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ABSTRACT 

Random unary predicates U on [ n ]  holding with probability p are examined with respect to 
sentences A in a first-order language containing U and “less than.” When p = p ( n )  satisfies 
np”” 4 1 4 np” it is shown that Pr[A] approaches a limit dependent only on k and A. In a 
similar circular model the limit is shown to be zero or one. 0 1994 John Wiley & Sons, Inc. 

1. INTRODUCTION 

Let n be a positive integer, O s p  I 1. The random unary predicate U,,+ is a 
probability space over predicates U on [n] = (1, . . . , n }  with the probabilities 
determined by 

Pr[U(x)]=p,  1 1 x s n ,  

and the events U ( x )  being mutually independent over 1 I x I n. Informally, we 
think of flipping a coin for each x to determine if U(x)  holds, the coin coming up 
“heads” with probability p. We shall examine the first order language with 
equality, a unary predicate U and a binary predicate 1. Examples of sentences in 
this language are: 
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376 SHELAH AND SPENCER 

(>, 2, < are naturally definable from 5 and equality.) For any such sentence S 
we have the probability 

Pr[Un,p I= ’I 
While the use of unary predicates is natural for logicians, there are two other 
equivalent formulations that will prove useful. We may think of U as a subset of 
[ n ]  and speak about i E U rather than U(i ) .  Second we may associate with U a 
sequence of zeroes and ones where the ith term is one if U(i) and zero if i U ( i ) .  
Thus we may talk of starting at i and going to the next one. We shall use all three 
formulations interchangeably. 

Ehrenfeucht [2] showed that for any constant p and any sentence S in this 
language 

lim Pr[ Un,p  S] 

exists. In the case of sentences A and C the limiting probability is 1 whenever 
p > 0. But sentence B effectively states 1 E U ;  hence its limiting probability is p .  
We get around these edge effects with a new language, consisting of equality, a 
unary predicate U ,  and a ternary predicate C. We consider C as a built in 
predicate on [n]  with C(x, y ,  z )  holding if and only if either x < y < z or y < z < x 
or z < x < y .  Thinking of [n] as a cycle, with 1 coming directly after n ,  C(x,  y ,  z )  
is the relation that x to y to z goes in a clockwise direction. For any sentence S in 
this new language we can again define Pr[U,,, S] only in this case Ehren- 
feucht’s results give a Zero-One Law: For any constant p and sentence S 

n+m 

Iim Pr[U,,, /= S] = O or 1. 
n-m 

We shall call the first language the linear language and the second language the 
circular language. As a general guide, the circular language will tend to Zero- 
One Laws while the linear language, because of edge effects, will tend to limit 
laws. 

We shall not restrict ourselves to p constant but rather consider p = p ( n )  as a 
function of n. We have in mind the “Evolution of Random Graphs” as first 
developed by Erdos and Rknyi. Here as p = p ( n )  evolves from zero to one, the 
unary predicate evolves from holding for no x to holding for all x .  Analogously 
(but without formal definition) we have threshold functions for various properties. 
For example, p ( n )  = n-’ is a threshold property for A .  When p ( n )  < n-’, almost 
surely A fails while when p ( n )  + n-l almost surely A holds. In [4] we showed that 
when p = n-m with a E (0, l), irrational then a Zero-One Law held for the 
random graph G(n, p )  and in [3] we found a near characterization of those 
p = p ( n )  for which the Zero-One Law held. The situation with random unary 
predicates turns out to be somewhat simpler. 

Definition. 
for  every sentence S in the circular language 

p = p ( n )  satisfies the Zero-One Law for circular unary predicates if 

Here is our main result. 
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Theorem 1.1. Let k be an arbitrary positive integer and let p = p ( n )  be such that 
npk-+m and npk+'-+O. Then p = p ( n )  satisfies the Zero-One Law f o r  circular 
unary predicates. 

The proof will require the preliminaries of Sections 2 and 3 and is given in 
Section 4. This is the only difficult part in achieving the following full characteri- 
zation. 

Theorem 1.2. Let p = p ( n )  be such that p ( n )  E [0,1] for  all n and either 

or f o r  some positive integer k 

or f o r  all E > 0 

n-' 4 p ( n )  and n-' + 1 - p ( n )  

or f o r  some positive integer k 

or 

Then p ( n )  satisfies the Zero-One Law for  circular unary predicates. Inversely, if 
p ( n )  falls into none of the above categories, then it does not satisfy the Zero-One 
Law for  circular unary predicates. 

Proof (assuming Theorem 1.1). The inverse part is relatively simple. Let A be 
the sentence that there exist k consecutive elements x , ,  . . . , xk E U. [ x ,  y are 
consecutive if for no z is C(x,  z ,  y ) .  For k = 2 this is example C.] Then €%[Ak] is 
(for a given n )  a monotone function of p .  When p ( n )  - cn-'Ik and c is a positive 
constant, the probability Pr[ A k ]  approaches a limit strictly between zero and one. 
(Roughly speaking, n-'lk is a threshold function for Ak. )  Thus for p ( n )  to satisfy 
the Zero-One Law, we must have p ( n )  6 n-l'k or p ( n )  P n- l ik .  Further (replac- 
ing U with i U ) ,  the same holds with p ( n )  replaced by 1 - p ( n ) .  For p ( n )  to fall 
between these cracks, it must be in one of the above five categories. 

When p ( n )  << n-', the Zero-One Law is trivially satisfied since almost surely 
there is no x for which U ( x ) .  Also, if p ( n )  satisfies the Zero-One Law, so does 
1 - p ( n ) .  Suppose p = p ( n )  satisfies p ( n )  P n-' and 1 - p ( n )  * n-' for all E > 0. 
Theorem 2.10 gives that for every t there is a sequence A . . . A ,  with the 
property that for any sentence A of quantifier depth t either all models 
( [ u ] ,  C, U )  that contain A . . * A ,  as a consecutive subsequence satisfy A or no 
such models satisfy A .  For p ( n )  in this range ( [ u ] ,  C ,  U )  almost surely contains 
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any such fixed sequence A 
Zero-One Law is satisfied. 

* ‘ A ,  as a consecutive subsequence and hence the 

This leaves only the case of Theorem 1.1. 0 

Remark. Dolan [l]  has shown that p(n)  satisfies the Zero-One Law for linear 
unary predicates if and only if p(n)  4 n-’ or n-l 4 p ( n )  4 L 1 1 2  or 1 - p(n)  4 n-l 

or n-l 4 1 - p(n)  4 nP1? For nP1’2 4 p ( n )  = o(l) ,  he considered the following 
property: 

(Addition is not in our language but we write x + 1 as shorthand for that z for 
which x < z but there is no w with x < w < z.) In our zero-one formulation, D 
basically states that the first time we have 11 comes before the first time we have 
101. This actually has limiting probability 0.5. This example illustrates that 
limiting probability for linear unary predicates can depend on edge effects and not 
just edge effects looking at U on a fixed size set 1, . . . , k or n ,  n - 1, . . . , n - k .  

The basic aim of this paper is to give a proof of Theorem 1.1.  The results of 
Section 2 are background results from logic and, in the last section, probability 
and may be skimmed or used as a reference. The central argument appears in 
Section 3 in which an infinite model appears, Theorem 3.2 being a crucial step. 
The final steps of the proof of Theorem 1.1 are given in Section 4. The linear case 
is dealt with in Section 5 .  

2. BACKGROUND 

2.1. Sequences 

Let A be a fixed finite alphabet. In applications A will be (0) or (0 ,  l} or P,.  
However, in what follows only the size of A matters. We shall take our examples 
with A = { a ,  b ,  c } .  Let CA denote the space of finite sequences a ,  . * * a ,  of 
elements of A .  We include the null sequence, denoted 0. We associate with each 
sequence a model ( [ u ] ,  5,  f ) where f :  [ u] 

Consider the first order language with equality and 5 and with function symbol 
f and basic primitives f ( x )  = a for each variable x and each a E A .  A typical 
sentence would be 

A is given by f( i) = a; .  

3,3,[f(x)  = a A f ( y )  = b A V , i [x  < y  A y < 21 , 

with the meaning that ab occurs in the sequence as consecutive terms. This 
naturally generalizes the language of the introduction, with A = (0, l}. We call 
this the linear language for A .  

We shall use four facts about these models. First we fix a positive integer t. 

Definition. 
on all first order sentences o f  quantijier depth at most t. 

Two models M I ,  M2  are equivalent if they have the same truth value 
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Property A. There are only a finite number of equivalence classes. 

Definition. 
class m, E M ,  we call m ,  the Ehrenfeucht value of M,.  

Let M denote the set of equivalence classes. Zf a model MI belongs to 

Remark. The number of such classes may be very large. With A fixed, the 
number grows like a tower function as a function of t. While this makes 
calculation very difficult in our work, t is fixed so that M is of fixed size, and we 
do not concern ourself with its actual size. 

We define addition of models by concatenation. For example, aba + acca = 
abaacca. More formally: 

Definition. 
u ] ,  5 ,  h )  where h( i )  = f ( i )  for 11 i 9 u and h( i )  = g(i - u)  for u < i I u + u .  

Let M ,  = ( [ u ] ,  I, f ) ,  M ,  = ( [ u ] ,  5, g) .  We define M ,  + M ,  = ( [ u  + 

Property B. 
equivalent to M i  + M ; .  

Zf M ,  , M ;  are equivalent and M,, M ;  are equivalent, then M ,  + M ,  is 

Definition. Let m, , m, E M .  Let M ,  , M ,  be any models having m ,  , m, respective- 
ly as their Ehrenfeucht values. We define m ,  + m, to be the Ehrenfeucht value of 
M ,  + M , .  

The definition of m ,  + m2 is unique by Property B. As addition on models is 
clearly associative, so is addition on M so that M forms a semigroup. 

Notations. We let 0 denote both the null sequence and its Ehrenfeucht value, 
depending on context. Note that in M we have m + 0 = 0 + m = m for all m. 
For each a E A we let a also denote the Ehrenfeucht value of the sequence a, i.e., 
the model ([l], 5,  f )  with f ( 1 )  = a .  

The third basic fact concerns copies of a given model. For any positive integer r 
and any m E M ,  we define rm as the sum of r m’s. More formally, by induction, 
l m  = m and ( r  + 1)m = rm + m. We set s = 3 for definiteness below, though that 
is not precisely the best value. 

Property C. For all m E M and all i ,  j > s 

i m = j m .  

The final fact tells us that the Ehrenfeucht values truly reflect the world of first 
order sentences of quantifier depth t. We can correspond any first order sentence 
B of quantifier depth at most t with the set S C M of equivalence classes of models 
satisfying B .  

Property D. For every S C M there is a first order sentence B of quantifier depth 
at most t such that B is satisfied by precisely those models whose Ehrenfeucht 
value lies in S. 
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2.2. Persistent and Transient 

The following theorems hold in any finite semigroup M with identity and with 
Property C. Their application to 2 A  is deferred to the next section. 

Theorem 2.1 (and Definition). We call x E M persistent i f  

vy3,x + y + z = x , 

v,3,z + y  + x  = x ,  

3,3,vyp + y + s = x 

These three properties are equivalent. We call x transient i f  it is not persistent. 

Proof of Equivalence. 
( 3 ) 3  (1): Take z = s, regardless of y .  Then 

x + y  + 2 = ( p  + y  + s )  + y  + s  = p  + ( y  + s + y )  + s = x .  

(1)+ (3): Let R ,  = {x + u :  u E M } .  We first claim there exists u E M with 
IR, + u ]  = 1, i.e., x + y + u remains the same for all y .  Otherwise take u E M 
with IR, + u (  minimal and say u ,  W E  R, + u. As R, + U C  R,, we write u = 
x + u l ,  w = x  + u 2 .  From (l), with y = u l ,  we have x = u + u3 and thus w = 
u + u4 with u, = ug + u2. From Property C there is an integer q with qu, = 
( q  + l ) u 4 .  Then 

w + qu, = u + ( q  + l ) u , =  u + qu, . 

Adding qu, to R + u sends u ,  w to the same element so I R + u + qu4( < ( R  + u ( ,  
contradicting the minimality. Now say R, + u = { u s } .  Again by (1) there exists u6 
with u5 + u6 = x .  Then R, + ( u  + u6)  = { x }  so that ( 3 )  holds with p = x ,  s = 
u + U 6 .  

By reversing addition [noting that (3) is self-dual while the dual of (1) is (2)], 
these arguments give that (3) and (2) are equivalent. 0 

Remark. Define a directed graph G' on M by directing edges from x to x + y for 
every x ,  y E M .  From (1) the persistent elements of M are precisely the elements 
of the strongly connected components of G'. 

Theorem 2.2. Zf z is persistent and c E M ,  then 

z + c + z = z  

Proof. 
Taking y = 0, p f s = z .  Then z + c + z = p  + ( s  + c + p )  + s = z .  

Let p ,  s, as given by ( 3 ) ,  have the property that p + y + s = z for all y .  

Theorem 2.3. Zf x is persistent, then w 1  + x + w 2  is persistent for all w l ,  w 2  E M .  

Proof. Let x be persistent and set u = w1 + x + w2. For any y E M set z = u so 
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that 

u + y +  z = w 1  + [ x  +(w* + y  + w l ) +  x ]  + w* = w 1  + x  + w* = u , 

and hence u is persistent. 0 

Definition. 
X = ~ U  b y  3 , ( u + x = u ) .  

We define the relation x = R  u by  3, ,(x + u = u). We define the relation 

Theorem 2.4. 
elements of M.  

= R  and =L are equivalence relations on the set of persistent 

Proof. Immediate from (1) and (2), respectively. 0 

Definition. We define 

R , = { x + u :  u E M } ,  

L , = { u + x :  U E M } .  

Remark. 
containing x .  

For x persistent, R ,  is the strongly connected component of G' 

Theorem 2.5. 
and L, is the equivalence class containing x under E ~ .  

For x persistent, R, is the equivalence class containing x under = 

Pruof. Immediate. 

Theorem 2.6. Let x ,  y be persistent. Then 

R, n L, = {X + y }  

Proof. Clearly x + y E R ,  f l  L,. Let z E R, n L,. Then there exist a ,  b with 
x = z + a and y = b + z so that x + y = z + (a  + b )  + z. But z is persistent, and by 
Theorem 2.2 z + ( a  + b )  + z = z ,  so that x + y = t. 0 

One final theorem shows that these ideas are not pointless. 

Theorem 2.7. There exists a persistent x E M .  

Proof. Take x with x + M of minimal size. For any y E M, x + y + M x + M 
so that x + y + M = x + M .  As x = x + O E x + M ,  x E x + y + M  so that there 
exists z with x + y + z = x ,  and x is persistent. 0 

2.3. Persistent Sequences 

We fix a finite alphabet A and the parameter t of the previous section. In 
examples, we shall consider A = { a ,  b ,  c}  , t = 5 ,  and s = 243 satisfying Property C 
of the previous section. 
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Definition. A sequence u = a ,  . . . a ,  E C A  is called persistent if its Ehrenfeucht 
value m is persistent in the sense of the previous section. Otherwise, we call u 
transient. 

Our object in this section is to get a reasonable picture of what a persistent 
sequence is. Our first result is a sufficiency condition. 

Theorem 2.8. 
tive subsequence is persistent. 

There is a u E C A  so that any r E C A  containing u as a consecu- 

Proof. Pick any u whose Ehrenfeucht value m is persistent. Any r = y - + u + 
yi has Ehrenfeucht value m- + m + mi which is persistent by Theorem 2.3. 

The following definition and theorem are not formally necessary in our 
presentation, but we feel they give a good clue as to what persistency really 
means. 

Definition. A first order sentence B (in the linear language for A )  is called central 
if ( i )  some u E C A  satisfies B and (i i)  if u satisfies B and r contains u as a 
consecutive subsequence, then r satisfies B. 

Theorem 2.9. 
quantijier depth at most t.  

u is persistent if and only if it satisfies all central sentences B of 

Proof. Assume u persistent and B central. Let uo satisfy B. Then T = u + a,, + u 
satisfies B. But r has the same Ehrenfeucht value as u so they have the same truth 
value on B and so u satisfies B. 

For the converse we use Property D. Let B be the sentence corresponding to 
the set S of persistent states. From Theorem 2.3,  B is a central property. If u 
satisfies it, then the Ehrenfeucht value of u, and hence u itself, must be 
persistent. 0 

Roughly, the central sentences are existential statements that do not depend on 
the “edges” of a sequence. Let B be the sentence that the sequence begins with a ,  
formally 3,f(x) = a A i 3 , y  < x. This sentence is not central: If you take a 
sequence starting with a and add a b on the left, then it no longer has this 
property. Similar noncentral properties would be that the first non-a is a c or that 
the first time either aba or aca occurs as a consecutive subsequence, it is aba. All 
of these can have their truth value changed by changing the edges of the 
sequence. A typical central statement is that accab appears as a subsequence. 
Once it does, no additions to the sequence on the edges can make it false. A more 
complicated statement is that there exists two a’s with only b’s between them: 

g,,, f ( X )  = a A f (  y )  = a A x < y A [v , (x  < 2 A z < y )  3 f ( z )  = b] 

Again, once this appears it cannot be destroyed by adding to the sequence at the 
edges. Thus a persistent sequence (+ (when t 2 3 ,  the quantifier depth of this 
sentence) must have two a’s with only b’s between them. 
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2.4. Circular Sequences 

Let A be a fixed finite alphabet. Let Cyc(A) denote the space of finite sequences 
a ,  . . . a ,  of elements of A ,  so that formally Cyc(A) = SA.  We associate with each 
sequence a model ( [ u ] ,  C ,  f )  where f :  [n]+ A is given by f ( i )  = ai and C is the 
built in “clockwise” ternary relation: C(x, y ,  z )  if and only if x < y < z  or 
y < z < x or z < x < y .  The circular language (for A)  is the first order language 
with equality and C and with function symbol f and basic primitives f ( x )  = a for 
each variable x and each a E A .  We think of the sequences as lying in a circle. 
There is a natural notion of u being a consecutive subsequence of T. (Formally, 
a ,  . * a ,  is a consecutive subsequence of b,  * . . b, if u 5 1 and there exists s so that 
b,+,i = a, ,  1 I i I u,  where s + *i  is s + i when s + i I n and otherwise s + i - n.) 
Our main result can be thought of as stating the existence of a universal sequence. 
We first need compare the circular and linear modes. 

Given a circular model M = ( [ u ] ,  C ,  f )  , we can naturally cut it at any i E [u]  
giving a linear model Mi. Informally, if M is the sequence a ,  * * - a ,  [considered as 
a member of Cyc(a)], then Mi is the sequence a i .  - a ,  * a ,  - .  . aL-, .  Let P(x)  be a 
formula in the circular language. Consider all uses of the ternary relation in the 
formula P. When C ( y , ,  y, ,  y 3 )  does not have variable x replace it with 

with x < y , < y 2  and C ( y , , x ,  y,)  with x<y,<y,  and C ( y , ,  y , ,x)  by x < y , <  
y,. Call the resulting formula P*(x) ;  it is a formula in the linear language. The 
formula i g W w  < x has the meaning that x is “first” in the linear language. This 
allows us to unravel the circular language. The formula P ( x )  is satisfied in M with 
x = i i f  and only if 3,[[-13,w < x ]  A P*(x)] is satisfied by Mi. 

C(Y1, Y 2 ,  Y 3 )  by Y 1 < Y , < Y , V Y , < Y , < Y l  V Y , < Y l < Y 2 .  Replace C(X7 Y , ,  Y 2 )  

Lemma. The truth value of all sentences up to quantifier depth t for a circular 
model M = ([ u ] ,  C ,  f )  is determined by the set of Ehrenfeucht value at level t of 
the linear models M , ,  1 5 i 5 u. 

Proof. Any such sentence can be expressed as the purely Boolean combination 
of sentences of the form 3,P(x) and these are true if and only if some Mi satisfies 
3,[[-13,w < x ]  A P * ( x ) ,  which is of the same quantifier depth. 0 

Theorem 2.10. For every t ,  A there exists a sequence u E Cyc(A) so that all 
T E Cyc(A) that contain u as a consecutive subsequence have the same truth values 
on all sentences (in the circular language) of quantifier depth at most t. 

Proof. For every persistent x E M ,  let X be the specific sequence with this value, 
and let X‘ denote the sequence X in reverse order. Let (T be the concatenation of 
all the sequences X‘ + X .  Consider the level t Ehrenfeucht values of the linear 
Mi. Any i cuts at most one of the X so that Mi will contain some (in fact, many) 
persistent X as a consecutive subsequence and hence, by Theorem 2.3, will be 
persistent. Conversely, given any persistent x E M ,  let i be the first place of X in 
the subsequence X‘ + X .  Then Mi has the form X + M + X as X‘ unravels to X 
and Ehrenfeucht value x + m + x, which is x by Theorem 2.2. Thus the level t 
Ehrenfeucht values are precisely the persistent x E M .  0 
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2.5. The Ehrenfeucht Game 

The Ehrenfeucht Game is a very general method for showing that two models 
have the same first order properties up to quantifier depth t. We concentrate on a 
specific example. Consider the space ‘CA of finite sequences of elements of A and 
twomodelsM=([u],  “ , f ) ,  M‘=([u’] ,  5 ,  f’).TheEhrenfeuchtGamehastwo 
players, Spoiler and Duplicator. There are t rounds. On each round Spoiler first 
selects one term from either model ( i s . ,  either an x E [ u ]  or an x ’  E [ u ’ ] )  and 
then Duplicator chooses a term from the other model. Let i , ,  . . . , i, be the terms 
chosen from M and i;, . . . , ii be the terms chosen from M’, both in the order of 
the rounds chosen. For Duplicator to win he must first assure that f ( i , )  = f ’(i;). 
(Thinking of M, M’ as sequences if Spoiler picks an a, then Duplicator must also 
pick an a.) Also he must assure that i, = i ,  if and only if ii = i: .  (When Spoiler 
picks a term already picked, Duplicator must pick its counterpart.) Finally he 
must assure that i, < i, if and only if ii < i:. (So, e.g., if Spoiler picks i, between 
i, and i,, then Duplicator must pick an is between i; and i;.) If he does all this, 
Duplicator wins; otherwise Spoiler wins. This is a finite perfect information game 
with no draws. As such, someone is the winner. 

Property Ehrenfeucht. Duplicator wins the t round Ehrenfeucht Game on M, M‘ 
if and only if M, M’ satisfy precisely the same sentences of quant@er depth at most 
t in the linear language for A .  

Now we give a reduction theorem. Consider two models M = ( [ a ] ,  5 ,  U )  and 
N = ( [ b ] ,  I, V )  of a unary predicate. (Alternately, a sequence of zeroes and 
ones.) Consider decompositions M = M, + * * * + Mu and N = N ,  + . * + N u .  Let 
rn, , . . . , mu and n , ,  . . . , nu be the t-level Ehrenfeucht values of the respective 
M’s and N’s. Suppose all the mi, n j E  P, a finite set. Suppose m, . . * m u  and 
n . . . nu are equivalent as elements of CP, in the sense that they satisfy the same 
sentences up to quantifier depth t. 

Theorem 2.11. 
to quantijier depth t. 

Under the above assumptions M, N satisfy the same sentences up 

Proof (Outline). Consider the t move Ehrenfeucht game on M ,  N .  While the 
game is progressing, Duplicator imagines a “supergame” on the sequences 
rn, * . . mu and n ,  . . . nu.  A selection of x E M, corresponds to selecting m, and of 
y E N, to selecting n,. Suppose Spoiler picks x E M I ,  selecting in N, being similar. 
Duplicator calculates that in the supergame a winning response to m, is n,. 
Duplicator will select a y E N,. But which one? The first time x E M ,  is played 
creates a link between M, and N,. Duplicator imagines a “subgame” on M,, N, of t 
moves, a game that he wins since m, = n,.  Whenever Spoiler plays in M ,  or N,,  
Duplicator plays in the other according to the subgame strategy. 0 

Now suppose M = ( [ a ] ,  C, U ) ,  N = ([b], C ,  V )  are circular models. Suppose 
M can be decomposed into intervals M,, . . . , M, (so that the first element of M, 
immediately follows the last element of M,) and N can be similarly decomposed 
into intervals N, ,  . . . , N, .  Let m i ,  ni be the t-level Ehrenfeucht values of the 
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respective Mi, Ni, all lying in P. Suppose m, . . . m, and n, * * . n, are equivalent as 
elements of Cyc(P) ,  in the sense that they satisfy the same sentences up to 
quantifier depth t. 

Theorem 2.12. 
to quantifier depth t in the circular language for  A .  

Under the above assumptions M ,  N satisfy the same sentences up 

The strategy for Duplicator is basically the same. 

2.6. Markov Chains 

Fix, for each a E A ,  a value p a  E ( 0 , l )  such that c p a  = 1. By a random 

sequence on length I we mean a sequence a ,  * * .  a, with each ai chosen in- 
dependently and Pr[a, = a ]  = pa for all i and all a € A .  Let M [ a ,  I ]  denote the 
probability that a ,  . . . a, have Ehrenfeucht value I .  

On M we define a Markov Chain by setting the transition probability from m to 
m + a to be p a  for all m E M ,  a E A .  Consider the Markov Chain to start at 0 at 
time zero. Then M [ a ,  I ]  is precisely the probability that the Markov Chain is in 
state a at time I .  

Any y E M represents some finite string a ,  . . - a, E C A  so that y = a, + - . . + 
a,. For any x, y E M there is therefore a path from x to y in the Markov Chain. If 
x E M is persistent, then R ,  = {x + y :  y E M }  is a strongly connected component 
of the Markov Chain. If x is transient, there is a path from x to some y from 
which it is impossible to return to x. Hence: x E M is persistent precisely when it is 
a persistent state in the Markov Chain. Property C implies that no strongly 
connected component can be periodic. Hence M is a finite aperiodic Markov 
Chain. We use a basic result from Markov Chain Theory. 

a E A  

Property E. If a E M is persistent, there exists c,  > 0 so that 

lim M [ a ,  I ]  = c,  . 
1-m 

If a E M is transient there exist K < 1 and c so that for  all I 

M [ a ,  I ]  < cK‘ . 

Our application requires a more powerful result that these probabilities are not 
altered by small perturbations. We add a parameter p and let p a ( p )  E ( 0 , l )  
depend on p ,  still holding pa(  p )  = 1 for each p .  Further assume that, for each 

a E A ,  limp+o pa(  p )  = p a .  Let Mp denote the Markov Chain with transition 
probabilities p a ( p )  and let M o  be the “limit” Markov Chain with transition 
probabilities p a .  Let M p [ a ,  I] and M o [ a ,  11 denote the probabilities that the 
respective chains, beginning at 0 at time zero, are at state a at time I .  

a E M  

Property E+. For each fixed I 

lim M P [ a ,  I] = M o [ a ,  I]. 
P+O 
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lim lim M p [ a ,  13 = lim M * [ a ,  11 , 
p-0 I + -  1- m 

which is defined and positive by Property E .  If a E M  is transient, there exists 
po>O, K < 1 ,  and c s o  that, fora l lp<p, , l  

M p [ a ,  11 < cK‘ . 

3. A N  INFINITE MODEL 

Here we consider a random unary predicate U = Up defined on the set N = 
{ 1 ,2 ,  . . .} of all positive integers and with Pr[ U(i)]  = p for all i E N ,  the events 
U(i)  being mutually independent. Our definitions will apply for any p E (0, l), 
but we note that our analysis will center on the asymptotics as p-0. All 
definitions and results will be relative to a fixed integer t .  The definitions of the 
next section are, formally, independent of p .  

3.1. k-Intervals 

Definition. 
U(i ,  - 1). 

The 1-interval of i is [ i ,  i l )  where ii > i is the least integer with 

In dynamic language, and considering U as a sequence of zeroes and ones, to 
find the 1-interval one starts at i and keeps going to the “right” until finding a 
one. Now set s = 3‘. All 1-intervals consist of a string of zeroes (possibly empty) 
followed by a one. 

Definition. The 1-value of i is the symbol a, when the 1-interval of i consists of j 
zeroes followed by a one and j < s. The 1-value is the symbol b if the 1-interval 
consists of j 2 s zeroes followed by a one. 

From Property C, the 1-value of i determines the Ehrenfeucht value of the 
1-interval of i. That is, if i ,  i’ have the same 1-value, then their 1-intervals have 
the same first order properties up to quantifier depth t. 

Definition. We define the k-interval of i, the k-value of i ,  Tk and P,. The 
definitions are done by induction on k .  The case k = 1 has already been done; 
assume inductively that they have been given for k. Beginning at i = i,, let [iO, i l )  
be the k-interval of i, and then take successive k-intervals [ i l ,  i,), 
[ i, , i3 ) ,  . . . , [ i, - i ,  ) until reaching a k-interval [ i, , i ,  + ) whose k-value lies in T ,  . 
(This could happen at u =0.) The ( k  + 1)-interval of i is then [ i ,  i u + l ) .  Let 
x1 , . . . , x u ,  y be the k-values of the successive intervals so that x ,  E Pk and y E T k .  
Now consider x l  ’ - . x u  as a string, an element of ZP,, and let a denote its 
Ehrenfeucht value, as defined in Section 2.1. The k + 1 -value of i is then the pair 
( a ,  y ) .  Let Pk+l denote the set of pairs (a ,  y )  with y E Tk and a a persistent 
Ehrenfeucht class of X P k .  Let T k + I  denote the set of such pairs where a is a 
transient Ehrenfeucht class as defined in Section 2.3. 

Sh:432



R A N D O M ,  SPARSE UNARY PREDICATES 387 

Definition. 
k-value in Pk; otherwise it is called k-transient, or, simply, transient. 

A k-interval [i, j )  is called k-persistent (or, simply, persistent) if it has 

Remarks. As this definition is somewhat the key to our entire program, several 
comments are in order. The rough idea is to capture events that occur every 
@( pPk)-k consecutive ones being a natural, but by no means the only example. 
A persistent k-interval starting at i ends when a “typical” event of probability 
-pk  occurs; the transient k-intervals are when something “atypical” occurs. 

Example. Take t = 5 ,  s = 243. A persistent 1-interval consists of at least 243 
zeroes followed by a one. P ,  = {b} .  In ZPl a sequence is persistent if it consists of 
more than 243 b’s. So a persistent 2-interval looks like at least 243 persistent 
1-intervals followed by ai - i - 1 zeroes and then another one. A persistent 
2-interval ends with two ones close together. The persistent states can be denoted 
Bi, 1 5  i 5 243. A 2-interval with value B j  consists of “many” ones “far” apart 
followed by two ones i apart. A typical transient 2-value, let us denote it by C,,,, 
consists of eight persistent 1-intervals, two zeroes, and a one. The “atypical” 
thing is that the two ones close together come too soon. The general transient 
2-value is of the form Ca,b with 0 5 a < 243 and 0 5 b < 243. 

The 3-intervals introduce the real complexities. How can a persistent 3-interval 
end? It ends with a persistent 2-interval, which ends with two ones close together, 
followed by a transient 2-interval. If the latter is of the form CO,b, then there are 
three ones close together. If the latter is of the form Ca,b ,  then there are two pairs 
of close together ones and between them only a ones all far apart. When is a 
3-interval persistent? Suppose its persistent 2-intervals have 2-values B,, . * * Biu. 
We must have that string persistent in Z P , .  As an example, the 3-interval would 
be transient if no B,, appeared in the string-i.e., there were not two ones 
precisely 23 apart. But similarly for it to be persistent (for, say, t 2 3) there must 
be two B,, with no B,, between them. 

The open interval, [ i , ~ )  is split, for every k, into an infinite sequence of 
k-intervals I:, Z:, . . . . Each Zf is the union of consecutive (k - 1)-intervals. 
Many things can “cause” a k-interval to end. Here we give the most natural: a 
sequence of k ones. 

Lemma. 
transient. 

Zf U ( x ) ,  then for every k 2 1 the k-interval of x is [x, x + 1) and is 

Proof. Induction on k. The case k = 1 follows directly from the definitions. 
Assume for k - 1. As [ x ,  x + 1) is a transient (k - 1)-interval, [x, x + 1) is the 
k-interval of x. Its k-value is (0, y) with y the (k - 1)-value of [ x ,  x + 1) and 0 
the Ehrenfeucht value of the null sequence in Z P k - , .  But 0 is certainly transient 
so [x, x + 1) is a transient k-interval. a 

Theorem 3.1. Let i I j and suppose U(s)  for j 5 s I j + k - 1.  Decompose [i, w) 

into consecutive k-intervals It, Zi, . . . . Then one of the k-intervals has final value 
j + k - 1 .  

Proof. Induction on k. For k = 1 this is immediate. Assume for k - 1 SO that 
when [i, W) is decomposed into (k - 1)-intervals some interval IT-’’ ends in 

Sh:432



388 SHELAH AND SPENCER 

j + k - 2. By the Lemma, Ilk+T" = [ j + k - 1, j + k )  and is transient. Hence I::;') 
ends a k-interval. 0 

3.2. Probability 

Now we examine the probabilities of the various k-values for the random unary 
predicate. All asymptotics are as p -+ 0. 

Definition. 
of i has k-value p. 

For any k-value p, let P[ p ]  denote the probability that the k-interval 

Note that P[  p ]  is independent of i. Formally we should write P[ p, p ] ,  but we 
suppress the p in this and later functions for notational convenience. 

Theorem 3.2. If p is persistent, there exists cp  > 0 with 

P[ p ]  = cq + o( 1) . 

I f  p is transient, then there exists cp > 0 with 

Proof. The proof is by induction on k. For k = 1 and p = a, (i.e., j - 1 zeroes 
followed by a one) P[ p]  = (1 - p)'-  ' p  - p .  For p = b (at least s zeroes followed 
by a one) 

S 

P [ p ]  = 1 - c ( 1  -p>"-$ = 1 - o(1). 
j =  1 

Now assume the result for k - 1. Let y be the probability that the (k - 1)-value 
of i is transient. By induction y = cp + o ( p )  since y is the (finite) sum of the 
probabilities of the (k - 1)-value being p over all transient p. For all persistent 
( k  - 1)-values p set 

P"PI= P[PI/(1- 7 )  7 

the conditional probability of a (k - 1)-value being p give that it is persistent. As 
y = o( l), P p  [ p ]  = cp + o( 1). For all transient y set 

P T [ y l =  P [ Y l h  7 

the conditional probability of a (k - 1)-value being y given that it is transient. As 
y = cp + o( p ) ,  P T [ y ]  = cy'+ o(1) with cy' = c, /c .  

Now comes an essential point. Let the successive (k - 1)-intervals for i have 
values PI,  pz, . . . . Conditioning on p 1  , . . . , p,--even conditioning on the precise 
sequence giving these values-the (k - 1)-value for the next interval is still 
independent. That is, having examined the sequence up to a certain point gives us 
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no change in the distribution of the sequence after that point. Hence p,+l is 
independent of pl,. . . , p,. 

Let p = ( a ,  y )  be a k-value. For 12 0 consider a random string p1 . * * PI of 
elements of P,- 1,  independently chosen each with distribution Pp. Let M [ a ,  I ]  
denote the probability that this random string, as an element of C P , - ,  has 
Ehrenfeucht value a. We claim: 

m 

P[P1= c (1 - r ) I M h  lIYP'[Yl 
1=0 

For the k-interval of i to have value p the successive ( k  - 1)-intervals must have, 
for some I 2 0, persistent values p1 - . . PI followed by transient y .  Conditioning on 
persistency and transience gives the (1 - y)'  and y factors, respectively. Under 
that conditioning, M [ a ,  13 and P T [ y ]  are the probabilities of getting a and y ,  
respectively. 

Assume p = ( a ,  y )  is persistent. Set c, = limp+o P'( y )  and, by Property E+, 
c ,  = limpto liml-m M [ a ,  t ] .  As y-+ 0 and M ,  PTare uniformly bounded, standard 
analysis gives 

lim P[ p ]  = cyc, . 
P+O 

NOW assume p = (a, y )  is transient. By Property E', M [ a ,  I] < cK' for all p < p o .  
Thus for any E > 0 there exists 1, such that 

a a c ( 1 - y ) ' M [ a , 1 ] P T [ y ] <  c C K 1 < E  
[ = I "  1 = I o  

uniformly for all p < p o .  Recall M is here also a function of p ,  Set M o [ a ,  I ]  = 
limp+o M [ a ,  I ] ,  using property E+. Then 

m 

as desired. 0 

Remark. 
persistent and by I small when p is transient. 

iqote that the contribution to P [ p ]  is dominated by 1 large when p is 

Example. Take t = 5 ,  s = 243, A = {a, b ,  c } ,  k = 2. The persistent 2-intervals Bi 
consist of "many" ones "far" apart and then two ones i apart, 1 5 i 5 243. Each 
one is asymptotically equally likely and P[Bi]+ 1 /243. 
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3.3. Lengths of &-Intervals 

Let X ,  = X,(p, i )  denote the length of the k-interval beginning at i. Clearly the 
distribution of X ,  does not depend on i. Here we make precise the notion that 
k-intervals measure events occurring every -pk. 

Theorem 3.3. For each k 2 1, there exist positive p,, E , ,  E ;  so that for p < pk 

Proof. First set k = 1. A 1-interval ends with a one so that Pr[Xl 5 u ]  5 pa and 
we can set p, = el = e ;  = 0.1 with room to spare. Now we use induction, assuming 
the result for k .  Let y be the probability that a k-interval is transient. From the 
proof of Theorem 3.2, y( p )  = c l p  + o( p )  for a positive cl. Pick any c > c ,  and so 
that for p sufficiently small y < cp. 

Let XL+l be the sum of the lengths of the first p-'/2c k-intervals, beginning at 
i. Each each has independent length so almost surely (as p + 0) ( E ;  + o( l))p-'/2c 
of them have length at least ekp-, and X;>(eke;/2c + 0(1))p-(~+'). For p 
sufficiently small X:  > ( E , ~ ; / ~ c ) P - ( ~ + ' )  with probability at least 0.9. The prob- 
ability that any of the first p-'/2c k-intervals is transient is less than yp-I/ 
2c < 0.6. At least 30% of the time the first occurs and the second does not. But 
then X ,  > X ; .  Thus we may take E L + '  = 0.3 and ek+' = E,E;/~c. 0 

Definition. 
L = L,(n, p )  denote the number of these intervals lying entirely in [1, n]. 

Theorems 3.4. 

Consider the sequence Z:, Zt, . . . of k-intervals beginning at i = 1. Let 

Let n -+ w, p -+ 0 so that npk -+ 00 and npk+' -+ 0. Then 

(i) L,(n, p)  > npk(l - o(1)) almost surely. 
(ii) L,+,(n, p)+O almost surely. 

Remark. 
constant may be determined. 

Indeed, even more is true. L,(n, p) = O(npk) and even the proper 

Proof. Basic probability arguments given that the random sequence in [ l ,  n ]  
almost surely contains k-consecutive ones -npk-times. By Theorem 3.1 each such 
sequence ends a k-interval. For (ii), let E , ,  €6 be given by Theorem 3.3. Consider 
the first 2npk/e,e; k-intervals, beginning at one. As npk-+ 00 almost surely 
-2npk/ek of them have length at least ekp-, so their total length is more than, 
asymptotically, 2n and hence almost surely more than n. The probability that any 
of them is transient is less than y(2npkle,e;). As y = O(p), this approaches zero. 
Hence almost surely the first 2npk/e,e; k-intervals are all transient and reach past 
n so that the (k + 1)-interval beginning at one is not ended by n. 0 

3.4. The Glue 

With npk+' + O  and npk+, ,  we now have a picture of Un,p  as a long succession 
of k-intervals Zt, Zt, . . . , Z L  followed by some excess-the "cutoff" part of 
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In this somewhat technical section we show how to glue this excess onto the front 
of I ; .  

Definition. A persistent k-interval I beginning at one is called superpersistent i f  
the following holds for 1 5  w < k :  Let 1‘, 12, . . . , IL, IL.+‘ be the successive 
w-intervals beginning at one with IL+’ the first transient one and let pl, . . . p L ,  y 
denote their respective Ehrenfeucht values. Then we require that p2 * * . pL be 
persistent in Z P, .  (When k = 1, all persistent intervals are called superpersistent.) 

Remark. As the full k-interval is persistent, the first ( w  + 1)-interval is persis- 
tent and so p1 - - . pL is persistent. Superpersistency only further requires persis- 
tency of the string without pl. 

Theorem 3.5. Let J be a model on I- u ,  01 so that the k-interval beginning at - u 
does not end by 0. Let I be a superpersistent k-interval on [l, a ] .  Then J + I is a 
persistent k-interval on [ - u,  a ] .  

Proof. When k = 1, J is a sequence of all zeroes and I has “many” zeroes 
followed by a one so that J + I also has “many” zeroes followed by a one, and is 
persistent. Now we use induction. Split J into ( k  - l)-intervals, number them J - b ,  

. . . , J o  with excess J * .  [If a ( k  - 1)-interval was just completed, then J* 
will be null.] Let p - b ,  . . . , Po denote their ( k  - 1)-values. Split I into ( k  - 1)- 
intervals I’,  . . . , IL+’ with ( k  - 1)-values pl, . . . , pL, y .  Observe that I being a 
superpersistent k-interval implies that I’ is a superpersistent (k  - 1)-interval. 
Observe that J * ,  as excess, does not complete a ( k  - 1)-interval. By induction 
J *  + I ’  is a persistent ( k  - 1)-interval. Its ( k  - 1)-value, call it pi, may be 
different from PI.  The ( k  - l)-intervals of J + I thus have values P - b ,  . . . , Po, 
p;P2, . . . , pL,  y .  All are persistent but y so J + Z is a k-interval. By superpersis- 
tency p2 * * . pL is persistent in Z P , - ,  . By Theorem 2.3 the addition of any prefix 
retains persistency so p P b  * - Po, pip2 - * * p L  is persistent in ZPk-,  and hence 
J + I is a persistent k-interval. 0 

Theorem 3.6. 
persistent. 

Almost surely, as p + 0, the k-interval beginning at one is super- 

Proof. Fix 1 5  w < k. Let P1, pz, . . . , p L ,  y denote the Ehrenfeucht values of 
the successive i-intervals beginning at one, with y the first transient one. From 
Theorem 3.2, the first (w + 1)-interval is almost surely persistent so that p1 - * * pL 
is almost surely persistent in ZP,. Also from Theorem 3.2, p1 is almost surely not 
transient. Conditioning on being not transient, the distribution of p2 * * * p, 
(i.e., stopping at the first transient) is the same as the distribution of p1 * * . p L  
without the conditioning and so almost surely p 2 . - -  pL is persistent. An event 
that occurs almost surely when conditioned on an almost sure event occurs almost 
surely. As this holds for each of the finite number of i, the k-interval beginning at 
one is almost surely superpersistent. 
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4. THE ZERO-ONE LAW FOR CIRCULAR SEQUENCES 

Now we can give the proof of Theorem 1.1. Fix k. Let A be any first order 
sentence. Let t be the quantifier depth of A .  Fix p = p ( n )  with n p k - + w  and 
npk+' -+ 0. Now consider the random unary predicate Un,p.  Split U into consecu- 
tive k-intervals I : ,  . . . , I: followed by an excess J .  (That is, take the infinite 
model and let J be I:,' cut off at n.) Almost surely IF is superpersistent. Placing, 
by Theorem 3.5, J in front of Z: we decompose U into k-intervals I:*, It, . . . , I : .  
By Theorem 3.4 almost surely Q > (1 - o( l ) )npk.  Set R = L(np ) J so that 
R - and R < Q almost surely. Let p2, . . . , PR be the k-values of Zt, . . . , I:.  
These are independently distributed; each value /3 E Pk occurs with asymp- 
totically positive distribution, so as R +  co the sequence p2 - * PR almost surely 
contains the universal sequence (T (whose size is fixed, given k, t )  of Theorem 
2.10. But once (T is a consecutive subsequence Theorems 2.10 and 2.12 assure that 
the truth value of all first order sentences of quantifier depth at most t ,  in 
particular our desired A ,  are determined. 

k 112 

5. CONVERGENCE FOR THE LINEAR M O D E L  

We have already remarked in Section 1 that Zero-One Laws generally do not 
hold for the linear model ( [ n ] ,  5, U )  and that Dolan has characterized those 
p = p ( n )  for which they do. Our main object in this section is the following 
convergence result. 

Theorem 5.1. 
is a constant c = ck,s so that, for any p = p ( n )  satisfying 

Let k be a positive integer, and S afirst order sentence. Then there 

we have 

lim Pr[ Un,p i= S ]  = c . 
n+m 

Again we shall fix the quantifier depth t of S and consider Ehrenfeucht classes 
with respect to that t. For each P E Pk, let c p ,  as given by Theorem 3.2, be the 
limiting probability that a k-interval has k-value p. Let M be the set of 
equivalence classes of X P k ,  a Markov Chain as defined in Section 2.4, and for 
each =,-class R, let P[R,] be the probability that a random sequence PIP2 - * 

eventually falls into R,. 

k-intervals, denoted [1, i l) ,  [il ,  i2) ,  . . . , from 1. 
In ( [ n ] ,  I, U )  let PI . . . / I N  denote the sequence of k-values of the successive 

Set, with foresight, 6 = 10-23-f. 
We shall call U on [n] right nice if it satisfies two conditions. The first is simply 

that all the , . . . , PN described above are persistent. Theorem 3.4 gives that this 
holds almost surely. The second will be a particular universality condition. Let 
A * . A be a specific sequence in C Pk with the property that for every R, and 

Sh:432



R A N D O M ,  SPARSE UNARY PREDICATES 393 

L, there exists a q so that 

A . . . A E L, and A , + ,  . . . A ,  E R, . 

(We can find such a sequence for a particular choice of R, and L, by taking 
specific sequences in ZPk in those classes and concatenating them. The full 
sequence is achieved by concatenating these sequences for all choices of R, and 
L, . Note that as some A * * A ,  E L, the full sequence is persistent.) The second 
condition is that inside any interval [ x ,  x + an] C [1, n] there exist R consecutive 
k-intervals [iL, i L + l ) ,  . . . , [iL+,, iL+,+,) whose k-values are, in order, precisely 
A 1 ,  . . . , A ,. We claim this condition holds almost surely. We can cover [1, n] 
with a finite number of intervals [ y ,  y + (6/3)n] and it suffices to show that 
almost always all of them contain such a sequence, so it suffices to show that a 
fixed [ y ,  y + (S/3)n] has such a sequence. Generating the k-intervals from 1 
almost surely a k-interval ends after y and before y + ( S / 6 ) n .  Now we generate a 
random sequence p l . - .  on an interval of length (6/6)n.  But constants do not 
affect the analysis and almost surely A ,  . * A , appears. 

Now on ( [ n ] ,  5 ,  U )  define U‘ by U r ( i )  if and only if U(n + 1 - r ) .  U‘ is the 
sequence U in reverse order. Call U left nice if U‘ is right nice. Call U nice if it is 
right nice and left nice. As all four conditions hold almost surely, the random Un,p  
is almost surely nice. 

Let U be nice and let p1 . . . P N  and pi * * * pLr denote the sequences of k-values 
for U and U‘ respectively and let R, and R,, denote their ER-classes, respectively. 
(Both exist since the sequences are persistent.) 

Theorem 5.2. The values R, and R,, determine the Ehrenfeucht value of nice U.  

Proof. Fix two models M =  ([n], 5 ,  U )  and M ‘ =  ([n’], 5,  U ’ ) ,  both nice and 
both with the same values R,, R,,. Consider the t-move Ehrenfeucht game. For 
the first move suppose Spoiler picks m E M .  By symmetry suppose rn 5 n/2.  Let 
[ i r - l ,  i,) be one of the k-intervals with, say, 0.51n 5 ir50.52n. We allow 
Duplicator a “free” move and have him select i,. Let p1 * * - PN and pi . . . PA, be 
the sequences of k-values for M and M ‘ ,  respectively. Let z be the class of 

- - p,. Since U is nice, this sequence already contains A , 1 - A ,  and hence is 
persistent so z E R,.  Let 2‘ be the class of p,+l . . . P N .  By the same argument z‘ 
is persistent. In M ’  inside of, say, [0.5n, 0.51nI we find the block A ,  . . * A, .  By 
the universality property we can split this block into a segment in L,  and another 
in R,,. Adding more to the left or right doesn’t change the nature of this split. 
Thus there is an interval [i;.-,, i;,) so that . . /?kr E R Z 8 .  
Spoiler plays ii, in response to i,. 

The class of p1 . * p, is z and z E R, . The class z ’ of pi - * . p L r  is in L,  and R, . 
As z E L,  f l  R,, z = z’. Thus [l, i,) under M and [1, i;.) under M ’  have the same 
Ehrenfeucht value. Thus Duplicator can respond successfully to the at most t 
moves (including the initial move m) made in these intervals. Thus Spoiler may as 
well play the remaining t - 1 moves on M I  = ([i,, n], 5, U )  and Mi = 
([ii,, n‘], 5 ,  U ’ ) .  These intervals have lengths n, 2 n/3 and n; I n’ /3 ,  respec- 
tively. But now M and M ’  are both nice with respect to 6, = 36-the sequence 
A ,  . . . A ,  still appears inside every interval of length 6n 5 6,n, in M and 6,n; in 

* p; ,  E L, and 
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M' .  Hence we can apply the same argument for the second move-for con- 
venience still looking at Ehrenfeucht values with respect to the t move game. 
After t moves we still have nice M,,  Mi with respect to 6, I lo-* so the arguments 
are still valid. But at the end of t rounds Duplicator has won. 0 

Proof of Theorem 5.1. Let R, , R,, be any two =.-classes. Let U be random and 
consider ( [ a n ) ,  5 ,  U ) .  The sequence of k-values lies in R,  with probability 
P[R,] + o(1). The same holds for U' on [an].  But U' examines U on [(l- 
S ) n ,  n ]  so as 6 < 0.5 the values of the =.-classes are independent and so the joint 
probability of the values being R, and R,,, respectively, is P[R,] P[R,,] + o(1). 
Given Theorem 5.2, ( [ n ] ,  5, U )  then has a value u = u(R,, Rxr) .  As 

c P[R,]P[R,,] = c P[R,] c P[R,,] = 1 x 1 = 1 ,  

this gives a limiting distribution for the Ehrenfeucht value u on ( [ n ] ,  5, U ) .  
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