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We prove that any uncountable group G of power A has at least A subgroups not conjugate in
pairs. The paper is very self-contained, assuming no knowledge except cardinal arithmetic (and
the definition of an (abelian) group).
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0. Introduction

This article is dedicated to the proof of

0.1. Main Theorem. If G is a group of cardinality A, A an uncountable cardinal,
pu=Min{pu:2* = A}, then nc.,(G)=A.

0.2. Definition. nc,(G) is the number of pairwise nonconjugate subgroups of G
of power k. We define nc.,(G), nc_,(G) similarly.

* The author would like to thank the BSF for partially supporting this research.
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We note that

0.3. Conclusion. If A is an uncountable cardinal, G a group of cardinality A, then
G has at least A pairwise nonconjugate subgroups of power <A.

Proof of the Conclusion. If u =Min{u:2¥= A} is <A, we finish by 0.1, hence we
have to deal with A strong limit only. If A is singular, we get the result by 1.2(3).
If A is regular, then necessarily A = X;, and for each a <A, G has a subgroup G,
of power X, ; clearly the G,’s are pairwise nonisomorphic, hence nonconjugate.

This paper continues [5] where the result was conjectured and proved under
GCH, and for many cases (on A, for every G). The motivation was a question of
Rips; he built a group of power X, with exactly three subgroups up to conjugacy,
and he asks whether we can do something similar for higher cardinals.

Note that by [6] if A=k" =2% then there is a group of power A with A
subgroups (hence <A subgroups up to conjugacy). Rips [4] improves this to: If
there is an algebra with countably many operations of power A with <A
subalgebras, then there is such a group.

Almost no special knowledge is required to understand the paper. The facts we
use from mathematical logic which algebraists may not know are explained in the
Appendix.

During the proof we prove the Main Theorem under various hypotheses on 4
and then add the hypothesis eliminating those cases.

Really, we prove the theorem by induction on A.

Some readers were disappointed complaining that “after at last I got an
intuition, the class of groups we discuss disappears.” We may want to look at
classes of groups which essentially are discussed (that is, the one satisfying some
intermediate consequences of being in #™ or Q™). See 8.4.

In Section 10 we give a generalization of 0.1, 0.3.

Notation

Set Theory. Let A, u be fixed cardinals as in the Main Theorem. Let |A| be the
power of A. Let y, k, 6, o denote cardinals (almost always infinite), «, B, v, i, j
denote ordinals, 6 denote a limit ordinal and n, v, p denote sequences of
ordinals. Let Pa be the set of sequences of length B of ordinals <a.
Pa=J,<p%a, Pa=|J,<"a. Let x* be cardinal exponentation, y<*= ¥, x°.

Let Z, Q, R be the integers, rationals and reals, respectively. Let m, n, r
denote natural numbers or integers, so n <o (i <w) means n (i) is a natural
number, ne€Z means n is an integer. Let (a,:teT) denote a T-indexed
sequence. Let F, f, h denote functions.

Group Theory. Let G, H, I, J, K, L, M, N denote groups. For Ac G let
(A)s denote the subgroup of G generated by A; but (A, ...,A,)g=
(Ui=1 A, if A;={a;} we write g; instead of A;, and let (A,:te T)s denote
<UteTAt>G-
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Leta, b, ¢, d, x, y denote elements of groups, e the unit (e; of G, if confusion
may arise) and A, B, C, D denote sets of elements of groups.

For g € G, 0¥ : G— G is the function [¥(x) = gxg ', 0% is an automorphism of
G, and such an automorphism is called inner. So a normal subgroup of G is one
preserved by all inner automorphisms and a characteristic subgroup is one
preserved by all automorphisms of G (so being a characteristic subgroup is a
transitive relation, being a normal subgroup not necessarily).

If B, AcG, xeG, then xA={xy:yeA}, AB={xy:xeA, yeB};if Nis a
normal subgroup of G, then G/N = {xN:x € G} is the quotient group, and for
AcG, AIN={xN:xeA}.

We say x, y commute in G if xy =yx; we say A, Bc G commute if every
x €A, y € B commute.

Let Cent G = {x € G:x commutes with-G}. Cent®(G) is defined by induction

% Cent®(G) = {e},
Cent®"'(G) = {x € G :x Cent*(G) € Cent(G/Cent*(G))},

Cent’(G) = U6Cent"‘(G).

We can prove by induction on « that Cent®(G) is a normal (even characteristic)
subgroup of G.

Let Cent™(G)=J, Cent*(G). Let Cmg(A) = {x € G:x commutes with A},
this is a subgroup.

Now G = (xyx~'y~':x, y € G ) is called the commutator subgroup of G. We
define G® by induction on a: GO =G, GV =(GY)D, GO =N, _;G*
G*=(,G* We can prove by induction that they are all characteristic
subgroups of G, and G/G'? is commutative.

Let (G:H) be the index of H in G, i.e., |{xH:x € G}|. Let Ker(h) be the
kernel of the homomorphism A.

0.4. Fact. For Ac G,
Cent({A)g) = (A)c N Cmg(A) < Cent(Cmg(A)).
Proof. Direct checking.

We say that {a,:t€S} forms a basis of a commutative [free] group G if
G=(a,:teS)s and e=IIL,(a)"® (t,...,t, distinct, n(l)eZ) implies
(a,)"® = e for each [ [implies n(/) =0 for each [].

1. The easy facts and the case 2" > )

Remember that A, u are always as in the Main Theorem. We shall start to
investigate counterexamples and
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1.1. Definition. (1) Let %, = ?} = {G: G has power A and nc.,(G) <A}.

(2) ?}={G: for some L c Cent(G), |L|<p and G/L € #,}.

(3) For A, B, C c G we say B, C are conjugate over A in G (or B conjugate to
C over A in G) if some inner automorphism of G maps C onto B and is the
identity over A.

1.2. Fact. (1) If G € #,, then G has at most A subgroups of power <p.
(2) If P, #0, then for no k, 2 <A <A™
(3) If 2*< |G| <|G]|*, then nc.(G) = |G|~

Proof. (1) Let {G;:i<a} be a maximal family of pairwise nonconjugate
subgroups of G each of power <u. AS G € %, necessarily & <A. Now the family
{(I8G;:g € G, i< a} contains all subgroups of G of power <u and has power
<|G|- |a| = A.

(2) Let {a;:i <A} be a list of distinct elements of G; as A <A*, there is a list
{u, : a <A~} of distinct subsets of A. Let G, = (a;:i € u, )¢, s0 G, is a subgroup
of G of power k, and k < pu (as 2 < A <2*). Define an equivalence relation E on
A%:

«EB iff G,=G;.

What is the power of {f:aEB}? It is at most the number of subsets of
{i <A:a; € G,}, but this set has power <|G,| = k, hence the number of subsets of
it is <2*, Hence each E-equivalence class has power <2*. As 2 <A*, the number
of groups in {G;:i <A*} is A*. So G has A" subgroups each of power <k <y,
hence by (1) we get a contradiction to G € %,.

(3) By the proofs of (1) and (2).

1.3. Fact. For a commutative uncountable group G, and x < |G|, nc.(G) = |G|~
Proof. Easy (or see [5]): Choose by induction on &« <|G|, a,, n, such that

0<n,<w, a, € Gand foreverymeZ, (a,)" €{ag:p<a)giff (a,)" =eiff mis
a multiple of n, (and a, #e of course). This can be done as G is uncountable.

Now let for Sc|G|, |S|<k, Gs=(a,:aeS)s so we have |G|* distinct

subgroups of G. But the only inner automorphism of G is the identity, so we
finish.

1.4. Fact. (1) If N is a normal subgroup of G and 6 a cardinal =R,, then
nC<o(G/N) <nc.e(G).

(2) nc<4(G/N) is the number of {H:N c Hc G, (H:G) < 0} up to conjugacy
in G.

3) If 0<pu, G e P, then nco(G) <A.

Proof. (1) Let x =nc3(G/N), and let H; (i <k) be pairwise nonconjugate
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subgroups of G/N each of power <@0. Choose for each member of H; a
representative, so for some xLeG (a<|H)|), H;={x\N:a<|H|}, and let
K;=(xL:a<|H|)s. So K; is a subgroup of G of power <|H;| +8,< 6, and if
g € G, i #j, (¥ maps K, onto K;, then [1¥¥ maps H;, onto H;, contradiction. So K;
(i <x) exemplify k <nc.y(G) as required.

(2), (3) should be clear.

1.5. Fact. For a cardinal 6, and N a subgroup of G, nc<e(N) <nco(G) X
(G:N).

Proof. Let k =nc.(N) and {H;:i <k} be a maximal family of subgroups of N,
nonconjugatge in N, each of power <6. Define an equivalence relation E on k:
i Ejif H;, H; are conjugate in G. |

Clearly the number of E-equivalence classes is at most nc<(G), so it is enough
to prove that each equivalence class has power <(G:N). If § = {j:i Ej}, then for
every jeS for some g;e G, (05 maps H; onto H,. If |S|>(G:N) for some
a#PeS, g.N=ggN, hence g5'g, € N; now

O%'82(H, ) = 0¥ (0F<H,) = 0% (H,) = Hy;

so H,, Hg are conjugate in N, contradiction.

1.6. Fact. If N is a normal subgroup of G, G € 7, (G:N)=A, then G/N € P}
(for m =0, 1).

Proof. It suffices to prove the fact for m =0. As (G:N) =4, G/N has power i
and by 1.4, nc,(G/N)<nc,,(G)<A.

1.7. Fact. If N is a subgroup of G, G e 7, (G:N)<A, then Ne P} (for
m=0,1).

Proof. If m =1, let L exemplify G € %} (see 1.1(2)). We know N/(LNN)=NL/
L which is a normal subgroup of G/L, and (G/L:NL/L)<(G:N)<A, so we
reduce this to the case m =0 (remembering L c Cent(G), hence NNL¢c
Cent(N)).

It is known that |G| = (G :N) x |N|, hence |[N|=A. By 1.5,

nc<,(N) <nc.,(G) X (G:N)<A.

1.8. Fact. If G € #3, then
(1) Cent(G) has power <u + R,.
(2) Cent(G) has power <R, + nc<y (G).
(3) Cent™(G) has power <X, + nc<x(G).
@) (G:GY) is <u +R;.
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Proof. Let L exemplify G € %;.

(1) If|Cent(G)| = pu + R,, then |Cent(G)/L| = u + R,, hence by 1.3, Cent(G)/L
has at least 2* distinct subgroups of power <pu. By the definition of the center,
they are pairwise nonconjugate in G/L. So nc.,(G/L)=2" = A, contradiction.

(2) Clearly {{(a)s:a € Cent(G)} is a family of pairwise nonconjugate count-
able subgroups of G, and if |Cent(G)| > X,, then the family has power |Cent(G)).
On the other hand the family has power =<nc..(G). Together we get the
conclusion.

(3) Left to the reader.

(4) We know that G® is a normal subgroup of G, hence by 1.4, nc.,(G/
GM)<nc.,(G). But G/GW is trivially commutative, so we can apply 1.3 (if
m =1 we should divide by some L, |L|<pu, so it does not matter).

1.9. Fact. Suppose Ac G, then on the set {H:AcHcG, |H|<k} the
equivalence relation “being conjugate over A” has at most nc.(G)+ k!
equivalence classes (and this number is <A if G e P,, k™ <A, k< ).

Proof. Let 6 =nc. (G)+ k", and suppose A c H;c G, |H;| <k for i <", and
the H;’s are pairwise nonconjugate over A in G. As 6 =nc.,(G), w.l.o.g. the
H;’s are pairwise conjugate in G, so let g; € G, (0% maps H; onto H,. The number
of possible functions [J% | A is at most the number of functions from A into H,,
ie., [Hy'<kM!<@, hence w.l.o.g. (0% | A is constant. So [1®Z'8V = (6734 is
the identity on A and maps H, onto H,, contradiction.

1.10. Fact. (1) If2!<A, Ac G € @,, then Cmg(A) has power A.

() If AcG, |Al<u, then nc.,(Cmg(A)/Cent({A)s))=<nc.,(G)+ u"
(remember Cent({A)s) < Cent(Cmg(A)) by 0.4).

Q) If Ro<p, u'<i, AcGe?P, then Cmg(A)e P; (in fact Cmg(A)/
Cent({(A)g) e Z,.)

(4) Parts (1) and (3) are true for G € P} too.

Proof. (1) Let a; € G (i < 1) be distinct members of G and let 6 be any (infinite)
cardinal such that Xy + |A|“/ + nc.,(G)< 8 <A W.lo.g. (4,a)s (i<6%) are
distinct, and by 1.9 w.l.o.g. (A, a;) are pairwise conjugate over A. So let g; € G,
(3% be the identity over A and maps (A, a,) onto (A4, a;). W.l.o.g. for some
be (A, ap) for every i>0, [%(b)=a;. So g; commutes with A, hence g€
Cmg(A), and g;bg;i'=a;. As the a’s are distinct, the g; are distinct, hence
Cmg(A) has power =0*. As 6 was any cardinal ¥, + nc.,(G) + |A|“l< <],
we finish.

(2) Use 1.9 and the proof of 1.4.

(3) Use (2).

(4) Easy. For (1) if g;L (i <A) are distinct members of Cmg,;(A/L), then 0%
maps each a € A into aL. As 2“/< A, |A|<p, hence |AL|<pu, hence for each
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6<A, wlo.g. 0%} A is the same for i <6*, hence |Cm(A4)|=|{go'g::i<
6%}|> 6. Hence |Cm(A) = A.

1.11. Theorem. The main theorem holds if A <2*.

Proof. Let G e #,. We choose by induction on a <y, for every ne€ “2 an
element a, € G such that

(a) a, commutes with a, ;g for every g <I(n),

(b) a,~(0y and a,(;y do not commute.

For « limit or zero, n € “2: choose a,=e. For a=8+1, ne A2 we have to
define a,~(0y, nr(1)-

By 1.10(1), Cmg{a, ;,:y=<pB} has power A (as B <p, so 2lfl < 2). Hence it is
enough to find there two noncommuting elements. If we cannot find them,
Cmg{a, ;,:y <P} is a commutative subgroup of G of power 4, so by 1.3 it has
2* subgroups of power u, hence G has 2* subgroups of power u, contradiction to
1.2(1).

So the a, are defined, and let for n € "2, H, = (a, 1o: @ <p)g. Clearly H, is a
commutative subgroup of G of power = u. Also n# v = H, # H,; otherwise let
B =Min{B:n(B) # v(B)}, then a, @+ does not commute with a, .1y but
a, ¢+ €Hy,, a,3p+)€H, and both are commutative. So G has=2>4A
subgroups of power A, contradicting 1.2(1). So there is no G € %,.

1.12. Fact. If AcGe P}, |A|<u, and N is a normal subgroup of G which
includes Cmg(A), then (G:N)<A.

Proof. Cent G c N (as Cent G = Cmg(A)). Suppose (G :N) = A, so by induction
one chooses a,€ G— (N, A, a;:j<i)s. As in the proof of 1.10(1) for some
i<j<Aand g € G, ¥ maps (A, a;) onto (A, a;)¢ and is the identity on A, so
geCm(A)cN, and for some be(A,q), a,=gbg 'e(A a,8)cc
(N, A, a,:a <i), contradiction.

1.13. Fact. If G € P), then:
(1) The number of H, Cent G c H c G, |H| < p up to conjugacy in G is <A.
(2) The number of H< G, H® = H, up to conjugacy in G is <A.

Proof. (1) We know G/Cent G € %,, and use 1.4(2).
(2) This is because for such H, ({(H, Cent G)s)® = H.
2. The case p=1x,

In fact this was the original question (i.e., A=N;) and in [S] we have proved
nc(G) = A when R, <|G|=<2%, however here we want to prove nc<x,(G) =|G].
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To this end we eventually build many non-isomorphic finitely generated sub-
groups (after analyzing a possible counterexample).
During this section we assume u = X,, and later assume u > X,,.

2.1. Fact. If u=NX,, then every Ge P; has an element of order = (i.e.,
(Vn>0)g" #e).

Proof. Let Ge P{". By 1.8, Cent”(G) has power<Aa, hence by 1.6, G/
Cent”(G) € #,. If G was a counterexample to the fact, then so is G/Cent™(G),
hence w.l.0.g. G is with a trivial center.

Clearly in such a G (i.e., a counterexample with trivial center):
(*) every finitely generated commutative subgroup of G is finite.

We shall prove later:

2.2. Subfact. For G as above for each finite commutative A, some geG
commutes with A, {(g)c N {A) = {e} and g +#e, of course.

So we can choose by induction on n < w, a, € G, a, #e, so that {a,:n <w} is
a basis of a commutative subgroup of G. (Note that (a,:m <n) is finite by
(*)). Let {n:n<w}={n,:teQ}, and for every real r, let H,={a, :1€Q, <
r}. So {H,:reR} is a family of 2% = A subgroups of G. As G € #, for some
r(1) <r(2), Hy) is conjugate to H,;, in G. Hence for some g € G, 0¥ maps H,,
into H,;y which is a proper subgroup of H,,, (obviously H,;y < H,(), but for some
rational ¢, r(1)<t<r(2), hence a, € H; — H,;). So necessarily g” #e for
0<n <w, hence we prove 2.1 except that we have to prove 2.2.

Proof of Subfact 2.2. As G has a trivial center choose a finite B, A < B < G, such
that each a € (A)s (except e) does not commute with some b € B (possible as
(A)g is finite, by (*)). Now by 1.9, Cmg(B) has power A, but by the choice of
B, Cmg(B)N (A)g = {e}, so any g e Cmg(B), g #e is as required.

2.3. Conclusion. Let u=X,. If Ge P;, AcG is finite, then there is a ge
Cmg(A) such that g" ¢ (A) for every 0<n < w.

Proof. As A is finite, by 1.10(2), letting G, £ Cmg(A), G,/Cent G, belongs to
%,. By 2.1 there is a g € G, such that g Cent G, has infinite order. So g” ¢ Cent G,
for 0<n <w, also g e Cmg(A) and

(A)e N{g)gc (A)gN Cmg(A) < Cent Cmg(A) = Cent G,.

2.4. Fact. Suppose G € P,, u=Ry. There are b, € G (for ne€Z) and g € G such
that:

(1) {b.:n € Z} forms a basis of a free commutative group.
(2) ngn = bn+1'
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Proof. By 2.3 there are a, € G (n < ) which form a free basis of a commutative
subgroup of G. Let N, (te Q), H, (r € R) be as in the proof of 2.1 and so again
for some r(1)<r(2) in R and ge G, ¥ maps H,; into H,,. Let teQ,
r(1)<t<r(2), and b,, = 08" (a, ) for m € Z. The checking is easy.

2.5. Proof of the Main Theorem for p=X,. We use g, b, (n€Z) from 2.4.
Denote H = ({b,:n <w})¢, this group has 2% subgroups. Let y = nc<y,(G) +
Ro, s0 H has x* distinct subgroups which are conjugate in pairs (by elements of
G). For i< x™ let H, be a subgroup of H and g; € G such that i #j=> H; # H; and
g:Hgi' = H,. Now for every i < x* define K; = (b, g;, &), a subgroup of G. If
we shall find S < x™, |S|=x" such that for i, jeS, i#j=>K;#K;, we clearly
obtain a contradiction to the choice of y (non-isomorphic groups cannot be
conjugate).

How shall we do it? View K; as models of group theory with three additional

constants b, g, h (where in K;, b is interpreted by by, g by g;, h by g). Those
models cannot be isomorphic since for i#j<y™*, g; behaves on (b, g)
differently than g;.
- Now we use the following observation: Given a countable group it can be
expanded by 3 new constants in only X, ways (R =R,) (this is a special case of
Lemma VIII 1.3 from {7]). So there is Sc x*, |S| =x*, such that i #j > K, + K,
when K; is the reduct to the language of group theory (containing only e and
multiplication) of K.

3. Eliminating the normal subgroups with small index

In this section we shall show that any G € #, has a normal subgroup N with
index <A, which has no proper normal subgroup with index <A. We then prove
that for any such N, N=N® and any x € N — Cent(N) has = u conjugates in N.

Those subgroups N (and variants) play an important role in the sequel.

3.1. Claim. Suppose that 0 is an uncountable cardinal, and N, (« < 8) is a strictly
decreasing sequence of normal subgroups of G. Then nc.(G) = 2°.

Proof. We shall define by induction on « <8, an element a, and an ordinal S,
such that:

(a) a, € NB,, - NB‘,+1:

(b) B <|ow + ol

(c) for every y<a, B, <PBa,

(d) @, ¢ (Ns,+1U{a,:y<a})c.

Suppose we have defined a,, B, for every y <a and we shall define a,, B,.
Clearly the subgroup H, = (a,:y < a&)s has power <|w + &|*, hence for some
ordinal B,, Uy<s B, <P« <|w+ &|*, and H, N (Ns, — Ng_,,) =@. Choose a, €
N, — Ng_41; now (a), (b), (c) hold trivially. As for (d), if it fails, then a,Np_,,
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belongs to {gNs_+1:8 € H,} (i.e., the homomorphic image of H, in G/N;_.; by
the canonical homomorphism). Hence for some g € H,, gNg, 1 = a,Np, +1 hence
a,'g€Ng, 1. But a,eN;, N .1 Ng, so necessarily g=a.(az'g)€eN;,,
however geH, HNNs =HNNg_,; hence geNg .y, so a,=g(g 'a,)=
g(a;'g)™! belongs to Nj_ .1, contradicting the choice of a,. So (d) holds too, so
we have carried successfully the definition by induction of a,, B,. Now for any
S < 0 we define

Hy={(a,:a€S)g.

Clearly it suffices to prove that for any distinct subsets S, T of 6, Hs is not
conjugate to H;. Now as S#7T wlo.g. for some o, ao€S, a¢T. As
a, € N5, — Ng_+1, and a € S, clearly Hs N (Ng, — Np, +1) #8. On the other hand as
a¢T,

Hr=(a,:yeT)c(Ns,-1U{a,: €T})g
c(Ng,+1U{a,:veT, y<a})g
< (Ng,+1U{ay:v<a})c

Hence Hy N (Ng, — Ng,+1) =9 by the proof of (d).
As the set Ng_ — Np,_ 1 is preserved by inner automorphisms of G, Hr is disjoint
to it whereas Hj is not disjoint to it, clearly Hg, H, are not conjugates.

3.2. Claim. Suppose that N is a normal subgroup of G, AcG, |A|<k,
(G:N)< o0 =|G|, ois an uncountable cardinal, ?, =9, x*! < o and o <2~

Then N has subsets B; (for i < o) such that |B;| < k and the subgroups (A, B;)¢
(for i < o) are pairwise nonconjugates in G.

Proof. Suppose not and there are only 8, < o nonconjugate such subgroups. Let
6 = 6, + kM + (G :N) + Ry, so clearly 6 < 0. We first prove:

(*) K =N NCmg(A) has power o.

For let 8, = 0 + |K| and assume 0, < 0. Let b; (i < 87) be distinct members of
N (N has power o as |G| = 0> (G:N), o infinite). As we have assumed that the
claim fails and as 6, < 6 < 6;, among the subgroups (A, b;)¢ (i < 67) there are
67 which are pairwise conjugates in G. So w.l.o.g. all (A4, b;) (i<67) are
conjugates in G. So let (0% be a conjugation which maps (A, b;); onto (A, by) .
As k"< 0<86,, |A| <k, and |(A, b;)s| <k the number of functions from A to
(A, bp) is <6;, hence w.lo.g. 0% | A is constant, hence (for i, j< 607}),
(O0%)~'0F = O® %) is the identity on A, which means g;'g; € Cmg(A).

As [B(b;) has <|(A, by)g| =<k =< 8, possible values, w.l.o.g. for i >0, it is
constant, hence (O0%)~'0#%(b,) = b;. Also the number of possible cosets g;N is at
most (G:N) < 6 <6,, hence w.l.o.g. for every i >0, g;N =g, N, so g; g, €N.
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So we have gotten that g;''g, (1<i<6;) are 67 distinct members of K,
contradiction to “(*) fails.” So we have proved (*)

So |K| = 0. Now
(* *) there are subgroups H; of K (for i <o) such that H =KnN (H,,A)G,
|H;| < k, and the H;’s are pairwise nonconjugate in K.

(* *) suffices: suppose 3.2 fails. By the proof of 1.9, for some i < o for 8% j’s,
(A, H;)c is conjugate to (A, H,)s say by 0%/, and w.l.o.g. Elg'f [ A =the
identity, hence g;; € Cmg(A).

Now 6=(G:N), hence for some such j(1)#j(2), g ;)N =8:.jxN, SO

g¥ser @8,j1) € NNCmg(A)=K, and ¥ maps (A, Hy;))s onto (A, Hi5)6)
and as g € K, [0 maps (A, Hi;))6 N K onto (A, Hy;))g NK, but for every j,
(A, H;)c N K = H;. So j(1) #j(2) but H;y, Hj(, were assumed to be nonconjug-
ate in K, contradiction, hence (* *) really suffices.

Proof of (* *). Now if Cent(K)/(Cent(K) N (A)s) has power =k +X,, by
1.3, Cent(K) has at least 2= o subgroups of power kx extending Cent(K)N
(A)g, trivially nonconjugates in K (being in the center), and for each such H
easily H= (A, H); N K.

~So Cent(K)/(Cent(K) N (A)¢) has power <k + R, and as (A ) has power < ¢
(as k! < 0, o uncountable) easily Cent(K) has power < o.

So K/Cent(K) has power o, and as “%, =@ is a hypothesis and as 2* = o,
clearly nc. (K/Cent K) is=o.

So let K; (i <o) be subgroups of K of power <k, such that K;/Cent K (i < o)
are pairwise nonconjugate subgroups of K/Cent K. Let H;=(K;, A)c NK; as
(A)c N Cmg(A) c Cent Cmg(A) (see 0.4) it is easy to check that the H; (i < o)
are as required in (* *). (Note that K;, A commute, (K;, A)g={xy:xeK;, ye€
A}, and H;={xy:x e K;,ye ANK}.)

3.3. Fact. For any subgroups N, (a <) of N,
(G: ﬂNa)< [1(G:N).

a<pB

Proof. Trivial: Define a function F from G to o<g G/IN, by F(x)= (xN,:a <B).
The power of the range of Fis <[I,<g|G/N,| =Ila<s (G:N,). Also

F(x)=F@)o (Va<B)xN,=yN,)oVa<pB)y xeN,)
Sy xe QﬁNan(O N,,) =y(O Na).

So Il.<g (G :N,)=|Rang(F)| = (G :(Na<gN,), and so the conclusion is clear.
From now on we assume

3.4. Hypothesis. %, =@ for every uncountable 0 <A, and u > X,, 2= A.

And for this section som&times we assume
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3.4A. Statement. p is not strong limit singular (hence |A|<u=>pu"'<A4, see
1.10(3), (4)).

3.5. Lemma. If G € &,, then
Min G ¥ (M {N:N a normal subgroup of G, (G:N) <A}
is a characteristic (hence normal) subgroup of G and has index < A.

Proof. Being characteristic is trivial, so we shall prove the “index <A.”

We choose by induction on a<u a normal subgroup N, of G, such that
Ny = G, N, is a proper subgroup of Ny for every B <a and (G:N,) <A.

If we succeed we shall get by 3.1 that nc.,(G)=2* but 2*=A, hence this
contradicts G € #,. So for some a <y we cannot find N, as required. If o is a
successor ordinal, i.e., « = 8 + 1 note that for any normal subgroup N of G with
index <A, NN Ng is a normal subgroup of G with index<A. As N N Nj cannot
serve as N,, necessarily NN Ng=Ng. So Ny is equal to Min G, hence
(G :Min G) = (N:Ng) <A, and we finish the proof. '

So we assume « is a limit ordinal. Then necessarily N (s, N; has index
A (in G). By 3.3, (G:N)<Ilg<o(G:Ng), let gg=(G:Np), clearly o5 <A for
B < a and by a’s choice [Ig<o 0g =4 and B <y = 0p < o0,.

Let ug =Min{6:2°= 05}, as g5 <A clearly s < u, and obviously f<y<a>
B =< Uy

Case (a): Sup{ug:B <a} is <pu. Then we can find k <y such that |a| < k and
pusg <k for every B<a. So for each B<a, og<2"=<2" hence [lg,0p<
(2%)!* = 2%, contradicting A <[, 0;.

Case (b): Not case (a) and og (B < a) is eventually constant. So by renaming
wlo.g. os=0 for every B<a and As<Ilzo,05=0". As a<y, by p’s
definition 2! <A, hence by cardinal arithmetic 2!* <o, and as « is a limit
ordinal, |&| is infinite. So G/N, has power o, |a| is infinite, 2! < o0 <A< ol¥,
hence by 1.2(3), nc<((G/N;) = o', but (see above) 6! =1 and |&|<p hence
nc.,(G/N;) = A. But by 1.4, nc,(G) =nc.,(G/N;) = A, contradiction.

Case (c): Not case (a) and pg:p < a) is not eventually constant.

Subcase (c1): 3.4A holds. So, w.l.o.g. 2%=p, uy>R, and (ug:f<a) is
strictly increasing. We now define by induction on B < « for every n € [1,<5 0,4,
a subgroup H, of G such that:

(l) Hn Iy an < (Hn Py Ny+1)G for Y < 1(77)

(i) |Hy| < pin)-

(iii) If B =I(n) is a limit ordinal, then H, =, <g H, ;.

(iv) The subgroups (H, .y, Nyg+2)c for all i<oy,)+ (for a fix n) are
pairwise nonconjugate in G.

The induction step is-done by Lemma 3.2 (possible as ug < u hence ug < pu for
every B < a). With G/Nyiy+2, Nigpy+1/Nigpy+2> Oieqy+1> Hys Bipy+1 here standing
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for G, N, o, A, k there respectively (note that (pyg)+1)"™' < (2%)Him = 2k <
Oym)+1 as necessarily 2% (B <a) is strictly increasing too). Now for each
N €llg<a Op+1, Hy=Uy<pHy,; clearly by (ii) |Hy|<Xp<alp<p|a|=p, by
(i) + (iv) the H,’s are pairwise nonconjugate. So {H, :n € [1s<. tig+1} exemplifies
nc.,(G)=lp<n 0541 = lg<o 05 = A, contradicting G € P,.

Subcase (c2): 3.4A fails (i.e., u is strong limit singular). By cardinal
arithmetic, u;, 0;<pu for each i and f o =cf u. Let p = X, 5, x(0), || +cfu<
x(@), x(i+1)=x(G+1)*. Let B(i)=Min{B<a:us>yx(i+1)}, then B(i)=
y(i) + 1 (as |a| < x(i)). We can now imitate the proof of (cl).

Case (d): For some B<7, pg =, 0g <0, and for every A c N;/N,, |A|<p,
the set Cm,,n (A) has power = p. Clearly in this case Np /N, has a commutative
subgroup of power u, hence by 1.3 has 2* = A subgroups H of power u hence by
1.2(1) (apply to og, p standing for A, u) nc.,(Ng/N,)=A, hence by 14,
nc,(Ng) = A, contradicting G € %, by 1.5 (as (G:Ng) = 05 <A).

Case (€): No previous cases. As not case (a) w.l.o.g. Sup{ug:B<a}=yu,
hence w.l.o.g. 05>N,. As not case (c) w.lLo.g. (us:B<a) is eventually
constant, so necessarily ug = p for every f large enough, and w.l.o.g. ug = u for
every B < a. As not case (b) w.l.o.g. (0p:f < &) is strictly increasing, a =cf «,
and let a(*)=Min{a, cfu}. Note that [lg<nn) 0 =A: if a(*)= a obviously,
and if a(*)=cfu#a, then necessarily cfu<p, hence A=2*=(2<F)Fr<
[g<ctn Tp+1 (note that 2°¥ < 0g,4, as pg.1 = p).

We now define by induction on 8 < a(*) for every n €[l, 4 0,,, a subgroup
H, of G such that:

() HyrysHyc (Hy 1y Nyiz)o for y <I(n).

(ii) [H,]| is strictly smaller than p.

(iii) If B =I(n) is a limit ordinal, then H, =J,<s H, ;,

(iv) The subgroups (H,~y, Nigy+2)e for all i <oy, (for a fix n) are
pairwise nonconjugate in G.

The problem is the induction step. Suppose H, is defined, I(n) =, and we
shall define H,~(;, (i <0g+1). Note that as (G:N,)=o0,, o, strictly increasing,
clearly (Ng:N,) = o, for B <y < a(*). As not case (d), there is a set A, = Np.1
such that |4, | <p and Cmy,, ,,, (A,/Ns.2) has power <u. So (as in the proof
of 1.10) there are 0p., elements of Ng.;/Ng., Which are pairwise nonconjugate
over A,/Ng,z. As (G:Ngy1)=0p.1<0p,s, there are (0g+1)" members of
Ng.+1/Ng., which are pairwise nonconjugate over H,UA, in G/Ng,,. As
2Vl < gg ., as in 1.10, we can find a;€ N3,y (i<0p.y) such that the
subgroups (H,/Ns+2UA,/Ns.2U{a:Ns.2})cin,,, are pairwise nonconjugate.
Now the subgroups H, -, & (H, UA, U {a;})¢ (for i < 0s,,) are as required.

At last the subgroups {\Uy<ac) Hy 1 y: M € llg<a(s) Op+1} are pairwise noncon-
jugate subgroups of G, each of power <y, and their number is [lg<a() Op+1 =4
(by the choice of a/(*)). This contradicts G € %,, hence we finish case (e).

3.6. Lemma. Suppose G € P}, then (G:Min G) <A.
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Proof. Let L= Cent G, |L|<u, G/Le€ %,. and let K = {x € G :xL e Min(G/L)}.
We know that G/L € %,, hence by 3.5, (G/L:Min(G/L)) <A, hence (G:K)<A4,
and clearly K is a normal subgroup of G. Clearly

Min G = {N:N c K, N a normal subgroup of G and (K:N) <A}.

However for any such N, clearly (N, LNK)s=K hence (K:N)<|L|. So,
repeating the beginning of the proof of 3.5, (K:Min G)<2%"'<2#*=) but
(G:K)< A, hence (G :Min G) <A.

3.7. Definition. Let Q" = {Min G:G € 7} (for m =0, 1, if m =0 we may omit
it).

3.8. Lemma. For every Ge 27 (m=0, 1):
(1) Ge 2%
(2) Min G = G (hence Q7 = {G € #7': G =Min G}).
(3) G=GW.
(4) Every x e G — Cent G has at least u conjugates (in G).

Proof. As G € QF, let G =Min G*, G* € 27}.

(1) Immediate: |G| =4 as |G*| =4, and by 3.5 and 3.6, A>(G*:Min G*)=
(G*:G) and use 1.7.

(2) The problem is that “being a normal subgroup” is not a transitive relation.
However being a characteristic subgroup is a transitive relation. Now G is a
characteristic subgroup of G* (by the definition of Min in 3.5) and Min G is a
characteristic subgroup of G (similarly), so: Min G is a characteristic subgroup of
G*, hence Min G is a normal subgroup of G*. Now we know (G*:Min G) =
(G*:G)(G:Min G), G* e 27 (by its choice), G € P7 (by (1)), (G*:G) <1 (by
3.5 or 3.6), (G:Min G) <A (by 3.5 or 3.6), hence (G*:Min G)<A. So by the
definition of Min G*, Min G* cMin G, but Min G ¢ G =Min G*, hence G =
Min G* =Min G, as required.

(3) We know that G is a normal subgroup of G, and by 1.8(4), (G:GW)<
1+ R, <A. As G =Min G (by (2)) necessarily G = G.

(4) Suppose x€e G—CentG and A={gxg ':g€ G} has power <u. Then
K< Cmg(A) is a normal subgroup of G (as any inner automorphisms of G
maps A onto itself, hence Cmg(A) onto itself). Also for a, b € G, aK = bK iff
0} A=0° 1A (as both are permutations of A and they are equal iff
[0°72 } A = the identity, i.e., b 'a € K). So (G:K)<|{¥ | A:ge G}|<|{h:his
a permutation of A}|=<2Ml<2¢=A(2"'<2* as u=Min{o:2°=1}). So
(G:K)<A, K a normal subgroup of G, hence Min G c K, but Min G =G, so
K =G, but then (as x € A) x € Cent(G), contradiction.

3.9 Claim. (1) If 3.4A holds, G € P}, A c B are subsets of G of power <pu, then
Min Cmg(B) < Min Cmg(A).

(2) For G € ?;, Min G is the maximal subgroup of G with no proper normal
subgroup of index < A.
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(3) If 3.4A holds, B < H®¥'Min Cmg(A), Ac G, Ge P}, A and B of power
<u, then Min Cmg(A U B) = Min Cm(B).

Proof. (1) Trivially Cmg(B) € Cmg(A). As Min Cmg(A) is a normal subgroup
of Cmg(A) of index <A, Cmg(B) N Min Cmg(A) is a subgroup of Cmg(B), is a
normal subgroup of Cmg(B) and

(Cmg(B): (Cmg(B) N Min Cmg(A)) < (Cmg(A) :Min Cmg(B)) <A.

Hence Cmg(B) N Min Cmg(A) includes Min Cmg(B), which gives the desired
conclusion.

(2) Trivial: If N is such a subgroup, then N N Min G is a normal subgroup of N
of index< A, hence NNMin G =N, i.e., NcMinG.

(3) By 3.4A, 1.10, clearly all subgroups mentioned are in #;, Min Cmy(B) is a
normal subgroup of Cmg(AU B) and has no proper normal subgroup of
index < A, hence by 3.9(2),

By 3.9(1), Min Cmg(A U B) c Min Cms(A) = H, hence trivially Min Cmg(A U
B) = Cmy(B). As Min Cmg(A U B) has no proper normal subgroup of index <A,
clearly by 3.9(2),

Min Cms(A U B) € Min Cm(B).
Together they complete the proof.

3.10. Fact. For every G and every cardinal 0:

(1) There is a (unique) subgroup N =Ming G such that N is a maximal
subgroup of G satisfying: («) NP =N, and (B) for every x e N—CentN,
[{gxg~":g e N}| = 6.

(2) Ming G is a characteristic (hence normal) subgroup of G, and 6 <k =
Min, G =Miny G.

() If G € P, then Min G c Miny G, hence (G :Ming G) <A, also Min, G €
P7 (provided that 6 < u of course).

(4) There are an ordinal a, a non-decreasing continuous function h: o — « such
that h(0)=0, h(i)<i, h(h())=h(i), [hG@)<h(G)=>i<h()] and a strictly de-
creasing continuous sequence {N;:i<a) of subgroups of G such that Ny=G,
N, =Ming G, and for each i, N, is a characteristic subgroup of G and even of
Ny for j<i and Nyy=NP or N;=N® and N,.,=Cmy(A) for some set
Ac Ny, |A|<8, where A is the set of conjugates in Ny of some x € Ny —
Cent N, and N; is a normal subgroup of Ny).

Proof. Easy: Let (N;:i< &) be a maximal sequence as required in (4) (except
N, = Min,(G)). By the maximality, N, satisfies (1)(a), (1)(B): Also if N satisfies
(1)(«) and (1)(B), then we can prove by induction on i that Nc N,, hence
NcN,. So N, is the maximal subgroup of G satisfying (1)(«), (1)(8). So we
have proved (1) and (4). Parts (2) and (3) also cause no problem.
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3.11. Fact. If G € Q}, then G/Cent G € £,.

3.12. Fact. If 3.4A holds, Ac G € 2}, |A|<u, N a normal subgroup of G and
Min Cmg(A) € N, then N =G.

Proof. Similar to that of 1.12. Suppose N+ G. As G € Qj, necessarily Cent G
has power < g, hence w.l.o.g. Cent G c A. As N#G, N a normal subgroup of
G, G e Q) necessarily (G:N)=A. Denote M %'Min Cmg(A). We know that
Kk E(Cmg(A): M) < A, hence there is B = Cmg(A), |B| <A such that for every
x € Cmg(A) for some b € B, xb~! € M. Now we can define by induction on i <A,
a;€G, a;¢ (N, B, A, a;:j <i)¢ (this is possible since otherwise G/N is generated
by {bN:beB}U{aN:aeA}U{a;N:j<i} which has power<A, hence the
group G/N has power < A, contradicting an assumption).

Now (a;, A)s/Cent G (for i <A) are subgroups of G/Cent G, which belong to
Q,, hence letting y = 2“*% + (Cmg(A4): M), w.lo.g. (a;, A)c/CentG (i<x™)
are pairwise conjugate in G/Cent G. As Cent G c A < {a;. A) the subgroups
{a;, A)g (i<x™) are pairwise conjugate in G, and let O0% map (a;, A)s onto
{ag, A)g. W.lo.g. 0% | A is the same as well as (¥i(a;) (for 0<i<yx™). So for
0<i,j<x*, g7'g € Cmg(A) and O maps a; to a;, S0 ar€(g5'81, 41)G <
(Cm(A), a,)g < (M, B, a;:i<2); = (N, B, a;:i <2), contradiction.

4. Direct decomposition and semi-decomposition

As we know that A € G, G € #,, u! < 1 implies Cmg(A) € #,, we are able to
build groups, which are generated by pairwise commuting subgroups. If we start
with G with no center (such G’s exist in %) we can get direct decomposition (see
4.1). This leads naturally to problems of the uniqueness of a decomposition and a
common refinement of two decompositions, and for suitable G’s, to the Boolean
algebra which the direct summands form. However in our later proofs it seems
necessary to demand only that the subgroups are commuting, thus forming a
semi-decomposition, semi-summands, etc. We may want to divide by the center,
but we are interested in the inner automorphisms of a larger group.

At last we consider problems of the form: When do the groups H c K have
essentially the same decompositions; the natural function is

K=Y K > H=3 (HNK).

te T teT

We complicate this by considering semi-decomposition and decompositions to
normal subgroups of some extensions H', K’, respectively.

4.1. Definition. (1) G = ¥,.+ G, (a direct decomposition) if the G, are pairwise
commuting subgroups of G, G=(G,:teT)s and G,N(G,:s€T, s#t)={e}
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(so every g € G, has a unique representation [I,.r g, where g, = e for all but finitely
many ¢ € T).

The function g— g, is denoted by End ¢, (more exactly End{g,.;c7y) and is a
homomorphism from G onto G,, which is the identity on G,.

(2) G=%,.rG, (a semi-decomposition) if the G, are pairwise commuting
subgroups of G, and G = (G,:t € T ); (so each g € G, has a representation [, g,
where g, =e for all but finitely many te€ 7, but the representation is not
necessarily unique). We define Endig, ...y (A) = {a,: for some a € A; a =[L.ra,
a,€ G, and s € T}. Each G, is called a semi-summand.

(3) A semi-decomposition ¥,.7 G, is called nice if GV = G,.

4.2. Fact. (1) If G=Y,rG,, then G=Y,.7 G,
(2) If G=Y,.r G, then Cent G = ¥,.rCent G,, Cent* G, = X;.r Cent* G (for
« an ordinal or ®).
B3) If G=X..7G,, then G =YX..; G,
@) IfaeG=XY.1r G, a=1lcra, (see 4.1(2)), then:
(i) Cmg(a) =X’ {Cmg,(a,):teT}.
(ii) Cent Cmg(a) =Y’ {CentCmg,/(a,):teT}.
(iii) a, € Cent Cmg(a).
(iv) If a € G,, then Cent Cmg(a) = (Cent Cmg,(a), Cent G ).
5) IfG=X,.rG, then G,N(G,:s€T, s#t)sc Cent G.
(6) If N, is a normal subgroup of G,, then N= Y, .r N, is a normal subgroup
of G. If in addition, Cent(G,)c N, then G/N=YX,.rG,/N, (more exactly
G/N=Y,.r (G, N)g/N and {G,, N)/N is canonically isomorphic to G,/N,).

Proof. Left to the reader.

4.3. Fact. Suppose G=Y,.rH = X,cs K;. Then
(1) G/Cent G = X;c1es (H,/Cent G N K, /Cent G),
(2) G(l) = ZteT,seS Hgl) N K.gl)-

Proof. (2) Let H=(H,:teT), K=(K,:s€S) (i.e., the sequences, not the

subgroups they generate), and f = End, fs = Endz. Let t(*)€ T, s.t. for s € §,

teT, fOf | Hy., is a homomorphism from H,., into H,. By 4.2(4)(ii) (applied to
% then to f}), for all x € Hy,

Cent Cmg[ff1(x)] = Cent Cmg[fi(x)] = Cent Cmg(x).
So if t #t(*), by 4.2(4)(iii) and (iv), (i)

fof1(x) € Cent Cmg(x) = (Cent Cmy, (x), Cent G,:q € T)g.
But
(Cent Cmg,(x), Cent H,:q € T)s N H,=Cent H,

hence fofl(x)eCentH,cCentG. Now for x,yeH,., fifi(xyx~'y )=
AN () (Ffs(r))™ which is e by the last sentence; so
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LN Hy is trivial on H{Y) and it induces a trivial homomorphism from
H,.,/Cent H,,, into G,/Cent G,. The rest should be clear (or see 4.8’s proof).

4.4. Fact. IfG=GW orCentG=1{e} and G=Y,.rH,= ;s K., then
G= > HnNK,.

teT,seS
Proof. By 4.3(2), if G=G™ and by 4.3(1), if Cent G = {e}.
4.5. Fact. IfG=GWand G=X,.;H,=Y..7K,, then G=Y/cr,.s HNK,.
Proof. The only nontrivial point is why G ¢ G' &' (HNK:teT,seS)g.
4.5A. Subfact. G =X, H™ =X, K.

This is so because G=G™ =Y, H®. So w.l.o.g. H® =H, K =K, (as we
just need that they generate G).

It is enough to prove that every a € H, belongs to G'. As G = Y, s K, clearly
a =]l,csa, for some a, € K, hence it is enough to prove that w.l.o.g. for each
s €S, a, € H, (remember the a, are not uniquely defined). But we have assumed
H,= H®O. First suppose a is a commutator a = xyx~'y ' for some x, y € H,, and
let x=ILesx, y=Ilesy,, where x,, y,€K, Easily a=xyx7 'y '=
Mees xyx:ty L As x =Tles x5, x; € K, clearly for each s € S, Cent Cmg(x,) <
Cent Cmg(x), hence for some b, € H,, b; 'x, € Cent G.

Similarly, for some ¢, € H,, c; 'y, € Cent G. Now

x.ysxs 'yt = by(by x,) e (e Y ) (b x) b e ys) eyt
=b,c,b;'c; e H,

and it also belongs to K ; hence it belongs to H, N K.
So a=xyx Yy =1L x,y.x 'y, =Tl b,e;b; 'c; ! is as required. As the com-
mutators in H, generate H,, the proof is complete.

4.6. Definition. (1) For any group G, G = GV or Cent G = {e¢} we define the
structure BA(G): its elements are the direct summands of G, i.e., {/: for some J,
G =1+ J}; its operations are union and intersection:

TUTET D,
I NJ = the usual intersection.

Q) If G=G", BA'(G) is the following structure: its elements are the
semi-summands I of G satisfying I =I". The operations are as in (1). Note
I e BA'(G) is commutative iff it is trivial.
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4.7. Fact. (1) BA(G) is a Boolean algebra with zero {e}, one G, and if
G =1+, I is the complement of J.

(2) For I e BA(G) there is a unique endomorphism End; G from G onto I
which is the identity on I such that End; = End}; ,, where G =L, + 1, I,=1.

(3) If G=GY, BA'(G) is a Boolean algebra with zero {e}, one G; and for
every I e BA'(G) there is a unique J =JV, G=1+"].

(4) For I e BA'(G) we define Endy; as in 4.7(2), 4.1(2).

Proof. (1) Apply 4.4.
(2) Follows.
(3) Apply 4.5.

4.8. Fact. (1) If G € Q}, then G has no nontrivial direct summand of power < A,
nor such a noncommutative semi-summand.

(2) If G =Y.,.7G,, then forany Ac G

Cmg(A) = D, Cmg (EndZ A).
teT

Similarly for G = Y,,.1 G..

(3) If G=X%,.+G, € P, then for each teT, [|G|=1>G, e P] and Min G =
Y. {Min G,:t €T, |G| = A}. Similarly for G = ¥,.+ G?, (no G? is commutative by
1.3) and/or for .

(4) For no G € &, there are an infinite T and G, (t € T) each of power A such
that G = ¥, G.. This holds for G € 2} too.

(5) There is no Ge P, G=G™ or Cent G = {e}, and a; € G-{e} (for i<p)
such that for j <i there is a direct decomposition I +J of G such that a;€ 1, a; € J.

(6) If in (5) a; € G-Cent G, we can use semi-decomposition even for G € PL.

Proof. (1) If I is a direct summand of G, then for some J, G=I+J, soJis a
normal subgroup of G, (G:J)=|I|. As G=Min G, 1<|I| <4 is impossible. The
proof for semi-summand is similar.

(2) Note that a, b ¢ G commute iff for every s € T, Endig,.,cry(@) commutes
with Endig,.;e1y(D).

(3) Note that subgroups of G, are conjugate in G iff they are conjugate in G,,
hence (*) for every o, nc.,(G,) <nc.,(G). ‘

So if Ge #,, |G| =4, clearly G, € #,. For any ¢, Min G, + ¥, G, is a normal
subgroup of G of index (G,:Min G,) <A, hence it includes Min G. We can
conclude that:

Min G c D, {Min G,:|G,| =1}.

Suppose equality fails, and x € }, {Min G,:t € T} but x ¢ Min G, so x =[l,.7x,,
x, € Min G,. Hence we can assume x € G, for some t. Necessarily |G,|=A, and
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x ¢ (Min G) N G,, but this is a normal subgroup of G, of index < A, hence should
include Min G,, but x does not belong to it, contradiction.

(4) W.lo.g., T is the set of natural numbers. For each n < w, |G,|=1, we
know |Cent G,| < .

We now choose for n<w, i<A, a,;€G, such that {a,; CentG,)s, are
pairwise distinct, and define for i <A, H; = (a,;:n < ®)g.

It is clear that a,; € H;N G, c (a,;, CentG,)s. Now suppose that i #j<A4,
geG and 0¥ maps H; onto H,. Clearly for some n, geX,,,G,, apply
End}c_.m<w) to H;, H;, g and we see that [J¥ maps (4, ,, Cent G,)¢, onto (a, ;
Cent G,)¢,, contradiction. For G € €23, the same proof works.

4.8A. Remark. Really, the proof shows that e.g., if |T| <o, e.g., |G| =2,

nco(z G,) = [ [ |G,|°/(the ideal of finite subsets of T).

teT teT

(5) For any set S c u let
Hs= (a,-:iES)G.

By the hypothesis for j <i, a; commutes with g;, hence Hg is commutative, so
suppose S, T are distinct subsets of u, g € G, but (3 maps Hg onto Hy. As S# T
w.l.o.g., there is €S — T, so as [J%(a,) € Hy there are B,,...,B,€T, and
m(1), ..., m(n) €eZ such that ¥(a,) =1k, (a5,)™® (remember H is com-
mutative.) Note that 8; # o for k=1, n.

For each k there is a direct decomposition G=1IL +J, a, €l, ag €J.. So
a, e [ ¥'M;_, I, Iis a direct summand of G, G=1+J, and J, cJ for k=1, n.
Hence ag, €J, cJ. Now [¥a, =11, (ag,)™® is trivially contradictory (as a, #e).

(6) Similar, or use G/Cent G.

4.9. Definition. (1) For a group G and AcG let (A)ZE be (gag™: aeA,
g € G)g, or equivalently the smallest normal subgroup of G which includes A.
2) Let cg(G) =Min{|A|:G = (A)E}.
(3) For a group K and a normal subgroup H let

cgx(H) = cg(H, K) = Min{|A|: H = (A)%).

4.10. Definition. (1) We say Y, s H; is a direct decomposition of H inside K if
H = Y,.sH,, and each H, is a normal subgroup of K. Similarly for semi-direct
decompositions.

(2) BA(H, K) =BAx(H)={I e BA(H):I is a normal subgroup of K} where
H is a normal subgroup of K.

(3) BAx(H) ={I e BA'(H):I is a normal subgroup of K}.
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4.11. Fact. (1) If H is a normal subgroup of K, then BAg(H) is a Boolean
subalgebra of BA(H).

(2) If H is a normal subgroup of K, H=H®Y, then BAi(H) is a Boolean
subalgebra of BA'(H).

Proof. (1) Clearly BAx(H) is closed under the operations of union and
intersection. Obviously, {e}, H e BAx(H). As for complementation if / +J = H,
I e BAx(H), then I is a normal subgroup of K. So for any a € H, [0 maps I onto
itself, and H =0%(H) =0(I) + O%(J) = I + 0O%({J), hence necessarily O0°(J) = J,
so J is a normal subgroup of K hence J € BAx(H).

(2) Similarly.

4.12. Fact. Suppose H < K, and for every x e H
(*) Cent Cmg(x) c H or even 'y € K A Cent Cmg(y) < Cent Cmg(x)=>y € H.
Then (1) If K=Y,.7K,, then H=1Y,,.+(HNK,).

(2) IfK= Yiier K;, then H = ZIIET(H N Kt)'

Remark. In (*) the second condition is weaker than the first.

Proof. In both cases the least trivial pointis H=(H NK,:t e T ). For this it is
enough to prove that if x € H, then for some x,e HNK,, x =[l,.7x,. By the
hypothesis, x = [I;crx, for some x, € K,. But by (#) xe H=>x, € H for each t € T..

4.13. Claim. Suppose H is a normal subgroup of K, and (A)$ = H.

If (K, H") is an elementary submodel (see Ap 1) of (K, H), A c H', then

(*) For any direct decomposition Y.,.rH; of H' inside K' there is a unique
direct decomposition Y,,.r H, of H inside K such that HLNH' = H.

(* *) For any nice semi-decomposition Y,,.rH' of H' inside K' there is a
unique nice semi-decomposition Y.,.r H, of H inside K such that H,N H' = H} (see
4.1(3)).

Proof. As the proofs are similar we give them together; only (b) is for (* *)
only, (e) for (*) only.

We define H,= (H})%, and let A, = {aba ':a €K, b e H}}.

(a) H,is a normal subgroup of K, H; c H,. (This is obvious.)

(b) H,=H®M (for (* *) only).
If ceA, then c=aba™?, beH!, aeK; and as (H)W=H! b=
I o1 XV Ymls Xom> Y € Hi(i-€., b is the product of commutators). Hence

aba™" = [] (axma™")(ayma™ ") (axna ") (ayma™) " € HY;
m=1
hence A, c HY, so H,= H®.
(c) For t#s (in T), H, and H; commutes.
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For suppose x € H,, y € H, do not commute. As x € H, there are n<w,
Xi,...,X, €H! and a4, ..., a, € K such that x =TI}, (a;x;a;"). Similarly, there
arem<w, yy,...,Vn€Hrand by, ..., b,, € K such that y =TI"2, (b,y;b?). So

(K, H)E@Qz,, ..., 2)3u, ..., u,)

[Hl(zixizi_ I)I—llujyjuj_ T I_.[l(ujyjuj— 1)_1—_[1(Zixizi_ 1)]
i= j= j= i=

(so x;, ..., %X Y1, .-, Ym are here parameters; the formula is satisfied as the
ai,...,a, by, ..., b, are witnesses for the existence).

As (K', H") is an elementary submodel of (K, H) and as the parameters
X1, -+ Xn, Y1, - -+, Y are in H* c K, also (K', H") satisfies this formula, hence
there are ay,...,a,, bi, ..., b, €K' such that x'=[I,a/x;(a))™" and y’'=

", bjy;(b))"" do not commute. As x,,...,x,€H}, a3,... a,eK", and H' is a
normal subgroup of K, clearly x' € H;. Similarly, y’ € H;. But H;, H; commute,
contradiction.

(d) H'¥ (Urer H,) 5 is a normal subgroup of K, is included in H, it includes
H', hence A. So H=(AY¢c (H'Y¢=(H') = H' c H as required.

(e) H,N (Uqx Hy)x = {e} (for (*) only). The proof is like that of (c).

(f) Uniqueness of H,. If H; are other candidates, first prove H, c H,, then an
inequality contradicts H = },.s H, (or H = Y,/ H, using niceness).

5. A kind of derivative and required subgroups

When we are dealing with G € #,, we have found that for Ac G, |A|<p,
Cmg(A) € #,. We want to exploit this to prove that every G has subgroups of
many isomorphism types, this being proved by induction of some notion of depth
of groups of those isomorphic types. So in stage «, we shall try to build conjugate
subgroups H = K of G such that Cms(H) N K includes a direct sum L of many
subgroups of smaller depth. If (¥ maps K onto H, then (L, g)¢ has quite a clear
structure. Note that we do not have much control on the center (hence we shall
divide by it in 5.1).

In this section we deal with a suitable notion of depth.

5.1. Definition. (1) For any group G let

9v(G) = ({x:in G/Cent” G, x Cent” G belongs to a normal countable
abelian subgroup}) .

(2) For any group G and ordinal o we define %v“(G) by induction on a:
(@) Dv(G) = {e},
(B) Dv*Y(G) = {x :xDv*(G) € Dv(G/Dv“(G)),
(y) for @ =4 a limit ordinal Pv°(G) = Us<, DvP(G).

(3) For any group G, 2v~(G) =, Dv*(G).
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5.2. Claim. (1) 2v(G) = 2v(G).

(2) v*A(G) = {x e G:xDv*(G) € VP (G/Dv*(G))}.

(3) Dv*(G) is a normal, and even characteristic subgroup of G.

(4) Dv*(G) c vP(G) c Dv™(G) if a<B.

(5) If Dv*(G)=Dv*(G), then Dv*(G)=Dv?(G) for every B = a, hence
Dv(G) = DQv™(G).

(6) For some a <|G|*, Dv¥(G) = Dv™(G).

(7) Dv*(G/Cent™(G)) = Dv*(G)/Cent™(G).

(8) For any homomorphism h from G onto K, h maps 9v*(G) into Dv*(K).

Proof. Immediate.

5.3. Claim. For any pairwise commuting subgroups G;(i<a) of G, and for
any y

@v”(Z' Gi) =2 (G,
also

@v"@a‘ G,.> =" B(G)).

i<a

Proof. Easy.

5.4. Definition. We call H a y-required group if Qv (H)=H #+ 9v"(G), H
has power < |y| + X, and H/Cent™ H is indecomposable when y > 0.

5.5. Definition. For any group G let y(G) be the first ordinal y such that G has
no B-required subgroup for y < B <(Ro+ |y])*.

5.6. Claim. (1) If Lc K, then y(L) < y(K).
(2) v(G) = y(G/Cent” G).
(3) Any abelian nontrivial group is a y-required subgroup for y = 0.
(4) For any nontrivial G, y(G)=0 and y(G)<|G|", even y(G) <R, + |G|".

Proof. Trivial.
5.7. Lemma. For every G € #,, for some A c G, |A| <u and y(Cmg(A)) < p.

Proof. Suppose that there is no such A. We define by induction on a<u a
subgroup H, of G such that:
(i) H, has power < |a| + Ry,
(ii) Ha < Cmo(Us<a Hy),
(iii) H, is an y,-required group for some y, <Ry + |a|*, . > a.
In stage @, |Up<o Hpgl < Xp<a |Hpl <|a| - (Ja| + Xp) <pu, so as we have assumed
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that there is no A as mentioned in the lemma, necessarily there is 7v,,
a<y,<Ro+|a|" and a y,-required subgroup H, of Cms(Up<o Hp), W.1.0.8.
Yo ¥ vp for a # B.

Now for any set Sc{y:o <y<pu} let K¢=(H,:y€S)g, so it is enough to
prove that Kg, K are nonconjugate subgroups of G for S # 7. We shall prove
more: that K, K, are not isomorphic. If # is an isomorphism from K onto K7,
then it induces an isomorphism 4’ from Kg/Cent” K onto K7/Cent” K7 . As by
(i) the H,’s are pairwise commuting Ks= Y ,cs H,, s0 by 4.2(2), Cent™ K5 =
Y. .sCent” H,, and Kg/Cent” Kg =Y ,.s H,/Cent™ H,. The same holds for K7;
so as H,/Cent” H, is indecomposable (remember Definition 5.4) by 4.4 for some
one-to-one function f from S onto T, k' maps H,/Cent” K5 onto Hp,)/Cent” K
(for « € S). But by 5.2(7) this easily implies f(«) = & (for a € S), hence § =T.

5.8. Lemma. Suppose H,, (m € Z) are pairwise commuting subgroups of G, F; is
isomorphism from H,, onto H, (for n, meZ) F,=the identity, FJ'F k = F%,
H*={(H,:meZ)g, K is a subgroup of (\nezCentH,, K+H,, K=H,N
(Hy:keZ, k#m)¢ for each m € Z and F;,, maps K onto K for every n, m.

Suppose further g€ G, Fo, <0 for every m and let HE (H*, g) and
assume H, # K. Then

(a) LY Cent” H is a subgroup of K.

(b) K is a normal subgroup of H.

(c) H*/K=XY,.z H./K.

(d) K c Qu(H).

(e) (i) Dv"(Ho)+ H, for every y < implies DvP(H) # H, (ii) Dv™(H,,) = H,,
implies Qv™(H) = H, and (iii) Qv~(H,,) # H,, implies Dv™(H) = L.cz DV™(H,p,).

(f) H/Cent™ H is indecomposable.

Proof. First note that (b), (c) are trivial.

(a) Suppose (yK) € H/K — {eK} is in the center of H/K. In H/K, any yK has
a unique representation (gK)" I1,.cz OmK), Ym € Hn, {m:y,K # K} is finite. So,
if y,.K # K, then for some 7, y,,_, € K; as yK € Cent(H/K), yK = O%*'(yK), but
the latter is an element of (H;, K:i#¥m), hence y,, € K, contradiction. Hence
yK € {g'K:r € Z}, but for r #0 trivially g'K ¢ Cent(H/K), so Cent(H/K) = {K},
hence (a) holds.

(d) For every ae K, A,={g’ag™":r e Z} is a subset of K (as F, maps K onto
K), and is closed under conjugation in G [by [J¥ by its definition, under e,
beH*, as A, K c Cent H*, and those elements generate H]. So (A,)y is a
normal subgroup; as A, is countable abelian, (A4,)y is countable abelian, and
clearly (A,)y =K (as A, c K). Hence (A, )y < Du(H). As a € K was arbitrary,
K c Qv(H).

(e) (i) By 5.2(8) w.L.o.g. K = {e}. We now prove by induction on g that

(») if for y<B, Dv"(H,) # H, then
vf(H)NH,, c DvP(H,), DPH)= 2, (v’ (H)NH,).

meZ
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For B =0 or B limit, this is trivial. So let B =a + 1, so Qv*(H,,) ¥ H,,, and it is
easy to compute for H/@v*(H): it has a trivial center and Qv(H/Pv*(H)) is
generated by {x Qv*(H): meZ, x € H,,, x(9v*(H) N H,,) € Qv(H,./(Dv*(H)N
H,,))}. Now everything is easily checked.

Before we continue note

5.8A. Fact. If h is a homomorphism from G onto K, and the kernel of h is
included in 2v*(G), then h maps Dv~(G) onto Dv=(K).

This follows by

5.8B. Fact. 9v>(G) is the minimal normal subgroup K of G such that G/K has
trivial center and 9v(G/K) = {eg/x} (equivalently, G/K has no nontrivial normal
countable commutative subgroups) and 2v>(G) =( \{K: K a normal subgroup of
G such that Dv(G/K) = {eg/x}}- [Note that any countable subgroup of the center
of a group is a countable normal commutative subgroup.]

(ii) By 5.8A w.l.o.g. K = {e}. As in the proof of (i) we can prove by induction
on f that

(%) if for y<B, Qv"(H) N Hy# H, then
vf(H) = Y, (DvP(H)NH,,).

meZ
First assume Yv”(H) N Hy# H,. Then (by 5.2(4), (6)) for every o, Qv*(H)N
Hyc 9v™(H) N Hy# H, hence Dv™(H) = Lz (Pv™(H)NH,,). As Dv™(H) is a
characteristic subgroup of H, 0¥ maps 9v™(H) N H,, onto Qv*(H)U H,,, ;.

Clearly 9v~(H) N Hy is a proper normal subgroup of H,. But we have assumed
Dv=(H,) = Hy, so by 5.8B H,/(9v™(H) N Hy) has a countable normal commuta-
tive subgroup, and let x(2v~(H) N Hp) be a nontrivial element of such subgroup.
Now the normal subgroup of H/%v>(H) which x2v*(H) generates, is countable
normal and commutative, contradicting 5.8B.

So Hyc Qv*(H) hence H,,c Qv™(H) for meZ hence H* c Qv™(H). But
H/%v*(H), being a homomorphic image of H/H*, is commutative and count-
able, so by 5.8A Pv™(H)=H.

(iii) Simpler than the proof of (ii).

(f) Suppose Lcl,, LcL and H/L=1/L+L/L (and ;#L, L+ L), and let
gL=g,L+g,L where g, €1l,, g,€l,.

First assume I, ¢ K, and choose b € I, — L. Then bL commutes with g,L (as
bel, g,e L) and bL commutes with g,L as b commutes with g, (as both are in
K). Hence bL commutes with gL, but (as b € K) it commutes with dL for
d € H*, hence bL € Cent(H/L); but b ¢ L, L = Cent” H, contradiction.

So I, ¢ K, and by the symmetry, L, ¢ K. It is impossible that g, € H*, g, € H*,
so w.l.o.g. g, ¢ H*. Let x be any member of I, — L, y any member of I; — L. Now
g1, x € H hence have represenatations

R

gi=g"[1at, x=g“[la2 nez-{0},

meZ meZ
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keZ, a,, a’ € H,,, {m:a,, a>, are not both e} is finite. Remember that in H/L,
every conjugate of x commutes with g, (and conversely). As g, ¢ Hf, n #0.

Thereis r € Z s.t. [al, ¢ e=>3 |m| + 8 <r]. Now gL, g’xg "L commute (as they
belong to I,/L, L/L, respectively). This implies aZ € K for every m, so as x e I
was arbitrary, I, = (K, g)u; but L ¢ K, hence there is x, € [, — K. Working with
x, and y instead of g;, x we can prove L c(K,g)y, so Hc (K, g)u,
contradiction to K # H,,.

5.9. Conclusion. Suppose J = L < G, and in G, J and L are conjugates. Suppose
further that H is a subgroup of Cm.(J) =L N Cmg(J), of power <|y| +R,, H is
not a subgroup of Cent Cm;(J) and vy is minimal such that Qv¥(H) = H.

Then G has a y,-required subgroup for some vy, y <y; <(Ro+ |y])".

Proof. Let (0¥ map L onto J, g € G, and let

H*=(O*"H:meZ);, K,=Cent(¥ (Cm.(J)):meZ)g,
K=K;NH* H,=(0 " H K)g.

The 08" H (m € Z) are pairwise commuting (as for m >0, 0 HcJ, Hg
Cm,(J), then use [#* for other pairs). Similarly 0¢" (Cm,(J)) (m € Z) are pair-
wise commuting. Hence K=Y, ., Cent(¥" Cm,(J)=1X,,.z ¥ Cent Cm,(J)
and H*=Y,! , ¢ H.

If a e Cmy(J) — Cent Cm, (J), then a ¢ K;, and a ¢ (¥ (Cm.(J)):m>0).

Clearly, K, is a commutative group, hence so is K, and KcCent H* =
Y Cent¥" H=1Y, (0¥ Cent H (by the definition of K), but K< H,, c H*,
hence K ¢ Cent H,,. As K is closed under [1¥" (m € Z), K is a normal subgroup
of H* < (H*, g). Now H*/K =Y., H,/K; for suppose a,, € H,, for n(0)=m =
n(1), a,q ¢ K, but [1,, a,, € K, then by applying 0¥™” we can assume n(1)=0
and get a contradiction. Also H,# K, otherwise H c Hyc K c K, but there is
a € H— Cent Cm,(L), and we have said such a is not in K;. So we can apply 5.8,
so H*=(H* g); is a subgroup of G, H*/Cent” H* is indecomposable,
QuvY(H*)# H™, but for some B<(Ro+ [H|)* < (Jy| +Ro)*, DvPF(H)=H". So
by 5.8 we have completed the proof.

Remark. We could have defined v in a finer way.

6. On limit p — the easy cases

In this section we first show that for G € #;, nc.,(G) =[ly<, 6" (thus proving
the main theorem for a large class of A’s, e.g., the case u is a strong limit and u a
limit regular cardinal). We use for this the previous section; by 5.9 (and (5.7) we
can build for each 6 <y an increasing sequence of subgroups of G of power 6,
(K?:i<6"), no two of which are conjugate. We shall do it by induction on 6 so
that K? < Cmg(U {K¥:j<k*, k<6). Now we want to show that for the
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subgroups
K,=(K}e):0<K)g (for nell 6*)
o<u

are pairwise nonconjugate. For this we want to be able to reconstruct the Ky,

from the K,. So we restrict ourselves to K¢ such that this is easy (6-groups); to

get such K? we find them as subgroups of Min[Cmg(U {K}:x <8, j<6"})]
We then proceed to deduce something for any limit u.

6.1. Theorem. If u is a strong limit cardinal of power >R,, then the main
theorem holds.

Proof. Suppose %, #@. Then by Section 3 for some G € %#,, Miny, G=G and
Cent G = {e} [Why? By 3.6-8, 3.11, there is G € £,, by 1.8(1) |Cent™(G)| < p, so
every x€ G—CentG has=pu conjugates in G; hence xCentG has =pu
conjugates in G/Cent G, so G/Cent G has trivial center and by 3.11, it belongs to
©,], and we shall deal with this G.

Let y*=Min{y(Cmg(A)):AcG, |A|<u} (see Definition 5.5). By 5.7,
y*<u, and choose Agc G, [Ao] <u such that y* = y(Cmg(A,)). We shall now
define by induction on i <y, a group H;, K; such that

(a) H;cG, Uj<iHjUAOUUj<i K, cK,cG.

(b) If i =y*j,+j,, jo<y* then H, is a y,-required subgroup of Cmg(K;) for
some ¥;, j»<1; <(Ro+ jo])" (hence |H| <X, +|y*)).

(¢) H; commutes with K; (follows from (b)).

(@) |K|<|y*|+1Aol + il +R, and |{gxg™':geK}>R, for xeK;—{e},
K® = K;. (Note that if y(G) = y* the A, would not be necessary.)

In the ith step, we know that A UlJ<;H;UU;<; K; has power <|Aq|+
ly*| li] + Ro <u, hence there is K;, AU, HUU<; K; = K; =G, |K;|=<li|+
|Ao] + |7*| + Ro and Cent(K;)={e}, KP=K; and every x € K; — {e} has =R,
conjugates by elements of K;. (See AP 1.3, 4.)

By the definition of y*, there is an H; c Cmg(K;) satisfying (b). Now (a), (),
(d) are immediate.

As p is a strong limit, there are linear orders S, T, |S|=u, |T|=2*=14, ST,
S dense in T (e.g., S=*>u, T=**yu, ordered lexicographically). Let
S ={s;:i<u} and for every t € T, let M, = (Ko, N,)c where N, = (H ,.;:j <y*,
5;<t)g. Clearly M, = K, + N,.

As G e P, there are distinct ¢, € T —S (for o« <p) such that the M, are
conjugate. Let 0¥ map M, onto M,

Now by (d), Dv}(K,) = {e}, hence Dv™)(K,) = {e} whereas Dv=(N,) = N, (for
every t € T), this holds by 5.4. Hence

Pv=(M,) = Dv™(Ko + N,,) = Dv™(Ko) + Dv™(N,,))=N,,.
So necessarily (¥« maps N, onto N,,, hence
Mto = Ko + Nto = Dg"(Ko) + Nlo‘



Sh:192

180 S. Shelah

So by 4.3(2) remembering Ko= K§, hence [+(K,) = (0=(K,))”, and that the
intersection of each of them with N, is {e}:

MO =K,N (O%K,) + N,

but also M’ = K, + N and K,N N,,= {e}, so necessarily K, N (T¥-K,) cannot
be a proper subgroup of K,, hence K,= 01K, As |Ko| <u, u strong limit
necessarily for some a # 8, 0f« | Ko=0%s | K,, let g =gz'g., then (¥ | Ko =
the identity, hence g € Cmg(K,), and (see above) (¥ maps N,, onto N,,. W.l.o.g.,
t,<tg and choose i<p such that ¢, <s;<tg. Now we apply 5.9 and get a
contradiction to the choice of y*, A,.

6.2. Hypothesis. y is not strong limit.
6.3. Fact. If 6 <u, then u°<Aa.

Proof. For some x <y, p <2 (as u is not strong limit), hence u®=<2**% but
K+ 6 <p so by u’s choice 25*? < A.

6.4. Conclusion. If Ac G e ?%, |A| <u, then Cms(A) € ?;.
Proof. By 1.10(3), (4).

6.5. Theorem. If u is a limit cardinal, P, +@, then for some k<uy,
HO<y.,8>K 0+ <A

The theorem follows from 6.7(1), 6.10. First we introduce a notion.

6.6. Definition. We say G € #2, (G is a minimal member of #}) if G € #} and
for every A c G of power <y, 7(G) < y(Min Cmg(A)).

6.7. Claim. (1) For every G € P} for some Ac G, |A|<u and Min Cmg(A)
belong to %%.

) If Ge®3, for every AcG, |Al<u, then y(G)=7y(Cmg(A))=
y(Min Cmg(A)) and Cmg(A) € P%, Min Cmg(A) € %5

Proof. (1) Define by induction on n, G, € ?1 A, such that G,= G, A, a subset
of G, of power < pu such that y[MinCmg (4,)]<7(G,) and let G,,;=
Min Cmg (A,); by 3.6, 6.4 and 1.7, G, € %;. For some n we cannot define A,

so G, € #3. But by 3.9(3), G,, =Min Cmg(U,,<. A..), hence we finish.
(2) Left to the reader.

6.8. Definition. (1) G is a 8-group [explicit 9-group] if |G| =6, G=G?® and G
has no semi-direct summand of power <@ [and every x € G — Cent(G) has 6
conjugates (at least)].
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(2) G is a [0, k)-group [explicit [0, x)-group] if 8 <|G|<k, G=GY and G
has no semi-direct summand of power <@ [and every x € G — Cent(G) has at
least 6 conjugates].

6.9. Fact. (1) IfG=2%,.rH, H,is a [6,, x,)-group, and for no t #s, 6, < 6,<k,,
then H, is the maximal normal [6,, k,)-subgroup of G which is a semi-direct
summand. If we restrict ourselves to explicit [6,, k,)-group the ‘direct summand’ is
not necessary.

(2) G is a (explicit) 6-group iff G is a (explicit) [0, 6%)-group.

(3) If G is an explicit [0, x)-group, then G is a [0, k)-group.

6.10. Lemma. If G € %3, then
(1) ne,(G)= [ (6.

o<u
0=|7(G)|+Ro

(2) Moreover, also G/Cent G satisfies this.

Proof. (1) We shall define by induction on 6, |y(G)|+Ro<8 <u subgroups
K? (i < 6) such that
(i) K?is asubgroup of G, ¥ Min[Cmg (U {K*:[7(G)| + Ro<Kk < 8, j <x*})].
(i) K? has power 6.

(iii) K? is an explicit 8-group.

(iv) For i #j, K?, K} are not conjugates in G.

ThlS is enough, as then for every n ell{0":|7(G)| +Ro<0<u}, we define

= (K2@y:|7(G)| + Ro< 6 < p)s. Now L, is a subgroup of G of power u, and,
for each 6, the K, are definable in L, (Kg(e) is the maximal normal explicit
0-subgroup of L,); hence by (iv), n # v implies L,, L, are not conjugate in G,
and since the number of L,’s is as required, we would have finished.

So let us carry out the induction. Clearly Gy € Q}, hence G{’ = G,, and every
x € G, — Cent Gy has at least u conjugates (see 3.8). Hence every subgroup of G,
of power= 6 is included in some explicit 6-subgroup of Gy (e.g. see AP1.3).
Now we define K? < G, (i < 0") by induction on i, |K{| = 6, K} increasing with i.

If K? (j <i) have been defined, we can define by induction on B<y(G) a
subgroup H{z of Cmg(Uj<; K; U\UJ,<g HY,), which is a yg-required group, for
some yﬂ, B =<1vs<y(G) Wthh is not included in Cent[Cmg, (U<, KSU
Uy<g H},)] (this is when g =0).

Let K ? be a O-subgroup of Gy (of power 6) which includes U<, K} U
Ug<y) Hf, The only serious problem is why K7 is not conjugate (in G) to some
K? (j <i). This is guaranteed by G € % (see 5.9).

(2) The proof is similar replacing (iv) by

(iv)’ Moreover for i #j, K{/CentG, K}/CentG are not conjugate in G/
Cent G.
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Now we make:
6.11. Hypothesis. For some x <y, [lg<, 6= 07 <A

6.12. Fact. If u is limit, P, + @, then
(1) u<R,, so uis singular.
(2) For unboundedly many 6 <p, 2°<2°".
(3) p<2H< (2<H)tH=2n
(4) If G € P4, for no normal subgroup N, 2=#<(G:N)<A.

Proof. By cardinal arithmetic we can prove (1), (2), (3). As for (4) by 1.4(1), we
know that nc.,(G/N)=<nc.,(G), and we apply 1.2(3) to G/N for the cardinal
cf(n) (as (2<H)F+r =2+ =}).

7. The number of direct summands is small

Later, at some crucial point, the number of direct summands of G € &, (or the
power of BA;(Min G) for G € %) will become important. If it is < u, we know
that for ‘quite many’ subgroups H of G of power < u, their direct summands are
exactly those induced by direct summands of G. This helps in proofs like 6.5
when we want in each 6 to have 6% subgroups in Hs. Here we shall prove that
this is always the case when u is a successor cardinal.

7.1. Theorem. Suppose u = k*, if G € Q}, then BA(G) has power < pu.
D,

For singular u we need more elaborate information involving the existence of
many nonconjugates of [0, x)-groups.

7.2. Theorem. Suppose 0 <k <u, G, e P, G=MinG,, BA;(G) has power
>k, and 2*=yu. Then G has 25 [0, k**)-subgroups, which are pairwise
nonconjugate in G,.

We want to prove the theorems together. For this in 7.1 let G,=G,
% =BA'(G) and so clearly BA; (G)=BA’'(G) includes BA(G). For 7.1 let
0 =X, if Ry < k and otherwise 8 = 1. So always 6 < k. For 7.2 let 8 = BAg,(G).
We are assuming G is a counterexample and eventually get a contradiction. So we
are assuming |%| > k, and note that 2% = u for both theorems.

We shall use 4.8 freely.

1.3. Fact. There are y pairwise disjoint nontrivial L, € R s.t., (a) x <k and for

some uniform ultrafilter @ over y, o<, |B | Lol =1lo<y |B |} L,|/D is at least k™
or (b) x =x". '
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Proof. If B has > k atoms, we finish (as case (b) holds). If not let W be the ideal
of % generated by the atoms. We define by induction on a, L, such that:
(i) L,e B—W.

(i) L, is disjoint to Lg for B < a (as members of B, so L, N Lg < Cent G).

(iii) Under conditions (i) and (ii), the power of {L € :L c L} is minimal.

(iv) There are infinitely many pairwise disjoint L, satisfying (i), (ii) and
disjoint to L, or {Le B:Lc L,}|<«k.

Suppose « is the first cardinal such that we cannot define L,. Let W*=
{L € $: L disjoint to every Lg (B < a)}, clearly W* is an ideal of %, and

k*=<|B|<[]|%B I Lg| + |W*| + R,
B<a

because the function F:B—[lg<, B | Ls defined by F(L)= (LN Lg:f<a),
satisfies: [F(L)=F(L)=>(L—-L")U(L'-L)eW*]. As «a is maximal |W*| <
|W|+ R, but we have assumed |W| =<k, so [Ig,|®B | Lg| is at least k™. By (iii),
|8 | L,| is nondecreasing, and by (iv), « is limit; lastly by (i), |9 | L,| is infinite.

If a=k", case (b) holds; so assume a <kx™. Now we can find an ultrafilter
on « as required, (see [1]: some regular ultrafilter) and replace a by y &¥|a/|.
7.4. Fact. Always y <k (if G is a counterexample).
Proof. Easy.

7.5. Fact. Suppose M € B. Then for every Ac G, |A|<u there is an explicit
k-group P = M NMin Cmg(A), such that M is the minimal member of B which
includes P, and even P/Cent P is an explicit x-group, and |P|< k.

Proof. We define by induction on & < k™, K, such that:

(1) K, is a subgroup of M N Min Cmg(A).

(2) K, is an explicit x-group, and even K, /Cent K, is an explicit x-subgroup.

(3) For some disjoint nonzero I, J, e B, M =1, +J,, K, c1,, Up<a Kg = J,.

At stage a, we choose, if possible, I, J, € B, Up<o KgJo, L, =M, I, NJ, is
abelian and I, is not abelian. If this is possible, then I, € 2} (by 4.8), hence
L,/Cent I, € ,, so there is no problem to choose K,. [The presence of A does
not change much; we can replace it by A, = {Endf(a):ac A} and then use
Min Cm, (A,) instead of I, as I, € Q}.] If there are no such I, and J,, then
Y. p<a Kp satisfies the requirements of P in 7.5.

If K, is defined for every &« < k™, then we let for Sc k™, Hs=(K,:a €S)¢.
Clearly the Hj’s are as required in 7.2 (or contradict 7.1). Note that no
x; € I, — Cent I, (for [ =1, 2; a; # a;,) are conjugates even in G;.

7.6. Fact. Suppose M, € B, M, = L, € B for y <y, the L,’s are pairwise disjoint,
and A c G, |A|<upu.
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Then we can find P,, (y <) and g € G such that

(a) P, M, "Min Cmg(A) has cardinality <k.

(b) M, is the minimal member of B which includes P,.

(c) P, is an explicit xk-group, and P,/Cent P, too.

(d) Dg(P ) commutes with P,.

(e) geMinCmg(A), andif L,c L e B for y<y, thenge L (fora speaﬁc L).

Remark. Note that g € G, not g € G,.

Proof. We can define by induction on @ <y a group P, , for y < x such that
(i) P.,=PP,cMNMinCmgs(AUUp<o Bs.y)-

(ii) P, is an explicit k-group as well as P, ,/Cent P, ...

(iii) M, is the minimal semi-direct summand of G which include P, ..
This is possible by applying 7.5to A’ =AU Ug<, Ps,,- Clealy P, , (y<yx, a<p)
are pairwise commuting subgroups of Min Cmg(A), which belong to Q1.

Forevery Sculet Ks=(P,,:y<x, a€S)g, if for § # T, K5 and K; are not
conjugate in Min Cmg(A), then we get a contradiction: as Min Cmg(A) € €3, it
has up to conjugation less than A subgroups H = H® of power < pu. Otherwise
there is g € Min Cmg(A) such that [1¥ maps K onto K7, and there is o € S — T.
Let P, =P, , for y <x. (We can replace g by End&(g).)

Now P, commutes with K, hence with (3¢ ({_s F;). So we finish 7.6.

7.7. Fact. Let L, (y<x) L be as in 7.6, u; =Min{u, [II,, (B I L,)|} (x <u, of
course). There are for « <kx*, K,, P,, (y<X) B., 8. and sequences (M, ,:y <
X ) such that:
(1) Kor = <Ba) Uy<x sz,'y)G-
(ii) The K,’s are pairwise commuting.
(ii) P,,<=M,,, P,, an explicit k-group.
(iv) Mo,,,, is the minimal member of B which includes P, ..
(v) OFf« maps U, <, P, , to a subgroup of G which commutes with it.
(vi) M,,cL,, g, €L.
(vii) Fora<B<k™, {y:M,,+Mg ,}€D.
(viii) g, € B, G, |B,|=6, and if 6 > 1 then B =B,, B, a 6-group.

Proof. First we can define (M, ,:y<jx) for « <k™* to satisfy (vii). Then we
define by induction on «, K,, g, P.,, (Y <x) using 7.6 with A =g, Kg, and
then we define B,.

From now we shall use g,, P, , of 7.7.
7.8. Proof of Theorem 7.1: when 2*>x. In fact here 7.5 is irrelevant and

condition (vi) in 7.7 too. By Engelking and Karlowicz [3] there are subsets T,, c x
(for & < pu = k™) such that no one is included in a finite union of the others and a
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finite set. Let K% =(ga, Pay:Y<X, Y€T,)c. Letfor Scu, Hs=(Kx:a€S)g,
clearly H is a subgroup of G of power < u. Suppose S, # S, but a € G, 00° maps
H, onto Hg,, and suppose o € Sy, o ¢ ;.

So O°g, € Hy,, hence there are B,,..., B,€8,and vy, ..., ¥m <X, such that

0 8a € <{gﬁk:k = 1, n} U kLle(L'Yk N Hsl)>G.

By the choice of the T,’s for some y

YETa_kLz.JlTkk_{Yl:'--:Ym}'

Now g, does not commute with some elements of L, N Hy,, (remember P, ,) but
O%g, (by its representation) commutes with every member of L, N Hy,. As [0°
maps L, onto itself, we get a contradiction. So we finish 7.8, as k™ = .

From now on let M,,, B, (y<x, a<k%) be as in 7.7, K, < (B,, P,.:
y<y veTl.)s, and for Scxt, HsE(K,:w e S)g.

We have decided in the beginning that for 7.1, 8 =X, except when x = X,, but
when k = X, necessarily y =Ny, 2* > k; so from now on we deal with 6 =X,. We
prove that there are many nonconjugate subgroups getting a contradiction.

7.9. Fact. K, =K%.

Proof. As each P, is a k-group, K¢ includes P{), =P, , and B’ = B,, but K,
is generated by those elements, hence K, = K{.

7.10. Notation. (1) For every I e BA'(K,), y<jx let Pro,(I) be the ideal of
Me®B, Mc L, and in G/Cent G, End§(I)/Cent G has power < 6.

(2) Set, = {(Pro,(I):y<x)/2@:1eBA'(K,)} (the division by & just means
that we shall count them up to equality mod 9).

7.11. Fact. (1) Pro,(K,) is the ideal generated by L, — M, , (subtraction, in &).
(2) If I, J = G, then Pro,({I, J) ) = Pro,(I) N Pro,(J).

7.12. Fact. (1) If K, =1+'J, g, €1, then |J/CentJ|=< 6.
@) IfK,=1+"J, g, € {(IUUp-1 (L, ,NK))g, then for yex —{¥1, - - -, Y},
End; scent g(J/CentJ) has power < 6.

Proof. (1) As g, €1, foreveryx € K,, g.xgz'x '€l LetforxeK,, x=x"+x’,
x'el, x’ €J. Now for x, yeP, ., x and g,yg,' commute (see 7.5), hence x’,
(g.yg2"') commute and (g,ygz')’ CentG =gly’(gz') Cent G =y’ CentG (as
g« €1), hence x’, g-y’(g=')Y ey’ Cent G commute. However, as P, = P, and
the map x+~x’ Cent K, which we call &, is a homomorphism from F, into
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(Cent K, U {x":x € P,})s/Cent K,, clearly (Range h)® = Range & and Range k
is a commutative group (by the previous sentence), hence x’ € Cent K,, for x € P,.
As K, is generated by P, UB,, J is generated by {x’:x € B,} U CentJ, hence
J/Cent J has power < 6. '

(2) The proof is similar.

7.13. Fact. Set, has power < 6.

Suppose not and so let for i < 8%, K, = I, +'J; be distinct semi-decompositions
with (Pro,(L):y <x)/9 pairwise distinct; let g, =a’, +b’,, a’, eI, b’ el Let
at, =T1I®, X o iyms Xa,im 18 from B, if m is even, and from P, , .y if m is odd.
W.Lo.g., n(i)=n and x5, =X, for L<2m<n. So for i, j < 8*, a'(al) " and
bi(b,) " belongs to K, N ¥ {L,:y =y(i, m) or y = y(j, m) where 1 <m <n)}.

Now by 4.7, K,=LLnJ,+'LNJh+'LLNJ+'LNJ;. By 7.12(2) for all but
finitely many y’s, Pro,(l,NJ;) =Pro,(I;NJy) = {l e BAG(G):I<L,}, hence by
7.11(2), Pro, () ="Pro,(I;) for all but finitely many y. This contradicts their
choice.

T13A. Fact. W.lo.g., for « <B<k™, Set, N Sets c Set where Set is a set of
power K.

Proof. By 7.13 and a lemma of Fodor (see AP2.3) there is a stationary
Sc{d<k*:cf 6=6%} and B<k™ such that for every aeS, Set,N
(Ui<e Set;) € Ui<p Set;. By renaming we get the first phrase.

7.14. Proof of Theorem 7.1. Let for Sckx*, Hy=(K,:a€S)g="Y s K,.
Suppose S, # S, < u, a € G;, 0° maps Hg, onto Hg, and |5, — S| =[S — S| = k™.
We shall get a contradiction and this clearly suffices.

So Zz’zesl K(x = HS; =0° I<s0 = Z’ﬂeso 0 Kﬁ- As Kf,,l) = Ka, by 47,

Hs = 2, KaﬂD“Kﬂ

1
aesl,ﬁ eso

and for @ € S;, K, = Ypes, K, NO° K.
So for a € §;, for some finite w(a) =Sy, 8x € Lpewa) K« NO° Kp. As
K, = ( > KaﬂD"Kﬁ) +'< > KaﬂD"Kﬁ),
Bew(a) BeSy—w(a)

so by 7.12(1) the cardinality of (¥ gcs,—w(a) Ko M 0O° Kg)/Cent K, is< 6.
Hence Pro,(Xgcs,-w(a) Ke N O Kg)={L e B:Lc L,}, hence by 7.11(2)

<Proy(K,) Y <x> = <Pro,,< >' K,nQ° Kp) Y <x>
Bew(a)

= <B ﬂ( )ProY(K,,, NOKg):y <x>.
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Let u(a)={B e w(a): for some Y e P for every yeY: Pro, (K, N0O° Kg) #
{LeB:LcL,}}. So u(e) is finite and for Beu(a), (Pro,(K,NDO*Kp):
y<x)/9 belongs to Set, and it is also clear that it belongs to Setg. As
u(a) cw(@) =Sy, for a € S, — S, this implies that (Pro, (K, NO°Kg): vy <x)/P
belongs to Set. By 7.11(2), {{Pro, (K, NO°Kg): y<x)/9D: B € u(a)} determines
(Pro,(K,): y<x)/D. As |S;— S| = k" >|Set| for some a(l)# a(2)e S —S,
(Pro,(Kymy): ¥ <x)/9 = (Pro,(K,): ¥ <x)- But this contradicts 7.11(2).

So we have finished proving 7.1 and let us now prove 7.2.

7.15. Lemma. Let L, (y<x), L be as in 7.6 (x < k of course). Then there are for
a<k*, K,, By, P,, (y<X) B., 8 and sequences (M, ,:y < x)s.t.:
() K,=(B,UU,<,(K,NL,))g.
(ii) The K,’s are pairwise commuting.
(ii) P,, <K,, and P, ,, K, N M, , are explicit x-groups.
(iv) M, , is the minimal member of B which includes P, ..
(v) OFf« maps \U,<, P, , to a subgroup of G commuting with \_, ., P, ,
(vi) My, cL,, g, €L and Endg ™=*(K,) has cardinality < 6.
(vil) For a<B<k™, {y<x:M,,+Ms ,}€9D.
(viii) g, € B,, |B.| =6, B, is an explicit 8-group.
(ix) K, is a [0, x)-group.
(x) K, is nice (hence L, N K, € BA'(K,) for y <yx) where

7.15A. Notation. K is called nice when: if ae K,, y<y, then some a'e
Endg/(a) is in K., and also K = K®,

Proof. We define first M, , (y <) for « <k™ as in 7.7. Then we define K, B,,
P,, (y<x) B., g, by induction on a. For each «, choose P, ., (y<x) 8. as in
7.7. then we define by inductionon i< 0, B, ;, K, ; s.t.:

(1) B,; K, are increasing with i, g,€B,; |B,; <6, |K,:/<k and
End5 ““Y(K, ;) has power < 6.

(2) K,:= (Ba,i U Uy<x(Ka,i N Ly))G < Min Cmg Uﬁ<a Kg.

(3) Fori=5j+5, foreveryye K,,NL,—CentL, the set {3°y: ae K, ;1 N
L.} has power = 6.

(4) Fori=5j+1, K,;NL, c(K,,;+;NL,)D.

(5) For i=5j+2, x€B,;, y<yx, there is y € Endg(x) N (K4 i+1NL,) and
x € (Bair)®.

(6) For i=5j+3, xeB,;if {y<jyx: Endg(x) ¢ Cent L.} is infinite, then for
infinitely many such y’s [{{¥x: ge K, ;.1 NL,}= 6. '

(7) For i=5j+4, xeB,;, x¢CentG, if w={y<y: Endgxg CentL,} is
finite, let M, be the complement of ¥’ {L,:y e w} in BA'(G, G;). Then (a) for
somex" €M,, x, e L, (for yew), x=x"[l,cn,x"and x*, x” € B, ;11 for y e w; (b)
x has 6 conjugates in B, ;..
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(8) Ks0= (8x> Uy<y Puy)c- There are no special problems in the definition.
For (3) and (4) operate separately on K,,NM,, and on K,,N(L,—M,,)
(subtraction — in ).

Now B, =|U;<¢ B..;;, K, =|i<e K,,; are as required. (In the construction for
each y, work for M, ,, L, — M, , separately).

Note that K, = (B,, U,,<x (K NL,))s by (2). Also K includes K, n L, (by
(4)), and B, (by (5)) and by the previous sentence K, = K.

Let us check that every x € K, — Cent K, has = 6 conjugates in K,. If for some
y<yx, Endg(x) 2 Cent.L,, then (3) (and (5)) take care of this. Otherwise let
x=Il1xa, x,€B,, ajeK,NL,. Let M,=%'L,, M, its complement in
BA'(G, G,). Clearly End¥*(x) = EndX*(II/~, x;); and as we are assuming (Vy <
x) End&(x) < Cent L, for y¢{vi,..., ¥a} Endg(II-,x) < Cent L,. So (6)
applies except when w = {y<yx: Endg(II’-;x;)z CentL,} is finite. If wg
{Y1, - .-, Yo} we finish by (7)(a) and (5) (first phrase applies to any yew —
{YI’ LR | Yn})

By (7)(a), II1x,=x [ e x”, x? € Endg(x)NK,, x" € B,. Together (using
the properties of direct decomposition) (x')"'xeK,NY?,L,, hence x=
=iy, yeK,NL,, yoeG—X, L, (the subtraction in B) and y,€ B,,
vwekK,NL, for =1, n. By (7)(b), {8 y,:g € B,} has power= 60, and then
easily {{CJ8x:g € B, } has power 6, except when y, € Cent G. Also if y, ¢ Cent G
(I=1,n), then {O¥y,:ge K, NL,} has power= 6 giving the conclusion. So we
fail only if x = I}, y, € Cent G but we assumed x ¢ Cent G.

Also the other properties are easy.

7.15B. Definition. For x e K< G(K=K®) let sv,(x, K)={M e B: Mc L,, and
for some K; e BA'(K), K;NxCentK #@® and K, c L, — M}.
sv(x, K) = (sv,(x, K):y <x)/9.

7.16. Fact. (1) If K=K®, x e K—CentK, then {I e BA'(K):INx Cent K # @}
is a filter of the Boolean algebra BA'(K).
(2) svy,(x, K) is an ideal of B | L.

Proof. (1) Note that (x Cent K)NI =9 is equivalent to: x commutes with the
complement of / in BA'(K). Clearly sv, (x, K) is upward closed. Suppose M,, M,
belong to sv,(x, K). We can find M,e BA'(K) for I=1, 2, 3, 4, K=Y}, M,
M, =M+ M,, M,=M,;+ M. We can find x;e M, (for I =1, 2, 3, 4) such that
x = Yi-; x;. The checking is easy.

(2) Left to the reader.

7.17. Fact. If x, y e K, x Cent K =y Cent K or even Endg/(x) = End&/(y), then
sv,(x, K) =sv, (y, K).

7°18° Fact' If K = K(l) = Ka +, Kb) X € Ka’ then SVY(x’ K) = va(x’ Ka)’
sv(x, K) = sv(x, K,).
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7.19. Fact. For every x € K, for some z € B,, sv(x, K,) =sv(z, K,).

Proof. Let x =1l xa;, x,€ B,, ;e K, N L, (y,<yx) (possibly by (i) of 7.15.)
Let K, be (X/-;L,), and K, its complement in BA'(G). As K is nice,
K=K,NK+'K,NK. So let x=x, +x,, x,€K,, x, € K,. By the choice of x,,
a, v, (I=1,n) (x, Cent K) N B, #9.

Let y =11/, x;; clearly y € B,. Next choose x; € End&*(x), then clearly

m n
[ x: Cent K, =[] x; Cent K,
I=1 =1

and so [[7_;x; belongs to End&(y) and also to Eng%(x) and if y<yx, y¢
{Y1, - - - » Ya}, then Endg(y), Endg(IT7=, x;) and End5(x) are equal (they are all
of the form z CentL,), hence sv,(x, K)=sv,(y, K). As the filter 9 is non-
principal (no finite set belongs to it), clearly sv(y, K) = sv(x, K) and the proof is
complete.

7.20. Fact. If K=K®=%,.. K, x;e K, x =¥, x;, then:
(1) sv,(x, K) = Ni<m sVy(x;, K).
(2) From (sv(x;, K;):1<m) we can compute sv(x, K).

Proof. Clearly (2) follows from (1), and (1) is straightforward.
7.21. Fact. sv(g,, K,) for « <k™ are distinct.

Proof of 7.2. Let SV, ={sv(x,K,):x€K,}. So by Fact 7.19, SV,=
{sv(x, K,):x € B,}, hence has power < 6 < k. Let SV3 be | g, SV;. Let SV2 be
{sv(x, K,): for some m and y, (I <m), sv(x,, K,,) € SV5 and for every y, sv(x, K,)
is computed from them as in 7.20(2)}.

Clearly [SV%| =< k for  <k*, and even |SVy| < k. Also SV2 c SV%, and SV} is
increasing and continuous.

By AP2.1 (Fodor’s Lemma) for some unbounded S ¢ x* and a(*)<k™, for
every ¢ € S, SV, NSV, c SVy%.). By 7.21 w.lo.g. w € S=>sv(g,, K,) ¢ SV

Now suppose T}, LS, o€, — T, g€ G, and (¥ maps ({J(Ks: BeTi})e
onto (U {Kg:B € I.})s; we shall get a contradiction. Thus finishing the proof
of 7.2. By 4.3(2), ¥ K, = Yger, ((Of K, N Kp), so there are n, B;<---<B,eT,
and g' e (8K, N Kp, s.t.:

Deg, = i g.
=1

If Bi, ..., B.<a, then sv(g,, K,) € SV} is a contradiction to the choice of S.

If B,= a, then B,>a (as a ¢ T5), and (¥ K,) N Kj, is conjugate (in G,) to a
direct summand of K,, hence by 7.18, sv(g’, (0¥ K,) N Kp) € SV3,; = SV}, but
also by 7.18, sv(g’, Kz)=sv(g', (FK,)NKp). As BeLcS, sv(g' Kg)e
SV%.. So for each I, sv(g’,Kg)eSV,, hence again sv(g., K.)eSVe,
contradiction to the choice of S.
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8. The end for p successor

8.1. Lemma. Suppose u=x". If G € 2}, then cg(G) <«k.

Proof. It is enough to prove this for G € ;. We choose by induction on i < u, g;
such’ that:

(1) a;¢ (a;:j<i)&, a,e Cmg{a;:j <i}.

(2) Let n,=Min{n:n>0, (a,)" € {a;:j <i)&} (and n; = 0 if there is no such n).
Then n; is minimal but > 0 if possible.

Suppose first a; is defined for i < u. Clearly, n; is zero or a prime. Let for each
i, w;ci be finite, such that (a;)" € {(a;:j € ;)& By Fodor’s Lemma (see AP 2)
there are a stationary S ¢ k™ = u and w such that w, =w, n, =n(*) for i € S. Now
let N=(a;:jew)@&, so clearly N is a normal subgroup of G, but |G/N|=A (if
G =N, we get our conclusion, otherwise remember G € £,). Hence, by 1.6,
G/N e P, (in fact G/N € ;). Forany T c S let Hr = (a;:i € T ), so it is enough
to prove that: if @ € T, — T, then for no g € G, (¥ maps Hy, onto Hy, or even a,
into Hy,. If this occurs let (remember Hy, is commutative):

() CFa=]l (ap,)'"“)ﬁl (@) ),

where m(l)#0 and [n(*)>0>0<m()<n(*)]. We know a, ¢ (g;:j<a)&,
hence (¥ a, ¢ (a;:j < )&, and as (a,)" € (a;:j ew)E, w < a, clearly for some
I, Biza, 1=sil<k As a¢T,, B>« and choose a maximal such B, and
w.l.o.g., it is B;,. Now

k-1 m
(a5,)™"® = (CF a,) [ ] (@)@ ] ((a,,)")*®,
=1 =1

hence (ag )" ™ € (a;:j <PBi)&, contradicting 0<m(k)<n(*) or m(k)#0 (by
).

We conclude that for some i <y we cannot find an a;. Clearly there is no g;
satisfying (1), so Cmg({g;:j <i}) is included in N = (g;:j <i)& By 1.12 this
implies (G:N) <A. But G € £,, hence G = N, so we finish.

8.2. Theorem. The main theorem holds when u = k™.

Proof. Choose G € %} with minimal y(G). We know that y(G) < pu (by 5.7).
We define by induction on i < u, a subgroup K; such that:
(1) K, =K, K; has power k.
(2) K; commutes with K; for j <i.
(3) BA(K)) has power <«k.
(4) No I e BA(K,) is conjugate in G to any J € U;<; BA(K)).
This clearly suffices.
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Suppose we have defined K; for j <i; let G;=Min Cmg(U;<; K;). We know
that G;e Qj, cg(G) <k (by 8.1), |BA(G)| <k (by 7.1), and let G;= (A)E&,
|A| =< k. Now we define by induction on &« < u, M, < G;, such that:

(@) A<= M,, M, has power < k, M, is increasing, M, = MD.

(b) BA(M,)={INM,:I e BA(G)}.

(c) For every o <p, I € BA(G)) and y < y(G) there is a H, = Y5<.c) Ha, p»
H, gz Cent Cm,, (G;) and for some yg, B=<1vy;<y(G), H.p is a yz-required
subgroup of M, ,; N Cmg,(M,) N1

We first take care of (c)—remembering Cmg(M,)NIe P, and y(G)’s
minimality — then of (b), (a) by 4.12, 4.13 (and see AP 1.3).

Now by (c) for no I e BA(G;) and o < B are I N M,,, I N Mg conjugate in G (by
the minimality of y(G) and 5.9). As {U;; BA(K}) has power < k, necessarily for
each I e BA(G;) for some a; < p, for no @, a;<a <k™, is I N M, conjugate in G
to some J € U<, BA(K;). As BA(G;) has power<k, a = {a; + 1:1 e BA(G))}
is smaller than u. But now by (b), M, is a satisfactory candidate for K;, so we
finish the construction of the K;’s hence of the theorem.

8.3. Hypothesis. u is a limit cardinal.

8.4. Lemma. Let 0% <k, 2<2*'. For every group G at least one of the
following occurs:

(1) For some A c G, |A| < k, Ming Cmg A = {e}.

(2) There are K, c G for a <(2%)", |K,|<xk", the subgroups (K,, Cent G)¢
are pairwise nonconjugate in G and | J{K, : o« <(2¥)"} has power < x™.

(3) There are K, c G for « <(2%)*, |K,|<k™, the subgroups {(K,, CentG)¢g
are pairwise nonconjugate in G, and K, is a semi-direct sum of [6, x*)-groups.

Remark. We can replace k™ by an inaccessible cardinal.

Proof. This is really a repetition of the proof of 8.2. Let #°> = #}, , be the class of
counterexamples (i.e., G € ?° iff G does not satisfy (1), (2) (3)) and let

P = {H:H®™ is a semi-direct sum of [6, k*)-groups}.

(a) Each Ge #° (or just G satisfies not (1)) has an abelian subgroup of
cardinality k™. [Why? We can choose by induction on i <k a; € G such that
a; ¢A,-d=ef{aj: j<i}, a; € Cmg A;; if we succeed to carry the definition we clearly
prove the assertion. Suppose q; is defined for j <i, then Hi‘i—ifMine Cmg A; is not
trivial (as G, being a member of #°, does not satisfy (1)), also H; = Ming H, by its
definition, so H; cannot be commutative (see 3.10(1)). Choose a; € H; — Cent H,,
easily a; is as required.]

(b) Each G € #° (or just G satisfies not (d) nor (2)) has cardinality =2(‘~".
[Why? By (a) G has a cSmmutative subgroup H of cardinality k™. We know that
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H has 2= distinct subgroups, so if |G| <2*", 2& of them are nonconjugate in
pairs; so (2) holds for G, contradiction.]

() f HCG, Ge P, He P, |H|<k, then Cmg(H) € #° [by (d) below for
i=1, 2, 3, we know that if Cmg(H) satisfies (i), then so does G].

(d) Suppose H c G, |H|<«k.

(1) If Cmg(H) satisfies (1), then so does G.

(ii) If Cmg(H) satisfies (2), then so does G.

(iii) If Cmg(H) satisfies (3) and H € 2, then G satisfies (3).
[Proof: check.]

(e) If G € 3 (or just G does not satisfy (2)), then |Cent(G)| <k, (G:GV)=<«k.
[Proof: easy.]

(f) If G e ?° (or just does not satisfy (2)), then G has no strictly decreasing
sequence of normal subgroups of length x*. [Proof: see the proof of 3.1.]

(g) If G fails (2), N a subgroup of G, (G:N)=<2 then N fails (2). [Proof:
check.] '

(h) If G fails (2), o0 <k, then (G: Min, G) <2 [Proof: let h, (N;:i<a*) be
as in 3.10(4). By (f) above C={{<p:h({)=_C} has cardinality <x™. Also if
Z e C, (G:N;)<2* then by (g) above N, fails (2) hence by (f) applied to N; the
set {i:h(i)= ¢} has cardinality <k*. We conclude that a* <k™*. By 3.10(4)
(N;:N;;1) <2, so we can easily show that o <k™, (G:N,) =< 2%, as required.]

(i) If G fails (3), N a subgroup of G, (G:N)<2* then N fails (3). [Proof:
check.]

(§) If G fails (1), (2), N a subgroup of G, (G:N)=<2* then N fails (1).
[Proof: suppose N satisfies (1), then for some A =N, Ming Cmy(A) = {eg}.
Let K=Cmg(A), so Cmuy(A)=KNN. We know that K fails (1) and (2) (by
(d) above) and that (K:KNN)<(G:N)=<2" hence KNN fails (2) (by (g)
above). So by (h) above (KNN:Ming KNN)=<2* But Ming(KNN)=
Ming(Cmg(A) N N) = Ming Cmy(A) = {e}, hence (KN N)<2*. As (K:KNN)=<
(G:N) =<2, clearly |K|=<2% so by (b) K satisfies (1) or (2), contradicting a
statement above.]

(k) If G e P N a subgroup of G, (G:N) =<2 then N € #°. [Proof: by (g),
(1), (j) above.]

() If G € #°, o<k, then Min, G € #°, (G :Min,(G)) < 2*. [Proof: by (h) and
(f) above ]

Let o= 6*, s0 B <o <K.

Choose G € #* with minimal y(G). W.l.o.g. G =Min, G. Choose by induction
on a<k", a group K, cCmg(Us<oKp), |Ksl<k, BA'(Min, K,, K,) has
power<k and no I € g, BA’(Min, Kg, Kg), J € BA'(Min, K,, K,) are con-
jugate in G. If K, is defined for each o <k, we easily get a contradiction by
having (2).

So we assume K, cannot be defined. Next we define by induction on non-limit
y <k, for each n € 2 a subgroup H, of G s.t.:

(i) H, is a [6, x™)-group.
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(ll) Ua<ao Ka, c H( }e

(iii) H, is included in Min, Cm¢s U {H,;,: ¥ <I(n) non-limit}.

(iv) If ne”2, H,roy, Hprqy satisfies: if we define H, (y<I(v)<k") in
any way satisfying (i), (i), (iii), and v,, v;€~2, v, y=n"(l) and ge
Cmg U {H, 5:B <y non-limit}, then 0¥ does not map {H,,;s: <k non-
limit} onto {H, ;4:B <k" non-limit}.

If we succeed we can get (3) by the weak diamond by AP 3.2. So suppose
H,,, (y<I(n) non-limit) are defined, but not H,.y, Hy~1)- Let G, =
Cmg U {H,,:v=<I(n) non-limit}. So G, € #°, Min, G, € #*, Min, G, € 7.

We first note

8.4A. Fact. If Min,;, G=G, N is a normal subgroup of G, (CmgA)c N,
Ro+ |4 <k(1), (G:N)=A(1), A(1)>2"D, then there are H.c G for i <A(1),

nonconjugate in pairs, H; an explicit (Min{o(1), x(1)})-group. [Proof: like 1.12.]

8.4B. Fact. If Min,;, G=G, cg(G)>k(1), for no AcG, [|[Alsk(l)A
Cmg Ac (A)&E, then for some a;e G (i<x(1)") the groups {{a;:i€S)s:Sc
kx(1)*} are pairwise nonconjugate. [Proof: like 8.1.]

8.4C. Fact. If G=Min, G € ?° has minimal y(G), then: for some AcG,
|A| <k, forno H, Ac H c G, |BA'(Min, Cmg H)| <k, and cg(Min, Cmg H) <
k. [Proof: like 8.2.]

8.4D. Fact. If G=Min,Ge P [[eBA'(G)>I1eP’], then |BA'(G) <«k.
[Proof: like 7.1.]

8.4E. Fact. If G=Min, G € ?°, then for some explicit [0, k*)-group Hc G,
[Ie BA'(G), ¢ #*>1NMin, Cm¢ H < Cent [].

Proof. We choose by induction on o < k™, a,, I, such that:
() a,el, e B={IeBA'(G):1¢ P},

(i) a, ¢ (Up<als)c and a, € Cmg Up<, I,

(iii) under (i), (ii), n;, =Min{n >0:a}, € (@3:f < a) s} is minimal.
If we succeed we continue as in 8.1 and get that G satisfies (1), contracting
G € #° (note that ((Up<. Is) ¢ is 2 normal subgroup of G as each Is (B < a) is). If
not, say da,., not defined, we can choose (by 3.4F below) A,, A,cl,,
Cmy I, = {e} for a <a(+*) and an explicit [0, k™)-group H, {a,:a<a(*)}U
U{A,:a<a(*)} cHc G. His as required.

8.4F. Fact. If IeBA'(G), G € P, 1¢ P°, then (1) of 8.4 fails for 1. [Proof:
check.]

Now we return to deriving a contradiction from the impossibility to define
Hyrioys Hyngaye gt

By 8.4C applied to G, = Min, G, we get an A as there. So there is an explicit
{o, k*)-group H,, AcH,cG,. Let G,=Min, Cmg,  H,. By the choice of A,
IBA'(G,)| >k or cg(Gy) > k. By 8.4A, 8.4B, cg(G,) <k, hence |BA'(G,)| > k.
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By 8.4D [applied to G,] there is I e BA'(G,), I ¢ #°. Let Hj be as in 3.4E (for
G,). Let H, c I be an explicit 6-group.
We choose H gy = H, + H},. We leave the checking to the reader.

9. The end for p limit

9.1. Definition. (1) Suppose G e P}, R;<0<pu. Then H is called a [0, kx)-
special subgroup of G if H = %}, H; where

(a) H{Y = H,, H = H,, H, commutes with H,.

(b) |Hi| + |Ho| <k.

(c) H, is a semi-direct sum of groups each of power <,

(d) H,is a [8, x)-group, H c G.

(e) No semi-direct summand of H, is included in Min Cmg(H,).

(2) If k=07, we write “a 0-specal subgroup of G”.

9.2. Claim. Suppose GeP,, H' a [0, u)special subgroup of G;=
Min Cmg(U,<; H') for i<cfu; and i<j=>|H'|<86;, and H= Y., H'. Then
from H we can reconstruct the H”’s (modulo the 0;’s).

Proof. We reconstruct them by induction on i. Let G; = Cmg(U;<; H;). In stage i
let H'=H|+ H) (as in the definition). So Hj is the maximal semi-direct
summand [6;, 0i+1);subgroup of HNCmg(Uj<;H;) and Hi=(INH:I a semi-
direct summand of Cmg (H3), |[INH|<X;, no direct summand of which is
included in Min Cmg,(H%) ),

9.3. Lemma. (1) Suppose Ge P, X/, <0<u. Then G has a [0, u)-special
subgroup H such that for some x < u, Min Cmg H does not have 2* [k, u)-special
subgroups nonconjugate (in Min Cmg H) in pairs.

(2) If H; is a [6, x)-special subgroup of Cms(U;<; H;) for i < & where G € %},
then (H;:i < a)¢ is a [0, k)-special subgroup of G (provided that its power is <k).

(3) If G e ?3, H a [6, x)-special subgroup of Min G, then H is a (6, x)-special
subgroup of G.

(4) Any [0, x)-subgroup is a [0, x)-special subgroup (for 68 > R,).

Proof. (1) By 6.12 there are strictly increasing k(i) (i<cfu), p = X;cepk(i),
cfu+ 6 <x(0), k(i) <u, p<2 <2 We assume that the conclusion fails,
and we define by induction on i <cf y, for every 7 € [I,,2*? an ordinal i, <cf u
and subgroups H,, H, of G such that:
(i) H, commutes with H, ,, for j <I(n), and H, =(H, ;:i<I(n))¢.

(i) H, is an [k(i,), u)-special subgroup, of Min Cmg(U H,, ;;:j <I(n)}).

(iii) k(iy) > Ej<iny [Hy 1.

(iv) For i=1I(n), a <B <29, the subgroups H, (., Hy~gy are nonconjug-
ate in G.
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By 9.2 this is enough (as H, is a [x(i,), |H,|")-special subgroup of
Min Cmg(U{H, ;:7 <I(n)}); and so for n € [l<4,2*?, H,=(H,;:j<cfu)
are pairwise nonconjugate subgroups of G of power u, contradiction to G € #; by
1.13(2)). As the number of possible (k(i,,):j<cfu) is<2 ¥ <2*=A.

So suppose H, ,; are defined for j <i =I(n) <cf u, and we shall define H, (),
ig~(ay- We let, for all a’s, i(*) =i,~(,) be the first i <cfpu such that x(i(*))>
Yj<i|Hyyjl, and 25CY > (Cmg(Uj<; Hy 1) : Min Cmg(Uj<; H, ;) (this is pos-
sible by 6.12(4)). Now as we have assumed that the lemma fails, and as by 9.3(2)
Yj<i H, 1 1s a [6, u)-special subgroup of G, clearly there are [x(i(*)), u)-special
subgroups of Min Cmg(Uj<; Hy 1) HE (a <25¢®)") which are pairwise noncon-
jugate in Min Cmg(U,;<; H,. ). As
UH, ”> :Min Cm(;(U H, ,,—)),

PRGN 5, PRGN >, (Cmc<
j=<i j=i
by the proof of 1.5 w.l.o.g., they are pairwise nonconjugate in Cmg(U;<; H, ;)

and by the proof of 1.9 w.l.o.g., (U<, H, ;; Hy)s are pairwise nonconjugate in
G. So we can have our H, .,y (a <2¢M) a5 required.

" (2), (3), (4) Easy.

9.4. Lemma. If Ge P}, X,<0<0<pu and G has no 2% explicit [0, 0%™)-
subgroups nonconjugate in pairs inside G, then there is an explicit [o, 0%)-
subgroup K of Min, G such that Min, Cmg(K) is included in (K)& (hence by
3.12, Min G c (K)in, 6)-

Proof. Suppose that the conclusion fails. Then we can define by induction on
i< 6%, an element x; € Min, Cmg(U,<; K;) not in (U<, K;)&, and then choose
an explicit o-subgroup K; of Min, Cmg(U;<; K;) to which x; belongs. (Remember
that by 3.10, Min, Cm¢(\U,<; K;) is an explicit o-group, and of course is in P;.)

Let Set;={{gyg ':g€G)}:yeK;}, it has power <|K]|=0. Let Set'=
{({gyg ':g€G}:y e (U< K;)&}, so Set’ is increasing (in i) continuously, and
Uj<:Set; = Set; ¢ Set’. By a lemma of Fodor (see AP 2.3) for some a(*)< 6"
and unbounded S(*) c 8%, for every B € S(*), Setg N Set? = Set*™.

Now for any set S < S(*) let:

HS= <Ki:i€S>G.

Now for S # T, Hs, Hy cannot be conjugates, for suppose « € S— T, a € G and
(O0° maps Hy onto Hg, then Hr =), r K, = Y;cs0°K;, hence by 4.7 for some
T,cT, O°K,=Y/cr; (0°K,)NH;, hence for some finite T,cT;, O°x, =
ey, € (@ K)NK,. Let T={ieT:y ¢ (Uy<ax Kj)&}. If Tca, then
{gx.g~':g € G} € Set?, contradicting the choice of x,. So T; ¢ a, and let i be the
maximal member of 73, but then as y; (jeT;) are pairwise commuting,

{gy:g ':g € G} € Set’ again. So {Hs:S < S(*)} contradicts a hypothesis, hence
we have proven the lemma.
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9.5. Lemma. If X, <0<0<u<2°<2%, Ge P} and G has no (2°)* explicit
[0, 6% *)-subgroups nonconjugate in pairs inside G, then there is an explicit
[0, 67)-subgroup K of Min,, G, such that

cg(Min, Cmg(K), Cmg(K)) < 6.

Proof. Suppose not. Then we shall define by induction on a<8™, for every
n € (**12 an explicit [0, 6*)-subgroup K, such that:
(i) Let G, =Cmg(U{K,g+:B+1=<I(n)}).

(ii) K,~(m) = Min, G, for m =0, 1.

(iii) If ve*2, then some x,€K,.,; does not belong to (K,
Min, G0y )& -

Suppose K, | g+1), B+1=<I(n) are defined already. As (K, ;@g+y:f+1<
I(n))s cannot satisfy the conclusion of Lemma 9.5, for no A cMin, G, of
power= 6 does Min, G, c{A)&. Also G, has no (2°)* explicit [o, 0**)
subgroups nonconjugate in pairs inside G for if H, (i<(2%)%) are such
subgroups, then by the proof of 1.9 w.l.o.g., the subgroups (\ {K, +1:8+
1=<I(n)} UH,)¢ for i <(2°)" are nonconjugate in pairs inside G, contradiction
to a hypothesis. So by Lemma 9.4, (applied to G,) there is K cMin, G,, an
explicit [0, 6%)-group, such that Min, Cmg, (K) € (K)& and we let K,y =K.
But as mentioned above, Min, G, is not included in (K,~y)&, and choose
x, € Min, G, — (K, ~0y)& and K,..;, a (explicit) o-subgroup of Min, G, to
which x,, belongs.

Now (ii) holds trivially, and (iii) holds by the choices of K,y =K, x, and
K~y Letfor n €72, Hy = (K, (e < 07).

We can now apply AP3.2 alternatively to the following.

By a hypothesis of the lemma, there is {N;:i <i*<2°}, a list of subgroups of
G, so that each H, ( € ®72) is conjugate inside G to one of them. So let O
map H, onto N,(,,), 8, € G. By a set-theoretic statement called ‘the weak
dlamond’ which holds for 8% as we have assumed that 2° <2% (see AP 3.1) we
can conclude:

(*) There are n, ve ?2, and p and a limit ordinal , s.t. p=n [ d=v | §,
n(d)# V(fsl) but i(n) =i(v), B MK,  o41): <0} =¥ [ (Kp | (s @ <)

So ¥ & is an inner automorphism of G, which is the identity on
(Ky 1 as1y: @ <8)¢, hence g;'g, belongs to Cmg ((K, 1 (a+1): @ <8)g), i.e., to
G,, and maps H, onto H,. This is an easy contradiction.

9.6. Lemma. Suppose G € P}, y(G) minimal, 6 < u. Then there are k <, k > 0
and A c G of power < u, such that:

(*) In Cmg(A) we cannot find pairwise commuting subgroups K, (a<k™)
such that:

() K.l <p.

(ii) BA'(Ming(K,), K, ) has power < pu.

(iii) For 1€ BA'(K$?, K,): if |I|<k, then every xel—Centl has <X,
I-conjugates (such I is called essentially countable).
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(iv) For a#B, no nonessentially-countable IeBA'(Ming K,, K,), Je
BA'(Ming Kz, Kg) are conjugates in G.
(v) K, is not essentially countable.

Proof. Let u=Y, , k), 6<k?<u. We define by induction on i<cfy,
cardinals 0;, k; and subgroups K’, (a < 6;") such that:

(@) LK, <0;<p, cfu+x?<6, p<2%<2%.

(b) Conditions (i)-(v) of the lemma hold with U {K}:B<6/,j<i}, 6,
K¢, (a < 6;) standing for A, k, K, (¢ <67).

(¢) 6; <k;<p and K, has power < k;.

If the lemma fails there is no problem to proof it by induction on i: First define
6; by (a), then K: (a<6;) by the failure of the lemma, then we replace
(Ki:a<8;) by a subsequence of the same power so that we can define k; by
(©-

Now for any S=(S;:i<cfu), S;c6;, we let Ho=(K',:a €S, i<cfu)e.
Clearly the number of possible S,s is 2%, and by (iv) and (iii) (as used in (b)) we
can prove that they are pairwise nonconjugate.

Remark. Remember that we should be careful to be able to know from which
(Ki,:a €S;) a semi-summand comes.

9.7. Definition. Min[H, x] =) {N:N a normal subgroup of H, (H:N)<yx)}; let
Min* H = Min[H, 25)*].

9.7A. Fact. (1) Min[H, x] is a characteristic subgroup of H.

Q) (H:Min[H, x])<x and (Min(H, x):Min[Min(H, x), x]) <x implies
Min[Min(H, yx), x] = Min[H, x].

(3) Also, if 2*=u >y, G € P;, then Min[G, x] € ?} and Min* G = Min,+ G.

@) Also, if 2*=u>y, GeP;, AcG, |A|<y, N a normal subgroup of G
including Min* Cmg A, then Min* G c N (see 1.12, 3.12).

9.8. Lemma. (1) For G, € Q} and o<u there is a subgroup H, c G, and 0,
o<0<up,2°<2%, |H| <0 s.t. G¥Min Cmg,(H,) satisfies:

(*)o If H is a subgroup of G, |H|+6<k<u, then (CmgH:
Min[Cmg H, (2)*]) <2* and Min[Min[Cmgs H, (2)*], (2¥)"] =Min[{Cm¢; H,
@9*]

@ If GieQ), o<pu, and G, satisfies (*), of 9.8(1), then for some
[0, u)-special subgroup H,cG, and 0, o<O<pu, 2°<2%, |H)=<8§,
and G ¥ Min Cmg,(H,) satisfies:

(*)e If H is a [0, u)-special subgroup of G, k a cardinal |H|+0<kx<uy,
2<2*" and I e BA'(Ming Cmg H), |I|<A, then there is Acl, |A|<k s.t
Min, Cm, A = {e}.
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Proof. Suppose G;, o form a counterexample (to 9.8(1) or 9.8(2)). Let
=YKk’ ky<p. We define by induction on i <cfpy, cardinals 6;, x; and
subgroups H’, I’ such that:

(@) ¥« K;<6;, 67 <k, o+cfu+k?<0;, n<2%<2% and 25%<2%,

(b) H' = Cmg(U<; HY) is a subgroup of G; = Min(Cm¢ U;<; H’), |H’| < k; and
for 9.8(2) H' is [6;, k;")-special group

(c) (Cmg(Uj<; H'):Min Cmg(Uj<; HY)) is <2%

(d) For each i, («) or (B), for 9.8(1), 9.8(2), respectively, holds

(«); (Cmg, H :Min* Cmg, H')>2% or _
(Min* Cmg, H' : Min* Min“ Cmg, H') > 25,

(B): I' e BA'(Ming, Cmg, H', Cmg H'), |I|<A and for no Acrl, |Ask
and Ming, Cmz(A) = {e}.

If for some i < cf u we have defined for every j <i but cannot find H', I, 6;, k;,
then clearly we have gotten the desired conclusion of 9.8 (note we can choose 6,
satisfying (a) and (c) by 6.12(4), now we look for H’, (I') and k* and for (d)(«)
remember 9.7A(3)).

So we suppose we have carried out the definition.

Case 1: We will prove 9.8(1). Let So={i:i<cfu} and let K; be Cmg H' if
(Cmg, H :Min® Cmg H) > 2" and K; = Min® Cmg, H’ otherwise. First note

9.8A. Observation. For each i € cf u there are normal subgroups N, , (o < k;") of
K;, Min K; c N, , and N, , is strictly decreasing with o.

We choose by induction on i <cf u elements g;, (& <k;") of K; and ordinals
Yie <Ki, S.t.

() 8,0 €Niy,, ~Niy,or1

(i) (U< H' U{a;p:jeSNi, B<k} or j=i, p<a})s is disjoint to N;,  —
Niy, o +1-

This is done by induction on a < ;.

Now for each i <cfu let {u}:E<(2%)*} be a list of distinct subsets of ;.
Foreach &, £ < (2%)* choose, if possible, Vi . (j € Sp — {i}) subsetsof ;" andg; : € G
s.t. 0%¢ maps (U<, HU{a;p:BeVi, and j#i}U{a;,:a@€ut})c onto
(Ucct n HHU {a5:Be Vi and j#i}U{a,,:acui})s Let T, ={f<(2%)":
ge.r, Vi are defined}.

Now |T:|=<2%:otherwise for some wc T; of power (2%)*, for all {ew,
(Vi cijeSoNi)g and Ofet (Ui H' U {a;p:j€SoNi, BeVi,}) are the same
(the former has<2* possibilities and the latter has < |Uj<s, H U{a;5:8<
Kj", j <cf p}|" < u* = 2% possibilities).

So let Vi .=V’ for jeS,Ni, Eew. So, for §;, {,€w, we have gz . 8z, €
Cmg(Uj<i H U{a;g:jeSNi, B eV'})s. Choose & e w, then (by (c)) for some
L# sz W, 8e.e85.0:Ki = 85,885 t,Ki, hence (8,2,87.2,) 85585t € Ki but this is
850,88 -



Sh:192

Uncountable groups have many nonconjugate subgroups 199

Now [#s585% is the identity on Uit HHU {a;5:j€ SN, Be V’} and neces-
sarily maps

<UHJ U {aj,ﬂ ] € SO N i, ﬂ € V]} U {a,-,u, ‘e ulgl} U Gi+l>
G

j<i

onto

<_UHf U{ap:jeSni,BeV’}U{a,:aeu} U G,-+1>
J<i G
(remember g, , € G, for j >1i).

But g .85 %, € K;, so we get a contradiction as in 3.1.

We have finished Case 1.

We will prove now 9.8(2), hence (), always happens. Here we shall define for
each i subgroups K%, (a < (2%)*) of I' s.t.

(A) K. has power < k.

(B) Either (a) no member of BA'((K%)™) is a [Ry, R,)-group or [6;, k;)-group
for j<i, or

(B) U{K%L:a<(2%)*} has power < k.

(C) For a<B<(2%)*, (KyUCentI'),, (K3UCentI'), are not conjugate
in I’.

This (and even more, in (B)(«)) is possible by 8.4. As I € BA’'(Min,, Cmg, HY),
clearly (K,UCentI'); (a<(2%)*) are nonconjugate in pairs in Min,
(Cmg,(HY)). By 9.7A(3), as (Cmg,(H’):Min,, (Cmg, (H)) is<2% (because G,
satisfies (*),) w.lL.o.g. (K'UCentI');, for &« <(2%)* are nonconjugate in pairs
in Cmg,(H') and by (c) even in Cmg(Uj<; HY).

Note that the groups (H’, |, K% )¢ for i <cf u are pairwise commuting. Now
for g a function, Domgc(cfu), g(i)<(@2%)*, let K,=({H:j<cfu}U
{(Ki(y:i e Domg)).

It is easy to check that K,;,cK,NI'c (K., CentI’) for ieDomg.
Remember that (a;:j <i) is the function h, h(j) = a;. Let S ={i<cfu: in (B),
(«) occurs}.

Case 11: S has power cfpu. For notational simplicity assume S =cfu. Let
i<cfu. Let for a <(2%)",S, be the set of B <(2%)* such that for some y(j),
() <(2%)" for j<cfu, j#i the groups Ky, = K (a(j):j<iyr(a)r(a(ii<i<ctuy and
K, = K (,(jy:j<iy~(By~(v(j)-i<j<ct uy aT€ cONjugates in G by 0¥ %' These groups have
cardinality < u <2%. Now we shall check (by (c) and cardinality considerations)
that |S,| <2%.

Suppose n+#v, g€ G and (¥ maps K, onto K,. What can be 0¥ H’' (for
j<cfu)? As H' is'in BA'(K$?), clearly ¥ H' e BA’(K$?). So

BH = > HSNDEH + 52’ (Ke)™ N0 |
<cfu

E<cfpu
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Now for & >j, K3z, has no semi-direct direct summand which is also a (nonzero)
semi-direct summand of [18s H’ (by (b) and (B)). As (0¥ H')® = # H, clearly
D H < > H5+ D, K.
E<cip 1<j

So Uges, Uj<; 0% H’ has cardinality <pu +2%. So |S,|>2% implies for some
B(1) # B(2), T#sa» and [8s agree on ;<; H' and we get an easy contradiction to
the paragraph after (C).

It is also easy to check that § € S, & a € Sg, hence by replacing (successively for
each i) (K,:a<(2%)*) by a subsequence, w.l.o.g. S, c{a} for every a<
(2%)*.

Case I11: Not I nor 11. So assume for notational simplicity that S is empty.

We shall define by induction on i <cfpu, a subset 7; of (2%)* of cardinality
(2%)* s.t.:

(*) If , vellicg, (2%)", n(i) and v(j) are distinct members of T;, then K,
and K, are not conjugate in G.

Clearly this suffices.

Let us for each a # B <(2%)* choose, if possible, 1y, Vap € [licern (2)7,
Ne,s(i) = a, v, p(i)=p, and g, g € G such that [¥*~* maps K, , onto K, .. Let
for @ <(2%)*, W, ={B:Nap, Vap 8ap are defined.} Clearly it suffices to prove
|W, | < 2.

So suppose |W,| = (2%)*. Now [¥«¢ maps | U;<; H into (\Uj<etp B U U Uy<ir
K’), which has cardinality < u (by (B8) of (B), as S is empty). So the number of
such maps is < u" <2< |W,|, hence for some W c W,, |W|=(2")", and the
image of K% under (<5 and also (¥# | (U;<; H’) are the same for all e W.
Choose distinct B(1), B(2) in W. So [J8=#@8=bw is an inner automorphism of
Cmg(Uj<; H'), mapping Kjsuy onto Kj, contradiction (as this inner auto-
morphism necessarily maps Ming, Cmg(U;<; H’) on to itself, as well as
Min Cmg(Uj<; H') and U {I:1 e BA'(Min,, Cmg(U;<; H')), |I| <A}).

So |W,| =<2, and we can define T; for each i <cf u, hence {K,:n € i<, T}
is a family of Il;<, (2)" =2 = 4 nonconjugate subgroups of G of power < u.
Clearly adding the center to each changes nothing, so we get a contradiction.

9.9. Remark. (1) In 9.8 (1) and (2) if 8 <0, <pu, then (*), implies (*),,.
(2) Also if H c G, |H|<pu, G € Q, G satisfies (* ) of 9.8(1), then Min Cmg H
satisfies (* ), of 9.8(1) for 6, =0 + |H|, (Cmg H:Min Cmg H) <2°.

9.10. Proof of the Main Theorem (in the Remaining Case). Choose G, € 2} with
minimal y(Gp,). By 9.8(1) (and 9.9(1)) for some 8,<u, Hyc Gy, |Hol < 6, and
G, ¥ Min Cmg, H, satisfies (*) of 9.8(1) with 8,, and 2%=u, 6,>N;. By
Lemma 9.3(1) for some 6,<pu, 6,>6¢3, and H,cG,, |H)|]<pu and G,=
Min Cmg, H; does not have 2% [0, u)-special subgroups pairwise nonconjugate
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in G, and H, is a [6,, 6,)-special subgroup of G;. By 9.9(2), G, satisfies (*),, of
9.8(2) where 6; < 6, <u (remember 6.12(4)).

Now apply 9.8(2) to G, % Min Cmg,(H,) and get 6> 6, and H,c G,, |H)|<
O <p s.t. (*) of 9.8(2) holds for G ¥ Min Cmg,(H,), 2°<2%, and 0,<6<p
and H, is a [6,, 8)-subgroup of G,. It is easy to see that:

(@) GeQ;,2°>pu, 0>R;.

(B) v(G) is y(Gy) hence is minimal.

(y) G, 6 satisfies (*) of 9.8(2), and: for AcG, |A|<p, and k, 25<2~,
(Cmg,H,: G)+ 0+ |A|<xk<pu implies (CmgA:Min*CmgA)<2® and
Min“(Min* Cmg A) =Min“Cmg A

(8) G does not have 2° [8, u)-special subgroups pairwise nonconjugate in G
(use the choice of G,, note that by its choice and 9.3(3), H, is a [0,, 6)-special
subgroup, now use 9.3(3), (4) and 1.9’s proof to get a contradiction).

By Lemma 9.6 for some ko, AcG, |A|<p, ko>6 (*) of 9.6 holds, and
choose k, Ko+ |A|+0<k<u<2<2~. In Cmg(A) choose a maximal se-
quence (K,:a<a,) of subgroups satisfying (i)-(v) of 9.6(*) (except their
number) and |K,| <k, |BA’(Min, Ky, K,,)| < k. So clearly o, <k™.

Let H \ be an explicit [8, k*)-subgroup of G such that AU Uy<o, Ko € H
(see AP1.3). Now we define by induction on B<k™, for every ne#*D2,
subgroups H, such that

(1) H, has power <«k.

(2) H, is a [0, k™)-special subgroup of Cmg(U {H,  g+1y:i + 1<U(n)}UH(,).

(3) For no n€?2, geCmg(Ui<p Hy ; s+1y U H( y) does 00F map H,( into
(Hyray, Cma(Uisg Hray ra+n Y H( ) ) 6-

Or at least

(3') For no ne?2, geCmg(Ui<gHyte+yUH(y) and for =0, 1, ve
(B, k%), H', a [0, x*)-special subgroup of Cmg(H( y Ui<g Hy t 41y Y Ua<y HY)
does (¥ map (H, oy UU{HY:B+1<y<k*})s onto (Hy~y UU{H;: B+
1<y<k*}U{H,,,:7=<pB non-limit})e.

If we succeed we get an easy contradiction (by the weak diamond (AP3.2) as in
the proof of 9.5) to 8 (i.e. to the choice of G by Lemma 9.3). So for some 7 € #2
we cannot choose H oy, Hpyr(1)-

By (8) above, by the proof of 1.9 (and 9.3(2)) G, ‘;—ngmG(UKﬁ Hy U
H_ y) does not have (2“)* [0, x™")-special subgroups nonconjugate (in G,) in
pairs. So the hypothesis of Lemma 9.5 (with G,, 6, k here standing for G, o, 6
there) holds, hence there is an explicit [8, k*)-subgroup of K of Mine(G,), such
that cg(Ming Cmg, (K), Cmg, (K)) <k. So for some B c Min, Cmg, (K), |B| <k
and Miny Cmg, (K) (B)cgmc @) S0 N=(K, B)& is a normal subgroup of G,.
If Miny G, is not a subgroup of N, we can find an exp11c1t [0, k*)-subgroup K’ of
G,, K’ EMlng G,, K' ¢ N. So we could have chosen K, K’ as Hy~1y, Hyr(oy
respectively [as we just said: “H (o is not included in this normal subgroup G,
that H, .y UCmg, (H,~1)) generates”] getting a contradiction to the choice of
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n, so Ming G, = N, hence

(i) cg(Ming G,, G,) <k.
By 7.2 and (9),

(i) BA'(Min G,,, G,)) has power < k.

We want to prove that BA'(Miny G,, G,) contains ‘nothing more’ than
BA'(Min G,, G,). More specifically, suppose we can find noncommutative
I e BA’'(Min, G,, G,), INMin G, c Cent Min G,. By (y) above and 9.8(2) for
some H c I, |H|=< k and Ming Cmy(H) = {e}. Let H, ., be an explicit [6, x™)-
subgroup of I contaning H, and H,.(;y be a countable subgroup of Ming /,
(Hy~(1y)® = Hyr 1y This contradicts the choice of 1 (by (3)). (Below we do in
detail such an argument.) So '

(iii) For nonzero I €e BA'(Ming G,, G,), I NMin G, is a nonzero member of
BA'(Min G,, G,).

We can conclude

(iv) BA'(Miny G,,, G,) has power < k.

Let M; (i < k™) be an increasing continuous sequence of elementary submodels of
G, closed enough by AP 1.3, each of power =<k as in the proof of 6.10. So 4.12,
4.13 apply (so e.g., (VI) [IeBA'(Ming M;, M;)— (3))(J NMing M;=1AJ €
BA'(Min, G,, G,))].

As in the proof of 6.5, w.l.o.g. for i #j no (nonzero) I € BA’'(Miny M;, M),
J e BA'(Ming M;, M;) are conjugate in G.

Can there be i and I e BA'(M{™, M), |I| <k,, I not essentially countable? If
so, INMing M; c Cent Ming M; [otherwise, note first that I 1N Ming M, €
BA'(Ming M;, M;) (as M =1I+'J, where I, J are normal in M; implies
Min M) = Min, I +' Ming J, and Min, I, Ming J are normal in M;). Second note
that for some L e BA'(Ming G,, G,), LNM;=1. Third by (iii), as I, is not
abelian, so is L, NMinG,, so necessarily £, € €3, but then L has an element
with > k conjugates. Hence M; contains such elementx, soxe LN M, c L NM;=
I, contradicting the essential countability of 1.}

Hence I NMing G, c Cent Min, G,. Let (L,:y <7,) be a maximal sequence
of countable pairwise commuting subgroups of I satisfying L, =L{", and let
L,,=Cm;((UL,:y<Yo}). We can find (remember [ is not essentially countable)

Hyy=(L,:Y<vo)e» Hynoy=HWy 1,

|H,n0y| =Ry, some y € H,ry has X; conjugated in it. A contradiction to the
choice of 7 will now be derived. Clearly H,(;, are [8, k)-special subgroups so we
have to prove (3) or (3'). First we can assume that the M,’s were chosen such
that: for every x e M;,

{¥x:geG}l=x > [{¥x:geM]} =k,
HD¥x:geG}<x > {E¥xigeM}cM.

As any member x of I has <ko<k conjugated in M;, necessarily (Vge
G,) 0% x € M;, so I is a normal subgroup of G,, so any inner automorphism of G,
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maps I onto itself. Note Cm,(H,~(;y) contains no nontrivial subgroup L =L®
(by 7vos maximality), hence (Cmy(H,r1y))® ={e}. Now (H, 1y,
Cmg, (Hyr1y))6 N 1= (Hyniry, Coy(Hyni)))r and (Hynqay, Cop(Hyn (1)) =
H,~qy is essentially countable. Hence (IN{(Hy~y, Cmg, (Hyriy))e)™ is
essentially countable.

Now suppose g e G, and [I¥ maps H,. into (H,~), CmGn(H,,Am))G;
we know (0¥ maps I into I hence H,.. into I, hence it maps H,.( into
IN(Hynqy, Cmg, (Hyr1y))e; hence it maps (H,n(0)™ into (IN (Hyry,
Cmg, (H (1)))0)(°°). But the former is H,~o, Whereas the latter is (see above)
essentially countable. But H,..;y is not essentially countable, (see paragraph
after () in the beginning of the proof), contradiction to the existence of g. By
n’s choice there are no i, I as above.

Now we shall show that for at least one i <x™, M; can serve as K, ,. Now (i) is
trivial; (ii) we have; for (iii), we have proven that in the previous paragraph, now
(v) is trivial. As for (iv) if it fails for every j<k™, there are ¢
BA’(Miny M;, M), B; < &, and J; e BA(Ming Kz, Kz ) such that I;, J; are conjug-
ates in G. By a statement after defining M;, there are I; e BA’'(Min, G,, G,),
I’'NMing M;=1. By (iv) in this proof w.lo.g. If=I*. But
Ua<e, BA’'(Ming K, K,) has power <k, so for some j, #j,, J;, =J;,, hence I
and I;, are conjugates in G, contradiction as in the proof of 6.10. The two other
demands on K, [K, and BA'(Minye (K, ), K,) have power < k] hold too.

So we have gotten a contradiction to the choice of a,, thus finishing.

10. A Generalization

10.1. Theorem. If G is a group and (Vkx < p) 2*<|G|, then nc.,(G) =2*.
Proof. The proof is a repetition of the proof of Theorem 0.1. By 1.2(3), we can
assume |G|=|G|* and so by Theorem 0.1 we can assume |G|>2* Let A, =2*
A=|G|, A=(A, A;). So A,=A5>A,=2* and it is enough to prove P =
{G":|G'| = Az, nc,(G') <2*} is empty.

Remarks. The proof was gotten by successive corrections resulting in lengthening
of the proof; maybe even by the same ideas we can get a shorter proof.

Appendix for non-logicians
AP 1. Elementary submodels

AP 1.1. Definition. M is an elementary submodel of N if M is a submodel of N
and for every element a,, . . . , a, of M and first-order formula ¢(x,, . . ., Xp).

Medgla,,...,a,] iff NE@la,,...,a,]
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AP 1.2. The Downward Lowenheim-Skolem Theorem. If A is a set of <A
elements of model M and M has <A relations and functions, then M has an
elementary submodel of power < A which includes A.

Really, it is well known that AP 1.2 holds for logic stronger than first-order;
and we use only very specific formulas. So what we need is

AP 1.3. Fact. Let G be a group, k a cardinal <|G|, H; (i <k) subgroups of G.
Then we can find functions F} (i < k), F} an n-place function from G to G, such
that, if G* is a non-empty subset of G closed under the F},s, then

(a) G* is a subgroup of G.

(b) Suppose x,, ..., x, are variables, a,, . .., a,€ G*, I is a finite set whose
elements have the form: equations (in x;,...,X,, a,,...,a,) inequalities (in
Xiy+vsXmy Q1 - - -, Qp), and x, € H,, or x; ¢ H,. If I is solvable in G, then I'is

solvable in G*.
(c) ForaeG*, o<k, |{gag™':g e H,NG*}|=Min{|G*|, |{gag™':g e H, }|}.
ForaeG*: (i) aeCent(G*)=>a € CentG,
(ii)) a € Cent™(G*)=> a € Cent™(G),
(iii) a € (G*)P=>a e GDY,
(iv) a e (G*)™=>aeG™.
(d) For 8 <k, aeG*, aeMing G = a e Ming(G*).
(e) Like (c) with H;, H; N\ G* instead of G, G*.

AP 1.4. For G", F} as in AP 1.3, the closure under the F}’s of a set of power k
has power k.

AP 2. On Fodor’s Lemma

AP 2.1. Definition. For a regular uncountable cardinal A, let &, be the filter
generated by the closed unbounded subsets of A (as an ordered set). Note: Every
successor cardinal is regular.

A set S c A is called stationary if A — S ¢ 9,. Note that every stationary subset
of A has power A, and A is a stationary subset of A.

By Fodor, we have the following

AP 2.2. Theorem. If A is regular and uncountable S < A is stationary, f a function
from S into A, f(a) <1+ «, then on some stationary T c S, f is constant.

Another way to phrase it is:

AP 2.2'. Theorem. Let A be regular and uncountable (e.g., a successor cardinal),
S < A stationary. Suppose A, is a set of power <A (for a« <A). If f is a function
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with domain S and for every a €S, f(a) € \Up<aAg, then f is constant on some
stationary subset of S.

Fodor uses his lemma to prove the existence of large free sets. We need the
following variant.

AP 2.3. Conclusion. Suppose T, is a set of power < 6, for each & < 6™. Then for
some stationary S c 8% (hence |S| =1") and a(*)< 6%, for every distinct B, y
from S; 1;3 N T‘;/ c Ua<tx(*) Ta and for ﬁ € S’ Tb N (U'y<ﬁ :ru) c U'y<a(*) T)'/

AP 3. On the weak diamond a( *)

The following is not as well known as AP 1 and AP 2. It is from Devlin and
Shelah [2], and for y >2%, [9, Ch. VIX, §1]. Note that A,, B, are used below
only to omit some easy set theory in the applications.

AP 3.1. Theorem. Suppose 25 <2V, y a cardinal <2~ or even x™ <2~ (or
even less). Suppose further that for every sequence n of zeros and ones a set B, is
given, | <k, B, .cB, for «<l(n), and for every i<y a set A; is given,
|A;| < k™. Lastly suppose that for each n € =92, i(n) is an ordinal <y and f, is a
function from \ o<+ B, | « into A;).

Then we can find a limit 8 <x™*, and sequences n, ve 2 st:nd=v |6,

n(6) #v(d), i(n)=i(v)and fy ! By s=1 I By s

AP 3.2. Corollary. Suppose G is a group, 2% <2, u* <2~ and for n e 772,
H, is a subgroup of G of power<k, Hy,,.cH,. If among {Ua<xtHy ta:
n € <72} there are <y nonconjugate subgroups of G, then for some n, v € =2
and limit 8 <k™*, for some g € Cong(Ua<s Hy o), 0F maps Uy<i+ Hy o Onto
Ua<x+ Hv [a> n r éo=v r 6’ 7)(5) i V(a)

Remark. We can assign a closed unbounded subset C, of k™ for each n e ="
and demand 6 € C, N C,.

Remark. See the proof of 9.5, at the end, for the deduction of AP3.2 from
AP3.1.

Final remarks. (1) It seems that the ideas of the end of the proof of 8.4 can be
used to simplify the proofs toward the end of Section 9 (hence in Section 7). See
below a shorter proof.

(2) It seems worthwhile to reorganize (and/or redo) the proof of Theorems
0.1, 10.1, as in the proof of 8.4 (particularly the beginning), i.e., to replace & by
some more restrictive ctass (like those failing (1), (2), (3) respectively of 8.4).
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A shorter proof. In 9.10 after having assumed H, is defined but not H, .,
H,.iy and showing G, does not have (2°)* [6, x™*)-special subgroups,
nonconjugate in pairs in G,, now (G, :Min, G,)<2* by (y) (and 9.7A(3)).
Hence G, =Min, G, does not have (2%)* [0, k*")-special subgroups, noncon-
jugate in pairs in G. Now notice cg(G;) < k [by 9.4]. Next we shall prove (as in
8.4) |IBA’(Min G})| < k. Suppose there is I e BA'(G;), I N Min G, < Cent Min
G:. We choose by induction on a <x*, I, e BA'(G}), L, c1,, L, an explicit
[6, x*)-group,

Lar c Ming CmG'1’< U Lﬁ)) Ia N CmG'1’< U Lﬁ) c Cent Ia'

B<a B=«

We cannot succeed (as {{UpesLp)c::Sck™} has power >2%). If we have
defined for every f<a, w<k™ and there is I,e BA'(G}), |L|<A, LN
Ming Cmg:(Up<a Lg) £ Cent 1,, we know

L, N Min, CmG'11< U Lﬁ> € BA'<Mine (CmG%< U Lﬁ)))

B<«a B<a

hence we know there is L, as required (by (y), 4.8(2)). So for some o <k,
there is no such I,. Let K,y =Js Ls, K,~ay a O-subgroup of L. So
IBA'(G;)| < k. Now we do the last paragraph of 9.10.

Remark. So speciality is apparently not needed.
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