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Introduction

We have been interested in classifying first order theories, not in the sense of finite
group theory, i.e. explicit list of families but like biology - find main taxonomies, dividing
lines. See [Sh 200].

Some years ago (1982) we found what we wanted (for countable theories). We try here
to develop the case of a universal class (see below). In fact we develop it less concretely,
abstractly, both per se and as we shall need eventually to define inductively a sequence of

such frameworks. For technical reasons only the first four chapters appear here.

Definition:
1) Let 1 be a vocabulary (= signature). K will denote a class of t(K)-models.
ii) K is universal if K is closed under submodels and increasing chains and isomor-

phisms.

This research was partially supported by the NSERC, NSF and BSF and the Israeli Foun-

dation for Basic Research administered by the Israel Academy of Science.
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Note: i) Not every elementary class is universal but many universal classes are not
elementary, e.g. the locally finite groups.

ii) If K is universal, ©(M) = 1(K) then M € K if and only if every finitely generated
submodel of M belongs to K (see 11 2.2B).

iii) Remember in this context the following theorem of Tarski: for a finite relational

vocabulary, K is universal if and only if K is the class of models of a universal first order theory.

General Strategy

We shall consider various dividing lines, i.e. properties. On one side we shall prove a
"non-structure results.” Typically we can interpret (essentially) arbitrary linear orders I or
I=(5,<) with ®AcS <\ inside models in K. The models which we exhibit are
essentially generated by such I (e.g. Ehrenfeucht Mostowski models).

In this case we get non-structure results, then we assume the negation and continue our
search. The point is that the negation says much, it is a property which implies at least some
structure. Sometimes this knowledge is instrumental in proving non-structure results for pro-
perties which are "buried deeper”. Later we shall have cases where we get weak non structure
results; seemingly as for universal class there are more possibilities. This was a successful stra-
tegy for countable first order T (see [Sh 200], [Sh A,3]) and is being written for classification
over a predicate. (See [Sh 321], partial results appear in [Pi Sh 130], [Sh 234]). On non elemen-
tary classes see [Sh 48], [Sh 87], and in an abstract setting [Sh 88). Those papers deal with
categoricity. From the other end, some papers deal with properties which are sufficient for non-
structure results (and hopefully their complement will be helpful). See on infinitary order
property [Sh 16]. For much better results, see Grossberg and Shelah: two papers on order
property {GrSh 222], [GrSh 2591, one paper on unsuperstability ((*7%, <)) [GrSh 238]. (On the
more general situation {M : M E vy}, y e L+ , see [Sh 285]).

This work was done on 8-12/85 and lectured on at Rutgers.
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rington for hearing this in first verbal versions and J. Kupplevitch for some corrections. Last but
no least I thank, Alice Leonhardt for typing some preliminary versions and Danit Sharon for

typing and retyping this till perfection (which I cannot claim for my work).

Notation:
Set Theory

A1, %, K denote cardinals (usually in finite).
o.B,7v,1,/, £, € denote ordinals.
8 denotes a limit ordinal.

H (L) denote the family of sets with transitive closure of cardinality < A.

Model Theory

1 denotes a vocabulary, i.e. set of predicates and function symbols, each with a desig-
nated fixed (finite) arity.

M a model, ©(M) its vocabulary, for T = (M) we say M is a T-model, |M| the universe
of M.

K a class of models all with the same vocabulary 1(K), for T = 1(K) we say K is a 1-
class.

a, b,C denote sequences of elements from a model, not necessarily finite. The length of a
sequence a is denoted by #g(a).

£, a logic, i.e. for every vocabulary 1, L(1) is a set of formulas ©(x) not necessarily

first order. (% is a possibly infinite sequence of variables including all free variables of ¢) and
we assume always [1) €T = LD c L)), [oe L(t)) and e L(ty) implies
9e Lty ~ @)L if M is a T-model, ¢ e ¥® M1, the truth value of "M k ¢[c]" is defined,
and dependsonlyon M I tifoe  L(1).
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¢, v,9 denote formulas, on ¢(x) see above; ©,9(X),p(x;y) may be treated as objects of a
different kind (see below). We sometimes separate "type", "free" variables from "parameter
variables". Lj  is the set of formulas we get from the atomic formulas by closing under —@ (

negation) A @; (where o < A, conjunction) and (Ixg, ..., x;, * ) jca@ (Where o < ¥, existen-
j<o

tial quantification), but for @(X) € Lj (1) we demand £g(X) < A. (So Lj « is a logic, L g, ¢ first

order logic).

A class K of t-models is a PCy ), if for some vocabulary 11, 1<y, Tl <A and
ye Lyu(t) wehave K = (M I t: M Ey}. PC(T1,T) is the class of ©(T)-reducts of models
OfTI.

Lastly a class K of models is PCT , if for some 11, 1<%, |11l =K, first theory
Ty C Ly (1) and set T of A (<w)-types in L (T1), K ={M I 1:M amodel of Ty omitting
everyp € '}

Note: for A > k a formula of L (t) has < A free variables.

@, ¥,0 will denote sets of formulas of the form @(x,y) or @X). If ¢(x) € @ this means
0164 ! ,J?z) e ® when¥ = X' ~¥°. These formulas may have parameters.
Do @BAM) = {9@:b) 1 b € DA, M E ¢[a@;b]} where 9(:y) €  LT(D) for some L,
and A ¢ IMI.

Notation for such types is needed when a monster model (C) is absent (or still absent) (oth-
erwise we can omit M). We sayp = 1p (9(;;;>(§,A,M ) is a type (or O(X;y)-type) inside M. Simi-

larly for the following variants.
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1 o (@ AM) = 1p oz, 5,)(@A,M) where X = X1 “X3, {g(a) = tg(xy)

tp{@}(&', AM) = tp(p(E, AM)

zp@(a’ A1M) = tp(p(&_’ AaM)
pe D

SEAM) = {tpp@AM):ae *IMI}

we can replace A by J, a family of sequences, e.g.

Do) @IM) = {0Gby1, ... b n <o, M Eolaby,...,b,),bye Jfor {=1,n} orbya

set of formulas with parameters e.g.

o5 (@8.M) = {p(X;c) : M E ¢(a;0),¢(x;c) € ©)
We then say "type over 8" or "type over J'.
M <g N means that for () € ® and z € ¥® |M1:
M E olalifand only if N & @[a] ]
2, < (@) is the set of formulas of the form

y) :f(ax(), cea X T dicx a/<\7~ Do)

where 3; 5 Mx0y «+ -5 Xis ** Yico 12O <K, 0o o) € D or =9y (Y o) € D for each a. So
Iy« (@) includes every 9 (¥) € D, for which 1{g(y)! <«

pis a type inside M if p is a set of T(M)-formulas with parameters from M.
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Chapter I: Stability Theory for a Model

§0 Introduction

In [Sh A1, Ch. I, §2] little stability theory was developed for an arbitrary model; quite
naturally as this was peripheral there. More attention was given to non-structure theorems for
infinitary logics (see [Sh 16, §2] and Grossberg and Shelah [GrSh 222]. [GrSh 238], [GrSh 259]
and applications, see Macintyre and Shelah [MaSh 55], Grossberg and Shelah [GrSh 174]).

However, in our present framework it is important to get results on infinitary languages. As

we have fewer transfer theorems, it is natural to concentrate on one model.

Surprisingly we have something to say, some of it was explicit or implicit in [Sh Al, ch. I,
§21]: the theorems that non stability implies order (i.e. existence of quite long set of sequences,
linearly order by a formula), that non order implies the existence of indiscernibles and (the main

novelty) that we can average types, all have reasonable analogs.

Lastly we prove (in section 5) that in order to get just indiscernible sets, less "non-order" is
needed, and this gives new information even on first order theories. E.g. if T is first order, there
is no formula @(x,y,z) such that some model M of T has (¢(x,y,z), X¢)-order property (note x,y
are not sequences), M a model of T, q; € M for i < @M, A2 ITI, then for some w C 2M*,

Iwl > A, {a; : i € w} is an indiscernible set in M.
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§1 The order property revisited

The main results of this section are Theorem 1.2 and 1.10. We begin by recounting the
appropriate definition of the order property in this context. We note in Theorem 1.2 (proved in
Chapter II1.3) that this relevant order property implies the existence of many non isomorphic

models.

These notions have two parameters: a formula and a cardinal. As we no longer are attached
to first order logic, the formula (or set of formulas) as a parameter is even more important than
in [Sh Al]. As we assume generally no closure properties for the set of formulas, we have to be
more explicit in asserting "there is a formula" (Note that we may have to consider several logics,
simultaneously, as in [Sh 285], and that usually non-first order logics have weaker closure pro-

perties).

A new parameter is a cardinal (the length of the order). Its presence is desirable as we no

longer assume compactness, so not all infinite cardinals give equivalent definitions.

Then we describe the notions of "indiscernible” and "splitting” appropriate for this context.
In Theorem 1.7 we show that either for each type we can find a "base” over which it does not
split or the order property holds. In Theorem 1.11 we show that for appropriate L if the number
of @ types over a set of power W which are realized in M is not bounded by W then there is a o

(closely associated with @) such that M has the (d)* ,k1)-order property.
y

1.1 Definition:
1) M has the (¢(x;y;z),w)-order property if there are sequences c, dg.bo from M, such
that for o0 < W

M & ¢[@q,bp,c] if and only if o < B.



Sh:300

271

We extend this notion to sets {or classes) of formulas and classes of models as follows:
2) M has the (®,p)-order property if for some @(x;y;z) € ©, M has the (@(x;y:2),1)-
order property.

3) K has the (,1)-order property if for some M € K, M has the (&, 1)-order property.

4) M [or K] has the (@, <p)-order property if M [or K] has the (D,}; )-order property for
every yy < f.

5) replacing "order” by "nonorder” is just the negation.

6) M has the (t¢,p)-order property if it has the (¢, l)-order property or the (—¢,)-order
property; similarly for the other definitions.

7) Let "(¢(x,y),W-order” means "((x;y;z),)-order for z the empty sequence, and

(p(x),w)-order means (G(xX1;X7:X3),W)-order, X = X1 “X5 " x5 for some X1,X7,X3.

1.1A Remark: Usually ® ¢ L., but sometimes ¢ € A(L .. ,,) (i.e. every formula and

its negation is a pseudo elementary class).

On the other hand for universal X (see §2) we may well use ® = set of quantifier free finite

formulas.

Note that if M has the (¢(X;y;z),1)-order property, then it has the {(¢(x;y"2),1)- order pro-
perty.

We shall prove in Chapter III (and in [Sh 220]) that order implies complexity:

1.2 Theorem:
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1) If K is definable by a sentence in A( L3+ ), and it has the (@(x:y), <eo)-order pro-
perty, @(X;¥) € A( L+, o) then:

(a) for every it > A + 1£g(X"¥)!* the class K has 2" non isomorphic members of
power y. [see III 3.4 using 11 1.11(3)]

(b) if ¢f(u) > A, is regular or strong limit, then K has 2* nonisomorphic members
of power . which are L., ,-equivalent. [by [Sh 220], §2 (for u regular), §3 (for W strong limit)
using I 1.11(3)].

(c) if p > A is regular, p = p8%Y then K has 2% members of power W, no one
embeddable into another by an embedding preserving * ¢(x,y).

2) If K is definable by a sentence from A{ L+ ) and it has the (¢(x;y),A)-order pro-
perty, @(x,y) € L,+ o then: [by [GrSh 222, 254])

a) if A 2 Qg(u4x) then K has the ((x;y), <eo)-order property.

b) if A 2 3(,4x) then for some ¢'(X;y") € Ly+,w» K has the (¢'(x",y"), <eo)-order
property (and @ inherits all relevant properties of ¢. More exactly, [letting H (A) denote the fam-
ily of sets hereditarily of cardinality <A] for some A, € H (), and for some elementary submo-
del N of H (L) of cardinality x, ¢ is the image of ¢ under the Mostowski Collapse of N).

c)if A2 3;,,(4,K) then (see definition in [GrSh222]) b)’s conclusion holds.

3) Similar conclusions hold for ¢(x;y;z).

Remark: 1) For a proof of more than 1.2(1) see Ch. III, §3 here.

2) On the subject and proof of 1.2(2), 1.2(3) see Shelah [Sh 16] and Grossberg and She-
lah [GrSh 222,259]. Remember that 23,y is Morley’s number (See [Sh,VIL,§5]). The definition
of bounds on §,,,(it,x) are of Grossberg and Shelah [GrSh 222,257].

3) We do not try to get the optimal results, just previous proofs obviously give. E.g. we
ignore the slightly stronger versions we can get by replacing [ by a limit cardinal (regular or use

sequences of A’s).
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1.3 Definition:

1)@, :t € I)), where I is a linear order @, € M, is a (®,n)-indiscernible sequence inside

Mover Aif: forallty <---<t, € I,a, " -’ realizes the same ®-type inside M over A.
2) Writing & instead (®P,n) means "for all n <" If we omit A we means

A =emptyll.

1.3A Note: The sequences may have infinite length but n < ®. Le. we use only finitely
many sequences at a time. This should not be surprising, as A — (u); is much more difficult to

have than A — (W) ®.

1.4 Definition: {a, : t € I} is a ($,n)-indiscernible set inside M (over A) if for all dis-

tinctty,...,t, €1

[a;, ™.a;,] realizes the same ®-type in M (over A).

We define here the notion "p (®,¥)-splits over A" (inside M). This says that in some weak
sense, p I @ is definable over A. More specifically the W-type of the parameters over A, separate
between the b such that @(,b) € p and the b such that —@(%,b) € p. In Definition 1.5(2) we

replace ‘P, and A by a collection of formulas ©.

1.5 Definition:

1) A type p = p(x) inside M, (®,¥)- splits over A if there are b,¢ € M, and p(X;y) €
such that:

i) 0(%,b), ~9&x,C) € p
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ii) In appropriate sense, b and T realize the same W-type over A inside M; more
exactly : for y(&:;7;2) € ¥, (0g(b) = #g(C) = g()) and ¢ € BDL g7 e 8N4 M E w[c?’,g,?]
if and only if M E y[a’,¢,}

2) A type p =p(x) inside M, (D,¥)-split over @ (O consisting of ¥-formulas with
parameters from M) if there are b,te Mof equal length and @(x;y) € P such that:

1) @(@:0),~9®,0) € p,

i) if WEy,z)e W, tg() =12g@) =1g(b) and a’, e M, y(a',y,e)e © then
M & yla’;b,el if and only if M k yla’sc,e].

3) We define "p W-split over ®@" similarly, omitting "¢(x;y) € "

1.5A Remark: Clearly 1.5(1) is an instance of 1.5(2).

1.6 Fact:

1) If p = p{x) is a type inside M, which (D, ¥)-splits over A and p c g(x), with g(x) a
typeinside M, ® c @1, ¥; c W theng(x) (P, Vy)-splitover A.

2) Suppose for ¢ = 1,2, p,(x) a type inside M, which does not (D, ¥)-split over ©,8 a
set of formulas over 4, p, € S%’@ (C,M), and A ¢ B ¢ C ¢ IMI, and each p, is a complete
O-type over C. If for every beC there is b’e B such that for every
0@y,e)e OM k ¢la,b,el=o{a,b’,e] provided that fg(b) = tg(b") = £g(y) then
p1 B =py 1 Bimpliesp; = p».

3) Suppose p(X) is a type inside M, A c M, ® = {y(e;y,a) :e,a € A, y(x;y,z) € ¥}
Then: p(x) (D,¥)-split over A if and only if p(x) (D,¥)-split over ©.

4)IfA B < IMI, then {p € S§(B,M) : p does not (&, ¥)-split over ®} has cardinality
< 2@ +10D)
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SYIEA S M, 1SEAM)| STI{1S%es) A,M)1 2 83X = o, 9(x;7) € D).

1.6A Remark: We can systematically replace sets of elements by sets of formulas.

1.7 The non-splitting/order dichotomy theorem:

Suppose M <z, (ol

©(;y) a T(N)-formula, £g(X) < £g() < x and Y(x;¥1°Y2) Z[0G:y1) = (X:;y2)]. then (i) or (i)
(or both) hold where:

(i) for every c e INI, 1#g(©)l £x for some O C{oy):ce IM}, 181 <y and
1 oz5y(C, |M1,N) does not (¢(x:y), ¢(x;y))-split over ©.

(ii) N has the (y,x")-order property (in fact, exemplified by sequences from M).

1.7A Fact: Note that (just combining definitions) M <z (/)N means (when for simpli-

city ¥ =%):M <o N and for every ¢ e N and A C IMI, such that 1Al S there is
¢’ € *IM| realizing tp 5(C,A,M).

1.7B Remark: In 1.7 we contrast (¢(X;¥), (x;y))-splitting with the (£@(X;y),x")-order
property where = £g(¥), (and see 1.8 below). This % is the crucial parameter because it

governs our ability to continue to choose a;,b;.

Proof: Assume 1 z;5)(C,M,N) contradicts (i). We shall prove (ii). We define by induc-
tiononi, @,.b;,c; in M with 8g(G;) = £g(), £g(by) = £2(c;) = ¢g(¥); such that:

AN k [0@:a) = —9(©;b)]

b) for j <i,N E (.3 = 9(j.b)
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¢) ¢; realizes {9(x,a;), —:cp(f,l;j) 1 j i} inside N.

Note: (a) and (b) say exactly: o(x,y), E;,E; exemplify 1p oz.5)(C. M), (X:y), ¢(x5y))-
split over {@(c;;y) : j < i}. Hence for i < " if Ej,l;j,ﬁj (j < i) are defined, we can define Eg,l;i;

then using M <3 ()N we can define ¢;.

Having defined all @;,b;,¢; (for j < x*), clearly N k ¢(€q.bp) = 9(Co.dp) if and only if
o< B.So{Cq o<} {by Nap : B < x'] exemplify Gii).

1.8 Observation: Suppose ¢,y are as in 1.7, and N has the (y,}i;)-order property,
H; — (H2)3. Then N has the (X@(X;¥), iy)-order property.

Proof: Immediate.

1.8A Remark: Using this, and only (zo(X;y),A)-order properties, the formulation of
theorems in this section becomes nicer. Le. we lose some sharpness in cardinality bounds, but

we use only *@-order and @-unstability properties.

We remarked above that for non first order logics we must be careful about closure proper-

ties of sets of formulas. The following notation permit us to take this care.
1.8B Remark: 1) Theorem 1.7 has an obvious version for (®@,®)- splitting and the
(®,x " )-order property. To formulate it one must consider the cardinality of @, (use 1.6(5)).

2) We could have replaced x* by a limit cardinal (sometimes of large cofinality or regu-

lar and/or > uncountable).

1.9 Definition: @ = {—¢: ¢ € P}
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O = (Y(xY1,¥2) : WET1.T2) I9G:T1) = 9&:52)]

where o(xX;y) € @}
" = {YOx)  yeI) = ¢X;y) € D)
(Drs - ((q))r)es

(Deb = = U P

¢
Ifxy,...,xy € {cn,es,r,rs,eb,i}, P =P

The next theorem connects non order and stability.

110 The Stability Theorem: Suppose M has the (®%,x")-nonorder property,
p=pt +2%, 1DI<y, [0F) e @ = 14g®)) <y]. Then for AcM, |Al<u implies
S&AM) = {tpp(G,A,M) : @ € I M1¥} has power <.

Proof: There is My, AcM, M, 1M;| <u so that M, <}-_X.x@)M. Without loss of
generality replace A by M and assume @ is {@(x;y)} (by 1.6(5)). Now (i) (of Th. 1.7) fails
hence (1) (of Th. 1.7) holds. So every p =me@M,M)e S5 ,M) does not
(9(x;y), 0(x;y))-split over some @, < {@(c;y) : ¢ € IMI, €g(c’) = g (x)} which has cardinality
< X. There are at most WM 1% < such sets ©,. So if the conclusion fails for some such
0,10l <y and I{p e SE(M{,M): ©, =0} is >p. Hence {pe SHSM{,M):p does not
(D, D)-split over O} has power > p. But it has cardinality < 2 (by 1. 6(4)) (we just have to
decide for p, for each g(¥) € Sff 0Y(B) (where y(¥,X) = ¢(x,y)) whether to decide for p, for
each g(¥) e Sff(y) (B) (where y(3,x) = ¢(x,y)) whether [E q[I;}, beM; = (p(;?,l;) ep).
Thus, by the choice of 4 we finish.

1.11 Conclusion: Suppose M has the (+¢,x*)-nonorder property = u% + 23(x),
D! <2X, [o(x) & ® =3 #g(x) <x]. Then for A c M, |Al < p implies S§ (A, M) has cardinality



Sh:300

278

Proof; By 1.10 and 1.8.

1.12 Exercise: 1) 153 (A,M)1 < 1SEA,M)! forx = cn,es,i.

2) The ({o(x;y)}",A)-order property is equivalent to the (—@(X,y),A)-order property.

§2 Convergent Indiscernible Sets

2.1 Definition: {q; : t € I} is (®,y)-convergent inside M if for every ¢ € M (of suitable
length), for all but < ¥ members f € I tpg(a, "¢, D,M) (®-type of ¢ Mg, inside M) is constant

(in particular, all g, have the same length). We also demand, of course 111 2 %.

2.1A Remark: In the first order case we were able to show that if T is stable and Iis an
infinite set of indiscernible then I admits an average. Here, we do not know this. Fortunately we
have a reasonable replacement: we show that if M does not have the (@, x*)-order property
then each sufficiently long indiscemible sequence from M contains a (®,%*)- convergent subse-
quence. Originally in the first order case we were interested in existence of indiscernible sets,
but in fact we use quite extensively their being convergent. So we will be more interested in

convergent sets here.

2.1B Remark: If ¢ is closed enough for every (®,)- convergent I, I >y, % regular,
1Pl <y, AcM, Al <ythereis Jc I, 1JI = 111, J is ®-indiscernible set over A. (Choose

members of J one by one, see 3.5(2) below).

2.1C Remark: If I is (®;,)-convergent inside M for i < o, and ¢f x > lal then I is

(i, x)-convergent inside M. Also obvious monotonicity holds, and (P,x)-convergence
i<a
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implies (d"¢*",%)- convergence.

2.1D Remark: We can define something similar to 2.1 for sequences ( so we have that

1p o(a,”C), divide I into < 7 convex subsets); but no need arises.

2.2 Definition;: For I, (&d,y)-convergent inside M, and A C IMI, define
AveLAM) ={o(x,c):ce A, o¢(,y)e ® such that for at least |I! sequences

ae LM E ¢(a,c)}. Of course all members of I have the same length.

Note that the definition of the average does not depend on %.

2.2A Fact; If I is (®,y)-convergent inside M, A M, [ae I =1g(@)=a] then
Av(LLAM) e §$(A,M).

Proof: By the assumption on I, if ¢(x;y) € @, ¢ € A, exactly one of @(x;c), —¢(x;c)
belongs to Ave(1,A,M).

2.3 The set existence theorem:

Suppose M has the (@%,%*)-nonorder property, p = p* + 2%, 11 <.
PP P

1) Let I be a family of a-sequences from M, a <k (<%) and 11| = pu*; then there is
J < I such that;

HIJl=pt

ii) J is (®,%*)-convergent.
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I ={ay:0o<u’}, then there is a closed unbounded C < u*, and a function 4 on
p* which is regressive (i.e. h{(®) < 1+0) such that for every i < ¥, J; = {dy 1 0 € CA(0) =i,
cf(e) > ¢}, if not emptyl, is (D, ")-convergent.

DI

3) If we replace "1 @1 < x" by "W'®' = ", we still get a (®,x" + 1P| *)-convergent J.

Proof: Let I = {d, : o < u*}. Clearly it suffices to prove (2), hence (by Fodor lemma)
w.log @ = {oX;y)}. Let y = y(¥,%) & ¢(x;7). We define by induction on o < p* a submodel
M o of M such that:

(a) M is increasing continuously (in &), ag € Mg.1.

(b) Every p € SE® (Mo, M) ) SED (M o M) is realized in M g1

This is possible - for (b) use 1.10. Now for every o < ¥, if ¢f o >  then (by (a), (b} and
1.7A) M, <2, @ N. So by 1.7 there is Oy c {o(@,x):ae I1Myl, {g(x) = {g(a)} of cardinal-
ity <y such that 1 o(a@q, M, M) does not (¢(xX;y),p(x;y))- split over 8. As cf (o) > ¥, there
is hg(a) < o such that Oy  {Q(c,y) : ¢ € My (). Now ( by straightforward coding) for some
closed unbounded subset C of u* and regressive 4p, for o€ C, of o0 > X, 1P o(@0.Mpy(ay+1.M)
is determined by &1 (), and also hg(a) is determined by A (o). W.lo.g. fora e C,if ¢f(a) > %
then {3 : h1(8) = hy(w),¢f & >y} is a stationary subset of ™.

Now suppose S C{de C:¢f() > ¥},S #empry11 and hy is constant on §. We shall

prove

(™ {ay : ae §} is @(x,y)-convergent.

It is enough for the theorem to prove the claim 2.4 before [just define by induction on i < u*,
ap =0, B; = Min(S—a;), @iy =Min(S—(Bi+1)) (s0 oy = Bis1), 05 =y, My =M,

i<d

a’; = ap,, and apply 2.4 to M";,a";(i <p*)l

2.4 Claim: Suppose
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D=+ 27, @) <y,
b) M has ({o(x,¥)}% %" )-non-order property
¢) M;,i < u* isincreasing M; c M.
dyaie M, Miyy <z @M
e) Y(.X) = ¢(x,y)

fleverype S fﬁ,g?;)} (M;,M) is realized in M;,, and does not (y,y)-split over some
© c {o(X;b) : b € M;} of cardinality <.

g) M <p

h) tp o (@;, M;) does not (¢, ¢)-split over © where

B c{p(cy):ce My)

i) 1 ¢(@;,M ) is constant

and

Deveryp e S¥DB,M) U SEX B,M) is realized in M.
Then {a; 1 i <%} is ({@},x")-convergent.

Proof of 2.4: Let ¢ € M, {g(c) = £g(y). We want to prove that
({i <pn*™: M E ola;,cl}l <%
or

Hi<p': M E-ola,c}l <y

LCtM“j = J M,‘

i<pt
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2.4A Fact: There are sets of elements A and sets of ordinals E such that
DAcCMy,Ecpu” +1,and 1Al <y, 1El £
@i+le E=iekE
(b)if 8 € E and ¢f 8 <y then 8 = sup(E ~ )

ili) if 8 € E and ¢f 8 > then 1p,(c,M5,M) does not (¢,p)-split over A ~ M and
A m M;sc Msup(Emﬁ)

(iv)u* € E.

Proof of 2.4A: To see this, define by induction E,,, 4, for n < @, increasing as follows:
D) Eqg = {u'}

2Yi+leE,—iekE,

3N8e E andef <y =3 =sup(Epyy (O

4) 8 € E, and ¢f 8 > = tp(C,M 5,M) does not (y,y)-split over A, .1 M3

DA N Miq~-M)zD =i i+le Ay,

5)An S An+1

DE, CEpi

8) 1E,| + 14,1 <

For n = 0 use 1). For n+ 1, 1)-7) tell you to throw in ¥ sets, each of power < ¥. Take the union;

for 4) use theorem 1.7. Now  E,, \ A, are as required in Fact 2.4A.

n<ow n<o
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Continuation of the Proof of 2.4: Let ¢; € M, realize

tp\V(E7Ml U El'yM)

Now E divides (u* + 1)~E naturally into <% intervals. (For «ce€ E,
Io¥fi <pu*:a=Minfj:i<je E}). We first show that "M E ¢(a;,¢)" has truth value con-
stant on each interval, then that all intervals give the same answer. Note that [, # & implies that

o is a limit ordinal of cofinality greater than .

First Part:

Letd; € Eand ¢f 8; > %, 8 = sup(E ( 81). Sol5 ={i:8p <i <8}
Remember
(A) tpy(c,M 5 ,M) does not (,y)- splitover A ~ M5, .
BYA M5 cMs,
(C) tpy(a;,M;,M) is increasing in i, hence
(D) &g <1, j <8 = tp(a;,Ms,,M) = tpo(a;,Ms,,M)
Together ¢(a;,c)=9(a;,c).

Second Part

Let 8 <8; <8, <8 where 8,,05€ E, ¢fd,,¢f83 >% 8 =sup(dy E) and

8, = sup(83 ) E). We want to prove ¢(as,,C) = ¢(as,,c). Suppose not and for example
(1) plas,.c) A —9(as,,c)

Then
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(2) i € [80,81) = ¢(a;,0)
[by first part]

(3)If i < j are both in [y,81) then @(a;,c;)
[by choice of Ej and (2)].

@ j<a,B<U” =0@q.c)=9@p.c;)
[As 1py(@q,M o, M) is increasing in a].

(5 J1.j2 << WU = 0@q,Cj,) = 9dy,Cj,)

[As py(ay. M, M) does not (9,9)-split over M and ¢;, ,¢;, realize ip(c,Mo)]

(6)if j1 <oy <u*, jp <0y <pu” then 9(@q,,cj,) = 9@g,,Cj,)

[combine (4) and (5) using Q(@max(o,,a,)-¢j,) § = 1,2 as intermediates]

[By first part and the assumption (see (1)) that —¢(as,,c)]

(8) If j < o and both are in [55,83) then ~0(a;,Co)
[by combining (7) and "¢; realizes i (c,M;,M)"]

Now if k@[a;,co] then by (6) and (8) we get a ¢-linear order on (g;"¢;:8; < j < 83); and if
E—ofay,cp] then by (6) and (3) we get a @-linear order on

(EjA-C;}'iSO <j< 81)

as both intervals has cardinality > 7y we get a contradiction.

This completes the proof of the second part. So ¢(a;,c) has the same truth value for all

je ur—E, but |El < so we have finished.

2.5 Exercise: In Theorem 2.3, replace pu* by a (possibly weakly) inaccessible cardinal
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§3 Symmetry and indiscernibility

3.1 The Symmetry Lemma:

Assume M has (@,u)-nonorder, ¢ =12, p<py,My, all regular cardinals. Suppose

I, = {H& 100 < W) is (@p,He)-convergent inside M and
9 = o(x;y;2)
01 (5532) = 9:52)
P2 (yix:z) = e(xX3y;z)
1 _ 2
2g(ag) = tg(x),28@ay) = 8g(¥)
thenforce M
24y 2y el 2 .
3o <u)E™?B < H2)9(ay,.ap,c) if and only if

1 2
@B < w)EFM o < 1))@, 3p,0)

Proof: Easy.

3.2 The indiscernibility/non-splitting lemma

Let for i<i(®), @f,....%.%) be a t(M)formula, o=2&"),
q)n = {q)i(il’ L 9fn,~:yi) ti< l(*), np = n}a and @ = U d)m

n<w

Suppose A ¢ IM|, a; € *IM| fori < i(*) and p7 f—fftpq,n(ﬁ,-,A W a;,M) does not split

J<i
over ©, where © = c{@;(xy, ... ,%,,0): i <i(*), n; <o, c€ A} and i < j=p; <p;. Then
{@;:i < i(*))is a ®-indiscernible sequence.

Proof: See [Sh Al] Lemma 2.5. p.11.

3.3 Conclusion: Suppose ¢y, . . . ,x3,y) is a (M )-formula and for £ = 0, ... ,n-1
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_ = def _ - - —
(Pl(xn, cee ,xl,y) = (P(fn—hxn-l-l’ <o X1 Xps oo ’xnv€+1»y)

and a0 = £g(x,) andlet @ = {@,:£ =0, ... ,n-1}.

D ge*Mfori<i(®, p= chp(a‘-,AUUEj,M) increases with i, and is finitely
J<i

satisfiable in A then (a;:i < i(*)) is a ®-discernible sequence over A.

2) Suppose J is a family of sequences, a; e ®*IMI, for i <i(*) and letting
Ji=Jufapj<i
pi = 00(@,Ji,M) Z{OX,C1, . . ., Tp)iceed;
and

M E ¢la;,cy, ..., ¢l

is increasing with [ and is finite satisfiable in J. Then {g;:i < i(*)) is a ®-indiscernible (set}

over J.
Remark: Of course we can restrict p; to the set of formulas used.
Proof: Easy.

3.4 Lemma: Suppose {@;:i <i(*))is a (¢(x,, . ..,X1,C),n)-indiscernible sequence but

not (9(x,, . . . ,X1,C),n)- indiscernible set.

Let for any permutation T of {1, ...,n}, @K, . . .. X1,¥) iefcp(f,;(,,), . v« »Xge1y.Y) then for
some permutation n and m<n, M has the (Qn(uiXu—i. ... Xmi@m-1,-.-,30:C)s

(i (*)=-m)/(n-m))-order property.

3.4A Remark:

1) I {g;:i <i(*))is a ®-indiscernible sequence over A but not a ¥-indiscernible set over
A, then for some @(x,,...,x1,y) € ® ({g(,) =tg(@;)) and c € ¢G)A the assumption of 3.4

holds.

2) In (1) we can find n and use (P, n)-indiscernibility.
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Proof: Left to the reader (really by Morley [Mo 1], or see [Sh, AP 3.9]).

3.5 Lemma: Suppose I = {g; : i < A} is (®,<y)-convergent, #g(q;) = o for i < A. Sup-
pose further that & satisfies

™ if o&x,,....x1,y)e®, fg(xy))=a, m a permutation of {1,...,n} then
(Pn(fn, “e ,)-61,5’.) ief([)(:fn(n), e sEn(l);y) belongs to o,

Then D thereis ' I, 1X'| = A, I a ®-indiscernible set over J.

2) In fact there is an algebra N with universe A and < 1J1 + ¥ + [ @1 functions such that

if for L <A, iy <A, ig not in the N-closure of {ig:§ < {} then {ar < A} is an ®-indiscernible set
over J.

Remark: If we just want "{g; :{ <A} is a ®-indiscernible sequence over J" we can

weaken (*) to [p e @ = @, € D] for ¢, asin 3.3.

Proof: 1) by 2)
2) By 34 it is enough to prove that (g;, : { < ) is a ®-indiscernible sequence over J.

We define for
Y=Y, .. X15Zms--.,210€ D, ¢;e T (€ = 1,m),

tg(cy) = tg(cy)

and y < x a function F¥ = F¥® = such that

,,,,, ¢y

() foriy,...ipog <AthesetD; ;= {F(iy,...,i,_1) 1y <y) satisfies

(a) itincludes {i : i <y}

(b) for any j{,j2 € A-D;

Treves ho1?
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L:\;;{Zz‘jl,a,»m_,, Cee ,E;K,Em, e ,51} =

\y[Ejz,Eim_l, e ,E;I,Em, e ,El]

[this is possible as I is (@, <y)-convergent].

Now if (i¢:{ < A) are as in 3.5(2), by 3.3(2) (with J \ {@;:i < A} here standing for J there

(Zigc:C < Ay is a ®-indiscernible sequence over J which suffices.

§4 What is the appropriate notion of a submodel

We want a context for non forking theory, and existence of amalgamation preferably with
non-forking. For this we need a suitable notion of elementary submodel. Using M <N, [strong
logic, is not good enough. For example, M < Mg < M for o < B < 8 does not necessarily

imply \_j Mg < M. For 8 of large cofinality this holds, but remember that if we can quantify
a<d

over countable sets concepts become very dependent on the exact set theoretic hypothesis. Our

problem is: Find a good notion of an elementary submodel.

We use the following relation M <§ ,, , N saying mainly that types in §%(M) realized in N
are averages of convergent sets, (See 4.1). In lemma 4.3 we show that in the absence of ordering
we are dealing with <z _ .

4.1 Definition: M <§, , N if:
DMcN

2) M <g N, thatis for ¢(X) € ®,c e M,M E o[c] if and only if N & ¢[c]

3)yforc e N, £g(c) < x there is I = {¢; : i < u*}, which is (@, ")-convergent inside M
such that p o (¢,M,N) = Av(I,M,N)
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4.2 Remark:

1) Our main case:

® = finite quantifier free formulas, ¥ = Xy and p,y are related as in Theorem 2.3 and then

we omit them and write just <.
2) We could separate the two roles of @, but we have already enough parameters.
3) Similarly we could use |,y instead u*,% " gaining a little in generality.

4) Many of the "obvious” properties of a candidate for "elementary submodel” here are

not so obvious. Some are proved, the failure of some is used in non structure theorems.

4.3 Lemma: Suppose p=p* + 2%, 1®I <y, (o) e & = g(x)<y], and M has
(@, *)-non order then: M <§,,,, N if and only if M <z, __ o) N.

Proof: The direction = is trivial. For the other direction, let ¢ € *N, o < x. For nota-
tional simplicity assume (noting 2.1c, 2.3) @ = {p(x;y)}, let y(3,X) = ¢(x,y). By 1.7 for some
O c{o@y) ac N}, 101 <x and o5 (C,M,N) does not ({9(X,y).0(,y))-split over ©.
Choose by induction on i < 1*, M;,c; such that ® is over My, IM;Ill € every ¢ such that
qe Sfpﬁ,%’?) (M;,,N) or g€ Sff(yq% (M; M) is realized in M;,; and c; € M;,; realize
1D o(z,3)(C,M;,M;). This is clearly possible by 1.10. Now by 2.3, 2.4 for some § g p*, 1S1 = p*,
and I i‘f{Eq ;o e S} is {o(x,y)]-convergent. Hence g = Av4(ILM,N), is well defined as is equal
t0 Av x5 (I, M,N) which belongs to S§% (M,N).

Now the types g and p oz5(c,M,N) are both in Sﬁ; ,%% (M,N), does not (¢, 0)-split over
M+, and have the same restriction to M,+ ;. Hence by 1.6(2) they are equal. So we finish the

second direction.

4.4 Conclusion: For x,®,u,% as in 4.3 and models with (dhe",x+)—non order <é&-x is

transitive,

Proof: Because <z, _ (&) is transitive.
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4.5 Claim:

) If My<$pyMy 1 is (®,x")-convergent inside M,;, Il =p* and

[a e I=2g(a) < x] thenitis (&, ")-convergent inside M.

2) If I),I, are (@,x%)-convergent inside My, M <§ ., My, 1Tl =p*, and
Aveply,M1) = Ave(p, M) then Ave(11,M3) = Ave(1h,My).

Proof:

Let?e M, Let Jo M be (O,x7).

Ave(J.M 1, M) = ipg(c,M,My so if ¢(x,¢) divides J into two sets >y then so does

some ¢’ € J.
2) Similar; alteratively use 4.3 (easy direction).

4.6 Union existence lemma: Let O, [1,%,x be as in 4.3, each M; with (CD"’b ,xH)-non

order. If M; is <&, increasing for i < 8, ¢f 8 > « then M; <Py \U M provided <o is O.K.
Jj<8

(ie. M; < \ M;) which for our main case (quantifier free formulas) is O.K.
j<b

4.7 The Lowenheim-Skolem Lemma: If ®,ji,%, ¥ are as in 4.3, M with (@2, %+ )-non
order property A C M, 1Al Sy thenthereis M, A C M’ <§, M, IM I Sp™.

Proof: Trivial for <§p (g @nd use 4.3,

4.8 Definition: My,M ,M, are in (®,u,Y,x)-stable amalgamation inside M if: (for

< = <%y, €ach M, has (®,x")- non order)
DM, <M.
2) for every c¢eM, for some ®-convergent I1cM,y, IIl=p*

Avge (LM {,M) = tpe(c,M,M) (really every (®,y)-convergent IcMg, if
Ave(LMg,My) = tpq;(E,Mo,Ml) then Avg(M (M) = tpe(c,M1,M), (see 4.5).
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§5 On the non order implies the existence of indiscernibles

5.1 Theorem: Suppose U is a regular uncountable cardinal, M a L-model, A a setof < L

quantifier free L-formulas, ¢ = ¢(x) closed under negation and permuting the variables.

If Mt > 2<# then at least one of the following possibilities holds.
Possibility A: There is an A-indiscernible set I € M of cardinality .

Possibility B: There are distinct g;e M for i<y and n, 2<n<® and

©=0@ x1,...,%,) € A, Ce YPM such that

@ifm<nk<w oy< <o, 0 <Py < <PBuSP, 4 <Y <" <Y, < Wand

V(Z, Y1y« s YksX1s - -« Xp) € A then:

M !:\v[E,aal,...,aak,agl,...,ag ]

'~

M E w[E,aul, Y P2 RN 2V

®ifPy << Bn S},l,é_i ={ap,,ap,,....ap,)

M E¢lc,ap, ap,,d)

M E w1(‘1)[5,(1132#]31 ,d]

Possibility C: There are distinct q;e M for i<p and n, asn<o and

Q=0 x1,...,%,) € A, T € ¥DM, such that:
(a) As in Possibility B.

M ifa,p<ys < <y S o#P,d= @y, ...,0 ) then M q)[Z",aa,aB,E] if and
only if Min{ o, B} is even.

Remark: We can do everything over a set of < p parameters and find the g;,¢ in some

pregiven set I of cardinality 2<* - just expand M by individual constants or restrict its universe
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toly.

We can deal instead of elements with m-tuples (or o tuples) - replace M by an appropriate

model with universe ™ |M|.

5.2 Conclusion: Suppose T is first order and for no model M of T and formula o(x,y,z)
does M have (o(x,y ; 7), Xg)-order [i.e. for no ¢, a,, b, (n < ®) from M, M k @la,, a;, c] if
and only if £ < £].

IfNisamodelof T, A= 1TI*, A, Bsubsets of N, |Al <A, IBI >2<* then B has a

subset of cardinality A which is an indiscernible set over A inside N.

Proof of 5.1: Let A* =M, |A"| = 2<% be such that :
™MifA ;A*, Al < U, a € Mthen some a’ e AY - A realize wala,A).

Now for every ¢ A" and formula Q=QC, X)=QC, X1,...,%,), {n =n(P), ¢ =cy) we

define a game G, = GM ¢ 5y

It lasts n+1 moves (0,1,2, .. .,n); in the ¢-th move: player I chooses a set Ay, A, cA”,
m<i=4,\Ula) cA,], 1Al < player II choose an element a,, a, € A*—A, which

realize tpA(a*,A 1

In the end player I wins if
M E ¢[c,ai,az,as,...,a,] © 0[C,ap,a2,a3,...,0,]

This game is clearly determined. So one of the player has a winning strategy
F o =(Ff :¢<n), F§{ compute his ¢-th move from the previous moves of his opponent.
W.l.o.g. if player I wins then for every ag, ... ,a,1 € A", FP(ag, ... ,a,.) is a subset of A
of cardinality < |, cxtending Fo(ag,....an-1) \U{ao,....a,} for each m <{. (So F§
depends on ¢).

Case It For every ¢(c, x) as above, player I wins the game.
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We define by induction on & < J, d 4,4 ¢ such that:

() fop} UAp SAqcA  forB<aand 14l <p

(i)ag e A" —Ag realizes pp(a”,Ag)

(i) if B< o, ce Apfag), 90.X0) € A, £g(3) = 8(€), x = {x1, ..., Xp), £<n, and
bo,....bpy € Ap\fap), then FFC¥(bg,...,by1)CAq (we can restict further
by, ... b))
There is no problem to do it. (in stage «, first choose A 4 to satisfy (i) + (iii), [exists as the value

of F$©®) is always a subset of A™ of cardinality <, pt regular > Rg]. Then choose a4 to
satisfy (ii). {exist by the choice of A*,a"].

Now we can prove

Faifoy<- <o <Po <Py < <Py <y, k<),

(p(YI7~ .. aykaxla v axk)e A

then
M h(p[aal,...,aal,agl,aﬁz,...,aBN]ﬁ
M Eolag,...,00,,8p,:dp,---.4p,]
Fpifog < <o <U o <Py< <P <R 0 <Y <00 <Y < U
162 PRI 5 SUNNUIN 79 B - 3.1
thenM Eolay,,....aq,,ap,,...,a3]=>

MEOay,. ...0q,8y, .. .ay]

Why this holds? As for (*),, let ¢ = {(aq,, . . . ,@q, ), remember that player I wins the game
GM oz and that (F PE% . g < n) is a winning strategy for him. Let A = F $EX) (q B2 4B, )-
By (i) above A’cAp, hence ap, realize 1p(a’,A%), ap e A*-A'. So A%ay,

A lvan ...,A",ap_is aplay of the game GM 4z x) in which player I uses his winning strategy
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(F§©® : 2 < n), so he wins the play, i.e. the conclusion of (*), holds.
By the transitivity of equivalence we can deduce (*).
So{ag : o < ) is a A- indiscernible sequence.

If it is a A-indiscernible set, possibility (A) of the theorem holds. If it is not, then (by
Morley’s work, see e.g. [Sh, AP.3.9]) for some n, (B) of the theorem holds (i.e. use again transi-

tivity of equivalence to get the "good form") [we have to check that address a, “a” is O.K,, but
this is easyl.

Case II: For some ¢(c, x), player II wins GMggxr. Choose such

Qo = ¢o(Co» X1, . . ., Xu(y) With minimal n (0). Necessarily n (0) 2 2.
We now define by induction on { < , for every o0 < {{n(0)+1), Ay,ao such that
()¢ Ufap) UApSAg A forB<aand 144l <p
(i) aq € A"—A realizes ppa(a”,Ag)

@) if B<a, ce Ag U fap), 90, X) € A, 1g(¥) = £2(C), X ={x1, ..., Xy), n < n(0),
{<nandby,...,bpy & Ag {ap/ then

FPER by, ... by1) CAq

v)if o = {(n0)+1), ¢ < nthen

At = F{ Aoy Agsts - Agrt)

There are no problems in carrying this out.

As in case I we can prove



Sh:300

295
M ifn<n@), k <o, 0 <-*° <0y,
o <Pp <o <Py, o<y < <Yy <MW

(p(yl,. e Vi X1s . Xp) E A

then

M E@lagy,,...,aq,.ap,,-..,ap,]if and only if

1.

M Eolag,....00,,ay, ..,0y

Using determinacy and possibility replacing @y by —@g, w.Lo.g. (F¢° : ¢ < n(0)) guaran-
tees for every o = {(n(0)+1)

M E @ylc.ag1,a042: - -+ »Qgin) =1 Q0lC.00, 0425 - - - » Bagam]

Let t be the truth value of M E @glc,24,8 42,8043 - - - » @en] Where o = {(n(0)+1).

Let s¢ be the truth value of M E @o[¢,a0+1,8 043,043, - - - s otnl-

There are truth value t,s such that S = {{ < : tr=t,8 = s} is an unbounded subset of L.

The rest should be clear.
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Chapter II: Axiomatic Framework

§0. Introduction

We give here (§1) an axiomatic framework for dealing with classes of models which have
something like "free amalgamations". We give several versions, but we shall deal here mainly
with the strongest one. [Somewhere else we shall concentrate on the "prime" framework for
which we can repeat the development]. We show that it holds for two main examples: stable
first order T (here the models are algebraically closed subsets of C*? ) and a universal class
(with a special order as developed in I §4 assuming some non-order property) . So the main
applications are the result for universal classes, whereas our guiding line is to make the theory

similar to the one of stable first order T.

In the third section we deal with a weaker framework, but with smoothness (just as the
"abstract elementary classes” of Shelah [Sh 88] ). A simple observation, but with important
consequences is the "model homogeneity-saturation” lemma, saying that for a model to be
(D, A)-model homogeneous, it is enough that all relevant 1-types are realized. This makes deal-
ing with  model-homogeneous models similar to  saturated  ones. Still,
tp(a, M, N) (M £N, aeN) may not be determined by the collection of tp(a,M’,N) for all
small M’ < M.

In the main framework, if M;,M, are in stable amalgamation over Mg in M , M, M,
generate a "good" submodel of M3; in a weaker variant there is over M ; \_j M, a prime model,
and similarly for union of increasing chains. This is suitable for dealing with (D,A)-
homogeneous models (from [Sh 3] and generally continue [Sh 54] on exist existentially closed
models). We can also consider Banach structures (see Stern [St 1]). Since Banach space theor-
ists are not normally interested in the questions answered here, this is not an application to
Banach space theory, and I have not developed it per se (see [Sh 54, p. 241], but it seems
worthwhile to consider the example. We even consider the problem of whether any two amal-

gamations are necessarily compatible.

For T ¢ Ly where X is a compact cardinal see [Sh 285] . If we omit NF ( but have
smoothness and amalgamation) we can do much toward defining NF (assuming various proper-
ties hold, where their negations imply non-structure for large enough power). The results are

not sufficiently cardinality free to start the theory reasonably, but we can get, e.g., universal
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homogeneous models in A when A = X;.

Now 1.1 through 1.4 describe the context for the entire paper. We then discuss three paral-
lel sets of axioms in decreasing order of strength. These are AxFr; (1.4) the main framework,
AxFry (1.6) the primal framework, and AxFr; (1.5) the existential framework. The difference
between these frameworks is the way in which a "cover” of a pair of models (neither contained
in the other) or of an increasing sequence of models is described. In the main framework the
axiom group Cg,, express the idea that the "cover" is generated from the given models by func-
tions. The existential framework simply demands the existence of a "cover". The primal frame-

work express the idea that the "cover” is prime in the sense of first order model theory.

These three frameworks all avoid the introduction of element-types and deal only with
models. In 1.7 we move in an orthogonal direction and describe axioms which generalize the

idea of a non-forking type of element.

§1. The Framework

1.0 Notation: As we introduce axioms we give their names in round brackets, e.g.
(AxFry). Later we write an axiom in square brackets to indicate in the case of a theorem that the
axiom is needed to prove it and in the case of a definition that we only use the defined concept

when the indicated axiom holds.

We may feel it reasonable to demand K, (K, <g) (etc) are defined reasonably. Note how-
ever that by 3.8 (really by [Sh 88]), under enough (but not many) assumptions, K and (K, <g)
(ie. {(M, N): N <k M}) are PC ;guy g, - classes.

1.1 Context: In all the frameworks, K denotes a tuple consisting of classes and rela-
tions whose properties we axiomatize. E.g. K = (K, <, NF). For our K’s K will be a class of

models of a fixed vocabulary 1(K), £ = €k a two-place relation on K (a generalization of being
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elementary submodel) and usually a four-place relation NF = NFg (NF(My,M{,M4,M3)
means M |,M, are in stable amalgamation over My inside M3 ) . [In AxFry, we use
NF¢ = N% (NFé(Mo,M,a,M 1) which means tp(a,M {,M 1) does not fork over Mg,a € M3) ]

We may want to say in the former case that M3 is generated by
My M, (M3 =My M), or at least is prime over My \y M, (Pr(Mo,M,M3,M3))
or just any two possible M3’s are compatible. Also sometimes an increasing union is not by
itself a member of K but we can close it or take over it a prime model or just any two possible
bounds are compatible. Naturally,

1.2 Meta Axiom: K, and all relations on it, are closed under isomorphism.

1.3 Group A: The following axioms always will be assumed on (X, <k)
AOYMMforMe K

(A1) M<N implies M ¢ N (M a submodel of N)

(A2) £ is transitive

(A3)ifMocMy N, Mg<Nand M, <NthenMy <M,

1.3A Definition; We say f:M 5 Nisa < - embedding if fis an isomorphism from M
onto some M’ < N.

1.4 The Main Framework (AxFry):
Here K = (K, <,NF, { )#") where "gn" stands for "generated".

AxFry consists of (1.2, and (AQ) - (A3) of 1.3 and):

{Ad)Existence of General Union: If M;(i < §)is < - increasing, then

MZ M;je K and M;EM for j <8
j<8
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The second group deals with the "algebraic closure.”

Group B
(BO)YIfB = {(A)§f then AcM e K, ACBcM
BHIfB = (A)§f then (B)if =B
(B2)if ACBCM then (AM{c(B) 3§/
B if ACM <N then {A)§ = (A)F.
The third group of axioms deals with stable amalgamation.
Group C,,
(CHIENF(Mo,M |, My, M)then Mg <M <M3, andMy<M, <M
thence Mg, M ,M>,M € K).

(C2) Existence: For every Mgy, M and M, such that My <M, and Mg <M, there are
M3, M;, M from K and fy, f, such that: f, is an isomorphism from M, onto M : over Mg
for ¢ = 1,2 and NF (M o, M, M3,M).

(C2)~ Will just state Mo S M] <M My < M5 <M (i.e. amalgamation exists).
{C3) Monotonicity:
(a) NF (M o,My,M,,M) implies NF(Mq,M,M3,M)when Mg <M; <M,.
(O) NF(M o.My, Mo,M), M <M" implies NF(Mq,M{,M,,M").

(©) NF(Mo,M{,M3,M), M{ M, CM" <M implies NF(Mo,M1,M3,M").
(¢ NF(My,M{,M5,M)implies NF(Mo,M],M,, M) when Mo <M] <M.
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(C4) Base enlargement: NF (M y,M,M,,M),
Mg < Mg <M, implies NF(Mg, (M Mo)§},M 9, M).

(C5) Uniqueness: If for ¢ = 1,2, NF (M§,M${, M4, M%) and for m = 0,1,2 f,, is an isomor-
phism from M},, onto M2 and fo C f1.fo ©f2 then for some N € K, M? <N there is a Sk
-embedding & of M into N, which extend f} \_j fa.

(C6) Symmetry: NF(My,M ,M,,M) implies NF(M q,M 7, M ,M).

(C7) Finite Character : If (M ; : i< 8 ) is increasing continuous, My €M and

NF(Mo,My5,M3,M) then (M5 M) = UMM

i<d
1.5 THE EXISTENTIAL FRAMEWORK (AxFr3)
Here K = (K, <,NF).
We have Axioms (AQ) - (A3) from 1.3):

(A5) Limit Existence: If (M; :i < 8) is <k -increasing, then there is M € K, M; sgx M
fori < 8.

(A6) Limit Uniqueness: If (M;:i<8) is <k -increasing and for =12
[i <8=>M; <gN! > then there is N, N2 <N and a <g-embedding f of N! into N ,
f1M;=idy fori<?é.

Group C: Ax(C1) (C2) , (C3) (CS) (C6) and

(C8) If (My;:i <8) is increasing and NF (M ¢,M 1,;,M2,M) for each i < & then for some
M, wehave (Vi<8)(M,;<M5) and NF(Mo,M;35,M2,M).

(C8)™ Like C8, but M 5 is found in some <-extension of M.
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8. If My;:i<8) is <-increasing  continuous,  for i<d,
NFMo,My;,M;,M)then NFMg, M5 ,M,, M).

1.6 THE PRIMAL FRAMEWORK (AxFrj )
We assume the axioms of (AxFr3 ) the following axioms on prime models.

In the first order case one defines prime models over arbitrary subsets of members of K.
Reflection shows that this cannot be expected generally, and experience has shown that it
suffices to have prime models only in more specific cases: over unions of chains and over pairs

of independent models. The following axioms describe the properties of such prime models.

There are (at least) three ways in which one could introduce prime models; relatively [i.e.
within a specified model), compatibility (within a compatibility class cf §3) or absolutely. (The
compatibility class of N : (N’ € K : 3N* € K, N <N" and N’ <N"}.) Our axioms here are the
compatibility version; we describe the absolute version in Definition 1.9; at present the relative

version does not seem useful.

Group D: On prime models

(D1) If (M; : i <8) is Sk -increasing then there is a model NPe K,

(Vi < 8) [M; <NP] such that

if (Vi<8M;SN<N" and NP <N then there is a <-embedding f of N? into N over
U M.

i<d
We write in this case Pr ({M; : i<3),N).
(D2 If NF(M .M y , M 5,M3) then there is N prime over M \ M, inside M3 , i.e.
(M UMocN £ M3 and

(ii) for every M,M;, ifM, M1UM2;M§ <M and N <M then there is a S-embedding f
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of N into M3 over M\ UM .
We write in this case Pr(M ¢,M ,M,,N).

(D3) Uniqueness of the prime model over (M;:i <8) :

If Pr{M; : i < &), N*), N* <Nfor ¢ = 1,2 then N!,N? are isomorphic over (_ M;.

i<d
(D4) Uniqueness of the Prime Model over M (M ,:

I Pr(Mg,M{,M;,N%), N'<Nfor? =12 then N, N? are isomorphic over M (M.

1.7 THE NF FOR ELEMENTS FRAMEWORK (Ax Fry)
Here K = (K, £, NF°%).

We have here Ax(AQ)-(A4).

GroupE :

(E1) NF&(My,M 1,a,M 3 ) implies: My S M| < M3 and ae M,

(E2) Existence : For every Mg,M {,M,, asuchthat
aeM,, Mg <My, Mg<M, there are M and f, such that
M S M, fis a <k -embedding of M, into M over M , and

NF¢(Mo,M1,f(a),M).
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(E3) Monotonicity: (a) NFE(M .M ,,a,M), Mq<M}<M, implies NF(M¢,M1,a,M)
(b) NE€(Mo,M1,a,M)and M<M" implies NF¢(Mq,M;,a,M")
() NFe(M o, M 1,a,M), My _fa}cM"<M implies NF¢(Mo.M,a,M")

(E4) Base Enlargement : NF¢(My,My,a,M) and My <My<M, implies
NF*(Mo,M 1,a,M)

(ES) Uniqueness: Suppose Mg <M <M, NF(Mo,My.aM), NF¢(MyM,bM),
and Mo Ufa}cN® <M, Mou{bjc;Nb <M , and there is an isomorphism from N? onto N®
over My mapping to a to b then there are N,, N, ,M * and f such that
M SM*,Mlu{a} cN,sM", MyUfb} Ny <M" and fis an isomorphism from N, onto N,

over M| mapping a 1o b.

(E6) Continuity : If (M, ;:i<8) is <-increasing, (M;:i<®) is <-increasing and
NF¢(My,M ;,a,M;) for every i < 8, then we can find M 5 and M 5 such that My ; M 5 and
M, <Mg(fori<d)and NF¢(Mq,Mi5,a,Ms3).

1.7A Remark : We can define variants (AxFrs ), (AxFrg ) of (AxFr, ), (Ax Fr3 )

resp. using NF ¢ instead NF , i.e. we waive Ax(A4) replacing it by weaker axioms.

Here are some properties which do not obviously follow from the axioms we have given
but are plausible additional axioms. As an example of their use note that the proof of V.1.2 (1)

is carried out without recourse to (F1) but (F1) would materially simplify the proof.

1.8 other things
(1) (F1) Disjointness : NF(Mo,M{,M2,M3) implies My ~M, = M.

(F2) IfNFe(MO,Ml,a,M3),a & Mgthena ¢ M.

) (GI) If My<M,, aeMy , then there is M'2, My {a}c;M'z <k M}, and
o
NF¢(My,My,a,M3), My <k M'3 , implies NF (MO,MI,M'zl,M;)
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1.9 Definition : Parts (1) and (2) of the following define the absolute notion of prime. As
hoped for analogue of Section IV.1 would derive from (D1) a dichotomy between condition (1)
and nonstructure.

(1) N is prime over (M 5: i <8), (M;is S~increasing) if:

(ayM; <Nfori <dand

(b) if (Vi < 8M; < N" then N can be <-embedded into N* over U, s Mi
(2) N is a prime stable amalgamation for M over M M, if:

‘(@) NFMo,M{,M,,N) and

(b) if NF (M o,M1,M3,M3) ,
f1 an isomorphism from M ; onto M] over Mg
f2 an isomorphism from M, onto M3 over M

then there is a <-embedding N into M " extending f; Ul

(3) For Me K we define a relation Ef{)” between pairs G,N), aeN, M <N:

@1, N1) EYP (ay, Ny) if and only if there are Ni, N{, N3, N3, fsuch that:
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(,_lge N;

fis an isomorphism from N} onto N3 over M mapping @; t0 a5 .

(4) Ef; will be the closure of EZP to an equivalence relation and tp(a,M,N) is
(@,N)/ESF ( note: if K has amalgamation Efy = E5P) .

Now we note some interrelations between the axioms and later define some related notions.

1.10 Lemma : 1) [Ax Fry , or just (A0), (B), (C1), (C4)]

If NF (My,M{,M,,M) then M3 & (M 1 UM 2)§f (ie. the restriction of M to this set is well
defined), is a member of K and M (UMM <M

2) [Ax Fry or just (B),(C2)™, ]

Suppose that the conclusion of 1.10(1) holds, then Ax(CS5) is equivalent to:

*y if NF(M§M{ME MY for £=12

and form = 0,1,2 f,, is an isomorphism from M}, onto M?Z and foCf1,foCfa then fi f2 can
be extended to an isomorphism from (M uM 188 onto (M? uM PN

3) AxFr; implies AxFry which implies AxFrs
4) Ax(C8)_ follows from (C2),(C5) and smoothness (see 1.12 below)
5)If Pr({M; : i<8), M) and Ax(A6) then M is prime over (M; : i< )

6) If Pr(Mo.M{,M,,M) and Ax(C5) then M is a prime stable amalgam for My over
My UM,
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7y Ax (C8) = Ax (C8)™, Ax (C8)...
8) If K is smooth, then Ax (C8)_ implies Ax (C8).

NI NFMgy, My, My, M) when Mg <My <M, (this follows from Ax (C2,C3) then
Ax (C8) is equivalent to Ax (C8)_ + smoothness.

Proof : 1) Apply Ax(C4) with M} =M, . [Note Mg <My as Mg <M, by Ax(Cl).
MY <M, by Ax(A0)]. So NF(M,, {M M )3f .M y,M )y . Now by Ax(Cl) this implies
My MocM oy M) <M .
4) See Lemma IV 1.5.
The other proofs are left to the readers.
There are more implications
1.11 Definition : 1) K has the A-Lowenheim-Skolem property (A-LSP) if:

[AcM and 1Al <A] = AN S M)IACN and INTITSA]

2) The (<A)-Lowenheim-Skolem property ((<A)-LSP) means:

[AcM and |Al <Al = 3N <M)ACN and NN <]

3) LS(K) is the minimal A for which K has A-LSP. We also write yx for LS (K).

4) Instead A-LSP we also write LSP(A). LSP(u,A) meansin (1) {AT <A, MU <p. We
define LSP (<, <) etc. similarly.

1.11A Remark : The statement "A <} and A - Lowenheim-Skolem property =u-

Lowenheim-Skolem property” will be considered.
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1.12 Definition : 1) x-smoothness means:

If {M;:i < x) is increasing, then there is N prime over (M;:i < ) (For AxFr; this means: if

each M; <M and (M; : i < x) is <-increasing, then \M; <M ).

i<K

2) The weak x- smoothness means ( for AxFr; ): if (M; : i < ) is <-increasing con-

tinuous, M; <M then \ yM; < M. [This condition is weaker than 1.12 1) since we have assumed
i<x

the (M; : i < x) is continuous.]
3) Let (A, x)-smoothness be defined as in (1) but demanding HNM; 1l <A, and WM 1l <A,

Let (A,x)*-smoothness be defined as in (1) but demanding only IM;Hl <A fori < K.
4) (<x)-smoothness, etc. has the obvious meaning.
1.12A Remark. Smoothness and (A4) are (in this context) the Tarski-Vaught theorem.
1.13 Claim : (1) [weak] k-smoothness is equal to [weak] ¢f(x)-smoothness
(2) Our framework is (<x)-smooth if and only if our framework in weakly (<x)-smooth
Proof: Check.

1.14 Definition : "NF is x-based" means:

if MSN, AcN and NI <k then there are Mo, M, such that NF(Mq,M,M{,N),
Ml <xand ACM,.

1.15 Definition : 1) A5(K) = Ay(K) is the first A such that K is a PC(Ly+ @)-class, ie.,
the class of 1(K)-reducts of models of some Wy e Ljy+ ¢ -

2) M (K) =A(K,<) is the first A such that {(M,N):Me K, Ne K, NSM} is a
PC(Ly+ @)-class

3) Ay (K) = MNF,gn) is the first cardinal A such that
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{(M1,Mq,M,M3): NF(Mo,M1,M2,M), M =(MpM2)if] is a PC(Lys ) class

4 MK) = T A,(K) and Ay, 4, (K) = Ay, (K) + Ap, (K)+ - - -
<3

1.16 Definition : A is K-inaccessible if:

1) for Mg €My, M, (in K) each of cardinality <A , there is Me K, IIM Il < A, and for
£ =12 < -embeddings f; of M, into M over Mg such that NF (M o, f(M 1),f(M,),M)

IS <A, UMl < A(M;: i < 8) is <-increasing, then for some Me K of cardinality
<8

<A, M;<M fori<h.

The following definition of pseudo cardinality is an attempt to axiomatize the idea of a

structure being generated by y elements.
1.17 Definition : [AxFr;]
We define pscard % (M) as follows:
(D) for Me K, pscard(M) = x if IIM Il <%
(M) for Me K,A 2y : pscardg (M) = A iff
(i) for some < increasing sequence (M; : i < 8):
@dsh
(b) Pr((M;: i <8), M)
(c) pscardk (M) <A
(ii) for no b < A, pscardg (M) =

1.7A Remark: Rather than defining pscard, we can use it as a basic function and put on
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it an axiom.
§2. The Main Examples
2.1 First Order Theories
Let T be a stable first order theory. Assume that 7%7 has elimination of quantifiers. Let
(1)K = {M:Mis asubmodel of some N E T% and IM| = aciy(M)}
(If you want--omit the unnecessary elements of N)
(i1) €k is being a submodel

(iti) Let for some N, McN ET% then: B = (A)§f if and only if A C M, B = actyA
(i.e. is B the algebraic closure of A inside N )

iv) NF(Ag,A1,A2,A). LetA,cN fort <4, NET®, NF(Ay,A1,A,,A3) holds if and
only if:

A{ = {ZC{NAe for ¢ = 0,1,2,3 Ag;Al;A3 and A() Q;Ag _(;Ag and Ip*(Az,Al) does not
fork over Ag .

Remark : In this context "models” disappear. Le. "model” in our context, is just an algebrai-
cally closed set. Later “A-saturated model, A > IT1" are defined. But "models of T" are not
naturally defined in this context. As we prefer to have theorems which say something when spe-

cialized to this case, we will try to have non-structure saying not only
"there are many Me K" but
"there are many quite homogeneous (= quite saturated ) models”
or at least

“there are many models in K{*" (see Definition 3.12 below).

2.1A Fact : All axioms from §1 hold under those circumstances.
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So, most of [Sh] can be done in this framework, and many of the proofs here are adapta-

tions of proofs from [Sh] to our context under this translation.
2.2 Universal Classes

2.2A Definition : A class X of 1(K)-models is called universal if it is closed under submodels

and under unions of increasing chain.
2.2B Claim : The following are equivalent for a class K of ©(X)- models
(i) K is a universal class

(ii) a ©(K) -model M belongs to K iff every finitely generated submodel of M belongs to
K.

Proof . Now (ii) = (i) should be clear.
So assume (i). Let M be a 1(K)-model.
(a) If MeK then every finitely generated submodel of K belongs to N.
It is true as "membership in K" is hereditary.

(b) If every finitely generated submodel of X belongs to K then Me K.

We prove by induction on ¥ that if M = {A)§f,!A] < x and every finitely generated NCM
belongs to K, then Me K.

For « finite ( < Rg) it is trivial.
Forx2 RgletA = {a;:i <lAl}
M; = (a]-: Jj< l-)gn.

SoM; (i < |Al) is increasing and M = \M;. Every finitely generated submodel of M; belongs

i<k
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to K hence by the inductive hypothesis (as 1{a;. j <i}| < 1il <x ) M;eK. But K is closed

under unions of increasing chains, hence

M = UM;eK$.

{<x
2.2.C Hypothesis : K has (x*,qf.) - nonorder, x 211(K)!.
2.2D Convention : Let |1 = 221, s = s;‘,‘?w,x«

(A)F' be the closure of A under the functions of N and NF(Mo,M | M,,M3) iff
Mo,M,M, are in ( gf, W, Ro )- stable amalgamation inside M3 (see 14.8) and
MM D, <Ms.
2.2E Lemma : From the axioms from §1 AxFr ; + (E 1) holds
Proof: Most are totally routine (using Lemma 12.3).

2.2E1 Sublemma : Ax C2 (Existence) holds

Proof : So suppose M,eKforé <3, Mg sMand My <M,.

We shall find M, My < M and <-embeddings fo: M, > M over M, £ =12 (ie. f; is an
isomorphism from M, onto M\ My <M, f 1 Mg=identity ) , such that
M= {{i{iM W f2M )% and My,M M, arein stable amalgamation inside M.

Welet M, = {cti < M , 111}, The universe of M will be the set {G(El ,52)25(6 M, ll,ca
©(K)-term} (¢ = 1,2) divided by an equivalence relation E defined below. The operations are

defined in the obvious way.

Let T = {o(o; @ ,2%N),....0,C"™,E>™): for some qf. formula ¢ and (gf..u*,x")-
convergent family JcM g of sequences of length

1g(c¥ A 2™, 001 @M 1 )snnr s O (€7 Em)) € AV(J,M 1) Where
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T=X" o LG = 87}

The average is well defined as J is convergent. Note that the definition of I" does not depend on
the choice of J by (2) of the claim 14.5. So I is complete (peI” or —~¢eI") as there are such J

with the convergent property because My <M ,. Also every finite subset of I is realized in M.

Next E is defined by:
0@ eHEs @ d)
if and only if:

(6,@,c% = 0, @' dHeT.

As T is finitely satisfiable in M, E is a congruence relation (and of course an equivalence

relation). So M is well defined, f, are defined naturally and they are embeddings.

Now, why is Me K? It is enough that every finitely generated submodel is in K. Say such a
submodel is generated by EeeM, (really ¢t 1E}. But if Avg(J, Mo, Mo) = tqu(Ez, Mgy, M»3)
and Jis (gf,ut,x" ) -convergent then: for all but <  of the sequence d%e ] the quantifier free
type of it inM 1 is equal to the quantifier free type of 217d% in M. The models they gen-
erate are isomorphic but the first being a submodel of M is in K so also the second one is in K.

Now Mg < M is quite easy, thus we finish proving 2.2E1.

2.2E2 Sublemma : Ax(C5) (symmetry) holds, i.e.
Mg, My, M, is in stable amalgamation inside M if and only if

Mg, M5, M1 is in stable amalgamation inside M.

Proof : Assume the former. We prove the latter.

LetaeMy, JcMo, 131 =p*, J (gf,p*.x") - convergent,

def
Avg(J.Mo,Mo) = p(aMo,M1) ;5 hence g=Avyr (J,M2,M>7) is well defined. We should
show it is equal to i {a,Mo,M). So assume beM ,, quantifier free, and M b(pfc;,_g] and it is



Sh:300

313
enough to show (p(f,g)e q.
Let IcM, 111 = u* be (gf,u*,x") - convergent and Av(I,M g, M) = tp(b,M g,M )
Picture :

ae M, beM,

Now Avg (LM, M) = 1pb,M 1,M).
Now as M y,M {,M , are in stable amalgamation inside M

Eg(a,b)=3>*b e Do@,b’)

=3 %b'e D{Ta’e Jo@,b")

by choice of J

But then for each b’

@Fa’eHF*b’e I)(p(_a",g’)

by the symmetry Lemma L. 3.1

By the proof of 12.3 for some J (remember bs stand for "atomic and negation of atomic

formulas)

' e UdosAves(™, No) = tpps(d, No)
o

hence
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Avps(J™, NoUB) = tpps(d, NoUB).
But (*) contradicts the choice of ¢ .
22F Sublemma Ax ( C4) (base enlargement) holds.

Proof : So suppose Ng < NeK.

If Ng, B, Cis in stable amalgamation inside N (in particular Ng SB SN,NgSC <N)and

gn
NocC’ < C then C’,B,C is in stable amalgamation inside N where B = (C'_B)n

Letde C, so IIcC I = pt , Avps(1,C) = tpps(d,C).
We want to show Avy(I,C\ B) = tpps d.c "\UB) (or over (C'\B)§' --same thing).

So suppose EeC’,EeB,(p is basic, hﬂfp[E,E,l-)_} but w.lo.g. (VE,Z,I)#@(E’,ZB). Let
I={dy:0a<%{}and

Jo = {doy ey ¥ < uJCN ind AV (JoNo) = 15s(do"e.No)

and Ng,B,C is in stable amalgamation inside N, No <N

Avp(Jo. NoiUB) = tpps(d e, No(_B). So w.lo.g. k ¢[dyy.y,b] for e,y < ui.
2.3 Sequence homogeneous models

Let T be a vocabulary, A a set of L, () - formulas, where in u 2 1D1 D a set of types, each a
complete (A,n) - type for some n. And let p > Xy; D is p-good if there is a (D, ) - homogene-
ous model closed under subformulas, (see [Sh 3]]. Now K = K% is the set of T - model M which
are (D, |1 ) - homogeneous; M < N iff M <,N. We assume K (D) = Ry, i.e. if M SNeK,ae®N
then 1 A(a,M,N) does not split strongly over some finite subset of M ( by [Sh 3] x(D) > Rg
(with the additional assumption D is good), implies non structure.) Sometimes we use the
stronger assumption k(D) = Ry : if ACNeK,de ®N then tpA(a,A,N) does not split strongly

over some finite subset of A (equivalent to ¥ (D) = R when D is good).



Sh:300

315

We let NF(My,M{,M;,M3) mean: Mg <M <M3, My <M, <Mj3, and for aec™M,,
the type pA(@,M,M3) does not split strongly over some finite subset of M. Clearly
NF¢(My,M1, a,M ) is defined similarly. Let A(D) (see [Sh 3]) be minimal A such that D in A -
stable. Let us check when the axioms holds: (we use goodness and i > A(D) freely)
Ax (A0): Holds
Ax (Al) : Holds
Ax (A2) : Holds

Ax(A3): Holds

Ax(A4) The problem is whether r “ UM; is (D,p) - homogeneous. For L = X this is trivial.
i<d

Generally it still holds if x(D) = Ry, D good
Ax(A5) Follows from Ax (A 4)

Ax(A6) Follows from Ax (A 4)

Ax(C1) Obvious

Ax(C2) If D is good, it > A(D), it is clear by [Sh 3]
Ax(C3) Easy

Ax(C5) Holds for good D

Ax(C6) Holds
Ax(C7) Holds

Ax(C8) Holds
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Ax(D1) : Obvious

Ax(D2) : This is how Ax(C2) was proved (for D good. | > A(D)).

Ax (D4)(D4): We have to generalize the theorem on the uniqueness of prime models of [Sh IV
§47 (we can use induction on rank, D good, L > A(D))

Ax(El) : clear

Ax(E2) : Holds for D good

Ax(E3) : Obvious

Ax(E4) : Obvious

AX(ES) : True for D good

Ax(ES6) : True (take unions), when Ax (A 4) holds

Ax(F1) : Holds

Ax(G1) : Holds

2.4 Problem : What if for D good, b > A(D) , we assume just k(D) < oo, and K = {M:M(D, 1)

- homogeneous } : We have many results, but not yet enough to prove the main gap.

§3 Existence/uniqueness of homogeneous quite universal models

Hypothesis : the axioms of group A or just (A 0)(A YA 2)(A3)(A 5)) and existence of amalga-
mation (C2)” ), %1 = LS(K) .

3.1 Definition : We define a two place relation Ex on K :
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MExN iff they are isomorphic to <-submodels of some common member of X . Since K has

amalgamations it is straightforward to show:

2LS(K)+ F(K)1

3.2 Faet: 1) Eg is an equivalence relation with < equivalence classes, each hav-

ing a member of power < LS (K). So (see 3.3 below)

2) K —{NeK: WINIl < LS(K)} = {K 5, p€ ok} ( disjoint union ); for each p € o'k,
{K & » <) has the amalgamation and disjoint embedding property; and if we are in AxFr, then
Kp= (K4, <, ()8", NF) satisfies AxFr, with Lowenheim number < LS (K).

3.3 Definition: 1) For MeK, iIM 1l >y let
oy = o(M) = {N/=UINIIl = LS (K), N < M}
Do % = (M) : MeK, MUl =%}
o = Y {oN): M <N e K}
b ={ol MeK, BMII2y)
g = UfoM):MeK]

3) For pcok, Kp={MeK: pyC 0}

Translating the symobls into words we have: py is the collection of isomorphism types of
models of power 1, which are embeddable in M, @i‘g is the collection of isomorphism types of

models of power y; which are compatible with M.
Dk is the collection of py for M € K with M1 = y;.
o'k is the collection of o} for M € K with 1M1 2 x;.

ok s in fact that set of isomorphism types of members of K with power ¥;. But in the
sense (not denotation see Frege) of our definition, pk is the union over all M e K of the collec-
tion gy of isomorphism-types of models of power ¥ which can be embedded in M. Thus
%, Dk are objects of one higher type than g, my and o} Finally, if o is a collection of iso-

morphism types of models in X, each with power )y, K 4 is the collection of those M such that
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each K-submodel of M with power 7; is isomorphic to a member of p.

To clarify our notation, note that when p appears with a subscript K, o is naming a func-
tion and pk is the value of that function at the class K. Thus, in Convention 3.4 we write pg for

o because we are thinking of pg as ox .

In the following convention we are fixing a particular compatibility class (to guarantee

joint embedding) and restricting our attention to it.
3.4 Convention: We fix p € o'k and we replace K by K, . We write p g for this ¢ We can
then have C (o, < o0)- homogeneous as in [Sh L. §1 ] (but for uniqueness we have to assume

smoothness). The existence of C is proved in 3.1.

3.5 Definition: 1) MeK 4, is ( p,A) -homogeneous (where A 2 %1 ) if

(a) for Ng, N1 satisfying Ng <M, Ng SNeK 5, WIN{ Il <X there is a <-embedding of
Njinto M over Ng

(b) every N1eK p of cardinality < A can be <- embedded into M.
2)M € K g is strongly ( p,A)-homogeneous (where & 2 %1 ) if (b) above holds and

(a)* for Ng <M, N; <M, h an isomorphism from Ny onto Ny if lIINglll <A then h

can be extended to an automorphism of M.
Remark: By 3.4, part (b) is usually redundant.

3.6 Definition: K is trivial if [M <N = M = N]; hence K has a unique member up to isomor-

phism.

37 Lemma: 1) If A is K-inaccessible and regular, A = At > 1K) then there is MeK of

power A which is ( o g, ) -homogeneous and M is smooth (i.e., M = (M;, IM; W <X, M;-
i<A
increasing continuous M; < M fori <1).
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2) If A is regular, M,N are (p g,A ) - homogeneous of power A and are smooth, then M=N .

Remark We can weaken somewhat the A - inaccessibility demands

3.8 Claim : 1) If K has smoothness, A > LS(X) , then A is K -inaccessible ( and for
AcMeK, MAN <A< 1M Il thereis N < ML NI = A, ACN).

2) If (in addition to axioms (A0)-(A4)), LS(K) + 1t(K)! < ¢ and K has smoothness, then
Kand { M, N): M <N } are PC guy., -class, hence K #@ = (VA 2 0)K 3, #¢ where p = (2%)".

Remark: Using NF, we can improve 3.8(2).
Proof: See [Sh 88].

39 Lemma: If K has smoothness, A is regular, HIM Il = A > LS(K) , then every MeK of

power A is smooth.

Remark: We can begin classification theory for a class satisfying Ax(AQ)-( Ad)+ smoothness
+ amalgamation (+ Ax(C2)") + y = LS(K), using strong splitting. But we do not succeed to
move the properties between cardinals. We can arrive, e.g. , that for a class of suitable A either

union of {pg,A ) - homogeneous is (pg,A)-homogeneous, or suitable non-structure results
holds.

3.10 The Model-homogeneity = Saturativity Lemma
Let p > LS(K) , K satisfies smoothness

1) M is (p g, 1 )-homogeneous if and only if for every Ny SNyeK, Nl <p, Ny, M,
and ae Ny — Ny therc are models N’3,N3 €K , such that Ny SN’ SN3,N, £N3, aeN’ and

there is a £g-embedding fof N’; into M over N

2) M £ C is (pk. 1t )-homogeneous if and only if for every N S M, NIl < 1 and ae(_j .

there is a’e M realizing tp(a,N,C), i.e. there is an automorphism fof C,f I N = idy and f(a)eN
(or use Definition 1.8(4).
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Proof: 1) clearly w.l.o.g. p is regular. The "only if" direction is trivial. Let us prove the other

direction.

et INyl ={agi<x} , and we know x<p. We define by induction on
i<x, N, Nfz, J; such that:

(@ Ny <Nb, NS < p

()N ’1 is g -increasing continuous in {
©) Né is g -increasing continuous in i
(d) f; is a < -embedding of N} into M
(e) f; is increasing in i

(O a;eNi™!

(®NY <Ni, N3 <Ny, f1 =idy,.

For i = 0, (g) gives the definition. For i limit let Ni = (N{, N5 = UNS, f; = Uf; Now (a)-
j<i j<i j<i
(f) continue to hold by continuity.

For i successor we use our assumption; [more elaborately, let M ‘i'l <SMbe f,v_l(N‘i'l) and
M5 g;; be such that g;_; is an isomorphism from N5 onto M5! extending fi_; , so
Ni™t < M5!, now apply the assumption with M, Mi™', M5!, g;_1(a;_;) here standing for
M, Ny, N, there; so there areMé*, Mﬁt, f: such that:
MY <Myt <My, IME I <

M MY <MYt g (aa-)e MY

ffasg— embedding of M4 intoM.f; T Mi™ = id.
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Let Nb,h; be such that N5 < NbLhy an isomorphism from N5 on M%" extending g;_;. Let
Nt = hi' (M57),f; = fio(h T NDL.

We have carry the induction. Now f is a <x -embedding of NY into M over N; , but
INy| = {a;:h < X)CNY , 50 f« | Ny : Ny — M is as required.

3.11 Fact: Assume LSP(<A). If M<C is (pk,Ah") - homogeneous, ACM, 1Al <A,
he AUT(C)) then for some g e AUT(C),g T MeAUT(M),g 1A=hTA

Proof: We can find first Nog €M, AcNg, NGl €A and then Ny closed under £ and
Nog<N{<C, As M is (pg,A" ) -homogeneous there is an automorphism gg of
C,goTNo=id,go¥N1) <M . Now gy =ggoho g5 is clearly an automorphism of go(N1),
As gN ) M, Mg M = NNl < A, [and M is strongly (pg,A ) -homogeneous) g can be

extended to an automorphism g, of M , which can be extended to an automorphism g of C. Now

g is as required.

3.12 Definition: K’y = {M : there is a (<x)-directed / and (pg,H)-homogeneous

models M; € K fort e I'suchthat M = M,}
tel

If x = Ng, we omit it.

3.12A Remark: E.g. in 2.1 above, K7 is included in the class of models of T.
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I Constructions of many non isomorphic models

§0 Introduction

For a reasonable structure/non structure theory, we need ways to build many and/or
complicated structures. Though they were developed mainly for proving I(A.K) = 2> (see
Definition 1.2 and [Sh] Chapter VII, VIII) they may be used to build rigid or indecompos-

able or L., )-equivalent and isomorphic, non pairwise non embeddable models ( see 1.3).

We have tried several times to separate the "set theoretic "parts from the" specific alge-
braic construction". This was done in [Sh 136] (for [Sh A1] (see §2 here for explanation and
presentation (though not complete)); in the various black boxes - see here §4,5,6 [Sh 172]
[Sh 227] [Sh 229], Gobel and Shelah [GbSh 190}, [GbSh 219], Eklof Mekler [EkMk D16],
Grossberg and Shelah [GrSh 312] (less related, but with similar applications are the papers
on "Models with second order properties”, [Sh 72], [Sh 73], [Sh 82], [Sh 107], [Sh 162], [Sh
1281 ( construction from ox,), Shelah and Stanley [Sh St 112}, [Sh St 167],)

We want to explain the theory and how to apply it but our main aim in this chapter is to
proved abstract non structure theorems so that in this work, when we want to prove that a
class K which happens to be in the "non structure” side, have many complicated models. For
this we prove some non structure theorem with various degrees of abstractness. Some are just
abstract versions of theorems from [Sh, VIII] with essentially the same proof, while others

give more information even for cases dealt with before, e.g.

0.1 Theorem: If Yy € Ly+ 5, O(X,Y) € Ly+ o, £g(x) = £g(y) = 6 and y has the @(x,y)-
order property then I(A,y) =2" provided that e.g. A2y + Rj, 6< Ry or A2x + Ry,
A =% ord>y+0oh.

Proof: When A >y + X1, 0 < Xy, by Theorem 3.9.

Generally our construction of many models in K (={M e K: liMIi = A}) goes as

follows. We have a class K! of "index models" (this just indicates their role; supposedly
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they are well understood). By the "non structure property of K", for some formulas ¢,, for every

lek k there is M; e K and a, € M, for t € I, which satisfies (in M;) some instances of X@,.

We may demand on M;:

(0) nothing more.
(1) {a, : t € I) behave like a skeleton ( see 3.1(1)) or even
(2) My is built from I in a simple way (A-represented - see Definition 2.2(c)).

Now even for (0) we can have meaningful theorems (see 3.9 and 4.2).

We would like to stress that the formulas @, need not be first order L, they just have to
have the right vocabulary (but in results on "no M; embeddable in M;" this usually means

embedding preserving * @, (but see 2.5).

Another point is that though it would be nice to prove I £J = M; £ M; this does not
seem realistic. What we do is to construct a family {I4 10 < 21 c Kk} such that for
o # B, I, is not isomorphic to (or not embeddable into) J g in a strong sense (see 2.3, 3). We are

thus led to the task of constructing such /4 ’s, which unfortunately split to cases.
g o ysp

A point central to [Sh 136] but incidental here, is the construction of a model which is e.g.
rigid or have few endomorphisms etc. Using the methods of §2 see [Sh 136 §3], using
§4-5 ( black boxes) see e.g. [Sh 220].

The methods here can be combined with [Sh 220] or {Sh 188] to get non isomorphic

L. »-equivalent models of cardinality A.
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In the next few paragraphs we quickly survey the results of this chapter. In this survey
we omit some parameters at various defined notions. These parameters are essential for an accu-
rate statement of the theorems. We suppress them here to emphasize what seems to be the

most essential points.

In Section III.2 we discuss a method of "representability”. We introduce two strongly
contradictory notions, the A-representability of a structure M in the "polynomial algebra" of
an index model (Definition 2.2) and the ¢(x,y) un-embeddability of one index model in
another. Now to show a class K has many models one first shows that for some formula ¢ an
index class K; has many pairwise ¢- unembeddable structures, then that for each I € K,
there is a model M; which is A-representable in the free algebra on J, and finally that if

M;=M; and Mj; is represented in the free algebras on J then 7 is ¢-embeddable in J.

In Section III.3 we extend and simplify the argument showing that an unstable first
order theory T has 2* models of power A if A2 1T + ®;. Rather than constructing
Ehrenfeucht-Mostowski models we consider a weaker notion - that a linear order J indexes a
weak (K, @)-skeleton like sequence in a model M. In this section K 1 is the class of linear ord-
ers. The formula ¢(x,¥) need not be first order and after 3.10 may have infinitely many argu-
ments. Most significantly we make no requirement on the means of definition of the class K
of models (e.g. first order, L., .. etc.). We require only that for each linear order J there be

an Mj € K and a sequence (@ : s € J) which is weakly (x,¢)-skeleton like in M.

If you get lost in §3, you can jump to §4.

In the rest we deal with black box, and generalizations of "an unsuperstable 7 has

many models"”.

it
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§1 Models from Indiscernibles

Qur aim in [Sh Ch.VII] was to prove: (in ZFC!)

1.1 Theorem. If T is a complete first order theory, unsuperstable
and A2 ITI + X , then/(A,T) = 2" where
1.2 Definition: For a theory T
I(A,T) = number of models of T of power A, up to isomorphism.
For a class K of models
I (K} = number of model in K of power A, up to isomorphism.

IE A(\,K) = sup{\.: there are M; € K3, for i < |, such that for i # j there is
no A-embedding of M; to Mj.

However, we feel (see also [Sh 31] [Sh 44], [Sh 51], [Sh 54], [Sh 136]):

1.3 Thesis

(A) The methods are enough to build many complicated, very different, models of

suitable powers, for many classes, not necessarily elementary.

(B) Moreover in reasonable situations we can make them rigid, indecomposable

etc., according to circumstances.

Essentially this (A) + (B) was an advice to use a device. If you need such a construction,

try to imitate one of the proofs (note that the theorem was proved by partition to cases, with
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various proofs.) Generally the hint was not taken. As an illustration we have done various such

works.

1.4(1) Examples: (A) In every A > R there is a rigid dense linear order see [Ba 76,2];
(B) in every A > R there is a rigid Boolean Algebra. (See [Sh 51]).

(C) In every A > Ry there are 2 non-isomorphic reduced separable abelian p-groups
(see [Sh 44]. §1 and p.244 9-13y,

(D) In every A > Ry there are 2% ulf. (universal locally finite) groups up to isomor-
phism. (see Macintyre and Shelah [MaSh 55]).

(E) theorems on representation of rings as endomorphism rings of abelian groups (see
[Sh 1721, [Sh 227], Gobel and Shelah, [GbSh 224] [GbSh 219]).

(F) There are Boolean algebras rigid and complete, having few endomorphism (see vari-
ous results [Sh 136], [Sh 229]).

(G) There are for most A’s, 2}‘, u.Lf. with non-inner automorphism (see Grossberg and
Shelah [Gr Sh 312].)

1.4(2) Discussion: Note that M is rigid if and only if (WVa=be M) [(M,a)£M,b)].
Clearly the theorems of [Sh, VIII] does not apply directly. However if we have freedom
enough in constructing M, knowing constructions of many non- isomorphic model should
help in constructing rigid models. Note that for general first order theory 7, maybe e.g.
there are definable automorphisms (or more subtle problems). See the series "Models with
Second order Properties™: I [Sh 72], II [Sh 73], I {Sh 82], IV [Sh 1071, V [Sh 162] for dif-
ferent constructions. We construct there (assuming instances of GCH) models with only
definable automorphism, assuming strengthening of unstability. This kind of assumption is
natural, giving us enough freedom in the construction. In [Sh 136] we tried to separate the
combinatorics and applications of [Sh, VII], and advance our combinatorial knowledge.

(The applications we had in mind there were to Boolean algebras).
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1.5 Definition: 1) (@, : r € I) is A-indiscernible (in M) if

(a) I'is an index model (usually linear order or tree); i.e. it can be any model but its role

will be as an index set.

(b) The A-type in M of @, ™+ - - "a, (for any n < m) depends only on the quantifier free

type of {t1,..., 5 inl.

(2) For a logic £, " [-indiscernible” will mean A-indiscernible for the set of [-

formulas in the vocabulary of M.

3) Remember that if ¢ = {f; : i < c) then @y = ag, “ag, "

Many of the following definitions are appropriate for counting the number of models in a
pseudo elementary class. Thus, we work with a pair of vocabularies, T < 71. Often 7 will

contain Skolem functions for a theory T which is ¢ £(T).

In this section all predicates and function symbols have finite number of places, (and simi-

larly ©(x) means {g(X) < @)

1.6 Definition: 1) M! = EM!(I,®) if for some vocabulary 1=1% or L; = LY, and
a,(te )

() M1 is generated by {a, : t € I}.

(i) (@, : t € I) is quantifier free indiscernible in M !

(iii) @ is a function, taking (for n < @) the quantifier free type of t= {3, ...ty ind

to the quantifier free typeof @y =a, "+ "a, inM I

2) A function @ is proper for I if (iii) of 1.6(1) holds, proper for K if @ is proper
for every I € K, and lastly it is proper for (K{,K,) if it is proper for K; and EM{I,®) € K,
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forl € K.

3) For a logic L, or even a set [, of formulas in the vocabulary of M 1 & is almost
L-nice (for K) if:

(*)Foreveryl € K,{a, : t € I)is [ -indiscernible in EM l(I, D).

4yIn 3), dis L-niceif itis almost [ -nice and

(**) ForJ cl

EM'(J,®) <, EM'(I,®)

In the book [ShA1], always Lm‘@(*tq’)-nice & were used.

1.7 Notation: 1) EM . (,®) = (EM'(I,®) 1 1 (where 1 & 1®) (we omit T when clear

from context).

2) We identify I ¢ *2 A which is closed under initial segments, with the model

(I)P(19A’<lx’<)0.$ X
where

Po=1~%,

p=nAavifp=nT «for the maximal oo such thatnro=vi o
< = being initial segment of, (including equality)

<4y = lexicographic order
3) Similarly 7 ¢ ¥ 2 J for any linear order J (<,, is still well defined.)

4) K¥ is the class of such models ie. models isomorphic to [ ie. to

(P o A <ixrL)acx for (tr stand for tree) some I < *J, J a linear order.
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5) K, is the class of linear order.

1.7A Remark: The main case is K = Rg. We need such trees for Kk > Ny, e.g. if we
want to build many x-saturated models of T, ¥(T) > x, x regular. If «(T') < x there may be

few x-saturated models of T. In [ Sh, Ch. VIII, VIIII] we have proved:

1.8 Lemma: If T is unsuperstable, then there are first order @,(x,y,) € L(T) and &

proper for every I < “*A such that:

ne ®A,ve "A >

EM'(,®) E g laq.a)entn=v

(also EM(I,®) k& T) and @ is t‘g,m-nice, 17®1 = ITI + Ry (note that for 1;,M, of the same
length, My # My = @y, #ay,). In [ShAL, VIII §2] we actually proved:

1.9 Theorem: 1) If A > 11®1 is regular, ®, td),(wn 1n < ) as in lemma 1.8 (O almost
L ¢ o-nice) then: we can find 7 € “*A (for a < 2%, 4! =X such that for o # B there is no

one to one function from EM 1(/,,®) onto EM'( p-®) preserving the o, for n < .
2) The ¢,’s do not need to be first order, just their vocabularies should be cr®.

But instead "® is almost Lg’,m(‘t)-nice" we need "® is almost {9, (...,0, (X ), Dpct(n) 1 1 < @,

o, terms of 7®}-nice" and we should still demand

(*) the En are finite.

3)So if as in Lemma 1.8, ¢, € £(t) then {M [ T: & < 2%} are 2* non- isomorphic
models of T of power A.

Proof: This is proved in [Sh] section 2 of Ch. VIII (though it is not formally claimed

there is no need fo the proofs).

1.9A Remark: In [Sh] VIII §2 existence of many models in A is proved for some
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A = 11® 1 and there "T,T first order” is used.

1.10 Definition: Fix a class K (of index models) and logic L.
1) An index model I € X is called (i,A)-large for [, if:
(a) Every gf(in (X)) type p which is realized in some J € K is realized in I.

(b) for every vocabulary 1! of cardinality <y and t'-model M! and 7, € ®> 1M |
for t € I there is ®, proper for K, with 11®1 <X such that (t! = 1% and):

(*) for every W(K)—qf type p,I' € K and sy, ...,s, € I! such that {sq, . ..,s,) realize p
inI', for somety,...,t, € 1,{t,...,t,) realize p in/ and

(**) for every formula ¢ = @(x1,...,x,) € LL®) and t®-terms G (¥1,...,y,) for
{=1,n

M EQIo1@,, 130,02, @) e Om@ys o)
implies

EM'(IY,®) E ¢[01@@s,, - -« 135,002 (@s,s -« - 285)s -« » Om(@sy s« - ., 8]

2) The class K of index models is called (4,A)-Ramsey for [ if some ] € K is (i1,A)-
large for L.

3)Ifin 1.10(2) L is first order logic, we omit it.

4) For f : Card — Card,K is f-Ramsey if it is (i, f(}1)) -Ramsey for L for every y. We
say K if Ramsey for [ if it is (u,p)-Ramsey for [, for every p.

5) We add to Ramsey "(almost) £ -nice” if we can get such .

6) We say K is *-Ramsey if it is f~Ramsey for some f : Card— Card.
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1.11 Theorem: 1) For L, ,, the class of linear orders is Ramsey.

[ Proof: This follows from the Eherefeucht-Mostowski proof that E.M. models exist].
2) For L, the class of linear orders is *-Ramsey.
[ Proof: essentially repeating the proof of Morely’s omitting type theorem.]

3) For any fragment of Lj: ¢ or A(Ljys ) the class of linear orders is f-Ramsey by
F () = Qauy

[ Proof: Like 1.1(2); see [Sh 16] and more in [GrSh 222] [GrSh 251]].

By Grossberg Shelah [GSh 238] (improving [Sh VII], where compactness of the logic £

was used, but no large cardinals) (K§ was defined above.):

1.12 Theorem: K has the *-Ramsey property if e.g. there are arbitrarily large
measurable cardinals.

We shall not repeat the proof.

1.13 Lemma: Suppose K, K,, K3 are classes of models, & is proper for
(K1, K3),¥ proper for (K, K3) then for a unique ©

a) O is proper for (K, K3)

b)forl € K,

EMY(,0) = EMY{(EM ', ), ')

We write this as @ = ¥ o .
Proof: Straight forward.

1.14 Lemma: 1) Suppose K is a class of index models, T= ©(K) and
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(*) there is ¥ proper for (K, K), such that for/ € K, EM,(I,¥) e K and J = EM (I,%V)
is (Rg,qf)-homogeneous over I, ie. if £ = {t1,...,t,), 5 =(s1,...,5,) realize the same gf-

type in / then some automorphism of J take a; to a;.
We conclude that:

If K is (L, A)-Ramsey for £ then K is almost [,-nice (1,A)-Ramsey for L.
2)E.g. for L ¢Lg, o wegetin(l)even [ -nice.
3) The assumption (*) of (1) holds for K,, K32, K} (as well as the others from [Sh

1361.)

1.15 Conclusion: Suppose K is (1,A)-Ramsey for £, Tis an [ -theory (in the vocabu-
lary W), 1)} <y, @Ry, EY) e LATW IR D) (and R, disjoint to 1(T) and to R3-y)
and Ty [(pl(ﬁl, xy), (pﬁﬁ,, x,y)} has no model. Suppose further that for / € K, thereis a

model M; of T, and @& ®” M for t € I such that:

t<s=>M k@R R,a.a,)

s <t =M kGR)$(R2,8,,a)

thenfor A2 u+ Ry, IMAT) = 2%,

Proof: By previous theorem and 3.9.

§2 Models represented in free algebras and applications

2.1 Discussion: 1) We sometimes need 1 with function symbols with infinitely

many places and deal with logics £, with formulas with infinitely many variables.

2.1A Example: We want to build complete Boolean algebras with no non-trivial 1-1
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endomorphisms. How do we get completeness? We build a Boolean algebra, By and take its

completion. Even when By satisfies the ¢.c.c. we need the term (x, to represent elements
n<o

of the Boolean algebra from the "generators” {g, : t € I}.

2) We also sometimes want to rely on a well ordered construction i.e. on the universe of
EM’(I,®) there is a well ordering which is involved in the definition of indiscernibility (see
2.2). This means that we have in addition an arbitrary well-order relation. E.g. we want to
build many non-isomorphism X;-saturated’ models, we have a family {@,: o <A} of
sequences of length @ with EM (I, ®) k ¢[as,a,] & 5 <t (< a relevant order) but we need
to make them X;-saturated. Ultrapowers will probably destroy the order.  The natural
thing is to make M R,-primary over EM y7)(I,®). Sonot only are the g, infinite, the con-
struction involves infinitary functions but the quite arbitrary order of the constructions may
play a role.

With some work we can eliminate the last for this example (using symmetry) but there is

no guarantee generally and certainly it is not convenient. Moreover,

3) It is better to delete the requirement that the universe of the model is so well
defined.

This motivates the following definition.

2.2 Definition; (a) T(W,x) is the vocabulary with function symbols

{F;j i <W,j < x} where F; ; is a j-place function symbol and K is always regular.

b) M,x(I) is the free T-algebra generated by / for T = (W, ).

We wuse the following notation in the remainder of this definition. Let
fiM—> My Forae M and fori <o, f(g)= oi(t;) with #; is < k sequence from/

and o; a term for T(l,x).

¢) M is A-represented in Mu,x(l ) if there is a function f: M — MH,K(I ) such that the
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A-type of a e M(tp(a,’J,M)) can be calculated from the sequence of terms (o; : i < o) and
g ({8 i < 0), D, ).

d) M is weakly A-represented in M|, () if for some function f: M — M, (D), there
is a well-ordering of the image of f such that for d € “M the A-type of @ can be computed
from the information described in ¢) and the ordering <-imposes on the subterms of the terms

{6;(#;):i < &) in the image of f.

We introduce weak representability to deal with the dependence on the order of a construc-
tion, (cf. 2.1 (2)).

& For j=12 if @ =(ciG):i<a), o} =0? and p{f :i<a)B.])
= tqu((?? i<y, @, 1) wewrited’ ~ a? mod( My« (I). For the case of weak representa-
bility we write @' ~ @’ mod( M, (), <) if in addition the mapping {(c(s}), o(}):i < .0 a
subterm of o} =07} is a <-isomorphism (and both sides are linear orders). We write
h ~4 almod--- ifa' "b~a* bmod- - when be ¥*A, A cM. (This latter is espe-
cially important when we work over a set of parameters. We might, for instance, insist that

t} and t}- realize the same Dedekind cutin/q ¢ /.)

(So M is A-represented in M, () just if f(@ 1) similar to f (52) mod M, x implies al

and a° realize the same A-type in M.).

f) We say the [weak] representation is full ift c¢y~co mod My, (I)) implies
[c1 € Rang(f)= ¢y € Rang(f).]

g) If A = gf, it is omitted.

hyForf:M > MK»K’ a~ 5 mod(f, MPUC) means f (@) ~f(g) mod M[.L,K' Similarly,
a~ g mod(f, M;{,K=<) means f(a) "'f(l;) mod ( MQ,K’<)‘

Now wedefine a very strong negation (when ¢ is "right") to even weak represen-

tability.

2.3 Definition: [ is o¢(x,y)-unembeddable for t(u,x) into J if for every
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fiI— M, () and well ordering < (of f(/)) there are sequences X,y of members of /,
I F @[x,y] such that x,y have "similar” (2.2(c)) images in M, ().

2.3A Remark: This definition is used in proving that the model constructed from I is

not isomorphic to (or not embeddable in) the model constructed from J.

* * H

2.4 Discussion: The following example illustrates the application of this method. We
first fix Ky as the class of index models and fix a formula @, (see 2.4) such that for many
pairs 7 € K2, Iis ¢, (&,¥)-unembeddable in J. In 2.5A we show that for each [ € Ky there
is a reduced abelian p-group G; which is representable in M, (/). In 2.5B we show that |
I @,- unembeddable in J implies G; = G/}, thus the number of reduced separable abelian of
power A is at least a great as the number of trees in Kj} with power A which are pairwise
¢,- unembeddable. We showed in [Sh 136] that this number is 2* (for regular A and many
singulars). (but by 1.9 we get 2* pairwise non isomorphic such groups in A, using Gy as below).
We may want to strengthen "G; % G;" to "G; not embeddable into G;". This depends on the
exact notion of embeddability we use

2.4 Example: Classof K>, I € Kjp
O (0,X13¥0.¥1) £ [x0 = yoIAP o(x0)A V [PaG)APAO ) A Pt (51 A Y11A
n

Alxy Sxonay1 4ol

2.4A Definition: A separable reduced abelian p-group G is a group G which satisfies
(we use additive notation):

(1) G is commutative (this is "abelian”)

(2) for every x € G for some n x has order p” (i.e. p"x is the zero);

(3) G has no divisible non trivial subgroup (= reduced)

(@) every x € G belongs to some 1-generated subgroup which is a direct summand (=

separable)

Any such group is a norm space:
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Hx Il = inff2™" : Ay € G)p"y = x}

2.5 Subexample: separable reduced abelian p-groups.
For a tree I, Gy is generated (as an abelian group) by

frame UPL U RN E Po)

n<w

freely except the relations:

p"xn=0forne PL; and pyﬁ”—yi“ =Xnn and pyq =0 for ne PL, and we have
essentially say y5 = ¥{p tn Xy, inSl<w vy € P} and v, <m} (infinitary sum may be well

defined as Gy is a norm space).

It is easy to see (by addition relation to divisibility) that
2.5 A Fact: (¥) G; is represented into M, o).
We shall prove below:
2.5B Fact: If I is ¢, -unembeddable into J then G; £G;.

Proof: Let g:G;=G; — My (/) where h witnesses that Gy is representable in
h

Mo o). Let £: 1 — Gy be:

pme, if me Pf,
f m) = 1e<tg(n) n<o®
n if ne Pl

So (hogof):l = Meel). Now we use the fact that / is ¢, -unembeddable into J. So sup-
pose

I E @pMg,VoM1,v1] and hogof(Mo,Vo) ~hog e f(Ny, Vi)
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Invoking the definition of ¢,,:

N¥ny =my e P and for some nvy<ny, vie PLovoe PLand vg#vy. Fori=0,1
letzy, = X{p*xyv<v,ve Pi1<e<n).

Now G; k "p" divides (y}—zy,)".
Hence as g is an isomorphism,

Gy k "p" divides (g(yn) — 8(zv,))"

ie.
Gy k& "p" divides (g o f(n) — g of&vo))".

Similarly G; E"p" does not divide (gofo)-p*tgofv)" but
hegof{M,vg)) ~hogof{nv)) mod My () the contradiction, proving 2.5B.

2.6 Discussion continued: Butreally G; is £ - represented in M, o(J) if for £ we

n
take the set of formulas {"p"*! divides y=Y p'yy” i n < @} (Of course, we do not use the full
=1

power of [ -representation, only some specific instances). So the above proves that G; is not
[ - embeddable into G;.

More precisely still, we have shown above that there is no pure embedding (pure = Z?)
of Gy into G;. We can improve this to show there is no embedding in the algebraic sense.
(see [Sh 136 pg 1064 - 1077] and below). Unfortunately for the coherence of the theory the

proof does not imply this directly. Rather we need (for L = Ry)

2.6A Definition: 1) Pr(I, J) means: (letting ¥ be large enough) for every x € H())
there is M, x € M such that:

M<H®,e), u+1cM and I, J e M,
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and for every n € PL, [(Minin <} <M =1 e 1.

but forsome e PL, Minn<o}cMbune M
o

2) Pry (. J)is defined similarly, replacing Ky, with K, .

3) Pr;,K(I,J ) is defined similarly adding M =\ ) M; where  is a limit ordinal, M; < M,
i<d

(M; :i<d) is increasing continuous and (M;:j<i)e M;,;, and for some mMe PL
M1i:i<x}included in M butinno M;, i <9.

4) Pry,  (I,J) is defined like (2) with § = x.

2.6B Theorem: Suppose A > (1, and

(1) A is regular, or

(i) A = A" strong limit or

(i) @Ik € xAx ) <A <2 or

@iv) A= Y Ay, of A <A, each A; a regular cardinal and for each i < ¢f (A) there is
i<cf A

S; € {8 < hicf 8 = Ko} such that (V& < V[V ¢f () = X; — S;~3 not stationary].
J(l

Then (A) there are I € K&, 1141 = A for o < 2%, such that Pry (I, Ip) for a# B < 2*

(B) there are for o < A, I, € Kiy, 111 = A, such that

Prydy, X Ip)
B<Ar
BoL

2.6C Fact: If A >y and the conclusion (A) of Theorem 2.6B holds then there are 2

separable reduced abelian p-groups of cardinality A no one embedded into another.

2.6D Discussion: We still can get considerable amounts of information by the general
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theory. When we want many models of K (no one embeddable into the others) we need

(*) there are 2* index models I of power A each @g(x,y)-unembeddable into any other.

* * *

But when you want rigid, indecomposable, etc. you need
(*) there are {I 4 € K:a < A}, I, @g-unembeddable into

3. I (and I 4 has cardinality A).

Bra
Why?

2.7 Example: Constructing Rigid Boolean Algebras. For I € K let BA(]) is the Boolean
Algebra freely generated by {anyme I} except the relations an<a, when Ve PL,

n < oM =V I n Start with By = {0,1}, successively for some g; € B;, 0 < g; < 1, take

B =B I (1-a)) + ((Bi I a;) * BA(I &)

B)‘=UB;={aiii<7\,}, IIaI =2A
i<A

Of course we chose {I4:00 < A} such that /4 is @, -unembeddable into ¥, 7g. The point is that
Bor

each a € B~{0,1} was "marked" by some I, (the o such that ay = a). Now BA(lg) is
embeddable into Bj [ ag; but By I (1-ag) is weakly L, - Tepresented in Mg, o > 1p). So

B<a

for no automorphism fof By, f (ay) <€ 1-ay which suffice to get "B, is rigid"; in fact it has no
one to one endomorphism. If we want stronger rigidity andfor B k c.c.c, and/or B is com-

plete we may have to change K§y and/or ¢,,. See [Sh 136] (e.g. 0.2, 0.3).

This illustrates some of the complications in definition 2.1. E.g. the weak representation

and the uncountable x (for complete BA.)
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§3. Order implies many non-isomorphic models

In this section we prove that not only any unsable T has in any A 2 |T! + &, the maximal
number (1) of pairwise non-isomorphic models, but that for any & proper for linear orders, if
the formula @(X,y) with vocabulary T order {d,:s € I} in EM (I, d) (Ehrenfeucht-Mostowski
model) for any 1, then the number of non isomorphic models EM (I, ) of power A up to iso-
morphism is 2* when A2 1% + X 1. In'previously dealing with this problem, the author in the
first attempt [Sh 12] excludes some cardinal A when A = %1 + ¥ and in the second [ShA1L,
VIO §3) replaces the EM (I,®) with some kind of restricted ultrapowers. As subsequently ([Sh
1007) we prove that PC{T,T) = {M 1 7(T): M & T} (T an unsuperstable theory, T first
order IT1! = Ry, ITI = Rg) may be categorical in &, and for T = the theory of dense linear
order, may have a universal model in R; even though CH fail, we thought that the use of ultra-

power was necessary.

Now we can get the theorem also for the number of models of We Lj+ o in A (> Rgp)

when v is unstable. Incidentally the proof is considerably easier.

Note that we do not need 1o demand ¢(x,¥) to be first-order; a formula in any logic is O.K,;
it is enough to demand ©(X,y) to have a suitable vocabulary. This is because an isomorphism
from N onto M preserve satisfaction of such ¢ and its negation. However the length of x (and ¥)
is crucial. Naturally we concentrate on the finite (in 3.1-3.11). But when we are not assuming
this, we can, "almost always" save the result. In first reading, it may be advisable to concentrate

on the case "A is regular”.
3.1 Definition: Let M be a model / an index model for s € /, 4, is a sequence from M,
the length of &, depend on 1p,(s, @, I) only ; ¥ is a set of formulas of the form o(x,a), a from

M, ¢ has a vocabulary contained in t(M).

1) We say {a,:s € I) is weakly x-skeleton-like for ¥ when: for every ¢(x,a) € ‘¥, there
isJ ¢, lJ1 < ¢ such that:

(M ifs,t e Ltpgt, J, I) = tpgg(s, J, I) then M E ¢la,al = ¢la;.a)
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) Y= {o(x,a)9(xye) € A, ae J} we write (A,])) instead ¥; if A = {o(x,y)} we
write @(x;y) instead A, if J = {a:a from A, and for some @(x,y) € A, {g(a) = ¢g(y)} we write A
instead of J.

3) Supposing W(X,y) & ¢, X), I a linear order we say (a,:s € I) is weakly (x,0(x,y))-
skeleton like for J if : ¢(x,y) is asymmetric with vocabulary contained in (M),
fg(a,) =tg@) =1g (@), (az:s € I) is weakly x-skeleton like for ({o(x,y),w(Xx,y)},J) and for
s;te M, M k ola,,a)iffl Es <t

4) In part 3) if J = *IMI, o = ¢g(X) = £g(¥) we write "inside M" or, "for M" instead
"fOr J".

Note that Definition 3.1 requires considerably more than "the a; are ordered by ¢" and

even than "the a; are order indiscernibles ordered by ¢."

We now want to assign invariants to linear orders. We quote proofs from the Appendix to
[Sh] where different terminology was employed. Speaking very roughly, we there discussed
only INV$ where x = Rg. The assertion in the appendix that two linear orders are contradictory

corresponds to the assertion here that the invariants are defined and different.

In the following, for any regular cardinal W > Rg, D, denotes the filter on | generated by
the closed unbounded sets. If E is a filter on u and F C | intersects each member of E, then
E + F denotes the filter generated by E (_ {F}.

For a linear order / and a cardinal x, let D = D(x, I) be Dy sy + {8 < cf(I) : ¥ < ¢f(3)}.
Two functions f and g from ¢f(I) to some set X, are equivalent mod D if {8 : f(§) = g(d)} € D.

We write f/D for the equivalence class of f for this equivalence relations.

3.2 Definition: For x a regular cardinal, o an ordinal, we define INV (/) for linear ord-

ers /, by induction on o
o = 0: INVZ () is the cofinality of I if ¢f(J) is 2k, and is undefined otherwise.

a=p+1:Letl = \ [;, with I; increasing and continuous in i and /; a proper initial segment
i<ef I
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of I. Ford < ¢f(I) let J g = (I-I 5)* (where X * denotes the inverse order of X).
If ¢f(I) > x and for some C club of ¢f(/}
(*) if 8 & C have cofinality at least x, then INV O(I5) is defined

then we let

INVE(D=UNVE (T 5):cf(8)2x, 8<cf 1))/ D (x, I)

Otherwise INVS (I) is not defined.
a—limit: INVE(I) = NVE():B < o)

Remark: Really just o = 0,1, 2 are used. For regular A,o = 1 suffice but for singular A,
o = 2 is used (see 3.4).

3.3 Lemma: Suppose x is regular and I, J are linear orders, a;(s€l), E,(te J) are from
M, ¢(%,y) an t(M)- formula (x>£g(x) = Lg(¥) = £g(@,) = 88(b,) YY) ¥ ¢(,X). Assume:

(a) (o) for every s € I for every large enoughte J M E (p[Es,l;,].
(B) for every t € J for every large enoughs e I M k (p[i)—,,Es].
{(b) () {a,:s € I) is weakly (x,9(x,y))-skeleton like in M.
B (bt e J)is weakly (x,@(x,¥))-skeleton like in M.
() INV(D), INVE (J) are defined.
Then INVE () = INVE ).
Proof: Just like [Sh,AP 3.3].

3.4 Lemma: 1) If A, are regular, A > x, then there are 2 linear orders I4(o < 24,
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each of power A, with pairwise distinct INVL (I o )(ax < 2%, each well defined.

2) If X > x, x a regular then there are linear orders I4(x < 2}'), each of power A with
pairwise distinct INVZ (I o (o < 2%), each well defined.

Proof: By [Sh,AP 3.3].

Now we want to attach the invariants of a linear order 7 to a model M which has a
skeleton-like sequence indexed by . In &) (in Definition 3.5 below) we define what it means for
a sequence / to (k,0)-represent the {@,y}-type of ¢ over A. (In the simplest case / has cofinality
8 from below and the same cofinality as I” from below with respect to a weakly (x,0(x,y))-

skeleton like sequence its index set in M.) In P) we say that the type of ¢ over A has a (x,6,0)

invariant if

(1) all sequences with defined invariants agree.

(2) some representing sequence, its index set (which is a clear order) has a defined
INVS .

More fully and formally:

3.5 Definition: Let A ¢ M, ¢ € M and ¢(x,y) an asymmetric formula with vocabulary
contained in T(M) and y{x,y)=0@,x).

(o) We say {a;:s € I) (x, B)-represent (¢, A, M, o(xX,y)) if :

I is a linear order, and for some linear order J of cofinality 8,/ /=0, and a; € te (;)A
for t e J, such that for every large enough s e [, a; realizes pipemvayy (€ 4.M) and
{as:s € J+ (1)*) is weakly (x,¢(x,y))-skeleton like for M (I *.the inverse of I). [if 8=, less
suffice].

(B) We say (¢, A,M, o(x,y)) has a (x,0,0)-invariant when:

@) if for ¢ = 1,2, (Eﬁ S € I:) (x,0)-represent (¢, A, M, ¢(x,y)) and INVE(I,) are
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defined then

INVE ) = INVE( ).

(i) some {a;:s € I) (x,8)-represent (¢, A, M, 0(%,y)), with INVE (1) well defined.

(B)’ Let "(x,o0)-invariant "means” (x,0,0)-invariant for some regular 6 > x. Similarly for

"K-represent".

(y) Let INVE (T,A, M, o(%,5)) be INVE(I) when (,A,M, ¢(%,3)) has (k,8,)-invariant and
®

{a,:s € I (x,0)-represent it.

3.6” Discussion: Each of Definition 3.6, Lemmas 3.7 and 3.8, and the proof of Theorem
3.9 have 3 cases. In the easiest case A = M lli is regular. When ) is singular the computation of

INVZ(x, @.¥)) is easier when ¢f(L) > K (case 2). The third case arises when X > K > ¢f(L).

The easiness of the regular case is caused by the fact that any two continuous increasing
representations of a model with power A must "agree" on a club. In the second case we are able
to testrict the first argument to a cofinal sequence of M. For the third case we must construct a
"dual argument", noticing that much of a long sequence must concentrate on one member of the

representation.

3.6 Definition: Let ¢(X,y) be a formula with vocabulary Ct(M)} (#g@) =#g(G)). M a
model of power A, A > X, ¥ regular, o an ordinal.

(0) If M is a model of power A, Misa representation of M if:

M =(M;:i <cf)), it is increasing continuous MM; Il <A, M = U M; (and M;  M).
i<h

Similarly for sets.

1) For A regular:

INVE (M, o(x,7)) = {e: for every representation {4; : i < A)of
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IM\, there are 5<Aand ¢ e M, such that ¢f 8 2 x and e = INVZ(C, As, ,0(Y))
(so the latter is well defined)}.

2) For regular cardinals 8 > k, A > ¢f A = 0, a model M of cardinal A and an asymmetric
formula @(x,y) (in ©(M)) let

Doy =Dg + {8 < 6icf 82k}

INVE (M) = {{e;:i < 6)/D g : for every representation (A;:i < 0) of IM1, there are S € Dy
and for every & € S thereis C5 € M such that ey = INVZ (Cs, A, M, 0x,Y))}.

3) For a regular cardinal 6, A > 6 > x + ¢f A and function 4 with domain a stationary

subset of {d<®@:¢f82x} and range a set of regular cardinals <A, let

Dy 5 = Dg + {{3:h{(B2p} <A}, and assuming Dy, 5, is a proper filter let :
INV%S M, o(x,y)) = {{e;:i < 0)/Dy, 3: for every representation

(Aiii < ¢f A), of IM| there are y< ¢f A and S € Dy 3, S < Dom h, and for each 8 e §, for
some ¢ € M, ¢; = INVE(C, A, M,0E)}.

3.6A Remark: Of course, also in 3.6(1) we could have used {¢;:i < A)/D,,_ as invariants.
3.7 Lemama: Suppose @(%,¥) a formula in the vocabulary of M, £g(X)=2g(¥) < ®.

1) If A > Rg is regular, M a model of cardinal A, x regular <X, then INVE (M, 9(x.y))
has power <A.

2) If A is singular, 8 = ¢f A > K, then INVg g (M, 9(X,y)) almost has power <A, which
means: there are no €5 (i < 0,{ < A*) such that

(i) for { < A%, {eb 1 i < 0)/D g € INVEG (M, 9(E.7))
Gi) fori <8, { <& <At eb#eb

3) If A is singular, 8 regular, x + ¢f A < 0 < A, & a function from some stationary subset
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of

{i<®cfizx}, into {L:p <A is a regular cardinal}), Dy, a proper filter, then
INV %3 (M, 9(x,y)) almost has power <A, which means: there are no e (i <8, L <A*)such that

@) for § < A, (ef:i < 0)/D g4 € INVEE (M, 0E)
(i) fori < 6,0 <& <A*, eb = eb.

Proof: Straightforward.

We now show that if 171 <X and INVE(J) is defined then there is a linear order J such that
if a model M has a weakly (x,¢)-skeleton like sequence inside M of order-type J then
INVZ(I) e INVE (M, ©). Again the proof splits into three cases depending on the cofinality of A.

The following result provides a detail needed for the proof.

3.7A Claim: Suppose {a,: € J) is a weakly (x, @)-skeleton like inside M and I < J. If
for each s e J either {r € It < s} or the inverse order on {t € it > s} has cofinality less than

X then{a,:t € I)is weakly (x, @)- skeleton like for M.

Proof; We must show that for every ¢(x,a) there is an Iz ¢ I with |I3] < x such that if
s,t € I and 1pge(s, I3, 1) = tpgs(t.15.1) then 8(ag,a) =96(a,,a) for 8 = @,y. We know there is
such a set Jz for J and @(x,a). For each s € J; choose a set X; of <x elements of / such that X
tends to s, i.e. to the cut that s induce in 7 (either from above or below). (so if s € I, X = {s},

otherwise use the assumption). Let Iz = \_j X,. Now it is easy to see that if 71 and'z; € [ have
setz

the same gf-type over [z they have the same ¢f type over J; and the claim follows.

3.8 Lemma: Assume {g(x) = £2(¥) < Ry, ¢ = ¢(x.Y).
1) Let A > Ko be regular. If 7 is a linear order of power <A, and INVZ (D) is well

defined, then for some linear order J of power A the following hold:

(*) if M is a model of power X, d; € M, {g;:s € J) is weakly (x,9(x,y))-skeleton like
inside M (@(x,y) asymmetric), then INVE(l) € INVE(M, o).
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2) Let A be singular, 6 = ¢f A > x, A = Y A, A; increasing continuous for { <8, [; is a
i<
linear order of cofinality > A; and cardinality <R}, INVE(I;) well defined, then for some linear

order J of power A the following holds

(**) if M is a model of power A, a, € M, {a,:s & J) is weakly (x,9(x,y))-skeleton like for
M, (¢(X,y) asymmetric) then (INVE (I;):i < 8)/D ¢ , belongs to INVE (M, ¢(X,¥)).

3) Let A be singular, 6,x regular, A > 6 > (¢f(A) + ), A= Y A;, A; increasing continu-
i<cf A
ous, and for i < 0, I; a linear order, INVS ([;) is well defined. Then for some linear order J of

power A the following holds:

(**¥%) if M is a model of power A, a; € M, (a;:s € J) is weakly (x,@(%,¥))-skeleton like for
M, (¢(x,y) asymmetric), 4 a function from a stationary subset of {& < 0:¢f & 2 k} and range a set

of regular cardinals (A but >0, Dg , then (INVZE(I;):i < 6)/D g , belongs to INVEE (M, o.5)).

Proof: 1) We must choose a linear order J of power A such that: if J indexes a weakly
(<, @(x,¥))-skeleton like sequence inside M then INVE (/) € INVE (M, ¢(X,y)). For this we must
find for any continuous increasing decomposition a ce M and a 8 with
INVY(C, Ag,M, 0(x,y)) = INVZ (). To obtain ¢, we use a function s:A —» J. Let for a < A, I 4

be pairwise disjoint linear orders isomorphic to I".

LetJ = ZI& ] * means we use the inverse of as an ordered set). Suppose {(g;:s € J) is
a<h

weakly (K,Q(x,y))-skeleton like inside M, (9(x,y)) asymmetric), M has cardinality A. Let

s(a)eIqand M = Ay , lAg! <A, {Ag:00 < A) increasing continuous. By the definition of
o<k

weak (K, 0(x,y)) skeleton (3.1(1)), for every (finite) @ € M, there is a subset J; of J of power

< K such that: if 5,t € J-J; induces the same Dedekind cut on Jz, then M k ¢la;.al=¢la;,a]
and M k ¢[a,a,]=0[a,a,]. Since A is regular for some closed unbounded subset C of A, for
de C.

(*) (1) Es@ € A5 forao< d

(i)Jzc Y Ipford e As
B<&”
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So it is enough to prove that for 8eC of cofinality 2K,
INVE() = INVE @55y, As, M,0X,y)). It is easy to see that {(a;s e [5) X-represent
(as(5),A 5.M, (x,¥)). The required 6 and J in Definition 3.5(ct) are ¢f(8) and (@ g):B < ). Now
use claim 3.7A. So (see Definition 3.5(y)) it is enough to show that (@5¢5)» A5 M, p(x,y)) has a
(x,o)-invariant. Now in Definition 3.5(B), part (ii) is obvious by the above; so it remains to

prove ().

Let 6 Zcf 8.

So assume that for ¢ = 1,2, (Zl'i:s e I') (k,0)-represent (as3), As, M,0(x,y)), let J ¢
(al:t € J*) exemplify this and let J; = J'+(Y)" and assume INVE (1) are well defined. We
have to prove that INVI(I'') = INVE (I%). We shall use Lemma 3.3 (with 1, I? here standing
forl, J there).

Remark: The following observation underlies the next step in the proof. It follows

easily from Definition 3.1 (1).

3.8A Fact: Suppose (d,:s € J+I ") is weakly (x,)-skeleton like inside M and both J
and I have cofinality 2. Then for every b e M there exist sp € J and 51 € I” such that if

Sg<8,t<s (nJ +1") then

M Ey(a,,b) = y(@,b).

M Ey@,,b) = y@,b).

Now we return to the proof of Theorem 3.8.

Let us prove (a)(a) from 3.3. So suppose it fail, ie. se ] 1 but for arbitrarily large
teU® M E—pla;.a).

Since (5,2 cte J2+ 2y is weakly (x,@)-skeleton like inside M the preceding Fact 3.8A
yields that for arbitrarily large re J I ME —x(p{E;,Etz 1. Since E; and a5 realize the same
{@,y)-type over A, (Definition 3.5 (o) this implies M E —ﬂp[a_s(a),i,z ] for arbitrarily large
t € J?. Choose such 1o € J;. This quickly contradicts the choice of J 2 and I2. For, it implies

that for every t € I%, we have M k ﬁm(af,a‘fo) which is impossible if J2+1? is weakly (x,@)-
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skeleton like (Definition 3.1(3)).

2),3) Left to the reader (or see the proof of case (d) in Theorem 3.11.)

3.9 Theorem: Suppose A > x, K3 a family of t-models, each of power A, ©(x,y) an
asymmetric formula with vocabulary <1 and #g(X)={g(¥) < Ry. Suppose further that for every
linear order J there is M € K, and 4, € M for s € J such that (g,:s € J) is weakly (x, (X, ¥))-
skeleton like in M,

Then, in K4, there are 2+ pairwise non-isomorphic models.

Proof: Let first A > Xg be regular.

By 3.4 (1) there are linear order /¢ ({ < 2*) each of power A, such that INV Ta ¢) are well
defined and distinct. Let J¢ relate to /¢ as guarantee by 3.8(1). Let My € K, be such that there
are EE e M for seJ ¢ such that (agseJ g) is weakly (x,9(x,y))-skeleton like inside M ¢
(exists by assumption). By 3.8(1) INVE Upe INVE (M, 0(x,3)).

Clearly My =M = INVE(M¢,0x,Y)) = INVE (Mg, 0(%,7)), hence
Mg=Mg = INVEUy) € INVE (Mg, 9(x,¥)). So if for some & < 2%, the number of { < 2* for
which M¢ = Mg is > A, then INV (Mg, 9(%,5)) has power > A (remember INVk (), { < 2%,
were distinct). But this contradicts 3.7(1). So {(§.£):(.§ < 2*M ¢ =Me}, which is an
equivalence relation, satisfies: each equivalence class has power <A; hence there are 2+

equivalence classes and we finish.

For A singular the proof is similar. If ¢f A > x, we can choose 8 = (¢f X) and use INV%‘e,
3.4(1), (3.8(2), 3.7(2) instead of INV,1<, 3.4(1), 3.8(1), 3.7(1) respectively.

If cfi<x, let B8=x", so A>8>«k+¢fA; hence we can find
hi{8<0:¢f82x) > {u:pu+cfu<Afsuchthatforeachp=c¢fu <A, {8<0:¢f82xand
h(8) = u} is stationary. Now we can use INV%;Q‘, 3.4(2), 3.8(3), 3.7(3) instead INV}(, 3.4(1),
3.8(1), 3.7(1) respectively.
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Alternatively for A singular see proof of 3.16 and 3.11.

3.10 Conclusion: 1) If T is the first order T < T, T is unstable, and complete,
A2IT (| + Ry then there are 2 pairwise non-isomorphic models of T of power A which are

reducts of models of T';.

QIfT cTqareasabove, A2 IT ! + k¥, A = A<%, x regular, then there are 2* pairwise
non-isomorphic models of T of power A which are reducts of models M L of Ty such that M;, M}

are K-compact and x-homogeneous. [really we can get strongly homogeneous]

3) If ye L+ o(t)), TS}, ¥ has the order property for Ly+ o [ie. for some formula
©(x,y) € L)+ o for arbitrarily large p there is a model M of y and a; € M for i < | such that
M E ¢[a;,a;]iff i < jand 8g(®) = £4(F) < Ro).

Then for p>A + Xy, ¥ has 2* models of power i, with pairwise non-isomorphic 7-

reducts.

Proof: 1) By [Sh] VIII 2.4 (and see assumption V just before it, p. 394“'14) we have

the assumption of 3.9.

2) By [Sh] VII 3.1 or case II of the proof of Theorem 3.2 (there) we have the assumption
of 3.9.

3) See e.g. Grossberg and Shelah [GrSh 222] why the assumption of 3.9 holds.

* £ *

Now we turn out attention to the case the sequences are infinitary (see more in the latter

version):
3.11 Theorem: Suppose G < k < A are cardinals, x regular, and in 3.9’s hypothesis we
have #g(a;) = 6= Ry then 3.9°s conclusion statement holds, if at least one of the following

holds:

(A)A=A°
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(b) A < 2%
(c) Replace 3.9’s assumption by:
("1 2° <24, ofh>o0.
(*), for every linear order J of cardinality A there is M; € Ky and {(a,:s € J)
(Gs € °1M1) which is weakly (x, <A, ¢(x,y))-skeleton like inside M (see definition 3.12
below).
(d) Replace 3.9’s assumption by: for some regular L(0) < 2
* ¢ A>o0.
(*)7 as in (c).
(YO for J e K, (= (K,y)3) and a set A < M (from (%),) if A1 < A then:
(D) 1(0) > 18, yj (4, M) or at least
(i) H(O0) > 1{Avyey (b < K), A, M): b; e A for i <k, the average is well defined

and is realized in M} and if ¢f A < A, 1Al <(¢fA) + x is enough.

{e) Replace 3.9’s assumption by:

for some regular pu(0) < 2

(%O for every J e K§ there is My e K3 with (@zs € I) weakly (K,¢®))-
skeleton like inside M (so a; € ® M), such that:

() RO) > | {AVjguy (b 1 i < %), M, M): fori < x, b € 1M, and (b; : i <) is weakly
(K, ©(%,¥))-skeleton like inside M} | (on Av see Ch I, §2, we can even restrict further the set of

(b; : i <) which we consider).

(f) for some < A, there is a linear order of power p with 2A Dedekind cuts with upper

and lower cofinality > k and 24*¢ < 2},
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3.12 Definition: We say (@,:s € I) is weakly (k,<A,@(,Y))- skeleton like in M if:
Definition 3.1(3) holds, and for each A c M, 1Al <, there is J ¢ I, 1J| < X such that for
every ¢ € %A, 3.1(1)(*) holds.

If L = A we omit A.

Proof of 3.11.
Case (a): We can in Definition 3.5 replace A by J, a set of sequences of length ¢ from
M. Thus in Definition 3.6, replace {(4;:i < ) by (Jiii < ¢fA), CIMi =l Xt <A, J;
i

increasing continuous. No further change in 3.1- 3.9 is needed.

Alternatively, we can define N = F5(M) as the model with universe 1M1 IMI,

(N = oM) U {Fyii < o}, RN =RV for R € ©(M),
M .
N _ G"(x1,...,x,) if Xi,...,x,€ M|
e { Xy otherwise

for function symbol G € 1(M) which has n-places and

F¥x) = x (@) if xe CIMI
x f xeM

fori < o.

Note that M| = M, if and only if F(M )= Fs(My), WF (M)l = 1M 1%, etc. So we
can apply 3.9 to the class {F 5(M) : M € K} and get the desired conclusion.

Case (b): Left to the reader [use weakly (x, ¢(x,y))-skeleton like sequences
(@5 € x+(I)")in My € Ky, for § < 2%, with (INVE([¢) : { < 2*) pairwise distinct, and count
the number of models (M ¢, (g;:s € X)) up to isomorphism, then "forget the a;, 5 € X", i.e. use
3.13 below (= [Sh, VIII 1.31)].

Case (c): Repeat the proof of 3.9 (the only difference is that the cardinality of the

invariant of M; is < A% rather than S A).

Case (d): If A is regular use case (c). So let us assume ¢f A < A, and let © Y+ cfA
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(which is regular and < A. Now for W regular > x, p <A, let {I:x < 2*} be such that :
() INVE (1) # INVE(IY) for a = B

(ii) the order 7%} has cofinality i and cardinality A.

Let I =1 for {<x" and wlog the members of {Ih7:p<) is regular,
{ <kt , o < 2%} are pairwise disjoint. Now let 4 : 6% — {i : @ <A, 1 regular} be such that for
every regular ¥ < 0, {8 < x* :¢f 8 =x, h(8) 27y} is stationary. We define for o < 2 <kt
the linear order J ¢ as (%), Jq = ¥ Jog, and sets(o,0) € Jo .

L<x*

So by (*), there is, for o< 2, a model M, € K3, and (Eg:s € Jo) a}‘ € %IM,l,
(@, s € Jg)is weakly ({k, <A, O,¥))-skeleton like inside M.

Let for M € K3, G (M) be the set of {¢;:i < x*), ¢; is INV% (J)) for some J of cofinality A (i)
and cardinality A, such that:

(*) for every (A? i < x*), 1491 <0, A?, increasing continuous in i there is (A}:i < 6*),

A} increasing continuous in i, IA,~1 | £0, A? c A} such that (if (@) of (*)&“” of Case (d)) :
{i: forsome ¢ € °IM|, e; = INVZ(c, AL, M, ¢(X.7))} € Dy (see 3.6(2).
(we leave (ii) of case (d) to the reader.

Now if M =M let A} = A? ;) now we know that for A} there is J? C /g,

o<
I7%1 <A, as in Definition 3.11A. So {i <8 :cfi =0, W AIAP is bounded in
J<i
%P} e Dyy  (why®: as  k"<A apply 312 1o VA}). So easily
J
(INVEIEE) 1§ < 8%y € G(My,). Easily by ()5 for every M

1{B:(ef:{ < 8% e GMo) <O

and My =Mp = G(Mqy) = GMp). As () < 2* s regular, we can finish easily.
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Case e: Like case (b).

Case (f): By the following variant of [ShA1, VII 1.3].

3.13 Fact: If 1, = 1) \Ufc; : i € I}, ¢;-individual constants, K a class of t,-models (for
t=12) MeK,=>MIt Ky andp=I0LKy) > A" then T(LKp) 2t (o if p =21,
equality holds.)

3.14 Conclusion: 1) Suppose WYe Ly o(T1), TST, ©OXY) € Ly o(0),
tg(x) = ¢g(y) = 0 <7, and for every | for some model M of v there are g; € M (i<y) such
that M k& ¢la;,a;] iff i < j. Then for every A > % + 6", y has 2* models of power A with pair-

wise non-isomorphic T-reducts.

2) Suppose We Ly o(T0), QXY) € Lyt o(ty) for =12, &&)=y)=o0,
To =T (M T2, (W, 91(X,9),92(x,y)} has no model and

(*) for every . there is a Tp-model M and ag € ®IM| for § < @, such that: if p<y<a

then
(i) for some expansion M’ of M, M” k ¢[ap.a,l,
(ii) for some expansion M" of M, M’ E @,[ay, ap].

Then for A > % + %, I(A, W) = 2* (i.e. there are 2* non isomorphic To-models of  of car-
dinality A).

Proof: 1) follows from (2).

2) We know that for some ® proper for K,,,, for every I € K, EM L1, ®) is a model of
yand fors,t € [,ifl Es <tthen

EM'(,®) k ¢,[a,,a] EM'(,®) E—fa.al.

(see [Sh16, Th. 2.5], [Gr Sh 222]).
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So we can use 3.16 below cases (C), (D) (E) (as 6 = Rp)

We may want in e.g. 3.10 to get not just non isomorphic models, but non isomorphic

because some nice invariant is different.

3.15 Definition: (1) Let i be a regular uncountable cardinal, 4 a function from some sta-
tionary S < | to a set of regular cardinal <A, M a T-model, ¢(x,y) a formula in the vocabulary
1, 8g(x) =€g(y) = 6. Now M obeys (h, @) if the following holds:

(*) there is a function H from (S, (M) to S, (M) such that:

if (A;i<W) is an increasing continuous sequence of subsets of M, 14;I<A,

H({Ai £ j)) CAj1 then for some club C C i, for e C S the following holds:

@ if for i < cf (8), a; S Aq, for some a; < 9, {@;:i < ¢f 8) is weakly (x, ¢(x,y))-skeleton
like inside M, for each & < & (1p 14,yj (@i , Ag): i < ¢f (3)) is eventually constant and p is a sub-
set of p* “8(x,c):ic =M, and for every i < cf (8) large enough k 8[g;,¢] and 6(x, y) is

€ {0, y),m0X, ¥), 0@, X), ~¢(¥,x)}} of power <h(d) and p" I Ag is realized in M then p is
realized in M.

2) In (1), we say that M obeys (h, ¢(x,y)) exacdy, if in (*), for de C' ~ S, @ fail for

h(®)* (i.e. for some g;, p a is there, Ipl = h(3), p is not realized in M.
3.16 Theorem: Assume A > o, ¢(x,y) an asymmetric T(K)-formula, 6 = £g(x) = ().
Suppose that for I € K§ there is a T-model M; e K;, weakly full ¢(x,y)-represented in

My o) where A >3 + 6% + 0 and for s € I, @, = (Fi(s) : i <o) € ®IM;|: My F olas,a,] iff
s <t{fors,tel).

Then I(A,K) = 2* in the cases listed below and in some we get reasonable invariants.

Proof: Note that, letting k 2/c* + 0:
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(*) in My, {ag:s € I) is weakly (x, <p,@(,y))-skeleton like in Mj, whenever pu2 x,
M > %, U is regular.

Case A: A% =

As kY6t + 0 <\ we can apply 3.11 case (a), so we can assume A = A < A°, from now
on.

Case B: A% < 2* k< )\ ¢f A > o. By 3.11(c).
Case C: ) is regular (Vi <A)[H<® <A, A2 %", % < A. Let Sg = {8 < hief 82 x}. For
a function h:Sy — {W : L a regular cardinal, k £ p < A} let I, be the linear order, with set of ele-

ments {(e,B)ot <A+ K, B<h(x)if e Sy and B < x otherwise}. Order is: (001, B1) < (03,587)
ifand only if 0 < 0g or 0y = Oy, By 2 B;. Now

(a) M, obeys (h, (p(x,y)) exactly (see Definition 3.16).

This clearly suffices and is easy.

Case D: Like case C but A = k7, like case C but #:5y — {x*,k}. Using 3.17 below, we

letJ =J™M x J ¢ K§7. LetJ =y JE, J¢ increasing continuous, 1J1 <A, ¢f J = ¢f())" =1,
L<A

and for { < A: (W.Lo.g. by 3.17(2))
(*) if s € J-JQ then
ofUi{te :(Wwellw<s=v<th=randofU I {teJ:te i t<s))2x
or ofl/ tte J:\(WveJv<ssv<n] =4

andof[/ I {teJ:teJ, s<n' 2x

or(Vte J%){t<s}andthencf§2x=>cfjgZK
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or (Nt e Jg)[s <tlandthengf{ 2K = cﬂ]%]* 2K
Let J5({ < A) be pairwise disjoint, each isomorphic to J*. Let J3({ < 1) be pairwise disjoint,

each isomorphic to (J x ¥)*. Now for h:Sg — {x*, ¥}, (h(a+1) = k*) let

J if h — et
I =(Y J% + J[x]) where Jﬁ _ % i ©=x
o<h J 5 otherwise

Case E; 0 <o <y <A, (i <o) strictly increasing, each y; regular ;. > pf*+

3

>y + ot +0, (Vp<pr<® <y, 2% =2 (without the last assumption we just get a
14

smaller number of models)
We just sum things, where for each i we imitate case (C).

Let Ji=J™"7 for i <)\ be from Fact 3.17, and for each i define J, € K% for

hifS<puitif8=pf} - uiuf*as Y Ji, where: pf3 + x is ordinal addition, the J
G<(u®+x)

are pairwise disjoint, J, ‘g is isomorphic to J* except when k({) is well defined an equal to pu},

then J& is isomorphic to J{; x (W). Lastly for every h € Il{h:Dom h = {§ < p}* :cf 8=uf),
13

h as above}, Ij, g/z Jh,

More details in second version.

The fact we need is
3.17 Fact: For each regualr A we can define a lincar order J (M such that
(hJ M 5 a dense linear order of cardinality A.

(2) There is an algebra N (A with universe J™ and X finitary functions such that:
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(*) if I ¢ J™ is a subalgebra, r € J™ — [ then

cqUt{sel:s<tl=A or

fldif{sel:t<s11=2

(**)if I cJM isa subalgebra then I <. J (M where:

Let I <. J means [ is a submodel of J as a linear order, and for ¢t € J—I, there is a maxi-
mal s, s<tAasel or there is a minimal 5, t <sasel, or (Vse N[s<z] or

(Vs e Hlr < sl

3)foreacht e J [A]

UM rise sMs<gl=1 or

AI0Mrfse IM <" =2

4y if (J1,J?) is a Dedekind cut of J™ then (cf(U1), ¢f(U%)")) is one of

{(,A) T <A O L) s LS A U {(Rg, Rp))

5)) if o < A%, then J™ x (at+1) and 7™ ((oe+1)") are isomorphic to J.

6) If L > «, every submodel of J B of cardinality < ¥ can be embedded into J {x] {we use
it just for a fixed pair A = x*).

Proof: See [Sh. 220] (appendix) which relays a work of Galvin and Laver cited there.

§4 The easy black box and an easy application

4.1 Discussion:

The non structure theorem we have discused so far rests usually on some freedom on finite
sequences and on a kind of order. When our freedom is related to infinite ones, and to trees, our

work is sometimes harder. In particular, we have to consider, for (A = %,y regular):
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(*) We have for S %> L a model Mg, dn(M € **A,8g(@n) = 48X gg(m)) such that for
ne Mg FQ( - @qadacy ifand only ifne S

(and My is quite "simply defined" from S). Of course, if we do not ask more from My, we can
get nowhere: we certainly restrict its power and usually it is ¢-representable in a variant

MH‘K(S ) (for suitable ,%). Certainly for T unsuperstable we have such a formula ¢

¢ = (32)/"\(%(«?» zinrn)

Here we do not try to get the best results, just exemplify some (i.e. we do not present the results
when A = A% is replaced by A = A¥) By the proof of [Sh, VIII 2.5] (see later a complete proof).

4.2 Theorem: Suppose A = A* and (*) of 4.1 holds for ¢ and Mgl = A for
Lo Wl Wk vy
and £g(a@y) <y, or just A8 @) _ A: then (using A € S < ).

1) there is no model M of power ) into which every Mg can be (X¢)-embedded (i.e. by a
function preserving ¢ and —).

2) For any M;(i <)), WM; i = X, for some S, "k =S < **A), Mg cannot be *o-
embedded into any M;.

4.3 Example: Look at Boolean Algebras.

(p(---,a,,,'~~)ji_‘f(ua,,)¢IEthereisnox¢0,xﬁan=0foreachn

n

Let for ®©A c § < ®2), My be the Boolean Algebra generated freely by %y (1 € S) except the
relations: for € S, if n < £g(M) = ® then Xy "\ Xqra = 0. So MMl = ISl € {?s.,?\.x"], in Mg
forne ®A, Ms E (Vxqpn) = L ifand only ifn & S (work a little in Boolean Algebra). So

n

4.4 Conclusion: If A = XR", there is no Boolean Algebra B of power A universal under
o-embeddings. (See [Sh 2.2, VII Ex. 2.2]).
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For another application on locally finite groups-usual embeddings, see Grossberg and She-
lah - [GrSh 174]. A related work is Dugas, Fay and Shelah [DFSh 262].

Proof of the Theorem 4.2: It is enough to prove (2), w.l.o.g. | M;| are pairwise disjoint

subsets of A. Now
4.5 Fact: Assume A = A%, Let aq(n € *”A) be given, each of length <.
There are functions fr,(n € %) such that

() Dom fy = Uana

a<y
(i) Rang fn <A

(i) if f: \y d@n = A, thenforsomen e XA, fn  f.
ne*¥i

Remark: We prove this in 1969/70 (for lower bounds on 7 (A,T,T), T unsuperstable, but
it was superseded, eventually the method was used in one of the cases in [Sh VIII §2]: for strong
limit singular [Sh VIII 2.6]. It was developed in [Sh 172] [Sh 227] for constructing abelian
groups with prescribed endomorphism groups and further see Eklof and Mekler [EkMK], this
version was developed for a proof of the existence of abelian (torsion free X,-free) group G
with G™ =G @A (G" “Hom(G,Z) in a work by Mekler and Shelah.

Proof of Fact 4.5: Let {(bs, 0. < y):i < AJ list all sequences of the form (b :0. < ¥) such
thaty< Y, bo S A 88(ba) SX-

Forme *A, S is the function (with domain (_j @y;q) such that:

Fa@nod =ba if itis defined and f (@qre) = (0:i < £g(@n)) otherwise.

So {fym € X)) is well defined. Properties (i),(ii) are straightforward, so let us prove (iii). Let

fi U @n = A We define ng = (B;:i < o) by induction on o & = 0 or o limit - no problem.
ne¥i

ot+1: be B be minimal such that bhe = f(@y).
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Somn Z(B;:i < x) is as required.
Remark: We can present it as a game. (See in the book [Sh, VIII 2.5]).

Continuation of the proof of the Theorem 4.2:

Now define

S= (**1) \ufn € *h: for some i < A, Rang (fy)) < IM;| and M; k —@(.....fr(@nra)s-)}-
Look at My. Clearly

(a) no £g-embedding of M into M; extends fr,n € *A.

For if f:M - M; is a (x¢)-embedding we have by Fact 4.5 that for some 1 e XA,
fi U Er{ra =f n-

o<y,

§5 An application of a better black box, enough usually for
IG.K) = 2* for most A for a complicated K

5.0 More Discussion

Next we consider:

Assume A is regular, (VL < A% < A, Let Ty cfd<h:cf 8 = ) be pairwise disjoint stationary
sets. ForA c A

Ty = T
i€A

We want to define Sy
XS4 XA

such that
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A &B - Mg, #Ms,

Of course we have to strengthen the restrictions on Mg. For n e S4 (~ *A, if M is increasing

converging to some 8 € Ty, denote this & by d(n).

The decision whether 1 € S4 will be done by induction on 8(1). Arriving to 1, we are assuming

we know quite a lot on

f1 Uanra

o<y

which we are trying to kill, in particular that (if Mg = (M§, WM& <), M§ increasing-
i<h
continuous in { and we can assume 8(1) ¢ Tp because we can use a club of 8())’s.).

5.0A Notation: 1) Let, for an ordinal & and a regular 8 2 Ry, H .9(cx) be the smallest
set Y such that

MieYfori<a
(ii)) x € Y for x Y of cardinality < 6

2) We can agree that 3 o(®) is interpretable. in (H g(),€) and in particular its

universe is a definable subset of H .g(0), and also R is where:

R={(c" (G i<y)x)ixe Myw N

Sp<ox =0 ({1 i <YM
ete,

The main theorem of the section is:
5.1 Theorem: /IE +,(A,K) = 2* provided that:
@A =2%;

(b) 9 = @( - * X )a<y) With vocabulary Ty.
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(©) for every S,**Ac S <**A, there is a model Mse K3, and an e (Ms) for
ne YA tg(xy) = £g(xy ) such that

(@yforne A : Mg E@(- " aqq - )ifand only if n e S.

(B) there are f = fs : Mg = DM «(S) where p <A,k =" such that

(*) if bo € Ms, £g(bg) = £8(@y) for Ne %K, f(by) = Gulte) then the truth value of
Mg ol by Ja<y, can be computed from (Gy:0 <)), the q.f. type of (tq:t <) in §

and the truth values or 3v € *A)[ A vig; = ;B.'(Yi) r g] for o;,B:,v:,8 <y (ie. in a way not
i<y

depending on ). [we can weaken this]
5.2 Fact: Suppose
A=A of A >y
Then there are {(M*,n%) : & < a(*)} such that
(i) for every model M with universe H ¢+ ), 1tM)! <y for some o, M* <M.
Gi)n* e *A, (Vi <M*rie M*,N% e M and o0 # p=>n* = nP.
(iii) for every B < o, M*1i 1 i <y} ¢ MP
Gv)for B < aif mPri:i <y} cM® then IMPI c IM®).
™) MMM =y, 1M*) C H o (3M*))
Proof of 5.2: See 6.x.

5.3 Proof of 5.1 from the conclusion of 5.2:

W.lo.g Mgl =Ain5.1.
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We shall define for every A A aset S[A], A c S[A] < ¥,

Let Ty = fme XA {Mri:i<y}cM®). We shall define by induction on «, for every 4,
S{A1 \Tq so that on the one hand those restriction are compatible, (so that we can define

S[A] in the end, for each A ¢A) and on the other hand they guarantee the non * -
embeddability

For each o

Case I: if there are distinct subsets A1, A, of A, and ¥ A < 81,5, < *A and a to-
embedding fof My, into My, and

M* < (H<x" (}"ER)v A17A2151’S25Msl5M527f513fS2’f)

where R = {(0,0,, x),(1 +i,1F, x): x has the form G, ((ff:i < 6,))} (we choose for each x a

unique such term o and So T €S2 ~ (\Tp) and S, satisfies the restriction imposed for
<ot

each B<o, and computing according to (¥) of 5.1 the wuth value t* of

Mg, Bl . f@n=1i), - * ey, then we restrict:

()ifBCA B~ IM* = Ay ~M® then
SBIAT*-yThH=0
B<ar
() if B <A B ~ IM% = A ~ IM®| and t* is truth then
SBIANT*-yuThH=0
B<o
(i) if B <A, B ~ IM*1 = A} ~ IM%I and t* is false then
SB1 A T*~UThH = Mm%

Beo

Case II: not L.
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No restriction is imposed.
The point is

5.3A Fact: The choice of A{,4,,51,5,,fis immaterial (any two candidates lead to the
same decision).

5.3B Fact: Mg(41 (A < A) are pairwise non isomorphic, moreover for A # B C A there
is no (z¢)-embedding of Mg (4] into Mg(p].

* ok %

Still the assumption of 5.2 is too strong. However a statement weaker than the conclusion
of 5.2 holds under weaker cardinality restrictions and the proof 5.3 of 5.1 above works using it,
thus we finish the proof of 5.1.

5.4 Fact: Suppose A = AX
Then there are {(M%, AT, AY . n%):a0 < a(*)} such that:

(¥} (i) for every model M with universe H <o (A), 1M1 < x (arity of relations and func-
tions finite) and sets A # Ay < A for some o < o(*), (M*, AT, AS) < (M, Ay, Ap)

Ghn*e A, Meii<yc M, n%e M ando# B =>n%=nPb.

(iti) for every B< o, if M*Ti:i <y} cMP then o< P +2%, IM*l < IMPI, and
AY A IM* 12 AR A~ MO

(iv) for every B < o if fmPri 1 i <) M then 1MP1 ¢ IM®
Proof: See 6.x.

Hint:: for A regular.
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Let (S¢ : { < A) be pairwise disjoint stationary subsets of {6 <A :¢f(3) = xJ. We define
foreach { < A, {(M* A% B% 1), a e {(M},A%.BSN%) o< o} such that from (*) of 5.4, (i)
holds when { € Ay—A,, as well as (i1), ( iii), and sup(M§, A M) <A See 6.x.

Then we combine those sets (no serious problems).

Section 6 will appear in the second version.
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Chapter IV: K is not smooth or not - hased

We deal in this chapter with two dividing lines: smoothness and being ¥-based both

absent in the first order case (but the second is somewhat parallel to stability).

We do some positive theory without them, just enough to show that their negation has

strong nonstructure consequences. Once they are out of the way, much of the theory for stable

theories can be redone.

Recall that we work in (AxFry) (in particular limits exists but smoothness may fail:

{M; : i <8)is Sg-increasing, buty M; £ M3;.)

i<d

More on smoothness see Chapter VIII §x. In later versions we will remove the regularity

assumption from the non structure theorems and restrict Ax(A4) to smooth chains.

§1 Non Smoothness implies Non Structure

1.0 Context: AxFr;.

Our main aim in this section is told by its title. Remember that K is smooth if: (_M; <M

i<8
when {M; i < 8) is <-increasing, and for every i < 8, M; <M. The main theorem is 1.11: if
A is regular and K-inaccessible, and there is a counterexample to smoothness by

(M; i < 8), M, with 18] + 3 IIM; Il <A thenI(A,K) = 2 (usually there are 2* models no one
i<d

<k-embeddable into another.)

Note that we may tend to accept smoothness "without saying”, as it is trivial for first order
theories, hence should be careful with claims being proved without it. However, the

phenomenon occurs also for first order T, if we look at {M : M a |T|*-saturated model of T}
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under a suitable order <" (as in e.g. [Sh 48)) and then such a property was called didip (dimen-
sional discontinuity property, see [Sh 132], [ShA1 Ch X]). But there we always have sequences
of length <x,.(T).

Our main theorem 1.11 has some defect: first the requirement that A is regular and K-
inaccessible. By our "adopted rules of the game" this is not serious. More troublesome is that we
have no theorem showing that if x-smoothness fails then (<x,,(K))-smoothness fail for some
reasonably small «,,(K). The remedy we have is to use V1.1; by it (<))-smoothness + NF is -

based implies smoothness.

So "if K is not (<LS(K))-smooth or NF is not LS (K)-based then I (A,K) = 2* for every

?\'LS‘ (K}

regular A = etc”. See end of the section.

Context: Axiomatic Framework 1. of II §1.

The next several results are Lemmas for the proof of Theorem 1.11. Specifically
Claim 1.7 carries out a major step in the construction; Claims 1.1 and 1.6 are used to prove
Claim 1.7 .

One of the basic tools of first order stability theory is the " transitivity of non forking": let
A ¢ B cC,if tp(a,C) does not fork over B and 1p (a,B) does not fork over A then tp{a,C) does
not fork over A. Claim 1.1 is a slightly disguised version of this principle in framework AxFr;.
(Let M, play the role of a and My, M4, M, play the role of A, B, C resp; the second
hypothesis of Claim 1.1 is then apparently stronger than a direct translation. However replacing

M 5 by the model generated by M| and M 4 yields the original situation).

1.1 Claim: If NF(MQ,MI,M2,M3) and NF(Mz,M3,M4,M5) then
NF(Mo,M1,M4,M5).

1.1A Definition: We call this claim transitivity of NF. Ax (E4).
Proof: Let M’y = (M1 M3)§f,, so by Axiom (C4), (and Ax (C1)) M’3 < M3, so by

Ax (C3) (c) (a monotonicity) NF(Mg,M,M4,M’3). So by Ax (Cl), M; SM’3 M3, and by
Axiom (C3)(a) + (C6) (symmetry), [alternatively, by (C3) (a)d] we get NF(M,M'3,M 4,M ).
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Similarly, letting M's = (M'3 \_ M 4)3f, we get M’s < M s, NF(M3,M"3,M 4,M’s).

By Axiom (C2) (existence), there are M4,Ms and an isomorphism g from M, onto My
over My, such that NF(MO,Ml,M;,M; ), and wlo.g. (by Ax (C3)(c), and Ax (C4))
Ms = (M M)  LetMy = g(M3), s0 Mg <My <M.

Let M3 = (M \ M3)§. By the base enlargment axiom (C4) (and (C1)) M3 < M5 so by
Ax (C3), (first (a), then (c)) NF(Mgo, My, My, M3). By Ax (C4) NF(My,M3,M4,M5), and
clearly Ms = (M3 UMZ)ﬁ}';, M3 = (M, U M;_)ﬂ';. Applying twice the uniqueness (Axiom
(C5)) we can extend g to an isomorphism g from M’s onto M3, ¢ (M’3) = M3, g the identity
over M. As everything is preserved by isomorphism, clearly NF(M¢,M,M 4,M’s). By Ax
(C3) (b) NF(M o, M { M 4,M5).

1.2 Fact: Suppose that for ¢ = 0,1, {M,; : { <) is increasing continuous and for each
i<8, NF(My;, My;, M, M) (B of course, is a limit ordinal). Then
(M5 MO =My M)

i<d

Proof: We prove this by induction on the ordinal 8. Let for <3,

Ni=( My Mos)¥f, by Axiom (C4) NF( Mys, Ni, M3, M), and clearly
[i <j= N;c Nj](by Ax (B2)). We prove by induction on & < & that { N; :i < ) is increas-
ing and continuous. If o is not limit, this is trivial; if o is limit <3 use the induction hypothesis.

Lastly if =8 by Ax (B2) [i <8=N; cN;) hence (N; CNs; on the other hand

i<§
Mos <My hence Ng = (M5 Mol = Mia)ff =Mis = My (N Together
i<d i3
N = N; as required, so {N; : i < 3) is really <-icreasing continuous. Now apply Ax C7 with

i,8
Mos as My N, a M;;, M, as M, ad M a M 1o conclude
U Ny M) =(Ns M. Untangling our notation note that M;s=N; and

i<8
(Ni U MFF = (M1 M} (since Mgs < Mj, by Ax (B0), (B1), (B2)). Substituting
we conclude (_J { M1\ M = Ns U M2)§f asrequired.

i<8

Remark: Fact 1.2 is a natural strengthening of axiom (C7). Instead of fixing an My
such that NF ( Mo, My;, M, M) we have allowed the base My ; to vary with i.
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The next two lemmas are easier to understand as part of the proof of Lemma 1.1 of Chapter
V. Specifically Lemma 1.4 is the core of the proof of the j-based implies p'-based (for ' > p
when K is (<p,<p)-smooth). Lemma 1.3 is used to prove Lemma 1.4 (and the proof of 1.4 is

used in the proof of 1.6).

Lemma 1.3 asserts that if (M, :i<3) is an <-increasing continuous sequence,
Ni={M; N is also <-increasing continuous and for i < j, NF(M;, N;, M;, N;) then
M 5 < N and some further corollaries. If, in the nonforking condition, we could replace M; by
Mgy, M; by Mg, and N; by N we would be in the situation of axiom (C7). The proof proceeds
by showing that we achieve this happy situation by replacing M, N by isomorphic copies
which are independent from Ny over M. After applying axiom (C7) we return to the original

models by the invariance of nonforking under isomorphism.

1.3 Claim: Suppose { M; :i <8}, { N;:i<8) are <-increasing continuous and for
i<j<8 NF(M; N, Mj, Nyand N;={ M;\ No),.Then Ms< Nj and for i <8,
NF( M;, Ni, M5, N5), Ns=( M5y No)*f,.

Proof: There are M’s, N'5 and g such that NF{ Mg, Ny, M's, N';), and g is an iso-
morphism from M onto M’ over Mg, N5 ={ M5 \YN%,. Let N; =(M'1 y No%,
where M’; = g ( M;). By Axiom (C3), (C4) fori < j <8, NF(M';, N';, M'j, N';)), (N'; 1 i < &)
is increasing and by Fact 1.2 also continuous. So by Axiom (C5) we can define by induction on
i £0, g, an isomorphism from N; onto N’; extending (g I M")) \y idn, and every g;(j < i).
Now g5 shows that NF( M;, N;, M3, N) (as NF(M';, N, M’s,N’s)) and

N=( Mz No)g, (as Ns=( M5y No)¥).

14 Claim: Suppose ( N;:i <8), ( M;:i <8) are increasing continuous, and for
i<j<8NF(M;, Ny, Mj, Nj). Then Ms< Npandfori <8 NF( M;, N;, M5, Ny).

Proof: The proof will proceed by applying the following subclaim first to the given
(M;:i<8), (N;:i<&)and then to a second set. We use the following notation.
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Letfori<j<d, Nij=( M;y Ni)‘gl'\'l,--

LCtN,"5= ) N,"j.

i<j<d

1.4A Subclaim: Let (M; :i <8), (N;:i < ) satisfy the hypothesis of Claim 1.9.
Then (for i < d):

a) M5 <N;s.

b) NF(M;, N;j, M5, Ny 5) (wheni < j < 8)

) Nis = (M5 N,

d) For (i <)j1 <j2 <8, NF(Nyj,,Nj,Nij,, Nj,).

e) foreachi <3, (N;;:i<j < d)isincreasing continuous.

Proof of 1.4A: By Axiom (C4), N;;< N;, and (together with Axiom (C3)) for
iSjl <j2 < 8, NF( Mjl’ Ni,jl’ sz, Ni.jz)’ and clearly Ni,jz =< Mj2 U Ni,f1>ﬁ/’.'lyjz‘ By
Fact 1.2 foreach i { N;; :i <j < 8) is not only <-increasing but also continuous [i.e. (¢) holds].

Remember Nig= U Ny So by 18 M;<N;s [so (a) holds] and

i<j<d

NF( Mj, N;j, Mg, Nys) [so (b) holds] and N;5=( M5y N)¥,, [so (c) holds]. By
Axiom (C4) if i £j; < j, < 8, then NF( Nij,» Nj,» Nij,, N;,)[so(d) holds].

Proof: We return to the proof of 1.4. Applying the subclaim to the original sequences
(M;:i < 8)and(N; : i < &) we see by e) and d) that for each i the sequences (N; ; : i <j < d) as
(M;:0<j<8)and (N;:i<j<8) as (N; : 0<j < J) satisfy the hypothesis of 1.4 and thus
1.4A (now indexed by j). Applying the subclaim to these sequences we conclude by (a) that for
i1 <ip<® N s<N;5 Applying 1.3 with M; as M; and No; as N; we conclude
Ms< Nos.

Now note that \_y N; 5 includes each N; (i < ) hence includes U5 N;, but this is N§ (as
i<$ i<
(N; : i <8) is increasing continuous so N5 = {_j N; 5. As we have noted above that (N; 5 : i < 8)
i<d
is <-increasing by Ax (A4) we know that for i <3, N;5 < gkja Ngs. [by 1.4B below we can
<
apply Ax (A4) for smooth chains only]. By the last sentence, this says N; 5 & Ns. As we have

noted above that Mg < Ng 5, we get M5 <N, one of our desired conclusions. Note that also
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for limit a0 <8, N5 =\ N; o We prove this by induction on 8. For one inclusion, for i < a,
i<o

N;cN;s hence a<j<8: Nyjj=Mj\NHK <M;, NK, =Nq,j so taking unions
N; 5 = Ng,s. For the other inclusion clearly when i, < j < 8, N;; ={M;, N; o) Now, the first
application of the subfact yielded NF(M;, N;;, M5, N; 5), by definition N;; = N; and by the
second application of the subfact N; 5 SNg (and M5 <N;s, N;;<N;s). Substituting and
applying the monotonicity axiom we have NF(M;, N;, M3, N3) (the second conclusion of
1.4).

1.4B Subfact: (N; 5 : i < 3) is (S-increasing and) continuous.

Proof: We prove this by induciton on 8. Let & < & be a limit ordinal and we should

show that Ny 5 = ( N; 5. For one inclusion, for i <, N;£Nj hence when i,a0 £/ < 8,
<o

Nij=M; ONOK, <M UNF, =Ngj, so taking unions N;5CNgs. Hence;

U Nis SNy, for the other inclusion clearly when i,a<j <3, N;5 SNy s for the
j<a i<o

Nij={M; N oF, and (V; o 1 i < o) is increasing continuous (by the induction hypothesis

on 8). Easily U Nio=Ng. Also we know for i <o, NF(My, N;q, M5, N;3), hence

i<a
NF (M g, Nio M5, Ng,5). By Ax (80)) we conclude that
WNos M), =\ WNio M), =\ UNis but Ngs= (J Noj, and  clearly
i< i<o agj<d

Ny S{Ng, M), soNyj (U Nig hence Ng 5 = 1 Ng,j © (U Nis the other inclusion

i<g agj<8 i<g

having been proved we finish.

From Claim 1.3 we can derive the "local character of dependence”. Specifically

Lemma 1.5: Axiom (C8)_ holds if smoothness holds (and more). That is, assume
(¢f 8)-smoothness; if (Mj;:i<8) is <-increasing continuous and for each i<3,
NF(Mqy, My;, My, M)then NF(My, M5, My, M).

Proof: By the choice of the way Claim 1.3 was written we must first apply symmetry to
rewrite the hypothesis as NF(Mg, M,, My;, M). Now for each i <3, let N; denote
(My; U M4 and let Ns= N, By Ax(C4) (and monotonicity) we have

i<d

NF(My;, Ni, My, Nj) if i < j < 8. Now Claim 1.3 yields NF(M1;, N;, M5, Np). By
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monotonicity the original hypothesis gives NF(Mgq, M2, My ;, N). Now Claim 1.1 yields
NF(Mgy, Mq, M5, Ns); (cf 8)-smoothness gives Ny <M, so by monotonicity this implies
NF(Mgy, My, M5, M) as required.

1.6 Claim: 1) Suppose (M; : i <& + 1), (N? : i <8), { N? : i < §) are <-increasing con-
tinuous sequences and NF(M;, N%, Mg.1, N%), NP =Mz, u NH&r for i < 8. Then
NF (M5, N§, M5, N§).

2) If K satisfies (c¢f 8)-smoothness, we can omit the assumption
"NP = (M5 U NDRE

Proof: We use the proof of 1.4 with M; (i £8), N¢ (i <8), N% here corresponding to
M; (i £8) N;(i <8), M there. Using its notation (N; 5 : i < 8) is <-increasing continuous, (see
14B) Ns=\yNs. By Ax (C4) for i <8, NF(Ms, N Ms.,M). Let for i<8,

i<$
Ni=My N,s)ff and Ns=UN; so clearly (Ax(C4)) for i<j<3,
<3
NF(N;s, N';, Nj5, N'p) and NF(M 35, M5.1, No, N'). By 14
NF(Nos, No,Ns,\y N’j), and as NFMs, Mg, No, Ng) we get (by LD
j<&
NF (M35, Mg.1, N5, \ N'j),ie. NF(M5, M5,1, N5, N's).
Jj<8

So it is enough to prove that N’ < M. If K is (¢f 8)-smooth this is obvious (as N'; <M
for i < & by (Ax(C4)). In the other case

M =Nt =Nt = UMs UNOEE = U Ms UN

i<8 23] i<d

U Ni= N’

i<d

1.7 Claim: Suppose { M; :i < 8), { N;:i < J) are <-increasing continuous, and for
i<j<8 NF(M; Ni, Mj, Nj). If M;<Mandi <39, thenwecanfindN, N;sNfori< 8
and M can be embedded into N over ) M.

i<d

1.7A Remark: 1) This is a strengthened version of the existence of an amalgamation.
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2) Note that for a successor ordinal instead of a limit §, the proof is trivial - use Axiom
(C2).

Proof: We define by induction on i € § models N?, N? and functions £; such that:
(a) f; is an isomorphism from N; onto N? over M;;
{b) { N?:i<38) is increasing continuous;
(¢) { N?:i<8)is increasing continuous;
(d) f; is increasing continuous in 7;
(©) NF( M;, Nf, M, ND);
® N =M NHRe.

Fori=01let N§ = Ng,fo=id N,» @nd so we just have to define NS such that (a),(e)
and (f) holds. This is possible by Axiom (C2) (which follows from Axiom (C4)).

For i=j+l1:let NY={( M., N)®s. As NF( M;, N}, M, N?), by Axiom (C4),
N} < N? and as NF( M;, NY, M, N;.1); by Axiom (C3) NF( Mj, N}, M;,q, N}). Let
N} ={ Mj.;, N)#,.,, so by Axiom (C4), NY< Nj,j and NF( M;, N;, M;, Nf) and by
Axiom (C3), NF( M;, Nj, Mj,1, NF).

By Axiom (C5) (uniqueness) there is an isomorphism g; from N7 onto N7, extending
Huid My, By Axiom (C2) (existence) there are NY, Nf’, f; such that f; is an isomorphism
from N; onto N{ extending g; and NF( N7, N¢, Nf?, N%), and (by Axiom (C3), (C4)
wlog) N?=( NPy N®&s. By l.1NF( M;, Nf, M, N)).

Forilimit <8:let N;=y N%, fi=f;, Nf=U NI As(N;:j<i),( M;:j<i)
j<i j<i j<i

are increasing continuous, clearly (a)-(d) holds. As for (f), foreach j < i,
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Ny =M NDHe =M NDSFe oM (G N,

hence N? = U Nj-’ oMy NHEe c Nt so NP=(M U NI as required. As for
J<i

(e) use 1.2(1).

So we can carry the definition. In the end using f5 = /i, N§ = U N?, N§ = UN?
i<d i<§ i<d
and chasing arrows, we finish.

Here is a rough prescription for deducing the existence of many models of power A from
the failure of smoothness at some ¥ < A for models of cardinality < A (i.e. the existence of a
sequence (M;:i<x) with (y M; £ M,). For each ne 2* build a sequence of models
Myro:<X)  such  that My = Ul Mg 1 0 <} has power A  and
smth(My) = {8: Mys © My}/Dj, is a subset of NnL(1). (Cf. Definition 1.12). 2* of the My
will be nonisomorphic since if My = M., then smth(My) = smth(My). The failure of

smoothness should allow us to decide for & of cofinality k whether (_j Mun;5 < M5 depending
B<d

on the value of n(3).

But there is a fly in the ointment. f T ¢ A, IT1 = A, (T;:i < L) arepresentation of T

(e. T =yT;, T; increasing continuous, iT;| <A), we do not know whether for "many”
<8

3 <A, ¢fd=x and there is mMze A such that Mzr{<x}cTs but
(Va<d[Ms 1 {:{ <x} &Ts)]. Under mild cardinality restrictions we can circamvent this
difficulty by working on a "good" stationary subset of A. The required definition and background
facts are laid out in 1.8 and 1.10.

1.8 Definition: For a regular A > X, S ¢ A is called good if we can find (C; : i < })
where C; is a subset of i and for some a closed unbounded C < A for every limit 3 € C ~ S, for

some closed unbounded C§ < & of order type < 8, (Va < 8)[C Aoe {C; i <d}.

1.8A Remark: 1) We can weaken the definition by replacing C; by < A candidates,
and modulo a club we get an equivalent definition. More exactly, let § ¢ A be called *-good if
there are ((C e : § < &) : i <)), Cig A, §() < A and for every limit § € S, for some closed
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unbounded Cj < 8 of order type < § (Vo < 8){C Aae {Cieri<a, §<EW)]
Easily (for § ¢ A, Aregular), S is good if and only if S is *-good.

By [Sh 108], (or see [Sh 88, Appendix]):
1.10 Lemma: LetA > kberegular, § = {0 <A :¢f d=x}.
1) S is good if (VR < MU < A;
2) some stationary §’ ¢ Sisgood iff A= A¥ or A = u*, (Vx < W < i,

3) If there is a good stationary S < {6 < A : ¢f 8 = k} and | < x is regular then there is a
good stationary S € {8 < A :¢f 8 = W},

4) In Definition 1.4 , without loss of generality, we can demand that for limit S e S,
Cs = Cg has order type ¢f 8, (Vye Cq) [y limit & orp(y~Coq) is limit], i # j = C; # C; and
let C; < C; mean C; is an initial segment of C;, w.Lo.g. it implies i < j and otp Cq is limit if
and only if o is limit. We may demand: C;<C;=C;=C;i] and
[otp C; < sup{cf (b) : € §} but shall not use them.

1.11 Theorem: 1) Assume A is regular and K-inaccessible and there is a good station-
ary S C{i<h:cfi=x}. Suppose A >k, M;(i <x) are models from K of cardinality <A,
( M; :i Sx)is <-increasing, but ( y M; € M. ThenI(A,K) = 2%,

i<x

2) Moreover, if A% + 2X®+1TEO = 3 " hen K has 2%, ( 0 g,%)-homogeneous pairwise

non-isomorphic models of power A.

1.11A Remark: 1) Not only do we get 2* [( » x(,x)-homogeneous] models in K3,
which are pairwise non isomorphic but the construction yields usually that one has a <k-

embedding into any other. (See Fact 1.13).

2) In the proof below, we can retain the same ¥, if we assume that for some stationary

8 c{i <A:cfi=1x} wehave square (i.e. thereisS’, Sc S cfi:¢fi<xjandCsaclubofd
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of order type <« ford e S§"suchthat [§; € C5, = C5 = 8; ~ Cs,)); see I 6.3,

Proof of 1.11 : 1) Without loss of generality, for our A, and under the assumptions on
{ M;:i<x), xisminimal (see 1.10(3)).

So without loss of generality, { M; :i < x) is <-increasing continuous.

Let {C; : i <A) exemplify that § < A is good (see Definition 1.4 ), and (by 1.5(4)) without
loss of generality [i € A-§ = 1C;| < x]. Let C'y = {fa e Cp: o = sup(o~Cs)}.

Now we define by induction on a < A, for every
Ne TaX(h : hafunction froma + 110 {0,1},and [i € S = h(i) = O]}
amodel M, and also a function f;; such that:
(a) My, € K has as universe some ordinal ot < A
(b) for B <o, Myp< My;

(c) if o is a limit ordinal, v & Sthen My =) Mymp;

B<o
(d) if . € A=S then fy is a <-embedding of Myp(c,,,,) N0 My;
(e)if e A=S,Cp 4 Cy then forp S fry/

(Difoe S, n() =0then My =1y Muyg:
B<a

(gifae S,n()=1then \y Mpyp £ My;

B<a

hifae S, B<a,ne Ty, Cpg <Cq, then

NF(fn(B( Mozp(CB})a M‘qr{}, f'q( Mozp(Cu))a M'n)
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The definition is by cases:

Case 1: o is a limit ordinal, and if o € S then (o) = 0.

Welet My =) Mymp,andwhenae S, fr = Ulfnip:B<,Cp Cq.

B<a
Note that (h) holds by 1.4 (using monotonicity).

Case2:a=p+ 1.

So Cy has a last element, say Yo = W) <@, 50 Cq — (Yo} = C¢, { <0 (see Lemma
1.5(4)). By Axiom (C2) there is an extension fy, of fy¢, and models Ny, My such that fy is

an isomorphism from M,y onto Ny satisfying
NF (farel Mopc)r Muig, Nqo My). Wlo.g. the universe of M, is an ordinal < A (we use

" is K-inaccessible").

Case3:ae S, n(owy = 1.

We apply Claim 1.7 twice. In each case the (M;:i<x) from Claim 1.7 is

(Mg :Cp < Cq, B<aand the (N; 1 i <x)is {fp(M;) : Cp < Cq,B < o). In the first case
M s\ M; and in the second case M is M . We find models N}, N 2 in K such that:

i<k
() MqgpsSNiforB<a, =12

() Ulfqp:B<a, Cp<Cqy} is a <-embedding of \y M, into NI we call this

i<k

embedding by g!.

(iii) there is an embedding g2 of M, into N 2 which extends

Uffap i B <o, Cp <Ca .

Condition i) is satisfied because { Mg : B < &, Cp < Co} is cofinal in { Myp : B <o as

o € §. Now we will show {_j Mqp is not <one of N and N2,
Bea
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Iffor£ =12,y Mygp <N!, then we can find N € K and <- embeddings f! of N¢ into N

B<a

over i Myp. So ! ogl}isa&embcddingof U MpgintoNso (L ogh (U Mp)<N

B<a B<x B<x
Also fZog?isa <-embedding of M into N so (F2og2)( M) EN.

But (Floghtu Mp c(fPog®( My) hence (by Axiom (A3)
B<x

(1o gy Mp) < (f o g)( M), hence (by invariance) \_j Mp <M, contradicting the

B<a Bex

that ( M; : i < x) is a counterexample to smoothness.

So for some ¢, () Myp N ¢ and (as A is K-inaccessible) without loss of generality
<o

NI < &, so without loss of generality N¢ has universe an ordinal <A, andlet M, = N

We finish by:

L1IB Fact: If neTy(={h:A—{01}, [ie A-S=>h(@)=01)) My = UMi,
i<A
(M i< A increasing continuous, M < A, then Smrh( My)= N Y({1}) mod D, where

112 Definition: For M e K, A regular, 1Ml = _A;, A, increasing continuous,
i<h

A;l <A, M;2M 1 A, then Smth(M) = {i : M; Sg M} | D), (D -the club filter).

End of the Proof of 1.11 : 2) Now Theorem 1.6(2) is an easy variant: for & successor
ordinal, by any reasonable bookkeeping, take care to make all the MM e T)-(ox.0)-
homogeneous.

1.13 Fact: 1) We can conclude in 1.11 that in K, there are 2* models, no one <g-

embeddable into another (and when A = A<X + 2XK+K) each (n¢, %)-homogeneous) pro-
vided that

(*)if M, N € K, and M is £g-embeddable into N then Smth(N) € Smth(M).

2) The statement (*) above holds if <g (i.e. {(M, N) : N <x N} is a PC, , class, where
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L <AorisaPCyg-class where t < &, (Vo <A) o® < Lorisas PC\, (-class where L < K

3) Assume (in 1.11) that S, as a subset of A, is not small (see [DvSh 65] or see [Sh A2,
Ch XIV)). Let i(A) be as in [Sh 87] (so it is "usually"” 21y, We can find M; € K for i < u(A)
such that

() for i # j, M; cannot be <g-embedded into M;
(b) if A = AX 4 KK yhen each M, is (o, %)- homogeneous.

Proof: 1) Trivial.

2) So suppose w.lo.g. M <N. Let (M; :i <A), (N;:i <A) be representations of M, N
respectively. As M <N by the assumption C = {8 <A : N5 M = M5 and M5 <N} contains
a closed unbounded subset of A.

3) See [Sh 87].

1.14 Remark: See a work, in preparation, by Baldwin and Shelah for attempts to

weaken the framework from AxFr; to AxFrz. That is , dealing with "prime models” rather then

"generated substructures.”

§2 Non y(- base

2.1 Hypothesis: AxFr; (of course) and 7 is such that K has the x-LSP.

Under a smoothness hypothesis we will show this implies K has the A-LSP for all larger A.
Remark: We can through §2—4 replace {* by a regular uncountable cardinal.

2.2 Convention: C is a large homogeneous universal model.
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We did not assuem an axiom bounding the cardinality of {(A)4f in terms of 1A[. Thus even
if K has Lowenheim Skolem property down to x (LSP(x)) it may not have it down to A > x.

This problem disappears in the presence of smoothness.

2.3 Claim: 1) For A 2, LSP (L) holds if (<A, <oo)-smoothness holds (see Definition IL.
1.12(3),(4)).

2) If K is (<p, <p)-smooth and has LSP(SA,Y) then for every A, x <A <y, K has
LSP(,A). (see Definition IT 1.11.(4)).

See proof below, as we need the following observation.
2.4 Claim: 1) Suppose { M, : 1 e I}, is given where / is a directed partial order,

(@ifl[l Fr<s= M, < M]lthenforse I, M,<g M2y M, = (U MMF,
tel tel

b if [rel=M<M] and [ kEr<s=>McM;] then for sel,
M, <\ M, = M)$ SM provided that (<supll M, lll, <I71)"-smoothness holds (or
t

tel tel

(MM W, < II1)-smoothenss holds).

2y IfAcMe K, LSP (or jsut LSP(IIM I, 1Al), then we can find a directed I and

M, <M, liMW=1Alfortel, ACc M, M;fort<sfrom/and M = M;.
tel

3) In (1) if NEF(M®, M, N°® ,M") whenever te I (so M%< M, for every t) then
NFM*®, M, N* , M").

Proof of Claim 2.4: 1) By induction on 171,
@@) If 111 is finite the result is trivial, use maximal member.

@) 111 2 Rg. Let! = \y Iq, I increasing, [/ | < |11, and each /4 directed.

a<ll|
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Let My =1y M, For (a) by smoothness My <My =1 M, so by transitivity of
o H

tel,
<k we finish. For (b), by the induction hypothesis M <M for each o and clearly for B <
Mpc Mghence B<a=> Mp< M. Soby smoothness \j My <M. Easily it is equal to

a<d

U M,

tel

2) See proof of 2.3,
3) Like the proof of (1), using Claim 1.5 in the induction step.

2.4A Remark: In some circumstances, e.g. Banach models or |71 -saturated models of
T, where smoothness fails, if still we have a prime model on (or closure of) the union of increas-
ing chains, we can "save" (Vi 2 %) LSP (1) by replacing the cardinality of a model M by e.g.
the density character i.e. the minimal cardinality J, such for some A ¢ M 1Al =y, M the clo-
sure of A (for Banach models) or is || *-primary over M ( for |T1*-saturated models) or by
pscard(M)asin Il 1.17.

Proof of Claim 2.3: 1) Let A ¢ M, IA| £A. Define by induction on n < @ for every
finite ucA of power n, a model N, such that: N, <M, Il NI <y and
wcu= N,c N, There is no problem to do it, Ac(y N, cM, iy N, <A and

u u

U N, <M by Claim 2.4.
u

2y Let A ¢ M with |Al = A. For each finite sequence @ € ® {M!| choose Nz £ M with
Nzl <y such that [ € N5, b < a implies N5 < N3] (so they form a directed indexed set of
models). Since as K is (<p,<p)-smooth, for each B CM of cardinality <.
Np#\ j{Nz:ae ® B} isin K and [d€ ® A = N; <g Nyl and HINz I < [BI + % (all by
2.4(1) (a)). It remains to show Ny < M.

Note again by (<p,<p)-smoothness (*) [C B CM A IBl <A =N¢c <Ng] (use
2.14(1)(b)). Write M as |y A; with A = A, the A; increasing continuous and |A;| < p. Then
i<p
M = Ny, and by (*) (Ng, : i < W) is <-increasing continuous. So for j < U, Ny S Ny,
i<p i<h
ie. NAj < M; taking j = 0, we finish.
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2.5 Definition: 1) NF is k-based when: if M SM” and A ¢ M" where |A| < then for
some No, Ni, W Nylll<x, NogM ~ Ny, ACN,and Ny, M, N are in stable amal-

gamation (inside M * of course). We define "(<x)-based” similarly. We may say K is k-based.

2) NF is (A, x)-based if (1) holds when WMl = & (similarly we define "NF is (<A, x)-
based", etc).

The following lemma will lead via Section 3 to the conclusion in Theorem 4.1, that if K is

not x-based then x has 2> non-isomorphic homogeneous models in many powers A.

2.6 Lemma: Assume K is (€A,<x)-smooth, K has x-LSP, NF is not (€A,x)-based; as
exemplified by M, A, M" where HNIM Il <A, 1Al <y then there are M;, N;(i <) such
that:

) I ML NN Ly,

(b)A < Ng;

() Mi=M ~ N;

(d M;< N;sM*: M;sMsM™;

() M;, M;.;, N;notin stable amalgamation (inside M *);

() { M; :i <x*)is continuous, increasing;

(&) ( N;:i <y*)is continuous, increasing.

Proof: We define by induction on i.

Case 1: i = 0: We choose by induction on { <X, Ag, By such that lA¢l + B¢l <y,
Ag <M, Be<M, B B @By M), Ac2A A (U Be. Now No% U AL is
&<g E<C &<t E<x
as required: {JAg <M", (by smoothness) and ({_JA¢) "M = {4y M) = UBC <M.
E<x < E<x
(by definition). Let Mg =M ~ No= B¢.
G<x
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Case 2 : i limit: Take unions.

Case 3: i = j + 1: We can represent M as a direct limit of <-submodels including M;
of power <%, M =y M, (use LSP(A,x) and 2.4(2)). Necessarily for some 1, M;, M,, N;

tel

are not in stable amalgamation. [Why? by 2.4(3)] Now define M;, N; as in the case | = 0 such
that M; ¢ M;, N; < N;and (a),(c),(d) holds. Now and by monotonicity of NF (e) holds.

2.6A Remark: 1) In case 1 we can choose A, By only for { < 6 where 6 is a regular
cardinal <7. Then we shall use (<x,0)-smoothness only (and if we restrict ourselves to the

case HIN Il 2y we can use (), 0)-smoothness only.

2) Let 6 = ¢f 6 <y, and assume only (<yx,0)-smoothness. Then as explained above we
can still prove the lemma, but in (f) and (g) we know that we get continuity only for 8 < %* of

cofinality 8. This complicates the combinatorics in section 4.
2.7 Claim: 1) Suppose K is (x,8)-smooth and (A,x)-based, 6<y. If M <M ’
WM =X AcM, |Al <y then there is NcM", such that A <N, WNN <y and

NF(N M, M, N, M").

2) Suppose 0<y, LSP(<x™, %) and K is (<y, <8)-smooth. Then the existence of
M;, N; (i <y*)asin 2.6 is equivalent to "K is not (x*,)-based".

Proof: 1) This is proved in case 1 of the proof of 2.6.
2) Easy to (use 1.6).
2.8 Remark: In Definition 2.5 we may ask that Ng,N; exist not as submodels of M*

but of some M"*, where M* < M™". This is apparently weaker definition . However assuming

e.g. (<x,0)* -smoothness for some 8 <y is enough to get back the old definition.

§3 Stable Constructions
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The following definition generalizes the notion of a construction from Chapter IV of [Sh].

More precisely, since we are demanding independence, an F { -construction.
3.1 Definition: We define by simultaneous induction on ¢.

1) A={A, B;,w; :i <o) is a stable construction inside N if (letting for u Cq,
A, = (A UBHF):

jeu
(DA, BisNandA; SN(note A; = Ay fori<a, j<a.
hayw, ci

b) w; is closed for A I  [defined below in 3.1(2)).]

(i) B; N A; <A QU U BHF = A,

jew;
(iv) NF(B; N Ai. B, Ai, N)
VB, A<A
(vi) For each i one of the following occurs:
Case (a): i = 0.
Case (b): For some y; < i, w; = wy U (Y}, Bi M Ai = By

Case (c): B; = (\y B)#".

jew;
2) For such A, u is called closed if:
AduUcCo

b)yie u=>w;, Cu
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3) A is a (<p)-stable construction if A is a stable construction and 1B;| <A for

i < g(A). In this case we say A 2g(A) is (<y1)-stably constructible over A.

3.2 Notation: If A=(AB;w;:i<o), then ATBZ(AB,w:i<o~B) and
o 2tg(A). Forw co, A, ={A U UBDE (orAd).

iew

3.3 Claim: 1) If A is a stable construction inside N then A I B is a stable construction

inside N.

2) If A is a stable construction inside N, o < £g(A) then o is closed for A.

3) The intersection of any family of sets each closed for A is closed for A.

4) The union of any family of subsets of 2g(A) closed for A is closed for A.

5) If uclg(a) is closed for A where A is a stable construction inside N then
A, £N.

Proof: Easy, but (5) is proved in 3.4.

3.4 Claim: If A is a stable construction inside N, for £ = 0,1,2, u, c o = £g(a) is

closed, and ug = uy (uz then A, , A, , A, is in stable amalgamation inside N.

Proof: Straightforward, by induction on £g(A) (for successor remember 1.1, for limit
use 1.9).

3.5 Claim: If A = (A;,B;,w; :i < ) is a stable construction inside N, & a one-to-one
function from o onto B, [j € w; = h(j) < i] and let whqy = (h() : j € wi}, Bruy = B; then
A’ ={(A, B} ,w} :i <P)is a stable construction inside N.

Proof: Easy.

3.6 Claim: 1) If A<X + 2/"®)1 =% v > LSP(K), M € K and NIM Il S\ then there is a
stable construction A = {4,B;,w; :i < 8) inside some N € K such that A = IM1, Ag = INI,

NN I £ A and N is ( p g,¥)-homogeneous.
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Proof: Straightforward.

Remark: On uniqueness see §5.

$4 NonStructure from non "NF is not - based"

We are trying 1o get nonstructure from non "NF -based" for suitable regular . Remember
the definition of "A is K-inaccessible" (I 1.16).

4.1 Theorem: Assume ¥ 21 > LS(K) + 1t(K)I and (", € x*)-smoothness holds
but NF is not x-based with counterexample as in 2.6, then: for every A = A" + 2% which is reg-
ular, and K-inaccessible such that some S™ < {8 < A: ¢f 8 = %"} is good and stationary there

are 2* non-isomorphic ( p g,1)-homogeneous models.

We give, in essence, three proofs of (variants of) Theorem 4.1. Items 4.4 through 4.6
reduce the proof of the general case (arbitrary A) to results in Chapter 1. Items 4.7 through 4.9
(using the construction of 4.4) prove Theorem 4.1 as stated except for the requirement that the
models be ( og,n)-homogeneous. Item 4.10 explains how to modify this proof to demand the
models to be ( pg,1t)-homogeneous.

4.2 Idea of proof:
Picture:
Mi Nl
yal —NF( M;, N, M;.q, Nigp)
M; N; i
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In 2.6 from a counterexample we get a canonical counterexample (as in the picture). We

copy ( M;:i<y’) along the wtee * >k ie, define M,(ne >3 and
onlo
Fnt Mygw - My, fr increasing, amalgamating them freely. For ne X% we can
isomorphism

have Ny, 842 \U fyre such that g4 :N — Ny, (isomorphism onto). For § SN let
o<yt

Ng={Nn, M,:ne S, ve (x*)>x>%ly Now in Ng over M, there is a copy of N4 if and
only if N € S (i.e. we shall prove this)

So we have coded S, see III 5.1 for why this implies non-structure. We shall give the proof

of 4.1 after some further discussion.

NF is not y-based generalizes (roughly) the first order notion "l 2 T, T unstable”
Since in the first order case x(T) < IT1"; the case however does not appear for first order when
¥ < ¥(T), as lacl(B)! = IT! by the definition of C*I. But it would appear if we varied the first
order notions slightly (perhaps to deal more precisely with algebra), and instead of using the car-
dinality of a set A in the definitions used the cardinality of a minimal set of generators for A. The

following example explores this possibility.

4.3A Example: T = T is (first order complete) stable, not superstable. Now (i) if
A, B ¢ C are algebrajcally closed, B = acl(h), 1bl <x, ¥ regular then we can find a € A,
l@l < x such that acl(a), acl{a b), A are in stable amalgamation if and only if ¥ > x(T).
There are two reasonable ways to define 1A lllg,,:
WA Wgen = Min{ 1Bl : B € A Cacl(B)}.
A Illlge,, = Min{|B| : A C acl(B)}.
The second is less natural but A} C Az = WA ll g, < WA, llly,, (e monotonicity holds)
So "NF x-based” is a generalization of x 2 x,(T).

Discussion continued: Later, in Chapter V, we shall have another notion, capturing the

parallel of k(7" and so in particular "superstability". But remember that "stable" was captured in

Chapter I and axiomatized in Chapter II. Looking carefully at universal classes (see II 2.2) we
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see that for this case (i.e. <k is Sfff.w.x* -see I 2.2D, K a universal class without the (x*,qf)-
order property, . = 2%°) "K is yg-based” follows. However this is seemingly not true for the
general K we are dealing with. Also note that if e.g. K is the class of submodels of models of T,

T first order, stable not superstable with elimination of quantifiers, so K is a universal class,
then in II 2.2 we get (K,<g, NF,( )¥") satisfying Ax Fr; but this K is not Rg-smooth (nor x-
smooth for x < x,(T)

After the following theorem and assumption we shall be able to generate some facts on

stable theories to our context, e.g.,

IT 1" -primary model, parallelism. In other words, only assuming smoothness and K is y-based

we can generalize stability theory.

4.4 Proof of Theorem 4.1: By lemma 2.6, we got from our assumption, the sequence
{ M; i gy, ( N;:i <y") such that:

(i) both <-increasing continuous

Gi) i <™ = I MI+ I NG IS

(i) = NF( M;, N;, M; .y, Npypfori <yt

(iv) M;< N;< Ny fori<y* (fori=y" use (x,x")-smoothness)
LN Ny, MY M,
Let {m; :i <i"(0)} be alist of ®")>} such that [i £ j = Lg(n;) < Lg(m))].
We define by induction on i < i*(0), fr,, Mu,, L; such that:

(a) fy, is an isomorphism from M gy, Onto My,

®)Mj =T o= fr, S fy, (hence My < M)
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© My, SLiforj <i.
(d) L; is increasing, continuous

(e if gMm)=v+1, let my=mnTy and NF( My, L, My,L;.p),
Ly =( Mn; ULI'>i:1'

O M. = Mno = L.
There is no problem.

Now for T < XA, let LT = (\ ) Mp)f7, .
neTl

4.5 Claim: 1) (O, M,.{j : Ga<fg()) (M Ta=n)}:i< i"(0)) is a stable con-

struction inside L;~(g).

2) If T, T1,To <@L are closed under initial segments, To =T ~To then
N, LT LT, L.

Proof of 4.5: 1) Should be clear by comparing the construction with Definition 3.1.
2) It is immediate by 3.4.

Remark: That is, is does not matter in which order we carry out the definition.

Continuation of the proof of 4.1: We have built a tree of the { M : N € x">2}. Since
the original sequence { M; : i £ x") was continuocus any model containing this tree will contain

all the M, “ U Mqy; for m such that £g(n) =%". Now we past independent copies of
i<yt
N = N,+ on the top of the tree. We will see that we can realize or omit a particular Ny (with

ne ¥ A)at will.

Let {ve : 0 < A%} list €A, and we can easily define go, Ny, L™ such that:
gv, . Ny > Ny,

is an isomorphism onto extending
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fva i‘f O fvaré
E<x?

such that

@ (U Ny, ULrftsL’

B<a

BYNF( U Myt (U Ny, ULro)f Ny, L)
E<x* Beo

WL" = (Ul Ny < ¥4 G Lo

To achieve the third condition, choose a first approximation N’y so that
NF(\y My, Lirgy, Ny, Lo)
Ex’
and then when defining the N, by induction on o choose Ny, isomorphic to N’y over L;*(p) s0
that

NF (L 0yt Ny (U Liropf?, Ly, L.
Bea

Now, transitivity of independence gives the required result.

Letfor T c ¥ 20

LT =(Uf My:ne T N 7MUf Ny:ve T AV ANE.

The first definition of LT did not involve the N n and the second ones does; however tt is
easy to see that the two definitions of LT are compatible. You can use 3.3, 3.4, 3.5. Using 3.6
let, if A =A<* + 2%, LY be ( »k,1)-homogeneous and (<j1)-stably constructible over LT and
let (LT, BT wi:i <iT) be such a construction. For other A (or when proving the version
without "(pg, H)-homogeneous) let LIeT

Clearly WLT Il = A when ITi <A
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Recall N = N,+ (beginning of proof).
4.6 Claim: T c* A, ve YA fvia:a<y*) cTbutve T, then:

1) fu(= U tvig) cannot be extended to a <-embedding of N into LT
E<x*

2) Similarly for L¥.

Proof: 1) Let g : N - LT be an <-embedding, extending f,. W.Lo.g. T is closed under
initial segments. For € < ™, let

Te={peT:vi§Lp or vig=p}

Clearly (see 3.3, 3.4, 3.5)

LT =y L™

E<x*

G L™ is increasing continuous in § (if § is a limit ordinal - Mg =\ Myrg).
£<g

(iii) NF( Myg,E"®, My, LT) remembering M, =\ M. For every {<x*
E<x*
g (Npisc L%, LT increasing, 1g"( Np)| < x; hence for some &(L) < x*
Ex*

g'( No) L™ $HenceC ¥ o < x* : (V{ < 0)&() < &, and 0. is a limit ordinal}
is a closed unbounded subset of y*. Fix { in C. Then g '( N¢) © L™*, note that
g’ (NosLT, LTo<LT
Remember NF( My, LT‘, M, L") hence by monotonicity

NF( My, g'( Np), My, LY)

Again monotonicity

NF( Myig, 8'( No), Myrgany, LY)

g (NY U My g (N SLT

but
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NF( Myig, 8"( No)» Myrgar), 8 ( Nger))

which contradicts the hypothesis on{ M;, N;:i <%") (and g being an Sk-embedding).

2) Similar proof.
4.7 Continuation of the proof of 4.1:

Proof without the homogeneity condition

The assumptions on A imply that there is T C X2 T = T q» Ty increasing continuous,
a<h

To is closed under initial segments , 174l <A, and for de S*, mse %O,

Mst{:{<yJcTsandfornoo <8 Mgt {:{ <y} Ty (e as S” is good cf. state-

ment of Theorem). Let for § < §°, Lisy= L;{u{m:ses) . Clearly L sy is a model of cardinality A

which is ( pg,M)-homogeneous when demanded. Decompose Lig; as 1\ JLisyas
a<h

{Ls),0 : & < A) is increasing continuous, L sy Il < A).

4.8 Definition: For any M € K3, A regular >LSP(K) and representation { M; :i <)

of M (i.e. it increasing continuous, M =y M; and Il M;lll <A}, we let:
i<A

Bs,(( M;:i<A)) Y8 < N: ¢f(8) =" and: for every A < M, 1A <) there are
 No< Mg, Ny< Ml Nyl €y, such that NF( Ng, Ny, M5, M)}
It is a Dy -invariant, so we can let
Bs, (M) =Bs,({ M;:i <A)/Dy
Now we finish by (using our proving without the homogeneity condition)

Fact 4.9: There is a club C such that for any stationary SCS .
CAS AR=-Bs,Lis)=CNS.
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Proof: We show that the required C is

C={a:L[S],a=<{Mn ‘me Ta}u{Nv528<a,>iq}

It is easy to see C is a club since L sy is generated by { M : M€ T} \y {Ny, : 8 € S}.

Case i: Consider de (C S *) = 5. To see the left hand side of the equation is con-
tained in the right we must show & € Bs, (L{s}). Since & ¢ S, the construction did not put Ny,

intOL[s].

LetA ¢ Ligy with |Al <y. Thenthereisary c Ty {Ms:de S} with 54| <y and
Ac{Myinein \X7A U {Ny, Ve e D"

Let £} be the closure of t4 under the taking of initial segments. We want to find Ny and N
which witness that 8 € BS, (L(s1).

We need two auxilliary sets

toZMe Ts:Fpe T N1w)-TsM<pl or 3pe vg:0>8 ~t)Mm<pl.

11¥mMeT:@pe T N 1)-TsM<pl or Bpe (vo:a>8 ~1a)n<pl.

Now let NP=({Mq:neto)f*, N'=({My:ne it ~NT} U{Nv, :Vae ta)f*. Then

NF(N®,N', Lis)5, L"). (Remember, Lis;5={{My:ne Tg}y{Ny, :a<Bdf since

8 e O). Note that | {M :n e to)f?| <x. For eachne x> M1 <, so we only have to

see 2ol <x. Clearly lzq] <y, so Ifme Ts:(Fpe T N ta)-Ts)M<pl}! <y But also

IiMeTs:(@pe {vg:0>8) Nt} sy since for any vg with  a>39,
1Mo TE:& <X} \Ts! <y (See paragraph before Definition 4.8.)

Now A c(N! WLs)s)f*. So we can choose N? and N* with N®<N3 <N,

NO<N* <Ly and IN?1, IN*I <y while A ¢ (N? ( N*)$* and (by monotonicity for NF)

NF(N°, N3, L5y, L*). Now applying axiom (C4) we see NF(N* (N® ( N*)§%, Lis15.L").
So the required No, N are N* and (V> U N,

Case ii: Suppose 6 C st M S. To show the right hand side of the equation is
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contained in the left we must show O Bs,(Lis)). Suppose, for contradiction that
8 € Bsy(Ls)). We will find an i < " such that NF(M;, M;.1, N;, N;,1) contrary to our origi-
nal choice of the sequences { M; : i < x*), (N; :i < ™). Finding this { will require an auxilliary

construction.

We have Ny, <L[s). Remember g,, maps N,+ = N isomorphically on Ny,. Now we

define by inductionon i < x*: A;, P}, P?‘ and 7; to satisfy the following conditions.

First, to see where things live, each of A;, P}, P? are <x-submodels of Lisy of cardinality
<y. Each r; c¥">4 U Ve i e S} and 15;1 <. The sequences (4; :i < ™), Pli<y™,

(P? :i < x*) are increasing and continuous.

We list the remaining properties while indicating the construction, At a successor stage we

will use 7; to define A;; then find P} and #; ,4.
g = {vs}

Ai={{Myme s NTH Ufv,WNDive e b, J<iDf?

Now choose P?, P}, with 1P?1,1P}1 <y such that NF(P}, P?, Lis5, L") and A; ¢ P}
(using the assumption &€ Bs({Lis}a:O®<A)) Then choose 43 so that
P? cl{{My:ne i AT U{Ny, :0<8, Vg € t;41})§7 and also

Plc{{Myne i ATs) U lfv,(N) Vo € i (Vi i <8} < DR

There is a club C* < x* on which P§ ~ Ny, = gy,(Ng) and all other requirements we
shall use below (by the usual methods of constructing clubs). Fix & belonging to this club. By
Claim 1.6, NF(P{, P% Lisys,L"). We want to shrink Lis;s and P{ to obtain
NF(Myge, 8v,(Ned), My L") which contradicts the original choice of the M; and N;.

For this we need further definitions

Ti=MeT:Vs1EL N UlVo: e S, vl §#VvsIEL.

TE =MeT:n<vs & or v 1§ Vo :VsTE SV and o€ S)
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Thus T§ (Y TE =T\ fva:oe SfandTE Tt = {vs T oz o <EL

Now we show fg TH ={vs} U {vs I o< &} This is straightforward from the fact
that the (7o : 0t < ") are a continuous increasing chain of sets of cardinality <7. In more

detail, let ¢ = \ #. Foreachpe 1" let C, = {£:p e TE} \ {vs]. Then C, is a club on x*.

i<yt
Since I5;1 <y for each i, (~{C,:pe 1] is also a club. Taking the diagonal intersection,
{€:VE<EVpe g€ e Cp)}is aclub. Now if we require (w.l.o.g.) our & to come from this
club we have tg ~TE = {vs} U {vs I ot o < &} So for our limit &,

PLo{My:mete NTs) U {fv,(Ne) o< 8, vge )t LT .

Clearly NF(M e, LT LT, L") and M,,;¢.y <LT so by monotonicity we have
NF(M e, P8, My, Lisys)- But we also have NF(PL, PE, Lisy 5, L™). By transitivity
(Lemma 1.1) we conclude NF( My ¢, PE, Lisy s L"). As P§ 2 gy, (N¢) this contradicts the
choice of M; and N;. Thus we have established Fact 4.9.

End of the proof of 4.1 without homogeneity: Theorem 4.1 easily follows from 4.9.
For, if Ligy = Lgy (with §,§ ‘c§ *), Fact 4.9 implies that S and §” agree on a club. But there are

2+ stationary subsets of S which are pairwise not equal mod D,.
4.10 Proof of 4.1 with the homogeneity condition

Suppose g is a <x-embedding of N into L} extending f,. Let (TE :{ < x*) be defined by
Ti=MmeT:mr{=vs Iy Vo 10 ES, Vg T {#EVs 2 : and let
(L*,Bf,w/ :j < j(T)) be a stable construction of LY over Ly. By 3.5 w.lo.g. there are

UM : § < x*) increasing continuous, () Je(T) = j(T), and BJT mLT _c.;LTE for j < jg(T),
C<x*
C<y*. Let L= (Lr‘ U {B}r 1 < jg(MPEE, so (Lz;g : L < x*) is increasing continuous with

union LY. As in the proof of Fact 4.9 C = {{ < " : g maps N ¢ into LY for E<{ Climit}isa

club of % *. Also the rest of the proof is similar.

4.11 Remark: 1) So it was enough for 4.5 (and really 4.1) that

{i <% :i=NF( M, Niy Miyy, N}

is stationary.
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2) By ITI 5.1, 5.1 we can get other variants of 4.1 as we have the right representation.

4.12 Fact: We can use the proof of 4.1 to get 2* models in A; 2 A. Using models which
have a stable construction (LT, BL,wl :a < o(T)), NBL <y (so we get something for

singular A;).

3) We can in 4.1 omit the "( pg,H)-homogeneous” demand gaining the the omition of
"A = A=H" If we demand only A > 2% we have the models in K}if+ (see Definition IT 3. 12).
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