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SOMEWHERE TRIVIAL AUTOHOMEOMORPHISMS

SAHARON SHELAH anp JURIS STEPRANS

ABSTRACT

It is shown to be consistent that there is a non-trivial autohomeomorphism of SN\N while all such
autohomeomorphisms are trivial on some open set. The model used is one due to Velickovic in which,
coincidentally, Martin’s Axiom also holds.

1. Introduction

An automorphism of 2(w)/[w]*™ (or, equivalently, an autohomeomorphism of
BN\N) is said to be trivial if there is a bijection between cofinite subsets of @ which
induces it; an automorphism is said to be somewhere trivial if its restriction to 2(A)
is trivial for some A4e[w]™. It was shown by Shelah [4, pp. 129-152] that it is
equiconsistent with ZFC that all automorphisms of #(w)/[w]<™ are trivial. The
argument which proves this can be viewed as two distinct and almost independent
arguments. The first part shows that it is consistent that every automorphism of
P(w)/[w] <™ is somewhere trivial while the second part expands on this argument to
obtain the consistency of the assertion that all automorphisms are indeed trivial.
Since the reasoning involved in both parts is, at least superficially, similar it is natural
to ask whether it might not just be a consequence of the fact that every automorphism
is somewhere trivial, that every automorphism is actually trivial. It is the purpose of
this paper to show that such a theorem does not exist and hence, the second part of
Shelah’s argument in [4] is indispensable; at the same time this answers [2, Question
205).

In order to be more precise the following definitions will be introduced.

DEefFINITION 1.1. The relation =* has the standard meaning—namely, 4 =* B if
and only if |AAB| < R, (here, AAB = (A\B) U (B\A4)). Also 4 =* B is defined to
mean that |B\A4| < ¥,. If 4 <  then the equivalence class of 4 with respect to =*
will be denoted by [A4].

The notation of triviality can now be precisely formulated.

DEFINITION 1.2. A homomorphism ®: 2(w)/[w] ™ — P(w)/[w] <™ is said to be
trivial on A < w if there is A’ =* 4 and a one-to-one function f: 4" — e such that
®([B]) = [f(B)] for every B = A. A homomorphism is said to be somewhere trivial if
there is some A €[w]™ on which it is trivial. A homomorphism is tzrivial if it is trivial
on w.
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It has already been mentioned that it was shown in [4] that it is consistent that all
automorphisms of Z(w)/[w]<% are trivial. The argument relied on the oracle chain
condition and it was not clear what the effect of Martin’s Axiom was on the question.
This was partially answered in [S] where it was shown that PFA implies that all
automorphisms of 2(w)/[w] <™ are trivial—for related results see [3]. The other half
of the answer was provided by Velickovic in [8], where it is shown that it is consistent
with Martin’s Axiom that a nontrivial automorphism of 2(w)/[w] <™ exists.

The following theorem of [8] offers an alternate characterization of triviality which
has proven to be very useful.

Lemma 1.1 (Velickovic). If @:P(w)/[w]<" —» P(w)/[w]<™ is an automorphism
and there exist Borel functions ¢, for new and a comeagre set G < P(w) such that for
every A€ G there is new such that [¢,(A)] = O([A]) then ® is trivial.

This is [8, Theorem 2] except that in [8] there is no reference to the comeagre set
G; however an inspection of the proof in [8] will reveal that the hypothesis of
Theorem 2 can be weakened to include G. Notice that if

D: P(w)/[w] M — P(w)/[w] <

is a trivial automorphism then it is simple to find a continuous function ¢ on 2(w)
such that [¢(4)] = ([ A]) for each 4 = w.

The notation i, will be used to denote the constant function whose domain is X
and which has value i at each point in X. Whenever reference is made to a topology
on P(w) this will be to the Cantor set topology under the canonical identification of
2 with 2(w); in other words, a natural base for this topology consists of all sets of

the form
{Adsw:1,U0,,2g},

where g is a finite partial function from w to 2.

The argument to be presented in the next section will be a modification and
combination of arguments from [4, pp. 129-152; 5, 8). For the reader’s benefit, some
definitions and lemmas from [4] will be recalled.

DEFINITION 1.3.  An w,-oracle is a sequence M = {M,:{ew,} such that

e M, is a countable transitive model of ZFC without the power set axiom,
e (€M, and M, = ¢ is countable,
o {ew,:4 n £eM,} contains a closed unbounded set for each 4 = w,.

Notice that the existence of an oracle requires that Cu, is true.

DEFINITION 1.4.  If M is an oracle then a partial order < on w, (or some set coded
by w,) will be said to satisfy the M-chain condition if there is a closed unbounded set
C such that for every {eC and 4 = ¢ with 4eM,, if 4 is predense in the order
(&, < n (Ex &) then it is predense in (w,, <).

Further discussion of these definitions as well as proofs of the following lemmas
can all be found in [4].

LEMMA 1.2, Assume that O, holds and ¢(x) is a I1, formula—possibly with a real
parameter—for each ¢ € w,. Suppose also that there is no re R such that ¢(r) holds for



Sh:427

SOMEWHERE TRIVIAL AUTOHOMEOMORPHISMS 51

all e w, and that there is still no such r even after adding a Cohen real. Then there is
an oracle M such that any partial order Q which satisfies the M-chain condition will not
add reR such that ¢(r) holds for all L€ w,.

Lemma 1.3, If {IM¢:Eew,} are oracles then there is a single oracle M such that if
any partial order satisfies the M-chain condition then it satisfies the W chain condition
for each (e w,.

The oracle M of Lemma 1.3 is easily described. It is the diagonal union of the
oracles {¥: & ew,}. This fact, rather than the statement of Lemma 1.3, will be used
in the proof of Lemma 2.6.

LemMA 1.4. If Vis a model of O, then there is, in V, an oracle IR such that if Q
satisfies the M-chain condition then 11k R N V is second category’.

LemMa 1.5. If M is any oracle and Q satisfies the M-chain condition then Q
satisfies the countable chain condition.

2. The proof

The following partial order P, was introduced by Velickovic in [8] to add a
non-trivial automorphism of ?(w)/[w]<% while doing as little else as possible—at
least assuming PFA.

DErFINITION 2.1. The partial order P is defined to consist of all one-to-one
functions f: 4 — B where

e ASwand Bc w,
e f()e(2***\2") for all iew and new if and only if i (2"**\2"),
e limsup,_, 1(2"*"\2")\ 4| = w and hence, by the previous condition,
limsup, _,|(2"*""\2")\B| = w.
The ordering on P is &*.
The terms 2" are not crucial since any sequence of intervals whose size tends to
infinity could equally well have been used. Further modifications to the partial order

are also possible—some can be found in [6}—but they are not important in the present
context. It is however, useful to note the following.

LEMMA 2.1. Assume MA,. Suppose that n < A and that
{fe:len

is an increasing sequence from P. Suppose further that there is an f* such that [ 2* f,
Sfor each E€n. Then there is an fe P such that f 2* f, for each {en.

Proof. 1t follows from MA, that there are 4 and B such that

o A 2*dom(f,) for each {en,
e B2*ran(f,) for each {en,

o limsup,_,|[2""\2"\4] = o,
e limsup,_,|2*"\2")\B| = w.

Let /= /'1(4 0 (/" B).
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LemMaA 2.2.  The partial order P is countably closed.

Proof. Given a sequence {f,:new} < P such that f, =*f, ., for each new,
choose inductively &, such that £, = | J{f, [ (w\k,):new} is a function. Now apply
Lemma 2.1.

From Lemma 2.1 it follows that, given a sequence {f,:{ € w,}, it will be useful to
find an element fe P such that f, =* f for each { e w,. The following partial order is
designed to do precisely this.

DeriNITION 2.2 Given {f.:{eu} = §& define P(F) to be the partial order
consisting of all ge P such that there is some € u such that g =* .. The ordering on
P(F) is < as opposed to =* in P.

DEerFINITION 2.3.  For any G which is a centred subset of P define

O, P(0)/[0] <N — P(e) /[0] <™

by
O.0X] = {[{g(i):ieX}] if (3ge G) (X < dom (g)),
G - N .

[o\{g(D):iew\X}] if (IgeCG)(w\X < dom(g)).
If @ is a P-name for an automorphism of #(w)/[w] <™ then define d, ®(4) = B if and
only if there is some pe G such that plt, ‘®(4) = B’.

Velickovic showed that forcing with P yields a non-trivial automorphism of
P(w)/[w] <.

THeorem 2.1. If G< P is a generic filter on P then ®; is a non-trivial
automorphism of P(w)/[w] <™.

Proof. If it can be shown that dom (®,) = P(w)/[w]<™ = ran (D) then it is
routine to check that @, induces the desired autohomeomorphism of SN\N. To
see that this is so, assume that peP and X € w (since P is countably closed, by
Lemma 2.2, there is no harm in assuming that Xe V). It may also be assumed that
limsup,_,|(2"*""\2")\(dom (p) U X)| = w (otherwise deal with w\X). It must be
shown that there is p” 2 p such that p’ Ik, ‘[X]edom (®,)’. To do this let p" = p be
any extension such that p’(ij)e(2***\2") if and only if i€ (2"*'\2") for all ie X and
new. A similar proof works for the range of .

An important fact is the result in Velickovic’s paper [8] that if F is P-generic over
a model V of PFA, then in V[F], not only is there a non-trivial autohomeomorphism
of AN\N, but MA also holds. It will be shown that a closer analysis of this model
yields the fact that in V[F] all autohomeomorphisms of SN\N are somewhere trivial.
Loosely speaking, the following theorem will show that if

D : P(w)/[w] N — P(w)/[w] <™
is a non-trivial automorphism then it is still non-trivial after adding a Cohen real.
LemMMA 2.3. If ®eV is not trivial and V' is obtained by adding a Cohen real

to V then in V' there do not exist Borel functions {y,:new} such that for each
CeP(w) N V there is some new such that O(C]) = [y, (C)].
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Proof. Suppose that ¥’ is obtained by forcing with the countable partial order
C and that the y, are C-names for Borel functions such that for each Ce Z2(w) n V
there is some ne w such that ®([C]) = [w,(C)]. Let G, be a name for a comeagre set
such that y,[ G, is continuous. Define w? = {(4,B):plt:‘y,(4) = Band A€G,’}.
Let D? be the closure of the domain of ? and let E? be the closure of the interior
of D? (note that DP\E? is meagre). Let f? be the maximal extension of y? to a
continuous function on E?.

It must be that case that the domain of /? is comeagre in E? because if the domain
of f? is not comeagre in E? then, because it is Borel, there must be some open set
U < E? such that the set of points in U to which y? can be continuously extended is
meagre in U. Since plF‘y? < w,” and because being a meagre Borel set absolute, it
must be that the set of points in U to which y, can be continuously extended is also
meagre in U. The reason is that the domain y? is dense in E? and so it follows that
the domain y? is dense in U and, moreover, not being a point to which a function can
be continuously extended is an absolute property. This contradicts the fact that G, is
comeagre.

Now let M’ = |J{D?\E?:new and peC} U {E?\dom (f?):new} and observe
that M’ is meagre. Now recall the following fact: if V' is a model of ZFC and ris a
Cohen real and Ne V[r] is a meagre set then there is a meagre set N’ eV such that
NNnVcN n V. Let N be a meagre set such that G, > Z(w)\N for each new. Let
M =M’U N. It is true in V' that for every Ae(P(w)\M) n V there is some peC
such that [w?(A4)] = ®([4]). Since this statement is arithmetic in the parameters 4
and ®([A4]) (and both of these parameters belong to V) this must be true in V also.
Now apply Lemma 1.1.

LEMMA 2.4. Given new,, a sequence {f;:{en} = §, and a countable elementary
submodel U < (H(w,),€), such that &, €W, then there is feP which is U-generic
Sor P(&,). Moreover, for any extension {f,:{eu} = §, of &, such that neuew, and
f, =1, every DeMW is predense in P(§,) provided that it is dense in P(g,).

Proof. Let {E,:kew} enumerate all dense subsets of P(g,) in U. Construct
sequences {g,:ne€w} and {K,:new} such that for all new

L] gn = gn+l’

® Kn < Kn+l’

L] gn-HrKn =gann=

o there is some i such that 2*' = K, and |(2**\2))\dom (g,)| = n,
o for each bijection ¢: K, —» K, there is an he[),.,,, E, such that

1 U g, N@\K,) 2 h.
It is easy to see that this can be done. Hence, it is possible to define /= | {g,,:ne w}.
Notice that {g:g 2*f;} is dense in P(J,) and definable in U; hence f2*f, for
each {en. To check that f has the desired properties suppose that geP(§,) for
some u > n and that f, = f. If E is dense in P(,) then there is some m such that
Ee{E;:jem+1} and gl (w\K,,) 2 /T(w\K,,). By extending g if necessary, it may,
without loss of generality, be assumed thatg [ K,, = randthat¢: K, — K, is a bijection.
It follows that ¢t U g, [ (w\K,,) 2 h for some he E and hence g 2 heE.

LEMMA 2.5. Suppose that V is a model of 2% =N,. If ® is a P-name for a
nowhere trivial automorphism of P(w)/[w]<™ and feP then there is a sequence § =
{fe:$ew,} < P such that f, = f and 05 @ is nowhere trivial.
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Proof. Let {4,:{€w,} be an enumeration of P(w)/[w]<™ in V and let
{Ye:2(Cp) > P(By): L ey}

enumerate all possible names for continuous functions from a Borel comeagre subset
of some 2(C) to some 2(B) so that each name occurs cofinally often. It suffices to
construct § = {f;:{ew,} =P by induction so that for every limit ordinal ¢ the
following conditions are satisfied:

® fi., decides, in P, the values of ®(4,,,_,) and ®'(4,,,_,) for n > 2,
o there is some C < A, such that 1lkpq, ‘05 D(C) # [PLC)]'.

It is possible to construct § inductively because a failure would mean that for some
¢ ew, it must be the case that

Jelbp ‘@ is trivial on 4’

contradicting the fact that ® is a name for a nowhere trivial automorphism of
P(w)/[w] ™.

LEMMA 2.6.  Suppose that V is a model of & and that ® is a P-name for a nowhere
trivial automorphism of P(w)/[w]<%. Then there is a sequence F = {f,:¢{cw} <P
such that

o P() satisfies the countable chain condition,

o R n V is of second category after forcing with P({),

o for every G c P(&) which is generic over V, for every AeV n P(w), and
BeV n P(w) and for every collection of P(§)-names ¥, such that for each new

Lrpg ¥, P(A) > P(B) is continuous’

there is some CeV such that 33 ®([C]) # ¥, ((C]) for all ne w.
In the last clause the possibility that C¢dom(\Y,) is allowed in the sense that if
C¢dom (¥,GM) then 0, ([C]) # ¥ ,((C)).

Proof. The proof will rely on constructing a particular oracle which will
guarantee that the three clauses are all satisfied. The only wrinkle is that the oracle
and the sequence {f,:{ew,} must be constructed simultaneously. The sequence
{f::€ew,} will be obtained by diagonalizing such sequences across N,.

In particular, let it be any oracle such that forcing with an R-oracle chain
condition partial order preserves the fact that R n ¥ is of second category—such an
oracle exists by Lemma 1.4. Then construct sequences

§={fltew}cP and WW={M:lecw}cP
for pew, such that

(@) ff=frifp<é,

(b) 0z ® is nowhere trivial for e w,,

(c) for pew,, if Q satisfies the M*-chain condition and G is Q-generic over V then,
in V[G], forevery Ae V N P(w), Be V N P(w) there do not exist {¥,,:ne w} such that
¥, :P(A) - P(B) is continuous and for all Ce #(A4) n V there exists ne w such that
05+ @([C]) = ¥, ([C)),

(@) {/5:{m & elm My for each neaw,
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() fi*'is P({f}:& e u})-generic over M,
() MeeMy if Cepen,
(8) M =9

To see that this suffices let M, = M¢,, and let § = {f, = ff}1 :£cw,}. It follows
from the remark following Lemma 1.3 that {,:{ew,} is an oracle and that any
partial order which satisfies the {,:{ e w,}-chain condition also satisfies each of the
Dt“-chain conditions for ue w,. Since f** is P({/:£ € u})-generic over M, | it follows
that P({f;:{ e w,}) satisfies the {M;: ¢ e w,}-chain condition. In particular, this partial
order satisfies the M’-chain condition and hence the second clause of the theorem will
be satisfied. That the first clause is satisfied follows from Lemma 1.5. So it only
remains to be shown that the last clause is satisfied.

To this end, suppose that Ae V N #(w), BeV N P(w) and P(F)-names ¥, are
given such that for each new

1k, ‘¥, :2(4) - P(B) is continuous’.

Since P(i¥) satisfies the countable chain condition, there is some y € w, such that I,
models that, for each new,

kg feren ‘W, :P(A) - P(B) is continuous’.

It now follows that this statement about M, = P must be true in M., because
P eD,,. But it now follows from the fact that f)*! is generic oveg, M7, that

S Fpqs:cem ‘ECeZ(4) n V)(Vnew) iy ®(C)) # ¥, (C]).
Since f)*! o* f)*! = f¥ for each pecw, N M}, it follows that
Oz @I I, = dp @M,
and hence
Ve o sg:cenm ‘ECe2(4) n V) (Vnew)dz ®(C]) # ¥, (C)).
Since the necessary dense sets are definable in I, = M, it follows that
Silbpg ‘BCeP(4) n V) (Vnew)dz ®([C]) # ¥,(C]),

which is what is required.

All that remains to be done is to show that the inductive construction can be
completed. For this, suppose that §* = {f}:{ew,} and M* = {M}:{ew,} have been
constructed for uen.

If nis a limit then it is easy to use Lemma 2.5 in order to satisfy conditions (a) and
(b). If 5 is a successor then Lemma 2.4 must also be used in order to satisfy condition
(e). To construct M for £ ew, use Lemmas 1.2 and 2.3 to satisfy condition (c). It is
then easy to enlarge the terms of the oracle to satisfy conditions (d) and (f).

The proof of the main theorem will require the following definition, which is a
reformulated form of the partial order which appeared in [4, p. 134].

DEeFINITION 2.4.  Given a sequence {(W,, V;):{en} define Q({(W,, V,):{en}) to be
the partial order which consists of all functions g such that there is I' € [#] <™ such that

g=*U {0"5 U lw{w::fer}.
The ordering on Q({(W,, V;):{en}) is inclusion.
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THEOREM 2.2. It is consistent, relative to the consistency of ZFC and PFA, that all
automorphisms of P(w)/[w]<% are somewhere trivial but there is, nevertheless, a non-
trivial automorphism of P(w)/[w]<™.

Proof. 1t follows from Theorem 2.1 that forcing with P yields a non-trivial
automorphism of 2(w)/[w]<™. Hence all that needs to be shown is that in the
resulting model all automorphisms of 2(w)/[w] <% are somewhere trivial. To do this
suppose that ¥ is a model of PFA and that in this model

11k ‘@ is a nowhere trivial automorphism of 2(w)/[w] <™.

Let G be a V-generic filter on a countably closed partial order — the Levy collapse
of 2™ to N, for example — which forces the existence of a ¢-sequence. Let

§={fylew}
be some fixed sequence with the properties guaranteed by Lemma 2.6. In particular,

Lemma 2.6 guarantees that for every Ae V[G] N P(w), Be V{G] N #(w) and for
every collection of P(&)-names {¥,:new} such that, for each new,

Hkpg, ¥, 2P(4) - 2(B) is continuous’,

there is some Ce 2(A4) N VIG] = 2(A) N V such that 65 ®(C]) # ¥,(C]) for every
new. Let H be V[G]-generic for the partial order P({).

Let M be an arbitrary oracle in V. A sequence {(W,, V,):{ e w,} will be constructed
in V[G][H] so that

o if Q; = Q({(W,, V):nel}) then Q, satisfies the M-chain condition,
o (W, V)eV[G] n (Z(w)*=V n (P(w),

o VW co,

o [W. n W <Ryif n#¢,

o for each peQ, and Q,-name, YeM,, for a subset of w

0, O(W) 0 (Y] # 3, (K,

e the dense subsets of Q;,, which guarantee that the previous statement is true
are predense in Q, .

PU Ly, U0y, Ik

Qi

Before continuing, define ®*(A4) < w arbitrarily to satisfy the equation [®*(4)] =
05 P([4]) for each [4] € dom (05 ©). Next, choose an almost disjoint family {W;:{ € w,}
in the model V{G]. The set W, will be chosen so that, among other things, W, < W;
(this will, of course, guarantee that the resulting family is almost disjoint). If this
construction succeeds then it is possible to proceed, as in [5], to prove that forcing
with P(F)*Q, adds a set to which the partial automorphism J;® cannot be
extended.

In particular, if H, * H, is P() * Q, -generic then, setting X = U {1 Se Hy,
it follows that X n W, =*V, for each {ew, but in V[G][H,* H,)], for every Y € w
there is few, such that ®*(W)) n Y £*®*(V,) for each £ > f. Just as in (5], it is
possible to define a relation R on w, by R(&,n) holds if and only if either

(O*HWN\Q* (V) n ®X(V) # & or (P¥W)N\DP¥(V)) n X(V)) # .

It is easy to see that this is a semiopen relation—as defined in [1}—and that moreover,
there is no Se[w,]™ such that [S]* n R = &. The reason for the last statement is that
otherwise, letting Y = | J {®*(¥;):£€ S} would yield a contradiction to the fact that
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O*(W,) n Y #£* ®*(¥,) for all but countably many ¢. Hence, by the results of [1], there
is a proper partial order KK which adds a set Se[w,]™ such that [S]® < R. This makes
the fact that d;® can not be extended to the set X absolute. The reason for this is
that if there is a set Y such that o5 ®([X]) can be defined to be [Y], then it must be the
case that Y n ®*(W,) =* ®*(V)) for each {€S. But then there is an uncountable set
S’ < S, as well as Jew, such that Y n ®*(W)\J = ©®*(V)\J for each {€ S". It follows
that ®*(V)\J < Y and that (@*(W)\DP*(V)))\J < w\Y for each {eS’. Choosing ¢
and { in S’ such that ®*(V;) n J = ®*(¥)) n J and @*(W)) n J = ©*(W) n J yields
the desired contradiction.

The iteration D * P(F) * Q,, * K is proper and only X, dense sets in it need to be
met in order to obtain S and the set X such that 05 ® can not be extended to include
[X] in its domain. Let f,, be the element of [* obtained by forcing with P(g) and
using Lemma 2.1 and note that, in V, f, IFp“® does not extend to X’ because
Jo,lFp (05 @ = @’

Hence it may be assumed that the construction breaks down at some point y e w,.
What can go wrong? First, there are certain predense sets required at stage u which
must remain predense in the partial order Q,,,. It is shown in [4, p. 134] that, for each
predense set E = Q,, there is a dense open set % < 2(W,) such that if We#  then,
letting W, = W we have that E remains predense in Q,,, for any V' =V, = W,. Note
that % is closed under the operation of taking infinite subsets. Recall that § was
chosen so that Z(W),) n V[G]is of second category in Z(W}) in the model V[G][H,].
It follows that it may be assumed that W, e V[G] and that W, e O for every open set
0 < 2(W,) which is definable from M, and {(W,, V;):{eu} (but note that Q, is
definable from {(W, V):{eu}). Hence the only possible problem is that it is not
possible to find V, € W, satisfying the required properties—namely, there is no
V, < W, such that for each pe @, and Q,-name Y eI, for a subset of w

PUL, U0, kg @MW) n [Y]£* 0,00V

To see that this cannot happen it will be necessary to discuss forcing in Q,,,
before Q,,, has been defined—namely, before ¥, has been defined. This will be done
by defining I, as follows: if pe Q, and X and Y are Q, names for subsets of @ and
if f: W, — 2 is a partial function, define

(PN XERY

if and only if, for each p’e @, such that p" U p U fis a function and for each new,
there is p” such that

e p”Up UpU fis a function,

o p'lkq ‘ke XAY’ for some k > n.

CLAM. If the following conditions are satisfied
o (AFSX NX&E*Y,
e X' is a Q -name belonging to M,
e X and Y are subsets of w in V[G],
o V,=/7(1}),
then p Ufll-Q‘m‘X nx £*Y.

The way to see this is to note that the following statements are all equivalent:
o 0’k ‘keX N X'AY’,
o kex\Y and p’ ko, k€ X" or ke Y\X and p”lkq ‘k¢ X",

20 JLM 49
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® keX\Yandp”ll— ‘keX orke Y\Xandp””—O ‘k¢ X’ solong as the name
X isstilla Q,,, name; in other words, the antichains in CD , deciding membership in

X’ remain maximal in Q..

This last equivalence is guaranteed by the choice of W, because the relevant dense sets
are definable from X”, which belongs to 9 , and Q,. The claim now follows from the
definition of IF,.

It will now be shown that it is possible to choose ¥, = W, such that for each

M
peQ, and Q,-name, YeIM,, for a subset of w

0
pU L, Ul g “OX(W) N Y #* (V).

If this is not possible then it follows from the Claim that there is no ¥, such that
V, = W, and such that for each peQ, and each Q,-name for a subset of w, Ye m,,

(P 1y, U Oy ) a3 @) 0 [Y] =% 0, 0((1)).

It will be shown that this implies that there are continuous functions ¥, for ne w,
such that for each C = W, there is ne w such that ¥, (C) =* ®*(C), thus contradlctmg
the fact that M is assumed to satisfy the conclusion of Lemma 2.6. The method for
doing this is as follows.

For each peQ, and 4 c W, define

q,(A)=(p, 1, U Owﬂ\A) and g,(4)=pul,u Owﬂ\A-

Givenpandrin Q, newand YeM

»a Q,-name for a subset of w, define v, , ,, ,(4)
to be the set

{ke @*(W)\n:(¥p")(p" U p U G,(4) is not a function or p’ Ikoﬂ‘ke Y’}

for Aedom(y, , , ) ={4 < W,:q(A4) U p is a function}.

It will first be shown that for each 4 = W, there are p, r, n and Y such that
®*(4) =*y, , . v(4). To see this recall that there is some r, € Q, and some Y, M,
a Q,-name for a subset of w, such that

q, (A)F QW) N Y, £*OXA)’

fails to be true and ¢, (4) is a function. Hence, there is some p,€Q, such that
paV g, (A) 1s a function and there 1s some n,ew such that for each p” and k >
either p" U p, U g, (4) is not a function or p Ifa, ‘ke(@*(W) n Y,) A(D*(4)).
If key, . o v (A\®*(4) and k> n, then the deﬁnmon of W, ro.n.v,(4)
implies that
plo ke Y,

whenever p’ is such that p” U p, U g, (4) is a function. But this means that
P'lkg, ke (@*(W) n Y,) A(@*(4))’,

contradicting the choices of p,, r,, n, and Y,.
On the other hand, suppose that k belongs to (®*(4) N O*(W)\n,. If

ké'//p Taaeng Yy (A)7

then there exists p’ such that p" U p, U g, (4) is a function and p IVQ ‘keY, . It
follows that there is p” > p’ such that p” Ik ‘ké Y Ip" Up, U g (A)i isa functlon
then p” IFQ ‘ke(@*(W) 0 Y,)A(D*(A4))’ once again contradicting the choice of DPas
s Mg and’ Y But why should p" U p, U g, (4) be a function?
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The fact that it is possible to choose p” such that p” U p, U g, (4) is a function
follows from the choice of W,. Recall that W, was chosen so that W, € @ for every open
set O < (W) which is definable from M, and Q,. Moreover, the set ¢ consisting of
all W = W, such that there exists ee[W]<™ such that for all &:e — 2 there exists p,
satisfying one of the following three conditions,

e ¢Up, Ur,isnota function,
o plbg ‘k¢ Y, and p, U p, Ur, Ueis a function and p,[ W =g,
° aUp,.Ur,,II—Q ‘keY,’

is easily seen to be dense and open in W, and to be definable from Q, and Y, p,
and r, all of which belong to M,. Hence W, belongs to this dense open set 0. Now
let ee[W,]<™ witness this fact; in other words lettinge=(p, Ur, U1, U0, \A) le,
there is some p, such that

o p.lhg, ‘k¢Y,’,
e p U p,, U r, is a function,
.perVVp PaVUr,ul, UOW”\A)rea

because the other two alternatives are not possible in light of the fact that
kt¢v,, 0, v,(4) and Adedom(y, , . ) It follows that setting p” = p, yields
the desired condition.

Now observe that the functions y, , , , are all Borel. This contradiction to
Lemma 2.6 finishes the proof of the theorem.

3. Remarks and open questions

It is worth noting that not only has it been shown that it is consistent that there
is a non-trivial automorphism yet all automorphisms are somewhere trivial, but also
that this is consistent with MA , . Combining the arguments of this paper with those
of [6] it is possible to show that it is consistent (even with MA,) that every
autohomeomorphism of SN\N is somewhere trivial, while any two P- pomts have the
same topological type in the sense that there is an autohomeomorphism of SN\N
mapping one to the other. In this model it will of course follow that there are 2°
autohomeomorphisms of SN\N which raises the following question.

QuesTiON 3.1. Is it consistent that there are only 2% automorphisms of
P(w)/[w] <™ but that there is, nevertheless, a non-trivial automorphism?

The non-trivial automorphism constructed with Velickovic’s order is much more
than somewhere trivial—the collection of subsets of w where it is trivial forms a
maximal ideal. Given any automorphism @:2(w)/[w]™ — P(w)/[w]<™, define
T (D) to be the collection of sets on which @ is trivial. It is not difficult to check that
T (@) is always an ideal but it is not clear what else can be said about it.

QuesTioN 3.2.  Does MA,, imply that 7(®) # [w]=% for each automorphism @
of P(w)/[w]<M?

QuEesTiON 3.3. Does MA,, imply that 7 (®) is the intersection of maximal ideals
for every automorphism @ of @(w)/[w]“”

20-2
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