Erdős and Rényi Conjecture

Saharon Shelah

Institute of Mathematics, The Hebrew University, Jerusalem, Israel; and Department of Mathematics, Rutgers University, New Brunswick, New Jersey

Communicated by the Managing Editors

Received October 10, 1996

Affirming a conjecture of Erdős and Rényi we prove that for any (real number) $c_1 > 0$ for some $c_2 > 0$, if a graph G has no $c_1 (\log n)$ nodes on which the graph is complete or edgeless (i.e., G exemplifies $|G| \neq (c_1 \log n)_2^2$), then G has at least 2^{c_2n} non-isomorphic (induced) subgraphs. © 1998 Academic Press

0. INTRODUCTION

Erdős and Rényi [ER] conjectured (letting I(G) denote the number of (induced) subgraphs of G up to isomorphism and Rm(G) be the maximal number of nodes on which G is complete or edgeless):

(*) for every $c_1 > 0$ for some $c_2 > 0$ for *n* large enough for every graph G_n with *n* points,

$$\otimes \operatorname{Rm}(G_n) < c_1(\log n) \Rightarrow I(G_n) \ge 2^{c_2 n}.$$

They succeeded in proving a parallel theorem which replaces Rm(G) with the bipartite version:

$$\begin{split} \text{Bipartite}(G) =: & \text{Max}\{k: \text{ there are disjoint sets } A_1, A_2 \text{ of } k \text{ nodes of } G, \\ & \text{ such that } (\forall x_1 \in A_1)(\forall x_2 \in A_2)(\{x_1, x_2\} \text{ an edge}) \text{ or } \\ & (\forall x_1 \in A_1)(\forall x_2 \in A_2)(\{x_1, x_2\} \text{ is not an edge})\}. \end{split}$$

It is well known that $\operatorname{Rm}(G_n) \ge \frac{1}{2} \log n$. On the other hand, Erdős [Er7] proved that for every *n* for some graph G_n , $\operatorname{Rm}(G_n) \le 2 \log n$. In his construction G_n is quite a random graph; it seems reasonable that any

graph G_n with small $\operatorname{Rm}(G_n)$ is of similar character and this is the rationale of the conjecture.

Alon and Bollobas [AlBl] and Erdős and Hajnal [EH9] affirm a conjecture of Hajnal:

(*) if
$$\operatorname{Rm}(G_n) < (1 - \varepsilon)n$$
 then $I(G_n) > \Omega(\varepsilon n^2)$

and Erdős and Hajnal [EH9] also prove

(*) for any fixed k, if
$$\operatorname{Rm}(G_n) < \frac{n}{k}$$
 then $I(G_n) > n^{\Omega(\sqrt{k})}$.

Alon and Hajnal [AH] noted that those results give poor bounds for $I(G_n)$ in the case $Rm(G_n)$ is much smaller than a multiple of log *n*, and prove an inequality weaker than the conjecture:

(*)
$$I(G_n) \ge 2^{n/2t^{20}\log(2t)}$$
 when $t = \operatorname{Rm}(G_m)$

so in particular if $t \ge c \log n$ they obtained $I(G_n) \ge 2^{n/(\log n)^{c \log \log n}}$, that is, the constant c_2 in the conjecture is replaced by $(\log n)^{c \log \log n}$ for some c.

1

 $\langle 0.1 \rangle$ Notation. log $n = \log_2 n$. Let c denote a positive real, and G, H denote graphs, which are here finite, simple and undirected. V^G is the set of nodes of the graph G, and E^G is the set of edges of the graph G so $G = (V^G, E^G)$ and E^G is a symmetric, irreflexive relation on V^G , i.e. a set of unordered pairs. Thus $\{x, y\} \in E^G$, xEy, and $\{x, y\}$ an edge of G all have the same meaning. $H \subseteq G$ means that H is an induced subgraph of G, i.e., $H = G \upharpoonright V^H$. Let |X| be the number of elements of the set X.

 $\langle 1 \rangle$ DEFINITION. I(G) is the number of (induced) subgraphs of G up to isomorphisms.

 $\langle 2 \rangle$ THEOREM. For any $c_1 > 0$ for some $c_2 > 0$ we have (for n large enough) that if G is a graph with n edges and G has neither a complete subgraph with $\geq c_1 \log n$ nodes nor a subgraph with no edges with $\geq c_1 \log n$ nodes, then $I(G) \geq 2^{c_2 n}$.

 $\langle 3 \rangle$ Remarks. (1) Suppose $n \not\rightarrow (r_1, r_2)$ and *m* are given. Choose a graph *H* on $\{0, ..., n-1\}$ exemplifying $n \not\rightarrow (r_1, r_2)^2$ (i.e. with no complete subgraphs with r_1 nodes and no independent set with r_2 nodes). Define

the graph *G* with set of nodes $V^G = \{0, ..., mn-1\}$ and set of edges $E^G = \{\{mi_1 + \ell_1, mi_2 + \ell_2\} : \{i_1, i_2\} \in E^H \text{ and } \ell_1, \ell_2 < m\}$. Clearly *G* has *nm* nodes and it exemplifies $mn \neq (r_1, mr_2)$. So $I(G) \leq (m+1)^n \leq 2^{n \log_2(m+1)}$ (as the isomorphism type of $G' \subseteq G$ is determined by $\langle |G' \cap [mi, mi + m)| : i < n \rangle$). We conjecture that this is the worst case.

(2) Similarly, if $n \neq ([\frac{r_1}{r_2}])_2^2$; i.e., there is a graph with *n* nodes and no disjoint $A_1, A_2 \subseteq V^G$, $|A_1| = r_1$, $|A_2| = r_2$ such that $A_1 \times A_2 \subseteq E^G$ or $(A_1 \times A_2) \cap E^G = \emptyset$, then there is *G* exemplifying $mn \to ([\frac{n_1m}{r_2m}])_2^2$ such that $I(G) \leq 2^{n \log(m+1)}$.

Proof. Let c_1 , a real >0, be given.

Let m_1^* be¹ such that for every *n* (large enough) $(n/(\log n)^2 \log \log n) \rightarrow (c_1 \log n, (c_1/m_1^*) \log n)$.

[Why does it exist? By Erdős and Szekeres $[\operatorname{ErSz}] \binom{n_1+n_2-2}{n-1} \rightarrow (n_1, n_2)^2$ and hence for any k letting $n_1 = km$, $n_2 = m$ we have $\binom{km+m-2}{m-1} \rightarrow (km, m)^2$, now $\binom{m+m-2}{m-1} \leq 2^{2(m-1)}$ and

$$\binom{(k+1)m+m-2}{m-1} \left| \binom{km+m-2}{m-1} \right| = \prod_{i=0}^{m-2} \left(1 + \frac{m}{km+i} \right)$$

$$\leq \prod_{i=0}^{m-2} \left(1 + \frac{m}{km} \right) = \left(1 + \frac{1}{k} \right)^{m-1},$$

hence $\binom{km+m-2}{m-1} \leq (4 \cdot \prod_{\ell=0}^{k-2} (1 + (1/\ell + 1)))^{m-1}$, and we choose k large enough (see below). For (large enough) n we let $m = (c_1 \log n)/k$; more exactly, the first integer is not below this number so

$$\log \binom{km+m-2}{m-1} \leq \log \left(4 \cdot \prod_{\ell=0}^{k-2} \left(1 + \frac{1}{\ell+1}\right)\right)^{m-1}$$
$$\leq (\log n) \cdot \frac{c_1}{k} \cdot \log \left(4 \cdot \prod_{\ell=0}^{k-2} \left(1 + \frac{1}{\ell+1}\right)\right) \leq \frac{1}{2} (\log n)$$

(the last inequality holds as k is large enough). Finally, let m_1^* be such a k. Alternatively, just repeat the proof of Ramsey's theorem.]

Let m_2^* be minimal such that $m_2^* \to (m_1^*)_2^2$. Let $c_2 < 1/m_2^*$ (be a positive real), let $c_3 \in (0, 1)_{\mathbb{R}}$ be such that $0 < c_3 < (1/m_2^*) - c_2$, let $c_4 \in \mathbb{R}^+$ be $4/c_3$ (even $(2+\varepsilon)/c_3$ suffices), and let $c_5 = (1-c_2-c_3)$ (it is >0). Finally, let $\varepsilon \in (0, 1)_{\mathbb{R}}$ be small enough.

Now suppose

 $(*)_0$ *n* is large enough, G is a graph with *n* nodes, and $I(G) < 2^{c_2 n}$.

¹ The log log *n* can be replaced by a constant computed from m_1^*, m_2^*, c_ℓ later.

We choose $A \subseteq V^G$ in the following random way: for each $x \in V^G$ we flip a coin with probability $c_3/\log n$, and let A be the set of $x \in V^G$ for which we succeed. For any $A \subseteq V^G$ let \approx_A be the following relation on V^G , $x \approx_A y$ iff $x, y \in V^G$ and $(\forall z \in A)[zE^G x \leftrightarrow zE^G y]$. Clearly, \approx_A is an equivalence relation, and $\approx'_A = \approx_A \upharpoonright (V^G \setminus A)$.

For distinct $x, y \in V^{\overline{G}}$ what is the probability that $x \approx_A y$? Let

$$Dif(x, y) =: \{ z: z \in V^G \text{ and } zE^G x \leftrightarrow \neg zE^G y \},\$$

and dif(x, y) = |Dif(x, y)|, so the probability of $x \approx_A y$ is

$$\left(1-\frac{c_3}{\log n}\right)^{\operatorname{dif}(x, y)} \sim e^{-c_3 \operatorname{dif}(x, y)/\log n}.$$

Hence the probability that for some $x \neq y$ in V^G satisfying dif $(x, y) \ge c_4(\log n)^2$ we have $x \approx_A y$ is at most

$$\binom{n}{2} e^{-c_3(c_4(\log n)^2)/\log n} \leq \binom{n}{2} e^{-4\log n} \leq 1/n^{0.5}$$

(remember $c_3c_4 = 4$ and $(4/\log e) \ge 2.5$). Hence for some set A of nodes of G we have

$$(*)_1 \quad A \subseteq V^G \text{ and } A \text{ has } \leq \frac{c_3}{\log n} \cdot n \text{ elements and } A \text{ is non-empty}$$

and

(*)₂ if
$$x \approx_A y$$
 then dif $(x, y) \leq c_4 (\log n)^2$.

Next,

 $\begin{aligned} (*)_3 \quad \ell =: |(V^G \setminus A) / \approx_A | \text{ (i.e. the number of equivalence classes of} \\ \approx'_A = \approx_A \upharpoonright (V^G \setminus A)) \text{ is } < (c_2 + c_3) \cdot n. \end{aligned}$

[Why? Let $C_1, ..., C_\ell$ be the \approx'_A -equivalence classes. For each $u \subseteq \{1, ..., \ell\}$ let $G_u = G \upharpoonright (A \cup \bigcup_{i \in u} C_i)$. So G_u is an induced subgraph of G and $(G_u, c)_{c \in A}$ for $u \subseteq \{1, ..., \ell\}$ are pairwise nonisomorphic structures, so

$$2^{\ell} = |\{u: u \subseteq \{1, ..., \ell\}\}| \leq |\{f: f \text{ a function from } A \text{ into } V^G\}| \times I(G)$$
$$\leq n^{|A|} \times I(G),$$

hence (first inequality by the hypothesis toward contradiction)

$$2^{c_2 n} > I(G) \ge 2^{\ell} \times n^{-|A|} \ge 2^{\ell} \cdot n^{-c_3 n/\log n} = 2^{\ell} \times 2^{-c_3 n}$$

and hence

$$c_2 n > \ell - c_3 n$$
 so $\ell < (c_2 + c_3)n$ and we have gotten $(*)_3$.]

Let $\{B_i: i < i^*\}$ be a maximal family such that:

- (a) each B_i is a subset of some \approx'_A -equivalence class
- (b) the B_i 's are pairwise disjoint
- (c) $|B_i| = m_1^*$
- (d) $G \upharpoonright B_i$ is a complete graph or a graph with no edges.

Now if $x \in V^G \setminus A$ then $(x/\approx'_A) \setminus \bigcup_{i < i^*} B_i$ has $\langle m_2^* \text{ elements } (\text{as } m_2^* \to (m_1^*)_2^2)$ by the choice of m_2^* and " $\langle B_i: i < i^* \rangle$ is maximal"). Hence

$$n = |V^{G}| = |A| + \left| \bigcup_{i < i^{*}} B_{i} \right| + \left| V^{G} \setminus A \setminus \bigcup_{i < i^{*}} B_{i} \right|$$

$$\leq c_{3} \frac{n}{\log n} + m_{1}^{*} \times i^{*} + |(V^{G} \setminus A)/\approx'_{A}| \times m_{2}^{*}$$

$$\leq c_{3} \frac{n}{\log n} + m_{1}^{*} \times i^{*} + m_{2}^{*}(c_{2} + c_{3})n$$

$$= c_{3} \frac{n}{\log n} + m_{1}^{*} \times i^{*} + (1 - m_{2}^{*}c_{5}) \cdot n$$

hence

$$(*)_4 \quad i^* \ge \frac{n}{m_1^*} \left(m_2^* c_5 - \frac{c_3}{\log n} \right).$$

For $i < i^*$ let

$$B_i = \{x_{i,0}, x_{i,2}, ..., x_{m_1^*-1}\},\$$

and let

$$u_i =: \{j < i^*: j \neq i \text{ and for some } \ell_1 \in \{1, ..., m_1^* - 1\} \text{ and} \\ \ell_2 \in \{0, ..., m_1^* - 1\} \text{ we have } x_{j, \ell_2} \in \text{Dif}(x_{i, 0}, x_{i, \ell_1})\}$$

Clearly

$$(*)_5 \quad |u_i| \leq m_1^*(m_1^* - 1) c_4(\log n)^2.$$

Next we can find W such that

(*)₆ (i) $W \subseteq \{0, ..., i^* - 1\}$ (ii) $|W| \ge i^* / (m_1^* (m_1^* - 1) c_4 (\log n)^2)$ (iii) if $i \ne j$ are members of W then $j \notin u_j$.

[Why? See de Bruijn and Erdős [BrEr]; however, we shall give a proof when we weaken the bound. First we weaken the demand to

(iii)'
$$i \in W$$
 and $j \in W$ and $i < j \Rightarrow j \notin u_i$.

We get this as follows: First we choose the *i*th member by induction. Next we find $W' \subseteq W$ that W' satisfies (iii); this is chosen similarly but the members are chosen from the top down (inside W) so the requirement on *i* is that $i \in W$ and $(\forall j, i < j \in W' \rightarrow i \notin u_j)$ so our situation is similar. So we have proved the existence, except that we get a somewhat weaker bound, which is immaterial here.]

Now for some $W' \subseteq W$,

(*)
$$W' \subseteq W, |W'| \ge \frac{1}{2}|W|$$
, and all the $G \upharpoonright B_i$ for $i \in W'$ are

complete graphs or all are independent sets.

By symmetry we may assume the former.

Let us sum up the relevant points:

(A) $W' \subseteq \{0, ..., i^* - 1\},$ $|W'| \ge ((m_2^* c_5 - (c_3/\log n)) \cdot n)/(2(m_1^*)^2 (m_1^* - 1) c_4(\log n)^2)$

(B) $G \upharpoonright B_i$ is a complete graph for $i \in W'$

(C) $B_i = \{x_{i,\ell}: \ell < m_1^*\}$ without repetition and $i_1, i_2 < i^*, \ell_1, \ell_2 < m_1^* \Rightarrow x_{i_1,\ell_1} E^G x_{i_2,\ell_2} \equiv x_{i_1,0} E^G x_{i_2,0}$.

But by the choice of m_1^* (and as *n* is large enough, |W'| is large enough) we know $|W'| \rightarrow ((c_1/m_1^*) \log n, (c_1/1) \log n)^2$.

We apply this to the graph $\{x_{i,0}: i \in W'\}$. So one of the following occurs:

(a) there is $W'' \subseteq W'$ such that $|W''| \ge (c_1/m_1^*) \log n$ and $\{x_{i,0} : i \in W''\}$ is a complete graph

or

(β) there is $W'' \subseteq W'$ such that $|W'| \ge c_1(\log n)$ and $\{x_{i,0} : i \in W''\}$ is a graph with no edges.

Now if possibility (β) holds, then $\{x_{i,0}: i \in W''\}$ is as required, and if possibility (α) holds then $\{x_{i,t}: i \in W'', t < m_1^*\}$ is as required (see (C) above).

ACKNOWLEDGMENTS

I thank Alice Leonhardt for the beautiful typing. I thank Andras Hajnal for telling me about the problem and Mariusz Rabus and Andres Villaveces for some corrections. This research was partially supported by the NSF, Publication Number 627.

REFERENCES

- [AlBI] N. Alon and B. Bollobas, Graphs with a small number of distinct induced subgraphs, *Discrete Math.* 75 (1989), 23–30.
- [AH] N. Alon and A. Hajnal, Ramsey graphs contains many distinct induced subgraphs, Graphs and Combin. 7 (1991), 1–6.
- [BrEr] G. de Bruijn and P. Erdős, A colour problem for infinite graphs and a problem in the theory of relation, *Akad. Amsterdam* **13** (1951), 371–373.
- [Er7] P. Erdős, Some remarks on the theory of graphs, Bull. Am. Math. Soc. 53 (1947), 292–294.
- [EH9] P. Erdős and A. Hajnal, On the number of distinct induced subgraphs of a graph, Discrete Math. 75 (1989), 145–154.
- [ErSz] P. Erdős and G. Szekeres, A combinatorial problem in geometry, 2 (1935), 463-470.