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Affirming a conjecture of Erdés and Rényi we prove that for any (real number)
¢; >0 for some ¢, >0, if a graph G has no ¢, (log n) nodes on which the graph is
complete or edgeless (i.e., G exemplifies |G| (¢, logn)3), then G has at least 2"
non-isomorphic (induced) subgraphs.  © 1998 Academic Press

0. INTRODUCTION

Erdés and Rényi [ ER] conjectured (letting /(G) denote the number of
(induced) subgraphs of G up to isomorphism and Rm(G) be the maximal
number of nodes on which G is complete or edgeless):

(%) for every ¢, >0 for some ¢, >0 for n large enough for every graph
G,, with n points,

® Rm(G,) <c,(logn)=1(G,) >2%".

They succeeded in proving a parallel theorem which replaces Rm(G) with
the bipartite version:

Bipartite(G) =: Max{k: there are disjoint sets 4,, 4, of k nodes of G,
such that (Vx, € 4,)(Vx, € 4,)({x,, x,} an edge) or
(Vx,€A,)(Vx,€ A5)({x,, x,} is not an edge)}.

It is well known that Rm(G,) > 3log n. On the other hand, Erdés [Er7]

proved that for every n for some graph G,, Rm(G,)<2logn. In his

construction G, is quite a random graph; it seems reasonable that any
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graph G, with small Rm(G,,) is of similar character and this is the rationale
of the conjecture.

Alon and Bollobas [ AIBI] and Erdés and Hajnal [ EH9] affirm a conjecture
of Hajnal:

(*) if Rm(G,) < (1 —é)n then I(G,)> Q(en?)

and Erdés and Hajnal [ EH9] also prove
. n Q(\/;)
() for any fixed k, if Rm(G),,) <% then I(G,) >n .

Alon and Hajnal [ AH] noted that those results give poor bounds for 1(G,,)
in the case Rm(G,,) is much smaller than a multiple of log n, and prove an
inequality weaker than the conjecture:

() I(G,)=2""""" when t=Rm(G,,)

so in particular if 7 > ¢ log n they obtained I(G,,) > 2"/e™ ™" ‘that is, the
constant ¢, in the conjecture is replaced by (log n)°'°¢'°¢" for some c.

<0.1) Notation. logn=1log,n. Let ¢ denote a positive real, and G, H
denote graphs, which are here finite, simple and undirected. V¢ is the set
of nodes of the graph G, and E€ is the set of edges of the graph G so G =
(V° E®) and EC is a symmetric, irreflexive relation on V°, ie. a set of
unordered pairs. Thus {x, y} € E®, xEy, and {x, y} an edge of G all have
the same meaning. H < G means that H is an induced subgraph of G, i.e.,
H=G?"! V" Let |X| be the number of elements of the set X.

(1) DErINITION. [(G) is the number of (induced) subgraphs of G up to
isomorphisms.

(2% THEOREM. For any ¢, > 0 for some c, > 0 we have ( for n large enough)
that if G is a graph with n edges and G has neither a complete subgraph with
> ¢, log n nodes nor a subgraph with no edges with > c, logn nodes, then
1(G)=2",

{3> Remarks. (1) Suppose n+(r,,r,) and m are given. Choose a
graph H on {0, ..,n—1} exemplifying n-»(ry, r,)* (i.e. with no complete
subgraphs with r; nodes and no independent set with r, nodes). Define
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the graph G with set of nodes V¢ = {0, .., mn— 1} and set of edges E¢ =
{miy+ ¢, mi,+/,} :{i,,i,} e E” and /1,/2<m} Clearly G has nm
nodes and it exemplifies mn - (r,, mr,). So I(G) < (m + 1)" < 2™ leealm+1) (g5
the isomorphism type of G’ = G is determined by {|G’ N [mi, mi + m)|:i<n)).
We conjecture that this is the worst case.

(2) Similarly, if n7f—>([’1])2; i.e., there is a graph with n nodes and
no disjoint 4,, 4, V°, |4,|=r,, |A,| =r, such that 4, xAZCEG or
(A, x A,) n E° = (&, then there is G exemplifying mn — ([’};Z:]) such that
I(G) <2n log(m+])

Proof. Let c;, a real >0, be given.

Let m;* be' such that for every n (large enough) (n/(log n)* log log n) —
(¢)logn, (¢,/m{)logn).

[ Why does it exist? By Erd6s and Szekeres [ ErSz] (" 772 7%) > (n,, n,)
and hence for any k letting n, = km, n, =m we have (*" " ~2) > (km, m)?,
now ("™ 2) 2% =Y and

(k+1)ym+m—=2\|/km+m—2\ "2 m
< m—1 >/< m—1 >_H<1+km+i>

m—1

enough (see below). For (large enough) n we let m = (¢, logn)/k; more
exactly, the first integer is not below this number so

km+m—2 k=2 1 m—1
1 <l 4. 14+——
°g< m—1 > °g< ﬂo<+/+1>>

I k=2 1 1
<(10gn)-;-log 4- 1] l+m E(logn)
/=0

hence (" )<(4-TI5Z3(1+(1//+1)))" ", and we choose k large

(the last inequality holds as k is large enough). Finally, let m{* be such
a k. Alternatively, just repeat the proof of Ramsey’s theorem. ]

Let m} be minimal such that m3 — (m})3. Let ¢, < 1/m¥ (be a positive
real), let c¢;€(0, 1)g be such that 0 <c;<(1/m¥)—c,, let c,eR™ be 4/c;
(even (2 + ¢)/c5 suffices), and let ¢s=(1—c,—c;) (it is >0). Finally, let
£€(0, 1)r be small enough.

Now suppose

(), nis large enough, G is a graph with n nodes, and I(G) < 2"

! The log log n can be replaced by a constant computed from mi, m¥, ¢, later.
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We choose 4 < V¢ in the following random way: for each x e V¢ we flip
a coin with probability c;/logn, and let A4 be the set of x e V“ for which
we succeed. For any 4= VY let &=, be the following relation on V¢,
xx,yiff x,yeV°and (Vze A)[zE®x < zE®y]. Clearly, ~, is an equiv-
alence relation, and &', = ~, [ (V°\4).

For distinct x, y e VV° what is the probability that x ~ , y? Let

Dif(x, y)=:{z:ze V9 and zE°x & —1zE},

and dif(x, y)=|Dif(x, y)|, so the probability of x~ , y is

c dif(x, »)
<1 3 > ~e G dif(x, y)/log n

_logn

Hence the probability that for some x# y in V' satisfying dif(x, y) >
c4(log n)* we have x~ , y is at most

<Z> 6703(<v4(10g n)?)/log n < <;> ef4logn < l/nO.S

(remember c;c, =4 and (4/log ¢) >2.5). Hence for some set A of nodes of
G we have

(¥), A< V%and 4 has < locg3 -n elements and A is non-empty
n
and
(%), if x~ 4y then dif(x, y) <c,(logn)
Next,

(%); ¢=:|(V9\4)/~ | (ie. the number of equivalence classes of

Ry=x, [ (VE\A))is <(cy+c¢3)-n

[Why? Let C,, ..., C, be the &/,-equivalence classes. For each u < {1, ..., /}
let G,=G(4AulJ;.,C;). So G, is an induced subgraph of G and
(G, €)ecq forucs{l, ../} are pairwise nonisomorphic structures, so

2 ={wuc{l,.,/}}|<|{f:f afunction from 4 into V°}| x I(G)

<n'x I(G),
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hence (first inequality by the hypothesis toward contradiction)
20> [(G) =2/ xn Ml =20 .p=anogn = 37 y g —esn
and hence
c,n>{ —c3n s0 £ <(c,+ c;)n and we have gotten (x);. ]

Let {B;:i<i*} be a maximal family such that:

a) each B, is a subset of some ~';-equivalence class

C

d

Now if xe V\4 then (x/~",)\U, -~ B; has <m¥ elements (as m3 — (m}*)
by the choice of m¥ and “(B;:i<i*) is maximal”). Hence

|B;| =mf

{B;

(a)

(b) the B,’s are pairwise disjoint

(c)

(d) G B;is a complete graph or a graph with no edges.

n=[V° =4+

U B,

i<i*

+ ‘ VG\A\ U B;

i<i*

n
log

<, n+m;"><i*+|(VG\A)/z’,1|><m§“

n .
Sey——F+mFExi*+mi(c,+c3)n
logn

=c +m¥xi*+(1—mZ*cs)-n
3logn 1 ( 2 5)

hence

(*)s i*>n:l;k<m;c5_locg3n>,
For i<i* let
B, ={X; 0, X2, xm;b]},
and let
u;=:{j<i* j#iand for some 7, €{l,..,mj—1} and
/,€40,...,mf —1} we have x, , € Dif(x; 4, x; ,)}

Clearly

()5 |u;l <mi(miF—1) cu(logn)®.

2
2
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Next we can find W such that

(x)s (1) W<{0,..ix—1}
(i) [W]=i*/(miF(m§—1) cy(logn)?)

(iii) if 7 # j are members of W then j ¢ u;.

[ Why? See de Bruijn and Erdés [ BrEr]; however, we shall give a proof
when we weaken the bound. First we weaken the demand to

(1) ieWand je Wand i< j=j¢u,.

We get this as follows: First we choose the ith member by induction.
Next we find W’ < W that W’ satisfies (iii); this is chosen similarly but the
members are chosen from the top down (inside W) so the requirement on
iis that ie W and (Vj, i< je W' — i¢u;) so our situation is similar. So we
have proved the existence, except that we get a somewhat weaker bound,
which is immaterial here. ]

Now for some W' = W,

(x) W W, |W|=%W|, and all the G | B, for ie W' are

complete graphs or all are independent sets.

By symmetry we may assume the former.
Let us sum up the relevant points:
(A) w<{0,..,i*—1}, |W'| = ((mF es—(cs/log n)) -n)/(2(mF)?
(mf —1) cu(log n)?)
(B) G B,is a complete graph for ie W’
(C) B,={x;,:/<m}} without repetition and i, i, <i* /|, {,<
m¥=x; , E%; , =x; oE%%,; q.

i £y iy,

But by the choice of mi* (and as n is large enough, |W’| is large enough)
we know |W'| - ((¢;/m}) logn, (¢,/1) log n).
We apply this to the graph {x, ,: i€ W'}. So one of the following occurs:

(a) thereis W” <= W’ such that |[W"| = (c,/mi)lognand {x, ,:ie W"}
is a complete graph

or

(p) there is W” < W’ such that |W'| > ¢ (logn) and {x, ,:ie W"} is
a graph with no edges.



Sh:627
NOTE 185

Now if possibility () holds, then {x; ,:ie W"} is as required, and if
possibility («) holds then {x,,:ie W, t<mf} is as required (see (C)
above).
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