
  American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the 
American Mathematical Society.

http://www.jstor.org

All Meager Filters may be Null 
Author(s): Tomek Bartoszynski, Martin Goldstern, Haim Judah and Saharon Shelah 
Source:  Proceedings of the American Mathematical Society, Vol. 117, No. 2 (Feb., 1993), pp. 515-

 521
Published by:  American Mathematical Society
Stable URL:  http://www.jstor.org/stable/2159190
Accessed: 09-01-2016 18:47 UTC

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/
 info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content 
in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. 
For more information about JSTOR, please contact support@jstor.org.

This content downloaded from 141.233.160.21 on Sat, 09 Jan 2016 18:47:08 UTC
All use subject to JSTOR Terms and Conditions

Sh:434

http://www.jstor.org
http://www.jstor.org/publisher/ams
http://www.jstor.org/stable/2159190
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp
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ALL MEAGER FILTERS MAY BE NULL 

TOMEK BARTOSZYNSKI, MARTIN GOLDSTERN, 
HAIM JUDAH, AND SAHARON SHELAH 

(Communicated by Andreas R. Blass) 

ABSTRACT. We show that in the Cohen model the sum of two nonmeasurable 
sets is always nonmeager. As a consequence we show that it is consistent with 
ZFC that all filters which have the Baire property are Lebesgue measurable. 
We also show that the existence of a Sierpinski set implies that there exists a 
nonmeasurable filter which has the Baire property. 

1. INTRODUCTION 

The goal of this paper is to show yet another example of nonduality between 
measure and category. 

Suppose that Y is a nonprincipal filter on o. Identify F with the set of 
characteristic functions of its elements. Under this convention F becomes a 
subset of 2w and a question about its topological or measure-theoretical prop- 
erties makes sense. 

It has been proved by Sierpinski that every nonprincipal filter has either 
Lebesgue measure zero or is nonmeasurable. Similarly it is either meager or 
does not have the Baire property. 

In [T] Talagrand proved that 

Theorem 1.1. There exists a measurable filter that does not have the Baire prop- 
erty. 

In fact we have an even stronger result. In [Ba] it is proved that 

Theorem 1.2. Every measurable filter can be extended to a measurable filter that 
does not have the Baire property. 

We show that the dual result is false. 
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2. A MODEL WHERE ALL MEAGER FILTERS ARE NULL 

In this section we prove the following theorem. 

Theorem 2.1. It is consistent with ZFC that everyfilter that has the Baire property 
is measurable. 

Proof. We will use the following more general result. 

Theorem 2.2. Let V l GCH and suppose that V[G] is a generic extension of 
V obtained adding (02 Cohen reals. Then in V[G] for any two sets A, B C 2W 
if A+B = {a+b: a E A, b E B} is a meager set then either A or B has 
measure zero. 

Proof. Note that we apply this lemma only for the case A = B. Therefore to 
simplify the notation we assume that A = B. The proof of the general case is 
almost the same. We follow [Bu]. 

We will use the following notation. Let 

Fn(X, 2) = {s: dom(s) E [X]<@ and range(s) C {O, 1}} 

be the notion of forcing adding IXI-many Cohen reals. For s E Fn(X, 2) let 
[S] = {f E 2X: s C f}. 

Let V t GCH be a model of ZFC and GC,,2 be an Fn(w02, 2)-generic filter 
over V. Clearly c = U G t2 is a generic sequence of (02 Cohen reals and 
V[c] = V[GW2 I.- 

Let {Fn: n E w} be a sequence of closed, nowhere dense sets such that 
A + A C UnEw Fn . Without loss of generality we can assume that {Fn: n E w} 
EV. 

Let {a: 4 < 02} be an enumeration of all elements of A. For every 4 < w02 
let de be a name for ae . In other words for every 4 < w02 we have a countable 
set I, C Ct2 such that c4 is a Borel function from 24 into 2a. Moreover a, 
is the value of the function izE on Cohen reals, i.e., &(cjI~) = a . In addition 
we can find a dense G3 set HE C 2I' such that i I H, is a continuous function. 

For a, (, I < (02 define 4 , ?7 if 

(1) I, and I,, are order isomorphic, 
(2) the order-isomorphism between I, and IQ transfers c4 onto a,, and 

H, onto Hr, 
(3) I, na = I,,n a. 

Notice that for every a < (02 the relation -, is an equivalence relation with 

co, many equivalence classes. 

Lemma 2.3. There exists a* < Ct2 such that 

V ,/j3r ( a* &I,n(/ja*)=0). 

Proof. Let M be an elementary substructure of a sufficiently large part of the 
universe (say, M - H(R434)) of size RI containing all relevant information 
(i.e., co, C M, (4ek , < (02) E M, etc.). 

Let a* = M n co2. a* is an ordinal of cofinality (01 . We will show that a* 
satisfies the conclusion of the lemma. 

Take any 4 < (02 and any f,. If B < a* or I, C a*, then we can choose 
= . So assume ,B > a* and I, - a* $& 0. There is ao < a* such that 
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I,: n aO = I, n a*. Let Eo = [f]o be the a,-equivalence class of 4 and ' be 
the set of all ao-equivalence classes. 

Since ' E M, also the set 

S = {sup{min(I,, - ao): 7 e El: E E e} 

isin M. As ISI<RI, SCM. 
Since min(Ig - ao) > a *, we also have sup{min(I,, - ao): Q E Eo} > a*. As 

S n [a*, (02) = 0, we conclude 

sup{min(I,, - ao): E Eo} = 2, 

hence there is ?j e Eo with min(I,, - ao) > fi, i.e., I,, n (f - ao) = 0. 
So I< n a* = I, n a = IQ n ao = I, n a*, where the last equality holds because 

Iln(a*-a) c Iln(,l-a) = 0. Also I,,fl(fl-a*) c I,,nf(,-ao) = 0. 0 

Let a* be the ordinal from the above lemma. Work in V' = V[cla*]. For 
every 4 < O02 define 

DX = {s E Fn(wJ2 - a*, 2): cl(a([s])) has measure zero}. 

Lemma 2.4. De is dense in Fn(o2 - a*, 2) for every 4 < (02 . 

Proof. Notice that it is enough to show that D,: n Fn(I - a*, 2) is dense in 
Fn(I - a*,2) for <2. 

Suppose that this fails. Find 4 < (02 and so E Fn(IE - a*, 2) such that for 
all s D so the set cI(aif([s])) has positive measure. 

Using the lemma with ,B > sup(I,) we can find i1 < 02 such that -a* I 

and (I4 - a*) n (I4 - a*) = 0 . Notice that there exists to E Fn(I,, - a*, 2) (the 
image of so under the isomorphism between I, and I) such that for every 
t D to the set cl(dc,([t])) has positive measure. 

Since so and to have disjoint domains, so U to E Fn(02 - a*, 2). Find 
n E to and a condition u E Fn(at2 - a*, 2) extending so U to such that u 1[- 
d (ce) + cr(ce) E Fn . u can then be written as ul U u2 U U3 where so C uI E 

Fn(Ia - a*, 2), to C u2 E Fn(I,, - a*, 2), and U3 E Fn (W2 - (IX U I U a*), 2). 
By the assumption the sets cl(d,([uiI)), cl(i,([u2)) have positive measure. By 
a well-known theorem of Steinhaus the set cl(ck([ul])) + cl(d,c([u2])) contains 
an open set (hence also (cl(ck ([uI])) + cl(&7 ([u2]))) - F, contains an open set). 
Using the fact that de and a, are continuous functions we can find u1 C 

si E Fn(IX - a*, 2) and u2 C t1 E Fn(Ir, - a*, 2) such that (cl(af([si])) + 
cl(&a(jjt I))) n Fn = 0 . But this is a contradiction since 

S1 U tl U U3 I-&a(c) + d(c) E Fn. 0 

Notice that for 4 < W2 

DX = {s E Fn(I,) : there exists a closed measure zero 

set F E V such thats 1 a(c) E F}. 

Therefore by the above lemma 

A C U{F : F is a closed measure zero set coded in V'} . 
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Since V contains Cohen reals over V', the union of all closed measure zero 
sets coded in V' has measure zero in V. We conclude that A has measure 
zero. Ea 

Let 9 be a nonprincipal filter. Denote by 5c = {X C CO: CO - X E F}. 
Sc is an ideal and it is very easy to see that F is measurable (has the Baire 
property) iff Sc is measurable (has the Baire property). 

Lemma 2.5. F + 9 = 9-c 

Proof. Suppose that X, Y E S. Then 

{n X(n) + Y(n) =O} D X-1(1) n Y-1(1) ESF. 

In general F + . + , is equal to F or 8c depending on whether there is 
an even or odd number of l's. 

Let V t GCH and suppose that V[G] is a generic extension of V obtained 
by adding 02 Cohen reals. By the above lemma if F is a meager filter then 
FC= = + , is meager. So by 2.2 F has measure zero. z 

3. FILTERS THAT ARE MEAGER AND NONMEASURABLE 

Theorem 2.1 shows that in order to construct a filter that is meager and 
nonmeasurable we need some extra assumptions. 

In [T] Talagrand showed that 

Theorem 3.1. Suppose that the real line is not the union of < 2lo many measure 
zero sets. Then there exists a nonmeasurable filter which is meager. 

Let K be a regular uncountable cardinal. Recall that S is a generalized 
Sierpinski set of size K if IS n HI < K for every null set H. It is clear that 
all S' C S of size K are also nonmeasurable. Note that the assumptions of the 
above theorem imply the existence of a generalized Sierpinski set of size 210. 

Theorem 3.2. Assume that there exists a generalized Sierpinski set. Then there 
exists a nonmeasurable meager filter. 

Proof. Let S be a generalized Sierpinski set of size K. Build a sequence {x, 
4 <K} C S and an elementary chain of models {M: 4 < K} of size K such 
that 

(1) {x: < a} C M, for a < K, 
(2) xfl is a random real over M, for ,B > a. 

Suppose that Mfl, xf are already constructed for ,B < a. Since S is a Sier- 
pinski set, 

Uf S n H: H is a null set coded in Mfl for ,B < } 

has size < K. Let x, be any element of S avoiding this set. 
Let X, = x, (1) for 4 < K. Let F be the filter generated by the family 

{X4: 4 < K}. We will show that Y has the required properties. 
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ALL MEAGER FILTERS MAY BE NULL 519 

For X C w let 

d(X) = limX nnl/n 
n-+coo 

if the above limit exists. 
By easy induction we show that we have d(X~, n... n X,n) = 2-n for 4j, ... 

Xn < K. This shows that 

Y C {X C co: liminf >I0}n 

which is a meager set. To check that F is nonmeasurable notice that F 
contains the nonmeasurable set {x,:: 4 < K}. a 

It is an open problem whether one can construct a meager nonmeasurable 
filter assuming the existence of a nonmeasurable set of size RI . We only have 
some partial results. 

Let b be the size of the smallest unbounded family in WW, and let unif be 
the size of the smallest nonmeasurable set. 

For X C co let fx E WW be an increasing function enumerating X. For a 
filter F let Y* = {fx: X E }I. In [J] it is proved that 

Theorem 3.3. For every filter F, 

F has the Baire property iff [* is bounded. 

Theorem 3.4. Suppose that unif < b. Then there exists a nonmeasurable filter 
that is meager. 

Proof. Let X C 2@ be a nonmeasurable set of size unif. Let M be a model of 
the same size containing X as a subset. Then M n 20 does not have mea- 
sure zero, so it is nonmeasurable. Consider any filter F such that M F 
7 is an ultrafilter. Y generates a filter in V and this filter is meager by 3.3 
and the fact that it is generated by unif < b many elements. On the other hand 
M 1= 20 = 9 U 5Tc and we know that M n 20 is a nonmeasurable set. Hence 
s is nonmeasurable. a 

The previous theorem depended on the implication: 

If F has measure zero then M n 2" has measure zero. 

This implication is not true in general for any set X E M having outer measure 
1 in M as is showed by the following example. 

Example. It is consistent with ZFC that there are models M C V such that 
only some sets which have outer measure 1 in M have measure 0 in V. 

Let V = L[c][(r5 : 4 < co,)] where c is a Cohen real over L and (rf < 
cow1) is a sequence of random reals over L[c] (added side by side). Let M = 
L[ (r,: 4 < cowi)]. Consider the set X = L n 20. It is known that X is a 
nonmeasurable set in M but X has measure 0 in V. On the other hand the 
set {r, : 4 < coI } is nonmeasurable in V. 
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We conclude the paper with an example of a filter that is destroyed by any 
new real. This was proved independently by Woodin. 

Recall that some ultrafilters are preserved (generate ultrafilters) in forcing 
extensions. In particular there is a large class of proper partial orders that 
preserve p-points. It contains Sacks forcing, rational perfect set forcing and is 
closed under countable support iteration (see [BS]). 

The next theorem shows that no forcing notion (adding new reals) preserves 
all ultrafilters. 

Theorem 3.5. Let M be a model for ZFC and let r be a real that does not 
belong to M. Then there exists a filter 7 such that M l= 7 is an ultrafilter 
but 

M[r] ={X C a): 3Y E57 Y C X} is not an ultrafilter. 
Proof. Let {kn: n e c} be a fast increasing sequence of natural numbers. Let 
T be a tree on 2<0 such that: 

(1) Vse T3n (Isl=kn) *-?s^Oe T&s^I E T. 
(2) Let {sl, ... , S2n } be the list of T n 2kn in lexicographical order. Then 

for every w c S(2n) - {0, 2n} there exists m E (kn_-, kn) such that 
s1(m)=O ifflEw. 

(3) There is no m E co such that for all s E T n 2m+1 we have s(m) = 0 
or for all s E T n 2m+l we have s(m) = 1. 

Let S C T be a subtree of T. Define 

AO = {m:: Vs E S n 2m+l s(m) = O}, 

Al = {m: s E S n 2m+1 s(m) = 1}. 

Let f be the ideal generated by sets {A?, As S is a perfect subtree of T} . 
One can easily verify that all finite subsets of co belong to f. 

Lemma 3.6. f is a proper ideaL 

Proof. Let S1, ... , Sm be perfect subtrees of T. Find n sufficiently big so 
that ISj n 2knI > m for j < m . Let sI, ..., S2. be the list of T n 2kn in 
lexicographical ordering. Let wI, . .. , Wm be such that Sj n 2kn = {Si i E Wj} 
for i < m. Let w = {min(wl), ... , min(wm)}. Then for all j, wj 9 w 
and wj n w :# 0. By the definition of T there is kn_1 < k < kn such 
that w = {1: sl(k) = 01. By the property of w for every j < m there exist 
s, S1 E Sj n 2kn such that s?(k) = 0 and s1(k) = 1. Therefore k f AO U 
Al U***UAOA UA 

St m sm 
Let 9 be any ultrafilter in M extending the filter {ICO - X: X Ef}. Let r 

be a real that does not belong to M. Without loss of generality we can assume 
that r is a branch through T. 

Assume that -Y generates an ultrafilter, and let Xr = {n: r(n) = 1}. We 
can assume that there exists an element X E 9 such that X C Xr. Let 
S = {s E T: Vk E X (sj > k -s(k) = 1)}. Clearly r is a branch through S. 
But in that case S contains a perfect subtree S, c S (since it contains a new 
branch). Therefore X c AI f/, a contradiction. o 
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