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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 62, Number 2, June 1996 

ON FINITE RIGID STRUCTURES 

YURI GUREVICH AND SAHARON SHELAH 

Abstract. The main result of this paper is a probabilistic construction of finite rigid structures. It yields 

a finitely axiomatizable class of finite rigid structures where no L' ,formula with counting quantifiers 
defines a linear order. 

?1. Introduction. In this paper, structures are finite and of course vocabularies 
are finite as well. A class is always a collection of structures of the same vocabulary 
which is closed under isomorphisms. 

An r-ary global relation on a class K is a function p that associates an r-ary 
relation PA with each structure A C K in such a way that every isomorphism from 
A onto whatever structure B extends to an isomorphism from the structure (A, PA) 

onto the structure (B, PB) [2]. 
Recall that a structure is rigid if it has no nontrivial automorphisms. If a binary 

global relation < defines a linear order in a class K (that is, on each structure in K) 
then every structure in K is rigid. Indeed, suppose that 0 is an automorphism of a 
structure A C K and let a be an arbitrary element of A. Since 

A K (x) < 0(a) A l=x < a, 

A 0(x) >0(a) A A x>a, 

the number of elements preceding 0 (a) in the linear order <A equals the number of 
elements preceding a. Hence 0 (a) = a. 

Conversely, if every structure in a class K is rigid then some global relation p 
defines a linear order on each structure in K. The question arises how easy it is 
to define such an order. Alex Stolboushkin constructed a finitely axiomatizable 
class of rigid structures such that no first-order formula defines a linear order in 
K [4]. Anuj Dawar conjectured that, for every finitely axiomatizable class K of 
rigid structures, some formula in the fixed-point extension FO+FP of first-logic 
defines a linear order in K [1]. Using the probabilistic method, we refute Dawar's 
conjecture and construct a finitely axiomatizable class of rigid structures where no 
linear order is definable even in the extension LO , + C of logic L(O , with counting 
quantifiers; see Theorem 4.1. (It is well-known that every global relation definable 
in FO+FP is definable in LO , ,.) At the end of Section 4, we answer a question of 
Scott Weinstein [5] related to rigid structures. 
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550 YURI GUREVICH AND SAHARON SHELAH 

To make this paper self-contained, we provide a reminder on LO, 0t + C in the 
rest of this section. As in a popular version of first-order logic, LO formulas 
are built from atomic formulas by means of negations, conjunctions, disjunctions, 
the existential quantifier and the universal quantifier. The only difference is that 
LO wallows one to form the conjunction and the disjunction of an arbitrary set S 
of formulas provided that the total number of variables in all S-formulas is finite. 
LCO (1+ C is the extension of LO by means of counting quantifiers (E2x), (E3x), 
etc. The semantics is obvious. L', W (resp. Lko ',0 + C) is the fragment of LO, 
(resp. Lo c + C) where formulas use at most k variables. The counting quantifiers 
are useful because of the restriction on the number of variables. 

There is a pebble game Gk(A, a,,... , al; B, bi, ... , b1) appropriate to L4, + 
C [3]. Here A and B are structures of the same purely relational vocabulary, 1 < k 
and each ai (respectively bi) is an element of A (respectively B). Often I = 0. 
For explanatory purposes, we pretend that (A, ai, ... , al) is located on the left and 
(B, bi, ... , bl) is located on the right, but in fact A and B may be the same structure. 

The game is played by Spoiler and Duplicator. For each i = 1,... , k, there are 
two pebbles marked by i: the left i-pebble and the right i-pebble. Initially the left 
(respectively the right) i-pebble with i < l covers ai (respectively bi), and the other 
pebbles are off the board. After any number of rounds, for every i, either both 
i-pebbles are off the board or else the left i-pebble covers an element of A and the 
right i-pebble covers an element of B; the pebbles define a partial isomorphism if 
(a) the left i-pebble and the left j-pebble cover different elements if and only if the 
right i-pebble and the right j-pebble cover different elements, and (b) the map that 
takes any left-pebble-covered element of A to the element of B covered by the right 
pebble of the same number is a partial isomorphism. A round of Gk (A, B) is played 
as follows. 

1. If the pebbles do not define a partial isomorphism, then the game is over; 
Spoiler has won and Duplicator has lost. Otherwise Spoiler chooses a number i; if 
the i-pebbles are on the board, they are taken off the board. Then Spoiler chooses 
left or right and a nonempty subset X of the corresponding structure. 

2. Duplicator chooses a subset Y on the other side such that Y = X. If 
such Y does not exist, then the game is over; Spoiler has won and Duplicator has 
lost. 

3. Spoiler puts an i-pebble on an element y C Y. It is the right i-pebble if Spoiler 
has chosen left, and the left i-pebble otherwise. 

4. Duplicator puts the other i-pebble on an element x C X. 

Duplicator wins a play of the game if the number of rounds in the play is infinite. 

THEOREM 1. 1 ([3]). No sentence p(vI, . .. , vi) in L k + C distinguishes between 
(A, a,,... , al) and (B, b,.. , b1) if Duplicator has a winning strategy in the game 
Gk(A,al,... ,al;B,bl,... bi). 

It is not hard to prove the theorem by induction on A. The converse implication 
is true too [3] but we will not use it. 

Acknowledgment. This investigation has been provoked by a stimulating conver- 
sation that one of us had with Steven Lindell and Scott Weinstein at the beginning 
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ON FINITE RIGID STRUCTURES 551 

of October 1993. Eric Rosen and Michael Taitslin and a referee helped to debug 
the paper. 

?2. Hypergraphs. 
2.1. Preliminaries. In this paper, a hypergraph is a pair H = (U, T) where U = 

IHI is a nonempty set and T is a collection of 3-element subsets of U; elements 
of U are vertices of H, and elements of T are hyperedges of H. H can be seen as 
a structure with universe U and irreflexive symmetric ternary relation { (x, y, z) 

{x,y,z} C T}. 
Every nonempty subset X of U gives a sub-hypergraph 

HIX= (X,{h: hE TAhCX}) 

of H. The number of hyperedges in H IX will be called the weight of X and denoted 
[X]. As usual, the number of vertices of X is called the cardinality of X and denoted 

XII. 
Vertices x, y of a hypergraph H are adjacent if there is a hyperedge {x, y, z}; the 

vertex z witnesses that x and y are adjacent. 

DEFINITION 2.1.1. A vertex set X is dense if X < 2[X]. A hypergraph is 1- 
meager if it has no dense vertex sets of cardinality < 21. H 

LEMMA 2.1.1. In a 2-meager hypergraph, the intersection of any two distinct hyper- 
edges contains at most one vertex. 

PROOF. If 11h1 n h211 = 2 then h1 U h2 is dense. H 

DEFINITION 2.1.2. A vertex set X is super-dense or immodest if IIXII < 2[X]. A 
hypergraph is i-modest if it has no super-dense sets of cardinality < 21. H 

It follows that if X is a dense vertex set of cardinality < 21 in an /-modest 
hypergraph then X = 2[X] and in particular X is even. 

2.2. Cycles. 

DEFINITION 2.2.1. A sequence xl,... , k of k > 3 distinct vertices is a weak cycle 
of length k if 

1. each xi is adjacent to xi+,, and 
2. either k > 3 or else k = 3 but {XI, X2, X3} is not a hyperedge 

where the subscripts are numbers modulo k. H 

We will index elements of a weak cycle of length k with numbers modulo k. 

DEFINITION 2.2.2. Let k > 3. A weak cycle xi, .. , xk is a cycle of length k if no 
triple xi, xi+I, Xi+2 forms a hyperedge. A corresponding witnessed cycle of length k 
is a vertex sequence xi,... , Xk, YI,... , Yk where each yi witnesses that xi is adjacent 

to xi+i H 

DEFINITION 2.2.3. A vertex sequence xI, x2 is a cycle of length 2 if there are 

distinct vertices YI, Y2 different from Xl, x2 such that {xI, x2, yI } and {x2, Xl, Y2} 

are hyperedges; the sequence xI, x2, yI, Y2 is a corresponding witnessed cycle of 

length 2. H 
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552 YURI GUREVICH AND SAHARON SHELAH 

LEMMA 2.2.1. Every weak cycle includes a cycle. More exactly, some (not neces- 
sarily contiguous) subsequence of a weak cycle is a cycle. Thus, an acyclic hypergraph 
(that is, a hypergraph without any cycles) has no weak cycles. 

PROOF. We prove the lemma by induction on the length of a weak cycle. Let 
X1,... ,Xk be a weak cycle that is not a cycle, so that some Xi,Xi+l, Xi+2 is a 
hyperedge; without loss of generality, i = 1. Then the sequence x1, X3, . . , Xk of 
length k - 1 is a weak cycle or a hyperedge. In the first case, use the induction 
hypothesis. In the second, k = 4 and X1, X3 form a cycle witnessed by x2 and X4. H 

THEOREM 2.2.1. In any 1-modest graph, 
* every minimal dense set of cardinality 2k < 21 forms a witnessed cycle of length 

k, and 
* the vertices of every witnessed cycle of length k < 1 form a minimal dense set 

of cardinality 2k. 

The theorem clarifies the structure of minimal dense sets of cardinality < 21 which 
play an important role in our probabilistic construction. However the theorem itself 
will not be used and can be skipped. The rest of this subsection is devoted to proving 
the theorem. 

PROOF. The case I = 1 is trivial: there are no dense sets of cardinality 2 and there 
are no cycles of length 1. Fix some number I > 2 and restrict attention to i-modest 
hypergraphs. 

LEMMA 2.2.2. For every vertex set X, the following statements are equivalent. 
1. X is a dense set of cardinality 4. 
2. X is a minimal dense set of cardinality 4 
3. The vertices of X form a witnessed cycle of length 2. 

PROOF A set of cardinality < 3 cannot be dense. Thus 1 is equivalent to 2. 
It is easy to see that 3 implies 1. It remains to check that 1 implies 3. Suppose 
1. By i-modesty [X] = 2. Thus, X includes two hyperedges h1 and h2. Clearly, 
h1 U h2 = X and 1h1 n h211 = 2. It is easy to see that the vertices of h1 n h2 form a 
cycle and the vertices of X form a corresponding witnessed cycle. H 

In the rest of this subsection, 3 < k < 1. 

LEMMA 2.2.3. Every witnessed cycle X1,... , Y1, . . , Yk forms a dense set of 
cardinality 2k. 

PROOF. Let W = {x1,... , kY1,..., Yk} It suffices to check that the k hyper- 
edges {xi, xi+ 1,y } are all distinct. For then, using I-modesty, we have 

2k < 2[W]< ? WII < 2k. 

If i =# j but {xi, xi+,, yi} = {xj, x}j+, yj} then either xj = xi+, or else xj = yi in 
which case xj+1 = xi. Without loss of generality, xj = xi+, and therefore j = i + 1 
modulo k. If also xj+1 = xi then i = j + 1 = i + 2 modulo k which contradicts 
the fact that k > 2. Thus xj+1 = yi, so that yj = Xi+2 and therefore {xi, Xi+l, Xi+2} 
is a hyperedge which contradicts the definition of cycles. H 
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ON FINITE RIGID STRUCTURES 553 

LEMMA 2.2.4. Every minimal dense vertex set of cardinality 2k forms a witnessed 
cycle of length k. 

PROOF Without loss of generality, the given minimal dense vertex set contains all 
vertices of the given hypergraph H; if not, restrict attention to the corresponding 
sub-hypergraph of H. 

It suffices to prove that H includes a weak cycle of length < k. For then, by 
Lemma 2.2.1, H includes a cycle of length < k. If a witnessed version of the cycle 
contains less than 2k vertices then, by the previous lemma, H contains a proper 
dense subset, which is impossible. 

By contradiction suppose that H does not include a weak cycle of length k. 

CLAIM 2.2.1. A hypergraph of cardinality 2k is acyclic if no proper vertex set is 
dense and there is no weak cycle of length < k. 

PROOF. By contradiction suppose that there is a cycle of length m > k and choose 
the minimal possible m. Consider a witnessed cycle X1,... , XM, Y1,.II , yM. 

Since the hypergraph has < 2m vertices, some yi occurs in X1,... , xm. Without 
loss of generality, y, = xj for some j, so that {xI, x2, xj} is a hyperedge and 
therefore j differs from 1, 2 and 3. But then the sequence x2, . . , xj is a weak cycle 
and therefore includes a cycle of length < m. This contradicts the choice of m. H 

It follows that H is acyclic. 

CLAIM 2.2.2. Any acyclic hypergraph of positive weight contains a hyperedge Y 
such that at most one vertex of Y belongs to any other hyperedge. 

PROOF. Let s = (XI, . . ., Xk) be a longest vertex sequence such that (i) for every 
i < k, xi is adjacent to xi+1, and (ii) if k > 2 then, for no i < k - 1, the triple 
xi, Xi+I, Xi+2 forms a hyperedge. Since the hypergraph has hyperedges, k > 2. If 
k = 2 then all hyperedges are disjoint and the claim is obvious. Suppose that k > 3. 

Since Xkl and xk are adjacent, there is a vertex y such that Y = {xk1, Xk, y} is 
a hyperedge. Since there are no cycles of length 2, y is defined uniquely. We prove 
that neither xk nor y belongs to any other hyperedge. Vertex y does not occur 
in X1,... , Xk; otherwise the segment [y, xk-1] of s is a weak cycle. Notice that y 
can replace xk in s. Thus it suffices to prove that Xk does not belong to any other 
hyperedge. 

By contradiction, suppose that a hyperedge Z =A Y contains xk and let z c Z - Y. 
By the maximality of s, it contains z; otherwise s can be extended by z. But then 
the final segment [z, Xk] of s forms a weak cycle. H 

CLAIM 2.2.3. No acyclic hypergraph is dense. 

PROOF. Induction on the cardinality of the given hypergraph I. The claim is 
trivial if [I] = 0. Suppose that [I] > 0. By the previous claim, I has a hyperedge 
X = {x, y, z} such that neither y nor z belongs to any other hyperedge. Let J be the 
sub-hypergraph of I obtained by removing vertices y and z. Using the induction 
hypothesis, we have 

IIIII = IIJII + 2 > 2[J] + 2 = 2([I] + 1) = 2[I]. H 
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554 YURI GUREVICH AND SAHARON SHELAH 

By Claim 2.2.3, H is not dense which gives the desired contradiction. Lemma 2.2.4 
is proved -H 

LEMMA 2.2.5. Every witnessed cycle of length k forms a minimal dense set. 

PROOF. Let W be the set of the vertices of the given witnessed cycle of length 
k. By Lemma 2.2.3, W is a dense set of cardinality 2k. By the 1-modesty of the 
hypergraph, W contains precisely k hyperedges. It is easy to see now that every 
proper subset X of W is acyclic; by Claim 2.2.3, X is not dense. H 

Lemmas 2.2.2-2.2.5 imply the theorem. H 

2.3. Green and red vertices. Fix l > 2. For brevity, we use the following termi- 
nology A minimal dense vertex set of cardinality < 21 is a red block. A vertex is red 
if it belongs to a red block; otherwise it is green. A hyperedge is green if it consists 
of green vertices. The green sub-hypergraph is the sub-hypergraph of green vertices. 

Consider a sufficiently modest hypergraph. More precisely, we require that the 
hypergraph is (21 + 2)-modest. It follows that, for every dense set V of cardinality 
< 41 + 4, 11 V11 = 2[V]. 

LEMMA 2.3. 1. Distinct red blocks are disjoint. 

PROOF. We suppose that distinct red blocks X and Y have a nonempty intersec- 
tion Z and prove that the union V = X U Y is immodest. Indeed, Z is a proper 
subset of X; otherwise Y is not a minimal dense set. Therefore Z is not dense and 

V11 = JJXJJ + 11 Y11 - JZJJ =2[X] + 2[Y] - llZJJ 
< 2[X] + 2[Y] - 2[Z] = 2([X] + [Y] - [Z]) < 2[V]. i 

LEMMA 2.3.2. Adjacent red vertices belong to the same red block. 

PROOF. Suppose that adjacent red vertices x and y belong to different red blocks 
X and Y respectively, and let h be a hyperedge containing x and y. We show that 
the set V = X U Y U h is immodest. Indeed, 

11 V1 X < JJXJJ + 11 Y11 + I = 2[X] + 2[Y] + I < 2([X] + [Y] + 1) < 2[V]. -H 

LEMMA 2.3.3. No green vertex is adjacent to two (or more) red vertices. 

PROOF. By contradiction suppose that a green vertex b is adjacent to distinct red 
vertices x and x'. Let X, X' be the red blocks of x, x' respectively, h be a hyperedge 
containing b and x, and h' be a hyperedge containing b and x'. We show that the 
set V = X U X' U h U h' is immodest. By the previous lemma, h = h' implies 
X=X'. 

If h = h' then 

11 V11 = JJXJJ + = 2[X] + I < 2([X] + 1) < [V]. 

If h h'butX=X'then 

11 V11 < JXJJ + 3 =2[X] + 3 < 2([X] + 2) < 2[V]. 

If X 74 X' then 

11 V11 < JJXJJ + JJX'1I + 3 = 2[X] + 2[X'] + 3 < 2([X] + [X'] + 2) < 2[V]. -H 
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ON FINITE RIGID STRUCTURES 555 

DEFINITION 2.3.1. A hypergraph is odd if, for every nonempty vertex set X, there 
is a hyperedge h such that IIh n X is odd. -1 

For future reference, some assumptions are made explicit in the following theo- 
rem. 

THEOREM 2.3.1. Suppose that a hypergraph H of cardinality n satisfies thefollowing 
conditions where n' < n. 

* H is (21 + 2)-modest. 
* The number of red vertices is < n'. 
* Every vertex set of cardinality > n' includes a hyperedge. 
* For every nonempty vertex set X of cardinality < n', there exist a vertex x C X 

and distinct hyperedges hI, h2 such that h, n X = h2 nX = h Onh2 = {x}. 
Then the green sub-hypergraph of H is an odd, I-meager hypergraph of cardinality 

> n-nW. 

PROOF. Since the green sub-hypergraph G is obtained from H by removing all 
dense vertex sets of cardinality < 21, G is i-meager. By the second condition, 

II G I > n - n'. To check that G is odd, let X be a nonempty set of green vertices. 
If IIXII > n', use the third condition. Suppose that IXII < n' and let x, h1, h2 be 
as in the fourth condition; both IIh1 n XII and IIh2 n XIl are odd. If at least one of 
the two hyperedges is green, we are done. Otherwise x is adjacent to different red 
vertices which, by Lemma 2.3.3, contradicts the first condition. H 

2.4. Attraction. 

DEFINITION 2.4.1. In an arbitrary hypergraph, a vertex set X attracts a vertex y 
if there are vertices x1, x2 in X such that {x1, x2, y} is a hyperedge. X is closed if it 
contains all elements attracted by X. As usual, the closure X of X is the least closed 
set containing X. -H 

LEMMA 2.4.1. In an l-meager hypergraph, if X is a vertex set of cardinality k < I 
then IXII < 2k. 

PROOF. Construct sets X0, . , Xm as follows. Set Xo = X. Suppose that sets 

X0, . . ., Xi have been constructed. If Xi is closed, set m = i and terminate the 
construction process. Otherwise pick a hyperedge h such that II h n x1 = 2 and let 
Xi+1 = h u Xi. We show that m < k. 

By contradiction suppose that m > k. Check by induction on i that Xi1 = k + i 
and [Xi] > i. Since the hypergraph is I-meager, we have: 2[Xk] < Xk = 2k < 

2[Xk]. This gives the desired contradiction. -H 

LEMMA 2.4.2. Suppose that Y is a vertex set of cardinality < k in a k-meager 
hypergraph and p = YI - YI . Then p < k and there is an ordering z1,... , zp of 
Y - Y such that each zj is attracted by Y U {zi: i < j}. 

PROOF. By the previous lemma, 1I Y11 < 211 YII. Hence p = 11 Y-Y11 < 11 Y11 < k. 
Choose elements zj by induction on j. Suppose that 1 < j < p and all elements zi 
with i < j havebeenchosen. Since 11 Y1 =11 YII+p, thesetZJ-1 = YU{zi : i < j} 
is not closed. Let zj be any element in Y - Y attracted by Zj-1. -H 
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556 YURI GUREVICH AND SAHARON SHELAH 

THEOREM 2.4.1. Suppose that X is a vertex set of cardinality < k in a k-meager 
hypergraph, zo V X, Y = XU {zo}, Z = Y and p = IIZ - Y 1. Then p < k and 
there is an ordering z1,... , zp of Z - Y such that, for every j > 0, zj is attracted by 
Y U {zi 1 < i < j } and there is a unique hyperedge hj witnessing the attraction. 

PROOF. The set X U {zo} is of cardinality < k and its closure includes Y and 
therefore includes Z. Using Lemma 2.4.2, we have 

p = 1Z-Y11 < 11Z-(X U {zo})jj < k. 

Construct sequence z1, . . ., zp as in the proof of the previous lemma. For any 
j > 0, let hj be a hyperedge witnessing that Z} - 1 = Y U {zi : 1 < i < ji} attracts yj. 
By contradiction suppose that, for some positive j < p, some hyperedge h' =A hj 
witnesses that zj is attracted by Zj1. Let S = {h1,... , h, h}. We show that 
V = U S is a dense set of cardinality < 2k which contradicts the k-meagerness of 
the hypergraph. 

Since V contains all hyperedges in S, [V] > j + 1. Since none of the vertices 
z1, .. ., zj is attracted by X, 1ho n X l < I for all h c S and thus 11 v n X11 < ? + 1. 
We have 

11iVil < 11 (V nk) u zo, .. Izjjj < (j + ) +(j +1) < 2 [V]. 

Thus V is a dense set of cardinality VII < 2(j + 1) < 2(p + 1) < 2k. H 

?3. Existence. 

THEOREM 3.1. For any integers 1 > 2 and N > 0, there exists an odd i-meager 
hypergraph of cardinality > N. 

In fact, for every 1 > 2 and every sufficiently large N, there exists an odd i-meager 
hypergraph of cardinality precisely N but we do not need the stronger result. 

PROOF. Fix 1 > 2 and N > 0 and choose a positive real e < 1/(21 + 3). Let n 
range over integers > 2N divisible by 4 and U be the set of positive integers < n. 
For each 3-element subset a of U, flip a coin with probability p = n-2+E of heads, 
and let T be the collection of triples a such that the coin comes up heads. This gives 
a random hypergraph H = (U, T). 

We will need the following simple inequality. In this section, exp a = ea and 
log a = loge a. 

CLAIM 3.1. For allpositive reals q, r, s such that pr < 1/2, 

(1) exp(-2qns -2r+rE) < (1 - pr)qn' < exp(-qns-2r+r) 

PROOF. Suppose that 0 < a < 1/2. By Mean Value Theorem applied to function 
f(t) = - log(1 - t) on the interval [0, a], there is a point t C (0, a) such 

f (a) - f (0) = - log(1 - a) = (a - O)f'(t) = a/(1 - t). 

Since a < a/(1 - t) < a/(1 - a) < a/(1 - 1/2) = 2a, we have a < - log(1 - a) < 
2a and therefore e-2 < 1 - a < e-a. Now let a = pr and raise the terms to 
power qnS. H 
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ON FINITE RIGID STRUCTURES 557 

Call an event E = E (n) almost sure if the probability P[E] tends to 1 as n grows 
to infinity. We prove that, almost surely, H satisfies the conditions of Theorem 2.3.1 
with n' = n/4 and therefore the green subgraph of H is an odd i-meager graph of 
cardinality > N. 

LEMMA 3. 1. Almost surely, H is (21 + 2)-modest. 

PROOF. Since I is fixed, it suffices to prove that, for each particular m < 41 + 4, 
the probability qm that there is a super-dense vertex set of cardinality m is o( 1). A 
vertex set X of cardinality m is super-dense if m < 2[X], that is, if X includes more 
than m/2 hyperedges. Let k be the least integer that exceeds m/2. Then m < 2k - 1 
and therefore nm-2k < n-1. Also 2k -2 < m < 41 + 4, so that k < 21 + 3 and 
ke < 1. LetM = ( 3) andC = (i). We have 

q < (n) .C . pk < c . nm . n(-2+)k = c . nm-2k+kE < C * nI+ k=o(1). - 

LEMMA 3.2. Almost surely, the number of red vertices is < n/4. 

PROOF. It suffices to prove that the expected number of red vertices is o(n). 
Indeed, let r be the number of red vertices and s ranges over the integer interval 
[n/4, n]. Then 

E[r] > Zs P[r = s] > n 
EP[r = s] = nP[r > n? 

S S 

and thus P[r > n] tends to 0 if E[r] = o(n). 
Furthermore, it suffices to show that, for each particular m < 21, the expected 

number f (m) of vertices v such that v belongs to a dense set X of cardinality 
m is o(n). Let k = [m/2]. Then m < 2k and therefore nm-2k < 1. Also, 
2k < mi+1 < 21+1 andtherefore k< I+1 and ke < 1. LetM = (3) and 
c =().We have 

f (m) < n * (-ll)Cpk < n * nm-lcpk 

-c . mpk = c . nm-2k+kE < c * nkE = o(n)H 

LEMMA 3.3. Almost surely, every vertex set of cardinality > n/4 includes a hyper- 
edge. 

PROOF. Chose a real c > 0 so small that cn3 < (n14) and let q be the probability 
that there exists a vertex set of cardinality > n/4 which does not include any 
hyperedges. Using inequality (1), we have 

q <2 (-)(n/4) n (1 - p)cn3 <en * exp(-cnl) () 

LEMMA 3.4. Almost surely, for every nonempty vertex set X of cardinality < n/4, 
there exist a vertex x C X and hyperedges h1, h2 such that 

h1 nX=h2nX=h, nh2 = {x}. 

PROOF. Let X range over nonempty vertex sets of cardinality < n/4, Y be the 
collection of even numbers y c U - X, and Z be the collection of odd numbers 
z c U - X. Clearly, I YII > n/4 and IIZII > n/4. 
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Let x range over X, a (x, X) mean that there exist vertices Y1, Y2 C Y such that 
{x, Y1, Y2} is a hyperedge, and r (x, X) mean that there exist vertices z1, Z2 C Z such 
that {x, z1, Z2} is a hyperedge. Call X bad if the conjunction a(x, X) A T(x, X) fails 
for all x. We prove that, almost surely, there are no bad vertex sets. 

Choose a real c > 0 so small that cn2 < (n/4). For given X and x, 

P[-o(x, X)] = (1 - ? (1 - < (1 - p)Cf2 < exp[-cns]. 

The last inequality follows from inequality (1). Similarly, P[-1T (x, X)] < exp[-cn&]. 
Hence 

P[-o (x, X) V -r(x, Y)] < P[-j (x, X)] 

+ P[-T (x, X)] < 2 exp[-cn'] = exp[log2 - cn']. 

If HXJJ = m then 

P[X is bad ] < (exp[log2 - cn])m = exp[m(log2 - cnE)]. 

For each m < n/4, let qm be the probability that there is a bad vertex set of 
cardinality m. For sufficiently large n, log 2n - cnE < 0 and therefore exp(log 2n - 

cn&) < 1. Thus 

qM < ntm exp[m(log2 - cnE)] = exp[m(log2n - cn&)] < exp[log2n - cnE]. 

Finally, let q be the probability of the existence of a bad set. We have 

q < n exp[log2n-cn] = o(1). H 

Theorem 3.1 is proved. H 

?4. Multipedes. The domain {x: y(xEy)} and the range {y: x(xEy)} of 
a binary relation E will be denoted D (E) and R(E) respectively. 

DEFINITION 4.1. A I-multipede is a directed graph (U, E) such that D (E) n 
R(E) = 0, D(E) U R(E) = U, every element in D(E) has exactly one outgo- 
ing edge and every element in R(E) has exactly two incoming edges. H 

If xEy holds then x is afoot of y and y is the segment S(x) of x. We extend 
function S as follows. If x is a segment then S(x) = x. If X is a set of segments 
and feet then S(X) = {S(x) : x C X}. 

DEFINITION 4.2. A 2- -multipede is a structure (U, E, T) such that (U, E) is a 1- 
multipede and (LU, T) is a hypergraph where each hyperedge h satisfies the following 
conditions: 

* Either all elements of h are segments or else all elements of h are feet. 
* If h is a foot hyperedge then S(h) is a hyperedge as well. H 

If X = {x, y, z} is a segment hyperedge then every 3-element foot set A with 
S (A) = X is a slave of X. A slave A of X is positive if A is a hyperedge; otherwise 
it is negative. Two slaves of X are equivalent if they are identical or one can be 
obtained from the other by permuting the feet of two segments. In other words, if 
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ON FINITE RIGID STRUCTURES 559 

a, a' are different feet of x and b, b' are different feet of y and c, c' are different feet 
of z then the eight slaves of X split into the following two equivalence classes 

{a, b, c}, {a, b', c'}, {a', b, c'}, {a', b', c} 

and 
{a' ,b, c}, {a, b', c}, {a, b, c'}, {a', b', c'}. 

DEFINITION 4.3. A 2-multipede is a 2--multipede where, for each segment hy- 
peredge X, exactly four slaves of X are positive and all four positive slaves are 
equivalent. -H 

A 2-multipede (U, E, T) is odd if the segment hypergraph (R(E), T) is so. 

LEMMA 4.1. If an automorphism 0 of an odd 2-multipede does not move any segment 
then it does not move any foot either 

PRooF. By contradiction suppose that 0 moves a foot a of a segment x. Clearly, 
0(a) is the other foot of x. Let X be the collection of segments x such that 0 
permutes the feet of x. Since the multipede is odd, there exists a segment hyperedge 
h such that 11h n X11 is odd. It is easy to see that 0 takes positive slaves of X to 
negative ones and thus is not an automorphism. -H 

LEMMA 4.2. Let M be a k-meager 2-multipede and T be the extension of the 
vocabulary of M by means of individual constants for every segment of M. No 
T-formula ~p(v) in Lkc + C distinguishes between the two feet of any segment of 
M. 

PROOF. Call a collection X of segments and feet replete if a C X +-* S (a) C X 
for every foot a. The least replete set that includes X is the repletion of X. Call 
X closed if it is replete and the segments of X form a closed set in the sense of 
Definition 2.4.1. The least closed set that includes X is the closure X of X. 

A partial automorphism over M is a partial isomorphism from M to M. A partial 
automorphism a is regular if a leaves segments intact and takes any foot to a foot 
of the same segment. The domain of a will be denoted D (a). a is safe if there is a 
regular extension of a to the closure D (a). 

CLAIM 4.1. Suppose that a is a safe partial automorphism over M, X = D (a) is 
replete and IIS(X) I? < k. Then there is a unique regular extension of a to X. 

PROOF. Suppose that ,B and y are regular extensions of a to X. Let Y = S (X) 
and Z = S(Y). By Lemma 2.4.2, there exists a linear order z1,... .,zp of the 
elements of Z - Y such that each zj is attracted by the set Z 1I = Y U {zj : i < j}. 
We need to prove that, for every j, either both ,B and y leave the feet of zj intact 
or else both of them permute the feet. We proceed by induction on j. Suppose 
that ,B and y coincide on the feet of every zi with i < j and let h witness that Zj-1 
attracts zj. Let {a, b, c} be any positive slave of h where c is a foot of zj. By the 
induction hypothesis, , (a) = y (a) and , (b) = y (b); let a' = /5(a) and b' = , (b). 
Since ,B and y are partial automorphisms, both {a', b', ,B(c)} and {a', b', y (c)} are 
hyperedges. Since M is a 2-multipede, ,B(c) = y (c). - 

The unique regular extension of a will be denoted &. 
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560 YURI GUREVICH AND SAHARON SHELAH 

CLAIM 4.2. Suppose that a is a safe partial automorphism over M, X = D (a) is 
replete and 11S(X) 11 < k. For every element a E - X, there is a safe extension of 
a to the repletion of X U {a} which leaves a intact. 

PROOF. We construct a regular extension f? of a to X U {a }. Let zo be the segment 
of a, Y = S(k) U {zo}, Z = S(f) and p = 11Z - Y11. By Theorem 2.4.1, there is 
a linear ordering z1, . . . , zP on the vertices of Z - Y such that, for every j > 0, zj 
is attracted by Y U {zi 1 I < i < i} and there is a unique hyperedge hj witnessing 
the attraction. 

The desired f? leaves intact all segments in Z and the feet of zo. It remains to 
define I? on the feet of segments zj, 1 < j < p. We do that by induction on j. 
Suppose that f? is defined on the feet of all zi with i < j and let hj be as above. Let 
d be a foot of zj and pick a positive slave {b, c, d } of hj; f? is already defined at b 
and c. The slave {,B(b), ,B(c), ,B(d )} of hj should be positive. This defines uniquely 
whether ,B(d) equals d or the other foot of z;. 

We need to check that ,B is a partial automorphism over M. The only nontrivial 
part is to check that if A is a slave of a segment hyperedge h then A is positive if 
and only if ,B(A) is positive. Without loss of generality, A 5 X. Let j be the least 
number such that S(X) U {zo, . . . , z; } includes h. Since X does not attract zo, X 
includes all hyperedges in S(X) U {zo}; thus j > 0. By the uniqueness property of 
hj, h = hj. By the construction of fP, A is positive if and only if ,P (A) is positive. H 

Now we are ready to finish the proof of Lemma 4.2. Let x be any segment of M 
and a, b are the two feet of x. By Theorem 1.1, it suffices to prove that Duplicator 
has a winning strategy in Gk (M, a; M, b). Clearly, the pebbles define a safe partial 
automorphism in the initial state. The desired winning strategy is to ensure that, 
after each round, pebbles still define a safe partial automorphism. This is doable. 
Indeed, suppose that pebbles define a safe partial isomorphism j and Spoiler starts 
a new round. Without loss of generality, IID (q) IH < k. (If IID (q) I = k then Spoiler 
starts with removing a pair of pebbles; the remaining pebbles define a safe partial 
automorphism j' with IID (q') II < k). Let X be the repletion of D (q). Since j is 
safe, there is a safe extension a of j to X. Without loss of generality, Spoiler chooses 
left and a set V (on the left). Duplicator chooses the set {f (y) : y E V} (on the 
right) where f is as follows. If y c X then f (y) = a(y); otherwise f (y) = y. 
If Spoiler chooses f (y), then Duplicator chooses y. It remains to check that the 
pebbles define a partial automorphism in the resulting state. The case y c X is 
obvious. In the other case, use Claim 4.2. H 

DEFINITION 4.4. A 3-multipede is a structure (U, E, T, <) where (U, E, T) is a 
2-multipede and < is a linear order on the set of segments of (U, E, T). -1 

DEFINITION 4.5. A 4-multipede is a structure (U U V, E, T, <, 6) satisfying the 
following conditions. 

1. E, T, < are relations over U (in other words, the elements of any tuple in 
E, T or < belong to U), and (U, E, T, <) is a 3-multipede. 

2. e is a binary relation with domain U and range V, and U n v = 0. 
3. for every set X of segments of the 3-multipede (U. , T, <), there exists a 

unique y c V such that x c X +-* xey for all segments x in (U, E, T, <). H 
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ON FINITE RIGID STRUCTURES 561 

Intuitively, elements of V are sets of segments of the 3-multipede (U, E, T, <) 
and e is the corresponding containment relation. Elements of V are called super- 
segments. A 4-multipede is odd if the hypergraph of segments is so. 

LEMMA 4.3. The collection of odd 4-multipedes isfinitely axiomatizable. 

PROOF. It is obvious that Conditions 1 and 2 are expressed by finitely many 
axioms. The following three axioms express Condition 3. 

* There is a super-segment Y such that there is no segment x with x6 Y. 
* For every super-segment Y and every segment x, there exists a super-segment 

Y' such that ye Y' +-* (ye Y V y = x) for every segment y. 
* Super-segments Y and Y' are equal if x6 Y +-* x6 Y' for all segments x. 

Using universal quantification over super-segments, it is easy to express the oddity 
condition in first-order way. - 

LEMMA 4.4. Every odd 4-multipede is rigid. 

PROOF. Let 0 be an automorphism of a 4-multipede M. Because of the linear 
order on segments, 0 leaves intact all segments. Therefore it leaves intact all super- 
segments. By Lemma 4.1, it leaves intact all feet as well. H 

A 4-multipede is /-meager if the hypergraph of segments is so. 

LEMMA 4.5. Let M be a k-meager 4-multipede. No formula p(v) in Lk t, + C 
distinguishes between the two feet of any segment of M. 

PROOF. The proof is similar to that of Lemma 4.2. We use the terminology and 
notation of the proof of Theorem 4. 1. If X is a collection of segments, feet and super- 
segments and X' is the set of segments and feet in X, define S (X) = S (X') and 
call X replete (respectively closed) if X' is replete (respectively closed). Claim 4.1 
remains true. Claim 4.2 remains true as well; if a is a super-segment, then X U {a } is 
closed and the desired ,P is the extension of & by means of f (a) = a. The remainder 
of the proof is as above. -1 

LEMMA 4.6. No Lk 1 + C formula f (vI, V2) defines a linear order in any k-meager 
4-multipede. 

PROOF. By contradiction suppose that an Lk + C formula (vI, v2) defines 
a linear order in a k-meager 4-multipede M. It is easy to see that f cannot be 
quantifier-free. Let V3 be any bound variable of A. The formula 

(VI ) = (Ev2)[P (v1, v2) A (Ev3)(E(v1, V3) A E(v2, V3))] 

asserts than vI is the first of the two feet of some segment in the order defined 
by p. It follows that q(vl) distinguishes between the feet of any segment, which 
contradicts Lemma 4.5. -1 

THEOREM 4.1. There exists a finitely axiomatizable class of rigid structures such 
that no Lo c + C sentence defines a linear order in every structure of that class. 

PROOF Consider the class K of odd 4-multipedes. By Lemmas 4.3 and 4.4, K 
is a finitely axiomatizable class of rigid structures. By Lemma 4.6, no L k + C 
sentence p defines a linear order in any k-meager 4-multipede. 
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Finally, we check that, for every 1, K contains an i-meager 4-multipede. By 
Theorem 3.1, there exists an odd i-meager 4-hypergraph H. Extend H to a 4- 
multipede by attaching two feet to each vertex of H, choosing positive slaves in 
any way consistent with the definition of 2-multipedes, ordering the segments in an 
arbitrary way and finally adding representations of all sets of segments. The result 
is an i-meager 4-multipede. - 

Call two structures k-equivalent if thereis no Lk sentencewhichdistinguishes 
between them. The notion is k-equivalence is explored in [1]. We answer negatively 
a question of Scott Weinstein [5]. 

THEOREM 4.2. There exist k anda structure M such that every structure k-equivalent 
to M is rigid but not every structure k-equivalent to M is isomorphic to M. 

Theorem remains true even if Lk is replaced with L ? C in the definition 
of k-equivalence. 

PROOF. By Lemma 4.3, there exists k such that a first-order sentence p with k 
variables axiomatizes the class of odd 4-multipedes. By Lemma 4.4, every model of 
p is rigid. By Theorem 3.1, there exists a k-meager odd hypergraph, and therefore 
there exists a k-meager odd 4-multipede M. Every structure that is k-equivalent 
to M satisfies p and therefore is rigid. By Lemma 4.5, there is a structure that is 
k-equivalent to M (even if counting quantifiers are allowed) but not isomorphic to 
M. -1 
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