's  choice 2 " + ° <  2. 

6.4. Conclusion. I f  A ~_ G ~ ~ ,  IAI < then Cm6(A)  ¢ ~ .  

Proof. By 1.10(3), (4). 

6.5. Theorem. I f  tz is a limit cardinal, ~xq=O, then for some r < # ,  

IIo<~,,o>_-,, 0 + < 2. 

The theorem follows from 6.7(1), 6.10. First we introduce a notion. 

6.6. Definition. We say G ~ ~ ,  (G is a minimal member  of ~ , )  if G ~ ~ ,  and 
for every A ~_ G of power < p, y(G)  <- y(Min Cm6(A)).  

6.7. Claim. (1) For every G ~ ~ for  some A ~_ G, [A[</z and M i n C m c ( A )  

belong to ~x. 
(2) I f  G e ~ ,  for  every A~_G,  [A[</z,  then y ( G ) = y ( C m 6 ( A ) ) =  

y(Min Cm6(A))  and Cm6(A)  e ~ ,  Min Cm6(A)  ~ ~ .  

Proof. (1) Define by induction on n, Gn ~ ~ , ,  An, such that Go = G, A ,  a subset 
of Gn of p o w e r < I ,  such that y[MinCmc . (An) ]<y(G, , )  and let G~+I = 
Min Cmc,(A,,); by 3.6, 6.4 and 1.7, Gn+l ~ ~ .  For some n we cannot define An, 
so G~ ~ ~ax. But by 3.9(3), Gm = MJn Cm6(l._Jm<,,Am), hence we finish. 

(2) Left to the reader. 

6.8. Definition. (1) G is a 0-group [explicit 0-group] if [G I = 0, G = G O) and G 
has no semi-direct summand of power < 0 [and every x ~ G -  Cent(G) has 0 
conjugates (at least)]. 
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(2) G is a [0, r )-group [explicit [8, x)-group] if 8 ~  < IGI < x ,  G = G (1) and G 
has no semi-direct summand of power < 0 [and every x e G -  Cent(G) has at 
least O conjugates]. 

6.9. Fact. (1) I f  G = ~;~r Ht, Ht is a [8, xt)-group, and for no t q: s, 8t <~ 8s < xt, 
then Ht is the maximal normal [Ot, xt)-subgroup of  G which is a semi-direct 
summand. I f  we restrict ourselves to explicit [Or, x,)-group the 'direct summand'  is 
not necessary. 

(2) G is a (explicit) O-group iff G is a (explicit) [8, 8÷)-group. 
(3) I f  G is an explicit [0, x)-group, then G is a [8, x)-group. 

6.10. Lemma. If G e ~x, then 

(1) nc~ , (G)  >-- 1-[ (0+) • 

O~lv(G)l+~o 

(2) Moreover, also G/Cent  G satisfies this. 

Proof. (1) We shall define by induction on 8, [y(G)[ +No ~< 8 < / z  subgroups 
K ° (i < 8) such that 

(i) K ° is a subgroup of Go de=f Min[Cm6(U {K 7 • [),(G)[ + No ~< x < 0, j < x + })]. 
(ii) K/° has power 8. 

(iii) K ° is an explicit 0-group. 
(iv) For i ¢ j, K/°, K ° are not conjugates in G. 

This is enough, as then for every r / e l l  {O+:[Y(G)] +Ro<~ 8< /z} ,  we define 
L, 7 = (Kn(o)o "Iy(G)I + 0 < Now Ln is a subgroup of G of power/z, and, 

o o 
(Kn(o) for each 0, the Kn(o ) are definable in L n is the maximal normal explicit 

0-subgroup of L,7); hence by (iv), r/=~ v implies L n, L~ are not conjugate in G, 
and since the number of L n's is as required, we would have finished. 

So let us carry out the induction. Clearly Go e f2~, hence G[~ 1) = Go, and every 
x e Go - Cent Go has at least tz conjugates (see 3.8). Hence every subgroup of Go 
of powers< 0 is included in some explicit 0-subgroup of Go (e.g. see AP1.3). 
Now we define K ° ~_ Go (i < 0 +) by induction on i, Ig°l = 8, g°i increasing with i. 

If K ° (j < i) have been defined, we can define by induction on fl < y(G)  a 
H o subgroup H °i,È of Cmc(g j< /K j  U Uv<~ J.v), which is a y~-required group, for 

some y, ,  f l<<-y,<y(G) which is not included in Cent[Cm6o(Uj<~K°U 
Uv<,  H°v)] (this is when ~ = 0). 

Let K/° be a 0-subgroup of Go (of power 0) which includes Uj<iK ° U 
U~<v(c) H°v • The only serious problem is why K ° is not conjugate (in G) to some 
K ° (j < i). This is guaranteed by G e ~ (see 5.9). 

(2) The proof is similar replacing (iv) by 
(iv)' Moreover for i ~ ] ,  K/°/Cent G, K°/Cent  G are  not conjugate in G~ 

Cent G. 
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Now we make: 

6.11. Hypothesis. For some r < / , ,  ]-Io<,,o~,, 0 + < ~. 

6.12. 

(1) 
(2) 
(3) 
(4) 

Fact. I f  It is limit, ~ 4~ (k, then 
l~ < ~, ,  so Iz is singular. 
For unboundedly many 0 < #, 2 0 < 2 °÷. 
/* < 2 <" < (2<") c~" = 2". 
I f  G ~ ~o, for no normal subgroup N, 2 <" ~< (G "N) < Z. 

Proof. By cardinal arithmetic we can prove (1), (2), (3). As for (4) by 1.4(1), we 
know that nc~ , (G/N)~<nc~ , (G) ,  and we apply 1.2(3) to G / N  for the cardinal 
eft/z) (as (2<") ce" = 2" = ).). 

7. The number of direct summands is small 

Later, at some crucial point, the number of direct summands of G e g-2x (or the 
power of BAb(Min G) for G e ~x) will become important. If it is </z, we know 
that for 'quite many' subgroups H of G of power < ~, their direct summands are 
exactly those induced by direct summands of G. This helps in proofs like 6.5 
when we want in each 0 to have 0 ÷ subgroups in Hs. Here we shall prove that 
this is always the case when/~ is a successor cardinal. 

7.1. Theorem. Suppose la = r +, i f  G • £21, then BA(G)  has power < #. 

For singular/z we need more elaborate information involving the existence of 
many nonconjugates of [0, r)-groups. 

7.2. Theorem. Suppose 0 < r </~, Ga • ~ ,  G = Min G1, BAb1(G) has power 
> r ,  and 2 " > ~ .  Then G has 2 "÷ [0, r++)-subgroups, which are pairwise 
nonconjugate in GI. 

We want to prove the theorems together. For this in 7.1 let G I = G ,  
~ = B A ' ( G )  and so clearly BA~I(G ) - B A ' ( G )  includes BA(G).  For 7.1 let 
0 = Ro if R0 < r and otherwise 0 = 1. So always 0 < r .  For 7.2 let ~ = BA~I(G). 
We are assuming G is a counterexample and eventually get a contradiction. So we 
are assuming I~1 > r ,  and note that 2"--- >/z for both theorems. 

We shall use 4.8 freely. 

7.3. Fact. There are X pairwise disjoint nontrivial L~ e ~ s.t., (a) X <~ r and for  
some uniform ultrafilter ~ over X, 1-L<x ]~ t L~[ = IL<x [~ I L~[ /~  is at least r + 
or (b) X = r+- 
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Proof. If ~ has > x atoms, we finish (as case (b) holds). If not let W be the ideal 
of ~ generated by the atoms. We define by induction on tr, L ,  such that: 

(i) L`, • ~ 3 -  W. 

(ii) L`, is disjoint to Lt~ for/3 < tr (as members of ~3, so L~ n Lt~ ~ Cent G). 
(iii) Under conditions (i) and (ii), the power of {L • ~ : L  ~ L`,} is minimal. 
(iv) There are infinitely many pairwise disjoint L" satisfying (i), (ii) and 

disjoint to L`, or I{L•  ~ ' L ~ _ L ` , } I  <~x. 
Suppose oc is the first cardinal such that we cannot define L`,. Let W * =  

{L ~ ~ : L  disjoint to every La (~6 < tr)}, clearly W* is an ideal of ~ ,  and 

because the function F:  ~---> 1-It~<~ ~ [ L ,  defined by F(L)  = ( L  n L ,  :fl < re), 
satisfies: [F(L) = F ( L ' )  ::> (L  - L ' )  U (L'  - L)  • W*]. As tr is maximal IW*l ~< 
Iwl + n0 but we have assumed Iwl x, so r t e l  is at least x +. By (iii), 
I~  t L`,l is nondecreasing, and by (iv), a~ is limit; lastly by (i), t t ` , l  is infinite. 

If tr I> x +, case (b) holds; so assume o: < x ÷. Now we can find an ultrafilter 
on tr as required, (see [1]: some regular ultrafilter) and replace a~ by Z ~f Ic l. 

7.4. Fact. Always  ~¢ <<- x (if G is a counterexample). 

Proof. Easy. 

7.5. Fact. Suppose M • ~3. Then for  every A c_ G, IAI </z there is an explicit 
x-group P ~ M n Min Cm6(A), such that M is the minimal member o f  :~ which 
includes P, and even P/Cent  P is an explicit x-group, and IPI ~< x. 

Proof. We define by induction on a~ < x +, K`, such that: 
(1) K~ is a subgroup of M n Min Cm6(A). 
(2) K~ is an explicit x-group, and even K J C e n t  K~ is an explicit x-subgroup. 
(3) For some disjoint nonzero I`,, J,~ • ~ ,  M = I`, + J`,, K,~ ___ I~, Us<`, Kt3 -~J`,- 
At  stage a~, we choose, if possible, I`,, J`, • ~ ,  Us<`, Kt~ -~ J`,, I`, ~_ M, 1`, O J`, is 

abelian and I`, is not abelian. If this is possible, then I`, • g2~ (by 4.8), hence 
/, , /Cent I`, • K2x, so there is no problem to choose K`,. [The presence of A does 
not change much; we can replace it by A1 = {End~,(a):a • A }  and then use 
Min CmI~(A1) instead of I`, as I`, e Y21.] If there are no such I~ and J`,, then 
~ < ~  Kt3 satisfies the requirements of P in 7.5. 

If K`, is defined for every a~ < x +, then we let for S ~ x +, Hs = (K`," tr ~ S ) c .  
Clearly the Hs's are as required in "7.2 (or contradict 7.1). Note that no 
xt • I`,, - Cent I~, (for l = 1, 2; trl 4= a~2) are conjugates even in G1. 

7.6. Fact. Suppose My e ~ ,  M~, ~_ L~, • ~3 for  7 < Z, the L~,'s are pairwise disjoint, 
and A ~ G, IAI </*. 
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Then we can find Iv, (1" < X) and g • G such that 
(a) P r c  M r f2 Min Cmo(A) has cardinality <- r. 
(b) M r is the minimal member of  ~ which includes Pr" 
(c) Pr is an explicit x-group, and Pr/Cent Pr too. 
(d) I-lg(Pe) commutes with Pr" 
(e) g • Min Cmo(A), and if L r c_ L • ~ for 1" < X, then g •  L (for a specific L). 

Remark.  Note that g • G, not g • G1. 

Proof. We can define by induction on c~ < # a group P~,r for 1' < X such that 
(i) P~,r = r~,r'O)c_ M N Min Cmo(A O [,_.J~<o, P~,r)- 

(ii) P~,r is an explicit x-group as well as P~,r/Cent P~,r" 
(iii) M r is the minimal semi-direct summand of G which include P~,r" 

This is possible by applying 7.5 to A '  = A  tO [_Ja<~ Pa,r" Clealy P~,r (1" <X, ol < la) 
are pairwise commuting subgroups of Min Cmo(A),  which belong to f2~. 

For every S ~_ # let Ks = { Pr,~ : 1" < ;C, cr e S ) o, if for S :t: T, Ks and KT are not 
conjugate in Min Cmc(A),  then we get a contradiction: as Min C m c ( A ) •  f2~., it 
has up to conjugation less than ,!. subgroups H = H (1) of power ~< #. Otherwise 
there is g • Min Cmo(A) such that El g maps Ks onto KT, and there is cr • S - T. 
Let Pr = P~,r for 1' < X. (We can replace g by End~(g).) 

Now Pr commutes with KT, hence with r-38 ((ja p~). So we finish 7.6. 

7.7. Fact. Let L r (y < X) L be as in 7.6, #,  = Min{#, II-lr<x ( ~  I Lr)l} (X < #, of  
course). There are for tr < x  +, K~, P=,r (1" < X)B~,, g~ and sequences (M~,v:1" < 
X) such that: 

(i) K.  = ( B~, Ur<x P-,r) c. 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 
(vii) 

(viii) 

The K~'s are pairwise commuting. 
P*,,r ~- Mr, r, P~,v an explicit r-group. 
M~, r is the minimal member of  ~3 which includes P~,r" 
Dg~ maps [,-]r<x P~,r to a subgroup of  G which commutes with it. 
Mo~,r ~_Lr, g,~ e L. 
For c ¢ < f l < x  +, {1":M~,r:/= Ml3,r} e ~. 
g~ e B~ ~_ G, [B~,I = O, and if  0 > 1 then By  ) = B~, B,~ a O-group. 

Proof. First we can define ( M ~ . r : 1 ' < Z )  for c r < x  + to satisfy (vii). Then we 
define by induction on or, Ko,, g,,, Po,,r (1" < X) using 7.6 with A = I..Ja<~ Kt3, and 
then we define B~. 

From now we shall use g~, P~,r of 7.7. 

7.8. Proof of Theorem 7.1: when 2 x >K. In fact here 7.5 is irrelevant and 
condition (vi) in 7.7 too. BY Engelking and Karlowicz [3] there are subsets T~ ~_ X 
(for te < # = x +) such that no one is included in a finite union of the others and a 
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finite set. Let  K*~ = (g~, P~.~" )' < X, )' • T~) 6. Let for S ~_ lt, Hs = (K*" tr • S )  ~, 
clearly Hs is a subgroup of G of power  ~< ~. Suppose So :/: S~ but a • G, Flu maps 

Hso onto Hs:  and suppose tr • So, tr q $1. 
So rq ~ g~ ~ Hs,, hence there  are f l ~ , . . . ,  fl,, • S~ and )'1, • • • ,  )'m < Z, such that  

m ,> 
• k =  1, n} U U(Le,,AHs, 

k=l G" 

By the choice of the T~'s for some )' 

n 
) ' •  T~-- UT~k--()'1~,..., )'m}" 

k=l 

Now g~ does not commute  with some elements  of Lr f3 Hso, ( remember  Po~.~,) but 
['-']a g~ (by its representa t ion)  commutes  with every member  of L~ f3 Hs,. As t-1 ~ 
maps L~ onto itself, we get a contradict ion.  So we finish 7.8, as x + = ~t. 

F rom now on let M~,v, B~ ( ) ' < X ,  t r < x + )  be as in 7.7, K~a~--e(B~,P~,v" 

) ' < g ,  )' • T~)~, and for S ~ x +, Hs ae=f (K~" o: ~ S )o .  
We have decided in the  beginning that for 7.1, 0 = ~o except when x = ~0, but  

when x = I%, necessarily g = ~o, 2 x > x;  so f rom now on we deal with 0 I> I%. We 
prove that  there  are many  nonconjugate  subgroups getting a contradiction. 

7.9. Fact. K~ = K~ ). 

Proof. As each P~,e is a x -group ,  K~  ) includes P(~)~ = P~,r and B~  ) = B,~, but K~ 
is genera ted  by those e lements ,  hence K~ = K~  ). 

7.10. Nota t ion .  (1) For  every I • B A ' ( K ~ ) ,  ) ' < X  let Pro~(1) be the ideal of 
M ¢ ~ ,  M ~_ L~,, and in G / C e n t  G, End~(1 ) /Cen t  G has power ~< 0. 

(2) S e t ~ = { ( P r o r ( I ) : ) ' < X } / ~ : I • B A ' ( K ~ , ) }  (the division by ~ just means 
that  we shall count them up to equal i ty  mod ~ ) .  

7.11. Fact. (1) Pr%(K~)/s the ideal generated by Le -M~,~ (subtraction, in ~) .  
(2) I f  I, J ~_ G, then Pro~(( I ,  J ) c )  = Proe(I)  N Proe(J).  

7.12. Fact. (1) If K~ = I +'J, g~ • I, then [J/Cent JI <~ 0. 
(2) I f  K~ = I + ' J, go,• ( I U U~,=I (Lv.  N K)  ) c ,  then for  ) ' E X - ( ) ' 1 , . . .  , )'n), 

Endt.~/ce,t c ( J / C e n t  J) has power  ~ O. 

Proof. (1) As g,, e L for every x ~ K~,, g~xg-~Xx -x ~ L Let for x ~ Ko,, x = x ~ + x J, 
x ~ •  L x J e J. Now for x, y ~ P,,,,:,, x and g,~yg2l commute  (see 7.5), hence x J, 
(g~yg~l)J commute  and (g,~yg~l)J Cent  G =g~,yJ(gS~l)J Cent G = y  J Cent G (as 
g~ e I) ,  hence x ~, g.,yJ(g21)J • yJ Cent  G commute .  However ,  as P~ = pO), and 
the map x ~ x  J Cent  K~ which we call h, is a homomorphism from P~ into 
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(Cent Ko, to {x ~ :x e P~} ) J C e n t  K,~, clearly (Range h) (1) = Range h and Range h 
is a commutative group (by the previous sentence), hence x ~ e Cent K~ for x e P~. 
As K,, is generated by P= tO B=, J is generated by {x s :x e B=} U Cent J, hence 
J/Cent J has power <~ 0. 

(2) The proof is similar. 

7.13. Fact. Set~ has power  <~ O. 

Suppose not and so let for i < 0+, K~ =/~ + '  J/be distinct semi-decompositions 
i i with (Pro~(/~)'~,<X)/~ pairwise distinct; let go~=ai+b i, ao~el~, bo~eJ~. Let 

a~ = 1-I~i_)_~ X,~,i,m, Xo,,i,m is from B~ if rn is even, and from Po,,~,(i,m) if m is odd. 
W.l.o.g., n(i) = n and Xo,,i,2m = Xo,,i for 1 ~< 2m ~< n. So for i, j < 0 ÷, ai(a~) -1 and 
b~(b~) -1 belongs to K~ A E {L~," 7 = y(i, m) or 7 = 7(J, m) where 1 ~<m ~<n}. 

Now by 4.7, K,~=Iof3J~+'IorlJo+'IaAJo+'I~tqJa. By 7.12(2) for all but 
finitely many ),'s, Pro~(10 A J 0 = Proe(Ix AJo)= {I e BAb,(G):I  <~ L~,}, hence by 
7.11(2), Pro~,(lo)=Pro~,(I1) for all but finitely many ],. This contradicts their 
choice. 

7.13A. Fact. W.l.o.g. ,  for  ot < fl < r +, Set~ Iq Seto =_ Set where Set is a set o f  
power x. 

Proof. By 7.13 and a lemma of Fodor (see AP2.3) there is a stationary 
S ~ _ { 6 < x  +-cf 6 = 0  +} and 13<x + such that for every a~eS, Set~fq 
(Ui<o, Set/) _~ [--J~<t~ Set/. By renaming we get the first phrase. 

7.14. Proof of Theorem 7.1. Let for S=_x +, Hs=(Ko, 'o leS)~=~'~sK,~ .  
Suppose So 4:$1 _=/z, a e G1, ff]" maps Hso onto Hsl and [$1 - Sol -- [So - $1] = x +. 
We shall get a contradiction and this clearly suffices. 

So ~ ~sl  K~ = Hs~ = I'-1" Kso = 2'~s~ O a Kt~. As K~)= K=, by 4.7, 

H s , -  ~ '  K.  AD 'K~  
a~sl,is~So 

and for oc e Sl, Ko, = E'O,so Ko, A I-'I" Kt~. 
So for a~ e S~, for some finite w(a 0 _~ So, g,~ e E~w(~) K~ A Q" K a. As 

K , = (  ~ '  Ko~AI--I"Ko)+' ( ~ '  Ko, AD"Ka),  
tl ( o0 # ,E w ( oO 

so by 7.12(1) the cardinality of (E~,s0-~(~) K= f'l D" Ko)/Cent K~ is ~< 0. 
Hence Pro~,(E~,s0-,,(=) Ko, A t-1 a Kt~ ) = {L e ~ : L  ~_ L~,}, hence by 7.11(2) 

"t~w(a0 
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Let u(a 0 = {fl • w(a0: for some Y • ~ for every 1f e Y: Pror(K~ n I-I ~ KS) 
{ L • ~ : L c _ L r } } .  So u(a 0 is finite and for f l eu(o: ) ,  (Pro~,(K~nl--]"Ks): 
7 < ~ ) / ~  belongs to Set~ and it is also clear that it belongs to Set s. As 
u(tr) c w(a 0 c So, for te • $1 - So this implies that (Pror(K,, n D" Ks): y < Z ) / ~  
belongs to Set. By 7.11(2), { (Pro~,(Ko~ n ~q" Ks): It < X ) / ~ :  fl • u(a0} determines 
(Pror(K~): Y < Z ) / ~ .  As [S~-SO[=x+>ISe t l  for some tr(1) : / :a~(2)•Sx-S0,  
(Pror(K~o)):) ,  < Z ) / ~  = (Pror(K~(2)): y < X)- But this contradicts 7.11(2). 

So we have finished proving 7.1 and let us now prove 7.2. 

7.15. Lemma. Let L~ (y < X), L be as in 7.6 (X <~ x o f  course). Then there are for 
c~ < x +, K , ,  B~, P~,~ (y < X) B~, g~ and sequences (M~,,~,'y < X)s.t." 

(i) 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 
(vii) 

(viii) 
(ix) 
(x) 

K~ = (B~ U U r < x  (K~ n Lr))s. 
The K~'s are pairwise commuting. 
P~,r c_ K~, and P~,r, K~ O M~,r are explicit x-groups. 
M~,~ is the minimal member o f  ~ which includes P~,r. 
[:]g~ maps U~,<x P~,r to a subgroup o f  G commuting with U~,<x P~,~, 

L r - -  M~ r M~, r c_ Lr, go, • L and End~ ' (Ko) has cardinality <~ 0. 
For +, 
g~ • B~, [B~I = 0, B~ is an explicit O-group. 
K~ is a [0, x)-group. 
K~ is nice (hence L r n K~ • BA' (K~)  for  It < X) where 

7.15A. Notation. K is called nice when: if a e k e ,  Y<X, then 
Lr EndG (a ) i s  in K~, and also K = K O). 

t some a • 

Proof.  We define first M~,~, (Y < X) for a~ < x + as in 7.7. Then we define Ko~, B,~, 
Po,.~, (~' < X) Bo, go~ by induction on a:. For each a~, choose P,~.~ (7 < X) g~ as in 
7.7. then we define by induction on i < O, B,,,i, Ko~,i s.t.: 

(1) B~,~, K,,,i are increasing with i, g~ • B~,i, IB ,,I 0, IK ,,I x and 
L~ -MoL, 1" EndG (K~,i) has power ~< 0. 

(2) K~,~ = (B~,/O Ue<x(K~,i n Le))  s c_ Min Cm6 Us<~ Ks. 
(3) For i = 5j + 5, for every y • K~,i O Le - C e n t  L~ the set {Oay: a • K~,i+l n 

L~,} has power >I 0. 
(4) For i = 5j + 1, Koc,i n L~, ~ (K~,/+l n L~,) O). 

Lr 
(5) For i = 5j + 2, x • B~,~, 7 < Z, there is y • Ends  (x) n (K~,i+l n Lr) and 

X • (Bo, , i+l)  (1). 
Lr (6) For i = 5j + 3, x • B~,i if {y < Z: Ends  (x) ct Cent Le} is infinite, then for 

infinitely many such y's I{[=]gx: g • K~,i+l O L~}[ >i 0. 
(7) For i = 5j + 4, x • Boo,i, x ~ Cent G, if w = {y < X: End~ yx cz Cent L~,} is 

finite, let Mx be the complement of ~ '  {Le:Y • w} in BA'(G,  G1). Then (a) for 
some x" • Mx, xr • Lr (for ~, • w), x =x" 1-Ir~wx y and x' ,  x ~ •Boc, i+l for y • w; (b) 
x has 0 conjugates in B~,~+I. 
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(8) K~,o = (go,, (-Jr<x P~,r)G- There are no special problems in the definition. 
For (3) and (4) operate separately on K~,iAM~,~ and on K~,iN ( L r -  M=,~) 
(subtraction - in ~) .  

Now B,~ = (.Ji<o B~,i, K~ = I,.Ji<o K~,i are as required. (In the construction for 
each 7, work for M~,~, L~ -M~,e  separately). 

Note that K~ = (B,~, U~,<x (K,~ f)L~,))c by (2). Also K~ ) includes K,~ N L~, (by 
(4)), and Bo, (by (5)) and by the previous sentence K~ = K~ ). 

Let us check that every x ~ K,~ - Cent K,~ has >t 0 conjugates in Ko~. If for some 
Lr 7 < X, Endc  (x)cz Cent, Ly, then (3) (and (5)) take care of this. Otherwise let 

x = [I']=1Xlal, Xl • Bo,, at • K~ f'l L~,,. Let M, = ~ '  L~,,, Mb its complement in 
BA'(G,  G1). Clearly E n d ~ ( x ) =  End~(1-I~'=l x;); and as we are assuming (V7 < 

L, _ Endo (II1=1Xl) =_ Cent Ly. So (6) x ) E n d c ( x ) c C e n t L ~ ,  for 7 ~ { 7 ~ , . . . ,  7,}, L~ ,, 
Ly n applies except when w = { 7 < X "  Endc(IIt=xXl)C~ CentL~} is finite. If wcz 

{71,' ' ' , 7n) we finish by (7)(a) and (5) (first phrase applies to any 7 • w -  

( 7 1 , " " " ,  7n})" 
Lr By (7)(a), 1-I~'=~ Xl = x" I-lr,wX~ x ~" • EndG (x) fq K~, x" • B~. Together (using 

the properties of direct decomposition) (x ')-~x • Ko, D ~']=~ L~,,, hence x = 
I-I~'=~ y;, y; • K,~ f3 L~,,, Y0 • G - ~'=~ L~,, (the subtraction in ~ )  and Yo • Bo, 
y;•Ko~DL~,; for l = 1 ,  n. By (7)(b), {[-lgyo:g6B~} has power>--0, and then 
easily {~gx :g • B~} has power 0, except when Y0 • Cent G. Also if Yl ~ Cent G 
(l = 1, n), then { ff]g Yt: g • K,~ N L~, } has power I> 0 giving the conclusion. So we 
fail only if x = I-I~'=l y; • Cent G but we assumed x ¢ Cent G. 

Also the other properties are easy. 

7.15B. Definition. For x • K c_ G ( K  = K 0)) let sv~,(x, K)  = {M • ~:  M ~ L~, and 
for some Ka • BA'(K) ,  K1 f'l x Cent K 4= 0 and K1 =_ L~, - M).  

sv(x, K ) =  (sv~(x, K ) ' 7  < X) /~ .  

7.16. Fact. ( 1 ) / f  K = K °), x • K - Cent K, then {I • BA'(K)  : I  t2 x Cent K 4= 0} 
is a filter o f  the Boolean algebra BA'(K).  

(2) svr(x, K)  is an ideal o f  ~ r L. 

Proof. (1) Note that (x Cent K)N I = I~ is equivalent to: x commutes with the 
complement of I in BA'(K).  Clearly svr(x, K) is upward closed. Suppose Ma, Mb 
belong to sve(x, K). We can find M1 • BA'(K)  for l = 1, 2, 3, 4, K = ~4,=a Ml, 
M,, = M1 + M2, Mb = M1 + M3. We can find Xl • )kit (for l = 1, 2, 3, 4) such that 
X m E~=I x1. The  checking is easy. 

(2) Left to the reader. 

Ly 7.17. Fact. I f  x, y • K, x Cent K = y Cent K or even EndG (x) = EndGL~(y), then 
sv ,(x, K) = sv ,(y, K). 

7.18. Fact. I f  K = K O) = K~ + '  Kb,  

sv(x, K ) =  sv(x, K,). 
x e K,., then svdx, K)= sv (x, Ka), 
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7.19. Fact. For every x e K~ for  some z e B~,, sv(x, K~) = sv(z, K~). 

Proof. Let x = H~'=x Xlal, Xl ~- Bo~, al E K .  I"l Lr, (7/< X) (possibly by (i) of 7.15.) 
Let K~ be (~'=ILr,) ,  and Kb its complement in BA'(G).  As K is nice, 
K = Ka t3 K +' Kb f3 K. So let x = x~ + Xb, Xa e K~, Xb e Kb. By the choice of Xl, 
at, 7~ ( l= l, n) (xa CentK)fqB~=/=~. 

Let y = 1-Iln=l Xl" ~ clearly y e B~. Next choose x~ e End~(x),  then clearly 

m n 

1-Ixl Cent Kb = I-I x~ Cent Kb 
l=l l=1 

and so 1-IT=lxl belongs to End~"(y) and also to Eng~(x)  and /f ~, <X, 7 
Ly Ly n 

{ ) q , . . . ,  7~}, then Endc (y), Endc (1-[1-1 x~) and End~(x) are equal (they are all 
of the form z Cent Le), hence svr(x, K ) =  svr(y, K). As the filter ~ is non- 
principal (no finite set belongs to it), clearly sv(y, K) = sv(x, K) and the proof is 
complete. 

7.20. Fact. I f  K = K 0) = ~ l < m  KI, Xl E K l, x "- ~ l < m X l ,  then: 
( 1 )  S V y ( / ,  g) - ' r ) l<mSVy(X l ,  K). 
(2) From (sv(x/, KI) 'I  < m )  we can compute sv(x, K). 

Proof. Clearly (2) follows from (1), and (1) is straightforward. 

7.21. Fact. sv(g~, K~) for tr < x + are distinct. 

Proof of 7.2. Let S V ~ = { s v ( x , K ~ ) : x e K ~ } .  So by Fact 7.19, SV~= 
{sv(x, K~):x  e B~}, hence has power--- < 0 < x .  Let SV~ be [_Js<o~SV s. Let SV b be 
{sv(x, Kr): for some m and 7/(l < m ) ,  sv(x/, Ke,) e SV a and for every 7, sv(x, K~) 
is computed from them as in 7.20(2)}. 

Clearly IsvsI <- for tr < x+, and even Isv l-< ~ Also ~ svX, and SV b is 
increasing and continuous. 

By AP2.1 (Fodor's Lemma) for some unbounded S ~_ x + and t r ( .  ) <  x +, for 
every a~ e S, SV~ Iq SVb~ ~ b _ SV~(.). By 7.21 w.l.o.g, a~ e S ::> sv(g~, K,,) ~ SV b 

Now suppose T1, T2 ~_ S, a~ e T1 - T2, g e G1 and I-qs maps ([._J (K s" f e T1} ) 6 
onto ([._J {K s "f  e T2})6; we shall get a contradiction. Thus finishing the proof 

t ' g of 7.2. By 4.3(2), [3s K~ = ES~r~ ([3 K~ tq KS), so there are n, f l  < "'" < f ,  e T2 
and gl E ['qg g a  N KS, s . t .  : 

n 

[3g g~ = ~ gl. 
1=1 

If ill, - - - ,  fn < ¢1", then sv(g~, K~) e svb~ is a contradiction to the choice of S. 
If fll~> t r, then fie > e (as tr ~ T2), and ([:]g K~,)tqKs, is conjugate (in G1) to a 

direct summand of K,,, hence by 7.18, sv(g 1, ([3g K~,) FI Ks, ) e SV$+1 _ SV~, but 
also by 7.18, sv(gl, Kst)=sv(gl , (E]gK~)fqKs,) .  As fleT2~_S,  sv(gZ, Ks~)e 
svb,,(.). SO for each l, sv(g/, Ks~ ) e SV b, hence again sv(g,~, K,~) e SV~, 
contradiction to the choice of S. 
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8. The end for la successor 

8.1. Lemma. Suppose lz = x +. I f  G • £2~, then cg(G) ~< x. 

Proof. It is enough to prove this for G • g2x. We choose by induction on i < ~, ai 
such" that: 

(1)  a i ~  ( a j : j < i ) ~ ,  a i • C m 6 { a j : j < i } .  
(2) Let ni = Min{n :n > 0 ,  (ai) n • {ai:J <i)~} (and ni =0  if there is no such n). 

Then ni is minimal but > 0 if possible. 
Suppose first ai is defined for i < #. Clearly, ni is zero or a prime. Let for each 

i, wi ~_ i be finite, such that (ai) n~ • (aj :j • wi)C~. By Fodor's Lemma (see AP 2) 
there are a stationary S ~ x + = # and w such that wt = w, nt = n( * ) for i • S. Now 
let N =  ( a j : j •  w )~ ,  so clearly N is a normal subgroup of G, but IG/NI = ~ (if 
G =N,  we get our conclusion, otherwise remember G • K2x). Hence, by 1.6, 
G / N •  ~ (in fact G / N •  f2x). For any T _~S let Hr = (ai:i • T)G, SO it is enough 
to prove that: if or • T~ - T2, then for no g • G, D g maps Hrl onto Hr2 or even a~ 
into Hrs. If this occurs let (remember Hr~ is commutative): 

k m 
( . )  Vlg a~ = l-[ (aa,)'n(01-I ((a~,,)~(*)) k(0, 

1=1 1=1 

where m ( l ) ~ O  and [n(*)>O==)>O<m(l)<n(*)].  We know a~,~(aj : j<or)~ ,  
hence rqg a~ ~ (aj:j  < or)R, and as (a~,t) n(*) • (aj:] • W)C~, W c or, clearly for some 
l, ~l ~ or, 1 ~ l <~ k. As or ~ T2, ~l > or, and choose a maximal such fit, and 
w.l.o.g., it is ilk. NOW 

k - I  m 
(al3k) -re(k) = ([-']g a=)  -11" I  (a#t) k(l) 1-I ((ayt)n(*)) k(1), 

l=1 1=1 

hence (aa,) re(k) • (aj :j </~k) ~, contradicting 0 < m(k) < n( * ) or m(k)  :/: 0 (by 
(2)). 

We conclude that for some i </~ we cannot find an at. Clearly there is no ai 
satisfying (1), so C m o ( { a j : j < i } )  is included in N = ( a j : j < i ) ~ .  By 1.12 this 
implies (G" N) < 4. But G • ~2x, hence G = N, so we finish. 

8.2. Theorem. The main theorem holds when It = x +. 

Proof. Choose G • 0~, with minimal y(G).  We know that y(G)  < # (by 5.7). 
We define by induction on i < #, a subgroup Ki such that: 
(1) Ki = K! 1), Ki has power x. 
(2) Ki commutes with Kj for j < i. 
(3) BA(Ki) has power ~< x. 
(4) No I • BA(Ki) is conjugate in G to any J • Uj<i BA(Kj). 

This clearly suffices. 
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Suppose we have defined Kj for j < i; let Gi = Min CmG([..Jj< i gj) .  We know 
that Gie£2], cg(G~)~<x (by 8.1), IBm(ai ) l~<r  (by 7.1), and let G i = ( A ) ~ ,  
IAI <~ x. Now we define by induction on tr < 1~, Mr ~_ Gi, such that: 

(a) A ~_ M0, Mr has power ~< x, Mr is increasing, Mr = MY ). 
(b) BA(Mr)  = {I fq Mr : I  e BA(Gi)}. 
(c) For every a~ < / t ,  I e BA(Gi) and ), < y(G) there is a H / = ~<~,(c) Hi 

i Hr, acz CentCmM~(Gi) and for some Yi~, fl<~),a<y(G), i Hr,  a is a ya-required 
subgroup of M~+I tq Cmc,(Mr)  f3 L 

We first take care of (c) - -  remembering CmG,(Mr) N I e  ~lx and y(G) 's  
m i n i m a l i t y ~ t h e n  of (b), (a) by 4.12, 4.13 (and see AP 1.3). 

Now by (c) for no I e BA(Gi) and tr < fl are I N Mr, I N Ma conjugate in G (by 
the minimality of y(G) and 5.9). As I,_.Jj<i BA(Kj) has power ~< r ,  necessarily for 
each I e BA(Gi) for some tel < / t ,  for no a~, a~1 ~< a~ < x+, is I tq M~ conjugate in G 
to some J e I,_J~<iBA(K~). As BA(Gi) has power ~< x, a~ = ~,.J {o~z + I : I e B A ( G i ) }  
is smaller than #. But now by (b), M,  is a satisfactory candidate for K~, so we 
finish the construction of the K~'s hence of the theorem. 

8.3. Hypothesis. It is a limit cardinal. 

8.4. Lemma.  Let O+<x, 2 " < 2  "+. For every group G at least one of  the 
following occurs: 

(1) For some A ~_ G, IA[ r ,  Mino Cmc A = {e}. 
(2) There are Kr ~_ G for a~ < (2") +, IKrl ~< ~÷, the subgroups <Kr, Cent G)6  

are pairwise nonconjugate in G and [_J {Kr" ~ < (2") + } has power <~ x +. 
(3) There are Kr~_G for a ' <  (2") +, [K~I~<x +, the subgroups (Kr, Cent G ) c  

are pairwise nonconjugate in G, and Ko, is a semi-direct sum of  [0, x+)-groups. 

Remark. We can replace r + by an inaccessible cardinal. 

Proof. This is really a repetition of the proof of 8.2. Let ~3 3 = ~,¢,o be the class of 
counterexamples (i.e., G e ~3 iff G does not satisfy (1), (2) (3)) and let 

~4 = {H:H~) is a semi-direct sum of [0, x+)-groups).  

(a) Each G e ~B3 (or just G satisfies not (1)) has an abelian subgroup of 
cardinality x +. [Why? We can choose by induction on i < x ai ~ G such that 

d e f _  
ai ~ A i =  {aj :j < i}, a~ e Cm6 Ai; if we succeed to carry the definition we clearly 

clef 
prove the assertion. Suppose aj is defined for j < i, then Hi = Mino Cmc A~ is not 
trivial (as G, being a member  of ~3, does not satisfy (1)), also Hi = Mino Hi by its 
definition, so Hi cannot be commutative (see 3.10(1)). Choose ai e Hi - Cent Hi, 
easily ai is as required.] 

(b) Each G e !9 3 (or just G satisfies not (d) nor (2)) has cardinality i>2(<~). 
[Why? By (a) G has a c~mmutative subgroup H of cardinality x +. We know that 
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H has 2 o`÷) distinct subgroups, so if IGI < 2 ('÷), 2 o`÷) of them are nonconjugate in 
pairs; so (2) holds for G, contradiction.] 

(c) If H ~_ G, G e ~3, H ~ ~v*, [HI ~< r ,  then Cma(H) e ~9 3 [by (d) below for 
i - 1, 2, 3, we know that if Cm6(H) satisfies (i), then so does G]. 

(d) Suppose H ~ G, IHI <~ r .  
(i) If Cmc(H) satisfies (1), then so does G. 

(ii) If Cma(H) satisfies (2), then so does G. 
(iii) If Cma(H) satisfies (3) and H e ~4, then G satisfies (3). 

[Proof: check.] 
(e) If G e ~ (or just G does not satisfy (2)), then [Cent(G)[ ~< r ,  (G :G °~) ~< r. 

[Proof: easy.] 
(f) If G ¢ ~3 (or just does not satisfy (2)), then G has no strictly decreasing 

sequence of normal subgroups of length r +. [Proof: see the proof of 3.1.] 
(g) If G fails (2), N a subgroup of G, (G :N)~< 2 ~, then N fails (2). [Proof: 

check.] 
(h) If G fails (2), a<~r,  then (G: Mino G)~<2 ". [Proof: let h, (N/:i ~< o~*) be 

as in 3.10(4). By (f) above C =  {~ ~<fl 'h(~)= ~} has cardinality < r  +. Also if 
eC,  (G:N¢) ~<2 '~, then by (g) above N¢ fails (2) hence by (f) applied to N¢ the 

set {i:h(i)= ~} has cardinality <~r +. We conclude that re* < u  +. By 3.10(4) 
(N~: N~+I) ~< 2", so we can easily show that te < r +, (G "N,,) ~< 2", as required.] 

(i) If G fails (3), N a subgroup of G, (G "N)<~ 2 '~, then N fails (3). [Proof: 
check.] 

(j) If G fails (1), (2), N a subgroup of G, (G :N)~<2 ~, then N fails (1). 
[Proof: suppose N satisfies (1), then for some A c_N, Mino Cm~v(A)= {ea}. 
Let K = Cma(A), so CmN(A)= K f3 N. We know that K fails (1) and (2) (by 
(d) above) and that (K :K f3 N) ~ (G'N)  <~ 2 '¢, hence K fq N fails (2) (by (g) 
above). So by (h) above (K t3 N: Mino K f3 N) ~< 2". But Mino(K f3 N) = 
Mino(emc(A) f3 N) = Mino CmN(A) = {e}, hence (K fq N) ~< 2". As (K:K N N) < - 
(G:N) ~<2 ~, clearly IKI ~<2", so by (b) K satisfies (1) or (2), contradicting a 
statement above.] 

(k) If G e ~3, N a subgroup of G, (G "N) ~< 2", then N ~ ~3. [Proof: by (g), 
(i), (j) above.] 

(l) If G ¢ ~3, a ~  < r ,  then Mino G ¢ ~3, (G.Mino(G)) ~< 2,¢. [Proof: by (h) and 
(f) above.] 

d e f  + 

Let a = 0  , so 0 < a < r .  
Choose G ¢ ~3 with minimal ~,(G). W.l.o.g. G -- Min,, G. Choose by induction 

on ~ < r + ,  a group K~_Cmc((..Ja<~Kt3 ), [K~I~K, BA'(MinoK~,Ko,) has 
powers< r and no I ¢ 1.3t~<~BA'(Mino Ka, Kt~ ), J ~ BA'(Mino K,~, K~,) are con- 
jugate in G. If K,, is defined for each o~ < u +, we easily get a contradiction by 
having (2). 

So we assume K~, 0 cannot be defined. Next we define by induction on non-limit 
y < u +, for each r/¢ ~2 a subgroup Hn of G s.t." 

(i) Hn is a [0, u+)-group. 
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(ii) U,~<~o K~, ~_ H<). 
(iii) H, is included in Mino Cmc U (H,t~,: 7 < l ( ~ )  non-limit). 
(iv) If ~e~2,  H~^(o>, H,^<I) satisfies: if we define H~ ( 7 < l ( v ) < r  +) in 

any way satisfying (i), (ii), (iii), and %, v~ e~+2, v ; r T =  ~^( l )  and g 
CraG U (H ,  r ~:fl < 7 non-limit), then [3 ~ does not map (H~ 0 ~ 8: fl < ~+ non- 
limit) onto (H~ t 8: fl < ~+ non-limit). 

If we succeed we can get (3) by the weak diamond by AP 3.2. So suppose 
H,~ t~ (7~<l(~) non-limit) are defined, but not H,^(o), H,^<O. Let G~ = 
Cm~ (._J (H~ r~: 7 ~<l(r/) non-limit). So G n 69  ~3, Mino G, e 9  ~3, Mino G, ~ 3 .  

We first note 

8.4A. Fact. / f  Mino(1)G = G, N is a normal subgroup o f  G, (Cm6 A)c_ N, 
No + IAI ~< r(1), ( G ' N )  >t ~.(1), t(1) > 2 ~1), then there are I-I, c_ G for  i < ~.(1), 
nonconjugate in pairs, Hi an explicit (Min{a(1), r(1)  } )-group. [Proof: like 1.12.] 

a.4B. Fact. /f Mino(1) G = G, cg(G) > r(1), for  no A c_ G, [IAI-< r(1) ^ 
Cmc A ~_ (A) ~], then for some ai e G ( i < r(1)  +) the groups { ( ai : i e S ) c : S ~_ 
r(1) + } are pairwise nonconjugate. [Proof: like 8.1.] 

8.4C. Fact. ff G = Mino G e ~93 has minimal y(G) ,  then: for some A ~_ G, 
IA[ <<- r,  for no H, A ~_ H ~_ G, [BA'(Mino Cm~ H)[ <~ r,  and cg(Min° CmG H) ~< 
r.  [Proof: like 8.2.] 

$.4D. Faet. If  G = M i n o G e ~  3 [ IeBA ' (G)=) , Ie~93] ,  then IBA'(G)I~<r. 
[Proof: like 7.1.] 

8.4E. Fact. ff G = Mino G e ~93, then for some explicit [a, r+)-group H c_ G, 
[I e BA'(G),  I ¢ 9~3~I  tq Mino Cmc H ~_ Cent I]. 

Proof. We choose by induction on o~ < r +, a~, I,~ such that: 
(i) a,  e I ~ e ~ = { I e B A ' ( G ) : I ¢ ~ 3 ) ,  

(ii) a~ ~ ((.-Jt~<~, 18 ) c and a~ ~ Cmc (._Jg<~ It3, 
(iii) under (i), (ii), n i = M i n { n  > 0 : a ~ e  (a~a:fl < a)G} is minimal. 

If we succeed we continue as in 8.1 and get that G satisfies (1), contracting 
G ~ ~93 (note that (t..Ja<~ 18 ) c is a normal subgroup of G as each It~ (fl < a 0 is). If 
not, say a~(,) not defined, we can choose (by 3.4F below) A~, A ~ _ / ~ ,  
CmA~ I~, = {e } for tr < tr( * ) and an explicit [a, r +)-group H, {a~," o: < tr( * )} U 
O(A~" o: < tr( * )} ~_ H ~_ G. H is as required. 

a.4F. Fact. / f  I e BA'(G),  G e ~3, I ~ !~ ~3, then (1) of  8.4 fails for  I. [Proof: 
check.] 

Now we return to deriving a contradiction from the impossibility to define 

Hn^(o), Hn^(~). 
def _. 

By 8.4C applied to Ga = Mlno G, 7 we get an A as there. So there is an explicit 
[a, r+)-group Ha, A ~_ Ha _ Ga. Let Gb = Mino Cm~o Ha. By the choice of A, 
[BA ' (Gb) I>r  or cg(Gb)>r .  By 8.4A, 8.4B, cg(Gb)~<r, hence [BA ' (Gb) I>r .  
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By 8.4D [applied to Gb] there is I • BA'(Gb), I ¢ ~ .  Let ~ be as in 3.4E (for 
G~). Let H~, c_ I be an explicit 0-group. 

We choose H,~^(t~ > = Ha + H 1. We leave the checking to the reader. 

9. The end for la limit 

9.1. Definition. (1) Suppose G e ~ ,  N~ < 0 < #. 
special subgroup of G if H = E;~I H/where  

(a) H(11) =/-/1, H(21) =/ /2 ,  HI commutes with/-/2. 

(b) Inll + I/-/21 < 

Then H is called a [0, x)- 

(c) /-/1 is a semi-direct sum of groups each of power ~< ~1 
(d) /-/2 is a [0, K)-group, H _ G. 
(e) No semi-direct summand of / /1  is included in Min Cm6(/-/2). 
(2) If K = 0 ÷, we write "a 0-specal subgroup of G". 

9.2. Claim. Suppose G •  ~ ,  H i a [Oi, #)-special subgroup of  Gi= 
Min Cmc(Uj<~ HO for i < cf #; and i <j  ::> [Hi[ < Oj, and H = E;<ceu Hi. Then 
from H we can reconstruct the Hi's (modulo the Oi's). 

Proof. We reconstruct them by induction on i. Let G/= Cmc((_Jj<i/-/j). In stage i 
let H i = H i  + H ~  (as in the definition). So H/~ is the maximal semi-direct 
summand [Oi, 0i+l)-Subgroup of H N Cmc(l._Jj<i/-/j) and Hi = ( I  N H: I a semi- 
direct summand of CmG/(H~), [IAHI <~1, no direct summand of which is 
included in Min Cmc,(H~)) G,. 

9.3. Lenuna. (1) Suppose G • ~ ,  NI< 0</~.  Then G has a [0, IJ)-special 
subgroup H such that for some K </z, Min CmG H does not have 2 '~ [r, l~)-special 
subgroups nonconjugate (in Min CmG H) in pairs. 

(2) I f  Hi is a [0, r)-special subgroup of  Cmr([._Jj<i/-/j) for i < ol where G • ~ ,  
then (Hi :i < o~) c is a [0, K)-special subgroup of  G (provided that its power is <x) .  

(3) I f  G • ~1, H a [0, x)-special subgroup of Min G, then H is a [0, r)-special 
subgroup of G. 

(4) Any [0, r)-subgroup is a [0, x)-special subgroup (for 0 > N1). 

Proof. (1) By 6.12 there are strictly increasing r(i) ( i < c f # ) ,  /z = Ei<cf~,r(i), 
cf/z + 0 < r(0) ,  r(i)  < #, /z < 2 ~(° < 2 '~(°÷. We assume that the conclusion fails, 
and we define by induction on i < cf/~, for every 77 • 1-Ij<i 2 '4/) an ordinal i n < cf/~ 
and subgroups H,7, H~ of G such that: 

(i) H, commutes with H, 7 rJ for j < l(r/), and H;= (H, 7 ri:i <~l(r/))G. 
(ii) H, 7 is an [K(i,7) ,/z)-special subgroup, of Min C m c ( U  H~ rj:J < l(r/)}). 

(iii) ~:(in) > Ej</(rl)[H n tJ[. 
(iv) For i = l(rl), a~ < ~ < 2 '40, the subgroups H~^<~>, H;^<a > are nonconjug- 

ate in G. 
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By 9.2 this is enough (as Hn is a [x(in),lHn]+)-special subgroup of 
Min C m 6 ( U  {H,7 ti:J < l(r/)}); and so for )7 e 1-Ij<aF,2 k0), H ~ =  (Hn tj:J < c f # )  
are pairwise nonconjugate subgroups of G of power/z, contradiction to G e ~ ,  by 
1.13(2)). As the number of possible (x(in t~):J < cf/z} is ~< 2 ~f~' < 2 ~' = ~.. 

So suppose H~ t~ are defined for j ~< i = l ( r / )<  cf/z, and we shall define Hn^<~>, 
i,)^<,~>. We let, for all a~'s, i(* ) =  i,)^<~> be the first i < cf/z such that r( i(  * ) )>  
~j~<i [H,) t~l, and 2 ~'(i(*)) > (Cm~(l._Jy<i Hn r~):Min Cm~(t._J~<i H,) t j)) (this is pos- 
sible by 6.12(4)). Now as we have assumed that the lemma fails, and as by 9.3(2) 
~}<~i H,) t~ is a [0,/z)-special subgroup of G, clearly there are [ r ( i (  * )),/Q-special 

subgroups of Min Cmo([._Jy~</H,)t j ) H ~ (  re< 2K(i(*))÷) which are pairwise noncon- 
jugate in Min Cma(l._J~<~/Hn t J). As 

by the proof of 1.5 w.l.o.g., they are paitwise nonconjugate in CmG([._Jj<iH n tj) 
and by the proof of 1.9 w.l.o.g., (I,_Jj~/H, 7 r j, H~}c are pairwise nonconjugate in 
G. So we can have our H,)^<,~> (re < 2 '~(/('~))) as required. 

(2), (3), (4) Easy. 

9.4. l, emma. ff G e ~ ,  N~< o <  0 </z  and G has no 2 °+ explicit [o, 0++) - 
subgroups nonconjugate in pairs inside G, then there is an explicit [o, 0+) - 
subgroup K of Mino G such that Mino Cmc(K) is included in ( K } ~  (hence by 
3.12, Min G ~_ (K)~noG). 

Proof. Suppose that the conclusion fails. Then we can define by induction on 
i < 0 +, an element x /e  Mino Cmc(t._Jj</Kj) not in ([._Jj<i Kj } 3, and then choose 
an explicit o-subgroup K/of  Mino CmG(I._Jj<i Kj) to which x/belongs. (Remember 
that by 3.10, Mino Cmc(Uj<i  K j) is an explicit o-group, and of course is in ~ . )  

Let S e t / = { { g y g - l : g e G } : y e K ~ } ,  it has power <~[Ki[=o. Let Set /=  
{{gyg-a:g e G}:y  ~ (I._J~<iKj}~}, so Set / is increasing (in i) continuously, and 
[_Jj</Setj _ Set/ct Set ~. By a lemma of Fodor (see AP 2.3) for some tr( * ) < 0 + 
and unbounded S( * ) ~_ 0 +, for every f l e  S( * ), Sett3 fq Set t3 _ Set ~(*). 

Now for any set S ~_ S( * ) let: 

Hs= (IC,:i eS) . 

Now for S ~ T, Hs, Fir cannot be conjugates, for suppose t r e  S - T, a e G and 
N a maps Hr  onto Hs, then H r = E ; ~ r K i  = E;~sE]aKj, hence by 4.7 for some 
T1 ~_ T, D a K~ = ~;~r, ( 71a K~,) fq/-/j, hence for some finite T2 _~ T1, I-q a xo, - 

cg [I,~r~Yi, Y i e ( D a K ~ ) N K i  • Let Ta={ieTE:Yi~(t_Jj<~(,)Kj)o}. If Ta~_tr, then 
{gx~g -1 :g ~ G} e Set% contradicting the choice of xo,. So T3 ¢t tr, and let i be the 
maximal member of T3, but then as yj ( j e  T1) are pairwise commuting, 
{gyig -1 :g ~ G} ~ Set i again. So {Hs" S ~_ S( * )} contradicts a hypothesis, hence 
we have proven the lemma. 
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9.5. Lemma. / f  } < ~ < o < 0 < # < 2 ° < 2  0+, 
[a, O++)-subgroups nonconjugate in pairs 
[0, O+)-subgroup K of  Mino G, such that 

cg(Mino Cma(K),  Cma(K))  ~< 0. 

G • ~ and G has no (20) + explicit 
inside G, then there is an explicit 

Proof. Suppose not. Then we shall define by induction on te < 0 +, for every 
r / •  (~+1)2 an explicit [0, 0+)-subgroup K, 7 such that: 

(i) Let G, 1 = C m c ( U  {K n r(a+i):/3 + 1 ~< l(r/)}). 
(ii) K,~^<m> ~ Min,, G,~ for m = 0, 1. 

(iii) If v• '~2,  then some xneKn,,(1 > does not belong to (Kn^<0 >, 
Mina G,7^<0>)~ .. 

Suppose Kn r(~+l), ~ + 1~<l(~/) are defined already. As (K, 7 r( ,+l):~ + 1~< 
l ( ~ ) ) c  cannot satisfy the conclusion of Lemma 9.5, for no A ~_Mina G, of 
power<~0 does M i n o G , 7 ~ ( A ) ~  .. Also G, 7 has no (20) + explicit [0 ,0++)  - 
subgroups nonconjugate in pairs inside G,~: for if H~ ( i < ( 2 ° )  +) are such 
subgroups, then by the proof of 1.9 w.l.o.g., the subgroups ( U  {K, r(~+l)'/~ + 
1 ~< l(~)} U Hg)c for i < (20) + are nonconjugate in pairs inside G, contradiction 
to a hypothesis. So by Lemma 9.4, (applied to G,) there is K ~_ Mino G,, an 
explicit [a, 0+)-group, such that Mino Cmc~(K)~_ ( K ) ~  and we let K,^<o> = K. 

^ C But as mentioned above, Mino G, is not included in (K,  <o>)3,, and choose 
x~ •Mino  G, - (K,7^<0>)~ " and K,7^<1 > a (explicit) o-subgroup of Mino G, 7 to 
which x~ belongs. 

Now (ii) holds trivially, and (iii) holds by the choices of K,7^<o > = K, x, 7 and 
K,^O>. Let for 77 •(0+)2, H,  = (K ,  r(oc+l): 0g< 0+).  

We can now apply AP3.2 alternatively to the following. 
By a hypothesis of the lemma, there is {N/: i < i* ~< 2°}, a list of subgroups of 

G, so that each H, (77 • (°+)2) is conjugate inside G to one of them. So let Vlg~ 
map H n onto N~(n ), gn • G. By a set-theoretic statement called 'the weak 
diamond' which holds for 0 + as we have assumed that 2 0 < 2  °+ (see AP 3.1) we 
can conclude: 

( . )  There are r/, v • 0+2, and p and a limit ordinal 6, s.t. p = ~/ t 6 = v ~ 6, 
r/(6) #= v(t~) but i ( r / )= i(v), E]g, ~ (Kp r (~+1)" cr < 6 ) c  = vlg~I (Kp [ (a+l)" ff ( ~ )G" 

So rq g,-~g- is an inner automorphism of G, which is the identity on 
(Kp r(~+l)'Cr< 6 ) c ,  hence g~lg~ belongs to Cmo ((Kp r(~+l):a~< ~)~  ), i.e., to 
Gp, and maps H~ onto Hp. This is an easy contradiction. 

9.6. Lemma. Suppose G e ~x, y(G) minimal, 0 < #. Then there are x < #, x > 0 
and A ~_ G o f  power < #, such that: 

(* )  In Cmc(A) we cannot find pairwise commuting subgroups K~ (t~< x +) 
such that: 

(i) IK l < #. 
(ii) BA'(Mino(Ko,), K~) has power < #. 

(iii) For I e BA'(K~ ~), K~,): i f  Ill < x ,  then every x • I - Cent I has ~< b~0 
1-conjugates (such I is called essentially countable). 
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(iv) For ol =/= fl, no nonessentially-countable 
BA'(Mino Kt~, K# ) are conjugates in G. 

(v) K~ is not essentially countable. 

I ¢ B A'(Mino K~, K~), J 

0 Proof. Let /z = Ei<cfp Ki, 0 < K ° </A. We define by induction on i < cf #, 
cardinals 0i, xi and subgroups K / (a~ < 0 +) such that: 

(a) Ej-<i x /<  0 i < [Z~, cf # + r ° < Oi, [~ < 2 0  ̀< 2~. 
(b) Conditions (i)-(v) of the lemma hold with [..J {K~:fl < 0;-, j <i},  0i, 

K / (a: < 0 +) standing for A, r ,  K~ (a: < 0+). 
(c) 0 + < xi < # and K / has power < xi. 
If the lemma fails there is no problem to proof it by induction on i: First define 

0i by (a), then K~ (c~ < 0 +) by the failure of the lemma, then we replace 
(K / :  a: < 0 +) by a subsequence of the same power so that we can define rz by 

(c) 
Now for any g = ( S i : i < c f l a ) ,  S i c O ~ -  , w e  let H s = ( K i : o r E S i ,  i<cf/~)o.  

Clearly the number of possible S, s is 2 ~', and by (iv) and (iii) (as used in (b)) we 
can prove that they are pairwise nonconjugate. 

Remark. Remember that we should be careful to be able to know from which 
( K i  : ol e Si ) a semi-summand comes. 

9.7. Definition. Min[H, X] = f'] { N : N  a normal subgroup of H, (H:N)  <Z}; let 
Min'CH = Min[H, (2'¢)+]. 

9.7A. Fact. (I) Min[H, X] is a characteristic subgroup of H. 
(2) (H :Min[H, X]) < X and (Min(H, X) :Min[Min(H, X), X]) < X implies 

Min[Min(H, X), X] = Min[H, X]- 
(3) Also, i f  2 x >I la > X, G ~ ~x, then Min[G, X] ~ ~[ and l ~ n  x G ~_ Minx+ G. 
(4) Also, i f  2 x >- la > X, G ~ ~,1, A = G, [AI X, N a normal subgroup of  G 

including Min x Cm6 A,  then Min x G =_ N (see 1.12, 3.12). 

9.8. Lemma. (I) For GI ~ f21x and o< la there is a subgroup HI ~_ GI and O, 
o~< 0 </~, 2 0 < 2  e+, [/-/1[ ~< 0 s.t. G d-----efMin Cm6,(H1) satisfies: 

(*)o I f  H is a subgroup o f  G, IHI + 0 ~< x </~, then (Cm6 H: 
Min[CmGH, (2'~)+])~<2'~ and Min[Min[Cm6 H, (2'¢)+], (2") +] = Min[Cm6H, 
(2'~)+1. 

(2) If  Gx e t2~,, o </z, and G1 satisfies (*)o  o f  9.8(1), then 
[tr, l~)-special subgroup 1-11 ~_ G1 and O, tr <<- 0 < 1~, 2 0 < 2 °+, 
and G d-----efMin Cmo,(H 0 satisfies: 

(*)o I f  H is a [0, tz)-special subgroup o f  G, x a cardinal IHI + 0 ~< r </~, 
2'~<2 ' :  and I e B A ' ( M i n o C m 6 H ) ,  I l l<X, then there is A~_I ,  IAl<~r s.t. 
Mino Cml A = {e}. 

for  some 
IHll <~ e, 
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Proof. Suppose G1, tr form a counterexample (to 9.8(1) or 9.8(2)). Let 
0 r0 < We define by induction on i < cf/z, cardinals 0i, x,- and t ~ = ~"i<eft~ Ki ,  l t" 

subgroups H i, P such that: 
0 (a) E~<i r~ < 0i, 0 + < ri, o + cf/~ + xi < 0i, # < 2 ò  < 2~  and 2~ < 2~. 

(b) H i ~_ CmG(i._Jj<i H ~) is a subgroup of Gi = Min(Cm~ [..Jj<i HO, IH'l ~< Ki and 
for 9.8(2) H i is [Oi, r+)-special group 

(C) ( C m G ( U j <  i H i )  • 1Vlln CmG([,..,Jj< i H i ) )  is ~< 2 °,. 
(d) For each i, (c~) or (fl), for 9.8(1), 9.8(2), respectively, holds 

(o:)i (CmGiHi:Min ~ Cm~,Hi)  > 2 ~  or 
(Min~ Cm~, H i : M  in ~i Min~ Cm~, H i) > 2'% 

( f l ) i  Ii eBA'(Mino,  Cm~,H% C m G ~ H i ) ,  Ilil<z and for no A~_F, IA < ri 
and Mino, Cm~,(A) = {e }. 

If for some i < cf/z we have defined for every j < i but cannot find H i, I i, Oi, xi, 
then clearly we have gotten the desired conclusion of 9.8 (note we can choose Oi 
satisfying (a) and (c) by 6.12(4), now we look for H i, (I i) and x i and for (d)(cr) 

remember 9.7A(3)). 
So we suppose we have carded out the definition. 
Case I: We will prove 9.8(1). Let S o = { i : i < c f ~ }  and let Ki be Cm~,H i if 

(Cm~, H ~ : Min~ CmG,H i) > 2", and Ki = Min ~, Cm~, H ~ otherwise. First note 

9.8A. Observation. For each i e cf#  there are normal subgroups Ni,~ (ol < r +) of  
Ki, Min Ki ~_ Ni,~ and N~,~ is strictly decreasing with o:. 

We choose by induction on i < cf/z elements a~,~ (or < r +) of K~ and ordinals 

'~i,a~ < / ( ~ - )  s.t.: 
(i) ai, ~ E Ni,~,i, ~ - Ni,~,i,=+l 

(ii) ([..Jj<~iHJU {aj,,:j eSoNi ,  f l < x ]  ~ or j = i ,  f l<te}}G is disjoint to Nim,~-  
Ni,~i,~+l. 
This is done by induction on t~ < x +. 

Now for each i <  cflz let {u~: ~ < (2~,) +} be a list of distinct subsets of x +. 
For each ~, ~ < (2'~') + choose, if possible , V~,¢ (j" • S o -  {i}) subsets of xT andg,,~ • G 
s.t. l-qs~.~ maps ([_Jj<~HJO{aj,~:f leV~,~ and jg: i}O{ai ,~ 'o:eui~})6  onto 
([..Ji<~oHJ U {aj,, 'fl  e V~,~ and j=/=i} U (ai,~" Oc • UiC} )G . Let T ~ = { ~ < ( 2 ~ ) + :  
g~,~, V~,~ are defined}. 

Now I <~2~:otherwise for some w _  T~ of power (2~) +, for all ~ • w, 
( V ~ , ~ : j • S o f 3 i ) c  and Dgi,~ (Uj<~iHJU(aj, t j : j eSoNi ,  f l •V~,~})  are the same 
(the former has~<2 ' '  possibilities and the latter has ~< II,_Jj<a~,HJU {aj, a : f l <  
x 7, j < cf #}l ~, ~</z '~' = 2 '~ possibilities). 

So let V~,; = W for j • So N i, ~ • w. So, for ~1, ~2 • w, we have ge,~,ge,~-~ • 
Cm~(Ui~iH~ U {a~,l~: j • S o N i ,  fl • W})~.  Choose ~ 0 • w ,  then (by (c)) for some 

- - I  - - I  --1 - - I  - - I  = (g~,~og~,~) g~,~og~,¢l • Ki but this is ~1 ~ ~2 • W, ge,~oge,~K~ ge, eoge,~Ki, hence 
ge, t~ge, t~. 
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Now I-I&,~_¢'~ is the identity on U ~ l H J U ( a j . , : j e S o n i ,  f le lW} and neces- 
sarily maps 

onto 

( U H  ~ u (a~,, : j  ~ So n i, fl e l/q} U (ai, ~ " Or e ui¢,} U Gi+ 1) 
\ j ~ i  G 

( U H  j U {aj, l~ :j e So n i, f le  W} U {ai,,~" o< e u~} U Gi+,) 
\j<~i G 

(remember aj,~ e Gi+l for j > i). 
But -~ ge,¢~g~.~ e Ki, so we get a contradiction as in 3.1. 
We have finished Case I. 

We will prove now 9.8(2), hence (fl)i always happens. Here we shall define for 
each i subgroups K~ (a~ < (2~) +) of ff s.t. 

(A) K / has power ~< r~.  
(B) Either (tr) no member of BA' ( (Ki)  (~)) is a [Ro, Rz)-group or [0r, rj)-group 

for j < i ,  or 
(fl) U {Ki:  tr < (2~) +} has power ~< r~. 

(C) For t r ( f l < ( 2 ~ )  +, (g~t_J i i i Cent I )~,, (K~ U Cent )i, are not conjugate 
in I ~. 

This (and even more, in (B)(tr)) is possible by 8.4. As I e BA'(Mino, Cms, Hi), 
clearly ( K ~ U C e n t P ) r  (c~<(2'q) +) are nonconjugate in pairs in Mino, 
(CmG,(Hi)). By 9.7A(3), as (Cms,(Hi):Mino, (CmG,(ni)) is~<2~ (because G1 
satisfies ( , ) o )  w.l.o.g. (K i U Cent Ii)l,, for tr < (2~) + are nonconjugate in pairs 
in Cm~i(I-I i) and by (c) even in Cmc([..Jj~i IT). 

Note that the groups (H i, [..j~Ki~)6 for i < cf/t are pairwise commuting. Now 
for g a function, Domg~_(cf#) ,  g ( i )< (2~)  +, let Kg=({HJ: j<c f l z }U 
{K~(i)'i e Dom g} ) 6- 

It is easy to check that K'g(i)i ~ Big n I i ~ ( K'g(i), Cent 1 ~) for i e Dom g. 
Remember that ( t e i : j < i )  is the function h, h ( j )=  a~j. Let S =  {i<cf /z :  in (B), 
(a~) occurs}. 

Case II: S has power cf/z. For notational simplicity assume S=cf /z .  Let 
i < cf/~. Let for o< < (2~)+,S~ be the set of fl < (2~) + such that for some y(j), 
tr(j) < (2%) + for j < c f # ,  j=/:i the groups Kn~ = K<,~U):j<i>^<~>^<~(j):i<~<cf~, > and 
K~,~ = K(~,q):j<i)^(f>^(~,(y):i<j<efa) are conjugates in G by r-is 3'. These groups have 
cardinality ~< # <~ 2",. Now we shall check (by (c) and cardinality considerations) 
that IS~l ~< 2 ~/. 

Suppose 1/~ v, g e G and [:is maps K n onto K~. What can be D s H j (for 
j < cf/z)? As H j is in BA'(K~®)), clearly Fig H j e BA'(K~)) .  So 

HJ = n HJ + '  n 
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Now for ~ > j, K~(~) has no semi-direct direct summand which is also a (nonzero) 
semi-direct summand of ff]g~ H j (by (b) and (B)). As (Qg H 0  (1) = ff]g H j, clearly 

_ Kv(e). 

So U~s~ Uj~i E3g~Hi has cardinality <~ ~t + 2~. So IS~] > 2 ~' implies for some 
fl(1) :~ fl(2), E3g~,) and [Dg~2) agree on Ui~g Hi and we get an easy contradiction to 
the paragraph after (C). 

It is also easy to check that fl • S~ <=> ~ • S~, hence by replacing (successively for 
each i) (K~:~<(2~,)+) by a subsequence, w.l.o.g. S~_{~} for every ~< 
(2",) +. 

Case III: Not I nor II. So assume for notational simplicity that S is empty. 
We shall define by induction on i<ef /~ ,  a subset Ti of (2~,) + of cardinality 

(2~) + s.t.: 
(* )  If r/, v • 1-Ii<a~ (2") +, r/(i) and v(j) are distinct members of T/, then Kn 

and Kv are not conjugate in G. 
Clearly this suffices. 
Let us for each o~ 4:I3 < (2",) + choose, if possible, r/,,,t3, v,~,t~ • I-I~<~fu (2") +, 

r/~,t3(i) = a~, v,~,tJ(i) = r ,  and g~,t~ • G such that ff]g~,~ maps K,7~.~ onto K~,~. Let 
for tr < (2") +, Wo, = {fl" r/~,t~, v~,t~, g~,t~ are defined.} Clearly it suffices to prove 

I w = l  . 

So suppose IW=l I> (2") +. Now I-qgJ maps Uj~i H j into (Uj<~f~, H j U Uj U~<,¢ 
K~>, which has cardinality <~/z (by (fl) of (B), as S is empty). So the number of 
such maps is ~</~", ~< 2" < IW l, hence for some W _ W~, IW]/> (2") +, and the 
image of K~ under Flg,2~ and also Flg J ~ (Umi H~) are the same for all fl • W. 
Choose distinct fl(1), fl(2) in W. So E] g',m~g,h') is an inner automorphism of 

i i C m a ( U m i H 0 ,  mapping Kt~(1 ) o n t o  KS(E) , contradiction (as this inner auto- 
morphism necessarily maps Mino, Cma(UmiHO on to itself, as well as 
Min Cm~(Umi H ~) and U {I :I  • aA'(Mino,  CmG(Uj<~i HO), Ill < 3.}). 

so Iw l-<2 ~', and we can define T~ for each i < c f # ,  hence {Kn "7/e 1-L<a~, Ti} 
is a family of 1-li<~u (2") + = 2 ~' = 3. nonconjugate subgroups of G of power ~< #. 
Clearly adding the center to each changes nothing, so we get a contradiction. 

9.9. Remark. (1) In 9.8 (1) and (2) if 0 ~< 01 < ],/, then ( * )o implies ( * )o,. 
(2) Also if H ~_ G, IHI </~, G • £2~,, G satisfies ( * )o of 9.8(1), then Min Cmc H 

satisfies ( * )o, of 9.8(1) for 01 = 0 + IHI, (Cmc H :Min Cmc H) <~ 2 °'. 

9.10. Proof of the Main Theorem (in the Remaining Case). Choose Go • ~ ]  with 
minimal 7(Go). By 9.8(1) (and 9.9(1)) for some 0o < #, Ho_  Go, IHo[ <~ 0o and 
(31%fMin Cmco Ho satisfies (* )  of 9.8(1) with 0o, and 2°o >I/z, 0o > R3. By 
Lemma 9.3(1) for some 01 </z, 01 > 0~, and H1 _~ G1, I/-/11 </z  and (32 = 
Min Cmc,/-/1 does not have 2 °, [01,/z)-special subgroups pairwise nonconjugate 
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in G2 and H1 is a [00, 00-special subgroup of G1. By 9.9(2), G2 satisfies (,)o5 of 
9.8(2) where 01 < 02 < # (remember 6.12(4)). 

Now apply 9.8(2) to G2 ~fMin Cm6,(H1) and get 0 > 02 and HE c _ G2, In21 ~< 
0 < # s.t. ( • ) of 9.8(2) holds for G dedMin Cmc2(H2), 2 o < 2 °+, and 02 < 0 < # 
and HE is a [02, 0)-subgroup of G2. It is easy to see that: 

(a0 G e Q ~ ,  2 ° > # ,  0 > •  3. 

(fl) y(G) is )'(Go) hence is minimal. 
(7) G, 0 satisfies (*) of 9.8(2), and: for A~_G, IAI<#, and r ,  2'¢<2 '~÷, 

(Cmc~ H2" G) + 0 + IAI ~< r < # implies (CmG A :Min '~ CmG A) ~< 2 K and 
Min'~(Min '~ Cmc A) = Min '~ Cmc A. 

(6) G does not have 20 [0, #)-special subgroups pairwise nonconjugate in G 
(use the choice of G2, note that by its choice and 9.3(3), H2 is a [01, 0)-special 
subgroup, now use 9.3(3), (4) and 1.9's proof to get a contradiction). 

By Lemma 9.6 for some x0, A ___ G, IAI <~,  ~0> 0 ( , )  of 9.6 holds, and 
choose x, ro + IAI + 0 < r < < 2 '~ < 2 '~+. In Cm6(A) choose a maximal se- 
quence (K~" tr <tro) of subgroups satisfying (i)-(v) of 9.6(*) (except their 
number) and Ig l ,~, IBA'(Mino go, g~)l ~< J:. So clearly a~o < x +. 

Let H< > be an explicit [0, r+)-subgroup of G such that A t.J I,.]o,<,,0 K~ c_ H< > 
(see AP1.3). Now we define by induction on f l < x  +, for every r/e(t3÷1)2, 
subgroups H, such that 

(1) H, has power <~ r. 
(2) H~ is a [0, r+)-special subgroup of Cmo(i._J {H n t(/+l):i + 1 </(r/)}i._JH< >). 
(3) For no 7/e 82, g e Cmo(U/<~H, t(i+,)OH< >) does E] g map Hn^<o ~ into 

(nn^<l), Cmo(LJi~a n(n̂ <1>)r (i+1) U H< >))o- 
Or at ]cast 

(3') For no 7/e82, geCm6(t._J~<aH.r(i+,)UH< >) and for l=0, 1, 7e 
(fl, Ic+), H~ a [0, r+)-special subgroup of Cmo(H< > (Ji<gH. t(i+l) U [..J~<rH~) 
does l-qg map (Hn^<o > UI,_J {/_/o.fl + 1 < 7 <x+} )6 onto (H.^<o> u U  {H~:/~ + 
1 < 7 < x + } O {H, 7 t ~,: 7 ~< fl non-limit} ) o. 

If we succeed we get an easy contradiction (by the weak diamond (AP3.2) as in 
the proof of 9.5) to t$ (i.e. to the choice of G by Lemma 9.3). So for some ~/e t32 
we cannot choose H,^<o>, H,7^<1 >. 

By (6) above, by the proof of 1.9 (and 9.3(2)) Gnde=fCmo([._Ji<aH. t(i+,)U 
H< >) does not have (2'~) + [0, x++)-special subgroups nonconjugate (in Gn) in 
pairs. So the hypothesis of Lemma 9.5 (with G,, 0, r here standing for G, a, 0 
there) holds, hence there is an explicit [0, x+)-subgroup of K of MJno(Gn), such 
that cg(Mino Cmo. (K), Cmo. (K)) ~ r. So for some B ~ Mine Cmo, (K), IBI ~ r 
and Mino Cmc.(K) ~_ (B)~m~,(,0- So N =  (K, B)~,  is a normal subgroup of G,. 
If Mino G, 7 is not a subgroup of N, we can find an explicit [0, r+)-subgroup K' of 
G n, K'  ~_ Mino G n, K'  ~= N. So we could have chosen K, K'  as H,7^<~ ~, Hn^<o ~ 
respectively [as we just said: "H,~^<o> is not included in this normal subgroup G n 
that Hn^o> U Cm~(Hn^o> ) generates"] getting a contradiction to the choice of 

Bibltothe~,R 
Centrum voor Wis~un(Je er~ i r~ormlg~ 

Ar~ten~l~ 

Sh:192



202 S. Shelah 

r/, so Mino G, 7 ~_ N, hence 
(i) cg(Mino G~, G~) ~< r.  

By 7.2 and (~), 
(ii) BA'(Min G~, Gn) has power--- < x. 
We want to prove that BA'(Mino Gn, Gn) contains 'nothing more' than 

BA'(Min Gn, Gn). More specifically, suppose we can find noncommutative 
I e BA'(Mino G~, Gn), I tq Min Gn ~ Cent Min G~. By (y) above and 9.8(2) for 
some H ~_ I, Inl ~ r and Mine CmI(H) = {e}. Let Hn^(o> be an explicit [0, r+) - 
subgroup of ! contaning H, and Hn^<l> be a countable subgroup of Mino/, 
(Hn^(t>) O) =Hn^<l>. This contradicts the choice of 7/ (by (3)). (Below we do in 
detail such an argument.) So 

(iii) For nonzero I e BA'(Min0 G~, G~), I fq Min G~ is a nonzero member of 
BA'(Min G~, G,7). 
We can conclude 

(iv) BA'(Mino Gn, (3,) has power ~< x. 
Let Mi (i < x +) be an increasing continuous sequence of elementary submodels of 
(3, closed enough by AP 1.3, each of power <~ x as in the proof of 6.10. So 4.12, 
4.13 apply (so e.g., (VI) [I eBA'(Mino Mi, Mi)-->(:lJ)(J NMino M i - I  ^ J  
BA'(Mino G~, Gn))]. 

As in the proof of 6.5, w.l.o.g, for i :/:j no (nonzero) I e BA'(Mino Mi, Mi), 
J e BA'(Mino M;, Mj) are conjugate in G. 

Can there be i and I e BA'(M! °~), Mi), III < x0, I not essentially countable? If 
so, I N Mino M~ _c Cent Mino Mi [otherwise, note first that /1 ~ I  fq Mino M~ e 
BA'(Mino Mi, Mi) (as M!®)=I+'J,  where I, J are normal in M~ implies 
Min M! ~)) = Mino I + '  Mino J, and Mino I, Mino J are normal in Mi). Second note 
that for some 12 e BA'(Mino G, 7, Gn), I2 fq Mi = 11. Third by (iii), as /1 is not 
abelian, so is I2 f3 Min Gn, so necessarily I2 e f2~t, but then I2 has an element 
with > r conjugates. Hence Mi contains such element x, so x e I2 tq Mi ~_/1 fq M~ = 
/, contradicting the essential countability of I. ] 

Hence I tq Mino G, 7 ~_ Cent Mino Gn. Let (L~,"), < ~'o) be a maximal sequence 
of countable pairwise commuting subgroups of I satisfying Li = L! 1), and let 
Leo = Cml([._J L~," )t < ~o})- W e  can find (remember I is not essentially countable) 

H~̂ (I>=(L~'}.<}.o>G. H,^(o> = H(~1)(o > ~I ,  

some y e H,~^(o> has N~ conjugated in it. A contradiction to the 
choice of r/will now be derived. Clearly nn^<l ) are [0, x)-special subgroups so we 
have to prove (3) or (3'). First we can assume that the M/'s were chosen such 
that: for every x e Mi, 

I(O gx:g  e G}l>Ix 

I{O gx:ge G}I<~r 
I(Dg x :g ~ Mi}l = r ,  

{ 0  g x :g  e M~} =_ M~. 

As any member x of I has < x 0 < x  conjugated in Mi, necessarily (Vg e 
G,~) lqgx e Mi, so I is a normal subgroup of G~, so any inner automorphism of Gn 
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maps I onto itself. Note Cm1(Hn^<l>) contains no nontrivial subgroup L = L °) 
(by yo'S maximality), hence (Cm1(Hn^<l>)) (~) = {e}. Now (Hn^o>, 
Cmc.(Hn^<x>))cNl= (Hn^<I>, Cm,(Hn^<1)))l and (Hn^<, >, Cml(Hn^<x))) (=)= 
Hn̂ <x > is essentially countable. Hence (IN(Hn^<,>, Cmc,(H,^<l>))c) (=) is 
essentially countable. 

Now suppose g e G n and D g maps H,̂ <o> into (H~̂ <x>, Cmc,(Hn^<,>))c; 
we know [-]g maps I into I hence Hn̂ <o ) into /, hence it maps Hn̂ <o > into 
IN(Hn^0>, Cm~&(Hn^<,>))6; hence it maps (Hn̂ <o>) (=) into (IN (Hn^<, >, 
Cm6~(H,I^<I)))G) () .  But the former is H,,^<o> whereas the latter is (see above) 
essentially countable. But H,~^<,> is not essentially countable, (see paragraph 
after (6) in the beginning of the proof), contradiction to the existence of g. By 
r/'s choice there are no i, I as above. 

Now we shall show that for at least one i < r ÷, Mi can serve as Ko~0. Now (i) is 
trivial; (ii) we have; for (iii), we have proven that in the previous paragraph, now 
(v) is trivial. As for (iv) if it fails for every j < r  +, there are / j e  
BA'(Mino Mj, Mj), flj < teo, and Jj e BA(Mino K~j, K~j) such that / j ,  Jj are conjug- 
ates in G. By a statement after defining Mi, there are 17 e BA'(Mino G,,  G~), 
17 Iq Mino M / = / j .  By (iv) in this proof w.l.o.g. 17 = 1". But 
U~<,~0BA'(Mino K~, K~) has power~<x, so for some j l~J2,  JJ, =JJ2, hence /j, 
and/j~ are conjugates in G, contradiction as in the proof of 6.10. The two other 
demands on K~0 [K~ and BA'(Min0(K~),  K~) have power--- < x] hold too. 

So we have gotten a contradiction to the choice of a~0, thus finishing. 

10. A Generalization 

10.1. Theorem. I f  G is a group and (Vx < #) 2 '~ < IGI, then nc<~,(G) t> 2 ~'. 

Proof. The proof is a repetition of the proof of Theorem 0.1. By 1.2(3), we can 
assume IGI = [GI ~' and so by Theorem 0.1 we can assume [GI > 2". Let ~.1 = 2~', 
;~2=IG], ~.=<~.,,~.2). So ~ .2=~ .~>~q=2  ~' and it is enough to prove ~ x =  
{G':]G'I = ;~2, nc~ , (G ' )  < 2 ~'} is empty. 

Remarks.  The proof was gotten by successive corrections resulting in lengthening 
of the proof; maybe even by the same ideas we can get a shorter proof. 

Appendix for non-logicians 

AP 1. Elementary submodels 

AP 1.1. Definition. M is an elementary submodel of N if M is a submodel of N 
and for every element al, • • . ,  a .  of M and first-order formula ~(x , ,  • • • ,  xn). 

M a,] an] 
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AP 1.2. The Downward Lowenheim-Skolem Theorem. I f  A is a set o f  <<- 

elements o f  model M and M has <~ ~ relations and functions, then M has an 
elementary submodel o f  power <~ 3. which includes A.  

Really, it is well known that AP 1.2 holds for logic stronger than first-order; 
and we use only very specific formulas. So what we need is 

AP 1.3. Fact. Let G be a group, r a cardinal < ]GI, Hi (i < r )  subgroups o f  G. 
Then we can find functions F'{ (i < r) ,  F'{ an n-place function from G to G, such 

that, if G* is a non-empty subset o f  G closed under the F'I,s, then 

(a) G* is a subgroup of  G. 
(b) Suppose X l , . . .  , Xn are variables, al, • • •, am E G*, _F' is a finite set whose 

equations (in x i , . . . ,  x , ,  a l , . . . ,  a m )  inequalities (in 
and Xk ~ H, ,  or Xk ~ H, .  I f  F is solvable in G, then F is 

elements have the form: 

X 1 ,  • • • , X m ,  a l ,  • • • , a m ) ,  

solvable in G* 
(c) For a e G*, o~ 
F o r a e G * :  (i) a 

(ii) a 
(iii) a 
(iv) a 

<r, ]{gag-l:geH. nG*}l=Min(lG*l, I(gag-~:geH~}l}. 
Cent(G*) ~ a E Cent G, 

E Cent~(G *) ~ a E Cent®(G), 
E (G*)°) ~ a  • G O), 

(G*)C~) ~ a  E G <~). 
(d) For 0 <~ x, a ~ G*, a ~ Mino G ==> a e Mino(G*). 
(e) Like (c) with Hi, Hi (q G* instead o f  G, G* 

AP 1.4. For G n, F~ as in AP 1.3, the closure under the FT's o f  a set o f  power x 

has power x. 

AP 2. On Fodor's Lemma 

AP 2.1. Definition. For a regular uncountable cardinal 3., let ~x be the filter 
generated by the closed unbounded subsets of ~ (as an ordered set). Note: Every 
successor cardinal is regular. 

A set S ~_ 3, is called stationary if ~ - S ¢ ~x. Note that every stationary subset 
of 3. has power 3., and 3. is a stationary subset of 3.. 

By Fodor, we have the following 

AP 2.2. Theorem. I f  3. is regular and uncountable S ~ 3. is stationary, f a function 
from S into 3., f ( o 0 < 1 + ol, then on some stationary T ~_ S, f is constant. 

Another way to phrase it is: 

AlP 2.2'. Theorem. Let 3. be regular and uncountable (e.g., a successor cardinal), 
S ~_ 3. stationary. Suppose A ,  is a set o f  power < 3. (for tr < 3.). I f  f is a function 

Sh:192



Uncountable groups have many nonconjugate subgroups 205 

with domain S and for every ol • S, f ( o  0 • U#<,~ AI~, then f is constant on some 

stationary subset o f  S. 

Fodor uses his lemma to prove the existence of large free sets. We need the 
following variant. 

A P  2.3. Conclusion. Suppose T,~ is a set of power < 0, for each a: < 0+. Then for 
some stationary S c_ 0 + (hence ISI = ~,+) and t r ( . )  < 0 +, for every distinct fl, y 
from S, T# n T~, ~ U~<=(.) To~ and for fl • S, T~ n (U~,<~ T,,) ~_ U~,<~(.) T~. 

AP 3. On the weak diamond tr( , ) 

The following is not as well known as AP 1 and A P  2. It is from Devlin and 
Shelah [2], and for X > 2", [9, Ch. VIX, §1]. Note that Ai, Bn are used below 
only to omit some easy set theory in the applications. 

A P  3.1. Theorem. Suppose 2 ~ < 2 (K+), % a cardinal <~ 2 "¢ or even %% < 2 '¢÷ (or 
even less). Suppose further that for  every sequence r I o f  zeros and ones a set Bn is 

given, IBnl<<-x, Bnt~c_Bn for a~<l(r/) ,  and for every i < x  a set Ai is given, 
IAil <~ I¢ +. Lastly suppose that for  each rl • ('¢+)2, i ( r / ) /s  an ordinal < X and fn is a 

function from U,~<,~+ B,1 t ~ into Ai(n). 
Then we can find a limit 6 < x +, and sequences r/, v • ('~+)2 s.t.: ~1 I 6 = v ~ 6, 

rl(6) 4: v(6),  i(rl) = i(v) and f,7 t B,7 t ~ =f~ r B~ t ~. 

A P  3.2. Corollary. Suppose G is a group, 2 '~ < 2 '¢+, /z% < 2 '~÷ and for r I • (~)>2, 
Hn is a subgroup of  G of  power<~x, H n t~c_Hn. I f  among {U~<,~+H,Tt~: 
r / •  (~+)2} there are <~ ~ nonconjugate subgroups of  G, then for some r/, v • ("+)2 
and limit 6 < x +, for some g • Cmc(Uo~<6 H,7 t o~), Vlg maps U,~<~+ H,1 t o~ onto 

U,,<, , :+ H, ,  n I' = v r 

Remark. We can assign a closed unbounded subset C, 7 of x + for each r /e  ('¢*)2 
and demand 6 E C, 7 O Cv. 

Remark. See the proof of 9.5, at the end, for the deduction of AP3.2 from 
AP3.1. 

Final remarks. (1) It seems that the ideas of the end of the proof of 8.4 can be 
used to simplify the proofs toward the end of Section 9 (hence in Section 7). See 
below a shorter proof. 

(2) It seems worthwhile to reorganize (and/or redo) the proof of Theorems 
0.1, 10.1, as in the proof of 8.4 (particularly the beginning), i.e., to replace ~ by 
some more restrictive c~ss (like those failing (1), (2), (3) respectively of 8.4). 
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A shorter prooL In 9.10 after having assumed H~ is defined but not H~^<0>, 
H~^~) and showing G~ does not have (2'~) + [0, r++)-special subgroups, 
nonconjugate in pairs in G~, now (G~:Mino G~)~<2 '~ by (3') (and 9.7A(3)). 
Hence G~ = Mino G~ does not have (2'~) + [0, r++)-special subgroups, noncon- 
jugate in pairs in G~. Now notice cg(G~) ~< r [by 9.4]. Next we shall prove (as in 
8.4) [BA'(Min G~)I ~< r. Suppose there is I e BA'(G~), I n Min G~ ~_ Cent Min 
G~. We choose by induction on cr < r +, Io~ e BA'(G~), L ,  _~ Ion, Lo, an explicit 
[ O, r +)-group, 

L= ~_ Min0 CmGI( U La), "'\/~<~ 
I~ n Cm61( U L~ ) ~ Cent I~. 

~ \ ~ , ~  

We cannot succeed (as ((Ua~sLt~)c~:S__.r +} 
defined for every f l <  tr, t r < x  + and there is 
Mino Cmc~(U0<o~La) ~_ Cent I~, we know 

has power >2'~). If we have 
l~ e BA'(G1), I1~1 < A, l~ n 

I°~NMin°Cm~(~U<o~Lt~)eBA'(Min°(Cm°I(U\ \ ~\~<o~ Lt~))) 

hence we know there is Lo, as required (by (y), 4.8(2)). So for some c~< r +, 
there is no such I~. Let K,~^<0} = U s  La, K,7^(1 ) a 0-subgroup of Io. So 
IBA'(G1)I ~< r.  Now we do the last paragraph of 9.10. 

Remark. So speciality is apparently not needed. 
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