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Introduction 

We have been interested in classifying first order theories, not in the sense of finite 

group theory, i.e. explicit list of families but like biology - find main taxonomies, dividing 

lines. See [Sh 200]. 

Some years ago (1982) we found what we wanted (for countable theories). We try here 

to develop the case of a universal class (see below). In fact we develop it less concretely, 

abstractly, both per se and as we shall need eventually to define inductively a sequence of 

such frameworks. For technical reasons only the first four chapters appear here. 

Definition: 

i) Let "~ be a vocabulary (= signature). K will denote a class of '~(K)-models. 

ii) K is universal if K is closed under submodels and increasing chains and isomor- 

phisms. 

This research was partially supported by the NSERC, NSF and BSF and the Israeli Foun- 

dation for Basic Research administered by the Israel Academy of Science. 
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Note: i) Not every elementary class is universal but many universal classes are not 

elementary, e.g. the locally finite groups. 

ii) If K is universal, "c(M) = z(K) then M e K if and only if every finitely generated 

submodel of M belongs to K (see II 2.2B). 

iii) Remember in this context the following theorem of Tarski: for a finite relational 

vocabulary, K is universal i f  and only i f K  is the class of  models of  a universal first order theory. 

General Strategy 

We shall consider various dividing lines, i.e. properties. On one side we shall prove a 

"non-structure results." Typically we can interpret (essentially)arbitrary linear orders I or 

I = (S ,w -~) with °~>~,~S c_°~-~, inside models in K. The models which we exhibit are 

essentially generated by such I (e.g. Ehrenfeucht Mostowski models). 

In this case we get non-structure results, then we assume the negation and continue our 

search. The point is that the negation says much, it is a property which implies at least some 

structure. Sometimes this knowledge is instrumental in proving non-structure results for pro- 

perties which are "buried deeper". Later we shall have cases where we get weak non structure 

results; seemingly as for universal class there are more possibilities. This was a successful stra- 

tegy for countable first order r (see [Sh 200], [Sh A,3]) and is being written for classification 

over a predicate. (See [Sh 321], partial results appear in [Pi Sh 130], [Sh 234]). On non elemen- 

tary classes see [Sh 48], [Sh 87], and in an abstract setting [Sh 88]. Those papers deal with 

categoricity. From the other end, some papers deal with properties which are sufficient for non- 

structure results (and hopefully their complement will be helpful). See on infinitary order 

property [Sh 16]. For much better results, see Grossberg and Shelah: two papers on order 

property [GrSh 222], [GrSh 259], one paper on unsuperstability ((c0> )% %,)) [GrSh 2381. (On the 

more general situation {M : M ~ V}, V • L~.÷ o~ see [Sh 285]). 

This work was done on 8-12/85 and lectured on at Rutgers. 
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We thank John Baldwin (and the reader should more so) for many corrections, 

filling in more details writing up some proofs and improvements of the presentation. We also 

thank the participants of the logic seminar in Rutgers fall 1985 for their attentiveness, Leo Har- 

rington for hearing this in first verbal versions and J. Kupplevitch for some corrections. Last but 

no least I thank, Alice Leonhardt for typing some preliminary versions and Danit Sharon for 

typing and retyping this till perfection (which I cannot claim for my work). 

Notation: 

Set Theory 

K,I-t,)¢, K denote cardinals (usually in finite). 

0¢, 9, 7,i,J, 4, ~ denote ordinals. 

5 denotes a limit ordinal. 

H (K) denote the family of  sets with transitive closure of cardinality < ~.. 

Model Theory 

x denotes a vocabulary, i.e. set of predicates and function symbols, each with a desig- 

nated fixed (finite) arity. 

M a model, x(M) its vocabulary, for x = x(M) we say M is a x-model, IMI the universe 

of M. 

class. 

K a class of models all with the same vocabulary x(K), for "c = x(K) we say K is a x- 

~',b,~ denote sequences of  elements from a model, not necessarily finite. The length of a 

sequence ~ is denoted by eg (a). 

/2 a logic, i.e. for every vocabulary x, £,(x) is a set of formulas (p(x-) not necessarily 

first order. (2 is a possibly infinite sequence of variables including all free variables of q)) and 

we assume always [Xl _cx2 ~ f_.v(Xl)~ f_.,(x2)], [(pe f.~(Xl) and (pc L(x2) implies 

q) ~ £('Cl ("3 x2)]; if M is a z-model, ~ e tg(xD IMI, the truth value of  "M k q)[c-]" is defined, 

and depends only on M r x if (p e f_,(x). 
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(p,~g,0 denote formulas, on ¢p(x-) see above; q0,q0(Y),(p(2;y) may be treated as objects of a 

different kind (see below). We sometimes separate "type", "free" variables from "parameter 

variables". L~.K is the set of formulas we get from the atomic formulas by closing under --%0 ( 

negation) /x ¢Pi (where c~ < ~., conjunction) and (3x0 . . . . .  xi,  • " • )j<aq~ (where a < ~:, existen- 
j<o~ 

tial quantification), but for cp(Y) e LX,~(z)  we demand eg(Y) < 9~. (So Lx,~ is a logic, Lo~,~ first 

order logic). 

A class K of z-models is a PC;~,~ if for some vocabulary 'q ,  z c_ zl,  "ql -< )~ and 

gt ~ Lx,~t('~l) we have K = {M t z : M ~ gt}. P C ( T 1 , T )  is the class of z(T)-reducts of models 

ofT1.  

Lastly a class K of models is PCT~.,~ if for some Zl, z ~ z 1, Ix 1 I = ~, first theory 

T1 ~Lc0,0~(Xl) and set F of )~ (<¢o)-types in L~o,o(Zl), K = {M r x : M a model o f t  1 omitting 

everyp ~ F}. 

Note: for )~ > ~: a formula of Lz.r(z) has < 2~ free variables. 

• ,W,® will denote sets of formulas of the form q)(E,y) or q~(2). If q~(2) ~ • this means 

q0(Z1 ,E2) e ~ when E = E1 ^E2. These formulas may have parameters. 

tp~(~;y)(E,A,M) = {¢p(~;b) : b e tg(Y)A, M I= q0[~;b]} where ¢p(E;y) e £(z(M))  for some £ ,  

andA ~ IMI. 

Notation for such types is needed when a monster model (C) is absent (or still absent) (oth- 

erwise we can omit M). We say p = tp,~(~;y)('d,A,M) is a type (or q~(2;y)-type) inside M. Simi- 

larly for the following variants. 
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tp~(~)(-d, A , M )  = tp~o(2,;~)(~,A,M ) where x = x l  ^x2 ,  eg(5) = e g ( x l )  

tp {~}(a-, A , M )  = tp~(d, a , m )  

tpo(~,  A , M )  = t . )  tpe(~,  A , M )  
q~e qb 

S ~ ( A , M )  = {tpc~(-d,a,m) : a • a t m l }  

we can replace A by J ,  a family of  sequences, e.g. 

tp~(~;y)(-d,J,M) = {q0(2-;b-1 . . . . .  bn): n < 03, M ~ (p[a, b i  . . . . .  bn], b t  • J for e = 1,n} or by a 

set of  formulas with parameters  e.g. 

tp~(~;y)(~,O,M) = {~p(2-;c) : M ~ (p(a;c),(p(x;c-) • O} 

W e  then say "type over  0 "  or "type over  J".  

M <~ N m e a n s  that for q0(2) • q) and ~ • tg(~) IMt :  

[M ~ q)[a] if  and only i f N  ~ q0[a] ] 

Z~,~(dP) is the set of formulas of  the form 

where Yi c_ fi "" (x  o . . . . .  x i ,  • • • )i< a ,  I e g  (y~ I < ~:, Cpa ~ a )  • ~ o r  ~ q ) a  ( Y a )  • (I) for e a c h  0~. S o  

Z~,~((I)) incIudes every q~c~) • qb, for which I eg(y) l < ~:. 

p is a type inside M i f p  is a set of  "c(M)-formulas with parameters  f rom M. 
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Chapter I: Stability Theory for a Model 

In [Sh A1, Ch. I, §2] little stability theory was developed for an arbitrary model; quite 

naturally as this was peripheral there. More attention was given to non-structure theorems for 

infinitary logics (see [Sh 16, §2] and Grossberg and Shelah [GrSh 222]. [GrSh 238], [GrSh 259] 

and applications, see Macintyre and Shelah [MaSh 55], Grossberg and Shelah [GrSh 174]). 

However, in our present framework it is important to get results on infinitary languages. As 

we have fewer transfer theorems, it is natural to concentrate on one model. 

Surprisingly we have something to say, some of it was explicit or implicit in [Sh A1, ch. I, 

§2]: the theorems that non stability implies order (i.e. existence of quite long set of sequences, 

linearly order by a formula), that non order implies the existence of indiscemibles and (the main 

novelty) that we can average types, all have reasonable analogs. 

Lastly we prove (in section 5) that in order to get just indiscemible sets, less "non-order" is 

needed, and this gives new information even on first order theories. E.g. i f T  is first order, there 

is no formula (p(x,y,z--) such that some model M of T has (q~(x,y,z-'), R0)-order property (note x ,y  

are not sequences), M a model of T, ai ~ M for i < (2;~). +, ~, > I TI, then for some w ~ (2~') ÷, 

[ w I > ~, {(1 i : i ~ W} is an indiscemible set in M. 
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§1 The order property revisited 

The main results of this section are Theorem 1.2 and 1.10. We begin by recounting the 

appropriate definition of the order property in this context. We note in Theorem 1.2 (proved in 

Chapter III.3) that this relevant order property implies the existence of  many non isomorphic 

models. 

These notions have two parameters: a formula and a cardinal. As we no longer are attached 

to first order logic, the formula (or set of formulas) as a parameter is even more important than 

in [Sh A l l .  As we assume generally no closure properties for the set of  formulas, we have to be 

more explicit in asserting "there is a formula" (Note that we may have to consider several logics, 

simultaneously, as in [Sh 285], and that usually non-first order logics have weaker closure pro- 

perties). 

A new parameter is a cardinal (the length of the order). Its presence is desirable as we no 

longer assume compactness, so not all infinite cardinals give equivalent definitions. 

Then we describe the notions of  "indiscernible" and "splitting" appropriate for this context. 

In Theorem 1.7 we show that either for each type we can find a "base" over which it does not 

split or the order property holds. In Theorem 1.11 we show that for appropriate ~t if the number 

of • types over a set of power ~t which are realized in M is not bounded by g then there is a ~* 

(closely associated with ~ )  such that M has the (~*, ~:+)-order property. 

1.1 Definition: 

1) M has the (q~(E;y;z-),p.)-order property if  there are sequences c, ac~,b-c~ from M, such 

that for c~ < p.: 

M ~ q~[a-a,bB,c-] if  and only if  o~ < [3. 
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We extend this notion to sets (or classes) of  formulas and classes of  models as follows: 

2) M has the (~,t.t)-order property if  for some tp(~;~;z-) ~ qb, M has the (tp(2;y;z-),g)- 

order property. 

3) K has the (~b,g)-order property if for some M e K, M has the (qb, g)-order property. 

4) M [or K] has the (q~,<g)-order p roper ty / fM [or K] has the (~ ,gl ) -order  property for 

every gl < g. 

5) replacing "order" by "nonorder" is just the negation. 

6) M has the (+q0,g)-order property if it has the (%g)-order property or the (--,%g)-order 

property; similarly for the other definitions. 

7) Let "(q~(2,y-),kt)-order" means "(q~(E;~;z-),g)-order for ?- the empty sequence, and 

((p(~),~t)-order means (tp(~l;~2;~3),lx)-order, x = xl  ^x2  ^x3 for some xl  ,xa,x3. 

1.1A Remark :  Usually • ~ L..,o~, bat sometimes q) ~ A(L~,co) (i.e. every formula and 

its negation is a pseudo elementary class). 

On the other hand for universal K (see §2) we may well use • = set of  quantifier free finite 

formulas. 

Note that if M has the ((p(E;y;z-),kt)-order property, then it has the (q~(E;yAz--),g)- order pro- 

perty. 

We shall prove in Chapter III (and in [Sh 220]) that order implies complexity: 

1.2 Theorem: 
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1) If K is definable by a sentence in A(L~.*.o),  and it has the (¢p(E;y-),<~)-order pro- 

perty, cp(2";y-) ~ A(L~.*,0~) then: 

(a) for every IX > 9~ + I tg(E~j) I + the class K has 2 g non isomorphic members of 

power It. [see III 3.4 using III 1.11(3)] 

(b) if cf(g) > ~,, g is regular or strong limit, then K has 2 g nonisomorphic members 

of power IX which are £ , .  g-equivalent. [by [Sh 220], §2 (for IX regular), §3 (for ~t strong limit) 

using I11 1.11(3)1. 

(c) if IX > ~. is regular, Ix = IXtg(~"Y-) then K has 2 ~t members of power IX, no one 

embeddable into another by an embedding preserving + 9(Y,y). 

2) If K is definable by a sentence from A ( £ ~ ' , 0 )  and it has the (q~(Y;y-),?~)-order pro- 

perty, cp(Y,y-) e /]g+,o then : [by [GrSh 222, 2541) 

a) if ~, > '~8(g+K} then K has the (qg(Y;y-), <oo)-order property. 

b) if )~ > "~8(g+~) then for some q~'(E';y') e f~K*.co, K has the (q¢(E',y'), <oo)-order 

property (and cp" inherits all relevant properties of q0. More exactly, [letting H (~,) denote the fam- 

ily of sets hereditarily of cardinality <)~] for some )~,q0 e H @), and for some elementary submo- 

del N of H @) of cardinality ~:, ~p" is the image of ~ under the Mostowski Collapse of N). 

c) if )~ > '~8,~ (~t, •) then (see definition in [GrSh222]) b)'s conclusion holds. 

3) Similar conclusions hold for cp(~;y;z-). 

Remark:  1) For a proof of more than 1.2(1) see Ch. III, §3 here. 

2) On the subject and proof of 1.2(2), 1.2(3) see Shelah [Sh 16] and Grossberg and She- 

lah [GrSh 222,259]. Remember that '~8(~t} is Morley's number (See [Sh,VII,§5]). The definition 

of bounds on 8wo(ix,~:) are of Grossberg and Shelah [GrSh 222,257]. 

3) We do not try to get the optimal results, just previous proofs obviously give. E.g. we 

ignore the slightly stronger versions we can get by replacing g by a limit cardinal (regular or use 

sequences of A's). 
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1) (a't : t E I}, where I is a linear order d t e M, is a ( ~ , n ) - i n d i s c e r n i b l e  s e q u e n c e  ins ide  

M o v e r  A if: for all t l  < • • • <tn ~ I ,  at, ^ "  " "^-dr1 realizes the same ~ - type  inside M over A. 

2) Writ ing • instead (q~,n) means "for all n < co". If  we omit A we means 

A = e m p t y  11. 

1.3A Note: The sequences may have infinite length but n < m. I.e. we use only finitely 

many  sequences at a time. This should not be surprising, as ~. ~ (~t)~ is much more difficult to 

have than )~ --~ (g)~o~. 

1.4 Defini t ion:  /-d~ : t e /} is a (qb,n)-indiscernible set inside M (over A) if for all dis- 

tinct t 1 . . . . .  tn ~ I 

[at.  A A ~t I ] realizes the same ~- type  in M (over A). 

We define here the notion "p (qb,~P)-splits over A" (inside M). This says that in some weak 

sense, p r • is definable over A. More specifically the 'ff'-type of the parameters over A, separate 

between the b such that q~(E,b) ~ p and the b- such that ~ ( Y , b - )  ~ p. In Definition 1.5(2) we 

replace ~P, and A by a collection of formulas O. 

1.5 Defini t ion:  

1) A type p = p(x-) inside M, (qb,~F)- sp l i t s  over A if  there are b-,g ~ M, and q~(2-;~) e qb 

such that: 

i) tp(2-,b),-%9(x,c) ~ p 
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ii) In appropriate sense, b and ~ realize the same U-type over A inside M; more 

exactly : for ~(Y;~;z-) e W, (tg(b) = eg(?)  = eg(y-)) and ?" ~ tgff)A, a-7~ tg(E)A, M ~ ~t[a',b,e-] 

if and only i fM N ~t[a',c-,g] 

2) A type p = p (E) inside M, (~,W)-split over ® (O consisting of U-formulas with 

parameters from M) if there are b,~ e M of equal length and cp(E;y-) a ~ such that: 

i) ~p(E;b-),~q0(Y,~-) ~ p, 

ii) if ~(~;y,z-) ~ W, tg(y) = tg(~) = eg(-b) and ~7, ~ ~ M, ~t(aT, y_e -)  ~ 0 then 

M ~ ~t[a';b,e-] if and only if M ~ ~g[a';c_eT. 

3) We define "p U-split over •" similarly, omitting "~p(Y;y) E ~".  

1.5A Remark:  Clearly 1.5(1) is an instance of 1.5(2). 

1.6 Fact: 

1) If p = p(x) is a type inside M, which (~,W)-splits over A and p c q(x), with q (x(x(~ a 

type inside M, • _c ~1,  W1 c_ W then q (E) (¢b 1 ,W 1)-split over A. 

2) Suppose for e = 1,2, pt(E) a type inside M, which does not (~,W)-split over (9,0 a 

set of  formulas over A, P t ~ S~, (~) (C,M), and A ~ B ~ C ~ I MI,  and each p t is a complete 

qb-type over C. If for every b ~  C there is bT~ B such that for every 

cp(a,y,~) e O M ~ ~p[a,b,e-] - qo[a, bT, e -]  provided that tg('b) = tg(b') = tg(y-) then 

Pl  rB  = p 2  r B i m p l i e s p l  =p2-  

3) Suppose p(x) is a type inside M, A ~ M, O = {~t(~;y,~/) : b-,a ~ A, lg(~;y,z-) ~ W}. 

Then." p(E) (~,W)-split over A if and only ifp(E) (~,W)-split over ®. 

4) I fA c B  c IMI, then {p ~ S~(B,M) :p does not (~,W)-split over 0} has cardinality 
< 2(2 '0' +IdOl) 
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5) I fA  c_M, ISg(A,M)I  <II{IS~(g;D(A,M)I : eg(2) = ct, q0(x;y-) e ¢}. 

1.6A Remark :  We can systematically replace sets of  elements by sets of formulas. 

1.7 The non-splitting/order dichotomy theorem: 

Suppose M <~.A{~(~;y-)))N, 

¢p(~;y-) a x(N)-formula, eg (2-) < ~g@) _< X and ~t (~;y l~2)  ~I[¢p(Y;yl) -- ¢P(x;Y2)]. then (i) or (ii) 

(or both) hold where: 

(i) for every -de INi ,  leg(-d)l _<~: for some O~{~p~ ;y - ) : - de  IM}, IOt <% and 

tpq~(~;y)~, I MI ,N)  does not (q~(Y;y-), ¢p(Y;y-))-split over O. 

(ii) N has the (~,%+)-order property (in fact, exemplified by sequences from M). 

1.7A Fact: Note that (just combining definitions) M <~.A{~))N means (when for simpli- 

city % ~ = % ) : M < o N  and for evet:y -de* :N  and A ~ IMI,  such that IAI <% there is 

-d" e ~ IMI realizing tpe,(-d,A,M). 

I.TB Remark :  In 1.7 we contrast (q~(2;~),cp(~;y))-splitfing with the (+q~(Y;y),X+)-order 

property where % = eg~--), (and see 1.8 below). This X is the crucial parameter because it 

governs our ability to continue to choose ai,b-i. 

Proofi Assume tp~(~;y)(-d,M,N) contradicts (i). We shall prove (ii). We define by induc- 

tion on i, ai,bi,-di in M with eg(-ii) = egO?), eg(bi) = tg(-di) = eg(Y); such that: 

a) N W [ ~ ( ~ ; ~ )  - -.~(F;b~)] 

b) for j < i, N ~ ~(cj,-di) =- ¢p(cj,bi) 
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c) ?'i realizes {(p(2,~j), ~(p('Z,-bj) : j < i} inside N. 

Note: (a) and (b) say exactly: (p(Y,y), ai,-bi exemplify tp,~(z;y-)(g,M), ((p(Y;y-), qo(Y;y))- 

split over {(p(dj;y-) : j < i}. Hence for i < X + if -@-bj,ff) (j < i) are defined, we can define ai,-bi; 

then using M <N,,(to)N we can define ci- 

Having defined all "dj,-bj,-d i (for j < Z+), clearly N ~ (p(~c~,b-~) - (p(~c~,~[~) if and only if 

ot < 13. So {~c~ : a < Z+}, {b-l~ ̂  at3 : [3 < Z ÷} exemplify (ii). 

1.8 Observation: Suppose (p,~ are as in 1.7, and N has the (V, gl)-order property, 

gl ---) (g2) 2. Then N has the (+(p(~;y),l.t2)-order property. 

Proof: Immediate. 

1.8A Remark :  Using this, and only (_+(p(2;~),X)-order properties, the formulation of 

theorems in this section becomes nicer. I.e. we lose some sharpness in cardinality bounds, but 

we use only +(p-order and (p-unstability properties. 

We remarked above that for non first order logics we must be careful about closure proper- 

ties of  sets of  formulas. The following notation permit us to take this care. 

1.8B Remark: 1) Theorem 1.7 has an obvious version for ( ~ , ~ ) -  splitting and the 

(~,X+)-order property. To formulate it one must consider the cardinality of ~ ,  (use 1.6(5)). 

2) We could have replaced Z ÷ by a limit cardinal (sometimes of large cofinality or regu- 

lar and/or > uncountable). 

1.9 Definition: q~cn = {_~(p : (p e qsJ 
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f]fpes = {~(E;Yl,Y2) : ~(Y;y],y2) =~[q~(E;Yl) -= cp(E;y2)] 

where qofY;y-) ~ ~} 

, ~  = ((~),)~-~ 

f~eb = ¢~es ~ )  ~i)rs 

If  Xl . . . . .  x t ~ {cn, es, r, rs,eb, i}, ~x~ . . . . .  x~ 
t = k . ) ~  x' .  

m =  1 

The next theorem connects non order and stability. 

1.10 The  Stability Theorem: Suppose M has the (~es,x+)-nonorder property, 

I.t=l.t ~ + 2  2~, I~1 _<~, [cp(x(x(x(~ ~ I~g(2-)l _<~]. Then for A ~ M ,  IAI _<~t implies 

S~ (A,M) = {tp ~ (E,A,M) : ~ ~ I M I K} has power < It. 

Proof: There is M] ,  A c_M1 c M, t M l l  Nit  so that M 1 <~.~(cI,)M. Without loss of 

generality replace A by M 1 and assume • is {~p(E;y-)} (by 1.6(5)). Now (ii) (of Th. 1.7) fails 

hence (i) (of Th. 1.7) holds. So every p=tpe~(E, M 1 , M ) ~  S~(M] ,M)  does not 

(cp(Y;y),cp(Y;y))-split over some O p c  {q~(~';y) : ~-' ~ IMI,  eg(-~') = tg(E)} which has cardinality 

< X. There are at most IIIM1 III z < g such sets ®p. So if the conclusion fails for some such 

®;IO1_<~ and I{p~  S ~ , ( M 1 , M ) : ® p = ® } I  is >i t .  Hence { p e  S ~ ( M 1 , M ) : p  does not 

(~,~)-spl i t  over O} has power > It. But it has cardinality < 2 2X (by 1. 6(4)) (we just have to 

ctg(y-) (B decide for p, for each q (37) ~ ov  , ) (where ~(~,2) = q~(Y,y)) whether to decide for p, for 

each q f f ) ~  S~(Y)(B) (where ~ , Y ) =  (p(~,y)) whether [ ~ q [ b ] ,  b ~ m l  ~ ( p ( ~ , b ) E  p]).  

Thus, by the choice of It we finish. 

1.11 Conclusion: Suppose M has the (+%X+)-nonorder property p. = g2~+ "~3(X), 

I • I < 2 z, [q~(~) ~ ~ ~ ?g (x) < X]. Then for A ~ M, I A I < g implies S~ (A,M) has cardinality 
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Proof; By 1.10 and 1.8. 

1.12 Exercise:  i ) I S ~ ( A , M ) I  < IS~(A,M)I fo rx  = cn, es, i. 

2) The ({cp(~;y)}r,~,)-order property is equivalent to the (--,(p(~,y), ~,)-order property. 

§2 Convergent Indiscernible Sets 

2.1 Definition: {'d t : t ~ I} is (~,Z)-convergent inside M if  for every c ~ M (of suitable 

length), for all but < Z members t ~ I tP~,(at ^ ~ , ~ , M )  (~- type of  ~ AF t inside M) is constant 

(in particular, all Et have the same length). We also demand, of  course I I 1 > Z- 

2.1A Remark :  In the first order case we were able to show that if T is stable and I is an 

infinite set of  indiscernible then I admits an average. Here, we do not know this. Fortunately we 

have a reasonable replacement: we show that if M does not have the (~bs,Z+)-order property 

then each sufficiently long indiscernible sequence from M contains a (~P,X÷) - convergent subse- 

quence. Originally in the first order case we were interested in existence of indiscernible sets, 

but in fact we use quite extensively their being convergent. So we will be more interested in 

convergent sets here. 

2.1B Remark :  If  ~b is closed enough for every (qb, Z)- convergent I, I > Z, ~ regular, 

I (b I < Z, A ~ M, I A I < Z there is J _c I, I J I = 11 I, J is gp-indiscernible set over A. (Choose 

members of  J one by one, see 3.5(2) below). 

2.1C Remark :  If I is (q~i,)~)-convergent inside M for i < o~, and c f x  > Iccl then I is 

(K.jq~i,X)-convergent inside M. Also obvious monotonicity holds, and (qb, Z)-convergence 
i<o~ 
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2.1D Remark :  We can define something similar to 2.1 for sequences ( so we have that 

tp~,(EtA3), divide I into < Z convex subsets); but no need arises. 

2.2 Definition: For I, (~,Z)-convergent inside M, and A ~ IMI,  define 

Avo(I,A,M) = {(p(~,c) : ~  A, tp(E,~) ~ • such that for at least I II  sequences 

~ I ,M ~ ~p(~,c-)}. Of course all members of I have the same length. 

Note that the definition of the average does not depend on 3(. 

2.2A Fact; If I is (~,Z)-convergent inside M, A c_ M, [E ~ I ~ eg(~) = tx] then 

Av(I,A,M) ~ S~(A,M). 

Proof." By the assumption on I, if 9(~;y) e ~ ,  ~ ~ A, exactly one of cp(~;c-), ~cp(~;~) 

belongs to Av ~ (I,A,M). 

2.3 The  set existence theorem: 

Suppose M has the (~bX,Z+)-nonorder property, la = p z + 2 2x, I ~1 _< Z- 

1) Let I be a family of (z-sequences from M, ,:z < • ( < )C) and III = ~t+; then there is 

J c I such that; 

i) IJI = p.+ 

ii) J is (qb, Z+)-convergent. 
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2) If  I = {-fret : ot < g+}, then there is a closed unbounded C c_ It+, and a function h on 

It+ which is regressive (i.e. h(~)  < 1+o0 such that for every i < It+, Ji = {aet : ot ~ C,h(~)  = i, 

cf(oc) > 7,}, if not emptyl ,  is (~,7(+)-convergent. 

3) If  we replace "1 ~1 < )( '  by "~t 14'1 = p.", we still get a (q~,Z + + I ~1 +)-convergent J. 

Proof :  Let I = {'fret : cc < kt+}. Clearly it suffices to prove (2), hence (by Fodor lemma) 

w.l.o.g, q~ = {(p(-2;y)}. Let ~ = ~(f,x-) ~Iq~(y;y). We define by induction on ct < It+ a submodel 

Met of M such that: 

(a) Met is increasing continuously (in tx), ~et e Met+l. 

(b) Every p e S~ g(~) ( M s , M )  k.) S ~  (y) (Met ,M)  is realized in Met+:. 

This is possible - for (b) use 1.10. Now for every c( < It+, if c lo t  > X then (by (a), (b) and 

1.7A,) M s  <z~.x(q0 ) N. So by 1.7 there is ®e ~ {q0(d,Y) : ~  ~ IMet I, #g(2-) = #g(~)} of cardinal- 

ity < X such that t p ~ ( - d e , M a , M  ) does not (q0(Y;y),q~(Y;;))- split over ®e. As cf(oO > ?~, there 

is h0(o 0 < ot such that ®e c {~@-,y) : c e Mho(et) }. Now ( by straightforward coding) for some 

closed unbounded subset C of  It + and regressive h i ,  for c~ e C, cfo~ > )C, tPq0(aet,Mh0(et)+l ,M) 

is determined by h 1 (c~), and also h0(o0 is determined by h 1 (a). W.l.o.g. for c~ ~ C, if cf(o~) > Z 

then {8 : h : (8) = h 1 ((x), c f  ~ > 7,} is a stationary subset of  It+. 

Now suppose S _c {5 e C : cf(5) > z } ,S  ~ empty 11 and h i is constant on S. We shall 

prove 

(*) {-det : c~ ~ S} is ~p(Y,y)-convergent. 

It is enough for the theorem to prove the claim 2.4 before [just define by induction on i < Ix +, 

o~ 0 = O, ~i = Min (S -c t i ) ,  oq+l = Min(S-(~Ji+ l))  (so oq+ 1 = ~i+1), o~S = k...)ozi, M' i  = Me~, 
i<g 

a ' i  = a-I~i, and apply 2.4 to M'i,-a'i(i < It+))l 

2.4 Cla im:  Suppose 
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b) M has ({(p(Y,y)}es,z+)-non-order property 

C) Mi,i < g+ is increasing M i C M. 

d) -ai • M i +1, Mi +1 <zx.z(~p) M 

e) V(y,E) = qKE, y) 

f) every p • S ~ y - ) ) ( M i , M  ) is realized in Mi+ 1 and does not (~,gt)-split over some 

0 c {(p(-x;b) :b • Mi} of cardinality < X. 

g) IIIMi III ~ gt 

h) tp~(-di,Mi) does not (%q0)-split over 0 where 

0 c_ {q~(-d,y) : ~ • Mo} 

i) tp~(ai,Mo) is constant 

and 

j) every p • S ~  (y) (B,M) U S t  g(f) (B,M) is realized in M o. 

Then {'ai : i <~t +} is ({q0},Z+)-convergent. 

o r  

Proof  of  2.4: Let g e M, Cg(~) = eg(y). We want to prove that 

I{i < g +  : M  1= q)[ai,c]} I _<)~ 

I{i <I t+  : M  N-~q0[~i,;~} t <% 

LetM~: = t..) Mi 
i< l.t + 
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2.4A Fact :  There are sets of elements A and sets of ordinals E such that 

i ) A c _ M ~ t ÷ , E ~ t  ++ 1, and IAI <X,  IEI -<X 

i i ) ( a ) i + l e E ~ i e  E 

(b) if  5 • E and cf 8 < X then 5 = sup(E ('~ 5) 

iii) if g • E and cf5  > X then t p ~ , M ~ , M )  does not (%q0)-split over A ('3 M~ and 

A ('3 M~ ~ Msup(E(-3~ ) 

(iv) ~t + • E. 

Proof  of  2.4A: To see this, define by induction En,An for n < co, increasing as follows: 

1) EO = {~+} 

2) i +  1 •  E n - ' > i •  En+l 

3) 5 •  E n a n d c f S < - X ~ 5 =  sup(E,+l (-~5) 

4) 5 e E n and cf5 > X ~ tPv(-d,M~,M) does not (~ ,~)-spl i t  over An+l ~ M~ 

5) An ('~ (Mi +l -Mi)  ¢ 0 ~ i, i + 1 e An +1- 

5) A n ~ An +1 

7) En c En +1 

8) IEnl + IAnl ~X 

For n = 0 use 1). For n+ 1, 1)-7) tell you to throw in Z sets, each of power < )~. Take the union; 

for 4) use theorem 1.7. Now k.) En, k.) An are as required in Fact 2.4A. 
n<C.D n < g D  
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Continuation of the Proof  of 2.4: Let ci ~ Mi +1 realize 

tP v(-c, M i U -ai,M ) 

Now E divides (~t + + 1)-E naturally into < ~ intervals. (For (z e E, 

IcL ~=I {i < P.+ : (z = Min{ j  : i < j e E} ). We first show that "M ~ ¢P(ai,~" has truth value con- 

stant on each interval, then that all intervals give the same answer. Note that l a  ;e O implies that 

c¢ is a limit ordinal of cofinality greater than Z. 

First Part: 

Let51 e E a n d c f 5 1  > ~, 50 = sup(E ~ 51). So15 x = {i : 50 < i  < 51} 

Remember 

(A) tpv(-d, Ms~ ,M) does not (~g,W)- split overA (-3 MS~. 

(B) A ("~ M~ ~MSo 

(C) tpq~(-di,Mi,M) is increasing in i, hence 

(D) 50 < i, j < 51 ~ tp,p(ai ,Mso,M) = tp~(d j ,Mso ,M)  

Together cp(di,-d)-(p(-dj,-d). 

Second Part 

Let 80 < 51 < 52 < 53 where 51,53 e E, c f S l , c f 5 3  > )~, 50 = sup(81 f'~ E) and 

52 = sup(g3 ('h E). We want to prove ¢P(as0 ,c) - qo(a82,E). Suppose not and for example 

(1) (P(~so,~) A ~(p(~,C--) 

Then 
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(2) i • [50,51) ~ q0(~i,g) 

[by first part] 

(3) I f / <  j are both in [~0,~1) then q~(ai,cj) 

[by choice of ~j and (2)]. 

(4) j < c~, 13 < ~t + ~ q~(ac~,cj) = q~(h~,?j) 

[As t p ~ ( E a , M a , M )  is increasing in oc]. 

(5) J l ,J 2 < o~ < ~ + ==~ (p(-dc~,Cjl ) - q~(de~,cjz ) 

[As t p ~ ( ~ a , M a , M )  does not (%qo)-split over Mo and cj~ ,cj2 realize t pv~ ,Mo) ]  

(6) if j l  < oq < ~t +, J2 < 0~2 < ~+ then qo(dch ,{:A) - q~(~a2,c-J2 ) 

[combine (4) and (5) using q)(amax(cq,ec2),Cj~) ~ = 1,2 as intermediates] 

(7) j • [52,53) ~ ~q~(aj,c) 

[By first part and the assumption (see (1)) that --'q~(a52,?-)] 

(8) I f j  < C~ and both are in [~2,53) then ~q0(dj,Fa) 

[by combining (7) and "g) realizes tpv(b-,Mj,M)"l 

Now if ~qI[al,c0] then by (6) and (8) we get a qMinear order on (Ej'~j:52 < j < 53); and if 

~ q 0 [ a l , g O ]  then by (6) and (3) we get a ~p-linear order on 

(dj^c'j:80 < j < 51) 

as both intervals has cardinality > )~ we get a contradiction. 

This completes the proof of the second part. So q0(~),c-) has the same truth value for all 

j • l.t+-E, but I EI _< Z so we have finished. 

~t. 

2.5 Exercise: In Theorem 2.3, replace ~t + by a (possibly weakly) inaccessible cardinal 
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3.1 The Symmetry  Lemma:  

Assume M has (¢p,g)-nonorder, e = 1,2, p. < ~1,~2, 
t 

I t  = {-da :c~ < I.tt} is (¢pt,l.tt)-convergent inside M and 

¢p = ¢p(~;y;z-) 

~1 (x;y;z-) = cpf~;y;z-) 

(p2Q~;X;Z-) = q)(X;y;Z--) 

eg (~1) = eg (~), tg  ( ~ )  = eg(y-) 

then for ~- e M 

all regular cardinals. Suppose 

- 1  _ 2 _  
(3->~' c~ < gl)(3->~2~ < I.t2)~p(aa,af~,c ) if and only if 

_1 _2  (3--~t~ ~ < p.2)(3->~tl a < gl)cp(aa,a~,c--) 

Proof:  Easy. 

3.2 The indiscernibility/non-splitting lemma 

Let for i < i(*), ~Pi(21 . . . . .  xn,,Yi) be a 

dP n = {q)i(Xl . . . . .  Xnl,Yi) : i < i (*) ,  n i = n} , and (b = k.) qbn. 
n< O,) 

z(M)-formula, a = eg(x t ) ,  

Suppose A ___ IMI, ai ~ ~ IMI for i < i(*) andp~ ~=Itp¢,(-di,A k.) k j ' a j  , M )  does not split 
j<i  

over ®, where (9 = -C{¢pi(21 . . . . .  xn;,c): i < i(*), ni < 03, -c ~ A} and i < j ~ Pi ~ P j .  Then  

(-di:i < i (*)} is a qb-indiscernible sequence. 

Proof:  See [Sh Al l  Lemma 2.5. p a l .  

3.3 Conclusion: Suppose tp(Yn . . . . .  x1,7) is a x(M)-formula and for e = 0 . . . . .  n - 1  
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~e (-Xn . . . . .  X1 ,Y) ~=I (PCXn-I,Xn-¢-I . . . . .  X l ,Xn . . . . .  Xn-/+I,Y) 

and (~ = t g ~ t )  and let • = {¢pt:t = 0 . . . . .  n - l } .  

1) If  ai ~ aM for i < i (*) ,  Pt = tPc,(-ai ,Ak_jqj-dj ,M) increases with i, and is finitely 
j<i 

satisfiable in A then (ai:i < i (*)) is a O-discernible sequence over A. 

2) Suppose J is a family of sequences, d i e  ¢~IMI, for i < i ( * )  and letting 

Ji = J kJ  fd j : j  </}  

and 

Pi = tP ¢(-d i ,J i ,M)  ~=f {(P(-X, C l . . . . .  "Ck):C ¢ e Ji 

M ~ ¢p[ai,cl . . . . .  -dk]} 

is increasing with i and is finite satisfiable in J. Then  (ai:i < i ( * ) )  is a O-indiscernible  (set)  

o v e r  J .  

Remark :  Of course we can restrict Pi to the set of  formulas used. 

Proof:  Easy. 

3.4 Lemma:  Suppose (-ai:i <i(*) )  is a (¢P(xn . . . . .  Ya,~),n)-indiscernible sequence but 

not ((P(Xn . . . . .  Xl ,g) ,n) -  indiscernible set. 

Let for any permutation :~ of {I . . . . .  n},  (pn(2n . . . . .  x t  ,Y) =~I(P(2n(n) . . . . .  xn(1),7) then for 

some permutation ~ and m < n, M has the ((pn(xn~n_l . . . . .  Xm;am_ 1 . . . . .  ao , c ) ,  

( i ( * ) - m  ) / ( n - m  ))-order property. 

3.4A Remark: 

I) I f  (ai:i < i (*)} is a O-indiscernible sequence over A but not a O-indiscernible set over 

A, then for some (p(-x n . . . . .  x l , y )  ~ • ( t g ~ t )  = tg(a i ) )  and ~ E tg(Y)A the assumption of 3.4 

holds. 

2) In (1) we can find n and use (O,n)-indiscernibility. 
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Proof :  Left to the reader  (really by Morley  [Mo 1], or see [Sh, AP 3.9]). 

3.5 L e m m a :  Suppose I = {-ai : i < )~} is (~ ,<Z)-convergen t ,  t g ( a i )  = c~ for i < k. Sup- 

pose further that q~ satisfies 

(*) if  cP(Xn . . . . .  X l , Y ) ~  ~ ,  t g ( 2 t ) = c q  rc a permutat ion of  {1 . . . . .  n} then 

q~r~(x. . . . . .  x l  ,Y) a--'Iq0(xn(~) . . . . .  xn(1),Y) belongs to ~ .  

Then 1) there is I" C I, I I ' l  = ~, I a ~- ind iscern ib le  set over  J.  

2) In fact there is an algebra N with universe )~ and < 1J 1 + X + I • I functions such that 

if  for ~ < )~, i ;  < )~, i ;  not in the N-closure of  {i{:~ < ~ then {-dg < 1~} is an qb-indiscemible set 

over  J.  

R e m a r k :  If  we just  want "{ai;: ~ < )~} is a ~ - ind i scemib le  sequence over  J" we can 

weaken (*) to [q) ~ qb ~ q0t e ~ ]  for q0t as in 3.3. 

Proof :  1) by 2) 

2) By 3.4 it is enough to prove that (ai ;  : ~ < ~.) is a qb-indiscemible sequence over  J.  

We  define for 

~1 = ~ l ( X  n . . . . .  X l , Z  m . . . . .  Z'I) ~ ~ ,  Cvi ~ J (~ = 1,m), 

tg(-(t) = tg (c t )  

and y < X a function F r = F ~  '~.,... ,~-~ such that 

(*) for  i t . . . . .  in-1 < ~. the s e t D  h . . . . .  i._~ = {F~(il . . . . .  i n_ l )  : Y < 7.} satisfies 

(a) it includes {i : i < 7,} 

(b) for any j l , j 2  ~ ~ . - D i  1 . . . . .  i . _ x ,  
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I=~[aj ,  , a i ._ , ,  . . . .  ai, ,cm . . . . .  51] -- 

~[aj2 ,ai._t . . . . .  ai~ ,Cm . . . . .  C-l] 

[this is possible as I is (~, <Z)-convergent]. 

Now if (ig:~ < ~.) are as in 3.5(2), by 3.3(2) (with J k.3 t-di:i < ~.} here standing for J there 

(8i;:~ < ~) is a (P-indiscernible sequence over J which suffices. 

§4 What  is the appropriate  notion of a submodel 

We want a context for non forking theory, and existence of amalgamation preferably with 

non-forking. For this we need a suitable notion of elementary submodel. Using M <LN, f~trong 

logic, is not good enough. For example, Ma <LM[~ <~M for ~x < 13 < 5 does not necessarily 

imply k..) M~ <LM. For 5 of large cofinality this holds, but remember that if we can quantify 
ot<~ 

over countable sets concepts become very dependent on the exact set theoretic hypothesis. Our 

problem is: Find a good notion of an elementary submodel. 

We use the following relation M <0~,~t,z~ N saying mainly that types in S a ( M )  realized in N 

are averages of convergent sets. (See 4.1). In lemma 4.3 we show that in the absence of ordering 

we are dealing with <z,.~,,~- 

4.1 Definit ion:  M < ~,~,z*¢ N if: 

1 ) M  c N  

2) M <~ N, that is for q~(x') e ¢ ,  ~ • M, M N q~[c-] if and only i fN  N q)[c-] 

3) for c" e N, tg(c) < ~: there is I = {-(i : i < It+}, which is (~,~+)-convergent inside M 

such that t p¢ ( ' d ,M,N)  = A v ( I , M , N )  
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1) Our main case: 

q~ = finite quantifier free formulas, ~ = N0 and It, g are related as in Theorem 2.3 and then 

we omit them and write just <. 

2) We could separate the two roles of q5, but we have already enough parameters. 

3) Similarly we could use P-,Z instead p.+,X + gaining a little in generality. 

4) Many of the "obvious" properties of a candidate for "elementary submodel" here are 

not so obvious. Some are proved, the failure of  some is used in non structure theorems. 

4.3 Lemma:  Suppose kt = ~t z + 2 2~, I~1 <X, [tp(~) • ~ =~ eg(x) -<X], and M has 

(~eb,z+)-non order then." m <~,~,z N if and only i f M  <x~.(<~)(e~) N. 

Proof:  The direction ~ is trivial. For the other direction, let c e C~N, ot < ~c. For nota- 

tional simplicity assume (noting 2.1c, 2.3) • = {(p(Y;y-)}, let ~ , 2 )  = q~(Y,y-). By 1.7 for some 

® c  {q~(~,y):a e N}, I®1 < Z  and tpq~(~;yD(~,M,N ) does not ({~p(~,~).q~(Y,~))-split over ®. 

Choose by induction on i < #+, Mi,-c i such that ® is over M0, IIIMi I[[ _< ].1 every q such that 

stg.~YI,¢M.M ~ is realized in Mi+l and -d ieMi+ 1 ~teG.) (Mi,N) or e realize q • ~ x . y )  q V~y,x)~ ~, J 

tp~(~,y)((,Mi,Mi). This is clearly possible by 1.10. Now by 2.3, 2.4 for some S ~ ~t +, ISI = ~+, 

and I ~=s{( a : ct e S} is {q~(x,y)}-convergent. Hence q = Av~(I ,M,N) ,  is well defined as is equal 

to Av~9(-s.y-)(I,M,N) which belongs to S t  g(~) (M,N). 

Now the types q and tp~0(2,~@,M,N ) are both in S tg~-xQ, ~tx, y~(M,N), does not (q),q~)-split over 

MZ, ,  and have the same restriction to Mz++I. Hence by 1.6(2) they are equal. So we finish the 

second direction. 

4.4 Conclusion:  For ~:,~b,t.t, Z as in 4.3 and models with (qbea,)~+)-non order <*4t, z ~ c  is 

transitive. 

Proof:  Because <x~c<,~(~, ) is transitive. 
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4.5 Claim: 

K 1) If  M 1 <e~,g.xM 2, I is (~,Z+)-convergent inside M1, I I I =  ~t + and 

[E ~ I ~ eg(a) < ~:] then it is (6a,;(+)-convergent inside M2. 

~: M2, II  tI =l.t +, and 2) If  I1,I2 are (~,X+)-convergent inside M1, M1 <¢,,~t,z 

Av eg(I1,M1) = Av . ( I2 ,M1)  then Av e~(I1.M 2) = Av . ( I 2 , M  2). 

Proof:  

1) LetT e M 2. Let J c_MI be (~,)C+). 

Ave~(J,M1,M2) = tp¢(~,M1,M2) so if q0(Y,c-) divides J into two sets > X then so does 

some 5 '  ~ J. 

2) Similar; alteratively use 4.3 (easy direction). 

4.6 U n i o n  e x i s t e n c e  l e m m a :  Let ~,, ~t,Z,~c be as in 4.3, each M i with (~eb,X+)-non 

order. I f M  i is <a,,l~,z~ increasing for i < 8, c f 8  > ~ then M i <rb.~t,x k..) Mj provided < ,  is O.K. 
j<~ 

(i.e. M i <cb k..) Mj) which for our main case (quantifier free formulas) is O.K. 
j<8 

4.7 The Lowenheim-Skolem Lemma:  If ~,tI,X,~: are as in 4.3, M with (~eb,x÷)-non 

__ ~ M ,  IIIM' 11[ -< g + .  order property A c M, I A I _< ~t + then there is M'.A ~ M" < *.g,z 

Proof: Trivial for < ~,c<.~' and use 4.3. 

4.8 Definition: Mo,M1,Mz  are in (@,~t,~,~c)-stable amalgamation inside M if: (for 
i< < = <~,rt,z, each M t has (@,Z+)- non order) 

1)M t <M. 

2) for every c e  M2 for some qS-convergent I GM0,  III = g+ 

Ave~(I, M1,M ) = tp~(c, M1,M)  (really every (~,~)-convergent I ~ M o ,  if 

Av~(I,  Mo,M1)  = tp~(~,M0,Ma) thenAve~(M1,M) = tp~(-d, M1,M),  (see 4.5). 
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§5 On the non order implies the existence of indiscernibles 

5,1 T h e o r e m :  Suppose Ix is a regular uncountable cardinal, M a L-model,  A a set of < It 

quantifier free L-formulas, (p = (p(2) closed under negation and permuting the variables. 

If  IIIM 11[ > 2 <~t then at least one of the following possibilities holds. 

Possibility A: There is an A-indiscernible set I ~ M of cardinality It. 

Possibility B: There are distinct a i e  M for i < i t  and n, 2 < n  <co and 

(p = (pCf, x 1 . . . . .  xn) e A, -c ~ Y(ZDM such that 

(a) i f m < n , k < c 0 ,  a l < ' ' ' < c z k , ~ k < [ 3 1  < ' ' ' < [ 3 m < g ,  cc t<71  < " ' < 7 m < g a n d  

V(7,Yl . . . . .  Yk,Xl . . . . .  Xm) e A then: 

M N ~[c,  aa~ . . . . .  ~ : tk , a~ ,  . . . .  o~ . ]  

M I= xg[C, acq . . . . .  aa~,a~ . . . . .  a,¢,,] 

(b) if[31 < "- -  < 13m < g, ,~ = (a f~ ,a~ ,  . . . . .  a l l  ) 

M N (p[g,a~l,aB2,d ] 

M I= ~(p[-d, a f~ ,afh  ,el] 

Possibility C: There are distinct a i e  M for i < ~  and n, c ¢ < n  < co and 

(p = (p(y, Xl  . . . . .  xn) e A, -c e tg(Y)M, such that: 

(a) As in Possibility B. 

(b) if o~,[~ < T3 < " " " < Y,, < g, c¢ ~ ~, d = (a.t3 . . . . .  czT. } then M ~ (p[c, aa ,a[~,3]  i f  and 

only i f  Min{oq[3) is even. 

Remark: We can do everything over a set of  < g parameters and find the a i , c  in some 

pregiven set I0  of cardinality 2 <g - just  expand M by individual constants or restrict its universe 
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We  can deal instead of  elements with m-tuples (or ot tuples) - replace M by an appropriate 

model with universe ,n I MI .  

5.2 Conc lus ion :  Suppose T is first order and for no model M of  T and formula q)(x,y,z-) 

does M have (~p(x,y ; z-), R0)-order [i.e. for no c-, a,,, b,, (n < co) from M, M ~ q)[at, ak, c'c-] if  

and only if ~ < k]. 

If N is a model of T, ~.> ITI +, A, B subsets of N, IAI <~., [B[ > 2 < X t h e n B h a s a  

subset of  cardinality ~ which is an indiscernible set over A inside N. 

P roof  of 5.1: Le tA* c M ,  [A*I = 2 <~t be such that : 

(*) if A c A *, I A I < It, a e M then some a '  ~ A * - A realize tp A (a,A). 

Now for every ~- e A* and formula ¢p = q~(~-, Y) = ¢p(?, Xl . . . . .  Xm), (n = n(q~), c = c~) we 

define a game G q0 = GM ~(-~. ~: 

It lasts n + l  moves (0,1,2 . . . . .  n); in the t-th move: playerI  chooses a set At ,  A t  c A * ,  

[m < ~ ~ Am k_) {am} c_At], IAt l  < It player H choose an element at,  at  ~ A * -At  which 

realize tp zx (a*,A t)- 

In the end player I wins if 

M l= ¢p[-~,al,a2,a 3 . . . . .  an] ¢~ ~[-(,ao,a2,a3 . . . . .  an] 

This game is clearly determined. So one of the player has a winning strategy 

ff'~o = (F~ : t  < n), F~  compute his &th move from the previous moves of his opponent. 

W.l.o.g. if player I wins then for every a 0 . . . . .  a ¢-1 ~ A *, F~  (a 0 . . . . .  a t - l )  is a subset of A * 

of  cardinality < It, extending F~(ao . . . . .  a m - l )  t..) {ao . . . . .  am} for each m < L (So F~ ° 

depends on c-). 

Case  I: For  every ~(-(, Y) as above, player I wins the game. 
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W e  define by induction on e~ < IX, act,Aa such that: 

(i) {t~} k . jAB ~ A  a ~ A  * for ~ < ot and IAal < g 

(ii) a a  ~ A * - A a  realizes t p a ( a * , A a )  

(iii) i f  ~ < ~, -c ~ A~ k.) {a~}, ¢O(Y,X) ~ A, e g ~ )  = eg(c-c-), x = (x~ . . . . .  x . d ,  e < n, and 

bo . . . . .  b t - l ~ A ~ k . j { a ~ } ,  then F~(?'~)(b o . . . . .  b t _ l ) ~ A  a (we can restrict further 

c, bo . . . . .  bt-1) 

There is no problem to do it. (in stage or, first choose Act to satisfy (i) + (iii), [exists as the value 

of  F ~  (?'x--) is a lways a subset of  A* of  cardinali ty < g,  g regular  > R0]. Then choose ac~ to 

satisfy (ii). [exist by the choice o f A  *,a*].  

Now we can prove 

then 

(*)a i f  ~ l  < " '"  <(~k < ~0 < ~1 < " '"  < ~n < IX, (k < 03), 

cp(yl . . . . .  Yk,Xl . . . . .  xk) e A 

M ~ cp[ac~ . . . . .  aa~,a~,a~2 . . . . .  a~ , ]  ¢:~ 

M ~ cp[ach . . . . .  aak,a~o,a~z . . . . .  a[~,] 

(*)b i f tx l  < " ' "  < ¢Xk < p., CCk < 13I< " ' "  <13n < IX, CtI < Y1 < " ' "  <7 .  < ~t 

cp(yt . . . . .  tk,xl . . . . .  xD ~ A 

then M ~ cp[a~ . . . . .  a~k,a~ . . . . .  a~k ] 

M ~ cp[aa, . . . . .  aa,,ar, . . . . .  avk] 

W h y  this holds? As  for  (*)a, let g = (ac~1 . . . . .  auk), r emember  that p layer  I wins the game 

GM~(~,~) and that (F~  (~'~) : ~ -< n} is a winning strategy for him. Let A t = F~(Z,x-)(a l~0,a ~_i ). 

* t t By (iii) above A t ~ A B ,  hence at~ t realize tp(a ,A ), a B ~ A * - A  . So A°,a~o, 

A 1,a~1 . . . . .  An,a~. is a play of  the game GM~(?,~) in which player  I uses his winning strategy 
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(F~ (~'x-) : e < n), so he wins the play, i.e. the conclusion of (*)a holds. 

By the transitivity of equivalence we can deduce (*)b- 

So (ac~ : c~ < g) is a A- indiscernible sequence. 

If  it is a A-indiscernible set, possibility (A) of  the theorem holds. If it is not, then (by 

Morley 's  work, see e.g. [Sh, AP.3.9]) for some n, (B) of the theorem holds (i.e. use again transi- 

tivity of equivalence to get the "good form") [we have to check that address a~t =~Ia* is O.K., but 

this is easy]. 

Case II :  For some cp(~,x-), player II wins GM~(?,x-). Choose such 

(Po = (Po (50, x 1 . . . . .  Xn (0)) with minimal n (0). Necessarily n (0) > 2. 

We now define by induction on ~ < g, for every ot < ~(n (0)+ 1), Ae~,aeL such that: 

(i) c k. ) {a~} k . jAB  c_ A a  c A *  fo r~  < otand IAa  l < g 

(ii) a a ~ A *-A c~ realizes tp ~ (a * ,A a) 

(iii) i f  [5 < o~, -de AI3 k.) {aft), (p~, ~) e A, tg (y)  = tg(-d), x = (xl  . . . . .  xn), n < n(O), 

< n and bo . . . . .  b t - i  e A [~ k.) {a~} then 

F~°(?,~) (b 0 . . . . .  bt_l )  c_Aa  

(iv) if  o~ = ~(n(O)+ I), t < n then 

aa+t = F~ ° (Aa,  Aa+l . . . . .  Aa+t) 

There are no problems in carrying this out. 

As in case I we can prove 
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(*)c i f  n < n (0), k <co, cx 1 < . . .  < ~k ,  

a k < P l < ' " < P . < g ,  a k < 7 1 < " ' < 7 .  <P 

cP(Yl . . . . .  Yk,Xl . . . . .  Xn) ~ A 

M ~ ~[aal . . . . .  aak,ap~, . . . .  ap.]  if and only 

M ~ cp[aa~ . . . . .  aa~,av~ . . . . .  a~.]. 

if  

Using determinacy and possibility replacing q~o by ~CPo, w.l.o.g. (F~ ° : e < n (0)) guaran- 

tees for every (~ = ~(n (0)+ 1) 

M ~ q~o[g, a a + l , a a + 2  . . . . .  ace+n] ¢=~--, ~Po[c, aa,acc+2 . . . . .  ac~+~]. 

Let tg be the truth value o f M  N q~o[c, aa,aa+2,aa+3 . . . . .  aa+n]  where o~ = ~(n(0)+ l ) .  

Let s t be the truth value of M N q0o[c, ac~+l,act+3,aet+3 . . . . .  aa+n]. 

There are truth value t , s  such that S = {~ < g : t t = t, s t = s} is an unbounded subset of g. 

The rest should be clear. 
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Chapter H: Axiomatic Framework 

§0. Introduction 

We give here (§1) an axiomatic framework for dealing with classes of  models which have 

something like "free amalgamations". We give several versions, but we shall deal here mainly 

with the strongest one. [Somewhere else we shall concentrate on the "prime" framework for 

which we can repeat the development]. We show that it holds for two main examples: stable 

first order T (here the models are algebraically closed subsets of  C eq ) and a universal class 

(with a special order as developed in I §4 assuming some non-order property) . So the main 

applications are the result for universal classes, whereas our guiding line is to make the theory 

similar to the one of  stable fast order T. 

In the third section we deal with a weaker framework, but with smoothness (just as the 

"abstract elementary classes" of  Shelah [Sh 88] ). A simple observation, but with important 

consequences is the "model homogeneity-saturation" lemma, saying that for a model to be 

(D,)~)-model homogeneous, it is enough that all relevant 1-types are realized. This makes deal- 

ing with model-homogeneous models similar to saturated ones. Still, 

tp(a, M, N) (M <N, a~N) may not be determined by the collection of tp(a,M',N) for all 

small M '  < M. 

In the main framework, if M ],M2 are in stable amalgamation over M0 in M ,  M 1 ~ M2 

generate a "good" submodel of  M3; in a weaker variant there is over M 1 t..) M2 a prime model, 

and similarly for union of  increasing chains. This is suitable for dealing with (D,)~)- 

homogeneous models (from [Sh 3] and generally continue [Sh 54] on exist existentially closed 

models). We can also consider Banach structures (see Stern [St 1]). Since Banach space theor- 

ists are not normally interested in the questions answered here, this is not an application to 

Banach space theory, and I have not developed it per se (see [Sh 54, p. 241], but it seems 

worthwhile to consider the example. We even consider the problem of whether any two amal- 

gamations are necessarily compatible. 

For T _cLr,0~ where ~ is a compact cardinal see [Sh 285] . I f  we omit NF ( but have 

smoothness and amalgamation) we can do much toward defining NF (assuming various proper- 

ties hold, where their negations imply non-structure for large enough power). The results are 

not sufficiently cardinality free to start the theory reasonably, but we can get, e.g., universal 
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Now 1.1 through 1.4 describe the context for the entire paper. We then discuss three paral- 

lel sets of axioms in decreasing order of strength. These are AxFrl  (1.4) the main framework, 

AxFr2 (1.6) the primal framework, and AxFr3 (1.5) the existential framework. The difference 

between these frameworks is the way in which a "cover" of a pair of models (neither contained 

in the other) or of an increasing sequence of models is described. In the main framework the 

axiom group Cgn express the idea that the "cover" is generated from the given models by func- 

tions. The existential framework simply demands the existence of a "cover". The primal frame- 

work express the idea that the "cover" is prime in the sense of first order model theory. 

These three frameworks all avoid the introduction of element-types and deal only with 

models. In 1.7 we move in an orthogonal direction and describe axioms which generalize the 

idea of a non-forking type of  element. 

§1. The F r a m e w o r k  

1.0 Notat ion:  As we introduce axioms we give their names in round brackets, e.g. 

(AxFr2). Later we write an axiom in square brackets to indicate in the case of a theorem that the 

axiom is needed to prove it and in the case of a definition that we only use the defined concept 

when the indicated axiom holds. 

We may feel it reasonable to demand K, (K, <g) (etc) are defined reasonably. Note how- 

ever that by 3.8 (really by [Sh 88]), under enough (but not many) assumptions, K and (K, <R) 

(i.e. {(M, N) : N <R M}) are PC(z~)*,eo- classes. 

1.1 Context:  In all the frameworks, K denotes a tuple consisting of classes and rela- 

tions whose properties we axiomatize. E.g. K = (K, <, NF). For our K ' s  K will be a class of 

models of a fixed vocabulary z(K), < = <K a two-place relation on K (a generalization of being 
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elementary submodel) and usually a four-place relation NF = NFK (NF(Mo ,M: ,M2 ,M3)  

means M : , M 2  are in stable amalgamation over Mo inside M 3 ) . [In AxFr4 we use 

NF e = N~  (NFe(Mo,MI ,a ,M3)  which means tp (a ,M: ,M3)  does not fork over Mo,a  e M3) ] 

We may want to say in the former case that M 3 is generated by 

M1 k.) M2 (M3 = (M1 k_.) M2)~3) or at least is prime over M 1 k.) M2 (Pr(Mo,M1,M2,M3))  

or just any two possible M3's are compatible. Also sometimes an increasing union is not by 

itself a member of  K but we can close it or take over it a prime model or just any two possible 

bounds are compatible. Naturally, 

1.2 Meta Axiom: K, and all relations on it, axe closed under isomorphism. 

1.3 Group A: The following axioms always will be assumed on (K, ~K) 

(A0) M<_M for M e K 

(A1) M<_N implies M c_ N ( M a submodel of  N ) 

(A2) < is transitive 

(A3) if M0 ~ M 1  _~V,M0 < N a n d M 1  < N t h e n M o  < M  1 

1.3A Definition: We s a y f : M  ---~Nis a < - embedding if f is an isomorphism f r o m M  

onto some M '  < N. 

1.4 The  Main  F r a m e w o r k  (AxFr:) :  

Here K = (K, < ,NF, ( ) gn) where "gn" stands for "generated". 

AxFr  1 consists of  (1.2, and (A0) - (A3) of 1.3 and): 

(A4)Existence of  General Union: IfMi(i < 8 ) is < - increasing, then 

M ~Sk.)Mj e K and Mj <_M for j < ~ .  
j<8 
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The second group deals with the "algebraic closure." 

Group B 

(B0) I fB = (A) f f  then A.c_.M e K , A _ c B ~  

(B1) I fB : (A)ff then (B)ff =B 

(B2) i f A c B c M  then <A>ffc (B> 

(B3) if A~M < N  then (,4) f f  = (A)~ n. 

The third group of axioms deals with stable amalgamation. 

Group Cgn 

(C1) IfNF(Mo,M1,M2,M ) then Mo <M 1 -<M 3, andM 0 -<M 2 <M 

(hence Mo,M 1,M2,M ~ K). 

(C2) Existence: For every Mo, M1 and M 2 such that Mo -<M1 and Mo -<M2 there are 

M 1, M2, M from K and f l ,  f2 such that: f t  is an isomorphism from M t onto M t over M 0 

for t = 1,2 andNF(Mo,M1,M2,M). 

(C2)- Will just state Mo < M~ < M,MO < M~ < M (i.e. amalgamation exists). 

(C3) Monotonicity: 

* < * 
(a) NF(Mo,M1,M2,M) implies NF(Mo,M1,M2,M) whenMo - M 2  -<M2. 

(b) NF(Mo,M1,Ma,M) , M <_ M* implies NF(Mo,M1,M2,M*). 

M* (c)NF(Mo,Mt,M2,M),M1 k_)M2~ <_M implies NF(Mo,M1,M2,M*). 

(a) a NF(Mo,M1,M2,M) implies NF(Mo,M~,M2, M) when Mo _<M~ -<M 1. 
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(C4) Base enlargement: NF ((M0,M 1,M2,M), 

M 0 < M 0 < M 2 implies NF(M'o, (M 1 k..) Mo)~,Mz,M) .  

(C5) Uniqueness: If for e 1,2, t e t t = NF (Mo,M1 ,M2,M 3 ) and for m = 0,1, 2 fm is an isomor- 

phism from Mlm onto M 2 and fo ~ f l , f o  ~ f 2  then for some N a K, M 2 < N  there is a -<K 

-embedding h of M 1 into N, which extend f l  k_) f2- 

(C6) Symmetry:  NF(Mo,M 1,M2,M) implies NF(Mo,M2,M 1,M). 

(C7) Finite Character  : If (MI,I : i< 8 ) is increasing continuous, Mo <MI,o and 

NF(Mo,MI,~,M2,M) then (Ml,a k.)M2 )ff  = k..) (MI,i L.JM2 )ft .  
i<8 

1.5 THE EXISTENTIAL F R A M E W O R K  (AxFr3) 

Here K = (K, < ,NF). 

We have Axioms (A0) - (A3) from 1.3): 

(A5) Limit Existence: If  (Mi : i < 8 ) is -<K -increasing, then there is M ~ K, Mi <-K M 

f o r / < 8 .  

(A6) Limit Uniqueness: If (M i : i < 8) is -<K -increasing and for e = 1,2 

[i < 8 = > M i < K  Nt  > ]  then there is N, N 2 < N  and a <-K-embedding f of N 1 into N , 

f r Mi = idM~ for i  < 8. 

Group Cex: Ax(C1) (C2), (C3) (C5) (C6) and 

(C8) If  (Ml,i:i < 8 } is increasing and NF(Mo,MI,i,M2,M) for each i < 8 then for some 

MI,~ wehave (Vi < 5)(M1, i _<M1,8) and NF(Mo,M1,8,M2,M). 

(C8)- Like C8, but M 1,8 is found in some <-extension of M. 
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(C8)_ I f  (M 1,i : i <--- 5) is <-increasing 

NF(M o , M 1 j  , M i , M)  then NF(Mo,  M1, 8 ,M2, M). 

continuous, for i < 5 , 

1.6 THE PRIMAL F R A M E W O R K  (AxFr 2 ) 

We assume the axioms of  (AxFr3)  the following axioms on prime models. 

In the first order case one defines prime models over arbitrary subsets of members of K. 

Reflection shows that this cannot be expected generally, and experience has shown that it 

suffices to have prime models only in more specific cases: over unions of  chains and over pairs 

of independent models. The following axioms describe the properties of such prime models. 

There are (at least) three ways in which one could introduce prime models; relatively [i.e. 

within a specified model), compatibility (within a compatibility class cf §3) or absolutely. (The 

compatibility class of N : {N' ~ K : 3N* ~ K ,  N < N* and N" < N*}.) Our axioms here are the 

compatibility version; we describe the absolute version in Definition 1.9; at present the relative 

version does not seem useful. 

Group D: On prime models 

(D 1) If  (M i : i <g) is <K -increasing then there is a model N p E K ,  

(Vi < 5) [M i ~ P ]  such that 

i f  (Vi < 5)M i < N < N* and N p <_N* then there is a <-embedding f of N p into N over 

k_.) Mi. 
i<~ 

We write in this case Pr ( (M i : i< 5),N). 

(D2) If  N F ( M o , M  1 ,M2,M3) then there is N prime over M 1 t i M 2  inside M 3 , i.e.: 

(i) M l k . J M 2 c N  <_M 3 and 

(ii) for every M,M~, i f  M, M 1 k . ) M 2 ~ 3  <- M and N < M then there is a <-embedding f 
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(D3) Uniqueness of the prime model over (Mi:i <8) : 

If Pr ((Mi : i < ~), Nt) ,  N t < N for e = 1,2 then N 1,N2 are isomorphic over k.) Mi. 
i<3 

(D4) Uniqueness of the Prime Model over M l k..jM2: 

If Pr (M o,M 1,M 2,N t), N t < N for t = 1,2 then N 1, N 2 are isomorphic over M 1 k.) M 2- 

1.7 THE NF FOR ELEMENTS F R A M E W O R K  (Ax Fr4) 

Here K = (K, <, NFe)  . 

We have here Ax(A0)-(A4). 

Group  E : 

(El) NFe(Mo,M 1 ,a,M3 ) implies: M 0 < M 1 < M3 and ae  M 3 

(E2) Existence : For ever),, Mo,M 1,M2, a such that 

a e M 2 ,  Mo < M I ,  Mo <M2 there are M and f, such that 

M 1 < M, f i s  a <K -embedding of M2 into M over M 0 , and 

NFe(Mo,Mt , f (a ) ,M) .  
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e (E3) Monotonicity: (a) NFe(Mo,MI,a ,M),  M0<-M~<-M1 impIiesNF (Mo,MI,a,M) 

(b) NFe(Mo,MI,a,M) and M<_M* implies NFe(Mo,M],a,M *) 

(c) NFe(Mo,MI,a,M), M l k . ) { a } ~ * ~  implies NFe(Mo,MI,a,M *) 

(E4) Base Enlargement : NFe(Mo,MI,a,M) and M0 <M~<-M] implies 

NFe(M~,M I,a,M) 

(E5) Uniqueness: Suppose Mo < MI <M, NFe(Mo,MI,a,M), NFe(Mo,MI,b,M) , 

and Mok. j{a}~ a < M, Mok.j{b}cN b < M , and there is an isomorphism from N a onto N b 

over M0 mapping to a to b then there are Na, Nb,M* and f such that: 

M <M*,Mlk.j{a} C_Na <M*, Mlk.){b} c_Nb <_M* a n d f i s  an isomorphism from Na onto Nb 

over M 1 mapping a to b. 

(E6) Continuity : If  (Ml,i:i<~) is <-increasing, (Mi:i<5) is <-increasing and 

NFe(Mo,MI,i,a,Mi) for every i < 8 ,  then we can find MI,~ and M~ such that M1, i < M1, 6 and 

Mt  <M~ (for i <8 ) and NFe(Mo,MI,~,a,M~). 

1.7A Remark  : We can define variants (AxFr5) , (AxFr6) of (AxFr 2 ) , (Ax Fr3 ) 

resp. using NF e instead NF ,  i.e. we waive Ax(A4) replacing it by weaker axioms. 

Here are some properties which do not obviously follow from the axioms we have given 

but are plausible additional axioms. As an example of their use note that the proof of V. 1.2 (1) 

is carried out without recourse to (F1) but (F1) would materially simplify the proof. 

1.8 other things 

(1) (F1) Disjointness : NF(Mo,M 1 ,M2,M 3) implies M ] ('5 M 2 = M0- 

(F2) IfNFe(Mo,MI,a,M3), a ~ Mo then a ~ M 1. 

(2) (G1) If  Mo <_M2, aeM 3 , then there is M'2, Mok_){a}ffflVl2 <-K M; and 

NFe(Mo,M I,a,M3), M'2 <K M'3 , implies NF(Mo,M1,M'2 1,M3) 
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1.9 Definition : Parts (1) and (2) of the following define the absolute notion of prime. As 

hoped for analogue of Section IV.1 would derive from (D1) a dichotomy between condition (1) 

and nonstructure. 

(1) N is prime over (M2: i <5), (M i is <--increasing) if: 

(a) M i < N for i < 5 and 

(b) if (Vi < 5)Mi < N* then N can be _-embedded into N over k.fli<sM i 

(2) N is a prime stable amalgamation for M0 over M 1 k_)M2 if: 

'(a) NF (M0,M 1,M2,N) and 

(b) lf NF(Mo,M 1,M2,M 3) , 

f l  an isomorphism from M 1 onto M~ over Mo 

f2 an isomorphism from M 2 onto M~ over M 0 

then there is a <-embedding N into M* extending f ]  k_Jf2. 

(3) For Me K we define a relation E~ v between pairs ~,N),  de  N, M < N : 

(al ,  NI )  E~ p (a2, N2) ifandonly if there are N~, N~, N~, N~', f such that: 

M -<N~ _<N~, N 1 -<Ni ~, 

M <N~ <N~, N <N~, 

n , 

aleN1 
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a2eN 2 

f i s  an isomorphism from N~ onto N~ over M mapping a l  to a 2  • 

(4) E~ will be the closure of E ~  v to an equivalence relation and tp(-d,M,N) is 

(-d,N)/E~p ( note: if K has amalgamation E~} = E~  o) . 

Now we note some interrelations between the axioms and later define some related notions. 

1.10 Lemma : 1) l ax  Frl , or just (A0), (B), (C1), (C4)] 

If NF (Mo,M 1,M2,M) then M3 ~I(M 1 u M 2 ) f f  (i.e. the restriction of M to this set is well 

defined), is a member of K and M I u M  2--~/3 <- M 

2) [Ax Fr I or just (B),(C2)-, ] 

Suppose that the conclusion of 1.10(1) holds, then Ax(C5) is equivalent to: 

(*) if t t t t NF((Mo,M1,M2,M ) for e = 1,2 

and for m = 0,1, 2 fm is an isomorphism from Mira onto MZn and f0-ff-fi ,fo-~f2 then fl  k.)f2 can 

be extended to an isomorphism from (MI uM21 )~/'5 onto (M~ u M  2 )~t'~ 

3) AxFrl implies AxFr2 which implies AxFr 3 

4) Ax(C8)_ follows from (C2),(C5) and smoothness (see 1.12 below) 

5) IfPr((Mi : i<8}, M) and Ax(A6) then M is prime over (Mi : i<6) 

6) If Pr(Mo,M1,M2,M) and Ax(C5) then M is a prime stable amalgam for M0 over 

M ] u M 2  
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7) Ax (C8) ~ Ax (C8)-, Ax (C8)_. 

8) If  K is smooth, then Ax (C8)_ implies Ax (C8). 

9) If  NF(Mo, M1, M0, M2) when Mo -<M1 -<M2 (this follows from Ax (C2,C3) then 

Ax (C8) is equivalent to Ax (C8)_ + smoothness. 

Proof  : 1) Apply Ax(C4) with Mlo = M2 • [Note M 0 < M 0 as M 0 < M 2 by Ax(C1). 

M 1 < M  2 by Ax(A,0)]. So NF(Mz, ( M l t ) M 2 ) ~ , M 2 , M )  • Now by Ax(C1) this implies 

Mlk,,)M2c_(M2k,,)M2) ~ < M.  

4) See Lemma IV 1.5. 

The other proofs are left to the readers. 

There are more implications 

1.11 Definition : 1) K has the ~,-Lowenheim-Skolem property O~-LSP) if: 

[Au=M and IAI < )q ~ (3N <--M)[A.ffdV and IIINIII _< )~] 

2) The (<~,)-Lowenheim-Skolem property ((<~,)-LSP) means: 

[A_fffll4 and IAI <~,] ~(3N<M)[Au=N and IIINIII < ) q  

3) LS(K) is the minimal ~, for which K has )~-LSP. We also write XK for LS (K). 

4) Instead )~-LSP we also write LSP()~). LSP(g,)~) means in (1) IA I < ~, IIlM III < 1~. We 

define LSP(<g, <)~) etc. similarly. 

1.11A Remark  : The statement "~, < g and ~ - Lowenheim-Skolem property ~ g -  

Lowenheim-Skolem property" will be considered. 
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1.12 Definition :1)  K-smoothness means: 

If (Mi:i < ~} is increasing, then there is N prime over (Mi:i < K) (For AxFrl this means: if 

each M i < M and (M i : i < ~:) is <-increasing, then k..)Mi < M ). 
i < K  

2) The weak K- smoothness means ( for AxFrl ): if (M i : i < K) is <-increasing con- 

tinuous, M i < M then k_)Mi < M. [This condition is weaker than 1.12 1) since we have assumed 
i < K  

the (M i : i < n) is continuous.] 

3) Let (~.,~:)-smoothness be defined as in (1) but demanding IIIMi III _< ~., and IIIM III _< ~.. 

Let (~,,~:)+-smoothness be defined as in (1) but demanding only IIIMi Ill _< ~ for i < n. 

4) (<)c)-smoothness, etc. has the obvious meaning. 

1.12A Remark.  Smoothness and (A4) are (in this context) the Tarski-Vaught theorem. 

1.13 Claim : (1) [weak] K-smoothness is equal to [weak] cf(~:)-smoothness 

(2) Our framework is (<~:)-smooth if and only / four  framework in weakly (<~)-smooth 

Proof: Check. 

1.14 Definition : "NF is K-based" means: 

/ f M  <N,  A c_N and IIINIII _<)c then there are Mo, M 1, such that NF(Mo,M,M1,N) ,  

IllMllll<~cand A c M ] .  

1.15 Definition : 1) ~ ( K )  = X0(K) is the first ~. such that K is a PC(Lx+.o)-class, i.e., 

the class of "~(K)-reducts of  models of some ~t ~ L;~.,o . 

2) ~,I(K)=~,(K,<) is the first ~. such that { ( M , N ) : M a  K , N ~  K , N < M }  is a 

PC (L ~.,o)-class 

3) ~,2(K) = )~(NF, gn) is the first cardinal )~ such that 

Sh:300



308 

{ (M1,Mo,M1,M2)  : N F ( M o , M 1 , M 2 , M ) ,  M = ( (Mlk . )M2))~}  is aPC(L~*,o~) class 

4) X(K) = ~ X t ( K )  and )~t>t2(K) = Xt~ (K) + Xt2(K)+ • • • .  
t<3 

1.16 Definition : ~. is K-inaccessible if: 

1) for M 0 < M 1, M 2 (in K) each of cardinality <X,  there is M e K ,  IIIM II1 < 9~, and for 

= 1,2 < -embeddings f t  of  M t into M over M 0 such that NF(M o, f (M 1 ) , f (M z),M) 

2) If  8 < X, III k..jMi III < ~,,(M i: i < 8) is <-increasing, then for some M e  K of cardinality 
i<8 

<9~, M i < M  f o r / < X .  

The following definition of pseudo cardinality is an attempt to axiomatize the idea of a 

structure being generated by Z elements. 

1.17 Definition : [AxFr2] 

We define pscard ~(M) as follows: 

(I) for M e K ,  pscard(M) = 3( if IIIM III _< )6 

(II) for M e K ,  X > X : pscard~(M) = X iff 

(i) for some < increasing sequence (M i : i < 8) : 

(a) 8 < X 

(b) Vr( (Mi: i <8), Ms)  

(c) pscard~(M) <9~ 

(ii) for no g < X, pscard~(M) = 

1,7A Remark :  Rather than defining pscard, we can use it as a basic function and put on 
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§2. The Main Examples 

2.1 First Order Theories 

Let T be a stable first order theory. Assume that T eq has elimination of quantifiers. Let 

(i) K = {M : M is a submodel of some N ~ T eq and 1MI = aceN(M)} 

(If you want--omit the unnecessary elements of N) 

(ii) -<K is being a submodel 

(iii) Let for some N ,  M ~  ~ T eq then: B = ( A ) ~  if and only if A c M, B = aCtNA 

(i.e. is B the algebraic closure of A inside N ) 

iv) NF(Ao ,A1 ,A2 ,A  ), Let AtC_N for e < 4 ,  N N  T eq, NF(Ao ,A1 ,A2 ,A  3) holds if and 

only if: 

A t = aCeNAt for t = 0,1,2,3 A0_~_A l_c__A 3 andA 0 ~ A 2  c_A3 and tp*(A2,A 1) does not 

fork over A 0 • 

Remark : In this context "models" disappear. I.e. "model" in our context, is just an algebrai- 

cally closed set. Later ").-saturated model, X > ITI " are defined. But "models of T" are not 

naturally defined in this context. As we prefer to have theorems which say something when spe- 

cialized to this case, we will try to have non-structure saying not only 

"there are many Me K" but 

"there are many quite homogeneous ( -  quite saturated ) models" 

or at least 

"there are many models in K~ s'' (see Definition 3.12 below). 

2.1A Fact : All axioms from §1 hold under those circumstances. 
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So, most of  [Sh] can be done in this framework, and many of  the proofs here are adapta- 

tions of  proofs from [Sh] to our context under this translation. 

2.2 Universal Classes 

2.2A Definition : A class K of  x(K)-models is called universal if it is closed under submodels 

and under unions of  increasing chain. 

2.2B Claim : The following are equivalent for a class K of x(K)- models 

(i) K is a universal class 

K. 

(ii) a x(K) -model M belongs to K iff every finitely generated submodel of  M belongs to 

P roof .  Now (ii) ~ (i) should be clear. 

So assume (i). Let M be a ~(K)-model. 

(a) If  Me K then every finitely generated submodel of K belongs to N. 

It is true as "membership in K" is hereditary. 

(b) If  every finitely generated submodel of K belongs to K then M e  K. 

We prove by induction on ~: that if M = (A }if, I A I < ~: and every finitely generated N ~  

belongs to K ,  then M e  If. 

For ~: finite ( < 1t0) it is trivial. 

ForK>__ R 0 letA = {ai:i <IAI}  

M i = (aj: j < i) gn. 

So M i (i < I A 1 ) is increasing and M = k.jMi. Every finitely generated submodel of  M i belongs 
i < ~  
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to K hence by the inductive hypothesis (as l{a): j </} I < Iil < 1¢ ) M i ~ K .  But K is closed 

under unions of  increasing chains, hence 

M = k .3MieK$ .  
i < K  

2.2.C Hypothesis : K has (Z + ,qf . )  - nonorder, % >Ix(K) I. 

2.2D Convention : Let g = 22~ , < < I~0 _ = -qf, g* g+ 

(A)f¢ n be the closure of A under the functions of N and N F ( M o , M 1 , M 2 , M 3 )  if f  

M o , M 1 , M  2 are in ( qf, p.,Z, blo )- stable amalgamation inside M 3 (see 14.8) and 

(M 1Q.)M2)~3 <M3.  

2.2E Lemma : From the axioms from §1 AxFr I + (E 1) holds 

Proof: Most are totally routine (using Lemma I2.3). 

2.2Et Sublemma : Ax C2 (Existence) holds 

Proof  : So suppose M t~ K for I < 3, M0 -< M 1 and Mo < M 2. 

We shall find M , M  o < M and <-embeddings f t : M t  ---)M over M t , t  = 1,2 (i.e. f t  is an 

isomorphism from M t onto M ' t , M "  ¢ < M,  f t t  M o = identity ) , such that 

M = ( f l ( M 1 ) k . j f 2 ( M 2 ) ) ~  and M o , M 1 , M 2  are in stable amalgamation inside M. 

We letM t = {c!:i  < IIIM t III}. The universe of  M will be the set {o(~1,~2):c¢e IIIM e III, o a 

x(K)-term} (e = 1,2) divided by an equivalence relation E defined below. The operations are 

defined in the obvious way. 

Let F =  {q)(~31(c-l'l,c "2'1) ..... ¢3mCcl'm,-c2'm)): for some q f .  formula cp and 

convergent family Jffa~/0 of  sequences of  

lg(c 2,1 ̂ . . .  A~-2,m), ql(al (-C 1'1 ,Xl ) ..... Cm(~l'ra,xrn)) ~ Av  (J,M 1 ) where 

(qf.,l~+,g+) - 

length 
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A ~  

X = X l  A ' ' "  Xm, eg(-2t)=eg(c2't)}. 

The average is well defined as J is convergent. Note that the definition of F does not depend on 

the choice of J by (2) of  the claim I4.5. So F is complete (tpe F or --,~e F) as there are such J 

with the convergent property because M 0 <_M 2. Also every finite subset of F is realized in M 0. 

Next E is defined by: 

if and only if: 

01 (-~1 ,~2)Eo2(~1,32) 

[01 (~I ,~2) = 02(31 ,~2)] e I'. 

As F is finitely satisfiable in M0, E is a congruence relation (and of course an equivalence 

relation). So M is well defined, f t  are defined naturally and they are embeddings. 

Now, why is Me K? It is enough that every finitely generated submodel is in K. Say such a 

submodel is generated by -dteMt (really J/E) .  But if Avqf(J, M0, M0) = tPqf(c 2, Mo, M2) 

and J is ( qf, g+,X + ) -convergent then." for all but < Z of the sequence d 2 e J  the quantifier free 

type of  ?-1^~-2 in M 1 is equal to the quantifier free type of gt^~2 in M. The models they gen- 

erate are isomorphic but the first being a submodel of M t is in K so also the second one is in K. 

Now M 0 < M 1 is quite easy, thus we finish proving 2.2E1. 

2.2E2 Sublemma : Ax(C5) (symmetry) holds, i.e. 

Mo, M 1, M2 is in stable amalgamation inside M if and only if 

Mo, M 2, M 1 is in stable amalgamation inside M. 

Proof  : Assume the former. We prove the latter. 

L e t a e M 1 ,  J.C~Mo, IJI = g + ,  J (qf, g+,)~+)-convergent, 
eel 

Avqf(J,Mo,Mo) = tpoz(a, Mo,M1) ; hence q=Avq.y.(J,M2,M2) is well defined. We should 

show it is equal to tpqf(a, M2,M). So assume "beM2,~p quantifier free, and M ~cp[a, bl and it is 
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Let I.UI,/o, I II = g+ be ( qf, g+,Z+) - convergent and Av(I ,Mo,M O) = tp (b-,Mo,M 1 ) 

P i c t u r e  : 

a e  M 1 b ~  M 2 

MO 

Now Avqf(I,M,M) = tpqf(-b,M 1 ,M). 

Now as Mo,M 1 ,M2 are in stable amalgamation inside M 

by choice of J 

~q0(a,g)~(B>Xb+e I)q~(d,b') 

~(3>Zb'e I)[3Za'e Jlq)(a',b') 

But then for each b" 

(3):d'e J)(3~b-'e I)cp(a',b') 

by the symmetry Lemma I. 3.1 

By the proof of I2.3 for some J (remember bs stand for "atomic and negation of atomic 

formulas) 

J c_k_JJeL,AVbs(J , No) = tpbs(d, NO) 
O~ 

hence 
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AVbs(J*, NoL.JB ) = tpbs(d, NoL_)B ). 

But (*) contradicts the choice of q9. 

2.2F Sub lemma Ax (C4)  (base enlargement) holds. 

Proof : So suppose No < NeK.  

If  No,  B, C is in stable amalgamation inside N (in particular No < B < N, No < C < N ) and 
gn 

Noc_C" < C then C' ,B,C is in stable amalgamation inside N where B '  = (C't._)B)N 

Let d~ C, so 31cC ' [  111 = Ix+, Avbs(I,C) = tpbs('d,C')]. 

We want to show Avbs(I,C'k.)B ) = tpbs(d,C'k.jB) ( or over (C't..)B)fv n --same thing). 

So suppose ~EC','b~B,~p is basic, ~q~[d ,~ ,b ]  but w.l.o.g. (Vd,~ , I )~qg(d ' ,~b) .  Let 

I = {dc~ : Ix < ~ ' }  and 

J a  = {da,~ ^ ~ r  : "~ < I x i ~ } ~  ind AVbs(Ja,N0) = tPbs(dcL^e, No) 

and No,B,C is in stable amalgamation inside N, No < N 

AVbs(Ja,Nok.jB) = tpbs(da^~,Not.jB). So w.l.o.g. I= q0[da ~/,~r,b-] for a , y  < Ix~-. 

2.3 Sequence homogeneous models 

Let x be a vocabulary, A a set of  Lco, o~(x) - formulas, where in tx > 1DI D a set of  types, each a 

complete (A,n) - type for some n. And let Ix > ~o; D is Ix-good if there is a (D, Ix ) - homogene- 

ous model closed under subformulas, (see [Sh 3]]. Now K = K~ is the set of x - model M which 

are (D, Ix ) - homogeneous; M < N i f f M  <AN. We assume ~- (D)  = 1f 0, i.e. i f M  <NEK,'dEC°>N 

then tpA(E,M,N) does not split strongly over some finite subset of  M ( by [Sh 3] ~c(D) > t~o 

(with the additional assumption D is good), implies non structure.) Sometimes we use the 

stronger assumption ~c(D) = R0 : if A ~ e K ,  Ee°~>N then tpa(-d,A,N) does not split strongly 

over some finite subset of  A (equivalent to ~- (D)  = t~ 0 when D is good). 
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We let NF(Mo,M1,M2,M3) mean: M 0 < M  1 _<M 3, M 0 -<M 2 -<M 3, and for a~°>M2,  

the type tpzx(a,M1,M3) does not split strongly over some finite subset of Mo. Clearly 

NFe(Mo,M1, a,M ) is defined similarly. Let ~.(D) (see [Sh 3]) be minimal ~. such that D in ~, - 

stable. Let us check when the axioms holds: (we use goodness and t.t > ~.(D) freely) 

Ax (A0): Holds 

Ax (A1) : Holds 

Ax (A2) : Holds 

Ax(A3): Holds 

Ax(A4) The problem is whether r ~=fL.)Mi is (D,p.) - homogeneous. For kt = g0 this is trivial. 
i<8 

Generally it still holds if •(D) = R0, D good 

Ax(A5) Follows from Ax (A 4) 

Ax(A6) Follows from Ax (A 4) 

Ax(C1) Obvious 

Ax(C2) I fD  is good, Ix > ~.(D), it is clear by [Sh 3] 

Ax(C3) Easy 

Ax(CS) Holds for good D 

Ax(C6) Holds 

Ax(C7) Holds 

Ax(CS) Holds 
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Ax(D2) : This is how Ax(C2)  was proved (forD good. [z > X(D) ) .  

Ax (D4)(D4): We have to generalize the theorem on the uniqueness of prime models of [Sh IV 

§4] (we can use induction on rank, D good, g > ~(D)) 

Ax(E1) : clear 

Ax(E2) : Holds for D good 

Ax(E3) : Obvious 

Ax(E4) : Obvious 

Ax(E5) : True for D good 

Ax(E6) : True (take unions), when Ax (A 4) holds 

Ax(F1) : Holds 

Ax(G1) : Holds 

2.4 Prob lem :Wha t  if for D good, ~t > )~(D) , we assume just K(D) < o~, and K = {M:M(D, p.) 

- homogeneous } : We have many results, but not yet enough to prove the main gap. 

§3 Existence/uniqueness of homogeneous quite universal  models  

Hypothesis  : the axioms of  group A or just (A 0)(A 1)(A 2)(A 3)(A 5)) and existence of amalga- 

mation ( C 2 ) - ) ,  Z1 = LS(K) .  

3.1 Definition : We define a two place relation E K on K : 
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MEKN if f they are isomorphic to _<-submodels of  some common member of  K .  Since K has 

amalgamations it is straightforward to show: 

3.2 Fact :  1) E K is an equivalence relation with < 2 LS(K)+Ix(K)I equivalence classes, each hav- 

ing a member of power < LS (K). So (see 3.3 below) 

2) K - {NeK:  IIINIII < LS(K)} = k.){KD De ~K} ( disjoint union ); for each De D'K, 

(K D , <) has the amalgamation and disjoint embedding property; and if we are in AxFrt then 

KD = (K~9 ' <,  ( }gn, NF} satisfies AxFr  t with Lowenheim number _<: LS (K). 

3.3 Definition: 1) For M e K ,  ItlM III >-)~1 let 

DM = D (M) = {NI=: IIIN I1t = LS (K), N < M} 

2)D O = {9(M) : M e K ,  IIIM Ill > ~1} 

DM = k...) {D(N) : M <_N e K} 

= {D M : M e K, ItlM III > ~1} 

D K = k.){D (M) : Me  K} 

3) For D ~ D K ,  KD= {Me K :  D M ~ D }  

Translating the symobls into words we have: DM is the collection of  isomorphism types of  

models of  power )~1, which are embeddable in M, DK M is the collection of  isomorphism types of 

models of  power )CI which are compatible with M. 

D ° is the collection of DM for M e K with I M I > )~1. 

J K  is the collection of D M for M e K with I M I > XI. 

is in fact that set of  isomorphism types of  members of  K with power X1- But in the 

sense (not denotation see Frege) of our definition, 9K is the union over all M e K of  the collec- 

tion DM of isomorphism-types of models of power X1 which can be embedded in M. Thus 

D ° ,  DK are objects of  one higher type than DK, DM and D~. Finally, if D is a collection of iso- 

morphism types of models in K, each with power )~1, K D is the collection of those M such that 
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each K-submodel of M with power )~1 is isomorphic to a member of  D. 

To clarify our notation, note that when D appears with a subscript K, 9 is naming a func- 

tion and ~ is the value of that function at the class K. Thus, in Convention 3.4 we write ~ for 

D because we are thinking of ~K as ~ D "  

In the following convention we are fixing a particular compatibility class (to guarantee 

joint embedding) and restricting our attention to it. 

3.4 Convention:  We fix D e f f~ and we replace K by K D . We write D K for this ~9 We can 

then have C (D, < oo)_ homogeneous as in [Sh I. §1 ] (but for uniqueness we have to assume 

smoothness). The existence of  C is proved in 3.1. 

3.5 Definition: 1) M ~ K  D is ( D , ) .  ) -homogeneous (where L > )C~ ) i f  

(a) f o r  N o, N 1 satisfying N O < M,  N O < _ N i c K  9 , IIIN I Ill < )~ there is a <-embedding of 

N 1 into M over N O 

(b) every N 1 ~ K D of cardinality < )~ can be <- embedded into M. 

2) M ~ K D is strongly ( D,)~)-homogeneous (where ~. > ~ - )  if (b) above holds and 

(a) + for No <M,  N1 <M,  h an isomorphism from N O onto N1 if IIIN 0 III < )~ then h 

can be extended to an automorphism of M. 

Remark :  By 3.4, part (b) is usually redundant. 

3.6 Definition: K is trivial if [M < N  ~ M = N]; hence K has a unique member up to isomor- 

phism. 

3.7 Lemma:  1) If ~. is K-inaccessible and regular, )~ = ~.<;~ > I'c(K)l then there is M e K  of 

power ~ which is ( DK,~, ) -homogeneous and M is smooth (i.e., M = t ) M  i, IIIMi Ill < 9~, M i- 
i<~. 

increasing continuous M i < M for i < ~. ) .  
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2) If X is regular, M,N are (~o K , ~  ) - homogeneous of power X and are smooth, then M--N. 

R e m a r k  We can weaken somewhat the X - inaccessibility demands 

3.8 Cla im : 1) If K has smoothness, X > L S ( K )  , then X is K -inaccessible ( and for 

A c_MeK, IliA III < X < IIIM III there is N < M, IIIN III = X, A c N ) .  

2) If  ( in addition to axioms (A0)-(A4)), LS(K) + t "c(K) t < Z and K has smoothness, then 

K and { M, N): M < N  } are PC(2~)*.co -class, hence K~t~:O ~ (VX > z)K~ ~ where # = (2z) +. 

Remark :  Using NF, we can improve 3.8(2). 

Proof:  See [Sh 88], 

3.9 Lemma:  If K has smoothness, ~. is regular, IIIM III = ~ > LS(K) , then every MEK of 

power X is smooth. 

Remark :  We can begin classification theory for a class satisfying Ax(A0)-( A4)+ smoothness 

+ amalgamation (+ Ax(C2) - )  + X = LS(K), using strong splitting. But we do not succeed to 

move the properties between cardinals. We can arrive, e .g . ,  that for a class of suitable X either 

union of  (~9 K,X ) - homogeneous is (~ K,X)-homogeneous, or suitable non-structure results 

holds. 

3.10 The Model-homogenei ty  = Satura t iv i ty  Lemma 

Let g > LS (K), K satisfies smoothness 

1) M is (D K,I.t )-homogeneous if and only if  for every N 1 <N2eK,  IIIN2 III <p., N 1 , M ,  

and a e N  2 - N  1 there are models N'2,N3,eK , such that N 1 <N '2  < N3,N2 < N3, aeN'2 and 

there is a <K-embedding f o f  N'2 into M over No 

2) M < C is (~K,~) -homogeneous  if and only i f  for every N _<M, II1N III < gt and a e C  , 
= = 

there is a ' e  M realizing tp (a,N,C), i.e. there is an automorphism f of  C , f  r N = idN and f (a)e  N 

(or use Definition 1.8(4). 
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Proof: 1) clearly w.l.o.g.I.t is regular. The "only if" direction is trivial. Let us prove the other 

direction. 

Let IN21 ={ai: i<~} , and we know ~<l-t. We define by induction on 

i <  ~, N~, N~, 3] such that: 

(a) N i < N~, IIIN/2 III < g 

(b) Ni is <K -increasing continuous in i 

(c) N~ is <K -increasing continuous in i 

(d) ~ is a <K -embedding of N~ into M 

(e) 3] is increasing in i 

(~ ai~Ni +1 

(g) NO < N1, NO < N2, f l  = idNx. 

For i = 0, (g) gives the definition. For i limit let Ni = k.JN~, N~ = k.jN~, j~ = k.)J~ Now (a)- 
j<i j<i j<i 

(f) continue to hold by continuity. 

For i successor we use our assumption; [more elaborately, let M~ -1 < M be 3]_l(Ni -1 ) and 

Mi(1,gi_ 1 be such that gi-1 is an isomorphism from N~ -1 onto M~ -1 extending J~-I , so 

N~ -I <M~ -t ,  now apply the assumption with M, Mil -t, M~ -1, gi-l(ai-1) here standing for 

M, N1, N2 there; so there are M~*, M~*, ~ such that: 

Mi -1 NM~* -<M~*, [[[M~* [[[ < 

Mi -1 < M~ -1 < M~',gi_l(aa_l)~M~* 

~a_<K- embedding of M~ i* intoM,~ t Mi -1= id. 
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Let N~,hi be such that N~ -1 < N~,hi an isomorphism from N~ on M~* extending gi-t- Let 

Ni = h-[ 1 (M~*),fi = f i  °(hi r N~ )1. 

We have carry the induction. Now f~ is a -<K -embedding of N~: into M over N 1 , but 

IN21 = {ai:)~ < ~ : } ~ ,  so f~  r N2 : N2 -4  M is as required. 

3.11 Fact :  Assume LSP(<).). If M < C  is (DK,)~ +) - homogeneous, A c__M, IAI <X, 

heAUT(C))  then for some g eAUT(C) ,g  r MEAUT(M) ,g  t A = h r A 

Proof: We can find first N o < M ,  A~-N0,111N0111 <~. and then N 1 closed under h and 

No<_NI<_C, As M is (DK,)~ ÷ ) -homogeneous there is an automorphism go of 

C,g0 r No = id ,g0(N1) < M .  Now g l  = go o h o g~l is clearly an automorphism of g0(N1), 

As g ( N 1 ) < M ,  IIIg(N1)lll -- IIIN 1 III < ~., [and M is strongly (~gK,)~) -homogeneous) g l  can be 

extended to an automorphism g 2 of M ,  which can be extended to an automorphism g of C. Now 

g is as required. 

3.12 Definition: KUljs, r = {M: there is a (<~)-directed I and (~gK,g)-homogeneous 

models Mt E K for t e I such that M = t..) Mr} 
tel 

If • = R o, we omit it. 

3.12A Remark :  E.g. in 2.1 above, KIT lus is included in the class of models of T. 
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HI Constructions of many non isomorphic models 

§0 Introduction 

For a reasonable structure/non structure theory, we need ways to build many and/or 

complicated structures. Though they were developed mainly for proving I(%,K) = 2 ~" (see 

Definition 1.2 and [Sh] Chapter VII, VIH)they may be used to build rigid or indecompos- 

able or L~,z-equivalent and isomorphic, non pairwise non embeddable models ( see 1.3). 

We have tried several times to separate the "set theoretic "parts from the" specific alge- 

braic construction". This was done in [Sh 136] (for [Sh Al l  ( see §2 here for explanation and 

presentation (though not complete)); in the various black boxes - see here §4,5, 6 [Sh 172] 

[Sh 227] [Sh 229], Gobei and Shelah [GbSh 190], [GbSh 219], Eklof Mekler [EkMk D16], 

Grossberg and Shelah [GrSh 312] (less related, but with similar applications are the papers 

on "Models with second order properties", [Sh 72], [Sh 73], [Sh 82], [Sh 107], [Sh 162], [Sh 

128] ( construction from 0gl),  Shelah and Stanley [Sh St 112], [Sh St 167].) 

We want to explain the theory and how to apply it but our main aim in this chapter is to 

proved abstract non structure theorems so that in this work, when we want to prove that a 

class K which happens to be in the "non s~ucture" side, have many complicated models. For 

this we prove some non structure theorem with various degrees of  abstractness. Some are just 

abstract versions of theorems from [Sh, VIII] with essentially the same proof, while others 

give more information even for cases dealt with before, e.g. 

0.1 Theorem: If V ~  Lz.  co, q~(~,~)~ Lz+,o ~, tg(2-) = tg(y-) = 6 and V has the cp(2,y)- 

order property then l ( g , V ) = 2  g provided that e.g. ~.->Z+ ~1, c <  R0 or ~ . > Z +  1~ 1, 

Proof: When )~ > Z + ~ 1, ~ < ~ 0, by Theorem 3.9. 

Generally our construction of many models in Kx( = {M ~ K :  IIIM Iif = %}) goes as 

follows. We have a class K 1 of "index models" (this just indicates their role; supposedly 
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they are well understood). By the "non structure property of K", for some formulas q~t, for every 

I e K~ there is MI ~ K and -dr ~ M1 for t ~ I, which satisfies (in MI) some instances of +q)t. 

We may demand on M1: 

(0) nothing more. 

(1) (at : t ~ I)  behave like a skeleton ( see 3.1(1)) or even 

(2) M1 is built from I in a simple way (A-represented - see Definition 2.2(c)). 

Now even for (0) we can have meaningful theorems (see 3.9 and 4.2). 

We would like to stress that the formulas q0 t need not be first order L, they just have to 

have the right vocabulary (but in results on "no M i embeddable in Mj" this usually means 

embedding preserving + qDt (but see 2.5). 

Another point is that though it would be nice to prove I faJ ~ M! ~MI; this does not 

seem realistic. What we do is to construct a family {la :(x < 2 ~'} ~ K [  such that for 

o~ e ~, I a  is not isomorphic to (or not embeddable into) I~ in a strong sense (see 2.3, 3). We are 

thus led to the task of constructing such IcL's, which unfortunately split to cases. 

A point central to [Sh 136] but incidental here, is the construction of  a model which is e.g. 

rigid or have few endomorphisms etc, Using the methods of  §2 see [Sh 136 §3], using 

§4-5 ( black boxes) see e.g, [Sh 220]. 

The methods here can be combined with [Sh 220] or [Sh 188] to get non isomorphic 

L~  ~-equivalent models of cardinality 9~. 
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In the next few paragraphs we quickly survey the results of this chapter. In this survey 

we omit some parameters at various defined notions. These parameters are essential for an accu- 

rate statement of the theorems. We suppress them here to emphasize what seems to be the 

most essential points. 

In Section III.2 we discuss a method of "representability". We introduce two strongly 

contradictory notions, the A-representability of a structure M in the "polynomial algebra" of 

an index model (Definition 2.2) and the q~(x,y-) un-embeddability of  one index model in 

another. Now to show a class K has many models one first shows that for some formula q0 an 

index class K1 has many pairwise q0-unembeddable structures, then that for each I e K, 

there is a model MI which is A-representable in the free algebra on I, and finally that if 

MI = Mj and Mj is represented in the free algebras on J then I is q~-embeddable in J. 

In Section III.3 we extend and simplify the argument showing that an unstable first 

order theory T has 2 ~" models of power )~ if ~. > I TI + R 1- Rather than constructing 

Ehrenfeucht-Mostowski models we consider a weaker notion - that a linear order J indexes a 

weak (~c, tp)-skeleton like sequence in a model M. In this section K 1 is the class of linear ord- 

ers. The formula q~(£,y) need not be first order and after 3.10 may have infinitely many argu- 

ments. Most significantly we make no requirement on the means of definition of the class K 

of  models (e.g. first order, L ~  etc.). We require only that for each linear order J there be 

an Mj e K and a sequence (as : s e J )  which is weakly (~,q0)-skeleton like in Mj.  

If you get lost in §3, you can jump to §4. 

In the rest we deal with black box, and generalizations of  "an unsuperstable T has 

many models". 

I I I  1.I 
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§1 Models from Indiscernibles 

Our aim in [Sh Ch.VIII] was to prove: (in ZFC!) 

1.1 Theorem. If  T is a complete first order theory, unsuperstable 

and )~> ITI + )~1 , thenI(~.,T) = 2 g where 

1.2 Definition: For a theory T 

I()~,T) = number of models of T of power ~, up to isomorphism. 

For a class K of models 

I(~.,K) = number of  model in K of power )% up to isomorphism. 

IEzx()~,K) = sup{g: there a r e  M i ~ K~., for i < g, such that for i ;e j there is 

no A-embedding of M i t o  Mj}.  

However, we feel (see also [Sh 31] [Sh 44], [Sh 51], [Sh 54], [Sh 136]): 

1.3 Thesis 

(A) The methods are enough to build many complicated, very different, models of 

suitable powers, for many classes, not necessarily elementary. 

(B) Moreover in reasonable situations we can make them rigid, indecomposable 

etc., according to circumstances. 

Essentially this (A) + (B) was an advice to use a device. If  you need such a construction, 

try to imitate one of the proofs (note that the theorem was proved by partition to cases, with 
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various proofs.) Generally the hint was not taken. As an illustration we have done various such 

works. 

1.4(1) Examples: (A) In every ~ > N0 there is a rigid dense linear order see [Ba 76,2]; 

(B) in every X > 1% there is a rigid Boolean Algebra. (See [Sh 51]). 

(C) In every ~ > 1~0 there are 2 ;~ non-isomorphic reduced separable abelian p-groups 

(see [Sh 44]. §1 and p.244 9-13). 

(D) In every ~. > R0 there are 2 ~" u.l.f. (universal locally finite) groups up to isomor- 

phism. (see Macintyre and Shelah [MaSh 55]). 

(E) theorems on representation of rings as endomorphism rings of abelian groups (see 

[Sh 172], [Sh 227], Gobel and Shelah, [GbSh 224] [GbSh 219]). 

(F) There are Boolean algebras rigid and complete, having few endomorphism (see vari- 

ous results [Sh 136], [Sh 229]). 

(G) There are for most X's, 2 ~', u.l.f, with non-inner automorphism (see Grossberg and 

Shelah [.Gr Sh 312].) 

1.4(2) Discussion: Note that M is rigid if and only if (Va ¢ b e M) [(M,a) ~ (M,b)]. 

Clearly the theorems of [Sh, VIII] does not apply directly. However if we have freedom 

enough in constructing M, knowing constructions of many non-isomorphic model should 

help in constructing rigid models. Note that for general first order theory T, maybe e.g. 

there are definable automorphisms (or more subtle problems). See the series "Models with 

Second ordcr Properties": I [Sh 72], II [Sh 73], III [Sh 82], IV [Sh 107], V [Sh 162] for dif- 

ferent constructions. We construct there (assuming instances of GCH)models with only 

definable automorphism, assuming strengthening of unstability. This kind of assumption is 

natural, giving us enough freedom in the conswaction. In [Sh 136] we tried to separate the 

combinatorics and applications of [Sh, VIII], and advance our combinatorial knowledge. 

(The applications we had in mind there were to Boolean algebras). 
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1.5 Definition: 1) (at : t ~ I )  is A-indiscernible (in M) if  

(a) I is an index model  (usually linear order or tree); i.e. it can be any model  but its role 

will  be as an index set. 

(b) The A-type in M of  a't~ ^" • • AFt. (for any n < (o) depends only on the quantifier free 

type of  (t 1 . . . . .  tn) in I. 

(2) For  a logic  L ,  " L- ind iscern ib le"  will  mean A-indiscernible for the set of  .L- 

formulas in the vocabulary  of  M. 

3) Remember  that i f t  = (t i : i < 0~) then ~ = ato ^ a t ,  ^ " "  

Many  of  the fol lowing definitions are appropriate for counting the number  of  models  in a 

pseudo elementary class. Thus, we work with a pair  of  vocabularies,  "c c "el. Often "c 1 will  

contain Skolem functions for a theory T which is c_ L(z ) .  

In this section all predicates and function symbols  have finite number  of  places,  (and simi- 

larly (p(-£) means  tg (~)  < co) 

1.6 Defini t ion:  1) M t = E M I ( I ,  rb) if  for some vocabulary x = x~ o r  L 1 = L~,  and 

~t(t ~ I ) :  

(i) M 1 is generated by {-dr : t ~ 1}. 

(ii) (at : t e I )  is quantifier free indiscemible  in M 1 

(iii) ~ is a function, taking (for n < co) the quantifier free type of  t = (t 1 . . . . .  tn) in I 

to the quantifier free type of  h-7 = atl ^" " " ^ a t ,  i n M  1. 

2) A function q~ is proper  for I if (iii) of  1.6(1) holds, proper  for K if  q~ is proper  

for  every I ~ K, and lastly it is proper  for ( K t , K 2 )  i f  it is proper  f o r K  1 and E M ( I , ~ )  ~ K 2 
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3) For a logic £ ,  or even a set £ of  formulas in the vocabulary of MI,(I) is almost 

£ - n i c e  (for K) if: 

(*) For every I e K, (at : t e I )  is £- indiscemible  in EM 1 (I, q)). 

4) In 3), • is £ - n i c e  if  it is almost f.,-nice and 

(**) For J ~ I 

E M I ( j , ( b )  < L E M I ( I , ~ )  

In the book [ShA1], always L~,~(~°)-nice • were used. 

1.7 Notat ion:  1) E M x ( I , ~ )  = (EMI(I ,  fb) r "c (where x ~ z  ° )  (we omit x when clear 

from context). 

2) We identify I ~ ~ >- ~. which is closed under initial segments, with the model 

where 

(I, P cL,A, <tx, W--~)a < ~ 

P~t = I c'-~ aX, 

p = 13 A V if p = 13 r tx for the maximal a such that 13 r ~ = v rc t  

= being initial segment of, (including equality) 

<ex = lexicographic order 

3) Similarly I ~ ~ J for any linear order J(<tx is still well defined.) 

4) K~r is the class of  such models i.e. models isomorphic to I i.e. to 

(I, Pa,^,<tx,%')a_<K for (tr stand for tree) some I ~ r~j ,  j a linear order. 
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1.7A R e m a r k :  The main case is ~ = N0. We need such trees for ~ > ~0, e.g. if we 

want to build many ~:-saturated models of T, ~c(T) > ~, ~ regular. If  ~(T) < ~ there may be 

few ~-saturated models of T. In [ Sh, Ch. VIII, VIIII] we have proved: 

1.8 L e m m a :  If  T is unsuperstable, then there are first order cp~(Y, yn) e L (T) and 

proper for every I c_ ~--~. such that: 

E M I ( I , ~ )  P ~Pn[an,dv] ¢=~r I r n = v 

(also EM 1 (I, cb) p T) and • is ~ " xco, o~-nace, Ix~l  = [TI + N0 (note that for r11,1] 2 of the same 

length, rh  ~ r12 ~ an~ ~ tin2). In [ShAI,,  VIII §2] we actually proved: 

1.9 T h e o r e m :  1) If ~. > I z ~ I is regular, qb, -c~,(q), : n < co} as in lemma 1.8 (qb almost 

L~.co-nice) then: we can find l a  c °~-k (for ot < 2~), I l a l  = L such that for ~x ~ [~ there is no 

one to one function from EM 1 ( I~ ,~ )  onto EM 1 (If~,~b) preserving the +q)~ for n < co. 

2) The %~'s do not need to be first order, just  their vocabularies should be ~x ~. 

( I )  • t r  But instead " ~  is almost Lo~,oj('c)-nlce we need " ~  is almost {q)n(...,6t(xt),...)t<t(,) : n < 03, 

~5 t terms of x ~}-nice' '  and we should still demand 

(*) the d n are finite. 

3) So if as in Lemma 1.8, %, ~ L('~) then {MeLt X : Ot < 2 ~'} are 2 ~" non- isomorphic 

models of  T of  power X. 

Proof:  This is proved in [Sh] section 2 of Ch. VIII (though it is not formally claimed 

there is no need fo the proofs). 

1.9A R e m a r k :  In [Sh] VIII §2 existence of many models in X is proved for some 
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= I'c~' I and there "T1,Tf i rs t  order" is used. 

1.10 Defini t ion:  Fix a class K (of index models)  and logic £ .  

1) An index model  I ~ K is called ( i t ,~)- large for .L if: 

(a) Every qf(in x(K)) type p which is real ized in some J ~ K is realized in L 

(b) for  every vocabulary x l of  cardinali ty < g and x 1 -model  M 1 and at ~ ~> I M 1 I 

for  t ~ I there is ¢b, proper  for K, with 1 x * I < ~. such that ('c 1 c .~et, and): 

(*) for  every x(K)-oJ type p,  I 1 E K and s I . . . . .  sn E I 1 such that (s 1 . . . . .  sn) realize p 

in I i, for  some t l . . . . .  tn ~ I ,  ( t  1 . . . . .  tn) realize p in I and 

(**) for 

t = 1,n; 

implies  

every formula ~p = (P(Xl . . . . .  xm) e L ( L * )  and za '- terms ~ t ~ l  . . . . .  Yn) for 

M 1 I= q3[(~l(dt, . . . . .  ~t.),~72(~t, . . . . .  a t . )  . . . . .  ~m(-dt~ . . . . .  at .)]  

E M I ( I I , ~ )  ~ q~[ch(ds, . . . . .  ds.),(~2(as~ . . . . .  as.) . . . . .  (~m(as,, . . . .  a's,)] 

2) The  class K of  index models  is called (It,~.)-Ramsey for L if  some I ~ K is (It,~.)- 

large for f_.,. 

3) I f  in 1.10(2) L is first order logic, we omit  it. 

4) F o r f  : Card -+ Card, K is f -Ramsey  i f  it is (I.t,f(g)) -Ramsey  for L for  every It. W e  

say K if  Ramsey  for L if  it is (It,~t)-Ramsey for .L for every It. 

5) W e  add to Ramsey  "(almost) L -n i ce "  if we can get such ~ .  

6) W e  say K is *-Ramsey if  it is f -Ramsey  for some f : Card---) Card. 
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1.11 Theorem:  1) For Lco, o~, the class of linear orders is Ramsey. 

[ Proof: This follows from the Eherefeucht-Mostowski proof that E.M. models exist]. 

2) For Lob,co the class of linear orders is *-Ramsey. 

[ Proof." essentially repeating the proof of Morely's omitting type theorem.] 

3) For any fragment of Lk*,0~ or A(L~.*,c0) the class of linear orders is f-Ramsey by 

f (b t) = "~(2.)* • 

[ Proof: Like 1.1(2); see [Sh 16] and more in [GrSh 222] [GrSh 251]]. 

By Grossberg Shelah [GSh 238] (improving [Sh VII], where compactness of the logic f_2 

was used, but no large cardinals) (K~ was defined above.): 

1.12 Theorem:  Kt°]r has the *-Ramsey property if e.g. there are arbitrarily large 

measurable cardinals. 

We shall not repeat the proof. 

1.13 Lemma:  Suppose K 1, K2, K3 are classes of models, • is proper for 

(K1, K2), W proper for (K2, K3) then for a unique O 

a) O i s  proper for (K1, K3) 

b) for I ~ K1 

E M  1 (I, O) = E M  1 (EM 1 ([, cYf)),~)) 

We write this as O = • o ~ .  

Proof." Straight forward. 

1.14 Lemma:  1) Suppose K is a class of index models, x= x(K)  and 
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(*) there is ~F proper for (K, K), such that for I ~ K, EM~(I ,~)  E K and J = EM~(I,~F) 

is (l~0,qf)-homogeneous over I, i.e. if t =  (tl . . . . .  tn), ~( = (sl  . . . . .  sn) realize the same qf- 

type in I then some automorphism of J take a7 to h:g. 

We conclude that: 

If  K is (I.t,X)-Ramsey for L then K is almost L-nice (~t,X)-Ramsey for L .  

136].) 

2) E.g. for L _cL~o~,o~ we get in (1) even .L-nice. 

3) The assumption (*) of (1) holds for Kor, Kt~, Kt~ (as well as the others from [Sh 

1.15 Conclusion: Suppose K is (g,L)-Ramsey for f_2, T is an L-theory (in the vocabu- 

lary "c(T)), Ix(T)f <It ,  q~t(Re, x,Y) ~ L(x(T)t..){1-~t}) (and Rt  disjoint to x(T) and to R3-t) 

and T k..) {q01(/?l, x,Y), q~2(Rt, x,Y-)} has no model. Suppose further that f o r / e  Kor there is a 

model M I of T, and at~ °~>M for t E I such that: 

t < s :::>M I= (3R1)qOl(,~l,dt,as) 

s < t =* M l= (~/~2)(P2(/~2,as,at) 

then for )~ > p.+ l~ l , IOn, T) = 2 ~'. 

Proof: By previous theorem and 3.9. 

§2 Models represented in free algebras and applications 

2.1 Discussion: 1) We sometimes need x ~ with function symbols with infinitely 

many places and deal with logics £ with formuIas with infinitely many variables. 

2.1A Example:  We want to build complete Boolean algebras with no non-trivial 1-1 
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endomorphisms. How do we get completeness? We build a Boolean algebra, B 0 and take its 

completion. Even when B 0 satisfies the c.c.c, we need the term L.)xn to represent elements 
n < c o  

of the Boolean algebra from the "generators" {-dr : t ~ I}. 

2) We also sometimes want to rely on a well ordered construction i.e. on the universe of 

EM t (I, d~) there is a well ordering which is involved in the definition of  indiscemibility (see 

2.2). This means that we have in addition an arbitrary well-order relation. E.g. we want to 

build many non-isomorphism ~l-saturated' models, we have a family { -da :~  < ~.} of 

sequences of length 0~ with EMx(T)(I ,~)  ~ cp[as,~t] ¢~ s < t (< a relevant order) but we need 

to make them l~l-saturated. Ultrapowers will probably destroy the order. The natural 

thing is to make M1 Rt-primary over EMx(T}(I,~).  So not only are the at infinite, the con- 

struction involves infinitary functions but the quite arbitrary order of  the constructions may 

play a role. 

With some work we can eliminate the last for this example (using symmetry) but there is 

no guarantee generally and certainly it is not convenient. Moreover, 

3) It is better to delete the requirement that the universe of the model is so well 

defined. 

This motivates the following definition. 

2.2 Definition: (a) x(].t,n) is the vocabulary with function symbols 

{Fi.j : i < g , j  < ~c} where Fi, j is a j-place function symbol and ~ is always reguIar. 

b) 9~/'g,~(I) is the free ~-a lgebrageneratedbylforx  = x(g,~c). 

We use the following notation in the remainder of  this definition. Let 

f :  M ~ ~/'g,K(D. For a ~ t~M and for i < ~, f (ai) = oi(~/) with 7/is < ~¢ sequence from I 

and ~i a term for x(g,~:). 

c) M is A-represented in 914"~t,K(I) if there is a function f : M --~ 914"~tm(I) such that the 
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A-type of 6 ~ M(tpA(E,O,M)) can be calculated from the sequence of terms (cJ i : i < cQ and 

tpqf((ti : i < oQ,f~, I). 

d) M is weakly A-represented in 914cg.~(/) if for some function f :  M --4 9I//g.K(1), there 

is a well-ordering of the image of f such that for ~ c aM the A-type of 6 can be computed 

from the information described in c) and the ordering <-imposes on the subterms of the terms 

(ci(t/):i < tx) in the image o f f  

We introduce weak representability to deal with the dependence on the order of  a construc- 

tion, (cf. 2.1 (2)). 

e) For j 1,2 if ffJ J - ' /  = = (c , ( t  i ) : i  < o~), ~ = ~/2 and tpqf((t~ : i  < oQ,~,I)  

= tpqf((t2i : i < ¢z), 0 ,  I)  we write ~1 _ ~2 mod(9V['~t,~(1). For the case of  weak representa- 

bility we write 6 t - 6  2 mod(9V/~t.K(I),<) if in addition the mapping {(c(t}),  ~y(t2)): i < ¢z,t~ a 

subterm of cy I = er 2} is a <-isomorphism (and both sides are linear orders). We write 

61 -2  61 ^ ~  _ 62 --A a m o d ' "  if ^-b m o d ' "  when b" E ~>A, A _cM. (This latter is espe- 

cially important when we work over a set of parameters. We might, for instance, insist that 

t! and tJ realize the same Dedekind cut in I0 c I.) 

(So M is A-represented in 9k/'~t,~(I) just if f ( 6 1 )  similar to f ( a  2) mod 9k[~t,~ implies 61 

and 62 realize the same A-type in M.). 

f) We say the [weak] representation is full if: Cl~C2mod 9ff~,g(1)) implies 

[cl ~ Rang(f)¢=~ c2 ~ Rang(f) .]  

g) If  A = qf, it is omitted. 

h) For f : m --~ 9I/[~t,~, d - -b mod( f  , Mg,~)  means f (6) ~ f(b') rood !3d~,,~:. Similarly, 

6 - b- rood(f, M~t.K,<) means f (6)  - f ( b )  rood (M~,~ ,< ) .  

Now we define a very strong negation (when q~is " r ight") to  even weak represen- 

tability. 

2.3 Definition: I is ~p(E,y)-unembeddable for x(l.t,•) into J if for every 
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f : I ---) 5714"~t,r(J) and well ordering < (of f (I)) there are sequences x,y of members of I, 

I N cp[Y,y-] such that Y, yhave  "similar" (2.2(c)) images in 9~(g,K(J)- 

2.3A Remark:  This definition is used in proving that the model constructed from I is 

not isomorphic to (or not embeddable in) the model constructed from J. 

2.4 Discussion: The following example illustrates the application of  this method. We 

first fix K~r as the class of  index models and fix a formula cPtr (see 2.4) such that for many 

pairs l ,J E K~r, I is qOtr(~,y)-unembeddable in J. In 2.5A we show that for each I ~ Kt~ there 

is a reduced abelian p-group GI which is representable in 914c~o,o~(I). In 2.5B we show that [ 

1 qOtr- unembeddable in J implies G1 =- GI]; thus the number of  reduced separable abelian of 

power )~ is at least a great as the number of trees in Kt°r with power ~. which are pairwise 

qotr- unembeddable. We showed in [Sh 136] that this number is 2 ~" (for regular ~. and many 

singulars). (but by 1.9 we get 2 ~" pairwise non isomorphic such groups in X, using GI as below). 

We may want to strengthen "Gx ~ Gj" to "GI not embeddable into Gj". This depends on the 

exact notion of embeddability we use 

2.4 Example: Class of Kt°r ~, I ~ Kt~ 

9tr(XO,Xl;yO,Yl) ~I[x 0 = y0]APco(X0)A V [Pn(Xl),',.Pn(y 1) A Pn_l(Xl A yl]A 
n < c o  

A[Xl ~X0Ayl '~Y0] 

2.4A Definition: A separable reduced abelian p-group G is a group G which satisfies 

(we use additive notation): 

(1) G is commutative (this is "abelian") 

(2) for every x ~ G for some n x has order p n (i.e. pnx is the zero); 

(3) G has no divisible non trivial subgroup (= reduced) 

(4) every x e G belongs to some 1-generated subgroup which is a direct summand (= 

separable) 

Any such group is a norm space: 
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Illx Ill = inf{2 -n : (3y ~ G)pny  = x} 

2.5 Subexample:  separable reduced abelian p-groups. 

For a tree I ,G!  is generated (as an abelian group) by 

{x n :rl e k..) Pin} k..) {Y~1:1"1 a p l  } 
?1<o3 

freely except the relations: 

pnx.q = 0 for 1"1 e P / ;  and PYrln+l -Ynn = xnrn and pny~ 1 = 0 for "q e P / ,  and we have 
n essentially say y.q = ~,(pt-,~ xv, : n < e < 03. v t  e Pt  t and v t  "(,'q} (infinitary sum may be well 

defined as Gt is a norm space). 

It is easy to see (by addition relation to divisibility) that 

2.5 A Fact: (*) GI is represented into M,~.,~(t). 

We shall prove below: 

2.5B Fact: I f I  is (Ptr-unembeddable into J then GI ~ GI.  

Proof: 

9k/'0~,~(J)). Let f : I ---) G I be: 

f ( ' q )  = f  

Let g :GI = Gj - -~  9k[~,o~(J) where h witnesses that Gj  is representable in 
h 

"~ pt-lx.qr t if  1] ~ k..) P /  
l < t < t g ( r l )  n <  o~ 

y~ if rl e e~ 

So (h o g o f )  : I ~ M,o,~(J). Now we use the fact that I is q~tr-unembeddable into J. So sup- 

pose 

I ~ ~otA~o,Vo,'ql,vl] and h o g  o f U l o , V o ) ~ h  og  o f  Cql,vl). 
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Invoking the definition of (Ptr : 

rl ~Irlo = r h e P I  and for some n v 1 ~ ' l ' h ,  v 1 ~ P I ,  Vo E P/~ and Vo ¢ v 1 .  

let Zv: = E{pt-lxv:V g v i , v  e P / ,  1 < ~ < n}. 

Now GI ~ ,,pn divides/, ,1 - z  v, 
• , P ' ~  v I J • 

For i = 0,1 

Hence as g is an isomorphism, 

1 Gj ~: ,,pn divides (g(y•) - g(zv0)) 

i.e. 

G j ~  ,,pn divides (g o f (q )  - g of~v0))". 

Similarly Gj ~ "pn does not divide (g o f('q)-p ~-1 g ° f ( v l ) "  

h o g o f (0 l ,v0) )  - h o g o f ((rl,Vl)) rood Mob, co(J) the contradiction, proving 2.5B. 

but 

2.6 Discussion con t inued :  But really Gj is L -  represented in M0~,co(J) if for L we 

take the set of  formulas {"p n +1 divides y -  ~ pty t" : n < co} (Of course, we do not use the full 
t=l 

power of L-representat ion,  only some specific instances). So the above proves that Gl is not 

L -  embeddable into Gj. 

More precisely still, we have shown above that there is no pure embedding (pure = Z °) 

of G 1 into Gj .  We can improve this to show there is no embedding in the algebraic sense. 

(see [Sh 136 pg 1061o - 1077] and below). Unfortunately for the coherence of the theory the 

proof does not imply this directly. Rather we need (for ~t = R0) 

2.6A Defini t ion:  1) Pr~(l, J) means: (letting % be large enough) for every x ~ H(%) 

there is M, x ~ M such that: 

M < (H(z ) ,~ ) ,  ~t+l c M and I, J E M, 
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and for every rl ~ P~,  [{rlrn:n < m} c M ~ r I ~ I]. 

but for  some rl E P t ,  {I1 r n:n < 03} c_ M but rl ~ M 

2) Prg, K(l,J ) is defined similarly,  replacing K~,  with K~,  K:. 

3) Pr~ac(I,J) is defined similarly adding M = k..) Mi where 8 is a l imit  ordinal,  M i < M, 
i<8 

( M i : i  < 8} is increasing continuous and (Mj : j  < i )  e Mi+l, and for some rl e P /  

{11 r i : i < ~c} included in M but in no M i, i < 8. 

4)  * Pr~t,~ (l ,J) is defined like (2) with 8 = ~:. 

2.6B T h e o r e m :  Suppose ~. > g,  and 

(i))v is regular,  or  

(ii) X = ~g0 strong l imit  or 

(iii) (3Z)[bt < Z^(Z~°)  + < )V < 2 ~] or 

( iv))~  = Y'. X i, c f  ~. < )% each )vi a regular  cardinal and for each i < cf  (~.) there is 
i<cf ~. 

Si ~ {8 < X:cf 8 = RO} such that (V8 < ).)[ V cf  (8) = ~.j ---> Si("~8 not stationary]. 
j<i 

Then (A) there are I a ~ Kt~r, Ilc~ I = ~ for  ot < 2 x, such that Prg(IeL, I~) for  ~ ~ ~ < 2 x 

(B) there are for ~x < ~., leL ~ Kt~r, I I a  I = ~., such that 

Pr~( l~ ,  ] ~ I ~ )  

2.6C Fac t :  I f  X > I.t and the conclusion (A) of  Theorem 2.6B holds then there are 2 ~ 

separable reduced abelian p-groups  of  cardinali ty ~. no one embedded  into another. 

2.6D Discuss ion:  W e  still can get considerable amounts  of  information by the genera] 
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theory. When we want many models of K (no one embeddable into the others) we need 

(*) there are 2 x index models I of power 9~ each q0K(2,~-unembeddable into any other. 

But when you want rigid, indecomposable, etc. you need 

(*) there are {Is E K:~Z < ~}, I s ,  q~K-unembeddable into 

113 ( a n d l s  has cardinality ~). 

Why? 

2.7 Example:  Constructing Rigid Boolean Algebras. For I ~ K let BA (I) is the Boolean 

Algebra freely generated by {an:rl ~ I} except the relations a n < a v  when v ~ P / ,  

n < c0,r I = v r n. Start with B 0 = {0,1}, successively for some ai ~ Bi, 0 < ai < 1, take 

Bi+ 1 = (B i r (1-ai))  + ((B i r ai) * BA(Is ) )  

B~ = k . , ) B i = { a i : i  <).}, I l s l  =~.  
i<~. 

Of course we chose {Is:o~ < 9~} such that I s  is q0tr-unembeddable into ~ 113. The point is that 
13#s 

each a E Bx-{O,1} was "marked" by some I s ,  (the c~ such that a s  = a). Now BA(Is )  is 

embeddable into Bx r a s ;  but Bx r ( 1 - a s )  is weakly Lo~,o~- represented in 914"co,0~( ~ I13). So 
13<s 

for no automorphism f o f  B x, f ( a s )  < 1 - a s  which suffice to get "B x is rigid"; in fact it has no 

one to one endomorphism. If  we want stronger rigidity and/or B x ~ c.c.c, and/or B x is com- 

plete we may have to change KtC°r and/or q0tr. See [Sh 136] (e.g. 0.2, 0.3). 

This illustrates some of the complications in definition 2.1. E.g. the weak representation 

and the uncountable ~ (for complete BA.) 
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§3. Order implies many non-isomorphic models 

In this section we prove that not only any unsable T has in any ~. > I T I + R 1, the maximal 

number (2 ~') of pairwise non-isomorphic models, but that for any qb proper for linear orders, if 

the formula q0(2,y) with vocabulary z order {-ds:s ~ I} in EMx(I, ~ )  (Ehrenfeucht-Mostowski 

model) for any 1, then the number of  non isomorphic models EMx( I ,~ )  of power k up to iso- 

morphism is 2 ~ when )~ _> I x~ I + 1~ 1. In'previously dealing with this problem, the author in the 

first attempt [Sh 12] excludes some cardinal 9~ when X = I~a'l + R1 and in the second [ShA1, 

VIII §3] replaces the EMx(l,  Cb) with some kind of restricted ultrapowers. As subsequently ([Sh 

100]) we prove that PC(T1,T  ) = {M [ "fiT) : M ~ TI} (T an unsuperstable theory, T 1 first 

order IT 1 I = ~1, ITI = N0) may be categorical in ~1 and for T = the theory of dense linear 

order, may have a universal model in R ] even though CH fail, we thought that the use of  ultra- 

power was necessary. 

Now we can get the theorem also for the number of models of gt e L~.*co in )~ ( > R 0) 

when V is unstable. Incidentally the proof is considerably easier. 

Note that we do not need to demand (p(Y,y) to be first-order; a formula in any logic is O.K.; 

it is enough to demand (p(2,y-) to have a suitable vocabulary. This is because an isomorphism 

from N onto M preserve satisfaction of such q) and its negation. However the length of  x (and y-) 

is crucial. Naturally we concentrate on the finite (in 3.1-3.11). But when we are not assuming 

this, we can, "almost always" save the result. In first reading, it may be advisable to concentrate 

on the case "~, is regular". 

3.1 Definition: Let M be a model I an index model for s ~ I, as is a sequence from M, 

the length of as depend on tpqf(S, ~ ,  I )  only ; W is a set of formulas of the form cp(Y,~), ~ from 

M, ~p has a vocabulary contained in ~(M). 

1) We say (Ss:S ~ I) is weakly K-skeleton-like for • when: for every q~(Y,E) ~ 'if', there 

is J ~ I, I J I < ~: such that: 

(*) if  s, t ~ I, tpql-(t, J, I)  = tp~(s, J, I)  then M ~ tp[as,E] = (p[Et,a] 
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2) If  W = {q~(~,~):q0(Y,y~) e A ,  ~ e J} we write (A,J) instead ~t'; if A = {q~(Y,y~} we 

write q~(-2;y--) instead A, if J = {ff:~ from A, and for some q0(Y,y-) e A, ~g(a-) = eg~)}  we write A 

instead of J. 

3) Supposing ~(2,y-) ~Icp~, x-), I a linear order we say (as:S ~ I)  is weakly (~:,q0(Y,y~)- 

skeleton like for J if : q0(Y,y-) is asymmetric with vocabulary contained in "r(M), 

tg(ds)  = lg(-£)= l g ~ ) ,  (as:s ~ I)  is weakly K-skeleton like for ({q0(~,y),gt(~,y-)},J) and for 

s, t  e M , M N cp[~s,~t] i f f  I N s < t. 

4) In part (3) if J = a IMI,  ot = tg(x-) = t g ~ )  we write "inside M" or, "for M" instead 

"for J". 

Note that Definition 3.1 requires considerably more than "the as are ordered by qY' and 

even than "the as are order indiscemibles ordered by q0." 

We now want to assign invariants to linear orders. We quote proofs from the Appendix to 

[Sh] where different terminology was employed. Speaking very roughly, we there discussed 

only INV~ where ~: = 1%. The assertion in the appendix that two linear orders are contradictory 

corresponds to the assertion here that the invariants are defined and different. 

In the following, for any regular cardinal g > R 0, D~ denotes the filter on I.t generated by 

the closed unbounded sets. If  E is a filter on g and F ~ g intersects each member of E, then 

E + F denotes the filter generated by E k.) {F}. 

For a linear order I and a cardinal ~c, let D = D(~,  I)  be Dcf(l) + {8 < cf(I) : ~ <_ cf(8)}. 

Two functions f a n d  g from cf(I) to some set X, are equivalent rood D if {8 : f(8) = g(8)} e D. 

We write f / D  for the equivalence class of f for this equivalence relations. 

3.2 Definition: For • a regular cardinal, c~ an ordinal, we define INV~ (I) for linear ord- 

ers I, by induction on cx: 

Ct = 0 : INV~ (I) is the cofinality o f / i f  cf(I) is >~;, and is undefined otherwise. 

c~ = ]3 + 1: Let I = U li, with I i increasing and continuous in i and li a proper initial segment 
i<cf I 
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of / .  For 8 < cf(1) let J~ = (I-I8)* (where X* denotes the inverse order of  X). 

If  cf(I) > ~: and for some C club of cf(I) 

(*) if 8 ~ C have cofinality at least ~c, then INV ° (J~) is defined 

then we let 

INV~ (I)=(INV~ (Js):cf(5)>~c, 8<cf ( I ) ) /D  Oc, I) 

Otherwise INV~ (I) is not defined. 

o~-limit: INV~ (I) = (INV~(I):13 < o0 

Remark :  Really just c~ = 0,1,2 are used. For regular )~,ot = 1 suffice but for singulS.r )~, 

ot = 2 is used (see 3.4). 

3.3 Lemma:  Suppose ~c is regular and/ ,  J are linear orders, as(S~I), -bt(t~J) are from 

M, q~(-£,y-) an x(M)- formula (~>eg(2) = t g ~ )  = eg(~s) = tg(-b,)) ~(-i,y-) ~=%~,~). Assume: 

(a) (cO for every s e I for every large enough t e J M ~ q0[as,b-t]. 

(13) for every t e J for every large enough s e I M I= ~[bt,ffsl. 

(b) (~) (as:s ~ I) is weakly (~:,q0(E,~))-skeleton like in M. 

(~) (-bt:t ~ J) is weakly (~:,cp(Y,~))-skeleton like in M. 

(c) INV~ (I), INV~ (J) are defined. 

Then INV~ (1) = INV~ (J). 

Proof:  Just like [Sh,AP 3.3]. 

3.4 Lemma:  1) If )~,~: are regular, ~ > ~:, then there are 2 ~" linear orders lct(o~ < 2~'), 
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each of  power ~,, with pairwise distinct INV 1 (Icc)0x < 2~'), each well defined. 

2) If  X > K, K: a regular then there are linear orders Ic~(~ < 2~'), each of power ~. with 

pairwise distinct INV~ (Ic~)(c~ < 2~), each well defined. 

Proof:  By [Sh,AP 3.3]. 

Now we want to attach the invariants of a linear order I to a model M which has a 

skeleton-like sequence indexed by I. In c~) (in Definition 3.5 below) we define what it means for 

a sequence I to (~,0)-represent the {(p,v}-type of c over A. (In the simplest case I has cofinality 

0 from below and the same cofinality as I* from below with respect to a weakly (~:,cp(~,y))- 

skeleton like sequence its index set in M.) In [3) we say that the type of c over A has a (~,0,c0 

invariant if 

(1) all sequences with defined invariants agree. 

(2) some representing sequence, its index set (which is a clear order) has a defined 

INV~ a . 

More fully and formally: 

3.5 Definition: Let A c_ M, ~ ~ M and cp(~,y) an asymmetric formula with vocabulary 

contained in x(M) and ~g(~,y)=(p(~,~). 

(a) We say (as:S e I) (~c, 0)-represent ~ ,  A, M,q)(k-,~))/f: 

I is a linear order, and for some linear order J of cofinality 0, J (-~ I = ~ ,  and -at ~ tg~)A 

for t E J, such that for every large enough s e I, as realizes tp{~,~.v(~,y)) (c, A,M) and 

(as:S ~ J+(/)*} is weakly (~,cp(x,y))-skeleton like for M (/*-the inverse o f / ) .  [if 0 ~ ~, less 

suffice]. 

([3) We say ~ ,  A,M, cp(Y,y)) has a (~:,0,~)-invariant when: 

- t  * 
(i) if for e = 1,2, (as:S ~ I t )  (~:,0)-represent (F, A, M,q)(x,y)) and INV~(I  t) are 
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INV~ (I 1) = INV~ (I2). 

(ii) some (as:s e I )  (~:,0)-represent (~, A,M, ~p(Y,y-)), with INV~ (I) well defined. 

([3)' Let "(K, oQ-invariant "means" (n,0,oQ-invafiant for some regular 0 > n. Similarly for 

"N-represent". 

(T) Let INV~ (-E,A,M, cp(Y,y)) be INV~ (I) when ( ( ,A,M,  (p(Y,y)) has (~:,0,oQ-invariant and 

(as:s ~ I )  (~:,0)-represent it. 

3.6- Discussion: Each of Definition 3.6, Lemmas 3.7 and 3.8, and the proof of Theorem 

3.9 have 3 cases. In the easiest case ~. = IIIM IlL is regular. When ~. is singular the computation of 

1NV~ (~,  cp(Y,y)) is easier when cf(~) > K (case 2). The third case arises when ~. > ~ > cf(~.). 

The easiness of the regular case is caused by the fact that any two continuous increasing 

representations of a model with power ~. must "agree" on a club. In the second case we are able 

to restrict the first argument to a cofinal sequence of M. For the third case we must construct a 

"dual argument", noticing that much of a long sequence must concentrate on one member of the 

representation. 

3.6 Definition: Let cp(Y,y-) be a formula with vocabulary ~ x ( M )  (egCE) = ~g(y)), M a 

model of power ~, ~, > n, n regular, c~ an ordinal. 

(0) If  M is a model of power ~, M is a representation of M if: 

M = (M i : i < cf~,), it is increasing continuous IIIMi III < %, 

Similarly for sets. 

M = k_) Mi (and M i ~ M ) .  
i<Z. 

1) For ~ regular: 

1NV~ (M, cp(E,y)) = {e: for ever '  representation (Ai : i < ~) of  
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l M l, there are 8 < X and ~ • M, such that cf  5 > ~ and e = INV~ (-d, A ~, ,~p(Y,y)) 

(so the latter is welt defined)}. 

2) For regular cardinals 0 > K, X > cf  X = O, a model M of cardinal X and an asymmetric 

formula ~p(Y,y--) (in "c(M)) let 

D0,~ = D o  + {8< O:cfS>K} 

INV~,o(M) = {(ei:i < O)/Do.~ : for every representation (Ai:i < 0} of  IMI,  there are S • Do,~ 

and for  every 6 e S there is c-8 • M such that e ~ = INV~ (~~, A ~, M, q~(Y,y-))}. 

3) For a regular cardinal 0, X > 0 > ~c + cf  X and function h with domain a stationary 

subset of {~ < O:cfS>~}  and range a set of regular cardinals < X, let 

Dh. ~ = D O + {{~:h(~)>-I.l.}:g<~}, and assuming Dh. ~ is a proper filter let : 

INVC~j~ (M, cp(-£,y-)) = {(ei:i < O)/Dh, X : for every representation 

(Ai:i < of X), of IMI there are 7 <  c f X  and S • Dh, X, S c D o m  h, and for each 5 e S, for 

some -d • M, ei = I N ~  Cd, A,M,  ¢p(-£,y-))}. 

3.6A Remark:  Of course, also in 3.6(1) we could have used (ei:i < X)/D ~. as invariants. 

3.7 Lemma:  Suppose q0('Y,y) a formula in the vocabulary of  M, ~g(x--)=Lg~) < co. 

1) If  X > ~o is regular, M a model of  cardinal X, ~: regular <X, then INV~ (M, cp(-Y,y-)) 

has power <~.. 

2) If  ~, is singular, 0 = cf  X > ~, then INV,, o (M, q0(Y,y)) almost has power <_X, which 

means: there are no e~ (i < 0,4 < X +) such that 

(i) for ~ < k +, (e~ : i < O)/D o,~ • LW~.0 (M, q~(x-,y)) 

(ii) fo r i  < 0, ; < ~ < X +,e~ c e ~  

3) If  X is singular, 0 regular, ~: + cf  X < 0 < X, h a function from some stationary subset 
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{i < O:cfi > ~}, into {g : p. < ~ is a regular cardinal}, Do, h a proper filter, then 

INV~ h (M, cp(~,y)) almost has power <X, which means: there are no e~ (i < 0, ~ < X +) such that 

(i) for ~ < ~+, (e~:i < O)/Do, h ~ INV~:h(M, cp(-£,y~) 

(ii) for i < 0,~ < ~ < ~.+, e~ ¢ e~. 

Proof:  Straightforward. 

We now show that if  I i t  < ~ and INV~ (/) is defined then there is a linear order J such that 

if a model M has a weakly (K, cp)-skeleton like sequence inside M of order-type J then 

INV~ (I) e INV~ (M, q~). Again the proof splits into three cases depending on the cofinality of ~. 

The following result provides a detail needed for the proof. 

3.7A Claim:  Suppose (at:t E J)  is a weakly (~, q~)-skeleton like inside M and I ~ J .  I f  

for each s ~ J either {t ~ l:t  < s} or the inverse order on {t ~ l: t  > s} has cofinality tess than 

r~ then (at:t ~ I) is weakly (~, cp)- skeleton like for M. 

Proof:  We must show that for every q~(x,~) there is an la  ~ I with I/~1 < ~c such that if 

s,t  ~ I and tpqf(S, I~, 1) = tpgf(t,l~,I) then 0(as,a-) = 0(at ,a)  for 0 = cp,~/. We know there is 

such a set J~ for J and cp~,~). For each s ~ J~ choose a set Xs of <~ elements of  I such that Xs 

tends to s, i.e. to the cut that s induce in I (either from above or below). (so if s ~ I, Xs = {s}, 

otherwise use the assumption). Le t I~  = k.) Xs. Now it is easy to see that if t l  and't2 ~ I have 
s~J~ 

the same a f-type over I~ they have the same qf type over J~ and the claim follows. 

3.8 L e m m a :  Assume  tg(x) = eg~')  < R0, cp = q0(~,y-). 

1) Let K > R0 be regular. If  I is a linear order of power <~., and I N V , ( I )  is well 

defined, then for some linear order J of power ~. the following hold: 

(*) if  M is a model of  power ~, as E M, (-ds:s ~ J)  is weakly (~:,q~(~,y--))-skeleton like 

inside M (q0(x,y-) asymmetric), then INV~ (I) ~ INV~ (M, cp(~,y)). 
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2) Let X be singular, 0 = cf ~. > ~, ~. = ]~ ~, Xi increasing continuous for i < 0, I i is a 
i<0 

linear order of  cofinality > Xi and cardinality < k, INV,([ i )  well defined, then for some linear 

order J of power ~. the following holds 

(**) if M is a model of power X, as • M, (as:S • J) is weakly (n, tp(~,y-))-skeleton like for 

M, (q0(Y,y-) asymmetric) then (INV~ (Ii):i < O)/D 0.~ belongs to 1NV~ (M, qg~,y-)). 

3) Let ~. be singular, 0, ~ regular, ~. ~ 0 > (cf(~.) + ~), ~. = ~ ~.i, Xi increasing continu- 
i<cf k 

OUS, and for i < O, [i a linear order, INV~ (Ii) is well defined. Then for some linear order J of 

power ). the following holds: 

(***) i fM is a model of power K, as • M, (G:s • J)  is weakly (~;,(p(Y,y-))-skeleton like for 

M, (cp(Y,y) asymmetric), h a function from a stationary subset of {5 < O:cf 5 -> ~} and range a set 

of regular cardinals (~. but >0, D O,h then (INV~ :h (Ii):i < O) /D O.h belongs to INV,; h (M, ¢p(-Y,y-) ). 

Proofi 1) We must choose a linear order J of power ik such that: if J indexes a weakly 

(~:,qg(-Z,y-))-skeleton like sequence inside M then INV, ( I )  • INV,(M.  ~p('2,y-)). For this we must 

find for any continuous increasing decomposition a c •  M and a 8 with 

INV~(-d, A8,M, cp(-2,~) = INV,(I ) .  To obtain 5, we use a function s :k  --~J. Let for 0~ < )~. I a  

be pan'wise disjoint linear orders isomorphic to I*. 

Let J = ]~ t~  (I* means we use the inverse of  as an ordered set). Suppose (as:s e J} is 
c~<k 

weakly (K, cp(Y,y-))-skeleton like inside M, (9(-2,Y)) asymmetric), M has cardinality ~. Let 

s ( a )  e I a  and M = k.)Aa , IAal  < ~., ( A c d a <  ~} increasing continuous. By the definition of 
ct<~, 

weak 0c, cp(x,y-)) skeleton (3.1(1)), for every (finite) g • M, there is a subset Jz of  J of  power 

< K such that: i fs ,  t • J -Jg  induces the same Dedekind cut on Ja, then M ~ q0[~s,~]=cp[~t,fi "] 

and M N q0[~,~s]-=q~[~,gt]. Since ~. is regular for some closed unbounded subset C of ~, for 

5 •  C: 

(*) (i) G(a) e A ~ for a < 5 

(ii) ] a  ~ Y~ I~ for ~ e A S 
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So it is enough to prove that for 5 e C of cofinality > ~, 

INV~(1)=INV~(~s(~), AS, M, cp(-Z,y)). It is easy to see that (-ds:seI~) ~:-represent 

(as(~),A ~,M, q~(k-,y--)). The required 0 and J in Definition 3.5(c0 are cf(8) and (as (~):[3 < 8). Now 

use claim 3.7A. So (see Definition 3.5(y)) it is enough to show that (8~(~), A ~,M, q0(~,y)) has a 

(~:,t~)-invariant. Now in Definition 3.5(13), part (ii) is obvious by the above; so it remains to 

prove (i). 

Let 0 ~I cf 5. 

_ t  
So assume that for t = 1,2, (as:s e I t) (~,0)-represent (as(~), A~, M,q)(Y,y)), let jr,  

(att:t ~ jr)  exemplify this and let J~ = Jt+(lt)* and assume INV~(I t) are well defined. We 

have to prove that INV~ (I 1) = INV,(12). We shall use Lemma 3.3 (with 11, 12 here standing 

for I, J there). 

Remark:  The following observation underlies the next step in the proof. It follows 

easily from Definition 3.1 (1). 

3.8A Fact: Suppose (-ds:s ~ J+l*) is weakly (~,(p)-skeleton like inside M and both J 

I* and I have cofinality >~. Then for every b ~ M there exist so e J and sl  e such that if 

I* s 0 < s,t < s i (in J + ) then 

Now we return to the proof of Theorem 3.8. 

Let us prove (a)(¢x) from 3.3. So suppose it fail, i.e. s e 11 but for arbitrarily large 
_1 _2 

t e (i2)*, M ~ ~cp[as,at ]. 

Since ( g  : t ~ j2+I2) is weakly (~;,q~)-skeleton like inside M the preceding Fact 3.8A 

yields that for arbitrarily large t e j2, M ~ ~cp[as,at ]. Since as and as(~) realize the same 
_ _ 2  

{cp, v}-type over A~, (Definition 3.5 (c~) this implies M ~ ~(P[as(~),at] for arbitrarily large 

t e j2 .  Choose such to ~ Ji. This quickly contradicts the choice of  j2  and 12. For, it implies 
_2_2  

that for every t e 12, we have M ~ ~q)(a t ,ato ) which is impossible if J2+I2 is weakly (~,cp)- 
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skeleton like (Definition 3.1(3)). 

2),3) Left to the reader (or see the proof of case (d) in Theorem 3.11.) 

3.9 Theorem:  Suppose )~ > ~c, K~ a family of  x-models, each of power )~, ~p(~,y) an 

asymmetric formula with vocabulary ~x and t g ( ~ ) = t g ~ )  < R0. Suppose further that for every 

linear order J there is M ~ K~., and as ~ M for s a J such that (-ds:s ~ J)  is weakly (~c, q0(~,~;))- 

skeleton like in M. 

Then, in KX, there are 2 ~ pairwise non-isomorphic models. 

Proof: Let first ~. > N0 be regular. 

By 3.4 (1) there are linear order I t (~ < 2 ~') each of power ~,, such that INVI(I~)  are well 

defined and distinct. Let J ;  relate to I t as guarantee by 3.8(1). Let M ;  E KX be such that there 

are ~s ~ ~ M~ for s ~ J~ such that (as:s ~ J ; )  is weakly (l(,q~(~,~))-skeleton like inside M~ 

(exists by assumption). By 3.8(1) INV~ (14) E 1NV~ (M;,q~(2,~')). 

Clearly M ;  ~ M{ ~ INV~ a (M ~,q0(2,y-)) = INV~ (Mg,q~(2,y)), hence 

M~ = M {  ~ I N V ~ ( I ~ )  ~ INV~(M{,  q0('k-,y)). So if for some { < 2 ~', the number of ~ < 2 ~" for 

which M ;  _--M~ is > ~., then INVI(M{,~p('£,y)) has power > i~. (remember 1NVI(I;) ,  ~ < 2 ~', 

were distinct). But this contradicts 3.7(1). So {(~,~):~,~<2~',M;=-M~}, which is an 

equivalence relation, satisfies: each equivalence class has power <~.; hence there are 2 ~" 

equivalence classes and we finish, 

For ~, singular the proof is similar. If  cf ~, > ~:, we can choose 0 = (cf)~) and use INV',  0, 

3.4(1), (3.8(2), 3.7(2) instead of INV,,  3.4(1), 3.8(1), 3.7(1) respectively. 

I f  cf)~ < ~:, let 0 = ~+, so ~, > 0 > ~+ cf ~; hence we can find 

h : {5 < 0 : cf  8 > ~:} ~ {It : It + cf It < 9~} such that for each It = cf It < ~, {~ < 0 : cf  ~ > 1< and 
2 h  h(~) = It} is stationary. Now we can use INVE0, 3.4(2), 3.8(3), 3.7(3) instead 1NV 1, 3.4(1), 

3.8(1), 3.7(1) respectively. 

Sh:300



350 

Alternatively for ~, singular see proof of 3.16 and 3.11. 

3.10 Conclusion: 1) If T1 is the first order T c T1, T is unstable, and complete, 

> I T l l  + N1 then there are 2 k pairwise non-isomorphic models of T of power ~. which are 

reducts of models of T 1- 

2) I f  T c T 1 are as above, ~. > IT 1 I + K +, % = %<~, ~c regular, then there are 2 ~" pairwise 

non-isomorphic models of T of power ~, which are reducts of models M} of T1 such that Mi,M ) 

are ~-compact and ~-homogeneous. [really we can get strongly homogeneous] 

3) If ~g~ L~÷,o('c1), "~ c '~  1, /g has the order property for L~.+,o [i.e. for some formula 

q~(£,y) ~ L~.+,co for arbitrarily large IX there is a model M of ~ and ai ~ M for i < Ix such that 

M ~ q)[di,~j] i f f i  < j a n d  eg(2) = eg(y) < R0]. 

Then for g _> ~. + R 1, xg has 2 ~" models of power It, with pairwise non-isomorphic "~- 

reducts. 

Proof:  1) By [Sh] VIII 2.4 (and see assumption V just before it, p. 39411A4) we have 

the assumption of 3.9. 

2) By [Sh] VII 3.1 or case II of the proof of Theorem 3.2 (there) we have the assumption 

of 3.9. 

3) See e.g. Grossberg and Shelah [GrSh 222] why the assumption of 3.9 holds. 

Now we turn out attention to the case the sequences are infinitary (see more in the latter 

version): 

3.11 Theorem:  Suppose ~ < ~: < ~. are cardinals, I¢ regular, and in 3.9's hypothesis we 

have ¢g(as) = tJ > R 0 then 3.9's conclusion statement holds, if at least one of the following 

holds: 

(a) ~ = Xo 
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(c) Replace 3.9's assumption by: 

( * ) l ~ a < 2  L, c f X > a .  

(*)2 for every linear order J of  cardinality )~ there is Ms ~ K~. and (as:S ~ J) 

(as ~ a lMI)  which is weakly (~:, <)~, q0(E,y))-skeleton like inside M (see definition 3.12 

below). 

(d) Replace 3.9's assumption by: for some regular It(0) < 2~': 

( * ) 1  cf  ~ > (Y. 

(*)2 as in (c). 

(.)~(0) f o r J  ~ K~ r, ( = (gor)~.) and a setA c_ Mj (from (*)2) if IAI < ~. then: 
a (i) It(0) > I S{,p,v) (A, M) I or at least 

(ii) It(0) > l{Av{m,w)((bi:i < ~c), A, M)  :bi ~ A for i < 1¢, the average is well defined 

and is realized in M} and if cf  ~ < )~, I A I < (cf )Q + ~ is enough. 

(e) Replace 3.9's assumption by: 

for some regular g(0) < 2 ;~ 

(*)4 g(°) for every J ~ K~ r there is Mj ~ K~ with (ffs:S ~ I)  weakly (~:,qo(x,y))- 

skeleton like inside M (so as e a I M I ), such that: 

(i) g(0) > I {Av{ , ,w( (b i  : i  < ~;), M, M): for i < K, bi ~ a IMI ,  and (bi : i <~;) is weakly 

(~, qo(E,y))-skeleton like inside M} I (on Av see Ch I, §2, we can even restrict further the set of  

(bi : i <~:) which we consider). 

(f) for some g < )~, there is a linear order of power It with ->)~ Dedekind cuts with upper 

and lower cofinality _> K and 2 g+a < 2 ~'. 
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3.12 Definition: We say ('ds:s • I> is weakly 0¢,<k, q0(2,~))- skeleton like in M if." 

Definition 3.1(3) holds, and for each A c_M, IAI < It, there is J ~ I ,  IJI < )~ such that for 

every ~ • aA, 3.1(1)(*) holds. 

If  ~t = ~. we omit )~. 

Proof of 3.11. 

Case (a): We can in Definition 3.5 replace A by J, a set of  sequences of length a from 

M. Thus in Definition 3.6, replace (Ai:i < ~.> by <Ji:i < cf()~)>, a lMI  = k.jJi, IJiI  <)~, Ji 
i 

increasing continuous. No further change irt 3.1- 3.9 is needed. 

Alternatively, we can define N = F a ( M )  as the model with universe IM[ k . j a l M I ,  

"¢(N) = x(M) k.) {Fi:i < ~}, RN = RN for R ~ '~(M), 

GN(xl . . . . .  Xn)=~GM(x l  . . . . .  xn) if Xl . . . . .  xn~  IMI 

L x 1 otherwise 

for function symbol G ~ x(M) which has n-places and 

FN(x) = { ; ( i )  ififx~MX ~ a ,Mi  

f o r / < a .  

Note that M 1 = M2 if and only if Fa(M1)  = Fa(M2),  IIIFc(M)III = IIIM Ill a, etc. So we 

can apply 3.9 to the class {Fa(M ) : M ~ KX.} and get the desired conclusion. 

Case (b): Left to the reader [use weakly (~c, tp(~,y-))-skeleton like sequences 

(as : s e I¢+(I;)*> in M ;  a Kx for ~ < 2 ~', with <INV~(I~) : ~ < 2 x> pairwise distinct, and count 

the number of  models (M;,  (as:s E ~>) up to isomorphism, then "forget the as, s e ~", i.e. use 

3.13 below (= [Sh, VIII 1.3]))]. 

Case (c): Repeat the proof of 3.9 (the only difference is that the cardinality of the 

invariant of  M/ i s  < ~a rather than < ~.). 

Case (d): If  ~, is regular use case (c). So let us assume cf~. < ~, and let 0 ff1¢ + cf)~ 
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(which is regular and < )-. Now for ~t regular > ~ ,  Ix -< )-, let {I~ :co < 2 ~} be such that : 

(i) INV~ (I~) * INV~ (I~) for (x ¢ [~ 

(ii) the order I~ has cofinality IX and cardinality )-. 

Let lga,; _--I~ for ~ < ~:+ and w.l.o.g, the members of {Iga,;:~t<)- is regular, 

<~:+ , c~ < 2 ~'} are pairwise disjoint. Now let h : 0 + ~ {IX : IX < ).,IX regular} be such that for 

every regular )C < 0, {8 < K + : cf 8 = ~, h (8) > Z} is stationary. We define for cc < 2 ~', ~ < ~:+ 

the linear order Jc~,; as (Ih!~))*, J a  = ]~ Jc~,;, and set s (~, ;)  ~ Ja , ; .  

So by (*)2 there is, for a < 2  x, a model M a ~ K ~ . ,  and ( a s : S e J a ) ,  e IMal  a $  ) 

(as :s ~ Ja)  is weakly ({~:, <)-, q0(Y,y~)-skeleton like inside M. 

Let for M ~ K;~, G (M) be the set of (e  i :i < ~:+), e i is INV~ (J) for some J of cofinality h (i) 

and cardinality )-, such that: 

(*)for every (A 0 : i < ~;+), IA/°l < 0, A 0, increasing continuous in i there is (A!:i < 0+), 

A~ increasing continuous in i, IA} I < 0, A ° c A} such that (if (i) of (,)~(0) of Case (d)) : 

{i: for some g ~ o IMI,  ei = INV,(g, A! ,M, ~(~,y-))} ~ Dh, X (see 3.6(2). 

(we leave (ii) of case (d) to the reader. 

Now if M = M a  let A} = A  ° k_) k.)a-s(a); now we know that for A~ there is j a  ~ j a ,  
~<i  

IJal  <)- ,  as in Definition 3.11A. So { i < 0  + : c f i = O ,  t.jJa(-5Iha!~ ) is bounded in 
j<i 

lh!~ )} ~ Dh,~ (why?: as ~:+ < )- apply 3.12 to L)A)).  So easily 
J 

(INV~ (ih!~)) : ; < 0 +) ~ G (Mc~). Easily by (,)~(0) for every M c~ 

I{p : (e~:~ < 0 +) e G(Ma) } I  < It(O) 

andMa =_Mf~ ~ G(Ma) = G(Mfl). As Ix(0) < 2 ~" is regular, we can finish easily. 
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Case  (f): By the fol lowing variant of  [ShA1, VII  1.3]. 

3.13 Fac t :  If  x2 = 'c1 k...){ci : i ~ I}, ci- individual  constants, K a class of  x t -models  (for 

e = 1,2) M ~ K 2 ~ M r "c I ~ K 1 and Ix = I(~.,K2) > ~ltl then I(~.,K~) > Ix (so i f  bt = 2 ~'+lx* I , 

equali ty holds.) 

3.14 Conclus ion :  1) Suppose ~ ~ Lx*,co(~ 1), X ~ Xl, (P(-E,Y~ ~ LZ*:o(X), 

tg(x-) = t g ~ )  = g-<Z, and for every t.t for some model  M of  lit there are ai  ~ gM(i<IX) such 

that M ~ (p[-di,-di] i ff  i < j. Then for every )V > % + ~+, ~ has 2 ~" models  of  power  )v with pair- 

wise non-isomorphic  z-reducts.  

2) Suppose ~ t~  Lz÷,co(x0) , ~pt(~,y-) ~ Lz,,~( 'ct)  for t = 1,2, tg(k-) = t~-) = c,  

gO = "el ("1X2, {~/,~Pl (x,Y-),q~2(E,y)} has no model  and 

(*) for every ~ there is a %-mode l  M and a~ e ~ I M I for 13 < o~, such that: if  13 < 7 < ot 

then 

(i) for some expansion M '  of  M, M '  ~ cpl [al~,a~], 

(ii) for some expansion M '  of  M, M" ~ cp2[a~, al~]. 

Then for  ~. > X + ~+,  I(~.,W) = 2 ~ (i.e. there are 29~ non isomorphic  %-mode l s  of  W of  car- 

dinali ty 9~). 

P roof :  1) fol lows f rom (2). 

2) We know that for some • proper  for Kor, for every I ~ Kor, EM 1 (I, ~ )  is a model  of  

V and for s , t  e I,  if  I ~ s < t then 

EMI( I ,  rb) ~ q01[~s,at] EMI(I ,  rb) ~ --, (p2[ds,dt]. 

(see [Sh16, Th. 2.5], [Gr Sh 222]). 
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So we can use 3.16 below cases (C), (D) (E) (as 0 = R0) 

We may want in e.g. 3.10 to get not just non isomorphic models, but non isomorphic 

because some nice invariant is different. 

3.15 Definition: (1) Let Ix be a regular uncountable cardinal, h a function from some sta- 

tionary S c_ Ix to a set of regular cardinal < )~, M a x-model, q)(2,y) a formula in the vocabulary 

x, tg(-x) =tg(y-) = ~. Now M obeys (h, q0) if  the following holds: 

(*) there is a function H from (S<g(M)) <~t to S<~t(M) such that: 

if (Ai:i < IX) is an increasing continuous sequence of subsets of M, IAiI< ~., 

H((Ai:i <j ) )  ~Aj+ 1 then for some club C ~ IX, for ~ e C (-~ S the following holds: 

(9 if for i < cf (8), ai c_Aai for some c~i < 8, (ai:i < c fS)  is weakly (~, q0(E,~))-skeleton 

like inside M, for each ot < 5 (tp {~,v)(ai, A c~): i < cf (8)) is eventually constant and p is a sub- 

set of p* =~I{0(2,~):c-cM, and for every i <  cf(8)  large enough ~ 018i,~ ~] and 0(Y, Y) is 

{¢p(Y, ~),~cp(Y, ~), cp~, E), --,(p(y,-£)}} of power <h(8) and p* r A~ is realized in M then p is 

realized in M. 

2) In (1), we say that M obeys (h, q0(x,~)) exactly, if  in (*), for 8 ~ C (-5 S, (9 fail for 

h (8) + (i.e. for some ai, P a is there, Ipl = h (8), p is not realized in M. 

3.16 Theorem:  Assume )~ > ~, q0(2,~) an asymmetric x(K)-formula, ~ = Lg(E) = lg(y). 

Suppose that for I ~ K~ r there is a x-model M1 e Kx, weakly full q0(E,i~)-represented in 

9P/'x,0(l) where X > Z + c+ + 0 and for s e I, as = (Fi(s) : i < c0 e ~ IMII:  MI ~ (P[as,at] iff 

s < t ( fors , t  ~ I). 

Then IOn,K) = 2 ~" in the cases listed below and in some we get reasonable invariants. 

Proofi  Note that, letting • ~Ic+ + O: 
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<g,  q0(J,~))-skeleton like in MI, whenever g_> ~, 

C a s e  A :  ~.o = ~, 

As ~=~so+ + 0 <3, we can apply 3.11 case (a), so we can assume X = 9~ < ~g, from now 

o n ,  

Case B: ~,° < 2 z', ~: < ~. cf)~ > o. By 3.11(c). 

Case C:  ~, is regular (k/p. <~,)[p<0 < ~,], ~. > ~++, X < ~.- Let So = {8 < )~:cf8 > ~}. For 

a function h:So ~ {g : g a regular cardinal, 1< _< Ix < ~} let I h be the linear order, with set of  ele- 

ments {(o~,~):~ < ~ + ~:, [3 < h (~)  if ~ ~ So and [3 < ~: otherwise}. Order is: (~1,~1) < (~2,~2) 

i f  and only ifcxl < e~2 or oq = ~2, [~1 > 132- Now 

(a) MIh obeys (h, (cp(Y,y)) exactly (see Definition 3.16). 

This clearly suffices and is easy. 

Case D: Like case C but X = ~+, like case C but h:So ~ {•+,K}. Using 3.17 below, we 

let J = J[~q x J[•] ~ K~ r. L e t J  = k.) J~, J~ increasing continuous, IJ~ I < ~., c f J  = cf(J) ~ = ~, 

and for ~ < 9~: (W.l.o.g. by 3.17(2)) 

(*) if s e J - J~  then 

cf(J r {t ~ J : ( k / v ~  J ~ ) v < s = v < t } ) = ~ , a n d c f ( J t { t ~  J : t ~ J~, t < s} ) > ~: 

or cf[J r{t ~ J: (Vv E J~)v < s - v < t)]* = X 

and cf[J r {t ~ J : t ~ J~, s < t]* >~: 

or (Vt ~ S~)[t < s] and then cUt >- ~: ~ c f  J~ >- ~: 
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or (Vt e J~)[s < tl and then cf  ~ > ~: ~ cf[J~ l* > ~: 

Let Ja~(~ < ~,) be pairwise disjoint, each isomorphic to J*.  Let J~(~ < ~.) be pairwise disjoint, 

each isomorphic to (J x ~:)*. Now for h:So --) Oc+,~}, (h (c~+ 1) = lc +) let 

f 
j~+j[~l)wherej ~ = ~ J ~  if h(O =K + lh (Z 

~<~" L J~a otherwise 

Case E: 0 < cc < IXl < X, Ixi(i < o0 strictly increasing, each Ixi regular IXi+I > g+++, 

Ixi > )~ + (I+ + 0, (VI.t < Ixi)l,t <0 < Ixi, I-I2~t~ = 2~" (without the last assumption we just get a 
i 

smaller number of models) 

We just sum things, where for each i we imitate case (C). 

Let j i =  j[v~+l for i < ~. be from Fact 3.17, and for each i define Jh ~ K~}3 for 

h:{8 < Ix[+:cf8 = Ix{} -'* {IX{,IX{+} as • J~, where: g+3 + 1< is ordinal addition, the J i  
~<(~t~ 3 +K) 

are pairwise disjoint, J~ is isomorphic to j i  except when h (~) is well defined an equal to g / ,  

then J~ is isomorphic to J i  × (~1,]-). Lastly for every h e lJ{h:Dom h = {8 < Ix {+ : cf8 = IX~}, 
t 

h as above), I~ ~=:~ Jh," 
i 

More details in second version. 

The fact we need is 

3.17 Fact: For each regualr ~, we can define a linear order j[z.] such that 

(1) jD-I is a dense linear order of  cardinality 9~. 

(2) There is an algebra N [;q with universe jIM and 1% finitary functions such that: 
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(*) i f / ~ _ J [ ) q  is a subalgebra,  t ~ Jim'] - / t h e n  

c f [ t  r {s ~ I : s < t} ] = ~. o r  

c f [ ( l  r {s ~ I : t  <s} ]* ]  =)~ 

(**) if/___ J[~'] is a subalgebra then I C_dc J[)q, where: 

Let  I C_dc J means I is a submodel  of  J as a linear order, and for  t ~ J- I ,  there is a maxi- 

mal  s,  s < t A S  E I o r  there is a minimal  s, t <s  A S  ~ I ,  or (Vs e J ) [ s  < t] or 

(VS ~ J ) [ t  < s].  

3) for each t ~ j[Xl 

c '~J  [kl [ {s e j[k] : s < t} ] = )~ or  

cf[(J [~'l r {s e j [k l  : t < s})*] = )~ 

4) if ( j t , j 2 )  is a Dedekind cut of  j[M then (6f(J 1), cf((J 2)*)) is one of  

{(~tA) : ~t _< )~) U {0.,~t) : ~t _< )~) u {(~o ,  ~o)2 

5)) if  cz < )~+, then j[~l  x (~+1)  and j [ ~ l ( ( ~ +  1)*) are isomorphic to j lXl.  

6) I f  2~ > ~, every submodel  o f J  [zl of  cardinali ty < ~: can be embedded  into j[~cl (we use 

it just  for  a fixed pair  L = 1~+). 

Proof: See [Sh. 220] (appendix) which relays a work of  Galvin and Laver  cited there. 

§4 The easy black box and an easy application 

4.1 Discussion: 

The non structure theorem we have discused so far rests usually on some freedom on finite 

sequences and on a kind of  order. When our freedom is related to infinite ones, and to trees, our 

work is sometimes harder. In particular, we have to consider,  for ()~ > X,Z regular): 
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(*) We have for S c_ z-> ~ a model Ms, an(rl ~ Z>X, eg(ar 1) = eg~eg(n)) such that for 

rl ~ z~. : Ms ~ ~p( " " " a~ra)a<z if and only if r 1 e S 

(and Ms is quite "simply defined" from S). Of course, if we do not ask more from Ms, we can 

get nowhere: we certainly restrict its power and usually it is ~p-represent;able in a variant 

9k/g,~(S) (for suitable g,~). Certainly fo rT  unsuperstable we have such a formula ~p 

=: (3X)Aq)n (X, an rn) 
n 

Here we do not try to get the best results, just exemplify some (i.e. we do not present the results 

when ~. = ~z is replaced by X = ~<z) By the proof of [Sh, VIII 2.5] (see later a complete proof). 

4.2 Theorem: Suppose 7~ = ~z and (*) of 4.1 holds for (p and IIIM s III = ~. for 

and tg(~ n) < Z, or just )tg(~n) = )~: then (using z>)~ c S c z>)~). 

1) there is no model M of power 3. into which every Ms can be (_+(p)-embedded (i.e. by a 

function preserving ¢p and --,¢p). 

2) For any Mi(i <~) ,  IIIMiI[I = ~ ,  for some S, (x>~._cS ~z->X), Ms cannot be _+q~- 

embedded into any M i. 

4.3 Example: Look at Boolean Algebras. 

q~(" " " ,an, " " • ) =~I(uan) ¢ 1 -= there is nox  ~ 0, Z (-~ an = 0 for each n 
/'1 

Let for o>~. c S ~ °~-X, Ms be the Boolean Algebra generated freely by Zrl (rl ~ S) except the 

relations: forr l  ~ S, i f n  < eg(rl) = C0 then xn ("h xnr,, = 0. So IItMs Itl = ISI ~ [%,~ ~0], inMs  

for rl e co)-, Ms ~ (VXnrn) = 1 i f  and only ifTl ~ S (work a little in Boolean Algebra). So 
n 

4.4 Conclusion: If  ~. = X ~°, there is no Boolean Algebra B of powe:r ~. universal under 

cr-embeddings. (See [Sh 2.2, VII Ex. 2.2.]). 
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For another application on locally finite groups-usual embeddings, see Grossberg and She- 

lah-  [GrSh 174]. A related work is Dugas, Fay and Shelah [DFSh 262]. 

Proof of the Theorem 4.2: It is enough to prove (2), w.l.o.g. I M i I are pairwise disjoint 

subsets of ~.. Now 

4.5 Fact:  Assume % = ~z. Let dn(r 1 ~ z>%) be given, each of length < Z. 

There are functions fn(rl  ~ ZX) such that 

(i) Dora f~l = u a ~ r a  
et<X 

(ii) Rang f n ~ % 

(iii) if f :  U an -'4 %, then for some 11 ~ z%,fn ~ f "  
flex'% 

Remark :  We prove this in 1969/70 (for lower bounds on I(%,T,T), T unsuperstable, but 

it was superseded, eventually the method was used in one of the cases in [Sh VIII §2]: for strong 

limit singular [Sh VIII 2.6]. It was developed in [Sh 172] [Sh 227] for constructing abelian 

groups with prescribed endomorphism groups and further see Eklof and Mekler [EkMk], this 

version was developed for a proof of the existence of abelian (torsion free tt 1-free) group G 

with G*** = G* • A (G* ~Hom(G,Z) in a work by Mekler and Shelah. 

Proof of Fact  4.5: Let {(b/~ :cx < y):i < )~} list all sequences of  the form ( b a : a  < y) such 

that 3' < X, b-c~ c %, tg (ba )  < X- 

For r I ~ x)~, f~t is the function (with domain k.) anrc~) such that: 

f n (~nm ) _ ~-~l(r~) if it is defined and frl(anra) = (0:i < tg(an))  otherwise. 

So (fn:rl e z~.) is well defined. Properties (i),(ii) are straightforward, so let us prove (iii). Let 

f :  k..) E~I ~ ~'. We define rlc~ = (~i:i < 0~) by induction on c¢. c~ = 0 or c~ limit - no problem. 

a +  1: be 13a be minimal such that b'Ca ~ = f(an~)" 

Sh:300



So 11 ~=f(~i:i < %) is as required. 

361 

Remark: We can present it as a game. (See in the book [Sh, VIII  2.51). 

Continuation of the proof of the Theorem 4.2: 

Now define 

S= (z>X) L)[rl  e ZX: for some i < X, Rang(fn) c IMi I andMi ~ --n(p( ...... f~l(-d~ra),.,.)}. 

Look at M s. Clearly 

(a) no +q)-embedding of  M into M i extends fn , r l  e zX. 

For if f : M - - )  M i is a (+-q))-embedding we have by Fact 4.5 that for some r 1 e zX, 

f r k..) a~lrct = frl. 

§5 An application of a better black box, enough usually for 

I(X,K) = 2 k for most ~. for a complicated K 

5.0 More Discussion 

Next we consider: 

Assume X is regular, (Vg < )~)t.t <z < X. Let Ta c_{5<X:cf 8 = 7,) be pairwise disjoint stationary 

sets. For A c_ X 

We want to define SA 

such that 

T A = k . )T i .  
ieA 

z>X C_SA c_Z>-X 
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A ~ B  ---> MSA ~MsB 

Of  course we have to strengthen the restrictions on Ms. For  rl e SA f ~  Z~,, if  rl is increasing 

converging to some 8 ~ T A, denote this ~5 by ~(rl). 

The decis ion whether  rl E SA will  be done by induction on 8(rl). Ar~v ing  to 11, we are assuming 

we know quite a lot  on 

f r t..Aa~ra 
ot<z 

M i IIIM~ Ill < ~,, M~ increasing- which we are trying to kill,  in particular that (if  Ms = U s, 
i<~. 

continuous in i and we can assume 8(rl) ~ TB because we can use a club of  6(rl) 's .) .  

5 .0A Nota t ion :  1) Let, for an ordinal  ~ and a regular  0 > R 0, H<0(c0 be the smallest 

set Y such that 

(i) i ~ Y for i < cx 

(ii) x ~ Y for x c_ Y of  cardinali ty < 0 

2) W e  can agree that 9~/'x,o(c0 is interpretable, in (H<0(~x),~) and in part icular its 

universe is a definable subset of  H<o(~) ,  and also R is where: 

R = {(a  ,(ti : i < yx),X) : x ~ 9~/'g.<0 (°>X) 

<_ ~t <_ o~,x = c* ((t~ : i < Yx))}. 

etc. 

The main theorem of  the section iS: 

5.1 T h e o r e m :  IE+~(~,K) = 2 x provided that: 

(a) ~ = ~z:  

(b) q~ = cp(" • • xa ) a <z )  with vocabulary ~ .  
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(c) for  every S,~>)~Sc_~>-X, there is a model  M s ~  K~, and -d n ~ (Ms) for 

T 1 e Z>)~ eg~.q) = tg(-Xy(n )) such that 

( a )  for  r I a z~, : MS ~ q~(..,  a n r a . . .  ) if and only i f 'q  e S. 

(13) there a r e f  = fs  : Ms --+ YV(g,~(S) where I-t -< )v,~: = )~+ such that 

(*) if  bet e MS, tg(bet) = eg(-d n) for 11 e eta, f ( b e t )  = ~et(tet) then the truth value of  

Ms I= q~[. • • bet •.  • ]et<x can be computed from (~et:ot < %), the q.f. type of  (tcdot < Z) in S 

and the truth values or (3v E x)v)[ A vr0t i = t[~(~'i) t el] for O~i,~i,~li,gi < ~ (i.e. in a way not 
i<% 

depending on S). [we can weaken this] 

5.2 F a c t :  Suppose 

( , )  9~ = ~2~, cf  X > )~ 

Then there are {(MC~,'q et) : (x < (x(*)} such that 

(i)for every model  M with universe H<x÷ 0v), t x(M) 1 _< )~ for  some o~, Met < M. 

(ii) rlet e X)v, (Vi < X)[rl a r i e MS] ,  1"1 c~ ~ Mct and ot ~ 13~ rl c~ ;~ @ .  

(iii) for every 13 < o~, {qetri : i < 7,} ~ M~ 

(iv) for [~ < ct i f  {rl 1~ ri : i < 7,} ~ Met then I M ~ I ~ I Met I. 

(v) IIIMetlll =%, IMetl  ~H<z+(8(~let))  

Proof of 5.2: See 6.x. 

5.3 Proof of 5.1 from the conclusion of 5.2: 

W.l.o.g.  IMs I = ~, in5 .1 .  
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W e  shall define for  every A ~ ~. a set S [A ], x>)~ ~ S [A ] _< ~->~.. 

Let  T a  = {'q e x~.: {1] t i : i < 7,} _c MS}. W e  shall define by induction on tx, for every A, 

S [A ] ( '7 Tc~ so that on the one hand those restriction are compatible,  (so that we can define 

S[A] in the end, for each A __)~) and on the other hand they guarantee the non +q0- 

embeddabi l i ty  

For each c¢: 

Case  I:  i f  there are distinct subsets A 1, A2 of X, and ~>?~ c_ $1,$2 ~c>-X and a +(p- 

embedding f o f  Ms1 into Ms2 and 

M c~ < (H<~. ( ) ~ R ) ,  A l,A2,S1,S2,Msi,Ms~,fs~,fs~,f) 

where R = {(~,(Yx, x),(1 +i,t x, x):  x has the form tsx((~:i  < ~x))} (we choose for each x a 

unique such term c~ and $2 ('7 T a  ~ $2 ('7 ( u T [ ~ )  and $2 satisfies the restriction imposed for 
l]<ct 

each [3 < a ,  and computing according to (*) of 5.1 the truth value t '~ of 

Msz P q3[. • • ,f(d,q=ti), ' ' • )]i<~, then we restrict: 

(i) i f B  ~ . , B  ('7 IMC~I = A 2  u T M  c~ then 

S[B] 0 ( T a - u  T[~) = O 
13<ct 

(ii) i f B  c ~., B ('7 IMC~ I = A 1 ('7 IMC~ I and t a is truth then 

S[B] ('7 ( r C ~ - U  r ~ )  = O 
13<c~ 

(iii) i f B  c ~., B (-7 IM~t  = A 1 ("7 IMC~l and t a is false then 

S [B ] ('7 ( r C ~ - g r l 3 )  = { 1]ct} 
p<c~ 

Case  I I :  not I. 

Sh:300



365 

No restriction is imposed. 

The point is 

5.3A Fact:  The choice of  A 1 ,A 2,S 1 ,S2,f is immaterial (any two candidates lead to the 

same decision). 

5.3B Fact: MS[AI (A c_ 9~) are pairwise non isomorphic, moreover for A ~ B c_ )~ there 

is no (+tp)-embedding of M s [A ] into Ms[~I. 

Still the assumption of 5.2 is too strong. However a statement weaker than the conclusion 

of  5.2 holds under weaker cardinality restrictions and the proof 5.3 of  5.1 above works using it, 

thus we finish the proof of 5.1, 

5.4 Fact: Suppose ~. = ~ 

Then there are {(M s ,  rx ~ ~ . A1, A2,TI ).ct < ct(*)} such that: 

(*) ( i ) for  every model M with universe H<z. (~), I x(M)I < Z (arity of  relations and func- 

tions finite) and sets A 1 # A 2  ~ ~.for some 0~ < tx(*), (M a, A~, A~) < (M, A 1, A2) 

(ii) rl a e z)~, {l lati  : i < Z} ~ IMa l, 11 a ~ M S ,  and o~ # ~ ~ 1"1 ct ¢ r113. 

(iii) for every ~ < c t ,  if { ~ a r i : i < g } ~  M~ then a < ~ + 2  ~, IMal  ~ I M  I31, and 

Ac~ ("7 I M a I ~ A ~  ('7 I M a l .  

(iv) for every ~ < a if {@ ri : i < Z} ~ M S  then I M ~ I ~ I M s I 

Proof: See 6.x. 

Hint: :  for ~ regular. 
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Let (S g : ~ < ~.) be pairwise disjoint stationary subsets of {8 < ~. : cf(8) = 7.}- We define 

for each ~ < )~, {(Ma,aa,Be~,rle~), ct ~ {(M},A~,B~,@a) : CC < C~} such that from (*) of 5.4, (i) 

holds when ~ e A 1-A 2, as well as (ii), (iii), and sup(M~ ('5 ~.) < %. See 6.x. 

Then we combine those sets (no serious problems). 

Section 6 will appear in the second version. 
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Chapter IV: K is not smooth or not Z- based 

We deal in this chapter with two dividing lines: smoothness and being x-based both 

absent in the first order case (but the second is somewhat parallel to stability). 

We do some positive theory without them, just enough to show that their negation has 

strong nonstructure consequences. Once they are out of the way, much of  the theory for stable 

theories can be redone. 

Recall that we work in (AxFrl)  (in particular limits exists but smoothness may fail: 

(M i : i < ~) is <K-increasing, but U Mi 5gK MS.) 
i<8 

More on smoothness see Chapter VIII §x. In later versions we will remove the regularity 

assumption from the non structure theorems and restrict Ax(A4) to smooth chains. 

§1 Non Smoothness implies Non Structure 

1.0 Context:  AxFrl .  

Our main aim in this section is told by its title. Remember that K is smooth ~" k.JMi < M 
i<~ 

when (M i : i < 5) is <_-increasing, and for every i < 8, M i <- M. The main theorem is 1.11: if 

X is regular and K-inaccessible, and there is a counterexample to smoothness by 

(M i : i < ~)), M, with I g l + ]~ I[IMi III < X then I(X,K) = 2 z (usually there are 2 ~" models no one 
i<3 

<K-embeddable into another.) 

Note that we may tend to accept smoothness "without saying", as it is trivial for first order 

theories, hence should be careful with claims being proved without it. However, the 

phenomenon occurs also for first order T, if we look at {M : M  a ITI +-saturated model of T} 
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under a suitable order <* (as in e.g. [Sh 481) and then such a property was called didip (dimen- 

sional discontinuity property, see [Sh 132], [ShA1 Ch X]). But there we always have sequences 

of length <Kr(T). 

Our main theorem 1.11 has some defect: first the requirement that ~, is regular and K- 

inaccessible. By our "adopted rules of the game" this is not serious. More troublesome is that we 

have no theorem showing that if ~c-smoothness fails then (<~m(K))-smoothness fail for some 

reasonably small KIn(K). The remedy we have is to use VI.1; by it (<)0-smoothness + NF is X- 

based implies smoothness. 

So "if K is not (<_LS(K))-smooth or NF is not LS(K)-based then I(~.,K) = 2 x for every 

regular 9~ = ~LS(K) etc". See end of the section. 

Context: Axiomatic Framework 1. of II §1. 

The next several results are Lemmas for the proof of Theorem 1.11. Specifically 

Claim 1.7 carries out a major step in the construction; Claims 1.I and 1.6 are used to prove 

Claim 1.7. 

One of the basic tools of first order stability theory is the " transitivity of non forking": let 

A ~ B  _c C, if tp(a,C) does not fork overB and tp(a,B) does not fork overA then tp(a,C) does 

not fork over A. Claim 1.1 is a slightly disguised version of this principle in framework AxFrl. 

(Let M1 play the role of a and M0, M2, M2 play the role of A, B, C resp; the second 

hypothesis of Claim 1.1 is then apparently stronger than a direct translation. However replacing 

M 3 by the model generated by M 1 and M2 yields the original situation). 

1.1 Claim: If NF(Mo,MI,M2,M 3) and NF(M2,M3,M4,M5) then 

NF (M o,M1,M 4,M 5 ). 

1.1A Definition: We call this claim transitivity of NF. Ax (E4). 

Proof: Let M" 3 = (M1 k.J M2)~n~, so by Axiom (C4), (and Ax (C1)) M'3 -<M3, so by 

Ax (C3) (c) (a monotonicity) NF(Mo,M 1,M2,M'3). So by Ax (C1), M 2 < M'3 -< M3, and by 

Axiom (C3)(a) + (C6) (symmetry), [alternatively, by (C3) (a) a] we get NF(Mx,M'3,M4,M5). 
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Similarly, letting M'5 = (M'3 k.) M4)ffs we get M'5 < MS, NF(M2,M'3,Mn,M'5). 

By Axiom (C2) (existence), there are Mn,M5 and an isomorphism g from M4 onto M4 

over Mo, such that NF(Mo,MI,Mn,Ms),  and w.l.o.g. (by Ax (C3)(c), and Ax (C4)) 

M5 = (MI k . ) M 4 ) ~ .  LetM2 = g(M2), soMo <M2 < M ] .  

Let M 3 = (M 1 U M 2 ) ~ -  By the base enlargment axiom (C4) (and (C1)) M 3 < M 5 so by 

Ax (C3), (first (a), then (c)) NF(Mo, M1, M;, M3). By Ax (C4) NF(M;,M3,M'4,Ms), and 

clearly M5 = (M3 Y M 4 ) ~ ,  M3 = (M1 U M ; ) ~ .  Applying twice the uniqueness (Axiom 

(C5)) we can extend g to an isomorphism g" from M" 5 onto Ms, g "(M'3) = M3, g the identity 

over M 1, As everything is preserved by isomorphism, clearly NF(Mo,MI,M4,M'5). By Ax 

(C3) (b) NF(Mo,M 1,M4,M5). 

1.2 Fact: Suppose that for t = 0,1, ( Mt, i : i < 5) is increasing continuous and for each 

i < 5, NF( Mo, i, Ml.i, M2, M) (~) of course, is a limit ordinal). Then 

( M1,8 k.d M2)f f  = U (  M I , I U  M2)ff.  
i<5 

Proof', We prove this by induction on the ordinal 8. Let for i <8,  

Ni = ( Ml,i k..) Mo, a)~, by Axiom (C4) NF( Mo, a, Ni, M2, M), and clearly 

[i < j ~ Ni ~ Nj] (by Ax (B2)). We prove by induction on ~ < 5 that ( Ni : i < c~) is increas- 

ing and continuous. If cx is not limit, this is trivial; if c~ is limit <5 use the induction hypothesis. 

Lastly if t ~ = 8  by Ax (B2) [ i < 8 ~ N i c N ~ )  hence u N i o N s ;  on the other hand 
i<8 

M0, 5 _c M 1,5 hence Na = (M 1,5 Y M0,5)ff = (M 1,a)ff = M 1,5 = Y M 1,i _c U Ni" Together 
i<5 i.5 

N~ = Y Ni as required, so (Ni : i < 5) is really <-icreasing continuous. Now apply Ax C7 with 
i,~ 

Mo. 8 as Mo, Ni as Ml.i, M2 as M 2 and M as M to conclude 

u ( N i  k.J M2)~  =(N8 k_) M2)•. Untangling our notation note that MI.~ =N5 and 
i<5 

(Ni Y M2)f f  = (Ml, i  U M2)ff  (since Mo, 5 ~ M 2, by Ax (B0), (B1), (B2)). Substituting 

we conclude U (Ml, i  k.) M2)ff  = (Na Y M2)ff  as required. 
i<5 

Remark:  Fact 1.2 is a natural strengthening of  axiom (C7). Instead of fixing an M0 

such that NF ( M o, Ml,i, M 2, M) we have allowed the base Mo, i to vary with i. 
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8e * * 

The next two lemmas are easier to understand as part of the proof of Lemma 1.1 of Chapter 

V. Specifically Lemma 1.4 is the core of the proof of the It-based implies It'-based (for It' > It 

when K is (<it,<~t)-smooth). Lemma 1.3 is used to prove Lemma 1.4 (and the proof of 1.4 is 

used in the proof of 1.6). 

Lemma 1.3 asserts that if ( M i : i  <8) is an <-increasing continuous sequence, 

Ni = ( Mi k..) No)~q n is also <-increasing continuous and for i < j, NF( M i, N i, M i, Nj) then 

M5 <N~ and some further corollaries. If, in the nonforking condition, we could replace Mi by 

MO, Mj by M~, and Nj by N5 we would be in the situation of axiom (C7). The proof proceeds 

by showing that we achieve this happy situation by replacing M~, N5 by isomorphic copies 

which are independent from No over M0. After applying axiom (C-/) we return to the original 

models by the invariance of nonforking under isomorphism. 

1.3 Claim: Suppose ( M i : i <- 8), ( Ni : i < 8) are <-increasing continuous and for 

i < j < 8, NF( mi, Ni, Mj, Nj) and Ni = ( Mi k_) N0)g~, .Then M s <  N~ and f o r i < 8 ,  

NF( m i, N i, m 8, N6), N S = (  M sk..) No)g~  • 

Proofi There are M' 8, N'  8 and g such that NF( M0, No, M'~, N'8), and g is an iso- 

morphism from M~ onto M'~ over M0, N'~ = ( M'~ t._) N0)~' , .  Let N'i = ( M'i k..) NO)~'n 

where M'i = g ( M i ) .  By Axiom (C3), (C4) for i < j < 8, NF( M'i, N'i, M'j,  N~), ( N'i : i < 5) 

is increasing and by Fact 1.2 also continuous. So by Axiom (C5) we can define by induction on 

i < 8, gi, an isomorphism from Ni onto N" i extending (g r M'i) k..) idNo and every gj(j < i). 

Now g5 shows that NF( M i, N i, Ms,  N) (as NF( M'i, N'i, M'8, N'5)) and 

N = ( M'~ L.) N'o)g~6 (as N'~ = ( M~ k,j No)~,~), 

1.4 Claim: Suppose ( Ni : i < 8), ( Mi : i < 5) are increasing continuous, and for 

i < j < 8, NF( Mi, Ni, Mj, Nj). Then M~ < N~ and for i < 5, NF( M i, N i, M~, N~). 

Proof: The proof will proceed by applying the following subclaim first to the given 

( M i : i < 8), (Ni : i < 8) and then to a second set. We use the following notation. 
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Let for i < j < 5, Ni,j = ( Mj k.) Ni)g~j • 

Let Ni,8 = L.) Ni,j. 
i<j<~ 

1.4A Subclaim: Let ( M i : i < 5), (Ni : i < 8) satisfy the hypothesis of Claim 1.9. 

Then (for i < 8): 

a) M8 <Ni, 8. 

b )NF(  Mj, Ni, j, MS, Ni,8) (when i < j  < 5) 

c)Ni, 8 = ( M 5 L.J Ni)~.5 

d) For (i < )Jl < J2 < 5, gF(gi , j , ,  Nj, ,  Ni,j2, Nj2). 

e) for each i < 8, (Ni,j : i < j < 5) is increasing continuous. 

Proof  of 1.4A: By Axiom (C4), Ni,j <- Nj, and (together with Axiom (C3)) for 

i < j l  < J 2  < 5 ,  NF( Mjl,  Ni,jl, Mj2, Ni,j2 ), and clearly Ni,j2 = (  Mj2 k..) Ni,jl)~7,j2. By 

Fact 1.2 for each i ( Ni, j : i < j < 5) is not only <-increasing but also continuous [i.e. (e) holds]. 

Remember Ni, 8 = L..) Ni,j. So by 1.8 Mj < Ni, ~ [so (a) holds] and 
i<-j<5 

NF( Mj, Ni,j, M~, Ni,~) [so (b) holds] and Ni,~ = ( M~ LJ Ni)g~i.s [so (c) holds]. By 

Axiom (C4) i f i  < J l  < J2 < 5, then NF( Ni.j~, Nil,  Ni,j2, Nj2) [so (d) holds]. 

Proof: We return to the proof of 1.4. Applying the subclaim to the original sequences 

( M i : i < 8) and (Ni : i < 8) we see by e) and d) that for each i the sequences (Ni, j : i < j < 5) as 

( Mj : 0 < j < 8) and (Nj : i < j <_ 5) as (Nj : 0 < j < 5) satisfy the hypothesis of 1.4 and thus 

1.4A (now indexed by j). Applying the subclaim to these sequences we conclude by (a) that for 

il < i 2  < 5 ,  Nil,~<Ni2,8. Applying 1.3 with M i as M i and No, i as N i we conclude 

M5 < N0,6. 

Now note that k_) Ni, ~ includes each Ni (i < 5) hence includes L.) Ni, but this is N~ (as 
i<8 i<~ 

(Ni : i < 8) is increasing continuous so N~ = L.) Ni,~. As we have noted above that (Ni,8 : i < 8) 
i<5 

is <-increasing by Ax (A4) we know that for i < 5, Ni,5 < k.) N;,~. [by 1.4B below we can 
g<~ 

apply Ax (A4) for smooth chains only]. By the last sentence, this says Ni. ~ c_ N~. As we have 

noted above that M~ <N0,~, we get M~ <N~, one of our desired conclusions. Note that also 
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for limit 0t <5, Net,5 = k.) Ni.a. We prove this by induction on 8. For one inclusion, for i < cz, 
i < a  

Ni c_ N~ hence 0~ < j < 8 : Ni,j = (Mj k.) Nj}fv~ c_ (Mj, N a ) ~  = Na,j so taking unions 

Ni,~ c_Na,8. For the other inclusion clearly when i,~x < j  < 8, Ni,j = (Mj, Ni, a) Now, the first 

application of the subfact yielded NF( Mj, Ni,j, M~, Ni,6) , by definition Ni, i = Ni and by the 

second application of the subfact Ni, ~ <-N~ (and M~ <Ni,8, Ni, i <Ni,5). Substituting and 

applying the monotonicity axiom we have NF( Hi, Ni, MS, Ng) (the second conclusion of 

1.4). 

1.4B Subfact :  (Ni,~ : i < 8) is (<_-increasing and) continuous. 

Proofi  We prove this by induciton on 8. Let c~ < 8 be a limit ordinal and we should 

show that Na, g = k..) Ni,~. For one inclusion, for i < oq N i <_N~ hence when i,o~ < j  < 8, 
i<o~ 

Ni,j=(Mjk. .)Ni)~ ~ (Mjk . JNa)~n=Na,  j, so taking unions Ni, scNa ,8 .  Hence; 

k.) Ni,8 c_Na,5; for the other inclusion clearly when i, ot <_j < 8, Ni,6 c_Na,~ for the t..) 
i<a i<~t 

Ni,j = (Mj k.) Ni, c~)~n~ and (Ni, a : i < ~) is increasing continuous (by the induction hypothesis 

on 8). Easily k.)Ni, a =Na. Also we know for i < or, NF(Ma, Ni, ~, MS, Ni,8), hence 
i<ct 

NF(Ma, Ni, a MS, Na,8). By Ax (C7) we conclude that 

(?Ca, M s ) ~ . s  = k.) (Ni, a,  M~)~n~.~ = k.) Ni,8 but Na,6 = k.,) Ua,j, and clearly 
i< a i< c~ a_<j< 5 

Not, j ~ (Na, Ms)~.s so Na, j c (,.) Ni,6, hence Na, 8 = k.) Na,j ~ k.) Ni,8 the other inclusion 
i< o; a<_j< 6 i< a 

having been proved we finish. 

From Claim 1.3 we can derive the "local character of dependence". Specifically 

L e m m a  1.5: Axiom (C8)_ holds if smoothness holds (and more). That is, assume 

(cfS)-smoothness; if ( M l , i : i < 8 )  is <-increasing continuous and for each i < &  

NF(Mo, Ml,i, M2, M) then NF(Mo, MI,~, M2, M). 

Proof: By the choice of the way Claim 1.3 was written we must first apply symmetry to 

rewrite the hypothesis as NF(Mo, M2, MI,i,M). Now for each i < 5 ,  let Ni denote 

( M l , i k . j M 2 ) ~  and let N ~ = k . ) N  i. By Ax(C4) (and monotonicity) we have 
i<6  

NF( M1, i, N i, M t j ,  Nj) if i < j  < 8. Now Claim 1.3 yields NF( MI,i, Ni, Ml,5, N~). By 
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monotonicity the original hypothesis gives NF(Mo, M2, Ml,i, Ni). Now Claim 1.1 yields 

NF( Mo, M2, M I,~, Na); (cf S)-smoothness gives Na < M, so by monotonicity this implies 

NF( Mo, M2, MI,~, M) as required. 

1.6 Claim: 1) Suppose (M i : i _< 5 + 1), ( N a : i _< 5), ( N b : i < 5) are _<-increasing con- 

tinuous sequences and NF(Mi, N a, MS+ 1 , N/b), N b = (Ms+ 1 k...) Na)~  no for i < 5. Then 

NF(Ms, N~, MS+l, N~). 

2) If  K satisfies (cf 5)-smoothness, we can omit the assumption 

"N/b = (M5+1 k..) Na)~r~ "" 

Proof: We use the proof of 1.4 with Mi (i < 5), N a (i < 8), N~ here corresponding to 

M i (i < 5) Ni(i < 5), M there, Using its notation (Ni, S : i < 8) is <-increasing continuous, (see 

lAB) N S = k.) Ni, s. By Ax (C4) for i < 5, NF(Ms, Ni. S, MS+ 1,M). Let for i <8, 
i<S 

N'i = (M2 u N i ,  s)ff and 

NF(Ni, S, N" i, Nj, 8, N~) 

NF(No,8, N'o, NS,  k.) N~), 
j<8 

NF(Ms, M~+I, N~, k.) N'j), i.e. 
j<8 

N'5 = k_) Ni; so clearly (Ax(C4)) 
i<s 

and NF(Ms, M8+1, No, N'0). 

and as NF(Ms, MS+l, No, N'0) we 

NF(Ms, M8+1, NS, N'S). 

for i < j < 5 ,  

By 1.4 

get (by 1.1) 

So it is enough to prove that N'S < M. If K is (cf 8)-smooth this is obvious (as N'i < M 

for i < 8 by (Ax(C4)). In the other case 

M = N~ = k..) N/b = k.) (Ms+I kJ  N a ) ~  = k.) (M8+1 Q) Ni)~, 
i<S i<S i<fi 

k..) N'i = N'8. 
i< 

1.7 Claim: Suppose ( M i : i < 8), ( Ni : i < 5) are <-increasing continuous, and for 

i < j < 8, NF( Mi, Ni, Mj, Nj). If  M i < M and i < 8, then we can find N, Ni < N for i < 8 

and M can be embedded into N over k.) Mi. 
i<5 

1.7A Remark:  1) This is a strengthened version of the existence of an amalgamation. 

Sh:300



(C2). 

374 

2) Note that for a successor ordinal instead of a limit 5, the proof is trivial - use Axiom 

Proof: We define by induction on i -< 5 models N a, NO and functions 3] such that: 

(a) 3] is an isomorphism from N i onto N a over Mi, 

(b) ( N a : i < 5) is increasing continuous; 

(c) ( N/b : i < 8) is increasing continuous; 

(d) j~ is increasing continuous in i; 

(e)NF( M i, N a, M, N/b); 

xmxgn (f) N/b = (M k..) ~* i / N~" 

For i = 0 let N~ = No, f0 = id No , and so we just have to define N~ such that (a),(e) 

and (f) holds. This is possible by Axiom (C2) (which follows from Axiom (C4)). 

For i = j  +l: let N { = (  Mj+ 1, ~,~xgn z*j/ N~. As NF( Mj, Ni ,  M, Nb), by Axiom (C4), 

U~ y <  U b and as NF( M i, NY,,M, Nj+a); by Axiom (C3) NF( Mj, U~, Mj+ 1, NY~). Let 

U x = ( Mj+ 1, Nj)g~i,,, so by Axiom (c4), U x < Nj+I and NF( Mj, Nj, M i, N x) and by 

Ax iom(C3) ,NF(  Mj, Nj, Mj+I, N'[). 

By Axiom (C5) (uniqueness) there is an isomorphism gi from N x onto N~ y, extending 

f j  k.) id Mi÷I. By Axiom (C2) (existence) there are N a, N/b, j~ such that 3] is an isomorphism 

from Ni onto N a extending gi and NF( N{, N a, N~, N/b), and (by Axiom (C3), (C4) 

w.l.o.g.) N b = ( N b U Na)g~ • By 1.1 NF( Mi, N a, M, Nbi). 

For i limit <5: l e t  N i = U N~, fi = U f j ,  Na = k-j N~. As ( Nj : j < i}, ( Mj : j < i} 
j<i j<i j<i 

are increasing continuous, clearly (a)-(d) holds. As for (f), for each j < i, 
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a n ~ r a \ g n  [ ; t # .  , \ " *  k . ~  N b = (M k.) Ny)g,~ = (M U ' * j /  N~; c z,it~"a\gn'NT, 

= Nq'~g~.,~ ~ N~ so N/b = (M k..) hence N~ k.) Nb ~ (M k.) , ,  ~*, -- 
j< i  

(e) use 1.2(1). 

Na>g~ as required. As for 

So we can carry the definition. In the end using f~ = U)~,  
i<8 

and chasing arrows, we finish. 
* * * 

N~ =k.) N/b, N~ = u N  a 
i<5 i<~ 

Here is a rough prescription for deducing the existence of  many models of  power ~. from 

the failure of smoothness at some n < ~ for models of cardinality < ~, (i.e. the existence of  a 

sequence ( M i : i < ~) with U Mi ~A Mn). For each rl e 2 x build a sequence of models 

(M~r a : ~ < %) such that Mn = U{ M~ra : (x < 9~} has power ~ and 

smth(Mn)  = {5 : Mnr ~ c_ Mn}/D~. is a subset of  r l- l(1).  (Cf. Definition 1.12). 2 ~ of the M n 

will be nonisomorphic since if M n -- Mn., then smth(Mn)  = smth( Mn, ). The failure of 

smoothness shouId allow us to decide for 8 of  cofinality ~: whether k_) Mnr~ < M~ depending 

on the value of rl(8). 

But there is a fly in the ointment. I f T ~ > ~ . ,  ITI =~., (Ti : i<~.)arepresentat ionofT 

(i.e. T = k.J Ti, Ti increasing continuous, I Ti I < )~), we do not know whether for "many" 
i<5 

8 < ~, c f8  = ~ and there is rl~ e ~ such that {rl 8 r ~ < ~:} c_ Ts, but 

(Va  < 8)[{rl~ r ~ : ~ < ~} ~ T~]. Under mild cardinality restrictions we can circumvent this 

difficulty by working on a "good" stationary subset of )~. The required definition and background 

facts are laid out in 1.8 and 1.10. 

1.8 Definition: For a regular ~. > t%, S ~ 9~ is called good if we can find (Ci : i < )~) 

where Ci is a subset of i and for some a closed unbounded C ~ X for every limit 8 e C f'7 S, for 

some closed unbounded C~ ~ 8 of order type < 5, (V~ < 8)[C~ ('7 0~ E {Ci : i < 5}]. 

1,8A Remark :  1) We can weaken the definition by replacing Ci by < % candidates, 

and modulo a club we get an equivalent definition. More exactly, let S ~ )~ be called *-good if 

there are ((Ci,{ : ~< {(i)) : i <~.), Ci,{ ~ )~, {(i) < 9~ and for every limit 8 e S, for some closed 
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unbounded C~ ~ 8 of order type < 8 (Vo~ < 8)[C~ f-~ et • {Ci,~ : i < ~, ~ < ~(i)}]. 

Easily (for S c ~., ~. regular), S is good if and only if S is *-good. 

By [Sh 108], (or see [Sh 88, Appendix]): 

1.I0 Lemma:  Let X > ~ be regular, S = {8 < X : cf  8 = ~}. 

1) S is good if (VIX < k)ll <~ < X; 

2) some stationary S '  ~ S is good if: ~ = X <~ or X = Ix+, (V Z < g)% ~ < It, 

3) If  there is a good stationary S ~ {8 < ~. : cf  8 = K} and ~t < ~ is regular then there is a 

good stationary S c_ {8 < ~ : cf  8 = Ix}; 

4) In Definition 1.4 , without loss of generality, we can demand that for limit 8 e S, 

C;  = C~ has order type cf  8, (Vy • Ca)  [y limit ¢=~ otp(y( 'TCa) is limit], i ~ j ~ Ci ~ Cj and 

let Ci ~ Cj mean Ci is an initial segment of Cj, w.l.o.g, it implies i < j and otp Cc~ is limit if 

and only if o~ is limit. We may demand: Ci ~, Cj ~ C i = Cj ('7 i ] and 

[otp Ci < sup{cf (b ) : 8 • S} but shall not use them. 

1.11 Theorem: 1) Assume X is regular and K-inaccessible and there is a good station- 

ary S ~ {i < X : c f  i = ~}. Suppose X > ~:, Mi(i < ~) are models from K of cardinality < )~, 

( M i : i < K) is <-increasing, but U Mi ,lZ Mn. Then I (X ,K)  = 2 ~', 
i<K 

2) Moreover, if X <z + 2 ~(K)+I~(K)I = )~, then K has 2 ~', ( 9 K,Z)-homogeneous pairwise 

non-isomorphic models of power X. 

1.11A Remark:  1) Not only do we get 2 ~- [( DK(,Z)-homogeneous] models in Kx, 

which are pairwise non isomorphic but the construction yields usually that one has a -<K- 

embedding into any other. (See Fact 1.13). 

2) In the proof below, we can retain the same ~:, if we assume that for some stationary 

S ~ {i < X : cf  i = •} we have square (i.e. there is S', S ~ S" c {i : c f  i <_ K} and C8 a club of 8 
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of order type < ~ for 5 ~ S '  such that [81 ~ C~ 2 ~ C~  = ~ ('h C~]) ;  see II1 6.3. 

Proof  of 1.11 : 1) Without loss of generality, for our ~., and under the assumptions on 

( M i : i < K), ~ is minimal (see 1.10(3)). 

So without loss of generality, ( M i : i < ~) is <-increasing continuous. 

Let (Ci : i <~.) exemplify that S ~ )~ is good (see Definition 1.4 ), and (by 1.5(4)) without 

loss of generality [i e )~-S ~ I Ci I < ~c]. Let C'8 = {c~ e C~ : cc = sup(cc¢-5C~) }. 

Now we define by induction on oc < )~, for every 

13 ~ Ta  ~=/{h : h a function from cc + 1 to {0,1}, and [i ~ S ~ h (i) = 0]} 

a model M n and also a function fn  such that: 

(a) M n e K has as universe some ordinal c% < k; 

(b) for ~ <oc, M,qrl~ < Mn; 

(c) ifo~isal imitordinal ,  c¢~ S then M~I = k_) Mnr~;  
[3<a 

(d) if or ~ )~-S thenf~ 1 is a <-embedding of Motp(c~g(~) into M~I; 

(e) ifct ~ )~-S, C f~ ,~ C a then f nr ~ c_ f n ; 

(f) i f a a  S, rl(a) = O then M n =  k.) Mrtrf~; 
[J<a 

( g ) i f c t ~  S, rl(OC)= 1then k_) Mnr~'~ Mn; 
[~<a 

(h) if a ~ S, ~ < or, r I ~ T a ,  CB <~ Ca ,  then 

NF~rlrf~( Motv(c~)), Mnr ~, fn(Motp(C.)  ), M n )  
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The definition is by cases: 

Case 1: Ix is a limit ordinal, and if Ix e S then rl(o0 = O. 

Wele t  M n =  t )  Mrlr~, and when ix ~ S, f~  = g { f ~ r ~ : 1 3 < i x ,  C ~ ' ~ C a .  
~<ct 

Note that (h) holds by 1.4 (using monotonicity). 

Case 2: Ix = 13 + 1. 

So Ca has a last element, say "fc~ = Y(ix)<ix, so C a -  {ya} = C ; ,  ~ < Ix (see Lemma 

1.5(4)). By Axiom (C2) there is an extension fn  of fnr~, and models Nn, MT1 such that fn  is 

an isomorphism from Mo~(C,,,) onto N n satisfying 

NFf fr l r ; (Mo~(q) ,  Mnr ~, N n, Mn). W.l.o.g. the universe of Mn is an ordinal < % (we use 

"~, is K-inaccessible"). 

C a s e  3:  Ix E S, rl( ix) = 1. 

We apply Claim 1.7 twice. In each case the ( M i : i  < ~:} from Claim 1.7 is 

(Mnr B : C~ ~ C a ,  13 < Ix} and the (N i : i < ~) is Orrltl~(Mi) : C13 g Cot,13 < Ix). In the first case 

M is U Mi and in the second case M is M~. We find models N t, N 2 in K such that: 
i<K 

(i) Mnrl3 < N t for [3 < Ix, e = 1,2. 

(ii) g{fnr~ : ~ < Ix, C~ ~ Ca} is a <-embedding of U 
i<K 

embedding by g i 

(iii) there is an embedding g2 of  M~ into N 2 which extends 

k..){f~lff~ : 13 < a, Cf~ 4 C a ) .  

M i into N1; we call this 

Condition i) is satisfied because { Mnrf~ : 13 < Ix, Cf~ ,(,Ca} is cofinal in { MTlr~ : 13 < or,} as 

Ix ~ S. Now we will show g Mnd3 is not < one o f N  1 and N 2. 
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If for t = 1,2, k..) Mnrl3 <-Nt, then we can f indN e K a n d  _<- embeddings f t o f N  t in toN 
13<a 

over k..) Mr:l~. So (fl  o g l )  is a <-embedding of LJ MI~ i n toNso  (f l  ogl)  ( O  MI3) _<N. 
~<~ ~<r ~<r 

Also f2  o g2 is a <-embedding of M r  intoN so (f2 o g 2 ) ( M r )  <N.  

But (f l  og l ) (k_  ) M[~) ~ (f2 og2)(  M r  ) hence 
13<r 

(fl o g l ) ( k .  ) M~)_<(f2 o g 2 ) ( M r ) ,  hence (by invariance) t .)  
~<~ ~<r 

that ( M i : i < K) is a counterexample to smoothness. 

(by Axiom (A3)) 

M[~ < M~:, contradicting the 

So for some ~, k..) Mnr[~ ~ N  t, and (as)~ is K-inaccessible) without loss of generality 
13<a 

IIIN t III < ~, so without loss of generality N t has universe an ordinal < 9~, and let Mn = N t. 

We finish by: 

1.11B Fact: If  11~T~(={h:)~- ->{O,1} ,  [ i e ) ~ - S ~ h ( i ) = O ] } )  M n = k _ j M ' ,  
i<~. 

( IMi l  : i < X) increasing continuous, IIIM i III < )~, then S m t h ( M ~ )  = 11-1({1}) mod Dn where 

1.12 Definition: For M e K)~, ~, regular, IMI = t . jAi,  A i increasing continuous, 
i<k 

IAi I < 9% Mi ~=:M t Ai, then Smth(M) = {i : Mi <K M} / DX (D~-the club filter). 

End of the Proof  of 1.11 : 2) Now Theorem 1.6(2) is an easy variant: for ct successor 

ordinal, by any reasonable bookkeeping, take care to make all the M~(11 ~ T~.)-( ~K,Z)- 

homogeneous. 

1.13 Fact: 1) We can conclude in 1.11 that in K~. there are 2 )" models, no one <K- 

embeddable into another (and when )~ = )~<z + 2z(K)÷(z(K) , each (~K,)0-homogeneous) pro- 

vided that 

(*) if M, N e K~ and M is <K-embeddable into N then Smth(N) ~ Smth(M). 

2) The statement (*) above holds if <K (i.e. {(M, N) : N <K N} is a PCg, o~ class, where 
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pt < 3` or is a Pg~t,o-ctass where ~t < 3 ,̀ (V~ < 3`) ~<e < 3` or is as Pg~t,~-class where ~t < ~: 

3) Assume (in 1.11) that S, as a subset of 3 ,̀ is not small (see [DvSh 65] or see [Sh A2, 

Ch XIV]). Let I.t(3,) be as in [Sh 87] (so it is "usually" 2~'). We can find M i E K~. for i < g(3`) 

such that 

(a) for i ~ j, M i cannot be <K-embedded into Mj 

(b) if3` = 3̀ <9~ + 2 ~(K)+lx(K)l then each M i is (~t~K, Z)- homogeneous. 

Proof: 1) Trivial. 

2) So suppose w.l.o.g. M < N. Let ( M  i : i < 3`), (Ni : i < X) be representations of M, N 

respectively. As M < N by the assumption C = {5 <3` : N6 ('3 M = M6 and M6 < N~} contains 

a closed unbounded subset of  ~,. 

3) See [Sh 87]. 

1,14 Remark :  See a work, in preparation, by Baldwin and Shelah for attempts to 

weaken the framework from AxFr] to AxFr3. That i s ,  dealing with "prime models" rather then 

"generated substructures." 

§2 Non Z- base 

2,1 Hypothesis: AxFr I (of course) and Z is such that K has the z-LSP. 

Under a smoothness hypothesis we will show this implies K has the 3`-LSP for all larger 3 .̀ 

Remark:  We can through §2-4 replace Z + by a regular uncountable cardinal. 

2.2 Convention: C is a large homogeneous universal model. 
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We did not assuem an axiom bounding the cardinality of (A)ff in terms of I A 1. Thus even 

if K has Lowenheim Skolem property down to ~c (LSP(~c)) it may not have it down to ~. > ~. 

This problem disappears in the presence of smoothness. 

2.3 Claim: 1) For X > %, LSP (X) holds if (<_X, <oo)-smoothness holds (see Definition II. 

1.12(3),(4)). 

2) If  K is (<p., <~.t)-smooth and has LSP(<X,%) then for every ~., % < X < t-t, K has 

LSP (11, X). ( see Definition II 1.11.(4)). 

See proof below, as we need the following observation. 

2.4 Claim: 1) Suppose ( Mt : t e I), is given where I is a directed partial order, 

(a) if [I ~ t < s ~ Mt < Ms] then for s e  I, M s <-K M ~=I g M t = (k_) M t ) ~ ,  
t e l  t e l  

(b) if It e I ~ Mt < M] and 

Ms < q Mt = (k,..) M t ) ~  <<- M provided that 
t e l  t e l  

( IIIM III, < Iit )-smoothenss holds). 

[I ~ t < s ~ Mr ~ Ms] then for s e l ,  

( <- sup III M t Ill, <llI)+-smoothness holds (or 
t 

2) If  A ~ M  e K, LSP (or jsut LSP(IIIMIII, IAI), then we can find a directed I and 

M t <M,  III Mt[ll = IAI for t  e I, A ~ M t ~ M s for t  < s  f r o m l a n d M  = u M t .  
t e l  

3) In (1) if N F ( M  a, M t, N a ,M*) whenever t ~ I (so M a < M t for every t) then 

N F ( M  a, M, N a , M*).  

Proof  of  Claim 2.4: 1) By induction on I I I .  

(i) If  I I I is finite the result is trivial, use maximal member. 

(ii) III ~ No. L e t / =  U Ia ,  I a  increasing, Ilctl < III ,  andeachlct  directed. 
~<111 
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Let Ma = k.) Mz. For (a) by smoothness Ma < L.,) Mc~ = k.J Mt so by transitivity of 

<K we finish. For (b), by the induction hypothesis Mc~ < M for each e~ and clearly for ~ < ec 

M~ c Ma  hence 13 < ot ~ M[~ _< MeL. So by smoothness k..) Mc~ _<M. Easily it is equal to 
e~<8 

k.) Mr. 
t~I 

2) See proof of  2.3. 

3) Like the proof of (1), using Claim 1.5 in the induction step. 

2.4A Remark:  In some circumstances, e.g. Banach models or I TI +-saturated models of 

T, where smoothness fails, if still we have a prime model on (or closure of) the union of increas- 

ing chains, we can "save" (Vit _> )0 LSP(g) by replacing the cardinality of a model M by e.g. 

the density character i.e. the minimal cardinality It, such for some A ~ M I A I = It, M the clo- 

sure of  A (for Banach models) or is I TI +-primary over M ( for I TI +-saturated models) or by 

pscard(M) as in II 1.17. 

Proof  of Claim 2,3: 1) Let A ~ M, IAI _< ~. Define by induction on n < o~ for every 

finite uc_A of power n, a model N u such that: N u < M ,  I11 N ulll<)~ and 

w ~ u ~  NwC_ N u. There is no problem to do it, A ~ k . )  N , ~ M ,  IIIk..) N~III<~. and 
u u 

k.) Nu < M by Claim 2.4. 
u 

2) Let A ~ M with I A I = ~,. For each finite sequence ~ • o~> 1M 1 choose N~ < M with 

IIIN~ III < )C such that [~ c_ N~, b c_ ~- implies Ng ~ N~] (so they form a directed indexed set of  

models). Since as K is (<it,<it)-smooth, for each B ~ M  of cardinality <It .  

NB~=/L.j{N~:-d• C°>B} is in K and [ d •  ~>A ~ N ~ < K N  A] and IIlNBIII < IBI + X  (all by 

2.4(1) (a)). It remains to show NA < M. 

Note again by (<it,<~t)-smoothness (*) [ C ~ B ~ M ^ I B I < ~ . ~ N c < N B ]  (use 

2.14(1)(b)). Write M as U Ai with A = A0, the A i increasing continuous and IAil < It. Then 
i<~t 

M = k.) NAI, and by (*) (NA~ : i < It) is <-increasing continuous. So for j < It, NAt < U NA~ 
i<~t i<k 

i.e. NAt < M; taking j = 0, we finish. 
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2.5 Definition: 1) NF is K-based when: i fM < M* and A ~ M* where IA I _< *: then for 

some No, N1, I11 NIlII<*: ,  N 0 ~ M o  N 1 , A c _ N ,  and No, M, N1 are in stable amal- 

gamation (inside M* of course). We define "(<*:)-based" similarly. We may say K is *:-based. 

2) NF is 0~,*:)-based if (1) holds when IIIM III = )~ (similarly we define "NF is (_<~, *:)- 

based", etc). 

The following lemma will lead via Section 3 to the conclusion in Theorem 4.1, that if K is 

not z-based then *: has 2 x non-isomorphic homogeneous models in many powers ~. 

2.6 Lemma:  Assume K is (<;~.,<Z)-smooth, K has x-LSP, NF is not (<)~,)0-based; as 

exemplified by M, A, M* where IIIMIII <~., IAI <Z; then there are M i, Ni(i < Z +) such 

that: 

(a) I11 M i III, III N i III _< Z; 

(b) A ~ No; 

(c) M i = M  o Ni; 

(d) Mi <_ Ni < M* : Mi < M < M*; 

(e) Mi, Mi+~, Ni not in stable amalgamation (inside M*); 

(f) ( Mi : i <Z +) is continuous, increasing; 

(g) ( N i : i < Z + ) is continuous, increasing. 

Proof: We define by induction on i. 

Case 1: i = 0: We choose by induction on ~ < Z, Ag, B~ such that IAgl + IBgl -<X, 

* - -  N 0 =  k . J A g  is A ~ < M  , B ~ < M , B ~ D L . j B ~ k . j ( A ~ f ' ~ M ) , A ~ A  L.)A ~ k_ jB~ .Now '~/ 

as required: L.jA~ < M*, (by smoothness) and (L.jA~) (-hM = L.j(A¢ ~ M) = t . jB¢ <M. 

(by definition). Let M o = M  (-~ N O = u B ~ .  

Sh:300



384 

Case 2 : i limit: Take unions. 

Case 3: i = j + 1: We can represent M as a direct limit of <-submodels including Mj 

of power < Z, M = L3 Mt (use LSP(~,)O and 2.4(2)). Necessarily for some t, Mj, Mr, Nj 
tel 

are not in stable amalgamation. [Why? by 2.4(3)] Now define M i, N i as in the case i = 0 such 

that Mt ~ Mi, Nj ~ N i and (a),(c),(d) holds. Now and by monotonicity ofNF (e) holds. 

2.6A Remark:  1) In case 1 we can choose A; ,  B ;  only for ~ < 0 where 0 is a regular 

cardinal < ~. Then we shall use (<~,0)-smoothness only (and if we restrict ourselves to the 

case IIIN III _> Z we can use (Z,0)-smoothness only. 

2) Let 0 = cf 0 < Z, and assume only (-<Z,0)-smoothness. Then as explained above we 

can still prove the lemma, but in (f) and (g) we know that we get continuity only for 5 < ~+ of 

cofinality 0. This complicates the combinatorics in section 4. 

2.7 Claim: 1) Suppose K is (Z,0)-smooth and (~,z)-based, 0 <  Z. If  M<M*, 

IIIMIII=~., Ac_M, I A I <  Z then there is N ~ M * ,  such that A ~ N ,  IIINIII< Z and 

NF(N ~ M, M, N, M*). 

2) Suppose 0 <Z,  LSP(<z +, ~) and K is (<~, <0)-smooth. Then the existence of 

Mi, N i (i < Z+) as in 2.6 is equivalent to "K is not (Z+,z)-based". 

Proof:  1) This is proved in case 1 of the proof of 2.6. 

2) Easy to (use 1.6). 

2.8 Remark :  In Definition 2.5 we may ask that No,N1 exist not as submodels of M* 

but of  some M**, where M* < M**. This is apparently weaker definition. However assuming 

e.g. (<~,0)+-smoothness for some 0 < Z is enough to get back the old definition. 

§3 Stable Constructions 
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The following definition generalizes the notion of a construction from Chapter IV of [Sh]. 

More precisely, since we are demanding independence, an F~-construction. 

3.1 Definition: We define by simultaneous induction on o;. 

1) A = ( A ,  B i , w i : i  <ot  } is 

Au = (A k_) YBj)~qn): 
j E u  

a stable construction inside N if (letting for u ~ c~, 

(i) A, B i < N and Aj  < N (note Aj  = A (~.~<j)) for i < c~, j < ~. 

(ii) a) w i c i 

b) wi is closed for A r i [defined below in 3.1(2)).] 

(iii) B i ('7 A i < (A k..) k.) Bj)~ n = Aw,. 
j E W i 

(iv) NF(B  i 0 Ai, Bi, Ai,  N)  

(v)Bi ("hA <A 

(vi) For each i one of the following occurs: 

Case (a): i = 0. 

Case (b): For some 7i < i, wi = w,t~ U {7i}, Bi ("3 Ai = B,[~. 

Case (c): B i = ( U BJ)~ n. 
j E W  i 

2) For such A, u is called closed if: 

a) u _ c ~  

b) i e  u ~ w i c _ u .  
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3) A is a (<p.)-stable construction if A is a stable construction and IBil < ~, for 

i < eg(A). In this case we say A tg(a) is (<l.0-stably constructible over A. 

3.2 Nota t ion:  If A = ( A , B i , w i : i < o ~ ) ,  then Ar~Z(A,Bi ,wi : i<c~F-h~5)  and 

~ ; e g ( A ) .  F o r w  c_o~,Aw = (A g g B i ) ~  n (°rAwA)" 
i~w  

3.3 Cla im:  1) If A is a stable construction inside N then A r [3 is a stable construction 

inside N. 

2) If A is a stable construction inside N, o~ <_ ~g(A) then c~ is closed for A. 

3) The intersection of any family of sets each closed for A is closed for A. 

4) The union of any family of  subsets of tg (A) closed for A is closed for A. 

A u <N. 

5) If u ~ tg(a)  is closed for A where A is a stable construction inside N then 

Proof :  Easy, but (5) is proved in 3.4. 

3.4 Cla im:  If A is a stable construction inside N, for t = 0,1, 2, u t c_ o~ = ~g(a) is 

closed, and u0 = u 1 f'~ u2 then Auo, Au,, Au~ is in stable amalgamation inside N. 

Proof:  Straightforward, by induction on ~g(A) (for successor remember  1.1, for limit 

use 1.9). 

3.5 Cla im:  If A = (Ai,Bi,w i : i < c~) is a stable construction inside N, h a one-to-one 

function from o~ onto 13, [j  ~ wi ~ h ( j )  < i] and let Wh(i) = {h(j)  : j  ~ wi}, B*h(i) = Bi then 

A '  = (,4, B~,w~ : i <13) is a stable construction inside N. 

Proof:  Easy. 

3.6 C la im:  1) If~.  <z + 2 Ix(K)l = ~,, z > L S P ( K ) ,  M ~ K a n d  IIIM Ill <~, then there is a 

stable construction A = (A,Bi,w i : i < 8) inside some N ~ K such that A = IMI ,  A8 = INI,  

IIIN III < ~ and N is ( ~9 K,Z)-homogeneous. 
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Proof." Straightforward. 

Remark: On uniqueness see §5. 

§4 NonStructure from non "NF is not X- based" 

We are trying to get nonstructure from non "NF x-based" for suitable regular Z- Remember 

the definition of  "~ is K-inaccessible" (U 1.16). 

4.1 Theorem: Assume Z + > IX > LS(K) + Ix(K) I and (< Z ÷, < Z+)-smoothness holds 

but NF is not x-based with counterexample as in 2.6, then: for every ~ = ~<~t + 2;~ which is reg- 

ular, and K-inaccessible such that some S* c {5 < ~: cf 6 = Z+} is good and stationary there 

are 2 k non-isomorphic ( ~ K, g)-homogeneous models. 

We give, in essence, three proofs of  (variants of) Theorem 4.1. Items 4.4 through 4.6 

reduce the proof of the general case (arbitrary X) to results in Chapter III. Items 4.7 through 4.9 

(using the construction of 4.4) prove Theorem 4.1 as stated except for the requirement that the 

models be ( a~z,l.t)-homogeneous. Item 4.10 explains how to modify this proof to demand the 

models to be ( ~: ,g)-homogeneous.  

4.2 Idea of proof: 

Picture: 

Mi Ni 

Z + --WE( M~, Ni, M~+t, Ni+l) 

Mi +l Ni +l 

M N 
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: 

have 

N s = (Nrl ,  M v : r l ~  S, V e  (Z÷)>~,}g~s. 

only if r 1 ~ S (i.e. we shall prove this) 

In 2.6 from a counterexample we get a canonical counterexample (as in the picture). We 
~+ > 

copy ( M i : i < Z +) along the tree ~.: i.e., define Mq (rl e z*>TV) and 
orao 

Mtg(rl) . ----> M~,  f n  increasing, amalgamating them freely. For r I ~ (z*)~. we can 
tsomorphisra 

Nn, gn ~ t . . ) fnra  such that gn : N  ---~N n, (isomorphism onto). For S c_Z*£ let 
Ct<~ ÷ 

Now in N s o v e r  M~ there i s a c o p y o f  N n i f a n d  

So we have coded S, see III 5.1 for why this implies non-structure. We shall give the proof 

of 4.1 after some further discussion. 

NF is not z-based generalizes (roughly) the first order notion " l I Iz>  ITI,  T unstable" 

Since in the first order case ~(T) _< IT! +; the case however does not appear for first order when 

Z < ~:(T), as I acl(f~) I = I Tt by the definition of C ~q. But it would appear if we varied the first 

order notions slightly (perhaps to deal more precisely with algebra), and instead of using the car- 

dinality of a set A in the definitions used the cardinality of a minimal set of generators for A. The 

following example explores this possibility. 

4.3A Example :  T = T eq is (first order complete) stable, not superstable. Now (i) if 

A, B c C are algebraically closed, B = acl(b),  I b I < ~, ~c regular then we can find a e A, 

l~ l  < K such that acl(-ff), ac l (d  k.) -b), A are in stable amalgamation i f  and only i f  ~ > ~:(T). 

There are two reasonable ways to define IliA lIlgen: 

IliA Illgen = Min{ IBI  :B  c A  c a c l ( B ) } .  

IliA IIIgen = Min{  IBI : A c_ acl(B)}. 

The second is less natural but A I c A 2 ~ IliA I III gen -< IliA 2 Ill gen (i.e.- monotonicity holds) 

So "NF ~¢-based" is a generalization of  1¢ _> ~%(T). 

Discussion continued:  Later, in Chapter V, we sha11 have another notion, capturing the 

parallel of  •(T) and so in particular "superstability". But remember that "stable" was captured in 

Chapter I and axiomatized in Chapter II. Looking carefully at universal classes (see II 2.2) we 
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see that for this case (i.e. <K is - ~ * , Z " - s e e  II 2.2D, K a universal class without the (x+,qf) - 

order property, t.t = 2 2Z) "K is ZK-based" follows. However this is seemingly not true for the 

general K we are dealing with. Also note that if e.g. K is the class of  submodels of  models of  T, 

T first order, stable not superstable with elimination of  quantifiers, so K is a universal class, 

then in II 2.2 we get (K,<K, NF,( )gn)  satisfying Ax Frl but this K is not R0-smooth (nor ~c- 

smooth for ~c < r,r(T ) 

After the following theorem and assumption we shall be able to generate some facts on 

stable theories to our context, e.g., 

I T I ÷-primary model, parallelism. In other words, only assuming smoothness and K is z-based 

we can generalize stability theory. 

4.4 Proof  of Theorem 4.1: By lemma 2.6, we got from our assumption, the sequence 

( Mi : i < )C+), ( Ni : i < X + ) such that: 

(i) both <-increasing continuous 

(ii) i <Z + ~ III M i III + III N i III <_ Z. 

(iii) ~ N F (  Mi, Ni, Mi+l, N i + l ) f o r i  < Z  + 

(iv) Mi < Ni < Nz* for i < Z + (for i = X + use (Z+,X+)-smoothness) 

Let N =~: NZ., M ~: Mz, .  

Let  {rli : i < i* (O)} be a list of (z')>~, such that [i .<_ j ~ ~g(rli) < ~g('qj)]. 

We define by induction on i < i*(0), f~t~, M~I~, Li such that: 

( a ) f ~  is an isomorphism from Mtg(.q3 onto M~,. 

(b) ~i  = 1] i r ~ ~ f'qi ~ f ~ ,  (hence M~j _< Mq,). 
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(d) L i is increasing, continuous 

(e) i f  eg(rli) = Y + 1, 

Li+ 1 = ( M.q, wLi)~n,~.  

let rlj = rli r y and N F (  M~j,  Li, M~I~,Li+I), 

(f) M<> = M~o = L O. 

There is no problem. 

Now for T c_ (~*)>~., let L r = (k..) M~)[n(o~ • 
~cT 

4.5 Claim: 1) (0 ,  Mq~,{j : (Bo~ < ~g(~i)) (1]/ rot = TIi) } : i < i*(0)) is a stable con- 

struction inside Li'(o). 

2) If  T o , T 1 , T  2 <_(z')>~ are closed under initial segments, T O = T 1 f ' h T 2  then 

N F ( L  T° , L T~ , L Tz, Li'(o)). 

Proof  of  4.5: 1) Should be clear by comparing the construction with Definition 3.1. 

2) It is immediate by 3.4. 

Remark :  That is, is does not matter in which order we carry out the definition. 

Continuation of the proof of 4.1: We have built a tree of the { M  n :11 e z÷>L}. Since 

the original sequence ( M i : i < •+} was continuous any model containing this tree will contain 

all the M n  ~i k..) MTIti for 11 such that eg(~)= ~+. Now we past independent copies of 
i<z ÷ 

N = NZ* on the top of  the tree. We will see that we can realize or omit a particular N~ (with 

rl e ~÷ %) at will. 

Let {va : tx < ~, z÷} list (z*)~,, and we can easily define ga ,  Nv~, L* such that: 

gv~:  Nz* ~ Nv~ 

is an isomorphism onto extending 
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such that 

f ~ u  ~r~ 

(or) ( g  Nv~ k.JLi'(o))~ ~ _ L  
I$<et 

(~)NF( U Mv.t~ ( g  Nva uLi'(0))~ ~, Nv~, L*) 

(y) L* = < g /  Nv~:~ < (z~)>~} k.)Li'(0)>[ ~ 

To achieve the third condition, choose., a first approximation N'v~ so that 

NF( U Mv,~r~, Li'(o), N'v,~, L'a) 

and then when defining the Nv~ by induction on c~ choose Nv~ isomorphic to N'v~ over Li.(o ) so 

that 

NF(Li '(o) ,(U Nv~ U Li'(o)}[ ~, L~, L*). 

Now, transitivity of independence gives the required result. 

Let for T ~ z÷2~, 

LT = ( g {  M~I : ' q e  r (')Z+>~.}g { Nv : r e  r (")~÷~})~ ~. 

The first definition of L T did not involve the Nrl and the second ones does; however tt is 

easy to see that the two definitions of  L T are compatible. You can use 3.3, 3.4, 3.5. Using 3.6 

let, if X = ~<~t + 2z ' L T be ( ~gK,p.)-homogeneous and (<g)-stably constructible over L T and 

let (L T, BT,w~ : i < i T) be such a construction. For other X (or when proving the version 

without "(¢~K, 1.0-homogeneous) let L T ~=ILT. 

Clearly IItLTIII = X when I TI < ~. 
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Recall N = Nx. (beginning of proof). 

4.6 Claim: If T ~ 9¢÷>--~,, v E 9¢* k, {V r O~ : Ct < )~+} ~ T but v ~ T, then: 

1) fv(= k..) tyrO) cannot be extended to a <-embedding of N into L T. 
~<~* 

2) Similarly for L T. 

Proof: 1) Let g : N -~ L T be an <-embedding, extending fv.  W.l.o.g. T is closed under 

initial segments. For ~ < Z+, let 

T ~ = { p ~ T : v r ~ p  o r v r ~ = p } .  

Clearly (see 3.3, 3.4, 3.5) 

(i) L T = k...) LTd. 

(ii) L T~ is increasing continuous in ~ (if ~ is a limit ordinal - Mvr~ = k_) Myra). 

(iii) NF( Mvr;,L T;, My, L T) remembering My = k.,) Myra. For every ~ < Z + 

g " ( N ; )  is ~ t,.) LT;, LT; increasing, I g " (Ng)  I < 2; hence for some ~(~) < Z + 
~<;¢÷ 

g"( Ng) c_LT~°$HenceC~=I{o~ < Z + : (~/~ < ct)~(~) < ~, and ct is a limit ordinal} 

is a closed unbounded subset of Z +. Fix ~ in C. Then g " ( N ; )  c L T;, note that 

g"( Ng)<_L T, L T; <_L T 

Remember NF( Mvr~, L r;, My, L*) hence by monotonicity 

NF( Myra, g " ( N ; ) ,  My, L*) 

Again monotonicity 

but 

NF( Mvr;, g " ( N ; ) ,  Mvr(;+l), L*) 

g " ( N ~ )  k..,) Mvr(~+l) ~ g " ( N g + l )  <L* 
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N F (  Mvr~, g (N~) ,  Mvr(~+l), g (N~+I) )  

which contradicts the hypothesis on ( M i, N i : i < X +) (and g being an <K-embedding). 

2) Similar proof. 

4.7 Continuation of the proof of 4.1: 

Proof  without the homogeneity condition 

The assumptions on ~. imply that there is T ~ z*>~., T = k.) Ta,  Tot increasing continuous, 

Ta is closed under initial segments , I Tc~l < 7% and for 8 e  S*, r18 e (z*)~, 

{~1~ r ~ : ~ < %+} c_ T~ and for no ot < 8, {rl~ r ~ : ~ < Z +} ~ Tc~ (i.e. as S* is good cf. state- 

ment of Theorem). Let for S c S*, L[s] = L~ L'){n~:aes) • Clearly LIs] is a model of cardinality )v 

which is ( a) K,bt)-homogeneous when demanded. Decompose L[s] as t . . )Lts],c.  
a<~. 

(L[s],c~ : a < X} is increasing continuous, IIIL[s],c~ III < )v). 

4.8 Definition: For any M ~ KX, ~. regular >LSP(K)  and representation ( M i : i < ~) 

of M (i.e. it increasing continuous, M = k..) Mi and III M i III < ~.}, we let: 
i<7~ 

B s z ( (  Mi : i < )v)) ~-I {8 < ~, : o f ( f )  = Z + and:for every A c_ M, IAI < )~ there are 

N 0_< Ms, N t < M, III N l l f l<X,  suchthat N F (  N O , N1,  M s ,  M)} 

It is a D x-invariant, so we can let 

B s x ( M )  = Bs);((  M i : i < )v))/D 

Now we finish by (using our proving without the homogeneity condition) 

Fact 4.9: There is a club C such that for any stationary S ~ S * ,  

S* C (- 5 ("~ O~-  Bs z (L[ s I ) )  = C o S. 
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Proof:  We show that the required C is 

C = {0~ : L[s],c~ = ({M~ :r I • T ~  k.) {Nvs : 5 < o~,)~ ~} 

It is easy to see C is a club since L[s] is generated by { M  n : rl • T} k.J {Nv~ : 5 • S}. 

Case i: Consider 5 • (C ('7 S*) - S .  To see the left hand side of the equation is con- 

tained in the right we must show 5 • Bsz(L[s]). Since 5 ~ S, the construction did not put Nv~ 

into L [s]. 

Le tA ~ L [ s  ] with IAI <%. Then thereis  atA c_Tk j { r l~  : 5 •  S} with Itml <Hand 

A ~_<{M~ :T ie  t A f-,17~*>~,} k.J{Nv~ : v e t •  tA}>~ r~. 

Let t~ be the closure of ta under the taking of initial segments. We want to find No and N 1 

which witness that 5 • BS z (L Is]). 

We need two auxilliary sets 

to ~I{rl~ Ta : (3p • (T (-7 tA)-Ts)[rl,~ p] 

t l  =~f{Yl• T : (3p • (T ('7 tA)-T~)['fl~ p] 

or (3p • {va : o~ > 5} f'7 ta) [rl ,~ 91}. 

or (3p • {va : ~ > 5} (-7 tA) [rl ,~ Pl}. 

Now let N° = ({ Mn : rl • to)[ ~, NI = ({ Mn : rI • tA (-TT} k.j {Nv : Va • tA})[ ~. Then 

NF(N °, N 1, L[s],~, L*). (Remember, L[sl,5 = ({ M~ : rl • TS} k.3 {Nv~ : o~ < 5)~ ~ since 

5 • C). Note that I {Mn : rl • t0)~ ~ I < ~. For each rl • z÷> ~ I M. n I < )C, so we only have to 

see I tol  <~ .  Clearly ItA I <)~, SO I{ r l •  T s : ( ( 3 p e  (Tf 'TtA)-T~)[rl ,~p]}l  <~. But also 

I{rl • T~ : (3p • {va : o~ > 5}) ¢~ tA} I < )C since for any va  with ~ > 5, 

I {Y let r ~ : ~ < ~+} ¢"7 T~ I < ~ (See paragraph before Definition 4.8.) 

Now A ~ ( N  1 k.jL[s].~)~ ~. So we can choose N 3 and N 4 with N ° < N 3 < N  1, 

N O < N 4 < L [s],~ and IN 3 I, IN 4 1 < X while A ~ (N 3 k.) N4)~ ~ and (by monotonicity for NF) 

NF(N °, N 3, L[s], ~, L *). Now applying axiom (C4) we see NF(N4,(N 3 k.) N4)~ ~, L[s],6,L *). 

So the required No, N1 a r eN  4 and (N 3 k..) N4)~ ~. 

Case ii: Suppose 8 • C ('7 S* ('7 S. To show the right hand side of  the equation is 
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contained in the left we must show 8 ~  Bsx(L[s]). Suppose, for contradiction that 

8 e Bs~(L[s]). We will find an i < Z + such that NF( Mi, Mi+I ,  Ni, Ni+I )  Contrary to our origi- 

nal choice of the sequences ( M i : i < Z+), (Ni : i < Z+). Finding this i will require an auxilliary 

construction. 

We have Nv8 <L[s]. Remember gv8 maps N~, = N isomorphically on Nvs. Now we 

define by induction on i < Z+: Ai, Pli, P2 i and t i to satisfy the following conditions. 

First, to see where things live, each of Ai, P~, p2 are -<K-SUbmodels of L[s! of cardinality 

< Z. Each t / ~  ~*>~, k.) {vc, : ~ ~ S} and It i I -< ~. The sequences (A i : i < Z+), (P~ : i < Z+), 

(p/Z : i < Z +) are increasing and continuous. 

We list the remaining properties while indicating the construction. At a successor stage we 

will use ti to define Ai; then find P/1 and ti+l. 

to  -- ~vs)  

Ai = ({ M n : ' f ie r i o T }  kJ {f v, (Nj): Va e ti, j < i})~ ~ 

Now choose e2,  P ! ,  with Ip/2 I, IP] I  < Z such that NF(P~, P2i, L[s], 8, L*) and A i c P 2 

(using the assumption 8 e Bs((L[s],a : 0~ < ~)) Then choose ti+ 1 so that 

P~ c_ ({ M n : rl e ti +l ('7 T) k_) {Nv~ : ~ < ~, va ~ ti +l})~ ~ and also 

P~ ~ ({ Mrl : 1"1 e ti+ 1 ( ~  TS} k.) {fv=(Nj) : Vc~ e tt+l 0 {vi : i < 8}},j < i)£ ~. 

There is a club C* ~ Z + on which P~ O Nv6 = gv~(N~) and all other requirements we 

shall use below (by the usual methods of constructing clubs). Fix { belonging to this club. By 

Claim 1.6, NF(P~,P~,L[s l ,~ ,C*) .  We want to shrink L[S],8 and P~ to obtain 

NF( Mv6t{, gvs(N~), Mv6t(~+l), L*) which contradicts the original choice of  the M i and Ni. 

For this we need further definitions 

T~ = { r l e T : v ~ r ~ 4 r l } k . j { v c ~ : o t ~  S , v a  r ~ v ~ t ~ .  

T (  = {rl ~ T : rl ~ v~ r ~ or vs r ~ ~ ~l ~ j  {v~ : v~ r ~ ~ v~ and o t i S }  
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Thus T~- t,.) T~ = T t,_) {vc~ : ¢z e S} and T~- ('3 T~ = (v~ r o~ : cz < ~ .  

Now we show t~ (-3 T+ = {vs} k.) {v~ r 0~ : cc < ~ .  This is straightforward from the fact 

that the (tc~ : cx < X+) are a continuous increasing chain of sets of  cardinality _< Z. In more 

detail, let t k.) ti. For each 9 E let Cp = {{ : p ~ T~} t,.) {v~}. Then Cp is a club on Z +. 
i< Z+ 

Since I t i I < Z for each i, ('5 {Cp : p ~ t~} is also a club. Taking the diagonal intersection, 

{{ : V~ < ~ Vp ~ t~(~ ~ CO) } is a club. Now if we require (w.l.o.g.) our { to come from this 

club we have t~ ~ T~- = {v~} k.) {v~ r (x : o~ < ~ .  So for our limit ~, 

P~ ~ ( Mq : r I ~ t{ 0 TS} t,.) {f v~ (N~) : o~ < 5 , va ~ t~})~ ~ c L T'. 

Clearly N F ( M v d ~ , L T ' , L T * , L  *) and Mv~r(~+l) <-L T÷ so by monotonicity we have 

NF( Mv:~,  e~, Mvsr(~+l), Ltst~). But we also have NF(P~, P~, Ltsl,~, L *). By transitivity 

0-emma 1,1) we conclude NF(Mvd~,  P~, L[SI,~ L*). As P~ ~ gvn(N~) this contradicts the 

choice of M i and Ni. Thus we have established Fact 4.9. 

End of the proof of 4.1 without  homogeneity:  Theorem 4.1 easily follows from 4.9. 

For, if  L [s] =- L [s'] (with S,S" _c S*), Fact 4.9 implies that S and S" agree on a club. But there are 

2 x stationary subsets of S* which are pairwise not equal mod D ~. 

4.10 Proof of 4.1 with the homogeneity condition 

Suppose g is a -<K-embedding of N into L T extending fv .  Let (T~ : 4 < Z +) be defined by 

T~ = {rl ~ T : rl r 4 ~ v~ r ~ k..) {Vc~ : c~ ~ S, vc~ r ~ # v~ # ~J ; and let 

(L +, B + w + j ,  .j : j  < j (T))  be a stable construction of L T over LT. By 3.5 w.I.o.g, there are 

Q';(T) : 4 < Z +) increasing continuous, k..) j ; (T)  = j (T) ,  and B T 0 LT c_L ~ for j < j ;(T),  

4 < X +. Let L T; = (L ~ k.) { BT : J < j;(T)})[~,, so (L T~ : 4 < Z +} is increasing continuous with 

union L ,  T. As in the proof of Fact 4.9 C = {4 < 2 + : g maps N{ into L ,  r~ for ~ < 4, 4 limit} is a 

club of 3( + . Also the rest of the proof is similar. 

4.11 Remark :  1) So it was enough for 4.5 (and really 4.1) that 

{i < Z+ : - - & F (  M i, Ni, Mi+l, Ni+l)} 

is stationary. 
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2) By III 5.1, 5.1 we can get other variants of 4.1 as we have the right representation. 

4.12 Fact:  We can use the proof of 4.1 to get 2 ~" models in ~.1 >- ~.. Using models which 

have a stable construction (L  T T T IIIBra < X we , B a , w  a : a < a ( T ) ) ,  Ill (so get something for 

singular ~,1)- 

3) We can in 4.1 omit the "( a~K,tX)-homogeneous" demand gaining the the omition of 

,,~. = ~<t~,, If  we demand only ~, -> 2 ~t we have the models m" K~:~÷us (see Definition II 3. 12). 
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