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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 62, Number 4, Dec. 1997 

SIMPLE FORCING NOTIONS AND FORCING AXIOMS 

ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH 

?0. Introduction. In the present paper we are interested in simple forcing notions 
and Forcing Axioms. A starting point for our investigations was the article [4] in 
which several problems were posed. We answer some of those problems here. 

In the first section we deal with the problem of adding Cohen reals by simple 
forcing notions. Here we interpret simple as of small size. We try to establish as 
weak as possible versions of Martin Axiom sufficient to conclude that some forcing 
notions of size less than the continuum add a Cohen real. For example we show that 
MA(a-centered) is enough to cause that every small a-linked forcing notion adds 
a Cohen real (see Theorem 1.2) and MA(Cohen) implies that every small forcing 
notion adding an unbounded real adds a Cohen real (see Theorem 1.6). A new 
almost co'-bounding r-centered forcing notion Q? appears naturally here. This 
forcing notion is responsible for adding unbounded reals in this sense, that MA(Q?) 
implies that every small forcing notion adding a new real adds an unbounded real 
(see Theorem 1.13). 

In the second section we are interested in Anti-Martin Axioms for simple forcing 
notions. Here we interpret simple as nicely definable. Our aim is to show the 
consistency of AMA for as large as possible class of ccc forcing notions with large 
continuum. It has been known that AMA(ccc) implies CH, but it has been (rightly) 
expected that restrictions to regular (simple) forcing notions might help. This is 
known under large cardinals assumptions and here we try to eliminate them. We 
show that it is consistent that the continuum is large (with no real restrictions) and 
AMA(projective ccc) holds true (see Theorem 2.5). 

Lastly, in the third section we study the influence of MA on I'-absoluteness 
for some forcing notions. We show that MAc,, (P) implies E3 (P)-absoluteness (see 
Theorem 3.2). 

Notation. Our notation is rather standard and essentially compatible with that 
of [3] and [1]. However, in forcing considerations we keep the convention that a 
stronger condition is the greater one. 

For a forcing notion P and a cardinal i, let MA, (P) be the following statement: 

If X,, C P are maximal antichains in P (for a < K), p E P 
then there exists a filter G C P such that p E G and G n W, =& 0 for all 
a < K. 

Received November 10, 1995; revised July 3, 1996. 
The research of the first author was supported by KBN (Polish Committee of Scientific Research) 

grant 1065/P3/93/04. 
The research of the second author partially supported by "Basic Research Foundation" of the Israel 

Academy of Sciences and Humanities. Publication 508. 

? 1997, Association for Symbolic Logic 
0022-481 2/97/6204-0019/$2.80 

1297 

This content downloaded from 128.235.251.160 on Sat, 17 Jan 2015 08:13:33 AM
All use subject to JSTOR Terms and Conditions

Sh:508

http://www.jstor.org/page/info/about/policies/terms.jsp


1298 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH 

For a class X of forcing notions the sentence MA,< () means (VIP E T)MA, (P); 
MA,< is the sentence MA,< (ccc). 

For a forcing notion P, the canonical P-name for the generic filter on P will 
be called Fi. The incompatibility relation on P is denoted by lIp (so 74D means 
"compatible"). 

c stands for the cardinality of the continuum. For a tree T C 2<` [T] is the set 
of all co-branches through T. 

The family of all sets hereditarily of cardinality < x (for a regular cardinal x) is 
denoted by (,x). 

?1. Adding a Cohen real. In this section we obtain several results of the form 
"a (weak) version of MA implies that small forcing notions (of some type) add 
Cohen reals". As a consequence we answer Problem 5.3 of [4] (see Theorem 1.9 
and Corollary 1.10 below). 

PROPOSITION 1.1. Suppose P is a forcing notion and h is a function such that 
(1) dom(h) C P, rng(h) C 2< C, 
(2) if PI, P2 E dom(h), P1 Z4 P2 then either h (pI) c h (P2) or h (P2) c (PI), 
(3) if q E IP then there is vo E 2< " such that 

(VV e 2<co, vo C v)(ip' E dom(h))(p' AD q & v C h(p')). 

Then IP adds a Cohen real. 

PROOF. Though this is immediate, we present the proof fully for reader's conve- 
nience. Let h : dom(h) 2< o be the function given by the assumptions. Define 
a P-name c by 

VIPE U{f(p) : p E dom(h) n rpE} 

First note that, by the properties of I, for every filter G C P the set {h (p) :p 
dom(h) n G} is a chain in (2< ", C). Hence 

FpIEe 2<C . 

But really c is a name for a member of 2w): suppose not. Then we have q E IP, 
m E co such that 

q VIE 2m 

Applying the third property of i we get vo E 2< co as there. Let v E 2< w, vo C v 
be such that lh(v) > m. We find p' E dom(h) such that p' 7p q and v C h(p'). 
Thus p' IVp v C h(p') C c, a contradiction. 

To show that 
1Fp "c is a Cohen real over V" 

suppose that we have a closed nowhere dense set A C 2wJ and a condition q E P 
such that 

q VIp c E A. 

Take vo E 2<K given by condition (3) (for q). Since A is nowhere dense we may 
choose v E 2<Kw such that vo C v and [v] n A = 0. By the choice of vo, there is 
a condition p' E dom(/) such that p' A? q and v C h(p') (so PI VI p A), a 
contradiction. -d 

This content downloaded from 128.235.251.160 on Sat, 17 Jan 2015 08:13:33 AM
All use subject to JSTOR Terms and Conditions

Sh:508

http://www.jstor.org/page/info/about/policies/terms.jsp


SIMPLE FORCING NOTIONS AND FORCING AXIOMS 1299 

THEOREM 1.2. Assume MA,< (a-centered). If P is a c-linked atomlessforcing notion 
of size r, then P adds a Cohen real. 

PROOF. We may assume that the partial order (P, <) is separative, i.e., 

if p,q G P, p $p q 
then there is r e P such that q <? r and r lI p. 

Of course we may assume that P is a partial order on a subset of 2C. We are 
going to show that (under our assumptions) there exists a function h as in the 
assumptions of Proposition 1.1. Since P is c-linked there are sets On C P such 
that Una On = P and any two members of On are compatible in P (i.e., each On 
is linked). Let N be a countable elementary submodel of (1(((27)) c, <*) such 
that P, (gn: n e oo), . . . e N. 

We define a forcing notion R = R(P): 
conditions are pairs r = (h, w) = (hr, Wr) such that 

(a) h is a finite function, dom(h) C P n N, rng(h) C 2 < C, 
(b) if P1, p2 e dom(h) then either P1 -< P2orP2<? P1 or Po1 lP P2, 
(c) if P1, P2 e dom(h), p1 <- p2 then h (pi) C h(P2), 

(d) w e [P]<W 
the order is such that r, <?R r2 if and only if 

(a) hrl C hr2, 

(ri) wr C Wr2 

(y) if q wr,, p e dom(hrl), p, q are compatible in P and no p' e dom(hrl) 
satisfies p <? p', p :A p', p' AD q then the set 

Jr2 def {hr2(pl): p ? PlC dom(hr2) & P1 AD q 

&(Vp2)(pI < P2 c dom(hr2) =# P2 lIE q)} 

contains a front of 2< - above hri (p) (i.e., for every q c 209 such that 
hr, (p) C q there is k with q [ k c Jrlr2). 

CLAIM 1.2.1. (R, <?R) is a partial order. 

PROOF OF THE CLAIM. The relation <?R is reflexive as Jp-rr = {hr(p)} for all 
relevant p, q. For the transitivity suppose that rl ?<R r2 and r2 ?<R r3. Clearly 
the conditions (a), (,B) for the pair rl, r3 are satisfied. To get condition (y) note that 
if {vo,. .. ., vk-I} is a front in 2<69 above v and {vo,.. . , v'-1} is a front in 2< 9 
above vo then {vo, ... v- 1,V, ..., vk1}- I is a front above v. 

CLAIM 1.2.2. R is c-centered 

PROOF OF THE CLAIM. Note that if rl, r2 e R, h = hri = hr2 then (h, wrl U wr2) is 

a common upper bound of r1, r2. 

CLAIM 1.2.3. Suppose p e P n N, q c P, ro G R and m e co. Then the following 
sets are dense in R: 

(1) Iod{r = R: (Vq c wr)[p AD q > (3p' e dom(hr))(p ? p'& p' ;_ q)]}, 

(2) I def e R: q Wr}, 
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1300 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH 

(3) Irmdf {r e R: r IR rO or for every q C WrO and p e dom(hro) such that 
p AD q & (Vp' c dom(hro))([p <? p' & p :4 p'] # p' lIE q) andfor every v C 2m 
such that h r (p) C v there is p" e dom(h' ) with p <? p", p" ;_ q and v C hr (p/)}. 

PROOF OF THE CLAIM. (1) Assume p e P n N, ro e R. Let (ql: 1 < 1*) be an 
enumeration of {q G Wro: q AD p}. Choose conditions pi (for 1 < 1*) such that 

(1) pCePnN 
(2) for each p' e dom(hro) either p' <p p' or p' I pi, 
(3) p <p pj, 
(4) (Pj : 1 < 1*) are pairwise incompatible, 
(5) Pi AD q'. 

For this we need the assumption that P is atomless and a-linked. First take pj+ e P 
such that p, q' <? P+ (for I < 1*). Next we choose p++ e P, pj+ p pj++ such 
that the clauses (2)-(4) are satisfied (remember that P is atomless and dom(hro) is 
finite). Let nj e co be such that pj++ e 9J,. As N is an elementary submodel of 
(d (:+), C, < *) we find (Pi : I < I) e N such that pi e 9n, and the clauses (2)-(4) 
are satisfied. But now we have (1) too. Moreover this sequence satisfies (5) since 
Pin pil+ C 91/ and the second condition is stronger than q1 (remember that the sets 

9n, are linked). 
Define hr by 

dom(hr) - dom(h ro) U {pl :1 < 1*}, h r C hr and 

hr (pi) - Uhro (p/) : P/ <ED Pi & p' C dom(hro)}. 

First note that all conditions p' e dom(hro) satisfying p' <p p/ are compatible in P 
and hence (by (b) for ro) they are pairwise comparable and thus (by (c) for ro) the 
set 

{hro(p/) pl <pE p & p C dom(hro)} 

is a (finite) chain in (2< co, C). Hence hr (pi) C 2< cO (actually hr (pi) = hro (p*) 

for the <p-maximal p* e dom(h r) such that p7* <? p; if there is no such p* then 
hr (p1) = (). Consequently hr satisfies (a). One can easily check that hr satisfies 
conditions (b), (c) too and thus r = (hr, Wro) c JO. Conditions (a), (/) for the 
pair ro, r are clear. To check the clause (y) suppose that p' e dom(hro), q c Wro 

are relevant for it. If for each I < I* either pl I q or p' $p pl (which implies 
p' I? pp) then = {hr (p')} as the property of p' there is preserved. Otherwise 

plnq= {hr(pi) I < I p * q, p' <p p' }. But due to condition (b) for rO we have 
that each condition from dom(hro) weaker than any P1 such that p/ AD q, pl <? p/ 
is weaker than p'. Consequently hr (p/) = hro (p') for all relevant p/ and we get 
rO <-R r. 

(2) Let q C P, r C R. Take (hr, wr U {q}); easily it is a condition in Iq stronger 
than r. 

(3) Assume ro e R, m e co. Let r C R. If ro, r are incompatible in R then r C I2 
and we are done. So we may assume that ro <?R r. 

Let ((q', pl, v1) : I < /*) list all triples (q, p, v) such that 

q C Wr, p C dom(hr), q ApD p hr(p) C v e 2m and there is nop' 
dom(hr) with p <E p', q AD pl. 
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SIMPLE FORCING NOTIONS AND FORCING AXIOMS 1301 

(It is possible that l* = 0, e.g., if m is too small.) 
Now choose conditions p* such that 

(1) pl* ePON, 
(2) for each p e dom(hr) either p <? p* or p lp p7* 
(3) p' <p pln 
(4) (p7*: I < I*) are pairwise incompatible, 
(5) p7* ; q1. 

For this we follow exactly the lines of the respective part of the proof of (1) (so this 
is another place we use the assumptions on P). 

Next define hr = h' U {(P, v') :< 1*} w" = wr, ri = (h r,l Wrl). Similarly as 
in (1) one checks that r1 c R. 

The condition r1 is stronger than r: clauses (a), (,B) are clear. For (y) suppose 
that q c Wr, p e dom(hr) are relevant for this clause. If m > lh(hr(p)) then 
each v e 2m extending hr(p) appears as v = hrl (p*) for some I < I* such that 
ql = q, pl p. Hence Jp q contains a front above hr (p). If m < lh(hr (p)) then 
the pair (p, q) does not appear as (p', q'). Note that for each I < 1*, if q' Ap p 
then pl lID p (as pi cannot be stronger than p since lh(hrl (p')) < m) and hence 
p7* lI p. If q' lI p then we get the same conclusion (though pl might be weaker 
than p, the demands (5), (2) of the choice of p* imply that p7* I p). Consequently 
the "maximality" property of p is preserved in dom(hrl) and jpr- = {hr(p)} 

To prove that rl c '1om suppose that q c WrO and p e dom(hro) is maximal (in 
dom(hro)) compatible with q. Let v e 2m extend hro(p). Since ro <R r we find 
p' e dom(hr) stronger than p, maximal (in dom(hr)) compatible with q and such 
that v, hr(pf) are comparable (by condition (y)). If v C hr(pf) then we are done. 
So suppose hr(pf) C v. Then for some I < I* we have q = q'p p p and v = v . 
By the choice of pi and the definition of hV (Pl) we get 

P <? p?<DPl* & p*7.?ql=q & v=vl= hr1 (P*). 

The claim is proved. 
Since we have assumed MA,. (a-centered) we find a filter H C R such that 
((o) Hn{reR:r lRroor(ro <r&rcIp) }0forpePnNrocR, 

(eI) H n VIq 0 forq c P and 
(e2) HnrI24,m #& 0forro c R,m m cw. 

Put = U{hr : r e H}. Clearly h is a function from a subset of P n N to 2 < 
Conditions (b), (c) imply that h satisfies the second requirement of the assumptions 
of Proposition 1.1. 

Suppose now that q e P. Take p e P n N compatible with q and choose 
ro e H n I n Iq (so q C Wro). Next take p* G dom(hro) such that 

p <p p* & p* 7p q & (Vp' e dom(ho))([p* <p p' & p* 74 p'] # p'I I q). 

Assume that hro (p*) C v C 2m. 
By (e2) we find r e H n I2 . As ro, r e H, H is a filter, we cannot have r I R ro. 

Consequently "the second part" of the definition of '2 m applies to r. Looking at 
this definition (with p* as p there) we see that there is p' e dom(hr) with 

p* <? pp & p' Ap q & v C hr(p/). 
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1302 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH 

So vo = h (p*) is as required in (3). Applying Proposition 1.1 we finish the proof of 
the theorem. -d 

REMARK 1.3. Of course, what we have shown in Theorem 1.2 is that MA, (R(IP)) 
implies EP adds a Cohen real, provided EP is atomless a-linked of size r,. 

COROLLARY 1.4. Assume MAN,. If IP is a ccc atomless forcing notion of size K then 
IP adds a Cohen real. -d 

PROPOSITION 1.5. Let EP be a ccc forcing notion. Then the following conditions are 
equivalent: 

(a) IF-pi"there is an unbounded real in co' over V" 
(b) there exists a sequence (n : n E co) of maximal antichains of EP such that 

(i) Wo = {0}, 
(ii) (Vn co)(Vp C sWn+j)(iq C Wn)(q <? p), 

(iii) (Vn E co)(Vp C Sin)({q C Sn+l : p <p q} = CO), 

(iv) (Vq c P)(in e co)(H{p C n : p D q} =co). 

PROOF. Easy, left for the reader. - 

THEOREM 1.6. Suppose that P is a cccforcing notion such that P < cov(G) (i. e., 
unions of 11P11 many meager sets do not cover 2w) and 

I[-p "there is an unbounded real over V". 

Then 

I[-p "there is a Cohen real over V". 

PROOF. We are going to apply Proposition 1.1 and for this we will construct a 
function h satisfying (1)-(3) of Proposition 1.1. 

Let (n : n E co) be a sequence of maximal antichains of P given by (b) of 
Proposition 1.5. Take a countable elementary submodel N of (Z(+), C, <*) such 
that P, ( n: n C co),... E N. Consider the following partial order C: 
conditions are finite functions h such that 

(a) dom(h) C Un S 'Wn I rng(h) C 2 < 
(b) if PI, P2 E dom(h), Pi <p p2 then h (PI) C h (P 

the order is the inclusion; h1 <c h2 iff h, C h2. 
Clearly C is (isomorphic to) the Cohen forcing notion. 

CLAIM 1.6. 1. Let p E Unsn in ho C C, q E P, m C co. Then the following sets 
are dense in C: 

(1 odef 
(1 =p f h E C:: p E dom(h)j, 

(2) JImh 
e 

{h E C : h Ic ho or for every p E dom(ho) such that for some 
n C co, p E sn and the set {p' E Wn+l p <p p' & p' Lp q} is infinite we have: 
for every v E 2m extending ho(p) there is p' E dom(h) with p <p p', p' AD q and 
h(p') = v }- 

PROOF OF THE CLAIM. (1) Assume p C Unclo sVn, h E C. Extend h to h' by putting 

h'(p) = U{h(p') : P' E dom(h) & p' <? p}. 
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SIMPLE FORCING NOTIONS AND FORCING AXIOMS 1303 

Easily this h' satisfies h' e JO? h <c h'. 
(2) Suppose that q e P, m e co, ho e C, h e C. We may assume that ho <c h. 

Let ((pI, n1, v'): 1 < l*) enumerate all triples p e dom(ho), n c co, v c 2m such 
that 

(a) p e Sn and the set {p' e n+l p ?< pI & pI Ap q} is infinite. 
(/3) ho(p) C v. 

Next (using (a) above) choose P7 c nl+I such that 
(1) pl <? Pp 
(2) (p7*: I < I*) are pairwise incompatible 
(3) for each p e dom(h), l < P* either p <p P* or p I p P* 

Now put dom(h') = dom(h) U {p7*: I < 1*}, h'(p*) = v1 and h' [dom(h) h. 
Easily h' e C, h <c h' and h' e J . This finishes the claim. 

Since H1PH1 < cov(A')wefindafilterH C CsuchthatHnJp #& 0andHnJ',O0 

0 for all q e P, m e co, ho C and P e UnEconff. Puth UH. Then 
clearly h : UnE(, Wn ) 2<69 is a function satisfying the requirements (1), (2) 
of Proposition 1.1. To check the third condition there suppose q G P. Take 
n e co and p* e Wn such that the set {p' G Vn+l p* <? p' & p' Ap q} 
is infinite (possible by the choice of the Xk's). Since H n J4* =& 0 we find a 
condition ho e H such that p* e dom(ho). Suppose that v e 2<6, h(p*) c v 
and let m = lh(v). Take hl e H n Jm Since ho, h, cannot be incompatible, 
p* c dom(ho), h(p*) C v e 2m we find p' e dom(hi) such that p* < p', p' A? q 
and hi (p') = v. Since hi (p') = h (p') we conclude that vo h(p*) is as required in 
(3) of Proposition 1.1 for q. The theorem is proved. - 

DEFINITION 1.7. A forcing notion P is almost co'W-bounding if 

for each P-name f for an element of co' and a condition p e P there is 
g co60 n V such that for every X e [co]o n V: 

(ip' >? p)(p' VIp (3"On e X)(f(n) < g(n))). 

LEMMA 1.8. (1) Suppose that P is a ccc forcing notion such that for every integer n 
the product forcing notion pn does not add unbounded real and satisfies the ccc. Then 
the co-product Po withfinite support is almost co' -bounding and satisfies the ccc. 

(2) Finite support iteration of ccc almost co' -boundingforcing notions does not add 
a dominating real. 

PROOF. (1) Suppose that for each n e co the product forcing notion pn satisfies 
the ccc and does not add unbounded reals. By [3, 23.11] we know that then PCO 
satisfies the ccc. We have to show that PIo is almost co'o-bounding. Let f be a 
P -name for a function in coow. For each n, k c co choose a maximal antichain .kn 

of P1 and mappings k -* PI and gk SkV - co such that 

(Vq k)( ok(q)[n = q & (,n(q) IF f (k) = gn(q)) 

(possible as Pn o P'). Thus, for each n G co, we have a Pn -name gn for a function 
in coc` defined by 

(Vk e co)(Vq e SWkn)(q IF IDn gn (k) = gk (q)) 
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1304 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH 

Since p'n does not add unbounded reals and satisfies the ccc we find a function 
g n E w60 such that 

I FlpDn (im E co) (Vk > m)(gn (k) < gn (k)). 

Take g E co' such that (Vn e co)(im E co)(Vk > m)(gn(k) < g(k)). We claim 
that 

IF- (VX E [cow]W n V)(i??k E X)(f (k) < g(k)). 

To this end suppose that X E [co]', p E IP' and N E co. Take n such that p E Pn 
and look at the function gn. By its choice we find a condition p' E p'n stronger than 
p and an integer mO such that p' IF-pn (Vk > mo)(gn(k) < gn(k)). By the choice 
of g we find ml E co such that (Vk > mi)(gn(k) < g(k)). Let k E X be such that 
k > mO + ml -+ N. Since Wkn is a maximal antichain of Ipn we may take a condition 
q E skn compatible with p'. Let p" be a common upper bound of p' and (k (q) in 
IP'. Then (p" is stronger than p and) 

A// 1Fo f (k) = gkn(q) = kn (k) < gn(k) < g(k) 

(remember k is above mo, m I). Since k E X is greater than N we finish by standard 
density arguments. 

(2) See [6, Ch VI, 3.6+3.17] or [1, 6.5.3]. H 

THEOREM 1.9. Assume MA, (ccc & almost co'W-bounding). Then every atomless 
ccc forcing notion of size < i, adds a Cohen real. 

PROOF. We assume of course that K > N l. Let P be a ccc forcing notion, P < r'i. 

If P adds an unbounded real then Theorem 1.6 applies (note that the Cohen forcing 
notion is almost co'W-bounding, so our assumption implies r, < cov('t)). Thus to 
finish the proof we need to show that P adds an unbounded real. This fact is done 
by the two claims below. 

CLAIM 1.9.1. Assume MA,< (ccc & co'-bounding). Suppose that P is a ccc forcing 
notion which adds no unbounded real (i.e., it is co'W-bounding). Then for every n E co 
the product forcing notion pn adds no unbounded real and satisfies the ccc. 

PROOF OF THE CLAIM. As MA,. (ccc & co' -bounding) applies to P, this forcing 
notion has the Knaster property (strong ccc) and consequently all powers of it 
satisfy the ccc. What might fail is not adding unbounded reals. So suppose that n 
is the first such that 

I -pn "there is an unbounded real over V". 

Clearly n > 1. By Proposition 1.5 we find maximal antichains Ok C On (for k < co) 
satisfying conditions (1)-(4) of clause (b) there. 

We may think that P is an ordering on i'. Let N be an elementary submodel of 
(X(:7-), c, <*) such that 

Pi <p, (&kk:k co),... E N, 1 + I C N and 1IN11 = K. 

Let A: N - M be the Mostowski collapse of N, M a transitive set. Note that 
7r (P) P, 7r (s'k) = sk etc. Since p'n- I is ccc and adds no unbounded real we may 
apply our restricted version of MA,. to it and get an M-generic filter H C p1n-I in 
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SIMPLE FORCING NOTIONS AND FORCING AXIOMS 1305 

V. (Note that if v C ED n-1 v E M then M OX is a maximal antichain of pn- 1 

iff v is really a maximal antichain of pn- 1.) Let 

k {=p E P: (ip e H)((p,p) E oWk)} e M[H]. 

Then 
M[H] F "SikH is a maximal antichain of P" 

and easily the same holds in V. As P adds no unbounded real, by Proposition 1.5 
we find p E P such that 

(Vk E co)(I{p' E c k :p p fp } < c) 

and thus 
(Vk E co)(f{G(r',p') E Wk ' E H & p hp p'}H < o). 

Since pn-1 adds no unbounded real (and this is true in M too) we find finite sets 
Ak C sOk (for k E a)) and a condition p E pn-l such that for each k E co 

M#= pI-I V -1{( p') E)k E'Fpn-I & p 1 p p'l C Ak. 

This means that if (fi', p') E Ok \ Ak then either p i-I p' or p I p '. Hence the 
condition (p, p) E pIn is a counterexample to the fourth property of Kk: k c o). 
The claim is proved. 

It follows from Claim 1.9.1 and Lemma 1.8 that (under our assumptions) P is 
a-centered. So now we may use the following claim. 

CLAIM 1.9.2. Every r-centered atomless forcing notion adds an unbounded real. 

PROOF OF THE CLAIM. Folklore; see e.g., 5.2 of [4]. H 

COROLLARY 1. 10. It is consistent that c > N1, every atomless ccc forcing notion of 
the size < c adds a Cohen real but MA, (ccc) fails. H 

As we saw in Theorem 1.6, if we assume a small part of MA,< then each forcing 
notion adding an unbounded real adds a Cohen real, provided the size of the forcing 
is at most r,. Therefore it is natural to look for requirements implying that small 
forcing notions add unbounded reals. The main part of the proof of Theorem 1.9 
was to show that MA,< (ccc & almost co' -bounding) is such a condition. It occurs 
however, that we need much less for this. As in Theorem 1.6 the crucial role was 
played by the Cohen forcing, here we naturally arrive at the forcing notion defined 
below. 

DEFINITION 1. I 1. We define a forcing notion Q?: 
conditions are pairs (a, w) such that w E [2a)]<a) and a E [2< cC]<co, 
the order is defined by: (ao, wo) <?Q,@, (al, wi) if and only if 

ao C al,wo C wl and (VqC wo)(Vl E co)(q [ I al =# q [ I ao). 

LEMMA 1.12. (1) Q? is an almost co'-bounding c-centered partial order 
(2) Let A be the Q? -namefor a subset of 2<co given by 

IW H = U{a : (3w)((a,w) c ri) 
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1306 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH 

Then 
(a) IHkQ. (Vq G 20 n V)(V"On co )(q[n , A) 
(,B) IF "if T C 2< O is a perfect tree from the ground model then (3?On c 

co)(T n 2 n #0)". 

PROOF. (1) Clearly if ao = al, (ao, wo), (aj, wi) e then (ao, wo U w1) C Q? 
is a common upper bound of (ao, wo), (aj, wl). This implies that Q? is a-centered. 
Next note that 

(ao, wo) I(Q (a,, wi) if and only if 
either there are q e wo, l e co such that q [ 1 c aI \ ao 
or the symmetrical condition holds (interchanging 0 and 1). 

Henceifao,a1 C2<?1O {q [o:qcw}={j q [lo:0qcw2}then 

(ao, wo) I Q (a1, wi) iff (ao, wo) IQ (aQ , w2)- 

Since the product space (2W )n is compact we may conclude that 

if s C Q? is a maximal antichain, n c co, a c [2< -]<() 
then there is afinite set A = A a n C V such that for every w C 269, w n 
there is r e A with (a, w) ;?,E, r. 

The above property easily implies that Q? is almost cowW-bounding: suppose that 4 is 
a Q?-name for an element of cowj. For each k e co fix a maximal antichain sk such 
that each member of Wk decides the value of h (k). For k, n e co and a c [2< 
choose a finite set Aank C k with the property stated above. Finally put 

g(k) 1 +max{l e co: (ia C 2<k)(3n < k)(3r Aank)(r IF-Q. h(k) 1)}. 

To show that the function g works for h (for the definition of almost COwW-bounding) 
suppose that X e [cow]. Assume that 

rO IF-Q0 (V\fn E X)(g(n) < h(n)), 

so we have r1 and k such that 

r1 IFQ, (Vn > k)(n e X > g(n) < h(n)). 

Now take* V X such that k > k and if r1 = (a, w) then a C 2?k, w 11 = n < 
k*. By the definition of Aank* we find r c Aank* compatible with r1. But each 
member of Aank* forces that h (k*) < g (k*), a contradiction. 

(2) Straightforward. H 

THEOREM 1.13. Assume MA,< (Q?). Suppose that P is a forcing notion such that 

HIP11 < r, and 1Vp 209 n V :A 209 (i.e., the corresponding complete Boolean algebra 
RO(P) is not (co, co)- distributive). Then IP adds an unbounded real. 

PRoOF Since IP adds new reals we can find a PD-name r for an element of 2C) such 
that VIE r i V. For a condition q c IP let 

T = 
-f {V 2<c : q IFp v Z r}. 
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SIMPLE FORCING NOTIONS AND FORCING AXIOMS 1307 

By our assumptions on i we know that each Tq is a perfect tree in 2< c. Next fix 
1lq E [Tq] (for q E P). Since we have assumed MA,< (Q?) we may apply Lemma 1.12 
to find a set A C 2<` c such that for each q E P: 

(a) (V??n E co)(qq [n , A) and 
(f) (3??n E c)(Tq n 2n n A :4 0). 

Now define a P-name K for a subset of co by: 

VIp k ={n co : i[n Al}. 

First note that k is a P-name for an infinite subset of co: Why? Suppose that q E P 
and N E co. By the property (fi) of A we find v E A n Tq such that lh(v) > N. 
Then we have a condition Pv > q which forces "v C *" and thus Pv VIp lh(v) E K. 

Suppose now that q E P, g E co) is an increasing function and No E co. Take 
N1 > No such that (Vn > N,) (lq [n ? A) and a condition Pq, [g(Ni) such that 

q ?? Pqq [g (NI) and Pq [g (Nl) IE itq [g(NI) C * (remember that qq E [Tq]). Now 
note that 

Pqq [g(Ni) IF ~pK n [N,, g (N, )) =0- 

Hence we easily conclude that 

I Vp "the increasing enumeration of k is an unbounded real over V" 

finishing the proof. H 

REMARK 1.14. The forcing notion Q? makes the ground model reals meager in 
a "soft" way: it does not add a dominating real (see Lemma 1.12). However it 
adds an unbounded real (just look at {n E co A n 2n :4 0}, for A as in Lemma 
1.12(2)). Consequently it adds a Cohen real (by [7]; note that Q? is a Borel ccc 
forcing notion). Hence we may put together Theorems 1.6 and 1.13 and we get the 
following corollary. 

COROLLARY 1.15. Assume MA,. (Q?). Then every ccc forcing notion of size K, 

adding new reals adds a Cohen real. -d 

?2. Anti-Martin axiom. In this section we are interested in axioms which are 
considered as strong negations of Martin Axiom. They originated in Miller's prob- 
lem if it is consistent with -CH that for any ccc forcing notion of the size < c 
there exists an coi-Lusin sequence of filters (cf. [5]). The question was answered 
negatively by Todorcevic (cf. [8]). However under some restrictions (on forcing 
notions and/or dense sets under consideration) suitable axioms can be consistent 
with --CH. These axioms were considered by van Douwen and Fleissner, who were 
interested in the axiom for projective ccc forcing notions, but they needed a weakly 
compact cardinal for getting the consistency (cf. [9]). Cichoni preferred to omit 
the large cardinal assumption and restricted himself to WE ccc forcing notions and 
still he was able to obtain interesting consequences (see [2]). Here we show how to 
omit the large cardinal assumption in getting Anti-Martin Axiom for projective ccc 
forcing notions. This answers Problem 6.6(2) of [4]. 

DEFINITION 2.1. For a forcing notion P and a cardinal K, let AMA,. (P) be the 

following sentence: 
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1308 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH 

there exists a sequence (Go: i < A,) offilters on P such thatfor every maximal 
antichain v C IP'for some io < is we have 

(Vi > io)(Gi n v o& 0). 

For a class X of forcing notions the axiom AMA,. (X) is "for each P E X, AMA,< (IP) 
holds true". 

DEFINITION 2.2. (1) For two models N, M and an integer n, M -<n+l N means: 

for every rl, formula 'p (x, Y) and every sequence mT C M, 
if N : 3x'p(x, mT ) then M = :xWp(x, m ). 

(Thus M N if and only if (Vn > 0) (M -< N).) 
(2) If IP'o, P1 are ccc forcing notions, n > 0 then Po0 n PI1 means IPo <o PIP (i.e., Po 

is a complete suborder of P1) and 

1Wpj (7g,(N )v[,-P, nol z)A EZ8 )C- 

Instead of <o we may write <oo. 

DEFINITION 2.3. Let ,c be a cardinal number. 
(1) A,< is the class of all ccc forcing notions of size < x. 
(2) We inductively define subclasses Fn of F, (for n < co): 

Fo =F. 

F,,n+l is the class of all P Ec Fn such that for every IP* fn 

P <? P* =>A' P<n+I ED, 

a~co n an<o 
n -e =rIIn<y t2- 

LEMMA 2.4. Let K, be a cardinal such that ,& = A, n < co. 
(1) If 0o, Pi C F2n,P ? then Po <on P1- 

(2) Suppose 3 < K+, cf(3) > co, and Pi C F,,n (for i < 3) are such that 

i < i < ; =:> Pi <0 P'. Then Pa = Ui<< Pi Ez n and if EP E F,, Pi <on P' 
for every i <3 then P6 <on P. 

(3) If P C d,< then there is P* C Fn such that P <o P*. 
(4) If P c ad,< then there are functions Fk : IJi<(, P > P (for k E co) such that 

for every Q C P. if Q is closed under all Fk then Q <n P 

PROOF. The proof is by induction on n. For n = 0 there is nothing to do. (For 
(4) consider functions Fo, F1 : fJie P - P such that if (pi : i C co) C P is an 
antichain which is not maximal then Fo(pi : i < co) is a condition incompatible 
with all pi; if pi c P (i C co) and po ALP P1 then Fi(pi : i E co) is a condition 
stronger than both Po and Pi.) So suppose that (1)-(4) hold true for n and we are 
proving them for n + 1. 

(1) By the definition. 
(2) Suppose that P c s,, Pi <n+?E P for each i <3. By the inductive hypothesis 

we know that P, <on P, P6 c Wn and hence (by the definition Of i we have 

Pi <?n+?1 P for each i <3. Suppose that G C P is a generic filter over V. Then for 

i < [: 

W Gr(t>(8)V[Gnpii A C) -, +I (,r(NI)V[GnPti c) and 
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SIMPLE FORCING NOTIONS AND FORCING AXIOMS 1309 

(1r(N1)V[Gni]' ) --'n+l ('Z(N1)V[G] E). 

Let p(x,y3) be a fln-formula and 5o c Z(N1)V[GnP6]. Take i < 3 such that 
YO C r(N,)V[GnPi] (remember cf(3) > co). If (Z(R1)v[G], ) = 3x(x jo) then 
( (N1)V[GnP ], c) xW 3x(x, jo) (by (**)) and r(N1)V[Gnfi2] ) 10 3xp(x ) (by 
(*)). This shows P6 <on+?1 P. To prove that P6 c Fn+1 suppose that P c Fn, P6 <o P. 
Then for each i <3 we have Pi <o P, Pi c Fn+l and consequently Pi <?n+?1 P. By 
the previous part we get P6 <on+1 P finishing (2) 

(3) Let P c ,. By a bookkeeping argument we inductively build sequences 

(Pi i < ) and ((pi, pi, ii): i < ,) such that for all i < j < ,: 

(a) P~i (E F~n, PE <o Po,~ PEi <? PEj, PEm, = Ui<K P IEi 

(b) pi C Pi, 
(c) Wi is a fn -formula, ii is a IP -name for a finite sequence of elements of 

r(N I ), 

(d) ((pi,Wi, i): i < t) lists all triples (p, W,i) such that W = W(x,y3) is a 
fln-formula, i is a (canonical) P, -name for a finite sequence (of a suitable 
length) of members of F (N1 ), p P,s, 

(e) if i is limit, cf(i) = co then IPi c Fn is such that Ue<i Pi <o Pi, 
(f) if i is limit, cf(i) > co then Pi = Uj<i Pi C ,'2, 
(g) if there is PI* c Fn such that Pi <o P* and for some p* E P* we have 

p* ;p* pi and 
p* 1v2* (Z8 ) ) xw (X, Ti ) 

then Pi+I is an example of such P*. 
The construction is fully described by the above conditions (and easy to carry 

out; remember about the inductive hypothesis and the assumption that t = ). 
Clearly P,c E n (by the inductive assumption (2)) and P <o P,c. We have to show 

that actually P,E c Fn+' Suppose not. Then we find P* c Fn such that P,C <o P* 

but P, 54?n+1 P*. The second means that there are a condition p* E P* and a 

fn -formula p and a P, -name i for a sequence of elements of ' (N 1) such that 

p* IF* "(r(1),c) 1= 3x'(x,i) but (r(I) v[rp* npc,) 1= 3xW(x, ). 

Take p c P,I such that p* )p* p and there is no condition p' c P,I such that 

p ?P p' and p' I p*. Let i < , be such that (p, , i) = (pi, Wi, i1). Condition 
(g) of the construction implies that for some p+ c P?i+ we have p+ fp, p and 

P ~+l vp ( , E) 1= 3~xw(x, i) . 

Since Pi+, <on rP,. (the inductive hypotheses (2), (1)) we get 

P VFP ( E(81), ) = ]xp(xi ). 

The choice of p implies p+ )p* p* and this provides a contradiction as 

p+ IP* (r(N1)v[in,'i] C) = ]x(x, i). 

(4) Let Fk I7Ji<, P PR P (for k c co) be functions such that if Q C P, Q is 

closed under all Fk2 then Q <on P (they are given by the inductive hypothesis (4)). 
Let Ai,j,k C cO \ {O} be disjoint infinite sets (for i, j, k c co). For a fln-formula 

o (x, Yo.. . , Ye- 1) and m c co we choose a function Fw"' : P P, P satisfying 
the condition described below. 
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1310 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH 

Let (Pm m < co) C P. For k < e we try to define a P-name Zk for a real in co' 
by 

(Vm C Aij,k)(Pm IF P k(i) )= . 

If this definition is correct then we ask if these reals encode (in the canonical way) 
elements of (N 1) (which we identify with the names Zk themselves). If yes then 
we ask if 

P0 oFI (V(p 1),) 1= ]x(xi,... , i-1). 

If the answer is positive then we fix a P-name i for (a real encoding) a member of 
Z (R1 )such that 

Po I Fp (,r(N I), )1 (T. To, i . -1 ). 

This name can be represented similarly as names Zk (for k < i) so we have a 
sequence (qm : m < co) C P encoding it. Finally we want Fe'm to be such that if 
the above procedure for (pm m < c) works then FP"m (Pm m < c) = qm 

Now take all the functions Fko, Fedm; it is easy to check that they work. 
Lastly note that the case n = co follows immediately from the lemma for n < co. 

(For (3) construct an increasing sequence (IPi: i < (a)) such that P <o Po and if 
A < wl is limit, k < Co thenP2+k C ') ) 

THEOREM 2.5. Suppose that 0, K are cardinals such that NI < 0 = cf(0) < K = K @. 
Then there exists a ccc forcing notion P such that 

IF-p c = X & AMA0 (projective ccc). 

PROOF The forcing notion P which we are going to construct will be essentially 
a finite support iteration of length X . 0 of ccc forcing notions. One could try to 
force with "all possible ccc orders" in the iteration. However some care is necessary 
to make sure that several notions (including "being a maximal antichain") are 
sufficiently absolute for intermediate stages. Therefore we use forcing notions from 
the class FO. So we inductively build sequences (IPi: i < X 0) and (Gpi, Vgi, ii) 
i < X - 0) such that for all i < j < X . 0: 

(1) Pi C F), PK.0 = Ui<K.0 Pi C F8, 
(2) Pi <o Pj, 
(3) (((Pi, V/i, ii): i < X 0) lists with cofinal repetitions all triples (a, Vt, i) such 

that p is a formula with n + 1 variables, tg is a formula with n + 2 variables and i 
is a P,c.0-name for a sequence of length n of elements of ) 

(4) if ii is a Pi -name and 

IFVp "('pi(x, ii), tV/i (xo, xl, ii)) defines in (;(N1), E) a ccc partial order Qi" 

then Pi * (Qi <? Pi+?I. 

It is easy to carry the construction (use a bookkeeping argument, remembering 
ohJ = X plus Lemma 2.4). We want to show that P = P,.0 has the required 
properties. Easily IF-p c = K. Now suppose that G C P is a generic filter over V and 
work in V[G]. 
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SIMPLE FORCING NOTIONS AND FORCING AXIOMS 1311 

Assume that Q is a projective ccc forcing notion and thus it is definable in 
(NI81),c). Thus we have formulas (p(x, j) and V/ (xo, xl, i) and a sequence F C 

T(Ni ) such that 

Q = {x c x(RI): (X c), a =(x, F)} 

<Q = {(Xo, XI) C T(NI) X x N) ( ), a= tV(xo, X1, T)}. 

Let i be a P-name for F. We may assume that 

VFp "(f (x, i), tr(xo, xi, i)) defines (in ('(N ), ac)) a ccc partial order". 

There is an increasing cofinal in K 0 sequence (ij j < 0) such that i is a Pi,, -name 
and (pij, V/ij, iij) = (W, y, i). Since P, Pii E Fc we have that 

1Fp " (,(N)V[rPnPii] C) _< E)C) 

and hence the formulas (f(x, r), yV(xo, xl, r)) define (in (Y(N1)V[Gn~ij, )) the 

partial order Q n X(N )V[GnPij]. The incompatibility relation in this partial order 
is expressible in (X(RI), c) and thus it is the restriction of I(Q. Consequently 
Q n X(N{)V[GnlP'] is ccc in V[G] and hence in V[G n PiJ]. Hence in V[G n Pi,_0 ] 
we have a filter G* C Q n X(NI)V[GnPi~i generic over V[G n Pig] (here we apply 
Condition 4 of the construction). Look at the sequence (Gj: j < 0). Let v C Q 
be a maximal antichain. It is countable and hence for sufficiently large j < 0 we 
have C E V[G n PiJ]. Moreover the antichain can be coded as a one real and the 
fact that it is a maximal antichain in the partial order defined by (p, qi) is expressible 
in (X(N I), c). Applying Pi, C Fo we get that 

V[G n P1J] s v is a maximal antichain in Q n Y( )V[GnPij]. 

Consequently for sufficiently large j < 0 we have 

Gj* n vW 0. 

This finishes the proof - 

REMARK 2.6. In Lemma 2.4 and Theorem 2.5 we used ( 1h) as we were mainly 
interested in AMA, and projective ccc forcing notions. But we may replace it by 
X(x) for any uncountable regular cardinal x such that E>a< .1al = a. Then in 
Lemma 2.4(2) we consider 3 < ps+ such that cf(6) > x and in Theorem 2.5 we 
additionally assume that 0 > x. 

?3. Absoluteness and embeddings. In this section we answer positively Problem 
4.4 of [4] (see Theorem 3.2) and we give a negative answer to Problem 3.3 of [4] 
(see Corollary 3.5). 

DEFINITION 3.1. Let P be a forcing notion. We say that S1 (IP)-absoluteness holds 
if for every El formula 'p (with parameters in V) and a generic filter G C P over V 

V[G] |= ' if and only ifV '. 

Obviously El (P)-absoluteness holds for any forcing notion P. 

THEOREM 3.2. Assume MA,,, (P). Then 1 (IP)-absoluteness holds. 
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1312 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH 

PROOF. Suppose that 'p is a S1 sentence (with a parameter a E co`). Using the 
tree representation of ll -sets we find a tree T (constructible from a) over co x co, 
such that 

'p-(3x c coW)(Vf c co IO)(3n c co)((x [ n, f n) V T) 

_(3x c coo)(the tree T(x) is well founded). 

(For x c coo, T(x) is the tree on col consisting of all E co, <C such that 
(x [ lh(d), &) c T.) Moreover, as by MAC,, (P) we know that I -p coav = cai, the tree 
T represents ' in VP too: 

1fP "'p (3x c coo)(the tree T(x) is well founded)". 

Suppose now that IFP 'p. Then we have a P-name i for a real in coWo such that 

1f p "the tree T(r) is well founded". 

Consequently we have a IP-name p for a function such that 

1Fp "p3: T(r) - Ord is a rank function". 

For n c coo & coon put 

Jn= {p c P: (m cco)(p 1Fp r(n) = m)}, 

J2, = {pcP : either p IFp &e 5 T(r) 
or (] E Ord)(p I hpc E T(r) & p(r [ n, )4)}. 

Clearly these are dense subsets of P. By MA,,, (P) we find a filter G on P such that 
G n Jn? 2# 0 for n E co and G n 4, +4 0 foraE co i<@. Using this filter we may 
interpret the name i to get r = iG E co'. Moreover we may interpret the name p 
to get a function p = pG: T(r) > Ord: 

p(r [ n, &) = 4 if (3p E G)(p IF- c E T(ir) & p3(i n, 5) 

[Note that this really defines a function from T(r) to ordinals: suppose that (r 
n, &) c T. First we find p c G nrnm<n J,?; then clearly 

p 1Fi ", n =r [n and 5 C T(r) 

Thus if p' c J., n G then p' l)$ p ? T(r) and hence for some ordinal 4 we have 
p' I p a- c T(r) & p3(r [ n,oi) = . Moreover if 40O,41I are such that for some 
p0, pI e G we have 

P' 1Fp o5 E T(r) & p(r [ n, o5)= 

then (as p0 Yp pl) we cannot have do #? t,.] 
We claim that p is a rank function on T(r). Suppose that no < n1, do c COI , 

c C colni, & o C & 1 and (r [ no,&do),(r [ ni,&i ) C T. Take a condition p c 
G n nIm<ni Jm,. Then 

p 1Fp "r n1 = r [ n1 & &o, O1 C T(r)". 

Next choose conditions p?, pI P G such that 

p' I1p "di C T(r) & p3(*r ni, &i) = p-(di) 

This content downloaded from 128.235.251.160 on Sat, 17 Jan 2015 08:13:33 AM
All use subject to JSTOR Terms and Conditions

Sh:508

http://www.jstor.org/page/info/about/policies/terms.jsp


SIMPLE FORCING NOTIONS AND FORCING AXIOMS 1313 

Take p* E G stronger than p?, p1, p. Since p is (forced to be) a rank function on 
T(r) we have 

p* 1Fp p(&o) = p(r [ no, &O) > p(r [ nI,&1) = p(Ii). 

Hence p(01o) > p(011) and we may conclude our theorem: the tree T(r) is well 
founded so V p= . -1 

PROPOSITION 3.3. Suppose that Q is a ccc Souslin forcing notion (i.e., Q, <?Q and 
I are I1-sets), r is a Q-name for a function from 2< ' to 2. Let 

def W cc 
A[r] = {,q C20 (3p Q ?)(V m E co)(p mF "r1 [) 

Then A[r] is an analytic set. 

PROOF. For each v c 2< cO choose a maximal antichain (Pv, : I c co) in Q and a 
set I, C co such that for each I c co: 

I E I, =r p,,l /IFQr(v) =O and I I, > pv,, /IH?Q(v) = 1. 

Now note that for each q c 260 we have 

i7 c A[=]_ (3p c Q)(Von E co)(V/1 Irn)(Prn, IQ p)* 

PROPOSITION 3.4. For every A C 2Co there exist a cr-centeredforcing notion QA and 
a QA -name r (for afunctionfrom 2< wO to 2) such that A = A[i] andIIQI= IIA + No. 

PROOF. The forcing notion QA is defined by 
conditions are pairs (r, w) such that r is a finite function, dom(r) C 2< c-, rng(r) C 2 
and w [A]<0, 
the order is such that (ri, Wi) < (r2, W2) if and only if ri C r2, wI C w2 and 

(Vv c dom(r2) \ dom(r)) ([(],q c w1)(v C r1)] =* r2(v) = 1) 

The QA-name r is such that 

I -QA r = U{r: (3w)((r,w) c J(QA)} 

It should be clear that QA is a-centered, I1QA 1= IA II + No and 

IF(QA r: 2<0 -* 2. 

Moreover for each q c 2D and (r, w) c QA: 

(Voom)((r, w) U-QA *(17 [i) = 1) iff q c A. 

Consequently A = A[r]. - 

COROLLARY 3.5. If A C 2CD is not analytic then QA cannot be completely embedded 
into a ccc Souslin forcing. In particular, if c > N1 then there is a a-centeredforcing 
notion of size NI which cannot be completely embedded into a ccc Souslin forcing 
notion. - 
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