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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 50, Number 2, June 1985 

ON THE STRUCTURE OF Ext(A, Z) IN ZFC+ 

G. SAGEEV AND S. SHELAH 

Introduction. A fundamental problem in the theory of abelian groups is to 
determine the structure of Ext(A, Z) for arbitrary abelian groups A. This problem 
was raised by L. Fuchs in 1958, and since then has been the center of considerable 
activity and progress. 

We briefly summarize the present state of this problem. It is a well-known fact 
that 

Ext(A, Z) -_Ext(tA, Z) (B Ext(A/tA, Z), 
where tA denotes the torsion subgroup of A. Thus the structure problem for 
Ext(A, Z) breaks down to the two distinct cases, torsion and torsion free groups. For 
a torsion group T, 

Ext(7TZ) - Hom(T,R/Z), 

which is compact and reduced, and its structure is known explicitly [12]. 
For torsion free A, Ext(A, Z) is divisible; hence it has a unique representation 

Ext(A, Z) - Q x (D (Zp'),. 
p 

Thus Ext(A, Z) is characterized by countably many cardinal numbers, which we 
denote as follows: vo(A) is the rank of the torsion free part of Ext(A, Z), and vP(A) are 
the ranks of the p-primary parts of Ext(A, Z), ExtP(A, Z). 

If A is free it is an elementary fact that Ext(A, Z) = 0. The second named author 
has shown [16] that in the presence of V = L the converse is also true. For 
countable torsion free, nonfree A, C. Jensen [13] has shown that vP(A) is either finite 
or 2'0 and vp(A) < vo(A). Therefore, the case for uncountable, nonfree, torsion free 
groups A remains to be studied. Hulanicki [11] has shown that divisible abelian 
groups which admit a compact topology are characterized by the following 
conditions: 

(i) vo(A) is of the form 2' for some infinite A. 
(ii) vp(A) ? vo(A) for every prime p. 
(iii) vp(A) is finite or of the form 24, AP infinite. 
A recent result of H. Hiller, M. Huber and S. Shelah [8] is that if A is a torsion free 

abelian group such that Hom(A, Z) = 0, then for every prime p, vp(A) is finite or of 
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STRUCTURE OF Ext(A, Z) IN ZFC + 303 

the form 24, AP infinite. They have also shown, under the assumption of V = L, that 
for A as above, Ext(A, Z) admits a compact topology, whence conditions (i), (ii) and 
(iii) hold. A major result of their paper [8] is the following: 

(1) THEOREM (V = L). If A is a nonfree, torsion free abelian group, then conditions 
(i) and (ii) above hold. 

The question remains whether also condition (iii) holds. We shall show that this is 
not the case, moreover that in general there are no further restrictions other than (i) 
and (ii). More specifically, 

(2) THEOREM (CH). For any function X of the primes to cardinals u < ?1 or Yu = 2"1 
there exists a nonfree torsion free abelian group A of cardinality N, such that 
vo(A) = 2", and v,(A) = X(p) for all primes p. 

We had previously conjectured [14] that in L, for any successor cardinal AO, and 
cardinals AP < ?O VP prime, there exists a group A such that vp(A) = AP and 
vo(A) = AO. However we so far have only been able to establish the following 
theorems and their corollaries. 

(2.1) THEOREM (ZFC + GCH). For any infinite successor cardinal K < N,, car- 
dinal A < a +, and prime p, there exists an almost free abelian group A of cardinality K 

such that vo(A) = K +, vp(A) = A and vq(A) = 0 for all primes q # p. 
(2.2) THEOREM (V = L) For any infinite regular cardinal K less than the first weakly 

compact cardinal, there exists an almost free abelian group A of cardinality K such that 
vo(A) = K + and vp(A) = 0. for all prime numbers p. 

(2.3) Notation. The term "group" will always mean "abelian group", and "almost 
free group" will mean a group such that all subgroups of cardinality less than that of 
the group are free. 

In order to extend the above via sums we resort to the following basic fact which is 
also essential to our method of construction. 

(3) DEFINITION. Let H: Hom(A, Z) -+ Hom(A, Z/pZ) be the natural homomor- 
phism defined by: 

[H(h)](x) = h(x)/pZ, h E Hom(A, Z), x E A, p a prime. 

(4) THEOREM. For abelian torsion free A 

Extp(A, Z) - Hom(A, Z/pZ)/H[Hom A, Z]. 

PROOF. The exact sequence 

0 -+pZ Z Z/pZ -+ 0, 

a the identity embedding, / natural, induces the long exact sequence 

0 -O Hom(A, pZ) -+ Hom(A, Z) -+ Hom(A, Z/pZ) 

E*, Ext(A, pZ) a* - Ext(A, Z) -* - Ext(A, Z/pZ) -O 0 

(see Fuchs [6]). Since the sequence is exact, 

J = Hom(A,Z/pZ)/H[Hom(A,Z)] - 
Ker(a*) = Im(E*). 

Z and pZ are isomorphic; hence so are Ext(A, Z) and Ext(A, pZ); in particular 
elements of order p of Ext(A, Z) are represented by elements of order p in 
Ext(A, pZ). All elements of J are of order p. Hence it suffices to show that all 
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304 G. SAGEEV AND S. SHELAH 

extensions E E Ext(A, pZ) of order p are mapped to 0 by a*. Let E E Ext(A, pZ), 
pE = 0, be represented by a factor set f: A x A -+ pZ. Thus, for some function 
g: A -pZ with g(O) = 0, 

pf(x, y) = g(x) + g(y) - g(x + y) E Trans(A, Z) Vx, y E A. 

Since a is an injection, a*(E) can be represented by the same f Now since A, Z are 
torsion free, there is a unique g': A -. Z such that pg'(x) = g(x) Vx E A. Therefore 
f(x, y) = g'(x) + g'(y) - g'(x + y); hence also a*(E) = 0. LI 

Just using the elementary fact that 

(4.01) Extp(e)A,, Z) = Hl ExtP(Ai, Z) 

and (2.1) we obtain 
(4.1) COROLLARY (ZFC + GCH). For any cardinal No < K < N., and cardinals 

AP < K +, there exists an almost free group A of cardinality K such that vo(A) = K + and 
vp(A) = AP for all prime numbers p. 

Using (4), (4.01), (2.1) and (2.2), we also easily obtain 
(4.2) COROLLARY (V = L). (i) For any successor cardinal K > No less than the first 

weakly compact and regular cardinals AP < K +, there exists a group A of cardinality K 

such that vo(A) = K + and vp(A) = AP, for all primes p. 
(ii) For any regular cardinal K > No less than the first weakly compact and regular 

cardinals AP, )A = K + or Ap < K, there exists a group A of cardinality K such that 
vo(A) = K + and vp(A) = AP. 

(4.21) Note that such an A will generally not be almost free. 
Eklof and Huber [5], in their proof of Theorem 2, observed that the only 

properties required of Z in treating the p-ranks of Ext(A, Z) are just those of a 
reduced rational group G. Since we do not resort to any further properties of Z, all 
our constructions can also be modified to yield the parallel results concerning the p- 
ranks of Ext(A, G) for reduced rational groups G. 

We do not know if vp(A) can be singular! We also do not know the situation for 
groups of singular cardinality or the state of affairs for groups of cardinality larger 
than the first weakly compact. Nor do we know whether there is a group G of 
inaccessible non-weakly-compact cardinality K for which vp(G) = K. This question is 
particularly interesting since weakly compact cardinals display the following 
phenomenon. 

(4.3) THEOREM (ZFC). If G is a group of weakly compact cardinality K for which 
vp(G) ?2 K, then vp(G) = 2K. 

For the proof of (4.3) see [15]. 
In the course of this paper we will expound a method of "Extp forging", i.e. a way 

of constructing abelian groups G for which the ranks of the p-parts of Ext(G, Z) 
have prescribed cardinalities. The keystone of this method is the following notion of 
"coiling". 

(4.4) DEFINITION. Let G c G* be abelian groups. 
i) A sequence of elements yf e G* - G, n < w is said to be coiled (over G) or a coil 

(over G) iff there exist integers k, and elements a' e G, n < w, such that the following 
coiling relations hold in G*: 
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STRUCTURE OF Ext (A, Z) IN ZFC + 305 

k0y1 = yo + a0 

kly2 = y + al 

k2y3 = y2 + a2 

knyn+l = yn + an n < w. 

ii) G* is said to be coiled over G or obtained from G by coiling, iff it is generated 
from G by a union of disjoint coils, i.e., by a set Ui<A {Jy: n < }, where y', n < , 
are coiled over G. 

We will generally restrict out attention to groups G* coiled over a free group G, 
with coiling relations of the form pyn+1 = yn + an for a fixed prime p, and various 
iterations of coiled groups. Clearly the degree of freeness of the resulting groups is 
related to the combinatorial structure induced on a set of generators X = <xi: i < Pu> 
of G, by the sets of supporting elements {xJ.1 X.J } of a', where the coiling 

relations knyl + = yl + a' are assumed to hold. Moreover the success of using 
coiling relations in Ext forging hinges on the observation that though any 
homomorphism h E Hom(G, Z/pZ) has an extension to all of the group G* coiled 
over G, once the extension has been arbitrarily determined on the y9, a 
homomorphism f E Hom(G, Z) may or may not extend to all of G*. This extension 
depends on the degree to which the divisibility requirements determined by the 
coiling relations can be met. Thus by suitable arrangements of the a' in the coiling 
relations, we can expect to determine the number of independent elements of 
Hom(G, Z/pZ) over H[Hom(G, Z)]. 

The simplest exploitation of this idea can be seen in our construction where we 
show that 

(5) THEOREM (ZFC + V = L). If K is a non-weakly-compact inaccessible cardinal, 
then there exists an almost free group G of cardinality K such that Extp(G, Z) = 0 for 
all prime numbers p. 

PROOF. Our proof of this result is based on the following principle, which follows 
from ZF + V = L. 

(5.1) Principle <> +V: Vo < K 3Pa C YP(a) u ?ax with the following properties: 
1) 1Pj| 

< 
4, 

and 
2) Vh E KK there exists a closed unbounded subset C of K, (clubK(C)), such that 

Vl e C, h [ acE Pa and C r- a E P,. 
The following combinatorial principle will also be employed for this case. 
(5.2) DEFINITION. A stationary subset S of K is said to be nonrefiecting iff every 

initial segment S r) a, a < K, is not stationary in a. 
Jensen has shown that, in L, 
(5.3) THEOREM. a) If K iS inaccessible and not weakly compact, then there are 

nonreflecting S c K such that all a E S are strong limit cardinals of a given cofinality. 
b) If Cf(K) = ,u < K, then there are nonreflecting stationary subsets S of K such that 

Va E S cf(o) = 

(5.31) Let S be a fixed nonreflecting stationary subset of the inaccessible non- 
weakly-compact cardinal K, consisting of strong limit cardinals of cofinality No. 
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306 G. SAGEEV AND S. SHELAH 

(5.32) DEFINITION. Let K be a regular cardinal and IA I = K. A K-filtration of A is a 
continuous increasing sequence of sets A,, aC < K, IAj < H and UI<K = A. A K- 

filtration of A as a group is a filtration with A, as subgroups of A and AO = <0>. 
We first show how to construct an almost free group of cardinality Kc such that 

ExtP(G, Z) = 0 for a fixed prime p. 
We define by induction on a a filtration of groups Gas, a < K, with the following 

properties: 
1. The set of elements of G, is an ordinal X. < K. 

2. G, is free. 
3. If ae < f and ae 0 S, then G#/Ga is free. 
4. If ace S then G 1/G, is of rank 1. 
5. We precede this property with the following definition: 
(5.4) DEFINITION. a) (h, C) E Pa x Pa, is an a-candidate iff Xa = a, h E 

Hom(G,, Z/pZ), and C is a closed subset of a. such that 3f E Hom(G,, Z) for which 

flpZ = h. 
b) An a-candidate (h', C') is said to extend a ft-candidate (h, C) iff h'-h = , 

C' = C r) / and /3 < a. 
We will also define in the induction on a choice functions 0>a: {(h, C):(h, C) is an a- 

candidate} -+ Hom(Ga, Z) such that 1i,(h, C) = fhclPZ = h. 
Finally, property 5 states: if X, = a, and the a-candidate (h, C) extends the f,- 

candidate (h', C') and fl e C, then fhc extends fh',c'. 
6. If oc e S and (h, C) e Pa x Pa is an a-candidate, then fh.c has a unique extension in 

Hom(GQ + 1, Z). 
We define by induction on a, X, G, and 0ia: 

i) For a = 0, Go = 0 and <P = 0. 
ii) For a = f, + 1 when f, 0 S, we add one free generator to G# and define X, and G, 

accordingly. To define 0Pa, let (h, C) be an a-candidate. Since C is closed, it has a 
maximal element jI. Let (h', C') be the It-candidate such that (h', C') < (h, C). We 
consider two cases, ,I 0 S and ,I e S. 

(a) I O S. In this case GP/G,, is free by the induction hypothesis; and by our 
construction G#+ 1/G, is free. Hence there is an extension f e Hom(Ga, Z) of fh,c' 
such that f/pZ = h. We set 0Jia(h, C) = f. 

(b) Iu e S. In this case we apply 6 of the induction hypothesis to obtain a unique 
extension f* of fh,c' in Hom(G. + 1, Z). Since I + 1 0 S, G#+ I/G,+ 1 is free by the 
induction hypothesis and our construction as in (a). Thus there is an extension f of 
f * in Hom(Ga, Z). We set P(h, C) = f Xa Ga and Pa have clearly been defined so 
as to satisfy 1-6 of the induction hypothesis. 

iii) a is a limit ordinal. Since S is nonreflecting, we can choose an increasing 
continuous sequence 6j, j < , such that supj<,(bj) = a and bj 0 S. Thus 
G= U,<, G# is free by 3 of the induction hypothesis. Also, X% = U,<a xp, and it 
remains to choose <Pa. Let (h, C) be an a-candidate, and (h, C)6 denote the restriction 
of (h, C) to 5 (i.e., (h, C) =(h [ G6, C r) 5)). We distinguish two cases: 

(a) If C has no last element, we can set 

fh,C) = :(h, C) = U fhC6 e Hom(Ca, Z). 
6eC 

This is well defined by 5 of the induction hypothesis. 
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(b) If C has a last element jy, we proceed exactly as in the successor case ii). In any 
event it is clear that the induction hypothesis is still satisfied for /3 < a. 

Finally the crucial case: 
iv) a = f3 + 1 when /3 e S. 
GO+ I is to be generated from GO and the single coil y', n < w, where the coiling 

relations are 

PYA 1 = yn+ an; an c GO, n < w. 

The an are to be chosen in a manner enabling us to define (D in the required way. X. is 
clearly no problem. We choose an so that for every /3-candidate (h, C), 3n < 
such that 

fhc(an) = 0, Vn > n 

This is done as follows: we first choose a /3-enumeration of all f(h,C), (h, C) E Po x PO a 
fl-candidate, say fi, i < /3. Then, since elements of S are strong limit cardinals of 
cofinality w, we can choose increasing /3n 0 S, n < w, such that un<w /3n = /3 and 
2On < /3n + I . If Kn are /3n + I pure independent elements over G then by a cardinality 
argument we are assured of two elements of Kn say b1 and b2, such that 
f1(bl) = f2(b2) Vi < /3n. We set a. = b -b2 # 0. The a., n < w, are clearly as 
required. Moreover, since GI/G n and GO are free with say GO = <xi: i < A>, 
B={xi: i <)} a free basis of GO, the an can be chosen so that suppB (an) U 
suppB(aa) = n # m. Thus the an, n < w, are a pure independent set of elements 
of Go. 

Now let (h, C) E Po + 1. We wish to extend* = f(h,C)p to GO + 1. Let m < o be such 
that f*(an) = 0 Vn ? m. If we set f*(yn) 0 Vn > m, then also pf*(yn+ 1) = 
f*(yn) + f*(an) Vn ? m. Thus it remains to define f* on y', 1 < m, so as to satisfy 
pf *(ya+l) = f *(yl) + f *(a'), I < m. Working downwards we can solve the re- 
maining set of m equations with m unknowns over Z. Thus f* can be appro- 
priately defined also for ya, 1 < m, yielding f** E Hom(G, + , Z). We set 4Da(h, C) = 
f**. Thus article 5 of the induction hypothesis is satisfied. That G#+1 is free 
follows from the hypothesis that G, is free, with, say, basis {x': i < A}. Hence if the 
xij, j < w, are all basis elements involved in an, n < w, and G' = < y, 
xij:n<w),j <)>, G" = <{xi:i < A, i # ijj < w}>, thenG" c G' is obviously free 
and G' is free by Pontryagin's criterion. Moreover Go + I = G' B G". That G, + 1 /G, is 
free for c < /3, c 0 S, follows from our choice of an E G,-G,, for n > m, again by 
Pontryagin's criterion. Note however that G, + K/GO < { I/pl: 1 < oi > c Q (the 
rationals) is not free. The remainder of the induction hypotheses 1-6 are now easily 
seen to hold. 

That G = GK is not free follows from the fact that for a E S (S stationary) G,, 1/G, 
is not free. Hence G is almost free (since every subgroup of lower cardinality is 
contained in some free Ga, a < K). Since for every homomorphism 
h E Hom(G, Z/pZ) there is a closed unbounded set C c K such that Va E C, h [ a e Pa 
and C q a e Pa, we can now easily piece together f(hC).. a E C, Xa = a, to yield 
f E Hom(G, Z) for which f/pZ = h. C] 

In order to obtain an almost free group G of cardinality K for which 
Extp(G, Z) = 0 for all primes p, we modify the above construction as follows. 
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308 G. SAGEEV AND S. SHELAH 

First we distinguish between (a, q)-candidates (h, C) c Pa x Pa for primes q. These 
are like the a-candidates defined above with the further requirement that 
h E Hom(Ga, Z/qZ). Ma will now have to choose fh,c so that if (h, C) is an (x, q)- 
candidate, then fh,c/qZ = h. The construction is for the most part as above except 
for the case iv) where a = /1 + 1, /1 E S. Let Po, PI .. pn,... be an enumeration of all 
the primes. Now G,+ I is generated from G# and the coil ya, n < w), with the coiling 
relations 

PoYa = A + ao 

POPiYa = ya + a, 

PoPI PnY = ya + a., a. c Go, n < w. 

Using a fl-enumeration, /1 E S, of all (/1, pl)-candidates (h, C), we can arrange for 

fh,C(an) = 0 for all n ? some na,h,C. The remainder of the argument is essentially the 
same as the above, yielding the required result (see also (6.3) below). C] 

That vo(G) = I G + = K + follows from Theorem 1 of Hiller, Huber and Shelah 
[8], and the easily established fact that for any K-generated subgroup A of G, GIA is 
not free. D- 

We now employ another form of Ext forging to prove Theorem (2). The proof of 
(4.1) and its corollaries involves an elaborate iterated Ext forging and will be 
published elsewhere. Theorem (2) was originally obtained by the second-named 
author in early 1978 (see [8], [17] and [14]). An elegant presentation of that result 
was given by Eklof and Huber [5] using topological notions going back to some 
early results of Chase [1]. As mentioned above, our method tends to identify and 
isolate the combinatorial content of a group theoretic problem. This is not only a 
matter of taste: it also enables one to readily draw upon a large body of infinite 
combinatorial knowledge, material which may be naturally associated with a given 
algebraic subject. 

(6) Notation. Let G1 be the group which is freely generated by {xnjn < w}. 
(6.1) DEFINITION. For every a E G1 let spt(a) be the minimal subset v of W for which 

a E <xi: i E v> . v is also called the support of a. 
(6.2) Notation. Let q0, qI,... be an enumeration of the primes p for which 

X(P) = 2'1 in increasing order, and let Po PI . ... be an enumeration of the remaining 
primes in increasing order. If any of these sequences is finite, we assume that the Pn 
or qn are equal to 1 from the appropriate places on. By (4.01) we may assume that 
<Pn> is nonempty without loss of generality. 

(6.21) DEFINITION. A and B are said to be almost disjoint if A q B is finite. R is said 
to be an almost disjoint family if VA, B E R A # B implies that A rn B is finite. 
Similarly A is almost contained in B if A - B is finite. 

(6.3) Notation and outline of construction. Let Ai, i < w1, be a family a of almost 
disjoint subsets of a, and let a, be such that: 

(i) Ai = U {spt(aX): n < a)}. 
(ii) spt(a7) rn spt(aT") = 0, m # n. 
We consider the groups Gi. 1 < i < w,, which are generated by 

{Xm, yJ: m, n < a, j < i}, freely except for the coiling relations: 
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POPI.. Pny7'+l = y a! n < , j < i, 

3 2 2 
POPIP2Yj =yj -aj, 

2 I I PoPi Yj =yj -a, 
1 0 0 po = -jy_ aj. 

Denote G = G,1 and Go = {0}. We note the following facts: 
(a) Gi, i < w1, is an 81-filtration of G; i.e. 

(1) Go = {0}; 
(2) Gj < Gj, j < i, and Gj is a pure subgroup of Gj; 
(3) Uj<i Gj = Gi for lim(i); 
(4) IGjI <1. 

(b) The Gi, i < w1, are free. 
Because they are countable, and every finite subset is contained in a pure free 

subgroup of finite rank (as can easily be seen), the Gi are free by Pontryagin's 
criterion. 

(c) G is not free. 
Since for all i < w1, Gi + 1/Gi is isomorphic to a nonfree subgroup of the rationals 

Q generated by { 1/(pi)' I i < , m < w}, hence G is not free. 
(d) Every homomorphism h: G1 -* Z/PmZ has a unique extension 

hPI: Gi -* Z/PmZ Vi < wl. 
PROOF. For 1 m we clearly must have 0 = h(yj) - h(a) j < i. For I < m and 

j < i, 

1+1 I I 1 p pI . .. 
pi yl+1 yl - 

aj, 

and the pj, j < 1 < m, are prime to Pm; hence for any value of h(y'7) in Z/PmZ we have 
a unique solution of the m equations 

p p..pjw1+1 =w' -h(ad) 

in the field Z/PmZ. Since the value of h01'(b), b e Gi, is uniquely determined by the 
values hVi] on G1 and the yj, hi'] is unique. D- 

(e) Every homomorphism h: Gi -* Z/qmZ has 21i1 distinct extensions 
e1 c Hom(Gj, Z/qmZ) if i is infinite, i < XI. 
PROOF. Since qm is prime to Pk, k < w, we get that for any determination of h[VI(yV) 

in Z/qmZ we have a unique solution vector satisfying all the equations 

POPI'Pnqnqwn+I = Wn -h(a7), n < w), 

over the field Z/qmZ. Thus h01'(y7 + 1) = wm+ I will yield a unique extension of h to Gj. 
There are qm possible choices for hli](yjo) 1 < j < i; hence the claim follows. D2 

(f) Every f e Hom(Gi, Z) has at most one extension to a homomorphism f[i] of G, 
to Z. 

PROOF. Clearly, to any choice f[u](y9) e Z there is at most one extension to 
{yj: n < w} satisfying all the equations. However, because of the No divisibility 
stipulations imposed by the equations over Z, every choice for f [u](y9) may not 
suffice already for the jth system of equations, for any arbitrary j. 
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310 G. SAGEEV AND S. SHELAH 

(g) If h1, h2 E Hom(G1, Z) or h1, h2 E Hom(G1, Z/pZ), and h?09 and h?01 are de- 
fined, then (h1 ? h2)P31 is defined, and (h1 ? h2)[i1 = h+1 ? h?01. 

PROOF. Clearly h1 ? h2 and h019 ? h+ 0 are homomorphisms. h1 ? h2 has a unique 
extension to Gi. Since (h?0' ? h+ 0) [G1 = h1 + h2, the result follows from the 
uniqueness ((d) or (f)). 

(h) If h e Hom(Gi, Z/pZ), i < w1, then there is an f e Hom(Gi, Z) such that 
h = f/pZ. 

PROOF. Gi is free; hence Ext(Gi, Z) = 0. In particular, by Theorem 4, 

0 = Extp(Gi, Z) = Hom(Gi, Z)/H[Hom(Gi, Z)]. 

Thus he Hom(Gi,Z/pZ) = H[Hom(Gi,Z)]. D- 
(i) If f e Hom(Gj*, Z) is such that Vi > j* 3mi for which f (a") = 0 Vn > mi, then 

3f * e Hom(G, Z) such that f* = f[coi. 

PROOF. Set f '(y ) = 0 Vi > j*, n > mi. We then set f '(y~i) = f (a"i), and working 
downwards we set 

f'(Yi) = PoP, f tf(y/+1) + f (ai). 

Clearly then f 'extends to a homomorphism f * of G into Z. D- 
As a corollary we get: 
(j) If h = f/pZ e Hom(Gj*, Z/pZ) is such that Vi > j* 3mi < . so that 

Vn > mi f(a7) = 0. then there is an f * e Hom(G, Z) extending f such that 
h[w1J = f */pZ 

PROOF. Trivial with (i); consider the cases k > mi and k < mi. 
Our objective is to determine the a! in such a way that, by using properties (d)-(j), 

we can control the number of h e Hom(G, Z/pZ) which do not lift to homomorph- 
isms of G into Z. i.e. h 0 H[Hom(G, Z)], for the various p. 

(7) DEFINITION. In order to facilitate our construction, we will choose besides the 
almost disjoint sets Ai with properties (i), (ii) also A" which will almost contain all Aj, 
1< i, and be almost disjoint from Ai. Thus we shall have Ai* such that At - Ai is 

finite forj < i, Aj c A +1, and A* r) Ai is finite. Note that this implies that Ai r) At 
is finite for i ? j. We define Ii_ i < w1, to be the ideal generated by the finite subsets of 
w together with {4j, At: j < i). For any such Ii it is a trivial matter to find an A"* with 
the above properties. However, Ai* will be required to satisfy additional conditions 
stipulated in (10)-II below. 

Clearly then, for any such I = I., and X. the w)-filtration defined above has the 

properties (a)-(j). 
(8) Notation. Let 

PJi= {h: h e Hom(G1, Z/pZ), 3B e IiV n co -B. h(x,) = 0} 

and PJ(X,1 = PJ. Also 'nJ, = Vi. when no confusion can arise. 
(9) LEMMA. {h[w1] I h e PJ] c H[Hom(G, Z)]. 
PROOF. Let h e PJ; we wish to show that h[l1] e H[Hom(G, Z)]. There exist At 

and finite C such that h(x,) = 0 for all n 0 C u At. Let B = C u At. By assumption, 
Vi < j, Ai is almost contained in At and, Vi ? j, Ai r At is finite. There is a function 

p:j -* w for which: 
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1) Di = Un? (i) spt(aI) C A7; 
2) Di1 q 2 = 0, il # i2 <I- 
Let 

K1 2 =x :n<B>, K2 = K{n x EB} u {yi: i <j, n ? (p(i)}>. 

Clearly K1 n K2 = {O}. We claim that K1 + K2 = Gj. It suffices to show that also 
for n < (p(i), yi E K1 + K2, i <j. This is done by a descending induction on 
n ? (p(i), i < j. By assumption yn e K1 + K2 for n = (p(i). Assume that, for 
m ? n ? (p(i), yi e K1 + K2; we then show that y?+l e K1 + K2. We have 
PoPi Pm- IyT + aT = ym-; and since the two elements on the left of the 
equality are in K1 + K2, so is ym- 1, i < j. Now since Extp(Gj, Z) = 0, there is an 
f2 e Hom(K2, Z) such that f2/pZ = h~j' [ K2; and since h~j' [ K1 = 0, 
f, = 0 e Hom(K1, Z) satisfies f1/pZ = h~jI [ K1. Thus if f = f1 0 f2, f/pZ = h~j]. 
We can now apply (6.3)-(j) and the fact that Ai rn At is finite to obtain 
f * e Hom(G, Z) extending f for which f */pZ - h[w1]. D- 

(10) DEFINITION. Let pn, n < w, be as in (6.2) and let 6 be an enumeration of the 
limit ordinals. For any i = i* + n < wi, 0 < i* limit, we will define 

(i) aTm, m < w, 
(ii) nhi e Hom(GI, Z/PnZ), and 
(iii) for X(Pn) = kn < 6 -i(i*), nfi e Hom(G1 ,Z) 

such that the following conditions hold: 
I. (1) nhi(a) = nfj(a)/PnZ kn > 6i(j*) 
(2) nf V is defined for kn ? b-i(i*), i < j. 
(3) For every h e Hom(G1, Z/PnZ) there exists an i for which 

h K{ <nhj I j < i} u nJi> < Hom(GI, Z/PnZ). 
We denote 

Hi= <{nhj:j < i, 3k(j = wk + n)}>. 

(4) If g e H6(kn) and f: G1 -* Z are such that (Va e G1)[g(a) = f(a)/pnZ], then for 
some i, f [i] is not defined; i.e. elements of Hkn do not lift to homomorphisms of 
G -* Z. 

Moreover we will require that the nhi and nfi be independent in the following 
strong sense, which, for future purposes, we precede with a general definition. 

(10. 1) DEFINITION. i) If G1 is freely generated by X = {xN: i < K} and I is an ideal in 
9(X) and 

J. = {h e Hom(G1, Z/pZ): 3B eI, Vx e X - B, h(x) =O, 

then J1 is said to be an I-nil subgroup of Hom(G1, Z/pZ). Elements and subgroups 
of J. are also said to be I-nil. 

ii) A subset K c Up Hom(GI, Z/pZ) u Hom(G1, Z) is said to be I-independent 
if Vh e K and finite M c K - {h}, and B e I, 3a e G1 with spt(a) rn B = 0 and {a} 
generates a pure subgroup of G1 such that h(a) = 1 and h'(a) = 0, Vh' e M. 

We now complete Definition (10). 
II. (0) {hjfj:j < i} is Ii-independent. Thus 
(1) {nhj: j < i, n < } is Ii-independent, and 
(2) {nfj: n < , j < i} is Ii-independent. 
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312 G. SAGEEV AND S. SHELAH 

Thus if io = i* + nO,...,im = i* + nm, ko < 
6(i5), 

km < 6-(i*), io0..., 
im < i, and B E I, then there is an a E G1 with spt(a) q B = 0, and (a) generates a 
pure subgroup of G1 such that 'Ofi(a) = 1,'nf1 (a) = 0,... ,nmfim(a) = 0. 

(10.2) Also note that if 'ltl/pn1Z = hi1,.. .,5nfi/pn.Z = him, and hio(a) = 1, 

f =l(a) f1(a) = = fm(a) = 0 = fil(a) = = fi(a), then hio(a) = 1, hil(a) = = 

him(a) = 0 = fJ1(a) = = f= (a). 

III mfl/PnZ ? K{nhj:I < i} u hJi+1>,m # n,l < i, and 

h <h:j < ij :j'} u {mf1lpnZ: 1 < i, m : n} u i+l> 

We first note that: 
(11) LEMMA. If G = Ui<c,1 Gi satisfies I, then v(p) = %(p) for all primes p. 
PROOF. Using Theorem 4, this is immediate. 
We will construct the ai, nhi and nfi by induction on i. Assuming them defined for 

j < i, we will first define the aT" so as to take care of I-(4) for some f: G Z, and 
I-(2). Then nhi will be chosen to satisfy I-(3), from which we also will get II-(1); 
and finally we will choose nfi so as to satisfy both I-(1) and II-(2). If i = i* + n and 
i* is the kth limit ordinal with k < kn, then nfi will not be defined. 

Let tj be a map of all limits ordinals < w(l onto Hom(G1, Z), where each f: G1 -+ Z 
is the image of N, ordinals. 

Let a be an w-)-enumeration of i = {a(n): n < } if i ? w, and a finite enumeration 
of i if i < W. 

Let / be an w-enumeration of Z = {i(n): n < w}. 
First, Ai* is chosen so as to satisfy the requirements of Definition (7) and so that 

the ideal generated by Ii u {Ai*) satisfies (10)-II. Since Ii, G1 and the number of 
functions to be considered are countable, this can easily be done. 

Next we define, by induction on m < w, the aT" e G and auxiliary sets Cm c -W 
satisfying the following five stipulations: 

(*)O spt(aT") is disjoint to Bm = U spt(a!) u Ai* u U C1. 
I<m l<m 

This will already insure that Ai and Ii + 1 are as required in Definition (7). Note also 
that Bm e Ii+ 1 

Ml)1 For every instance of II there are infinitely many a e G, 
with disjoint supports, and spt(a) r) B = 0 and a pure 
subgroup of G. We can choose that Cm so as to insure that 
Ai is almost disjoint to the union of supports for any of the 
family of a's. 

This insures that II holds. 

(*)2 If a(l) = j* + 1', lim(j*), 1' < w(, and 6- 1(j*) ? X(pl ), 
then 'fG(l)(ak) = 0 for all k > 1. 

By (i) above this clearly insures that I-(2) will hold, i.e. iJfl exists for all j, 
a(l) <j < ()O. 

Assume i = i* + n, and (j*) = f: G1 Z, and that f/PnZ = hi for some j < i, 
- 1(j*) < %(Pn). Thus by (10)-III, f : "mf1 m : n. We want to kill off any possibility 
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for f to have an extension of f[i+ 1]: Gi, 1 + Z. If f [i] does not exist, we are done. 
Otherwise denote by G', the group generated by Gi and { yi: 1 < k}, and by f[ik] the 
corresponding unique extension of f in Hom(GW', Z), if it exists. Each such possible 
extension of f is uniquely determined by its value on y9. If f [i m] is not defined 
for fi 1m](y9) = I/(m), it suffices to choose any a E G1, spt(a) c () - B, satisfying 
(*)0-(*)2. If f [i m] is defined for f[i m](y?) = i/(m), we arrange for it not to extend to 
GT'+ 1 by choosing aim so that 

(*)3 f[im](yn - ai) is not divisible by ro rm 

(Here ri denotes the fixed enumeration of the primes p for which %(p) < 2", as in 
(6)-2.) 

It suffices to show that aim is not divisible by p, which may be assumed amongst 
the ro,.. ., rm (otherwise we adjust and worry about the case when f' extends f and 
f'(y?) = /(m) for larger m). However by Lemma (13) below, which by (*), can be 
assumed for i' < i and the ideal Ii* generated by Ii u {A*}, we can find a E G, 
spt(a) c o-) - Bm, such that 

(*)4 ifo(l)(a) = 0 for I <im, and b-1(j*) ? (pA), 

where a(1) =j* + 1', and 'hj(a) = 1; thus also f(a) # 0 mod (pJ. Therefore, 
f1i m(yn - a)-f [im](ym - 2 a) = f[i m](a) 0 0 mod (p,). Thus at least one of a, 
2a can be chosen for aim so that (*)3 holds. Thus we can define aim, m < w, so that 
Ho- (*)4 all hold. 

(12) Next we define 'hi E Hom(G1, Z/pnZ) so as to eventually satisfy requirements 
I-(3), II and III. Now Hom(G1, Z/pnZ) is an abelian group, in which every element is 
of order p, hence a vector space over Z/pZ. Since G1 is free, the cardinality of 
Hom(G1,Z/pZ) is 20 = N1; thus there are N, homomorphisms h: G1 -+ Z/pZ 
which are 

(i) not in <{Ihj:I < i} u mf {f/PnZ: m : n, 1 < i}>, and 
(ii) such that mf1/pnZ K{nhj:j < i} u {h} u 'h+1>, m : n, 1 < i. 
Choose nhi to be the first such one according to some fixed wl-enumeration of 

Hom(G1, Z/PnZ). We have 
(12. 1) LEMMA. Hi+, satisfies II-(1). 
(13) LEMMA. For every io, .., im < i and B e Ii+ 1 such that 5- '(i*) > k j, there is an 

a e G1, generating a pure subgroup of G1 and spt(a) r) B = 0, such that: 

(*) nhij(a) = 1, n1f1(a) = 0,... ,nmfim(a) = 0. 

PROOF. If io < i, then also j1,..., i, < i and the result follows from the induction 
hypothesis and the construction of Ii +. Thus assume io = i. First assume 
n = nO= = nm. By II, the nfij map onto Z, and if for all a for which nf1j(a) = 0, with 
spt(a) c w - B, also h1 (a) = 0, we would get that nhi e <hio . . hij uni + 1 >5 
contrary to our choice of h. Thus for some a with spt(a) c w - B we have nfj(a) = 0, 
0 < j < m, and 'hi(a) # 0. A proper multiple of a will now do. Since there are 
infinitely many such a, we can choose a's which generate pure subgroups of G1. If n, 
no, ..., nm are not all equal, say n = nO = n, = I I I = nk and then nj with k <j < m 
are different than n, then by the above there are infinitely many a's for which 
nof(a) = = nkfk(a) = 0 and nhi(a) = 1. Now since the Pn,. k < j < m, are prime to 
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Pn, if for all the a's such that jfj(a) = 0 0 < j < m, we also have h(a) = 0, then 

h 0 ij/PnjZ O <1 < m} U J+1>5 

contrary to (12)-(i) in our choice of h. (Note that if j < k, then f1j/pnjZ = hi for some 
i' < i.) Moreover, we have infinitely many such a's which also generate pure 
subgroups of G1. *D 

By Remark (12.1) we easily see that 
(13.1) COROLLARY. For every io . . ir < i5, il... .,j'i, < i and B E Ii + such that 

6-1(j*) ? kn, there is an a E G1 generating a pure subgroup of G1 and 

spt(a) rn B = 0 such that 

nhi0(a) = 1, lhi,(a) = h= ih1(a) = 0 = nlfj (a) = ... = nfj(a). 

It remains only to choose nft so that nfi(a)/PnZ = nhi(a) Va E G1 and II holds. 
From Lemmas (12.1) and (13) above we can find B E Ii+ and am c G1, m < w 

such that: 

(1) Ai* c B.; 
(2) spt(am) are pairwise disjoint and disjoint to B; 
(3) am generates a pure subgroup of G1; and 
(4) for every respective instance of II and 1, we can find infinitely many a's from the 

am's such that nhi(am) = l/pnZ; without loss of generality we can assume that 

B u Um spt(am) = (0. 
Thus G1 is the direct sum of Gm = <{x,: 1 e spt(am)}>, m < a), and 

G= <{x,: I leB} u {yj: j < i, k < wl}>. 

Therefore (since Ext(Gi, Z) is isomorphic to the direct sum of Ext(G', Z) and 

Ext(XnGn, Z)), it suffices to choose functions f': G'-+ Z and fim: Gm -+ Z so that 

f'(b)/pnZ - nhii'(b) and fm(b)/pnZ = n h01(b), for appropriate b. The Gi, hence also G', 
are free; thus such an f' exists. As for fm, we can choose fm(am) arbitrarily from the 

coset of nhi(am). Now am generates a pure subgroup of G1 by assumption (3) above; 
hence if fi is the unique homomorphism from Gi+ 1 to Z extending f' u Um fm and 

f= fi G1, then f = nf is as required. Moreover, since we only have to contend 
with at most countably many 'hi, j < i, 1 # n, we can choose each fm(am) so as to 

also ensure that nf/p1Z # 'hj, j < i, 1 : n. O: 
To see that vo(G) = 281, note that for any N1-generated subgroup A of G, GIA is 

not free. Thus by the proof of Theorem 1 in Hiller, Huber and Shelah [8], under the 

assumption 2'0 < 2'1 we get vo(G) = IGI+ = 2'1. O 
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