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ABSTRACT

We can reformulate the generalized continuum problem as: for regular
K < A we have A to the power k is A, We argue that the reasonable
reformulation of the generalized continuum hypothesis, considering the
known independence results, is “for most pairs k < A of regular cardinals,
X to the revised power of k is equal to A”. What is the revised power? A
to the revised power of & is the minimal cardinality of a family of subsets
of X\ each of cardinality « such that any other subset of A of cardinality «
is included in the union of strictly less than k members of the family. We
still have to say what “for most” means. The interpretation we choose is:
for every )\, for every large enough & < J,. Under this reinterpretation,
we prove the Generalized Continuum Hypothesis.
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0. Introduction

I had a dream, quite a natural one for a mathematician in the twentieth century:
to solve a Hilbert problem, preferably positively. This is quite hard for (at least)
three reasons:

(a) those problems are almost always hard,

(b) almost all have been solved,

(¢) my (lack of) knowledge excludes almost all.
Now (c) points out the first Hilbert problem as it is in set theory; also, being the
first, it occupies a place of honor.

The problem asks “is the continuum hypothesis true?”, i.e.,

(1) is 2% =R;7?
More generally, is the generalized continuum hypothesis true? Which means:

(2) is 2% = R, for all ordinals a?
I think the meaning of the question is: what are the laws of cardinal arithmetic?
It was known that addition and multiplication of infinite cardinals is “trivial”,
i.e., previous generations have not left us anything to solve:

A+ p = A x p=max{\, u}.

This would have certainly made elementary school pupils happier than the usual
laws, but we have been left with exponentiation only. As there were two opera-
tions on infinite cardinals increasing them — 2* and A* — it was most natural
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to assume that those two operations are the same; in fact, in this case also expo-
nentiation becomes very simple; usually A¥ = max{\, u*}, the exception being
that when cf(A) < p < A we have M = A*, where

cf(A) =: min{k: there are A\; < A for i < & such that A = Z At

1<K

Non-set theorists may be reminded that A = p* if 4 = R, and A = R4, and
then A is called the successor of p and we know cf(Rqy1) = Roqq; we call a
cardinal A regular if cf(A) = X and singular otherwise. So successor cardinals,
are regular and also Rg, but it is “hard to come by” other regular cardinals, so
we may ignore them. Note R, =3
d a limit ordinal > |§| we have N singular, but there are limit § = R; for which

N,, is the first singular cardinal, and for

N5 is singular.

Probably the interpretation of Hilbert’s first problem as “find all laws of cardi-
nal arithmetic” is too broad?, still “is cardinal arithmetic simple” is a reasonable
interpretation.

Unfortunately, there are some “difficulties”. On the one hand, Gédel had
proved that GCH may be true (specifically it holds in the universe of constructible
sets, called L). On the other hand, Cohen had proved that CH may be false (by
increasing the universe of sets by forcing); in fact, 2% can be anything reasonable,
ie., cf(2%) > Ny,

Continuing Cohen, Solovay proved that 2% for n < w can be anything rea-
sonable: it should be non-decreasing and cf(2*) > X. Continuing this, Easton
proved that the function A — 2* for regular cardinals is arbitrary (except for the
laws above). Well, we can still hope to salvage something by proving that (2)
holds for “most” cardinals; unfortunately, Magidor had proved the consistency
of 2* > A* for all X in any pregiven initial segment of the cardinals and then
Foreman and Woodin [FW] for all A.

Such difficulties should not deter the truly dedicated ones; first note that we
should not identify exponentiation with the specific case of exponentiation 2} in
fact Easton’s results indicate that on this (for A regular) we cannot say anything
more, but they do not rule out saying something on A* when p < A, and we can
rephrase the GCH as

(3) for every regular k < A we have A*™ = A.

Ahah, now that we have two parameters we can look again at “for most pairs

1 On this see [Sh:g] or [Sh:400a]; note that under this interpretation of the problem
there is much to say.
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of cardinals (3) holds”. However, this is a bad division, because, say, a success
for k = X; implies a success for k = Ng.

To rectify this we suggest another division; we define “A to the revised power
of k7, for « regular < A, as

ARl = Min{|'P|: P a family of subsets of A each of cardinality «
such that any subset of A of cardinality &

is contained in the union of < s members of ’P}.

This answers the criticism above and is a better slicing because:
(A) for every A > & we have: A® = X iff 2 < A and for every regular 8 < &,
EEDY
(B) By Gitik and Shelah [GiSh 344], the values of, e.g., ARl ... AR~] are
essentially independent.
Now we rephrase the generalized continuum hypothesis as:

(4) for most pairs (), k), A"l =\

Is such a reformulation legitimate? As an argument, I can cite, from the book [Br]
on Hilbert’s problems, Lorentz’s article on the thirteenth problem. The problem
was

(¥) Prove that the equation of the seventh degree 27 +az3 +bz? +cz+1=01s

not solvable with the help of any continuous functions of only two variables.

Lorentz does not even discuss the change from 7 to n and he shortly changes
it to (see [Br, Ch. I1, p. 419))

(*)’ Prove that there are continuous functions of three variables not represented

by continuous functions of two variables.

Then, he discusses Kolmogorov’s solution and improvements. He opens the sec-
ond section with ([Br, p. 421, 16-22]): “that having disproved the conjecture is
not solving it, we should reformulate the problem in the light of the counter-
examples and prove it, which in his case: (due to Vituvskin) the fundamental
theorem of the Differential Calculus: there are r-times continuously differential
functions of n variables not represented by superpositions of r times continuously
times differential functions of less than n variables”.

Concerning the fifth problem, Gleason (who makes a major contribution to
its solution) says (in [AAC90}): “Of course, many mathematicians are not aware
that the problem as stated by Hilbert is not the problem that has been ultimately
called the Fifth Problem. It was shown very, very early that what he was asking
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people to consider was actually false. He asked to show that the action of a
locally-euclidean group on a manifold was always analytic, and that’s false. It’s
only the group itself that’s analytic, the action on a manifold need not be. So
you had to change things considerably before you could make the statement he
was concerned with true. That’s sort of interesting, I think. It’s also part of the
way a mathematical theory develops. People have ideas about what ought to be
so and they propose this as a good question to work on, and then it turns out
that part of it isn’t so”.

In our case, I feel that while the discovery of L (the constructible universe)
by Godel and the discovery of forcing by Cohen are fundamental discoveries in
set theory, things which are and will continue to be in its center, forming a basis
for flourishing research, and they provide for the first Hilbert problem a negative
solution which justifies our reinterpretation of it. Of course, it is very reasonable
to include independence results in a reinterpretation.

Back on firmer ground, how will we interpret “for most”? The simplest ways
are to say “for each A for most k¥” or “for each x for most A\”. The second
interpretation holds in a non-interesting way: for each s for many X’s, A® = A
hence A = X (e.g. p* when p > 2). So the best we can hope for is: for
every A for most small k’s (remember we have restricted ourselves to regular &
quite smaller than )). To fix the difference we restrict ourselves to A > 1, > «.
Now what is a reasonable interpretation of “for most & < J,”? The reader
may well stop and reflect. As “all” is forbidden (by [GiSh:344] even finitely
many exceptions are possible), the simplest offer I think is “for all but boundedly
many”.

So the best we can hope for is (3, is for definiteness):

(5) if A > 3., for every large enough regular x < J,, A\l") = ) (and similarly

replacing I, by any strong limit cardinal).

If the reader has agreed so far, he is trapped into admitting that here we
solved Hilbert’s first problem positively (see 0.1 below). Now we turn from fun
to business. A consequence is

()6 for every A > 1, for some n and? P C [A]<3 of cardinality ), every
a € [\]<3 is the union of < J, members of P.
The history above was written just to lead to (5); for a fuller history see [Sh:g].

More fully, our main result is

0.1 THE REVISED GCH THEOREM: Assume we fix an uncountable strong limit
cardinal u (i.e., u > Ro,(V0 < p)(2° < ), eg, p =3, = Y., where Jg =

2 where [A]<" = {a C A: |a| < &}
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N0,3n+1 = 23").
Then for every A > u for some x < p we have:
(a) k <0< p & 0 regular = M\l = ),
(b) there is a family P of ) subsets of A each of cardinality < p such that every
subset of A of cardinality u is equal to the union of < k members of P.

Proof: 1t is enough to prove it for singular y.
Clause (a) follows by clause (b) (just use Py = {a € P : |a| < 6}) and clause
(b) holds by 1.2(4)+1.3. ]

In §1 we prove the theorem using a generic embedding based on [Sh:g, Ch. VI,
§1] (hence using simple forcing) and give some applications; mainly, they are
reformulations. For example, for A > 1, for every regular § < 3, large enough,
there is no tree with A nodes and > A #-branches. Also we explain that this is
sufficient for proving that, e.g., a topology (not necessarily even Tp!) with a base
of cardinality p > 3, and > p open sets has at least 3,1 open sets (relying on
[Sh 454al).

In 2.1 we give another proof (so not relying on §1), more inside pcf theory
and saying somewhat more. In 2.6 we show that a property of u = J, which
suffices is: p is a limit cardinal such that |a] < p = |pcf(a)| < p giving a third
proof. This is almost a converse to 2.5. Now §3 deals with applications: we
show that for A > J,, 2* = At is equivalent to ¢+ (moreover A = A<* is
equivalent to (D£),, a weak version of diamond). We also deal with a general
topology problem: can every space be divided into two pieces, no one containing
a compactum (say a topological copy of “2), showing its connection to pcf theory,
and proving a generalization when the cardinal parameter is > 3J,,. Lastly, in an
appendix, we prove there are no tiny models for theories with a non-trivial type
(see [LaPiRo]) of cardinality > J,, partially solving a problem from Laskowski,
Pillay and Rothmaler [LaPiRo].

For other applications see [Sh 575, §8]. This work is continued in [Sh 513]; for
further discussion see [Sh 666]. For more on the general topology problem see
[Sh 668].

We thank Todd Eisworth for many corrections and improving the presentation.

1 The generic ultrapower proof

1.1 THEOREM: Assume p is strong limit singular and A > p. Then there are only
boundedly many k < u such that for some 8 € (u, ) we have ppr(u+ )(6) > A
(so & < cf(f) < p < 6).
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We list some conclusions, which are immediate by older works.

1.2 Conclusion: For every p strong limit such that cf(u) = ¢ < p < A, for some
K < u we have:
(1) for every a € Reg N (u, ) of cardinality < p we have sup pcfe_complete
(a) <A,
(2) there is no family P of > A subsets of A such that for some regular 6 € (x, u)
we have: AZBeP=|ANB| <0 &|A] >0
(3) cov(A, put,ut, k) < A (equivalently cov(A, p,u,k) < X as without loss of
generality cf(x) > o).
Hence
(4) there is P C [A|<# such that |P| = A and every A € [A]# is equal to the
union of < k members of P,
(5) there is no tree with A nodes and > A f-branches when 8 € (k, ) is regular.

Proof: By [Sh:g]; in detail (we repeat rather than quote immediate proofs).
1) Let & be as in 1.1. Without loss of generality cf(\} ¢ [k, u).

Note that sup(pcfx-complete(a)) < sup{ppr(jaj+,x)(A): X = sup(a N X') and
cf(N) > &k so cf(X) < |a| < p}, and easily the latter is < A by 1.1.
2) By part (4) it is easy (let P4 C [A]<# be as in part (4) and 6,P; be a
counterexample to part (2), so for every A € P, we can find P, C P, such
that |P}4| < k and A = |J{B: B € P/} hence there is B4 € P/, such that
|Bal = 6. So A — B, is a function from P, into P4 and B4 € [A]® and
Al # Ay € Py = |[A1NAg| < 0 & 60 < |A] & 8 < |As| so the function is
one-to-one so [Py| < |P4} < A, contradiction).
3) By [Sh:g, Ch. I, 5.4].

4) Let Py C [A]<* be such that |Py| < A and every A C [A|S# is included in the
union of < x members of P, (exists by part (3)). Define P = {B: for some A €
Po, B C A} so P C [A<* and |[Po| < |Po| - sup{24l: A € Po} < A-p= A
Now for every A € [A]S* we can find @ < k and B; € P, for i < a such that
A CUicq Bi- Let B{ = ANB; fori < aso B; € P and A = |J;, B; as required.
5) Follows by part (2): if the tree is T', without loss of generality its set of nodes
is C X and the set of §-branches cannot serve as a counterexample. L)

1.3 Remark: We can let p be regular (strong limit > Rg) if we restrict our-
selves in 1.2(1) to |a| < p, and in 1.2(3),(4) to A € [N\<* as if for p' € {y' <
p: ¢ strong limit singular}, k(’, A) is as in 1.2, then by Fodor’s lemma for some
k = k(A) the set S, = {p' < u: (1, A) = s} is stationary: this « can serve.

The stimulation for proving this was in [Sh 454a] where we actually use:
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1.4 Conclusion: Assume g is strong limit, A > u. Then for some x < u and
family P, |P| < X we have: for every n < w and o € (k, u) and f: [Z'ln(a)+]"-|r1 -
A, for some A C 3, (o) of cardinality o™ we have f [ A € P.

Proof: Let k be as in 1.2 (or 1.2A), and P as in 1.2(4), and let

Py = {f: f a function from some bounded subset A

of p into some B € P (hence |B| < u)}.

As p is strong limit and |P| € A, g < A clearly |P;| < A. Now for any given
fr [2n(@)"™ = X wecan find o < k and B; € P for i < a such that
Rang(f) C U;<, Bi- Define g: [3. ()" = a by: g(w) = Min{i < a: f(w) €
B;}, so by the Erdés-Rado theorem for some A C J,(0)*, we have: |A| = o
and g | A is constantly i¢(x). Now f | A € P; so we have finished. | )W

1.5 Conclusion: If A = Rg or A strong limit of cofinality R, (2, 7) is a topology
(i.e. §2 the set of points, T the family of open sets; the topology is not necessarily
Hausdorff or even Tg), B C T a basis (i.e. every member of 7 is the union of
some subfamily of B), and |T| > |B| + A, then |T| > 2.

Proof: By [Sh 454a]—the only missing point is that for A > Rg, we need: for
arbitrarily large p < A there is k € (Ja(p)™, A) such that cov(|B|, &%, kT, u) <
| B|, which holds by 1.1 (really in the proof there we use 1.4). b

1.6 Proof of 1.1: Assume this fails. By Fodor’s lemma (as in 1.3) without loss
of generality cf() = Ry.

Without loss of generality for our given u, A is the minimal counterexample.
Let = D, o, liny ftn = cf(pn) < p; so for each n there is A, € (i, A) such
that ppr(u+ u,.)(An) > A; hence for some a, € Reg N (g, An) of cardinality < p
and p,-complete ideal J, D J;’f we have A, = sup(a,) and Ila,/J, has true
cofinality which is > A. Let 8, = cf(\,), so p, <0, < |ay).

Without loss of generality p, > Ng, hence without loss of generality |a,]| <
4, hence without loss of generality |a,| < pn+1 (and really even |pcf(a,)| <
Un+1), hence the 0,.’s are distinct, hence the \,’s are distinct, and without loss
of generality for n < w we have A, < Apy1 and 0, < 0,41 < p, hence necessarily
(by X’s minimality) A =Y __ A, hence without loss of generality (see [Sh:E12,
5.2]) tef (Tla,, <y, ) = AT,

It is clear that forcing by a forcing notion @ of cardinality < i changes nothing,
i.e., we have the same minimal A, etc. (only omit some p,’s). So without loss

n<w

of generality po = 6o = |ag| = |pcf(ag)] = Ry, and for some increasing sequence
(0i: 1 < wy) of regular cardinals < \g
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(¥) Ao = Z o; and H 0i/D., has true cofinality At
i<wy i<wi

(D, is the club filter on wy).
(Of course, we can alternatively use the generalization of normal filters as in [Sh
410, §5], hence avoid forcing.) (How do we force? First by Levy(Rg, < ug) then
Levy(io, [pcf(ag)l); there is no change in the pcf structure for a set of cardinals >
| pcf(ag)|, so now |ag] = Ry, sup pefy,-complete(@0) > A and pef(ag) has cardinality
Ny; let ag = {7 € < w1}, pef(ag) = {6 € < wy}, choose by induction on
€ < wy, an ordinal ((¢) < w; such that 7¢) ¢ U{bs,[a0]: £ < € and 6 < A}, so
Ilecw, Oce)/ JB? is A*-directed, hence wlog(f¢(.) : € < w;) is strictly increasing
so we get (x) and the statement before it.) Without loss of generality
(¥)1 o < pp = | 4+ J3(Ry) < py for n > 1.
Now by [Sh:g, Ch. VI, §1] there is a forcing notion Q of cardinality J5(®;) (< u!)
and a name D of an ultrafilter on the Boolean Algebra P(w;)Y (i.e. not on subsets
of wq which forcing by @ adds) which is normal (for pressing down functions from
V), extends D, and, the main point, the ultrapower M =: V¥1/D (computed
in V< but the functions are from V) satisfies:
(x)g for every k > J3(Ry) regular or at least cf(x) > J3(R;), for some g,; € “1Ord
from V' (but depending on the generic subset G of Q), the set {g/~p: g €

(« Ord)v ,g< pg,;} is k-like (i.e. of cardinality x but every proper initial
segment has cardinality < ), the order being < D of course. We shall say
in short “g./D is k-like”; note that for each x there is at most one such
member in M (as the “ordinals” of M are linearly ordered).
However, we should remember V1 /D is, in general, not well-founded; still there
is a canonical elementary embedding j of V into M = V1 /D (of course it depends
on G). Note that j maps the natural numbers onto {x € M : M = “x € j(w)"},
but this fails for wy; without loss of generalityj [ (w + 1) is the identity. If
M [= “z an ordinal” let cards(z) be the cardinality in V¥ of {y: M = y < z}.
Note: also j(p) is p-like and {j(pn): n < w} is unbounded in j{u).

Without loss of generality for every n > 1,4, > |Q|, and Min(a,41) > As.
For every regular & € {u1, A*] there is z,, = g./D which is k-like. Note: g, € V
(not € V9 \V), but we need the generic subset of Q to know which member
of Vit is. Let {gx: 1 < i} € V be a set such that g “for some i < i, we
have g, :/D is x-like” and i, < J3(Ry). For regular (in V) cardinal x € (g, A1),
necessarily M k= “z, is regular > j(u) and < gy+/D”, hence without loss of
generality gy+ = (0c : € < wy) (why? see (x), by [Sh:g, Ch.V] for some normal
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filter D on wy and o, < o, we have [] ol /D is A*-like, and force as above;

e<wi
by renaming we have the above). )

Now also without loss of generality for regular x € (u, A*] and ¢ < i, we have
Rang(g,. i) is a set of regular cardinals > p but < Ag of cardinality ®; (as without
loss of generality g, i(e) < o¢ for € < wy and recall o, < XAp). For n > 1 denote

=: | J{Rang(gx,;): K € an,i < i} and ¥, =: j(c,) € M; note V = “c,| <
lan] + Q| = |an]”. So M = “v, is a set of regular cardinals, each > j(u) but
< j(Ao), of cardinality < j(lan]) < j(tn+1) < j(p)”. Also for every k € a, we
have M |= “z,, € 0,” as z,, = gx,;/D for some i < i, and Rang(gs;:) C cn.

We can apply the theorem on the structure of pcf ([Sh:g, Ch. VIII, 2.6]) in M
(as M is elementarily equivalent to V) and get (b,[0,]: y € pcf(d,)) € M and
((fta"’y: t <y):y € pcf(d,)) € M (this is not a real sequence, only M “thinks”
50).

For y € M such that M = “y a limit ordinal (e.g. a cardinal)” let A, be the
cofinality (in V9) of ({z : M |= “z an ordinal < 3"}, <™). So
(*)3 &= Ag,) for k € Reg, £ > |Q),

(¥)a assume [{a: a €M j(um)}| < pn, then M = “sup pcfi(u,.)-complete(dn N
gx+/D) > ga+/D”, assuming for simplicity 1 < m < n.

[Why? Assume not, so M = “sup pefj(,,.)-complete(Dn Nga+/D) < ga+/D” hence
M E “for every g € II(0,, N gx+/D) for some ((ye, ae): £ < j(ttm)), Ye € pecf(d, N
gx+/D), ag an ordinal < y, we have g < supecj(u,,)f¥". In V2 we have Ila, /J,
is A*-directed, hence [],c, ({t: t <M z,.},<M)/J, is At-directed (by (x)3),
hence there is a function g* such that

(a) Dom(g*) = an,

(b) g*(k) <M z,c = g</D,

(c) if M = “y € pcf(d,Ngr+/D) and a < y” then

{k€an: ME “for¥(z,) <M g*(k)"} = a, mod J,.

By 1.7(1) below we can find Y € V such that |Y| < |Q|" +p = p and k €
a, = M k= “g*(k) € j(Y)”. There is ¢® € M such that M | “g® € IIv,, and
g®(8) = (sup(_]( )) NO)+1<8for©€d,” (as M E “Min(d,) > j(p)").

By the choice of Y clearly « € a,, = g*(x) <™ g®(k).

By the choice of <(ft°"’y: t <y):y€ pcf(d,)) (in M’s sense) and the assump-

tion toward contradiction we have:

M = “there is a subset © of pcf(d, N gy+/D) of cardinality < j(um) and

{ag : 6 € ©) € 11O such that (Vo € 8,)( V g fa,., (o).
(A
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Choose such a sequence (ag: § € ©) in M and let (6;: i < i(*)) list the § € MO, s0
i(*) < pn by the hypothesis of (¥)4. Let a,; = {k € a,: letting 0 = 2, € M we
have g*(0) < fgani,ei (0)} € VQ. Now as g*(k) < g%(zx), clearly a, = Ui<i(*) O i
So for some i < i(x) we have a,,; € J;F, and we get a contradiction to the choice
of g*, hence at last we have proved (*)4.]

Clearly j({¢n: n < w)) is a sequence of length j(w) = w, hence j({¢,: n <
w)) = (0,: n < w), i.e. with n-th element 9,,. Let 2 € M be such that M |=
“p = ((kn,tn,Sn): n < w) defined by: k, < w is maximal k such that g,+/D <
sup pcfj(u,)-complete(dn N ga+/D), and ¢, is the minimal cardinal ¢ such that
sup P, 1 complete (0n 1) i8 > ga+ /D and cf(tn) = sy 50 sp > j(pn)”- As j(1)
is p-like clearly (Ym < w)(3n < w)(m < n and |{z € M: z €M (j(um))} < in)
hence by ()4 above necessarily (Ym < w)(3n < w) [|[sa]| = pm], but j(u) is the
limit of (j(un): n < w) € M, hence M | “j(p) = lims,”. Now
(x)s M = “j(n), ga+/D form a counterexample to the Theorem 1.1”.

But as j is an elementary embedding of V to M, the choice of A (minimal) implies

M =“there is no X < j(A) such that j(u), N’

form a counterexample to the theorem”.

But as Rang [gx+/D] < j(uo) < j(A), clearly we have M |= “gy/D < j(A)”.

By the last two sentences we get a contradiction to (*)s. LR

1.7 Observation: Let @,D,G C Q,V?,M,j be as in the proof 1.6. Let for
zeM,Zl={t: M Etey} So
MY eV Y C M, x = Max{lYlVQ,lle}, then for some y € V,
lylY < xandVz[z €Y = M E “z € j(y)"].
(2) Assume M |= “d is a set of regular cardinals > {2,> j(|Q|Y)” and Ay
(when M k= “y limit ordinal”) is as in 1.6 (its cofinality in V'9).
(a) If M | “y € pcf(d)”,J is (in V) the ideal on [0] generated by
{[bo[0)): M |= “6 € pcf(d) and @ < y”} U {[0 ~ by[0]]}, then (in V©)
[L.efo) A</ has true cofinality Ay,
(b) cf (I{Ay: y € oI}) = max{,: y € [pef ).

Proof: Straightforward (and we use only part (1)). For (2)(b) remember

M [ “y is finite 7 = [y] finite.
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1.8 Remark: Of course, the proof of 1.1 gives somewhat more than stated (say

after fixing ug = %,). E.g.,

@ the cardinal y satisfies the conclusion of 1.1 for A > A* if

X, u> cf(p) = Rg (as before this suffices) and i = sup{«x < p: & is regular un-

countable and there is a forcing notion ¢ satisfying the x-c.c. of cardinality
< Ao < p} such that Ikg “for every R;-complete filter D on & from V' con-
taining the co-countable sets there is an ultrafilter D on P(x)V extending
D as in [Sh:g, Ch. VI, §1] for regular cardinal > A* which is complete for
partitions of « from V to countably many parts”.

Alternatively, we can phrase the theorem after fixing D.

2. The main theorem revisited

We give another proof and get more refined information. Note that in 2.1 if 4 is
strong limit, we can choose R* such that: if § < & are in R* then 29 < &, and

then ®%. 44, is immediate.

2.1 THEOREM: Suppose u is a limit singular cardinal satisfying:

0
Q

for any R C u N Reg unbounded, for some 6§ € R, 8 > cf(u) and 6,
cf(p) < 01,8 < 6; <6 and R* C R~ 6" unbounded in . we have:

®%*’9’91 ifo < x arein R, f, : 0 = o for a < k, I, a k-complete ideal

on k extending J®4 and J is a @-complete ideal on 6, then for some
A € If and B, C 0 for o € A satisfying B, = 6 mod J we have
<= |{fall):a€ Adand € € By} < b:.

Then
®L for every A > p we have:
®}\, u for some k < p we have:

®) .. forevery a C (u,A)N Reg of cardinality < p, pefx—complete(8) C A.

Before we prove it, note:

2.2 Observation: Assume:

(a)

(b)

(wP: i < a*) is a sequence of pairwise disjoint sets, w™ = {J; ,. Wi

(possibly w!* = @ for some n and ),

(sup|w{‘|+> < 6 and 6 is uncountable,

n,i
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(¢) Jn is a B-complete ideal on w™ such that w™ ¢ J,,,
(d) h? or a partial function from w™ to w and A" = |, <ar MY,
(e) for every A € J,qq the set {z € w™ : (Vy € w")[A"(y) =z = y € A]}
belongs to J,.
Then for some i there are z,, € wj’ such that A, R*(z,41) = zn.

2.3 Remark: Hence for the J,,-majority of y € w™ there is (z,: n < w) as above
such that y = zp,.

Proof:  Without loss of generality (wl: n < w,i < *) are pairwise disjoint. Now
we define by induction on the ordinal ¢ < # for each i < a* a set uf C w; =:

Un<w w? by:

uf = {:c Ew;: € U uf or (Vn)(Vy € wP M )RM(y) =z =2y € U uf]}
£<¢ £€<¢

So (uf: ¢ < ) is an increasing sequence of subsets of w;. Also ugH = uf =

(V€ > ¢)[ué = u$], hence there is for each i < o a unique ([i] < ¥; + |w;|* such
that uf = ugm < ¢ > (i)

If for some i we have uf[i] # w;, we can easily prove the conclusion so assume
ug[i] = w; for every i. Let p = sup,;(|w;|t + Ny), so except when 6 < R; (hence
6 = ¥y = p) we know p < 6. Now we can use clause (e) to prove by induction
on ¢ < y for all n that

U{uf Nwi<a'}edy

(we use J, is O-complete, § > p). But as i = p = uf Nw] = w we get
w™ € J,,, a contradiction. We are left with the -case § = ®; so each w is finite
and i < o* = ([i] < 6; but then for each m we have J{u* Nw?: i < o*} € Jo,
so as Jy is 6-complete there is € w® such that for each m < w and i < o we
have z ¢ u® Nw?. For some i(x), z € w?(*), so as z ¢ Ui, for some z, € wy,,
we have A" ~1oh" 20...0hy(z,) = z. By Koénig’s Lemma (as all wy,) are finite)
we finish. ko

Before we continue we mention some things which are essentially from [Sh:g]
and, more explicitly, [Sh 430, 6.7A].
We forgot there to mention the most obvious demand

2.4 SuBcLAIM: In [Sh 430, 6.7A] we can add:
(j) max pcf(b[; [a]) = A (when defined).
Also in [Sh 430, 6.7] we can add
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(6) max pcf(by) = A.

Proof: This is proved during the proof of [Sh 430, 6.7] (see (*)4 in that proof,
p- 103). Actually we have to'state it earlier in () there, i.e., add

(¢) max pef(b57) < A,
We then quote [Sh:g, Ch. VIII, 1.3, p. 316], but there this is stated.

Lastly, concerning [Sh 430, 6.7A] the addition is inherited from [Sh 430, 6.7].
By

2.5 SuBCLAIM: In [Sh 430, 6.7A] we can deduce:
(a) if o' C Up, a8, 0] < 0, @ € Ny, then for some B(x) < o and finite
¢ ={00,01,-..,0,} C ag() we have
(i) O¢ > Oey1,
(i) o' € Upcr bgf*)iﬁl,
(ili) B € (B(x),0) = bl [{] Nna' =65 a] N e,
(iv) 8¢ = max pef(a’ N Uy, bg’f*)[a]);
(8) moreover, (8g: € < n) is definable from o, B(x) and (bg(*)[&]: 6 € ag)
uniformly;
(v) if (al: e <) € N,, ¢ < 0, |a.| < o then we can have one B(x) for all a;
and 50 ((0¢,¢: £ < n(e)) 1€ < () € Ny

Proof: Clause («). We choose (3,8, by induction on £. For £ = 0 clearly for
some yp < 0, @’ € Ny, so @’ C a,,, hence fp = max pcf(a’) belongs to N, hence
to ag for B € [y0,0), so by clause () of [Sh 430, 6.7A], (bgﬂ[&] : B € [v,0))
is increasing hence (b'g0 [@ Na': B € [0,0)) is eventually constant, say for 3 €
[80,0), B0 € (7y0,0). For £+ 1 apply the case £ = 0 to o \nge bg: [a] and get
Oev1, Besr-

Clauses (5), (). Easier. ks

2.6 CLAIM: 1) Assume ¢ > Ng is regular, A a cardinal, J the o-complete ideal
generated by Jc[a] for a set a of regular cardinals > |a|, a ¢ J, a; € J for
i<a<lalt, a= ;.o % and max pcf(a;) < A.
Then? we can find b, b; (i < @) and I such that:
(a) b; C pef(a;) is finite,
(b) b Uz(a by,
(c) Iisanidealonb ,
(d) for w C o we have | J;c,, 0i € J & e, bi €1,
(e) I is the o-complete ideal generated by J[b],

3 Note that without loss of generality i < a = a; # §, so necessarily |¢| < |a].
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(f) we have b; = {;p: £ < n;} and if I) is an Ny-complete ideal on b extending
I (so I, = I is OK. if 0 > ¥yg), then for any » € I, there are B C a and
#* < w such that:
(a) {Xien:i€ B} CD,
(B) {Mie:i€ BY eI,
(v) for every B' C B we have (J;cg bi € 1 & {Xip-:i€ B’} €1,
2) Assume in addition pcfy, —complete(8:) € A; and k; < o, then we can find b, b;
(i < @) and I such that:
(a)" b; C pefy, —complete(8:) C A; has cardinality < &;
and (b)-(e) hold.
3) Assume
(i) I an ideal on a,
(ii) J an ideal on 3,
(it} (x::% < @) a sequence of regular cardinals with tcf(]], ., x:/I) = x,
(iv) for i < a,(r}: j < [B) is a sequence of regular cardinals with
tef([T;575/7) = Xis
(v) {oj: 7 < B) is a sequence of regular cardinals,
(vi) la| + 18]+ 305 < min{7}:i < a,j < }.
Then there are for each j < § an ordinal €; < o; and sets (bl: € < ¢;) such that
(@) U.ee, bl C {7}:i < a} and if max pcf{r}: i < a,j < B} = x then equality
holds,
(b) A =: max pcf(bl) is in pcfy,-complete(bY),
(c) letting J* be the ideal with domain J; g{j} x €; defined by A € J* iff
max pcf{M: (j,&) € A} < x, we have x = maxpcf{): j < B, < ¢;},
(d) ifwe J*, x then {i < : {j < B: e <gjlri €blA(je) cw} ¢ J} el
(Note that J* is a proper ideal and []; ;¢ Dom(J*) M /J* is x-directed by basic
pcf theory.)

Proof: By the proof of [Sh:g, Ch. VIII, 1.5] or by [Sh 430, 6.7, 6.7A, 6.7B] (for
(1)(f), shrink A to make n; constantly n*, then prove by induction on n*). In
more detail:

1) Without loss of generality Min(a) > |a]*3. To be able to use [Sh 430] freely
in its notation rename a; as ¢;. We apply [Sh 430, 6.7A, p. 104] with a,x,0
there standing for a,]a|T™, |a|* here and without loss of generality {(e;: 2 < a) €
Nog, A € Ng. By Subclaim 2.5 above for each 1 < a there are 8(i) < |a|* and finite
bi C pef(e;) Nagg) such that 8 € [B(3), a]") = e © U,ep, 027! [8]. Moreover

((bs, B(3)): < @) € Ny for B(x) = (supy, A(0))+w < a]* and let b = U,_.. b
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and I = {¢ C b: we can find ( < o and (¢ : € < () such that ¢ = {J, . cc and
max pcf(ce) < A}. Let us check all the clauses of the desired conclusion.
Clause (a): b; C pcf(e;) is finite.
Holds by the choice of b;.
Clause (b): b= J;, b:-
Holds by the choice of b.
Clause (c): I an ideal on b. By [Sh:g, Ch. I] and the definition of I.
Clause (d): For w C o we have ;¢ € J & [, bi € 1.
Why? By the definition of I and J, it suffices to prove for each subset w of o
that

max pcf(U i) < A& max pcf(U b)) <A

iCw iew

First assume max pcf({;¢,, ¢:) < A. Now j € w = b; C |J,,, pcf(e;) hence (by
[Sh:g, Ch.L, 1.11]) pef(U;¢,, b7) € pef(U;e, &) s0

maxpcf(U b;) < max pcf(U e;) < A,
icw i€w
as required.

If the other implication fails, then there is w C a which exemplifies it in
Npg(v (as all the relevant parameters are in it), so we need only consider w €
Np(x). Assuming w € Ng(,y and max pcf(l;c,, bi) < X let b =: {J;,, b, so
b’ € Ng() Nag) and max pcf(b’) < A, and by [Sh 430, 6.7A(h)] for some finite
¢ C pef(b’) N Npy we have g, bg(*)[ﬁ] includes ¥, recalling B(x) is a limit
ordinal.

By [Sh 430, 6.7A(f)], i.e., smoothness

Teb = v80[E c | vy [al

fec
hence
relJu= ey
iCw ICw
= \/ ™E U{bf(*)[ﬁ]: TEb}=> v ™e U bg(*)[&]
€W iew f€c
=7€ U bg(*)[ﬁ].

fdcc

S0 Uiew ¢ € Ugec bg(*)[ﬁ] hence
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max pcf(U ¢;) < max pcf(U bg(*)[&])

1EwW dec

< nalgx(rnax pcf 55[a]) = max(c) < A
c

(we use Subclaim 2.5 above).
Clause (e): I is the o-complete ideal generated by Jcx[b].
By the choice of I.
Clause (f): As I; is Xy-complete for some n* the set 9NU{b; : |b;| = n*} belongs
to I]. Now we try to choose by induction on £ < n* +1 a set By C a decreasing
with £ such that:

(a) {)\i,kEU:iEBg andkSE}EI;’,

(B) for each k < £ the set {A; x: i € By} belongs to I;.
For £ = 0, the set By = {i < a: |b;| = n*} is O.K.: in clause (a) we ask
Uica biNd € I}, by which we mean d € I] which is assumed, and Clause (3) is
empty (no k < £1); lastly by the choice of n* we are done.

For £ + 1, if £, By are not as required, then there is B’ C B, such that the
statements

“ U b; € I;” and “{\; 4: i € B'} € I;” have different truth values.
ieB’
By obvious monotonicity this means | J;cp b; ¢ I1,{Xie: @ € B’} € I so let
By = B'.

If By~ is well defined we have by clause (a) that {A;x :% € Bnpry1 and k >
n* + 1} € I but as B,.,1 C By this set is empty, easy contradiction.

2) Same proof except that, for defining b;, instead of quoting 2.5 we use [Sh 430,
6.7A(h)*]. We could have used it in the proof of part (1) here.

3) We apply [Sh 430, 6.7A] to a =: {7}: i < 0,j < B} U{xit 4 < o} and
without loss of generality (x;: ¢ < a),I,J,{(0;: j < ) and ((T]’f:j <B):i<a)
belong to Np. Let a* € J<y[a] be such that Je,[a] = Joy[a] + a* and let
e; = {7}: i < a} Na* but if possible a* = a. Again by [Sh 430, 6.7A(h)*]
for each j there is ¢; C pcfs;-complete(¢;) such that e; C Uaec,- bg“[ﬁ]. Let
¢; = {M: € < g;} with no repetitions and let b} = bffl[ﬁ] Nej.

Now clause (a) holds by the choices of ¢; and bz. As for clause (b), note
max pcf(bl) = M by 24, ie., clause (j) of [Sh 430, 6.7A] and clearly M ¢
pcfs,-complete(e;), but M ¢ pcf(e; \ b2) by clause (e) of [Sh 430, 6.7A] so neces-
sarily M € pcly,-complete(b?), that is clause (b) holds.
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Let J* be the ideal with domain U, ,{j} x &; defined by
J* = {A C Dom(J*): max pcf{X: (j,¢) € A} < x).

By transitivity of pcf, x € pCf({T;: i < a,j < (}) hence by the choice of a*,e;
clearly x = max pcf({J; 5 ¢;)-
As in the proof of clause (d) of part (1) we have

(x) for w C a we have

max pcf(U ¢;) < x © max pcf(U ) <x

i€w tEw

We conclude that x = max pef((J,, ¢i), hence J* satisfies clause (c) (well
maybe ¢;,; N ¢;, # 07 Remember [Sh:g, Ch. I, §1]).

Lastly, we prove clause (d) so assume w € J*; so by the definition of J*, we have
max pcf(d) < x where d = {)\: (j,€) € w}. So by transitivity of pef ([Sh:g, Ch. I,
1.11]) as x = tef([1,., xi/I) necessarily B =: {i < o: x; € pcf(d)} € I. Now
for each 7 € a~ B we have x; ¢ pcf(d) hence x; ¢ pcf(b Ne;); but [T, 573/
has true cofinality x;, so necessarily B; =: {j < f: ’T'j €onelt e d. Checkmg
the meaning you get clause (d). e

2.7 Observation: If K > Rg, A € pclc—_complete(at), then for some 8, k < § =
cf(#) < |a|, and {x;: ¢ < 8) we have: x; regular, x; € AN pcf(a) and for some
§-complete ideal I 2 J§° we have A = tef([]; ., x:/1)-

Proof: Without loss of generality A = max pcf(a), otherwise replace it by b, [a];
let J be the x-complete filter on a which J[a] generates. Let 6 be minimal such
that J is not #*-complete so necessarily k < § = cf(f) < ]a|; as we can replace a
by any @’ C a,d’ ¢ J<,[a] without loss of generality a is the union of § members
of J, so for some a; € J (for i < @) we have a = |J, g a;; as J is f-complete
without loss of generality a; € Jcx[a]. By 2.6(1), we have (b;: i < 8),b and I as
there. As J is §-complete {{J;,, bi: fw| < 8} C I, so by applying clause (f), we
can finish. Ly

Proof of 2.1: 'We shall prove ®}\’ .. by induction on A. Arriving at A, assume it
is a counterexample so necessarily A > u, c¢f(A) = cf(p). For each k < pu there
is a C (p, A) such that |a] < u and pcfx comptete(@) € A, so by {Sh:g, ChIX, 4.1]
without loss of generality for some k-complete ideal J on a, At = tcf(Ila/J). So
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(by 2.7) the following subset of (cf(i), ) N Reg is unbounded in p (by 2.7):

R=: {0: cf(u) < 8 = cf() < p and there is (xq,¢ : ¢ < 6),

a sequence of regular cardinals € (p, \)

and a -complete ideal Iy on 6 extending Jé’d such that

H x6,¢c/Is has true cofinality )\+}.
¢<8

Let 6,08,, R* be witnesses for ®g (i.e. ®Y « .9, Dolds); without loss of generality
otp(R*) = cf(p) and remember cf(p) < 61, 8% < Min(R*), 6§ € R. Let o* = 0,
we now define by induction on n the following: J,,, w"™, (wl: i < 6), (A;: ¢ € w"),
h™ as in Observation 2.2 such that {z € w" : A, < pt} € J, and W (y) =z =
Ay < Az, 80 we shall get a contradiction (the domain of hy, is {x € wtl Ap >
1+}). Wealso demand [, c,n Ac/Jn is AT-directed and [z € w™ = pt < Ay < Al
hence A} < A. We let w = {i}, \i = xs,;, and Jo = Iy. Suppose all have been
defined for n. Now by the induction hypothesis on A (as 4 = sup(R*)) for every
T € Wy, if A, > pt then for some o = o[A;] € R* we have

aC (,Uq )‘x) & l(ll <y = pCfa—complete(a) C Az

Remember J,, is |R*|*-complete (as 8 > cf(ps)), so it is enough to deal separately
with each ©™? = u(n,o) =: {z € w™ o[\;] = 0 and A\, > pt} where 0 € R*.
If v™? € J, we have nothing to do. Otherwise choose k, € R*, Kk, > o, #
and I.,, (xx,¢: ¢ < Ko) witnessing k, € R. By [Sh:g, Ch. IX, 4.1] applied
t0 Xu, ¢ < AT = tcsz@(n’U) Az/Jn, for each ¢ < k, we can find a sequence
(1mek: z € w™?), TC regular < Ay but > pt and [ y T [J, has true
cofinality x., ¢-

Now apply 2.6(3) with a,8,1,J,x,{xi: i < a),(1}: j < B),{0;: § < B)
there standing for ke, u(n,a), Ie,,dn [ u(n,0), A, (Xx, ¢t ¢ < Ko)s (TH9¢: T €
u(n, o)), {(0: = € u(n,0)). This gives us objects (b2*°: z € u(n,0),e < £;) and
J™7 as there. We could have changed some values of T;‘*"’C to u* to guarantee

z€u(n,o

that A* = max pcf{r™?¢: z € u(n,a),{ < Ky}, so without loss of generality
X

frmm g <rgh = | bpoe,
eLEL
By 2.6(3) clause (d), we have
(x)1 if w € Dom(J™7) and

{C < kot {z € uln,0): (Fe < &) [T € b17&(x,€) € w|} ¢ Jn} ¢ I, ,
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then w ¢ J™°.
Let I™? be the ideal on Dom(J™?) defined by

w € I & {{ < kot {z € uln,o): (Fe < &)[TP7° € b7 &
(z,e) ew]} ¢ Jn} €l,,.

Now (*); tells us that J™° C I™. Note that since I,;, and J, are -complete

proper ideals—we assumed u(n,o) ¢ J,—we have that I™° is a §-complete

proper ideal on Dom(J™?). This means that if we want to verify that a set is

not in the 6-complete ideal generated by J™9, it suffices to see it is not in ™7.
By 2.6(3), (b) we have A}?¢ =: max pcf(b} ") is in pcfs-complete(bp ™).

Since 7€ C A4, our choice of g[A;] = o guarantees

(¥)2 A%€ = max pef(b7¢) < A,.

For ¢ < Ky, let fg’”: u(n,0) = o be defined by f¢(z) = Minf{e < e;: T €

b™¢}. Now we can apply the choice of 61,8 (i.e., for them ®9 « 9,0, holds), only

instead of “J a 6-complete ideal on 6” we have here “

» is a 6-complete ideal
on a set of cardinality 6 and actually use J,, [ u™7”. So we get A™7 € ] ja and

BCHYU = u(n, o) mod J, for { € A™? such that:
s zeu™ =6, > (77 (): (€A™, w € BY7Y.
Let us define

wt! = {(z,0,€): (3¢ € A™)[z € BY? and € = f°(z) and © € w}]},

i,0
n+1

hi, wish = wl is A7, ((x,0,€)) = = when A, > ut,

T €U D Ag o = Ag7"

Recall we are assuming v™° € Jt; if i € u™° € J, we let wlt! = ). Now we

no 1,0

switch “integrating” on all 0 € R*:

witl = U witl,

H 1,0
gER*

wtt=J Y= U Uhis

g€R* i<l o€R* <6

We let

Jor1 = du Cw™: for some i < 8 and u; C u for j < i we have
+ i

U= U u; and for each j < ¢ we have
i<y

At > max pef{A 00t (2,0,€) € u]}}
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Most of the verification that w™*!, h™ and J, 1 are as required is routine; we
concentrate on a few important points
Xy |Jwltl] < 6;.
[Why? By (%), as cf(1t) < 61 < 8 so the ¢ do not cause a problem.]
K if x € w™, Ay > pt and h™(y) = z, then Ay < A,.
[Why? Choose o such that z € u(n, o). If u(n,o) € J, then A, = p* < A,.
If u(n,o) ¢ J,, then we are done by (x)z.]
&2 ’ll)n+1 ¢ Jn+1.
[Why? Choose ¢ € R* with u(n,0) ¢ Jy, and let v(n,0) = {(z,¢):
(z,0,€) € Wt}
For { € A™7,

By C{zeun,0): (k< £¢)[T7C € bE A (z,€) € v(n,0)]},

and so v(n,0) ¢ I™?. Thus v(n, o) is not in the §-complete ideal generated
by J™?, and the definitions of J™° and J,,; imply w2t ¢ J,11.]

K3 For every A € J,y1,B =: {z € w™ (Vy € w™™)[h"(y) =z = y € A}}
belongs to J,. [Why? Suppose toward a contradiction that B € JJ,
and choose ¢ € R* such that BN u(n,o) € J}. Let 4, = {(z,0,¢) €
w™tl: z € B}, and let A’ = {(z,¢): (z,0,6) € A}. For { € A™" as
B}? = u(n,0) mod J, clearly BN B € Jy; also

Bn BZ’U C {z € u(n,0): (e < &)[TM¢ € b9 A (z,¢) € A'l},

and since BN B € J¥, by the definition of I™” we know A’ ¢ I™ hence
A1 & Juy1 but by the definition of B, A, clearly A; C A, hence A ¢ Jpy1,
contradiction.]
Thus we have carried out the induction and hence get by 2.2 the contradiction
and finish the proof. B

2.8 Remark: 1) We can be more specific phrasing 2.1: let R* C 4 be unbounded,
[ = (I',: 0 € R*), T, a set of ideals on o; the desired conclusion is: for every
X > p for some 0* < g we have: if 0 € R*~No*, A; € (4, A) N Regfori <o, J,
J € Ty then peir, ([T;<, A, <s) € A (Reg is the class of regular cardinals.)

2) You can read the proofs for the case p strong limit singular and get an
alternative to the proof in §1.

2.9 CLAIM: Assume \* > j > Ry, p an uncountable limit cardinal and we have:
®)3, for every A € (11, \*], we have ®] , (from the conclusion of 2.1).
Then
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®%., (@) a € (4,A*),a C Reg, |a < p = |A* Npef(a)] < p,
(B) if p is regular then (for a C Reg):

0 C (1, X%) & la] < gt = 3" N pef(a)] < p.

+ . . .
u if p is singular,
Proof: Let p(x) = {

So assume a C (i, A*) NReg, |a|] < g, and A* N pcf(a) has cardinality > p(x).
Let Ao = Min(a) and (A;41: ¢ < p(x)) list the first (u(*) + 1)-members of
(pef(a)) N{ Ao} (remember pcf(a) has a last member), and for limit § < u(x), let
A = Ui<5 A; SO )‘u(*) < X*. Now by an assumption for some k < pu, ®}\u(.),u,n
(from 2.1), without loss of generality « is regular. Now choose by induction on
¢ < n, 4(¢) such that 4(¢) < p(+) is a successor ordinal, i(¢) > Ug,i(§), and
’\i(() > sup pcf -complete({)‘i(f): < C})

Why is this possible? We know pcfe.complete({di(e): § < (}) cannot have
a member > \,) (hence > ),(,) being regular), by the choice of x. Also
PCfcomplete({ Aige): € < ¢}) cannot be unbounded in A,y (because cf(A,,)) =
p(*) > k (remember u(*) is regular) as then it will have a member > A,,); see
[Sh:g, Ch.I, 1.11]). So it is bounded below A,(,), hence i(() exists.

Now we get a contradiction to [Sh 410, 3.5], version (b) of (iv) there (use, e.g.,
(Xigey : ¢ < (5 + [a])+*)) (alternatively to [Sh 430, 6.7F(5)]). b

pif p is regular.

2.10 THEOREM: Let u be a limit uncountable singular cardinal, 1 < A and
[la] < 4 and a C RegN (u, A) = |ANpcf(a)| < p], or at least:

By for every large enough o € Reg N i, we have:

oA if a C Regn (i, A), |a] < i, then |A N pcfycomplete()] < g

Then for every large enough « < u we have ®}M of 2.1, hence cov(A, p, b, k) = A.
Remark: This proof relies on [Sh 420, §5].

Proof: Without loss of generality cf(u) = Rg (e.g., force by Levy(Ro,cf(p)) as
nothing relevant is changed by the forcing, or argue as in 1.3 as @j, , implies that,
for each x € [cfy, ], the cardinal sup{|ANpcf,_compete(a)] : @ € RegN(p, A), |a| <
X} is < p; however, we can just repeat the proof).
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Assume this fails. Without loss of generality A is minimal, so cf(\) = Rg.
Failure means (by 2.7) that y = sup(R) when

R= {9: 6 € pN Reg and for some x, € Reg N (p, A) for { < 6,

and 6-complete ideal I on §

we have AT = tcf(H X(/I)}.
¢<8

For simplicity assume that for x < p and A C (2X)*, in K[A] there are Ramsey
cardinals > x. This makes a minor restriction; say for one A\ we may get < A*
instead of < AT (which is equivalent to < A).

So by [Sh 430, §5], for some uncountable regular o < k from R cf(u)*, @7 ,
from the assumption of the theorem holds and for some family E of ideals on
k normal by a function : K & o and J € E and A; = cf();) € (g, A), At =
tef([1; . Ai/J) and (\i: ¢ < &), J minimal in a suitable sense, that is a(*) =
k3 ((\i: i < k), E) is minimal, so without loss of generality rk%((\;: i < &), E) =
k3 ({\i: i < k), E). Hence we do not have A C k, kN A ¢ J and X, € (u, \)N
Reg such that (A: i < k) <yya (Mt @ < &) and At = tef([[;. Xi/J). As
cf(p) = Rp, we can find (8,: n < w),k <0, € RNpand p=1J, _ 0, AsAis
minimal there is a partition (u{n): n < w) of &, such that:

n<w

(*) i€ u(n), n <w, |a| <ua g Reg N (:u" )‘z) = pCfGn-complete(a) g )\i-

So for some n we have u(n) € J*. Without loss of generality (Vi < k)(A; > pt)
and (as 0 > Ng) for some n = n(x) we have u(n) = & (i.e., the minimality of a(x)
is preserved). Choose 8 € RN p large enough such that

(Va) [a C Reg N(p,A) and |a| < Opy + £ = [AN pefycomplete(a)| < 0].

(Why is this possible? As @, , which holds by the choice of 0.) As§ € RNy
we can choose a sequence (x¢: { < 0) and I D J{},’d a f-complete ideal on 8 such
that x¢ € (4,2) and tef([Te o x¢/1) = AT, By [Sh:g, Ch. IX, 4.1] we can find
7'1.c = cf('rf) € (1, As), ’rf < i such that x¢ = tef([], ., 75 /).

Nowa=: AN pcfa_complete{rf: i < K,( < 6} has cardinality < p (by the choice
of o) and has a smooth closed representation (by(a): T € a) (see [Sh 430, 6.7]).
For i < & thereis ¢; C pcfgn(‘)_complete{ffz ¢ < 8} such that |c;| < 8,(,) and
Nc<o ¢ € U{br(a) : T € ¢;} (by the choice of n(x) and by [Sh 430, 6.7], note
that 0 < & < f,(,) by their choices, hence pcfgn(‘)_C(,mplete{TiC : ¢ < 0} C a hence
all is O.K.). Also ¢; C \; because we are assuming Un(s) = K.
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Let

= {tcf(H /(J+A)): (ri:i<k)€ H ¢; and A € J* and
i€EA i<k
tcf(H 7./(J + A)) is well deﬁned}.

i€A

Let ¢ = |J; . ti- So |¢| £ £+ 0,4 hence AN pcfycomplete(€) has cardinality < 6,
and @ C X by the choice of a(x) and @ C pcfocomplete(c) hence 3] < € (by the
choice of 8).

Now if 9 € AT N pef(c) then

By={C<0:{i<w 7 cbyla}¢J}el

(Why? Otherwise { € By = x¢ € pcf(byla]) hence pcf(by(a]) includes
pcf{x¢: ¢ € By}, but as By ¢ I the cardinal A* belongs to the latter; but
max pcf(by[a]) = ¢ < A, contradiction.]

But we know that [0 < 6, and [ is #-complete and 0 C pcf(c), so

X = {<<0: for some 1 € D we have

{i<n:rf€b¢[a]}¢J} clBvel
PED

So there is some (* € 8~ X, and for ¢ < & choose T; € ¢; such that 'rf* € by, [q]
(well defined by the choice of ¢;). So by smoothness of the representation

pev=> i<k Y ebyla]} C{i<sh: Tf‘ € byla]} € J.

Now by the pef theorem for some A € J* we have [lica Tf' /J has true cofinality
which we call T, so necessarily T € pCfa—complete({’rg e A}) € 0 (see the
definition of ), but this contradicts the previous sentence (recall @ C A by the
minimality of a(x)}). k.o

3. Applications

Of course

3.1 CramMm: If p is as in 2.1, then the conclusions of 1.2 and 1.1 hold.
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3.2 Cram: If A > 1, then:
(a) 22 =A% & Ons,
(b) A = A< iff (DO)y;

where we remember

3.3 Definition: 1) (D{), means that:
X is regular uncountable and there is P = (P,: o < A) such that P, is a
family of < A subsets of a satisfying:
(x) for every AC A\ {a@ < X ANa € P,} is a stationary subset of A.
2) (DE)% (S C X stationary) means A regular and there is P as above such that:
(x) for every A C X\ we have {a € S: ANz ¢ P,} is not stationary.
3) (D€)E where S C X is stationary, A regular uncountable means that: for some
P as above:
(%) for every A C X for some club C of A we have:
deSNC=>ANsePs & CNJIEPs.
4) Let X be regular uncountable, S C A stationary. Now {g means that there is
(Ay: @ € S) such that A, C « and for every A C Atheset {a € S: ANa= A,}
is a stationary subset of A.
5) For A regular uncountable and S C A stationary (D£)s means that for some
(Pa: a € S) as above, for every A C \ the set {§ € S: ANJ € Ps} is stationary.

3.4 Remark: 1) If A is a successor cardinal, (D{), is equivalent to ¢x (by
Kunen), so (a) is a particular case of (b) in 3.2.

2) By [Sh 82|, [HLSh 162], if (D£), then the omitting types theorem for L(Q)
for A-compact models in the A*-interpretation holds (and more). Now A = A<*
is the standard assumption to the completeness theorem of L(Q) in the A™-
interpretation; and is necessary and sufficient when we restrict ourselves to A-
compact models. So the question arises, how strong is this extra assumption? If
G.C.H. holds (D£)y <> A = A<* for every A # R; (by [Sh:82], continuing Gregory
[Gre]); and more there. Here we improve those theorems. Now 3.2 says that
above J,, the two conditions are equivalent.

3) We may consider the function i : A — AN Car, demanding |P,| < k().

4) Remember that for A > Nq regular and stationary S = §; C Sy C A we have
(DeYE = (DO = (D)5 and (DE)s, = (D¥)s,, but (D)% = (DO)%, (DZ);2 =
(DO},

3.5 Proof of 3.2: By 3.4(1) it suffices to prove clause (b). Trivially (Df) = A =
A<?, 50 assume A = A<}, and let {A}:i < A} list the bounded subsets of A, each
appearing A times.
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For each o < A let
R, = {k <3, cov(|a],xt, &%, k) < X and & is regular}.

We know (by 1.2(3)) that for each @ € (3,,,A), R, contains a co-bounded subset
of Reg N3, say Reg N, ~3,,. So for some n* <w

S*={a<Xa>3,, na<n"}

is unbounded in A; hence trivially S* = (3,,,A). So R =: {k < A: k is regular, 2¢
< X and for every a < X\ we have cov(|a|,x*,xkT,k) < A} contains Reg N
(3nx,3s). As A = cf(A\) > 3, for each a < A, ¥ € R there is P4, a family of
< A subsets of @ of cardinality x such that if A C o, |A| = & then A is included
in the union of < x members of Pj.

Let PX = {B: forsomex € RN (a+1)and A € P% we have B C A} so
P is a family of < A subsets of a. For each A C X\ we define hs: A — A
by defining h4(a) by induction on a : for @ non-limit h4(a) is the first ordinal
i > Ugeq ha(B) +1 such that ANa = A} and for o limit ha(a) = Us, ha(B).
So ha(a) is strictly increasing continuous, hence ha(a) > a and h(a) = a &
[(a limit) & (V8 < a)(ha(B) < a)]. Let

PO = { | 45: Be @;},
BeB

P, =:PoU {{,3 <a:ha(B)=p0}) A€ 'Pg}

(remember {A%: a < A} lists the bounded subsets of A each appearing unbound-
edly often).

Now for any A C A we have E =: E4 =: {§ < \: 4 limit and Agz_5ha(B) < d}
is a club of A, and
(¥)1 cf(8) <F€E& cf(6) € R=> ANd e Py CPs.
[Why? Let x =: cf(d), and let (8;: j < &) be an increasing sequence of successor
ordinals with limit §, hence (ha(8;): j < &) is (strictly) increasing with limit
d; so for some § < k = cf(d) and B; € ”ng(&) for i < B we have {ha(B;): j <
K} C U;cp Bi, so for some ¢, {ha(B;): j < k,ha(B;) € Bi} is unbounded in §,
and clearly B’ =: {ha(8;): j < 6} N B; € P5, hence U{A}: v € B'} € PJ is as
required].

Also
(¥)2 cf(d) <d€e FEand cf(6)e R=>EnNdecP.
Why? As ACA\ 8€Eq=hald=hans 0] M2

Note that we actually proved also
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3.6 CLAIM: 1) Assume A = pt = 2* > x, x strong limit, then for some x* <
+
we have 0{5</\: X+ <cf(8)<x}"
2) Similarly, for A = A< inaccessible, x strong limit < )\ for some x* < ¥,
+
(DE){(K/\: x* < cH(@)<x} holds.
3) If \ = X<*, and

S ={8 < XA:cf(6) < 6,299 < A, and [\ > cov(]d],cf(8)*, cf(8)T, cf(8)]}

then (D€)}; so if A is a successor cardinal we have {} .

4) Assume* A = A< > 0 = cf(f) > 0 = cf(c), 07 < X\, Y < A S C )
{6 € S: cf(8) = 6} is stationary, C = (Cys: a € 8), for a € S, Cy is a closed
subset of a, [B € Cp = B € S & Cg = BNC,]. Assume further that for no o < A
is there P C {a C a: |a| =6}, such that a € P& beP &a# b= |anb| <],
and [a C ANReg~Mina > 0 & |a] < 0 = A > sup(ANpcfa)] (e.g., A successor).

Then (D¥f)g, holds where S, = {6 € S : cf(é) = o}

Proof: Easy. For example, 4) By [Sh:g, Ch. III, §2], without loss of generality
for every club E of ) for some § € ENS, Cs C Eif 6 < A, and otp (CsNE) < 0
otherwise. Let x = J3(A)*, let (M;: i < A) be such that: M; < (H(x), €, <3),
M| < A, A € M;, M; N A an ordinal, (M;: j < i) € Mi;;. Let for 6 € S,
Ps = Mz, NP(8). It is enough to show that P = (Ps: § € S,) exemplifies
(D0)s,. So let (x4: & < A) € My list the bounded subsets of A each appearing A
times. Let X C A, Ep be a club of ); we define by induction on «, hx(a) < A
as the first v < A such that v > (g, hx(B) and X N = X,. Let (M1 < A)
be chosen as above but also hx € Mg, (M;: i < A) € Mg, Ey € Mg. Let
E =:{0 € Ey: M{ N X =6 = Ms N A}; clearly it is a club of A\. Let § € SN E,
cf(§) = 0 be such that Cs C E. Now we imitate the proof [Sh 410, §6] or directly
as in [Sh 420, §1] for hx | Cs. |

3.7 CrAaMm: Above, instead of demanding on &

“o = cf(k) & 2% < A & [a < A= cov(|af, &1, kt, k) < A]

it suffices to demand “s = cf(k) < X and if T is a tree with k-levels and < A
nodes then T has < ) k-branches”. See [Sh 589, §2] for a pcf-characterization of
this property.

4 I A =pt, p=cf(u) > 8 = cf(8) > o = cf(s) then there are S,C as in 3.6(4)(see
[Sh 351, §4] or [Sh:g, Ch. 111, 2.14]+[E12]). Of course, we get not just guessing on
a stationary set but on a positive set modulo a larger ideal.
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3.8 LEMMA: (1) Suppose ¢f is an operation on X, i.e., ¢f is a function from
P(X) to P(X). Assume further k < k* < p = p” and we let

P = {A C X: |A| = p and for every B C A satisfying |B| = s* there is
B’ C B,|B'| = & such that ¢¢(B') C A, and |c{(B’)| = ,u}.

If k* < J,(k) < p then there is function h: X — p such that: if A € P* then
h 1 A is onto p.
(2) Actually, instead of “J,, (k) < u” we just need a conclusion of it:

()1 = (%)L .. (YA > 1)(39)[0 € Reg and k* < 6 < p and cov(},87,67,0) = A],

Kt

or even just a conclusion of that:

()2 = (*)fw, for every A > p for some 0 < p, § > k* we have:
®¢ = ®i"“: there is no family P of > X subsets of A each of cardinality
with the intersection of any two having cardinality < x*.

3.9 Remark: (1) The holding of (*), is characterized in [Sh 410, §6).

(2) On earlier results concerning such problems and earlier history see Hajnal,

Juhdsz and Shelah [HJSh 249). In particular, the following is quite a well known

problem:

€ Non-compactum partition problem: Can every topological space be divided

into two pieces, such that no part contains a closed homeomorphic copy of
“2 (or any topological space Y such that every scattered set is countable,
and the closure of a non-scattered set has cardinality continuum)?

(3) Note that the condition in (x); holds if p = Mo > R, k= Ng, & =]y

and ®_ (from 2.1) (which holds, e.g., if V = Vi, P ac.c.c. forcing making the

continuum > 2%). So in this case the answer to & is positive.

(4) Also if p = 2% > 0 > Ny, and (YA)[A > 2% = ®§’Nl] then the answer to &

in (2) is yes; now on ®§’N1 see [Sh 410, §6].

Proof: We prove by induction on A € [g, | X|] that:

(¥)a if Z,Y are disjoint subsets of X, |Y| < ), then there is a set Y+, Y C
Yt C XNZ, |Y*T| <) and a function h : Y — 4 such that: if A € P*,
K*<0<p @, |ANY*| >0 and |[ANZ| < pthen h | (ANY™) is onto p.
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Case 1: A=y, so Y| <p.

Without loss of generality (B CY and |B| < k and |¢€(B)| = = c(B)NZ C
Y]. Now just note that Py =: {c{(B)NY: B CY,|B| <k, |(B)NY|= u} has
cardinality < g = p*, and by the definition of P* (using the demand [ANZ| < u
in (%)), it suffices that h satisfies: [4 € Py = & | Z is onto y], which is easily
accomplished.

CASE 2: A > pu.

Let x = (2’\)+, (Ni: © <)) an increasing continuous sequence of elementary
submodels of (H(x), €, <}), (X, ¢, Y, Z,\) € Ny, p+1 C No, (N; 1 i < j) € Njpq
(when i < A) and ||N;|| = g + ).

We define, by induction on 7 < A, a set Yf and a function h; as follows:

(Y;*, hi) is the <}-first pair (Y*,h*) such that:

(a) Y* € XNZUU, Y,

() YNNANU, oY NZC XN, Y N ZCYe,

(©) [Y*[=p+li,

(d) h*: Y* -y,

(e) 1fA € P*, ®n+M’
[ (ANY™) is onto p.

Note: (Y;*, h;) exists by the induction hypothesis applied to the cardinal p+|i|
and the sets ZUU;; Y;", X N NN, Y5 Also, it is easy to check that
((Y+ h;): i <) € Niy1 (as we always choose “the <}-first”, hence Y;" C Nijy).

Let YY =J;\ Yt h= U, hi- Clearly Y C ;5 Vi, hence by requirement
{(b) clearly Y C Y* (and even X N Ny~ Z C Y*); by requirements (¢} (and
(a)) clearly |Y+| = X, by requirement (a) clearly Y+ C X ~Z and even Y+ =
XNNANZ.

By requirements (a) + (d), h is a function from Y+ to u. Now suppose 4 € P*,
R4, k* <O <p, |[ANY*| >0, [ANZ| < p; we should prove “h | (ANYt) is
onto u”. So JAN N,| > 4. Choose (6*,6*) a pair such that:

(i) 6" <,

(i) ®F, 5.p 5* <O* <,

(ili) |[A N Nse| > por 6* = A,
(iv) under (i) + (ii) + (iii), 6* is minimal.

This pair is well defined as (), 6) satisfies requirement (i) + (ii) + (iii).

K*<O<u |[ANY*|>0,|An(ZUl

.o Y7 < w then

SUBCASE 1: §* is zero.
So {Y;t N A} > 6* > &*, hence by the choice of Ay we are done.
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SUBCASE 2: 6" =i+ 1.

So |[AN N;| < p, hence |AﬁUj<in+| < p, hence |[AN (ZUU].<1.Y]~+)| < [t
Clearly ®Z~+|i| holds (as u+|i| = p+]8*), so if [ANY;T| > §* we are done by the
choice of h;; if not, [AN(ZUU; ;44 Y]+)| < pand ANYY, D ANN;; 1 = ANN;.
has cardinality > 6* (and ®19;,11 | holds) so we are done by the choice of h;y1.

SUBCASE 3: 4™ limit < A.

So for some i < §*, |[ANN;| > 6* [why? as 6* < u < A]. Now in N,y there is
a maximal family Q C [X N N;])?" satisfying [B; # By € Q = |B1 N By| < &*],
hence |Q| < p + |6*| and without loss of generality @ € N;;1, hence Q C Ns-
so there is B € @, B € Ns., [BN A| > «*; but |B] = 0* < p = p* hence
[B' € [BNA]* = BN A€ N;|. As A € P* thereis B’ € [BN A]* with ¢f(B’) C
A, |cl(B')| = p. Clearly ¢/(B’) € Nj-, hence for some j € (¢,0*), c/(B’) € N;,
hence ¢{(B’) C X N N;. So |AN N;| > p. By assumption for some ¢’ € [s*, u),
®Z,+Ij|’ so (7,0") contradicts the choice of (6*,6%).

SUBCASE 4: §* limit = A,

As X € Ny, there is a maximal family Q C [N? satisfying [B, # B, €
Q = |B1 N Bz| < &*] which belongs to Ny. By the assumption (x)2, we know
|Ql < A We define, by induction on j < A, a one-to-one function g; from
N; N X'~ Z onto an initial segment of A increasing continuous in j, g; the <}-
first such function. So clearly g; € N4 and let Q' = {gx(B): B € Q} (i.e.
{{gr(z): z € B}: B € Q}; note: g, is necessarily a one-to-one function from
NyN X Z onto A). So for some B € @', |B'N A| > «*, so as in subcase 3,
for some B’ € Ny, B' C BN A, |B'| = k,cl(B") C A, |cl(B")| = u; so for some
i <X, cf(B')C N;. But |[ANZ| < p, so |[ANY;T| = p and by assumption (*)s,
for some 8, k* < 8 < u we have ®Z+lil’ contradicting the choice of (§*,6*) (i.e.,
minimality of §*). Bss

3.10 Discussion: (1) So if we return to the topological problem (see @ of 3.9(2)),
by 3.8 + 3.9(4), if 2% > 6 > R; we can try § = Ry, k* = Rg, K = N;. So a
negative answer to @ (i.e., the consistency of a negative answer) is hard to come
by: it implies that for some ), —|®§‘N‘, a statement which, when 6 > R;, at
present we do not know is consistent {but clearly it requires large cardinals).

(2) If we want g = 2% = Ny, § = R; = k* we should consider a changed
framework. We have a family J of ideals on cardinals § < g which are k-based
(ie., if A€ I*, I €7 (similar to [HISh 249]) then 3B € [A]*(B € I'")) and in
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3.8 replace P* by

P* =P = {A C X:|A| = p and for every pairwise distinct

To € A for a < 0 we have
{u CO: |ct{zy: @ € u}| < u}

is included in some I € 3},

and replace (x)2 by
()3 For every A > p assume

FC{,1,f):1€3, 6= Dom(I), f: 8 — ) is one to one}

and if (8¢,1¢, fo) € F for £ = 1,2 are distinct then {a < 6 fo(a) €
Rang f1} € I.
Then |F| < ).
Note that the present P* fits for dealing with & of 3.9(2) and repeating the
proof of 3.8.

3.11 Discussion of Consistency of no: There are some restrictions on such
theorems. Suppose
(¥*) GCH and there is a stationary S C {§ < R,41: cf(6) =R;} and {As: § € S)
such that: As C § = sup Ay, otp(As) = w1 and &; # d2 = |As, N As,| < Ro.
(This statement is consistent by [HJSh 249, 4.6, p. 384] which continues
[Sh 108].) Now on ¥, we define a closure operation:

a € cl(u) & (30 € S)la € As & (un As) > Nl

This certainly falls under the statement of 3.8(2) with k = &* = Ro,u = ¥y,
except the pcf assumptions (x); and (*)2 fail. However, this is not a case of our
theorem.

4. Appendix: Existence of tiny models

We deal now with a model theoretic problem, the existence of tiny models; we
continue Laskowski, Pillay, and Rothmaler [LaPiRo]; our main result is in 4.6.

4.1 Context: Assume T is a complete first order theory. Let |T'| be the number
of first order formulas ¢(Z), T = (z¢: £ < n), n < w, up to equivalence modulo T.
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Assume T is categorical in all cardinals x > A =: |T| and call a model M of T
tiny if |M|| < p(= |T|). It is known that a T with a tiny model satisfies exactly
one of the following:

(a) T is totally transcendental, trivial (i.e., any regular type is trivial),

(b) T is not totally transcendental.

4.2 QUESTION: For which 4 < X are there T, |T| = X\ (which is categorical in
At and) with a tiny model of cardinality u?

4.3 Discussion: By [LaPiRo| we can deal with just the following two cases (see
[LaPiRo], 0.3, p. 386 and 387'~2! and 1.7, p. 390).

CASE A: z = z is a minimal formula and its prime model consists of individual
constants.

CasE B: T is superstable not totally transcendental and is unidimensional, the
formula z = z is weakly minimal, regular types are trivial and its prime model
consists of individual constants.

They proved: (V&)[xY < x* = in case A, u = No] (see [LaPiRo, 2.1, p. 341]).
Actually more is true by continuing their argument.

4.4 LEMMA: If A\, 1, T are as above, in Case A, then:
(i) A< 3.,
(i) we can find (An: n < w) such that: Ao = p, Ap < Apy1, A=,

(*)u,)\n)\n«n
(hence in particular (%), , .+ ), where

A, and

n<w

(*)p,0,0 there is a family of 0 subsets of o each of cardinality p, with the
intersection of any two being finite, or equivalently 6 functions from
i to o such that for any two such distinct functions f’, f” we have
{& < p: f'(3) = (i)} is finite.
Proof: By 1.2(2), (ii) = (i), so let us prove (ii). Let M be a tiny model of T,
M| = p.

For n > 0, let B, be the family of definable (with parameters) subsets of
"HM. Clearly |T| < Y, ., [Bal, also p = [|M|| < |Byl, |Ba| < [Brii|. Also
|Bo| = ||M|| as M js minimal which means Mg = g; let A, =: [By|, s0 Ay < Apta;
B =Y hcwAn and it is enough to prove (*),x, .., When An < Aqyp. For each
R € B, we define a function fg from M to B, fr(a) ={bE™M:b" < a >€
R}. So {fr: R € B,41} is a family of A,4; functions from M to B, hence it is
enough to show:

define Ry = Ry = {a € My: fr,(a) = fr,(a)} is co-finite;
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then

(@) =~ is an equivalence relation on B, 41,

(B) each =-equivalence class has cardinality < A,,

(v) if =[R1 =~ Ry], R1 € Bpy1, Ra € B,y then {a € M: fg,(a) = fr,(a)}is

finite.

Now clause () is straight, for clause () just compute, for clause () remember
z = z is a minimal formula. Together, a set of representations T for B, 41/ ~ will
have cardinality Ap+1 (88 |Bnt1| = Ant1 > An = |B,| > u by clauses (), (8))
and {fr: R € T} is a set of functions as required. | A

4.5 LEMMA: Suppose (%), .2, b < A. Then
(a) there is a group G of permutations of p such that |G| = A and f # g €
G = {a < u: f(a) = g(a)} is finite,
(b) there is a theory T as in 1.1, |T| = A, with a tiny model of cardinality p of
Case A.

Proof: As (a) = (b) is proved in [LaPiRo], p. 39223~3! we concentrate on (a).
Let pr(~, —) be a pairing function on g, i.e., pr is one-to-one from p x g onto y.
So let {A¢: ¢ < A} C [u]* be such that ¢ # £ = Rg > |A¢ N Ag|. Clearly p®0 > A,
hence there is a list 7j(n¢: ¢ < A) of distinct members of “u. By renaming we
can have the family {A¢n: ( < A,n < w}, such that (A¢, € [u]*,[((,n) #
(&;m) = [Acn N Agm| < Vo] and) Up oy A¢n NUc o Agym = 0 for n # m, and
C# &= (A)Vm)n<m<w— Acn N Agn = 0] (use 7(). Let gg,n € *u be
9?2 (@) = the ath member of A, and g (@) = pr(a, g2 ,(a)), so also g¢ ,, is &
function from u to p.

We define the set A = p x (*>{~1,+1}); clearly |A| = p. Let z,y vary
on {—1,+1}. Now for {( < A we define a permutation f; of A, by defining
FEV T (xAmy) = fe 1 (x {n}), £71 1 (wx {n}) for n € *{~1,+1} by induction
on 7 (so in the end, fc’1 is the inverse of fr = fc“).

For n =0, 7= () and let for z € {~1,+1}, fE(e, () = (g o(a), (z)).

Forn+1,7=v"(y) € "TH{-1,+1} we let

(0) fE(erm) = (B,) when

z = —y, f{(B,v) = (a,n) (by the previous stage),

(8) f2(@m) = (8t ny1(c),m"(z)) when () does not apply.
Easily f¢ is a well-defined permutation of A.

Now {f¢ : ( < A} generates a group G of permutations of A. We shall prove it
generates G freely; moreover:

® ifn < w, t = {{{(£),z(£)) : £ < n) is such that ((¢) < A, z(f) € {-1,1},

and for no £ < n do we have ((f) = ((£+ 1) and z(£) = —z(f£ + 1)
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ie., () is a non-trivial group term) then
£<n J¢(8)

A={aca([[ ) =a)

€<n

is finite.
As |A| = p, this clearly suffices.
As this property of legn fg(%) is preserved by conjugation without loss of
generality
(x)o £<n=((f) #¢(L+1)Vz(f) # z(£+1) where n+1 is interpreted as zero.
For any a € A; let
()1 bLfa) = (Tim fZ(“))( ) form <n+1
(so bt ,[a] = a = bh[a] and for m = 0,...,n we have

b:n [a] = z((;n)) (bm+1 [a])),

(¥)2 bl,lal = (Bralal, ntalal)-

Choose m* < w large enough such that:

()3 ifm >m* and 0 < ¢; < £ < nand ((£1) # ((£2) then Aep,).mNA¢(ey),m =
0.

For a € A; let m = mla] < n + 1 be such that lg(n%,[a]) is maximal and call

the length k = k[a]. As f¢((a,n)) = (8,v) implies lg(n) € {lg(v) — 1,lg(v) + 1},

clearly

()4 lg(ntu_1la]) = lg(nhyqla]) = lg(nf,[a]) — 1 (where m —1,m + 1 means
mod n + 1).

Clearly

(¥)s(a) bla] = Z(‘,;’:?wt wala)),

(b) b, _ylal = fEm™ Y (b fa]), hence (as (fZim—y)) ™t = fr ™ V) we have

(b) bL,la] = fr o™V (b sla)).
Looking at the definition of fc(fn(ml)l)(b 1la]), as m = ma], by ()4 clause (B)
in the definition of f applies, so

()6(a) Fom D (bhacsla]) = (9 mo1) 41a (Ba-1lal), (s [a))(—2(m = 1))
Similarly looking at the definition fm((::))(b’ +1(a]), by (¥)4 clause ( ) applies, so
(K)6(b) frim) (biny11a])) = (G kia) (Brurrla])s (i1 [a)) " (2(m))).
By (x)5(b)’ + (*)g(a) we have
($)7(2) biala] = (G} (mory ke (Brnm1[a]), (a1 [a]) " (=2(m — 1))).
By (+)s(2) + (x)o(b) we have
($)7(0) bola] = (9 my ki) (Bt 110)s (T o) (E(m))))-
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We can conclude by (*)7(a) + (*)7(b) that
(¥)s z(m) = —z(m — 1), hence z(m) # z(m — 1).
So by (*)¢ applied to m — 1 we get
(xJo ¢(m) #({(m —1).
Clearly by (x)7(a) + (¥)7(b) we have
(*)10 gé(m),k[a] (Bhayilal) = gé(m_l),k[a] (Br—1la))-
Now by the choice of the gé ’s (and the pairing function) and (%)
()11 Bryala] = Br,_1[a] and gg(m),k[a](ﬂfnmal) = gg(m_n,k[a] (Br.—1lal)-

So by (*)11 and the choice of the g’s

(*)12 gg(m),k[a] (Bhatala]) = gg(m—l),k[a] (Br-1) € A¢(m) kla) N A¢(m—1) kla]-

If k[a] > m* we get a contradiction (by (*)3), so remembering m = m/a] necessar-
ily lg(nfn[a] [a]) < m* + 1, hence by the choice of m[a] we have A,lg(nk[a]) < m*.

So {(nkla]: £ < n+1): a € A;} is finite, hence it suffices to prove for each
f € "*1{~1,1} the finiteness of

Ar={a€ Au (nﬁ[a]: L<n+1) =7}

Let us fix 7.
As for a € A we have £g(nt,[a]) < m* for £ < n+1, it is enough to prove
that for each k = (k,: £ < n) the following set is finite:

A, = {a € Ay Lg(njla)) = ke for <n+1}.

Let K(k) = {¢ <n+1:keis > ke—1,kes1} (i-e., a local maximum).

For each m € K(k), the arguments in (x)3 — (*)12 apply, so by (x)11, iff a €
A, ;% then the value £g(n}, [a]) is determined and g2, . (BJ,41lal) € A¢imy kN
A((m=1)k.; but the latter is finite so we can fix gg(m),km (Bt 11lal) = Ym, but
8Lt o (Bt 11al) can be computed from 3 = g2 ¢ (B 4la]) and (¢(m), k),
i.e., as pr(otp(A¢(m),kn NY)s Ym)-

But by (*)7(b) the latter is 8% [a] and as 7 [a] = 7m the value of b [a] is
uniquely determined. Similarly by induction we can compute the other b, [a] for
every ', in particular bf{a] = a, so we are done. Ls

4.6 Conclusion: For a cardinal u, the following are equivalent:
(a) there is a T as in 4.5(b) (i.e., T categorical in |T|*,|T| > ), with a tiny
model M, ||[M|| = p as in Case A above,
(B) (%) ppuput
(c) there is a group G of permutations of y, |G| = ut such that for g € G,
{a < u: g(a) = a} is finite or is p.
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