
ANNALS OF 
PURE AND 
APPLIED LOGIC 

ELS!&IER Annals of Pure and Applied Logic 80 (1996) 229-255 

Toward classifying unstable theories* 

Saharon Shelah 
Institute of Mathematics, The Hebrew University, Jerusalem, Israel: Rutgers University, 

Department of Mathematics, New Brunswick, NJ USA 

Received 5 September 1995 

Communicated by A. Nerode 

0. Introduction 

Having finished [14], an important direction seems to me to try to classify unstable 

theories; i.e. to find meaningful dividing lines. In [12] the two such were the strict 

order property and independence property, their disjunction is equivalent to unstability 

(see [14, 4.7]=[20, 4.7, p. 701). For theories without the independence property, we 

know S(A) (and SA(A)) are relatively small (see [12; 9; 14, III, Section 7, 7.3, 7.4, 

II, Section 4, 4,9, 4.101). Also for 3, > (T],{p E S(A) : p does not split over some 

B CA of cardinality < A} is l-dense (see [14, 7.5]=[20, 7.5, p. 1401). 

Later this becomes interesting in the context of analyzing monadic logic (see Baldwin 

Shelah’s [2]; representation Baldwin [l]). By [19] if “no monadic expansion of T has 

the independence property” is a significant dividing line. 

Lately, some model theorists have become interested in finitary versions called UC 

dimensions, see [ 1 l] (good bound for the case of expansion off the real field). 

More relevant to the present work is the tree property, which is weaker than the 

strict order property (in [20, III, p.1711). 

In [16] we try to investigate theories without the tree property, hence called simple. 

This can be looked at as a weakening of stable, so: simple * K&T) < cc ti failure 

of the tree property w suitable local ranks < cc are parallel to stable. We try to 

proceed parallel to (parts of) Chs. II, III of [14], forking being generalized in some 

ways; but here instead of showing the number of ultrafilters of the Boolean Algebras 

of formulas rp(x,G) over A is small (+Ilrl) we show that it can be decomposed to 

few subalgebras satisfying a strong chain condition. In this context we also succeed 

to get averages; but the Boolean algebras we get were derived from normal ones with 

a little twist. We did not start with generalizing the rest of [14] like supersimple (i.e. 

K&T) = No, equivalently suitable rank is < co). The test problem in [16] was trying 
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to characterize the class of pairs 

P(T) = (A, K) : every model of T of cardinality 1 has a 

rc-saturated elementary extensions of cardinality I , 

For simplicity we consider there only 1 = J.lrl > 21TI+K, K > 1 TI and ($)(p = pL<K 

<1<2fi) (if this fails, see [22, 231). So by [16] for non simple T, such (1, K) is in 

SP(T) iff L = A<“. Ifp=,u<P < L=L<l, after sutiable forcing preserving p = p’p, 

not collapsing cardinals and making 2p = I, we have and deduce suitable generalization 

ofMA, ic<p < ;1<2p+(1,1c)~SP(T). 

It seems much better to use just the cardinal arithmetic assumptions (not the gener- 

alizations of MA). This calls to investigate problem of 8-(n)-amalgamation (see [18, 

20, XII, Section 51). For the case of n = 3 this means that 

(*I3 if p0G,J), PI&~), PZ(Y,~), complete types over A, each saying the two se- 

quences of variables are “independent” in suitable ways (like nonforking) then 

we extend the union of the three (preserving “independence”). 

Now (*)3 can be proved [16, Claim 7.8, p. 201, (3.5, p. 187)]. But the proof does 

not work for higher n, naturally counterexamples for the amalgamation should give 

counterexample to membership in SP. This was carried out by finding counterexamples 

in a wider framework: saturation inside P in [17]; but we could still hope that for the 

“true” one there is a positive one. 

For long, I was occupied elsewhere and did not look into it, but eventually Hrushovski 

became interested (and through him, others) and we try to explain his relevant research 

below. Also, it could be asked if simple unstable theories “occur in nature”, “are im- 

portant to algebraic applications”. The works cited below gives a positive answer (note 

that, quite natural, these examples concentrate on the lower part of hierarchy, like 

strongly minimal or finite Morley rank). 

On the one hand, Hrushovski, continuing [ 171, proves that there are simple theories 

with bad behavior for 9(n) so in the result above the cardinal arithmetic is not enough. 

On the other hand, by the work of Hrushovski and Pillay [8] in specific cases (finite 

ranks) relevant cases of (*),, are proved, for n > 3 under very specific conditions: for 

n = 3 more generally; but the relationship with [16], 7.8 of (*) was not clarified (in 

both cases the original rank does not work; the solution in [ 161 is to use dnwd (= 

“do not weakly divide”), Hrushovski changes the rank replacing “contradictory” by 

having small rank; this seems a reasonable approach only for supersimple theories and 

was carried out only for ones with finite rank, and it gives more information in other 

respects. 

In [5] let t%o be the monster model for a strongly minimal theory with elimination 

of imaginaries, A G 6, A = dcl A, such that every p E Y’(A) with multiplicity 1 is 

finitely satisfiable in A. Now Th(E ,A) is simple (of rank 1) and we can understand 

PAC in general content. Hrushovski [4] does parallel thing for finite rank. 
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We turn to the present work. Section 1 deals with the existence of universal models. 
Note that existence of saturated models can be characterized nicely by stability (see 

rw. 
By Kojman Shelah [lo], the theory of linear order and more generally theories 

without the strict order property has universal models in “few” cardinals. 
By [21] we have a sufficient condition for a consistency of “there is in ,u++ a model 

of T universal for models of T of cardinality p+“, we use this condition below. 
The main aim is to show that all simple theories behave “better” in this respect than 

the theory of linear order. Specifically, it is consistent that Nc < R = ;Itn,ZA > I++, 
moreover, there is a club guessing (Cs : 6 < A+, cf(6) = A>, and every simple T of 
cardinal&y c i; has a model in ;C++ universal for 1+. For this we represent results of 
[ 161 and do the things needed specifically for the use of [21]. See Remark 1.4A(2). 
In Section 2 we start to investigate nonsimple which are ‘low’. 

1. Simple theories have more universal models 

We quote [21, 5.11. 

Lemma 1.1. suppose 
(A) T is first order, complete for simplicity with elimination of quant~ers (or just 

inductive theory with the amalgamation and disjoint embedding property). 
(B) KaP is a simple J-approximation system such that every M E I&, is a model of 

T hence every Mr, where for r E Krnd we let Mr = U{M : A4 E r}. 

(C) Every model M of T of cardinality I+ can be embedded into Mr for some 

r E K,,,d. 
Then 

(a) in [21, 4.91 in VP, there is a model of T of cardinality ,Jf+ universal for models 

of T of curd~nality If. 
(b) So in VP, univ(;l+, T) < A+’ < 2”. 

Proof. Straightforward. q 

Fact 1.1. (1) Assume M 4 N,Z E w’N, and LI a finite set of formulas possibly with 
parameters from M. Then there is a formula t+@,b) E tp(a,M,N) such that: 

(*) for any a”’ E M realizing $(X, b), we can find a LI -2-indiscernible sequence 
(aj : i <w) such that: & = ~?‘,a,+~ = Cr; hence we can find an indiscernible 

sequence (a: : i < CO) (in 6) such that the A-type of Z~*& is the same as that 
of a’*Ci. 

(2) Assume 2e+iTI G K and M -X N, moreover, 

0 $ACM,IAl G K, a E ‘N then some ~7’ E M realizes @(a, A, N). 
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Then for any 5 E ON and 3 GM, lBJ 6 8, there is A GM, IAl < K, such that for every 

6’ E ‘M realizing tp(ti,A, N) there is a sequence (iii : i <K) which is Z-indiscernible 

over B, & = Z’, & = ii, hence there is an indiscernible sequence (Gi : i < w) such that 

&,*a{ realizes the same type as E’^G over B. 

Proof. Obvious (notes on combination set theory). 
(1) Let (pi : i < k) list the possible n-types of sequences of length eg(G) + d(G), 

so k < w. For each pi, choose &(Z,&) E tp(ki,M, N) such that, if possible for no 
d E ‘g@fiV realizing ~i(~,~i) do we have Z’^G realizes pi. 

Now t/+,6) =: Aitk ~j(~,~) is as required. 
(2) (pi : i < k} list the complete 2~g(~)-types over B. Use pi C tp(~,~, N), lpi/ <:O+ 

ITi instead of $i(2,6i),A = Uid Dam pi. D 

Theorem 1.2. If T is a complete simple (Jo.) theory, ITI < 1, then T satisjes the 

assumptions of .Lemma I. 1 (hence its conclusions). 

Remark 1.2A. ( 1) We can get results for a theory T of cardinal@ d A under stronger 
assumptions on T. 

(2) Though not always necessary, in this section we will assume T is simple. 
(3) Also this section is not written in a way focused on Theorem 1.2, but for leisurely 

relook at simple theories. 

Proof. Without loss of generality T has elimination of quantifiers. 
We first recapitulate (in Definitions 1.3, 1.4 and 1.8, Remark 1.4A, Claims 1.5 and 

1.6, Theorem 1.7 and Observations 1.9 and 1.10) the needed definitions and facts on 
simple theories from [16] (adding notation and some facts), then say a little more and 
prove the theorem. So for a while we work in a fixed r&saturated model 6 of T,i2 
big enough. So M, N denotes elementary submodels of (F: of cardinality < K, A, B, C, D 

denote subsets of Q of cardinality < E and ci; &,?,J denote sequences of elements of 
6 of length < It, usually finite. Let G/B = tp(Z,B) = (q(Z,b) : b E O’B, rp E L(T) is 
first order and (r: /== qD[G, &]}. 

Definition 1.3. (1) We say that “p(f) does not weakly divide over (v, B>,’ (in short p 
dnwd (i.e. does not weakly divide) over (r,B); we write over B when r = p 1 B, we 

write over r if B = Dam(r)), where r = r(f) is a type over B (and X may be infinite) 
when if b E B and II/ = $(z?‘,. .,f”,j) a formula (where eg(Z”) = eg(x),fe with no 
repetition, (2’ : 8 = l,n>^(y) pairwise disjoint) and (see Definition 1.3(2) below) [r]$ 
is finitely satisfiable (in % ) then so is [r U p]$ (see Definition 1.3(2) below). 

(2) If * = $(f’ , . . . ,X”) (possibly with parameters), q = q(Z), then 

kzl~ = ($1 u JIj, 4(-e 

(3) p(Z) divides over A if for some formula t&&G) we have p t J;(_2,G) and for 
some indiscernible sequence (& : & < co) over A,G = &, and {llf(Z,G~) : i < w) is 
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(< o)-contradictory where a set p of formulas is n-contradictory if for any distinct 

%,*.*1 %I E P,(~l,..., cpn} is not realized (in a), and (< ~)-contradictor means 
n-contradictory for some n). We write dnd for “does not divide”. 

(4) The type p fork over the set A if for some n < CO and formulas (pd(Z,&) for 
P < n we have p F Vcu, cp&,&) and for each e < n the formula cp&,&) divides 
over A. 

We use “dnf” for “does not fork”. 
(5) The type p is finitely satisfiable (fs in short) in A (or in I) if every finite subset 

p’ of p is realized by some sequence from A (or a member of I>. 
(6) If D is an ultrafilter on Dam(D) = I (where all members of I have the same 

length, say m) then Av(B,D) =: (qo(x‘,ii) : (6 E Dom{D) : q(6,2)] E D}. 

Defi~tio~ 1.4. We say “Z/A (or tp(Z,A)) weakly divides over B” if B CA and tp(ii,A) 
weakly divides over (tp@?, B), B) (similarly for does not weakly divide). 

Remark 1.4A. (1) An equivalent formulation is “Z/A is an extension of (z/B with the 
same degree for most (A, No,/?)“; see Claim lS(8) below. 

(2) On “divides”, “fork”, “weakly divide” see [16, Definition 1 .l, 1.2 and 2.7(2)] 
respectively, On the first two see also [14], but there the focus is on stable theories. 
On “finitely satisfiable” see [14, Ch.VII, Section 41. We present here most of their 
properties, ignoring mainly the connections with suitable degrees and indiscernibility 
and the derived Boolean algebras of formulas (satisfying chain conditions). For stable 
2’ the notions of De~nition 1.3 collapse becoming equivalent (finitely satisfiable - only 
when the set is a model, see [14, CbIII]). 

Basic properties are (most can be checked directly, but (OA), (6), (8) and (9) are 
quoted): 

Claim 1.5. (0) ~Implications) 1f p ~~~~~es over A then p forks ouer A. 
(OA) If p forks over A then p weakly divides over (p f A, 8) (by [16, 2.1 I( 1 ), 

p.1841, in its proof we have relied not only on [16, 2.10(2) and 2.9(3)], but also on 

M 2.W)l). 
(OB) If a type p is ~nit~ly satis~able in A, then p does not fork owr A. 

( 1) (Monotonicity) If B 5 At 2 Az( 5 EC ), then G/AZ does not weakly divide over B. 
(1A) If p does not divide over A,AC Al and p1 C p or at least p b pk, then p1 

does not divide over Al. 

(IB) If p does not fork over A,A CA1 and PI & p or at least p F pl, then p1 
does not fork over Al. 

(ZC) If p does not weakly divide over (r,A>, Al CA,rl = m(rlC p and ri t r) 
and p1 C p or at least p t- ~1, then p1 does not weakly divide over (F-I, Al). 

(2) (Local character) Z/A does not weakly divide over B iff for every jinite subse- 
quence i? of ~3 and jnite subset A’ of A, Z’,/(A” u B) does not weakly divide over B. 
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@A) The type p does not weakly divide over (r,B) iff every jinite p’ & p dnwd 
over (r, B). 

(2B) The type p does not divide over A iff for every finite p’ C p does not divide 
over A, iff some finite conjunction cp of members of p satisfies the requirement in 

Dejinition 1.3(l). 

(2C) The type p does not fork over A iff every finite p’ G p does not fork over A. 
(3) (More monotonicity) Assume Rang(a’) = Rung(G”), then: ii//A dnwd over B iff 

cI/‘/A dnwd over B. 
(3A) IfB C A, Rang 6’ C ac1(BUa’) and at/A dnwd over B, then if”/A dnwd over B. 

(3B) Similar to (3), (3A) f or “does not divide” and for “does not for-V and for 
‘~dnwd over (r, B>,: 

(4) (Transitivity) If A0 &Al C AZ and &A f+l dnwd over AL for t” = 0, 1, then ~/AZ 
dnwd over Ao. 

(5) (Extendability) rf B &A &A+, p an m-type over A and p does not fork over B, 

then p has an extension q E S”‘(A+) which does not fork over B (clear or see [16, 

2.1 l(3)]). 
(5A) rf p is finitely satisjabie in A and (Dom p) U A C B then we can extend p 

to a complete type over B finite/y satisjable in A. 

(6) (Trivial nice behavior) $A does not fork over A (by [16, 2.1 l(2)]). 
(6A) For a set A and an m-type p we have: p does not wetly divide over (p,A) 

(check). 
(6B) Every m-type over M is unites satisfiable in M. 
(7) (Continuity) rf pi does not weakly divide over (ri, Bi) for i < 6 and i <j < 6 =+ 

pi c pj&ri C rj&Bi C Bj], then lJi_,s pi does not weakly divide over (Ui_.s ri, lJid Bi). 

(7A) !f (Ai : i < 6) is increasing, (Bi : i < S) is increasing and C/Bi is finite 
satisjable in Ai for each i < 6 then C/ Uid Bi is finite satisfiable in Uic6 Ai. (Why? 
If p C C/ Uics Bi is jinite then for some j it is over Bj hence 2 C/Bj is satisjable in 

Aj hence is satisfiable in Ui<s Ai). if (Ci : i < dj is increasing, Ci,fB is fs in A, then 
Ui<sCi is fs in A. 

(8) (Degree) Let X, = (xl : k < m>,E, be an uitra~lter on Qm =: {(&k) : 

A = A(&) C_ L(T) finite, k < w} such that for every (a,,b) f Q, the foI~owing set 
belongs to E, : 

If p(X) is a type over A, eg(.Q = m, then for some complete type q(f) over A extend- 
ing p for the E,,,-majority of (n(x), k) we have D(q(z), A, No, k) = D(p(Q A, No, k) 
(by [16, 2.2(5), p.1821; of course, we can use injmite X). 

In such a case we say q(f) is an E,,,-nonforking extension of p(z) or q(?)E,-does 
not fork over p(g). If p(z) E Sm(A) (so p = q f A) we may replace “over p(z)” by 
“over A”. 

(9) ~Additivi~) lf for every 01< tl* the type tp(g, G U A u UBux 8) does not divide 

over AUU@, b), then tp*(!&,* 6’,AlJii) does not divide over A (by [16, 1.5, p. 1811). 
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(10) (Finitely satisfiable is average) Let [g(x) = m and p = p(X) a type. Then p 
is finitely satisjiable in I #for some ultrafilter D over I we have p CAv(D,Dom p). 

(11) Zf D is an ultrajilter on I, then Av(D,A) belongs to S”‘(A) and is a jnitely 

satis$able in I. 

Claim 1.6. (1) (small basis) Zf p E F(A) and Bo CA, then for some B we have 

(a) BoC:BGA, 

(P) IBI 6 I4 + IT1 + IBOI, 
(y) p does not weakly divide over (p 1 B, B). 

(2) If E/(A U 6) dnwd over A and A GA+ g acQA U {ii' E 6 : ii' realizes G/A}], 

then there is b’(of the same length as b) such that 
(a) if 5’ CA+ and al/A = ;‘/A, then b’*ii’/A = pa/A. 

(3) (Weak symmetry) If Gl(A U 6) dnwd over A and then b/(A U ii) dnd over A. 
(4) Assume A G B~I C(al1 G (r: ) and C/B is finitely satisjable in A hence A = Bn C. 

Then B/C dnwd over (B/A,A). 

Proof. (1) By [16, 3.3, p.1861. 

(2) By [16, 2.13, p.1851 we can get clause (a). 

(3) By [16, 2.14, p.1851 it is dnd. 

(4) Straightforward (e.g. use Claim 1.5( 10)). 5 

Theorem 1.7. If A4 4 N 4 E,llM\l = p, IlNll = p+, ITI < IC,~ = ,ucK, then there are 
M+ 4 N+ such that N + N+,M 4 M+, IIM+I\ = u, IIN+]\ = u+ and 

(*)I ifBcA&N,BGM,(AI < Ic,m <o,p ES”‘(A) and p dnwd over (p 1 B,a)), then 

p is realized in M+. 

(*)2 ifB2ACN,BcM,IA] < tc,CC6,]C] < K and A/(BU C) dnwd over B, then 

there is C’ C_ M+ realizing C/(B U A). 

Proof. Clearly we can prove (*)I, (*)2 separately. Now (*)2 is immediate from Claim 

1.6(2). As for (*)I, this is proved in [16, Section 41 (read [16, 4.13, 4.14, 4.15, p.1931 

there, so we use [15, Theorem 3.11 which says that a Boolean algebra of cardinality 

A’ satisfying the K-c.c., lcK = 1 is I-centered, i.e. is the union of ~1 ultrafilters, so 

if IC > 21’1 we are done which is enough for our main theorem (Theorem 1.2 when 

I. > ( TI ). Actually repeating the proof of [ 161, Theorem 3.1 in the circumstances of 

[ 16, Section 41 shows that K > I TJ is enough). 0 

Definition 1.8. (1) K’j’ be 

{fG:lG=(Mi: i < 1’) is + -increasing continuous, each Mi a model of T 

of cardinality E. and lMo\ = 0 (we stipulate such a model 

4 M for every M + T)}. 
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(2) Go is the following partial order on lu: : h? Goa2 if for i < j < i,+ we have 
A+ -Xl@. 

Observation 1.9. (I) If (ti” : a < 6) is an <‘-increasing chain (in Kj) and 6 < if, 
then it has a lub A? : iM; = U,,& MF. 

(2) If h4 is a model of T of cardinality P, then for some A? E Ki,M = Uicl+ Mi. 

(3) If &,@ E Kf and lJ,&+ M, + Uacl+ N,, then for some club E of a+ for every 
D! E E : M, -<: N, and NJ Qd+ Mg dnwd over Mp 

Proof. (1) Immediate. (2) Use Claims 1.5(2) and 1.6( I ). q 

Using Theorem 1.7 and CIaim 1.5(5A) P x tl we get 

Observation 1.10. Assume 1 = A<“. For every n? E Kj there is an <*-increasing 

continuous sequence (iV5 : [<A), in Kj: (so i’?c = (Ni : K < A+)),iifo = A? such 

that (letting NC = U, . ..+ Ni) and (fixing x, letting iiga an enumeration of IN,il of 
length k) we have: every type definable in (W(x), E, < ;) from (HE : E < [), (A$+’ : 

@GP)* ((&,Jx : a K/2+) : E<[i),(G[,@ : ct 6 fl) and finitely many ordinals < ;1 is realized 

in Nj::, hence 

(*)I if M < n+,lG.<n,cfi{) E (&1),&a) E (&l), BC.dEN~_t,BC_N~-‘,/Al < fc, 
p E Sm(A) and p dnwd over (p 1 B, 0), then p is realized in Ni. (Note : A - 1 = 

A). 

(*)I if cl<p<y<lz+,y is non limit, BGACA+CM,,jA+/ <tc,ZfMy,t&G,AU&) 
duwd over B , then either for some 5’ E N, we have: @(&A+ U Ma) = tp(ci’, A U 

AL?,) and tp(Z’,A U Np) dnwd over B or there is no such a’ E (r.. 

(*)3 for y non limit, {GJ,cJT[) E {l,L} we have Nyi is K-saturated (so when K = i it 

is saturated). 

Definition 1.11. Let A,& C be given (2 & ). 
(0) A GitC means that for every 623, &(A U C) dnwd over (&M,A). 
(1) A s$$ means that for every EC C,?/(A UB) dnwd over (F/A,@. 
(2) A <AC means there is an increasing continuous sequence (Aa : a <p) such that 

A =Ao,AuC=Ag and 

a an even ordinal -=z p + A, <;&+I, 

a an odd ordinal < /3 + A, <g’&+t. 

(3) A GiC means that for some C’, C S. C? and A <iC’, 
(4) A<$ means that for some increasing continuous sequence {A, : ct&fl) we 

haveA=Ao,AUC=Ag andA,CiA,+t. 
(5) A G$Y means that for every 6 G Bt ~(6~ A U C> is finitely satisfiable in A, 
(6) A<$’ means that A<$B. 
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Claim 1.12. (0) A<$ACfor e = -1,0,1,2,3). 

(1) AG;C ifSA<;“, A U C(@r e = -l,O, 1,2,3). (Why? For e = -1,0 ~_JJ Claim 
1.5(3A) for e = 1,2,3 use previous case). 

(2) ZfAGB1CBUA andA9iC then A<i,C(for e = -1,0,1,2,3,). (Why? By 

part (1) and for e = - 1 trivially, for e = 0 by Claim 1.5( 1 C) and for e = 1,2,3 use 
earlier cases). 

(3) For e = 1,3 we have <i is a partial order. (Why? Read their definition). 
(4) Zfe= 1,3 and (A, : ct<P) is increasing continuous and A, <;A,+, for tl < fi, 

then A0 <$Ag. ( Why? Check). 

(5) For (e’,e2) E {(-1,1),(0,1),(1,2),(2,3)}, we have A<$C implies A<$C. 
(Why? Read the dejinition). 

(6) Zf for every 8 5 B, &/(A UC) is finitely satisjable in A, then A <iC and A < ;‘B 

(Why? By Claim 1.6(4) and 15(1C) (and Dejnition 1.11(l))). 

(7) ZfA6iC and C’c C, then A6iC’. (Why? Read Dejnition 1.11(2)). 

(8) A 6gC if A < Z’B. ( Why? Read the definitions). 

Claim 1.13. Let M + N and M C_ A. Then the following are equivalent. 

(a) M<iA, 
(b) there are MO 5 MI + M2 such that 

(i) M = MO 

(ii) the type tp,(N,Ml) isJinitely satisjable in MO and the type tp,(M2,MI u 

N) is finitely satisfiable in MI, 

(iii) for some elementary map f, f (A) C M2 and f 1 N = identity. 

(c) Like (b) with ((M2(\ < ITJ + IAl + IlNll. 
(d) Md;A. 

Remark 13A. (1) Clause (ii) of (b) implies Mo<iMI <;‘Mz. 
(2) An equivalent formulation of (b) is 

(b)* for some Mo,MI,M~, f we have M=Mo<S/-(,~M~ <ffcNjM2, f ~Mo = idM,, 

f(A) CM,. 

(3) Another formulation is 

(b)” like (b)* but f >id~“~. 

Proof. (c) + (b): Trivial. 

(b)+(c): By the Lowenkeim Skolem argument. 

(b) + (d): By Claim 1.12(6) clearly M 1 ,i1M2 and similarly MO <i;;l’N, hence by < 

Theorem 1.2(8) we have ModiM~. Hence by Claim 1.12(5), M,<hMM+~ (for e = 

0, l), so by Claim 1.12(3) Mo<hMz, hence by Definition 1.1 l(3) (and clause (iii) of 

Claim 1.13(b)), M = MO <iA as required. 

(d)+(a): Trivial (by Claim 1.12(5)). 

So the only (and main) part left is: 

(a) + (b): We know M <iA, by Claim 1.12( 1) without loss of generality M C_ A, 
hence there is an increasing continuous sequence (A, : E <c) such that A0 = M, A( = A 
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and A, < cAE+ 1. By the definition of < ,i, <a there is an increasing continuous se- 
quence (BE, i : i 6 if) such that BE,0 = A,, AE+l 2 B, is and B,, i <?)I?,, i+l (where for 
i<i, we have BE {-LO} and&=/(E) mod 2). Let e=21TI+INI+C,,5(/i,l)+ 

Ill,, iE I)+ and choose regular p = ,u’. 
We choose by induction on a < ,u+,Mol,N, such that: 
(i) A4, + a is increasing continuous, 

(ii) IW~II = P,M CM0, 

(iii) fa is an elementary mapping, &RG(~~) = N, Rang{ f oL ) = N, and f d[ IA4 = idM, 
(iv) ~~*(N~,~~) is finitely satisfiable in M, 

6) NE C i&+1, 
(vi> &+I is ~+-salted. 

There is no problem to carry the definition. (First choose M, as follows: if a = 0 
so as to satisfy (i) and (ii), if a is a limit ordinal, as UBeaMg, and if a = fit_ 1, so as 
to satisfy (i), (ii) and (v). Second choose f,,N, satisfying (iii) and (iv) which exists 
by Claim 1.5(10) and (11)). 

By using Theorem 1.7, IZf times we can find fi+ = (M,’ : a < A+) such that: 
(A) u+ is an increasing continuous sequence of elementary submodels of a, 

(B) lW,‘II GO& -: M,+, 
(C)i if a < p <,u+,&CM, and &a) = ~,B1CB:!CMg,IB*UCI~<,CCQ: and 

C/& dnwd over (C/B,, 0) ~equivalently, for every finite E 2 C, E/& dnwd over 
(E/B,, 0)) then C/B2 is realized in ME, 

(C)2 similarly, but we replace the dnwd assumption by “Bz/(Bi U C) dnwd over 
(&/BI,BI)“, mote: we use (*)I from Theorem 1.7 for (C)r and (*)2 from 
Theorem 1.7 for (C)2]. 

Now let M = UN__+ M,,M+ = U_+ M$; and let E = (6 < p+ : 6 a limit ordinal 
and (Msf,Ms) -: (M+,M)}. Clearly E is a club of @ and 

(*) 6 E E =+ tp(Ml,M) is finitely satisfiable in Ma. 

Choose 6 E E of cofinality cr. Now we choose gE by induction on E<[ such that 
(a) gE an elementary mapping, 

03 DoMgc) = N U A,, 
(y) gt- is increasing continuous in E, 

(6) gE tN = ffi, 
(~1 Rw(e t&)CM~. 
If we succeed, then we get the desired conclusion (i.e. prove clause (b)). 

(Why? First note that in clause (b) we can omit f 1 N = id 

clause (ii) we use we call this Now (b)’ with M,M&Mz,gy 

here standing to Mo,Ml,Mz, f there). So it is enough to carry the induction on E. For 
E = 0 let gE = f 6, and for E a limit ordinal let gE = &_ gc; lastly for E a successor 
ordinal say E = 5 + 1, we choose gE,i by induction on i<i, such that 

(a)’ gE, i an elementary mapping, 

0 f)omkk, i) = N U BE,i, 

(y)’ gE, i is increasing continuous in i, 
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(6)’ cl&,0 = go 
(~1’ Rang (sE)GM$. 
If we succeed then gE, i, r As+1 is as required. So it is enough to carry the induction 

on i. For i = 0 let gE, i = gs, for i limit let gE, i = Ujci gE, j and for i a successor ordinal 
say j+ 1, use clause (C)l in the choice of A4,’ if j even, remembering Definition 1 .l l( 1) 
and use clause (C)2 in the choice of M,’ if j is odd remembering Definition 1.1 l(0). 

0 

Claim 1.13A. IfM 4 N,M<$Ac fore = 1,2, then there are M+,fi,fp such that M-X 
M+,M<$4+ and for Z! = 1,2, fe is an elementary mapping, Dom(fe) = NUAe, fe / 
N = idN, fe(Ad) C_ M+. 

Proof. Same proof as Claim 1.13 (just shorter). 0 

Definition 1.14. (1) Let K,p’ = {(MN) : ~4 4 N < 6:) and (W,Nl)<*(kN2) 
iff ((M,, N,) E K,p’ for e = 1,2 and Mt + A42, N, 4 N2 and A41 G&M2 (equivalently, 
MI <$Mz (by Claim 1.13)). 

(2) We define (A4i, Nt ) < fs(M2, N2) similarly replacing “MI <$I%” by “Nt/M2 is 
finitely satisfiable in A4i”. 

Claim 1.15. (1) <* is a partial order on K,p’. 

(2) rf (G&N,) : a < p) is increasing continuous and (M,, N,) < *(&+I, N,+l ) for 

a < P, then (MO, NO) < *(A$, Np). 

(3) IfM 4 N and M<iA then for some (Ml,Nl) we have AGMI and (k&N)<* 

(M,,Nl) E K,p’. 

Proof. (1) If (&,No)<*(M~,Nt)<*(M2,N2) then 

(i) MO GM CM2 d NO GN CN2, 

(ii) Mo<$Ml and 
(iii) Ml <$,M2, 
(iv) Md C Ne. 

By Claim 1.12(2) and (1) and clause (iii) above 

(v) Ml <;$42, 

by Claim 1.12(5) we have (by (ii) and (v) respectively) 

(ii)’ MO <&VI, 

(VI’ Ml <Qfz, 

hence by Claim 1.13 

(vii) MO <&M2, 

hence (Mo,No)<*(&N2) holds by (i), (iv) and (vii). 
(2) Similarly using Claim 1.12(4) and (1.13). 
(3) Use Claim 1.13 (see Claim l.l3A( 3)) so there are A40 4 Mt -X M2 such that M = 

Mo,N/Mt fs in Mc,M2/(Mi UN) fs in Mt and AGM2. So by 1.12(6) Mo<N’M~, 
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Ml <kMz hence (see Claim 1.12(5) MO <~Mo <$Mr hence (see Claim 1.12(3)) MO <i 

M2 hence for any N*,M2 U NCN’ + 6 we have (M,N)<*(Mz,N*) E K,p’. 0 

Definition 1.16. KY = {(M,N) : the pair (M,N) E K,p’ and if (M,N)< *(M’, N’) E 

K,p’ then N/M’ is fs in M}. 

Claim 1.17. If (M,N) E K,p’ then fir some (M’, N’) we have 

(a) (M,N)<(M’,N’) E K,p’, 

(b) IlN’ll d Pll + I TI, 
(c) (M’, N’) E KY i.e. if (M’,N’) < *(M”, N”) E K,p’ then N’/M” is fs in M’. 

Proof. Let p = llNl[ + ITI, assume the conclusion fails. We now choose by induction 

on c1< p+, (M,,N,) such that 

(i) WO,NO) = WJ), 

(ii> V&J%) E K,p’, llNaII <P, 
(iii) B -c a =s (Mg,Ng)<*(M,,N,) 
(iv) for limit 6 we have (Mb,N6) = (U,M,, UxC6 Ns), 

(v) M,+l/N, is not fs in M,. 

For ~1 = 0 see (i) for c( limit see (iv) and Claim 1.1542) if 01 = B + 1 find (M,,N,) 

satisfying (MD, Ng) < *(Mu, N,) E K[ and satisfying (v) exists as we assume that the 

condition fails. By Lowenheim-Skolem argument without loss of generality llN,II <p 

and by Claim 1.1511) also clause (iii) holds. For a club of 6 < pLf we get contradiction 

to clause (v). 0 

Fact 1.18. (1) Zf (M,N) E KY and (M’,N’) E K,p’ and (M,N) < *(M’, N’) then 

(M,M’)<*(N,N’). 

(2) If (M, N) E Kf’ and M <iA then A/N is fs in M. 

Proof. (1) By Definition 1.16 we know N/M’ is fs in M hence by Claim 1.13, (b) + 

(d) we know M <$,N which give the desired conclusion. 

(2) By Claim 1.13A. 0 

Claim 1.19. (1) Zf (n/r,, N,) E Kf’ for cx < 6 and ((M,, N,) : ct < 6) is <*-increasing, 

then for c1< 6 

(Ma,Ne)G* (iMip;N) E KY. 

(2) 0” (M,,Nn) E K: and ((M,,N,) : c( <S) is <*-increasing then 

(U,,&Ua<bNa) EKP’ and (Ua<hMMOL,Ua<GNOL) G*WS,NS). 

Proof. We prove both together by induction on 6. 

(1) By the induction hypothesis without loss of generality ((M,,N,) : c( < 6) is 

increasing continuous. 

Clearly (M,, N,) < * (IJ, Mi, lJiC6 Ni) f Kr (see Claim 1.1512)). Suppose 

(Ui<~MiTIJi<~Ni) <*(M,N). SO by Claim 1.15(2), for CI < &(M,,N,)<*(M,N), but 
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(M,,Nor) E KY hence N,/M is fs in M,. But this implies IJad NE/M is fs in IJad M, 

by Claim lS(7A). 

(2) As we are proving by induction on 6; without loss of generality ((M,,N,) : CI < 
6) is < *-increasing continuous, so by part (1 ), (M,, N,) d * (Ui, Mi, IJid Ni) E K,P 

for a < 6. Now for CI < 6, (M,,N,)< *(Md,Nd) and (M,,N,) E KY clearly N,/Ma is 

fs in M, hence by Claim 1.5(7A), Uacs Ni/M 6 is fs in Ui_,a Mi, hence by Claim 1.13 

Ui& Mi G b N IJi<sNi hence (IJi<dMi,Ui<aNi) <*(MJ+I,Ns+I). 0 
rul 1 

Now we want to apply Lemma 1.1. Toward this (for J. as there) we define: 

Definition 1.20. (1) K& = K& = K$[T] = K&[T, A] is the set of models M of T 

with universe C A+ and cardinality < 1 such that M fl ,I # 0 and 0 < a < Iz+ implies 

M /(Axa)+M.ForsuchMletDom(M)={cc<A+ : [ixa,;lxa+A)f1M#0}. 

We now define cKiP by M GKfPN if (both are in K& and M 4 N and) for every 

a E (O,A+)>M t (A x x) <$t(ix~+~) N I(2 x a). 

Observation 1.21. So MQKiPN iff both are in K&M < N and for CI E (O,I+) we 

have (M 1 (A x a),M 1 (A x CI + A)) < ‘(N 1 (A x cc),N 1 (A x o! + 1)). 

Claim 1.22. (1) dKzP is a partial order on K& ( Why? By Claim 1.15( 1)). 

(2) If 6% : i < 6) is 6~;~~increasing, ‘& IlMi 11 < 1, then Mi <KtP Ujc6 Mj E K$. 
(Why? By Claim 1.15(2)). 

Claim 1.23. Let I?[, NC (for 5 <A) be as in Observation 1.10. Let E C Ii be a thin 
enough club of A+, {E(U) : 1 <a < A+} enumerate E,H a l-to-l map from Nl onto 

I+ mapping Ni,, onto 1 x a. Let N,* = H(Ni,,),N* = Uacl N,‘. 
(1) If M E K$ then there is a lawful f (see [21, 4.1]), which is an elementary 

embedding of M into N* such that for o! E Dom(M)\{O} we have, f(M r (A x 

co) <&/(lxa+l)) N’ 1 (Ax cx). 

Proof. Straightforward. 0 

But we want more, not only universality but also homogeneity. 

Definition 1.24. K$ = K&[T,A] is the set of M E K& such that for every tl E (O,I+)), 

if l(M & I x a) then (M t (A x cl),M) E KY. 
Let GKl be <K;P 1 K.&. aP 

Claim 1.25. (1) <K;P is a partial order on K&. (Why? By Claim 1.22 and Definition 
1.2). 

(2) If (M : i < 6) is dK;P-increasing, Cl__8 l[MiII < I, then Mi <Q Uj,,Mj E K&. 
(Why? By 1.19(l)). 

(3) K& is dense in (Kf’, 6 KiP ) ( Why? By 1.17 and 1.19 used repeatedly). 

Sh:500



242 S. ShelahlAnnals of Pure and Applied Logic 80 (1996) 229-255 

Claim 1.26. Let j?,Nc (for [<A) b e as in Observation 1 .lO. Let E 2 ,If be a thin 

enough club of ,I+, {~(a) : 1 <a < A+} enumerate E,H a l-to-l map from N,J onto 

If mapping N$,, onto 1 x CC Let N,* = H(Ni,,),N* = U,inNz. 

(1) Zf M E K& then there is a lawful f (see [21, 4.11) which is an elementary em- 

bedding of M into N* such that for o! E Dom(M)\{O}, f (M r (,I x a)) <~CMtCixa+ljj 
N* 1 (A x a). 

(2) Zf MO ~~;~pMl and (MO, f ,-,) is as in part (1 ), then we can find f ,, fo & f 1 such 

that (MI, f 1) is as in part (1). Moreover, zf f 0 u (f 1 1 (MI 1 (A x ct)) has been 

determined we can continue. 

Amalgamation Claim 1.27. Assume 440 <K;PM~ for G = 1,2 and (for simplicity) iA41 ( 

fl IM2 1 = IMoI. Then there is M E Ka”p such that Ml <QM and I& <i&M. 

Proof. Follows from Claims 1.26( 1) and (2) q 

Claim 1.28. (KaP, <*) is a smooth d-approximation family (see [21, Section 41). 

Proof. Check. 0 

Claim 1.29. (KaP, <*) is simple (see [21, Section 41). 

Proof. Included in the proof of amalgamation (see last clause of Claim 1.26(2)). 

Claim 1.30. Zf A4 is a model of T of cardinality If, then for some r E Kyd,M can 

be elementarily embedded into Mr. 

Proof. Use Observation 1.10 with M = U,& A4, so we get N*,N,*(a <A) as in Fact 

1.18. Check. 0 

Proof of 1.2. Use the above claims. 0 

2. On the strong order properties and Unitary versions 

Discussion 2.0. By [21], for some nonsimple (first order complete) the answer to the 

following is yes: 

@, if I = Acn > IT], 2” = A+, is there a (I-complete), A+-C.C. forcing notion Q, 11~ 

“univ(l2+, T) < 1++ c 2’“? 

a’, and by [24] if A = IcA > IT I,2* = A+ is there a I-complete If-C.C. forcing notion 

Q, IbQ “univ(A+, T) = 1, ;1+ < 2”‘? 

We know that for theories T with the strict order property the answer is no (by 

[lo], or see [21, Section 31). We would like to characterize the answer by a natural 

property of T (hence show that the answer to all reasonable variants is the same, 
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e.g. does not depend on A,$r = Cl&-, etc.) So the results we mention above give a 

lower bound (simple theories +Tqef + T,f) and an upper bound (failure of the strict 

order property) to the family of T’s with a positive answer. However, we can lower 

the upper bound. We suggest below a strictly weaker property. From another point of 

view, a major theme of [14, 201 was to find natural dividing lines for the family of 

first order theories (so the main ones there were stable, superstable and also NTOP, 

deepness, NOTOP). Now [16] suggests another one: simplicity. Note that the negation 

of simple, the tree property has been touched upon in [14] but there were conclusions 

only for one side. [16] establishes this dividing line by having consequences for both 

the property and its negation and having “semantical characterization” for T simple: 

when ~T(<K < 2 = 2” < p = pK we can force by a /I+-C.C. L-complete forcing 

notion Q that 2’ > n and every model of T of cardinality p can be extended to a 

rc+-saturated one, and the tree property implies a strong negation. Of course, both the 

inner theory and such “outside”, “semantical” characterization are much weaker than 

those for stable theories. 

The strict order property has no such results, only several consequences. We 

suggest below weaker properties (first the strong order property then the n-version 

of it for n < o) which has similar consequences and so may be the right divid- 

ing line (for some questions). Remember (this is in equivalent formu- 

lations): 

Definition 2.1. T has the strict order property if some formula cp(&y) (with /gX = 

/gy) define in some model M of T a partial order with infinite chains. 

Definition 2.2. (1) A first order complete T has the strong order property if some 

sequence @ = (cJ&?; y”) : n < w) of formulas exemplifies it which means that for 

every I: 

(*)“, (a) eg_?” = eg,’ are finite, X” an initial segment of X”+l, 7” an initial segment 

of yn+’ 

(b) T,c~n+r(~~+‘,.?“+~) I- cp,(z”,Y”), 
(c) for m~n,l(~~~“~~~~-“~m-l)[~{cpn(~n,k,~”~e) : k = t+ 1 mod m}] belongs 

to T, 
(d) there is a model M of T and G: E A4 (of length jJ”, for n < W,CI < 2) such 

that c?: = iif1 1 8gJ” and M + cp,,[$, cr”,] for n < CO and a < /? < 2. 

(2) The finitary strong order property is defined similarly but X” = X, J” = J”. 

(3) We use the shorthand SOP, FSOP and for the negation NSOP, NFSOP (similarly 

later for NSOP,). 

Claim 2.3. (1) The strict order property implies the jinitary strong order property 
which implies the strong order property. 

(2) There is a first order complete T, which has the strong order property (even 
the finitary one) but not the strict order property. 
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(3) Also some first order complete T has the strong order property but not the 

jinitary strong order property, i.e. no (cp,(X, j) : n < w) exemplijies it (i.e. with egf,, 
constant). 

Proof. (1) Immediate. 

(2) For L dn < w let cn,l be a two-place relation. Let cn= cn,s. Let TO say: 

(a) x cn+i Y * x <n,m Y, 
(b) x <n,n Y, 
(c) 1(x <n,n-1 x>, 

(d) if t?+ k+ 1 = m<n then x <,,J y&y <,,kz =+ x <,,,, z. 

We shall now prove that TO has the amalgamation property; it also has the joint 

embedding property (as the latter is easier we leave its checking to the reader). 

Now suppose Mi /= To,Mo C Mi for i = 0, 1,2 and A41 n A42 = MO. We define a 

model M: its universe is 44, U A42 and 

<&= {(a, b) E M x M : if m < n then for some i E { 1,2} we have 

(a,b) E <Tm or a E Mi\Mo, b E Mj_i\Mo and for some c E A40 

and e, k we have m = e + k + l,(a,c) E <$,(c,b) E <Fk-‘}. 

Now clearly M extends Mi and I&: trivially < & 1 Mi = < $. Is M a model of TO? 

Let us check. 

Clause (a) holds: For X, y E Mi as Mi GM; for i = 1,2 and x E Mi\Mo, y E 

M3_e\Mo, without loss of generality m < n; let c E M witness (a, b) E <$,,_, 
i.e. for some f,k we have / + k + 1 = m - l,(a,c) ~<f$ and (c,b) E<$~. 

Now by clause (a) applied to Mi, (a,~) E <t;+, now apply the definition to get 

(a, b, E<~,+,)+k+,=<f&~ 

Clause (b) holds: Check as defining <F,, we say: “if m < n then . ..” so if n = m 
there is no requirement. 

Clause (c): AS Mi C M and Mi /= To. 
Clause (d): Check by cases, i.e. for some i E { 1,2} one of the following cases 

hold. 

(1) {x, y,z} & Mi: use “Mi is a model of TO and Mi a submodel of M”. 

(2) {x, y} &Mi,{y,z} CMJ_i but not case (1): use the definition of <&,. 

(3) Y E M\Mo, {X,z} C M3-i\Mo. 
As x <n,e Y there are 8i,82 and xi E MO such that x <$;’ x1,x1 <F&y and Li +/z + 

1 = e. 

As y <n,k z there are kl,kz and zi E MO such that ~<$~,zi,zi CF;‘z,kl +kz + 1 = 

k. In M we have x1 <$‘e, y <Tk, zi, hence xi <$z+k,+3zt and as {xi,zi} CM0 CMi, 

clearly x1 <Ft2+k,fI zl. NOW in Mj-i we have x <F(;’ xi <Fl;ik,+, zi, hence 

X< :.;ltl~+k,+2z1 
‘hi- ’ 

So x <:&2+k,+Z ‘1 <:i’ ‘9 hence x %&‘2+k,+k2+3 ’ but L1 + 

f2 + kl + k2 + 3 = L’ + k + 1 = m so x <Fi’ z as required. 
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(4) y E Mi\Mc,x E Ms_i\Ms,z E Ms. Similar to case (3) but with no XI. 

(5) y E Mi\Ms,x E Me,z E Ms_i\Mi. Similar to case (3) but with no zr. 

Let T be the model completion of To; easy to check that it exists and has elimina- 

tion of quantifilters. Let cp,(x, y) = &_ x < e y (remember x < e y means x < e,o y ) 

now (cpn : n < o) exemplifies that T has the (finitary) strong order property. On the 

other hand we shall show that for every n(*) < o the theory T,(,) =: T r { <,,L : 

e dn <n(*)} does not have the strict order property (as T = U,, T,,, this clearly im- 

plies that T does not have the strict order property). First note that T,,(,) has elimination 

of quantifiers and then check directly. 

(3) Let To say: 

(a) P,, (for n < o) are pairwise disjoint (P, unary predicates), 

(b) F,, a partial one-place function from P,+r into P,,, 

(c) < n,e are two-place relations on P, for e 6 n < w; and let < ,,= < ,,,o, 

(a) X <n,m-1 Y AX <n,m Y, 

(P) P&)&PtI(Y) -+ x <n,n Y, 

(Y) 1(x <n,n-I x), 

(6) if~+k+l=m6nthen:x<,,py&y<,,kz-+x<,,,z, 

(d) x <n+l,~ Y -+ F,(x) <n,e F,(Y). 

Again T will be the model completion of To and it has elimination of quantifiers 

and we shall use X, = (xi : i < n), 7, = (yi : i < n) and cp,(X,,J,) = A, Fi(Xi+l) = 

X&r\i,F,(yi+l) = yi&I\iu,Xi <i yi, 13 

Claim 2.4. (1) The following are equivalent (Jar A 3 1 TI) : 

(A) T has the strong order property, 

(B);, there is a A+-saturated model M of T, a L,,A+-formula cp = cp(Y, y), E = egz? = 
4gj < I,, possibly with Q ;1 parameters, such that in M, cp defines a partial linear 

order with a chain of length a&(A)+. 
(2) The following are equivalent (A> ITI): 

(A)’ T has the jinitary strong order property, 
(B);_ like (B)i but E <w. 

Proof. (1) (A) =+ (B)]~ : Straight: for a given (p = (cp,(X,, J,) : n < w), let X, j be 

the limit of X,,?, respectively and write Il/*(X,J) = V,(I.?o,. . .,Z,)[i = .50&j = 
z,& Aeun cpdZe,Ze+ll where cp&, V) =: A, cp&,,, 7,). 

(B)i + (A): Let a, E EM for o! < &(,I)+ form a q-chain. Without loss of generality 

the order cp defines is strict (i.e. t cp(X,X)) and no parameters (just add them to the 

a,‘~). By Erdos Rado theorem without loss of generality for some type q = q(X, y) for 

all c( < /I < w the sequence Z,^Cp realizes q. 

For every n, u{q(%,fk) : k = e + 1 mod n and k, / < n} cannot be realized in 

M (as, if &-,*. . . *&,-I realizes if we get a contradiction to “rp(X, jJ) defines a strict 

partial order”). By saturation there is cp,“(T, J) E q(X, j) such that {C$(&,&) : k = 

G + 1 mod n and k, 8 < n} is not realized in M. The rest should be clear. 

(2) Left to the reader. Cl 
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Definition 2.5. Let na3. (1) T has the n-strong order property (SOP,) if there is 

a formula c&,J) having this property for T which means egz? = /gY (allowing 

parameters change nothing) and there is a model M of T and & E ‘g’Zl4 for k < w such 

that 

(a) A4 b cp[&,&] for k < m < o, 

(b) M k 130. . .&+_~(/j{cp(&,&) : e,k <n and k = 8 + 1 mod n}). 

(2) “T, cp(X, j) have the SOP<, ” is defined similarly except that in (b) we replace 

n by each m<n. 

Claim 2.6. SOP =5 SOP,,,, SOP,,,I + SOP,,, SOPQ,+l + SOP<, and SOP,,+ 
SOP<, for any given T(we did not say “for any cp”). 

Proof. The first clause is immediate. The second clause is straight too: 

let 4G Y), M (& : m < co) exemplify SOP,+, and without loss of generality the 

sequence (& : m < w) is an indiscernible sequence. Does A4 k (30,. . . ,X,_l)[i~ = 

al&.&* = ci&lI\{cp(Z~,if~) : /, k < n and k = / + 1 mod n})? If the answer is yes 

we can replace ai by & (by indiscemability), let Ea, . . . , &_I be as required above on 

x0,. . . ,X,-l and ba =: Gi,bi =: (22(= &),bz =: Cl,. . .,b,_l =: E,,--2, b, =: &__1 = ao; 
now they satisfy the requirement mentioned in (b) of Definition 2.5(l) on 20,. . .,x,, 

(for SOP,+l), contradicting clause (b) of Definition 25(l). So assume “no” and now 

cp’(X, j) have SOP,, for T where cp’(X, 7) =: cp(X, J)&l(EEa, . . . ,X,-I )[_fo = Sip = 

j& A{cp(&,$) : 8, k < n and k = e mod n}]. 
As for SOP,, M SOP<,,, the implications + is really included in the proof above 

(i.e. by it, if (tit : L < co), (P,, exemplifies SOP,, and (a,: I < u) is an indiscernible 

sequence, for some rp,_i we have (& : C! < co), (~~-1 exemplifies SOP,_1 (with 

n, n - 1 here corresponding to n + 1, n there), and we can define (~~-2,. . . similarly; 

now (& : L < co), /jiGn Cpi exemplifies SOP,,. The implication -+ is trivial. Now the 

third clause SOPQ,+~ + SOP<,, is trivial (read the definition). 0 

Claim 2.7. Let T be complete. Zf T has SOP3 then T has the tree property (i.e. is 

not simple). 

Proof. Let K = cf(~) > 1 TI and 2 > JC be a strong limit singular cardinal of cofinality 

JC. Let J = “1,Z = {q E “1 : q(i) = 0 for every i < K large enough}. Let cp(X, j) 

exemplify the SOP3. By definition we can find a model M of T and C,, E M (for 

q E J) such that: 

(*) ye <lx v in Z * M /= cp[G,,&]. 

Without loss of generality ]]kf]] a&M is &-saturated. So for every 1 E K(n\{O})\Z 

we can find CV E M such that it realizes p,, = {‘p(a(,,i).o,,,,,,x)&‘p(x,~~,li).(rl(i)+l)”o,,,,) : 
i < K}. So Ip,l<lc. But if ~1 <lX ~2 E “(J\(O)) then we can find v,p E Z such 

that y11 <lx v <lx P <tx ~12 and cpCf,&) E p,,,,cp(&J E P,,~ and by (*I we have 

M t= Co[KqJl? so Pq, u Pq2 is contradictory (by clause (b) of Definition 2.541) for “40 
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have the SOPJ”). So (p,, : q E “(n\(O)) are pairwise contradictory, 1 p,, 1 = K, and 

i” > ;1 = A<” > 21’1 and lJ{Dom p,, : n E “(1\(O))} has cardinality <A and 

K > IT]. 

By [14, III, 7.7]=[20, III, 7.7, p.1411 this implies that T has the tree property. 0 

Claim 2.8. (1) The theory T,, =: T 1 { <,,J : &<n} from Claim 2.3(2) has SOP,, 

but not SOP,,+1. 
(2) TT, the model completion of the theory of triangle free graphs has SOP3 but 

not SOP+ 

(3) For n 83 the model completion TnWc = Td&, of the theory T, = Td,n,) of 
(directed graphs, no loops or multiple edge for simplicity) with no directed circle of 

length <n has SOP,, but not SOP,,,,. 

(4) For odd n > 3, the model completion T,“c = TOyj(,, of the theory T,, = Tocf(,,) of 

graphs with no odd circle of length <n, has SOP,, but not SOP,+I. 
(5) For n 2 3, the model completion T$$, of the theory T,, = Tcx,,, of graphs with 

no circles of length <n, has SOP3 but not SOP4. 

(6) The theory T,d (see [21]) does not have SOP3 (but is not simple). 

Remark 2.8A. (1) Note that univ(i, T$$,,) = univ(A, T,f(,,). 

(2) For those theories, D(TmC) is an uncountable; they have no universal model in 

I < 2NQ. 

Proof. (1) Proved really in Claim 2.3. 

(2) This is included in part (5). 

(3)-(5) We discuss the existence of model completion later; note that the meaning 

of T,, depends on the part we are proving. 

Let xRy mean (x, y) is an edge; when we say (x, y) is an edge, for graphs we 

mean {x, y} is an edge. Let j = (ye : e < 4, rpG, 3 = Ae<n_1 -vRye+l&x,-~R~o. 
First we note there T,, k l(so,. . . ,Xn-~)l\{(p(f~,&) : t,k < n,k = L’+ 1 mod n}, 

otherwise there are M + T, and Ef = (ac,o,. . . , ae,n_l) E “M as forbidden but then 

ao,o,al,l,. ..,an_l,n_l is a circle, so in all cases this is impossible. 

For parts (3) and (4) let M be the following model of T,,; elements a” (i < co,& < 
n),R = {(af,ay’) : i < j < o.r,e < n - 1) U {(al-‘,a;) : i < j < w} (but for 

graphs we put all such pairs and the inverted pair as R should be symmetric and 

it-reflexive relation). Clearly for i < _j < o,M b q[ai, ai] where ai = (a!, . . . , a;“). 
Lastly M + T: for part (3) as R is not symmetric the absence of any circle should be 

clear, M k aX:Ra$; + i(1) < i(2); for part (4) there are circles but even or long 

and M + af:;/Rai(2j l(2) + t( 1) = e(2) + 1 mod n, so Tdcf(,,), T,,K~) (and Ts(,)) has even 

or long circles. So T,++),T,,+) (and T$&, and TESn,) has SOF,. 

Let n = 3. Now Tcf(3) = T,,K~) so we can ignore part (5). Also T&f(n), T,,f(,) has 

the amalgamation property and joint embedding property. Thus, it is enough to show 

that TE@z)~ TZ&l, fails the SOP4. As Tmd has elimination of quantifiers the reader can 

check directly that T,, does not have SOP4. 
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Let n > 3. Though T,mC does not have elimination of quantifiers, every formula is 

equivalent to a Boolean combination of formulas of the form x = y,xRy for m < 

n,cp&,y) =: (ho,..., x*Xx =x0&y = x,AA cunxeRxe+l] (i.e. the distance from x 

to y is dm, directed from x to y in the case of di-graphs). For part (5) of Claim 2.8, 

we should add for e < m < n/2,e > 0 a partial function F,,,e defined by F,,,e(x, y) = z 

iff there are to,. . . , tm with no repetition such that x = to, y = tm,z = te and l\(._, teRte+l 

and lastly &J(x, y) =: (Iz)[F,,~(x,z) = z]. Let T,’ be the set of obvious (universal) 

axioms for those relations. Then easily T,” has amalgamation and has model completion, 

T,’ which has elimination of quantifiers (but the closure of a finite set under those 

functions may be infinite). Moreover, assume A4 b Ti, (& : m < co) is an indiscernible 

sequence in A4,& = (a: : t < k), with k < co. Then there is w & k such that 

[a? = a:+’ H / E w] and without loss of generality [ei < /z + a?, # a;]. Let 

for u C w,A4, be the submodel of A4 generated by lJmEu &,; note that for parts (3) 

and (4), MU = U{K : u C u and )01< 1) so things are simple. By the indiscernibility 

(increasing the B’s e.g. taking o blocks) without loss of generality 

(*) MU nM, =Munv and the universe of MI,,,) is the range of (T,. 

Let m = n for parts (3) and (4) of Claim 2.8, m = 3 for part (5). For part (5) note 

the distance between a;O,aj, is > 2. (Why? If not there is a path C’,j of length < t 

for ato to di,, now CoJ U C’,3 U C’,4 U Co” is a circle of length <n, may cross itself 

but still there is a too small circle). 

We can now define models N{Q (for e < n + l),N{~,~+i}(/ < n) and N{,,ol and 

isomorphisms hf, ge(/ < n + 1) such that 

(a) for e < IZ + 1, he an isomorphism from MIe) onto N{[), 

(b) for / < n,ge an isomorphism A4{c,d+il onto N{e,c+il extending he,he+i, 

(c) for e = n,gd an isomorphism from A4f,,n+il onto NIn,ol extending h, and ha o f 
where f is the isomorphism from MI,+11 onto M{cl taking &+I onto & 

(d) Na =: g&&) does not depend on e, 

(e) N, n N, = Nun” if U, v are among 0, {/}, {m,m + l}, {n,O}(/ < n + 1,m < n). 

Now, 

@ There is a model of T,’ extending all N{e,e+il,NI,,ol(e <n). ’ 

This is enough for showing that TJ lacks the SOP,,,. Lastly the reader can check 

that Tc!n,“n, has SOP3 [choose k E (n/3,n),G = (a&,Li < e2 * vk(ae,o,ae2,0)1. 0 

Theorem 2.9. Let T be jirst order complete, A > IT 1 and T has the SOP3. Then 

(1) T is maximal in the Keisler order a2, i.e. for a regular filter D on A and some 

(= every) model A4 k T we have MA/D is A+-saturated iff D is a good ultraJilter. 

(2) Moreover, in Dejinition 2.10 T is a”-maximal (see Dejnition 2.10 below). 

We delay the proof: 

’ Why? E.g. define it as a graph by the union (adding no edges) extend it to an existentially complete 

model of the apropriate T,, and this has a natural expansion to a model of Ti. 
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Remark. The order a was introduced and investigated by Keisler 191; it was investigated 
further in [13, 14, Ch. 61, new version [ZO, Ch. 61. The following is a generalization. 

Definition 2.10. (1) For models &,Mi we say M,-, ai Mt if the foIlowing holds: for 
some model 230 in which Mc,Mi are intepreted (so Mi = Mi’“), for every elementary 
extension 8 of do, which is (No + Ir(Ms)] + Iz(Mi)l)f-saturated we have [Mi% is 
A+-saturated + Mz is /2+-saturated]. 

(2) MO a* MI if for every I?>& + /r(Ms)l + ]$Mi)/ we have Ma ai Mr. 
(3) Using the superscript & instead of * means in the saturation we use only p-types 

for some cp = cp(X, j) (so any cp is satisfactory, but for each type cp is constant) and 
omit the saturation demand on ‘13. 

(4) For complete theories Ti, T2 we say Tl ai T2 if for every model Mi of Ti for 
some model M2 of T2, Mi a; A&. Similarly for Tl a+ T2, Ti G$, T2_ 

Observation 2.11. (1) In 2.10(l) we can just use BO of the form (H(x),E, <$Mo,Mi) 
with x strong limit. 

(2) a; is a partial order, also a$,a” are partial orders; Ma; it4 and if MO is inter- 
pretable in Mi then MO a; Mi. 

(2A) For models of countable vocabulary, similar statements hold for o* (without 
the countability if ]r(Mi)I > lr(Mo)] + ]r(k&)I + No, we can get a silly situation). 2 

(3) If ,?~:No + Ir(Ms)I + IT( then MO a; Mi iff for every finite z G r(Mo),& ] 
oa;Mr. 

(4) M1 4 M; * Ml a; M2. 
(5) Parallel results hold for theories. 
(6) Any (complete first order) theory of any infinite linear order is al-maximal hence 

a;-maximal for every 2 3 1 T I+ No. 

(7) All countable stable theories without the f.c.p. (e.g. T = Th(ol =)) are a(- 
equivalent. 

(8) All countable stable theories with the f.c.p. are equivalent (e.g. Tes = Th(U, 

({n} x n),E) where E is equally of first coordinates). 
(9) If TI is countable unstable, and Tz = Th(oi =), then T= ae Teq a Ti, ,%>2no =+ 

l(Teq as T=) and 2 = (~(k)>,No 3 i(Tl a$ T,,) and 2 < 2no ++ Teq a; T=. 

Proof. (1 j(4) Obvious. 
(5) The proof of [14, VI, 2.61 = 120, VI, 2.6, p. 3373 gives this, too. 
(6)-(8) As is [I]. 0 

Proof of Theorem 2.9(l) and (2). Without loss of generality z(T) is finite. Remember 
if T’ has infinite linear order as model then it is &-maximal. Let J be a dense linear 
order, such that 
(a) J has a closed interval which is I, 

2 so to overcome this, we may in Definition 2.10(2) replace “eveTy 1 > . . +” by “ every large enough I” 
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Let cp(x, y) exempli@ the SOP3, Let M be a model of T and F : I ---t ‘YfM be such that 
I k q < v 3 M + cp[I;‘(q ), F( v)] and for every c E M’ we can find a finite I’ G I such 

that if EtiTt2 E (1\1’>1&& [ , s -cI t = s <I t2] then M’$ + q$F(t,),c] s qpEF(tz),c] 

and M’ b cp[c,F(ti)] z q[c,F(ti)]. Let 230 = (H(x),E, <&J,f,F,M), and ‘E be a 
model, j an elementary embedding of de into 33 such that M* = MyI r L(T) is local’ty 
P-saturated but 1% = j(1) is not R+- saturated (for Theorem 2.9(l): %3* = .@‘/I)). 

As j(l) is not A+-saturated, we can find Lo, ii <A and s$ E j(I) (for i < AS, t” < 2) 

such that 

Clearly (q($,~),cp(l,ci,!) : i < &,j < 11) is finitely satisfiable in j(M). Now as 
j(M) is locally A+-saturated there is Z E @CM*) such that M + “q($,G)&rp(i?,~~) 
for i < &,j < Al”. In B we can define 

Clearly 
(a> I?[G] is an initial segment of j(l) which belongs ta 23. 
(b) JF[t] is au end segment of j(1) which belongs to ‘3. 
(c) For every i -c ,?,a 

(*>b a! E Z?D,t]. 

(d) for every j < 21 

(*,[ a; q PCtl. 

(e) By the choice of fp 

(*f3 r:[t] n r_$] = 0. 

If for Some c E d,B E_ “c E j(J) and (VxrJ_[r])(c<~c> and (Vx E I+[~])[~<Ix]” 
we are done. So 23 thinks (Z’B[t’],IT[t]) is a Dedekind cut, so let 23 k ‘“cfl(I!![t], <I) 
= t_, clf(ly [t] rr ) = t+ and the (outside) caftnalities of t-, t+ are ~1, pz respectively. 
If pI, p2 are infinite, we use clause (b) of the choice of J (and the choice of /i). We 
are left with the case where ,q = 1 < ~2 {the other case is the same), Use what 58 
“thinks” is a (tit t2) Dedekind cut of J to show ,Q >, p’ a contradiction. Cl 

Theorem 2.12. (I) ?“Pe tizeorems on nonexisteme of a universcd model in Afor kmar 

order .fimz [IO], [Z 1, Section 37 JIold_fir my them-y with SOP+ 
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(2) We can use embedding (not necessarily elementary) if cp(z?, J) is quantifier free 

or even existential. 

Proof. We concentrate on the case I is regular and part (1). We will concentrate on 

the new part relative to [lo]. Let cp(X,j) exemplify SOP,4 (exists by Claim 2.6(l)) 

in a complete first order theory T. Without loss of generality egz? = egj = 1 and 

T t- lcp(f,X). 

Let M be a model of T with universe 1,Z a linear order, a, E M,M k cp[a,,a!] for 

s <I t (from I). 

We do not have a real Dedekind cut (as r&c, y) is not transitive), but we use 

replacements. Now for every b E M, let I-[b] = {t : M b cp[at, b]} and Z+[b] = {t : 

A4 k cp[b,a,]}. As cp exemplifies also SOP G3 clearly the following is satisfied: 

(*) s E I-[b]&t E Z+[t] + s < t (if t < s from a counterexample, b, t,s gives a 

contradiction). 

Note: I- [a,] = {t : t <I s},Z+[a,] = {t : s <I t}. Let P = {a, : s E I}, <*= 

{(a,,at) : s <I t} and J-[&a] = {s E Z : s <I &a, E a},.Z+[t,cl] = {s E Z : 

t <I s,a, E u} (remember: IMI, the universe of M, is &or = {p : p < cc}). Hence 

C =: (6 < 2 : (M,P, <*, <) 1 6 4 M+ =: (M, P, <*, <)} is a club of 2. Clearly 

possibly shrinking C: 

(**) let 6 E C,b E M n 6; 

(i) if (I-[b], <I) has cofinality < A, then I-[b] n MS is <I-cofinal in it, 

(ii) if (Z’[b], >I) has cofinality < I, then Z+[b] n Mb is (>I)-cofinal in it, 

(iii) if there is t such that I-[b]g,t d~Z+[b], then there is such t E M n 6. 
Now suppose that 61 < 82 are in C, t(*) E Z,a?(*) E P\&. 

Case 1: For some s(*) E Mn6, we have (Vs E J-[t(*),&])(s <I s(*) <I t(*)). Let 

b =: a,(,). Hence for every c E Mfk$ if rp(c,atc,,) then for every t’, t” satisfying t’ cI 
t(*) <I t”,t’ E Z,a,l E &,t” E Z,ap E 61 we have Mf k (3)[x E P&cp(c,x)&ap <* 

x <* ap]. Clearly (or see the middle of the proof of Case 2 below) necessarily for 

arbitrary <I- large t E .Z-[t(*),d ] 1 we have (P[c,at] but for any such t, cp[a,,a,(,)] i.e. 

cp[a,, b] hence 

(*)I (~JC E M n 4 )(cp(c,q*)) + (3~ E M n 4 )[cp(c, Y)@(Y, b)l). 
Of course, 

(*I2 b E M n 62, 

(*I3 cp[b,at(*)l. 
Note: Those three properties speak on M,&, &,a,(,), b but not on Z, <‘,P, <. 

Case 2: For no s(*) E Z,a,(,) E 82 do we have (Vs E J-[t(*),&])[s <I s(*) <I 

t(*)], we further assume: 

(A) {a, : s E Z, a, E 62,s <I t(*)} is not definable in M+ 1 62). 
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We shall now show that for no b E M n d2 do we have (*)t, (*)2 and (*)3, so 

assume b is like that and we shall get a contradiction. 

We are assuming (A) holds. By (*)3 we have cp[b, ate,,] hence for arbitrarily <I- 

large t E J-[t(*), S,] we have q[b,a,]; choose such to. (Why? Otherwise I+[b] fl 

J-[t(*),&) is bounded say by some t* E J-[t(*),&], so 8(x,b,+) =: x E P&(3y) 
[y E P&y < *x&cp(b, y&t* < * x] define in M+ a set which is an end segment of 

(P, <*), include t(*) (check) but no s E &,s <* t(*). So in M+ 1 62 it defines 

the set {a, : s E J+[t(*), 821); hence P(x)&T~(x, b,ut*) defines in M+ 1 62 the set 

(4 : s E J-[t(*), 821); hence by the assumption of the case, Mf r 82 satisfies 

(Vz)[z E P&-@z, b, up ) 4 (3 y < a1 )( y E P&z d * y&lB(z, b, at* )] 

contradicting (A) above). 

So by the assumption of the case (i.e. that to < 82 cannot serve as s(*) and to <I 

t(*)) for some tt E J-[t(*),&] we have to <I tl and clearly tt <I t(*); hence 

dut,,q+)l. So by (*)I applied with a,, standing for c for some y E M fl& we have 

rp[u,, , y]&cp[y, b]. Now b, a,,, a,, , y contradicts “q(x, y) exemplifies SOPd”. 
Hence we get together 

if 61 < 82 E C,Q(*) E P\& (so t(*) E I) then the following conditions are 

equivalent: 

(a) for some s(*) E 62, (so necessarily s(*) # t(*)) we have (Vs E I)[u, E 6t =+ 

s <I s(*) = s <I t(*)]) 

(fl) for some b E 62 the conditions (*)I, (*)2, (*)3 above holds for 40(x, y) or for 

cp-(x, Y) where cp-k Y) = CP(YJ). 

Proof. If clause (m) holds for s(*) <I t(*) then use Case 1 above. If clause (CI) holds 

and s(*) <I t(*) fails, then t(*) <I s( *), inverts the order of I, use cp- and now 

apply Case 1 above. So assume l(a). We first want to apply Case 2 to prove there is 

no b satisfying (*)I, (*)z, (*)J. For this we need clause (A) there. We claim it holds. 

(Why? Assume d E (M2 1 &), $ a first order formula (in the vocabulary of M+), 
such that for every e E Mf 1 82 we have M+ [ ~3~ k $[e,d] ifl e E {a, : s E I, a, E 
&,s <I t(*)). So M+ k (~W’(ZYWY)(Y < &&P(Y) * Y <* z = t4y,jl)l as 
z H al(,) satisfies it, but M+ r b2 3 M +; hence there is z* E 62 satisfying this. So 

z* E P hence for some s(*), z* = a,(,); so s(g) contradicts the assumption l(a). 

We will finish the proof of 2.12 later. 

Definition 2.13. Let M be a model with universe ;1 and cp(x, y) a formula exemplifying 

SOP4 (possibly with parameters) let cp+(x, y) =: cp(x, y), q-(x, y) =: cp(y,x). Assume 

c = (Ca : 6 E S) is a club system, S c i stationary, guessing clubs3 (i.e. for every 

club E of A for stationarily many 6 < A,6 E S, Ca GE) 

3 otherwise dull. 

Sh:500



S. Shelah I Annals of Pure and Applied Logic 80 (1996) 229-255 253 

(a) for x E IM] and 6 E S let 

iptv,(x, C&M) = {a ~nacc Ca : letting 82 = cr,& = sup(Cs f? or)(well defined), 

forsomeb conditions (*)I, (*)2, (*)3 of Case 1 

holds for qf or for cp- } 

(b) Z~~~(C~,~) = (inu(x,C&f) : x E M}: 
Z~~~(~,~) = {Z~~~(C~,~) : 6 E S} 
ZNV,(M, c’) = ZZVu,(M, c)/id”(@ where id’(C) is defined as follows. 

Definition 2.14. 

id’(c) = ( 5” 5 ;1. : for some club E of I the set of 6 E S’ n 5’ for which Ca C E 

is not stationary}. 

Observation 2.15. If M’ g N” are models of T and both have universe /1 then 
ZNV,(M’,~) = ZNf/,(M”,~) so ZNY,(M,~) can be defined for any model of cardi- 
nality J.. 

Proof. Let f be from M’ onto M”, so j” is a permutation of 1. So EQ = (6 < 

1 : 6 a limit ordinal, f maps 6 onto 6). Assume Cs C_ E, then for x f M’\6, S E S 
we have inv(x,Ca,M’) = inv,(f(x),C~,M”). (Why? Read (*)i,(*)2,(*)3). Hence 
Z~~~(C~,~‘) E Z~~~(C~,~“). By Definition of id”(c) we are done. I? 

Observation 2.16. If C = (Cfi : 6 E S), S C I stationary, Ca C 6 = sup(Ca), Ca closed, 
Z a linear order with the set of elements being 1 we let 
(a) for x E A, 6 E S, in+, Cd, Z) = {a E nacc(C~) : there are y,z E M satisfying 

y <IX <I z such that (V.r)[s < sup(C6 n 01) =+ s <I yVz -_I s]}, 

(bf Znv(Cs,Z) = (irzu(n, Ca,Z) : x E M}, 

(c) ZNu(Z,~) = (rnU(C~,Z) : 6 E S), 

(d) ZNV(Z, e) = ZNv(Z, E)/ida(c). 

Observation 2.17. Z~~(Z, c) = ZNV(Z’, c) if Z % I’, so actually it is well defined for 
any linear order with cardinal&y A. 

Observation 2.18. If M is a model with universe 12 and cp, (a, : s E Z) is as above and, 

8 6 id”(c), then ZNV(Z, c) <ZNV+,(M, c) i.e. for some club E of A, 6 E S&C, C E + 

Z~~(C~,Z) C Inv,( Cg, M). 

Proof. By CB above (after case 2). 0 

Proof of 2.12 (Conclusion). As in [lo]. q 
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Claim 2.19. For a complete T, the following are equivalent: 

(a) T does not have SOP3, 

(b) ifin a,(~?( : i < CX) is an indiscernible sequence, tl infinite and { cp(Js, F), 11/(12; jj)} 

contradictory and for each j for some &j we have i < j + + cp[b, Zi] and i > 

j =+ k $[6,&] then for i < j we have (~)(r;o(~,aj)&1c/(~,,i)), 
(c) in clause (b) we replace the conclusion: for every finite disjoint u, v C o we have 

(W (AiCZ, dKPaiPAjfZ, $(‘7’j)). 

Proof. (c) =+(b): Trivial. 
l(c) + l(6): Choose co~terex~ple with /WV/ minimal, assume TV > o+IuUv/. 

T(a) +- l(b): Straight by the Definition of S’UP3, etc. 
l(b) + l(a): Without loss of generality @&‘% : i < a) is an indiscernible 

sequence. Now we cannot find CO,&, C2 such that EQ”&, El*&, Ez-5,~ realizes the same 
type as (Z~?&)*(&^61), so SOP3 is exemplified. cl 
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