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Abstract

In this paper we probe the possibilities of creating a Kurepa tree in a generic extension of a
ground model of CH plus no Kurepa trees by an w;-preserving forcing notion of size at most ;.
In Section 1 we show that in the Lévy model obtained by collapsing all cardinals between w,
and a strongly inaccessible cardinal by forcing with a countable support Lévy collapsing order,
many w;-preserving forcing notions of size at most w; including all w-proper forcing notions
and some proper but not w-proper forcing notions of size at most w; do not create Kurepa
trees. In Section 2 we construct a model of CH plus no Kurepa trees, in which there is an
w-distributive Aronszajn tree such that forcing with that Aronszajn tree does create a Kurepa
tree in the generic extension. At the end of the paper we ask three questions.

0. Introduction

By a model we mean a model of ZFC. By a forcing notion we mean a separative
partially ordered set PP with a largest element 1p used for a corresponding forcing
extension. Given a model ¥V of CH, one can create a generic Kurepa tree by forcing
with an w;-closed, w;-c.c. forcing notion no matter whether or not ¥ contains Kurepa
trees [7]. One can also create a generic Kurepa tree by forcing with a c.c.c. forcing
notion provided ¥ satisfies [, in addition [16]. Both forcing notions mentioned here
have size at least w;. The size being at least w, seems necessary in each case for
guaranteeing that the generic tree has at least w, branches. On the other hand, a
Kurepa tree has a base set of size w, so it seems possible to create a Kurepa tree by
a forcing notion of size < w;. In this paper we discuss the following question: Given
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a model of CH plus no Kurepa trees, can we find an w;-preserving forcing notion of
size < ; such that the forcing creates Kurepa trees?

This question is partially motivated by a result on Souslin trees. Given a ground
model V', a Souslin tree could be created by a c.c.c. forcing notion of size w; [14].
There is also an w;-closed forcing notion of size w; which creates a Souslin tree
provided V satisfies CH [7]. The question whether a Souslin tree could be created by
a countable forcing notion (equivalent to adding a Cohen real) turns out to be much
harder. It was answered positively by the second author [13] ten years ago.

We call a forcing notion w,-preserving if w; in the ground model is still a cardinal
in the generic extension. In this paper we consider only w;-preserving forcing notion
for the following reason. Let V' be the Lévy model. In ¥ there are no Kurepa trees and
CH holds. Notice also that there is an w,-Kurepa tree in V. If we simply collapse w,;
by forcing with the collapsing order Coll(w,w;), the set of all finite partial function
from w to w; ordered by reverse inclusion, in ¥, then the w,-Kurepa tree becomes
a Kurepa tree in VC/(@©0) Notice also that Coll(w, »,) has size w; in V. So we
require the forcing notions under consideration be w;-preserving to avoid this triviality.

In Section 1 we show some evidence that in the Lévy model it is extremely hard to
find a forcing notion, if it ever exists, of size < w; which could create a Kurepa tree in
the generic extension. Assume that our ground model V is the Lévy model. We mention
first an easy result that any forcing notion of size < w; which adds no new reals could
not create Kurepa trees. Then we show two results: (1) For any stationary set S C w,
if P is an (S, w)-proper forcing notion of size < ;, then there are no Kurepa trees
in the generic extension ¥'P. Note that all axiom A forcing notions are (), w)-proper.
(2) Some proper forcing notions including the forcing notion for adding a club subset
of w; by finite conditions do not create Kurepa trees in the generic extension.

In Section 2 we show that there is a model of CH plus no Kurepa trees, in which
there is an w-distributive Aronszajn tree T such that forcing with T does create a
Kurepa tree in the generic extension. We start with a model V' containing a strongly
inaccessible cardinal x. In V' we define an w,-closed, x-c.c. forcing notion P such
that forcing with P creates an w-distributive Aronszajn tree 7 and a T-name K for a
Kurepa tree XK. Forcing with P collapses all cardinals between @, and x so that x is
w; in VP, Take ¥ = V" as our ground model. Forcing with T in ¥ creates a Kurepa
tree in the generic extension of V. So the model ¥ is what we are looking for except
that we have to prove that there are no Kurepa trees in ¥, which is the hardest part
of the second section.

We assume the consistency of ZFC plus a strongly inaccessible cardinal. We shall
write ¥, ¥, etc. for (countable) transitive models of ZFC. For a forcing notion P in ¥
we shall write VP for the generic extension of ¥ by forcing with P. Sometimes, we
write also ¥[G] instead of ¥'F for a generic extension when a particular generic filter
G is involved. We shall fix a large enough regular cardinal A, e.g. A = (Jiges5(k))",
throughout this paper and write H(4) for the collection of sets hereditarily of power
less than 4 equipped with the membership relation. In a forcing argument with a forcing
notion ® we shall write 4 for a P-name of a and 4 for a P-name of a which is again
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a Q-name of a for some forcing notion Q. If a is already in the ground model we
shall write simply a for a canonical name of a. Let P be a forcing notion and p € P.
We shall write ¢ < p to mean ¢ € PP and ¢ is a condition stronger than p. We shall
often write p IF...” for some p € P instead of p IF5“...” when the ground model ¥
and the forcing notion P in the argument is clear. We shall also write [F*...” instead
of 1p IF*...”. In this paper all of our trees are subtrees of the tree (2<“',C). So if
C is a linearly ordered subset of a tree T, then | J C is the only possible candidate of
the least upper bound of C in 7. In this paper all trees are growing upward. If a tree
is used as a forcing notion we shall put the tree upside down. Let 7 be a tree and
x € T. We write ht(x) = o if x € T N 2% We write T, or (T),, the ath level of T,
for the set T N2* and write T [ or (T) [« for the set Uﬂ<a Tg. We write ht(T') for
the height of T, which is the smallest ordinal « such that 7, is empty. By a normal
tree we mean a tree T such that (1) for any o < f < ht(T), for any x € T, there is
a y € Tp such that x < y; (2) for any « such that « + 1 < A#(T') and for any x € T,
there are infinitely many successors of x in T,,;. Given two trees T and T/, we write
T < paT’ for T’ being an end-extension of T, i.e. 7' | ht(T) = T. By a branch of a
tree I we mean a totally ordered set of 7 which intersects every nonempty level of 7.
By an w;-tree we mean a tree of height ;, with each of its levels at most countable.
A Kurepa tree is an w;-tree with more than ; branches. See [8, 11, 12] for more
information on forcing, iterated forcing, proper forcing, etc. and to see [15] for more
information on trees.

1. Creating Kurepa trees by a small forcing is hard

First, we would like to state a theorem in [12, 2.11] without proof as a lemma which
will be used in this section.

Lemma 1. In a model V let P be a forcing notion and let N be a countable elemen-
tary submodel of H(J). Suppose G CP is a V-generic filter. Then

N[G] = {dg : @ is a P-name and a € N}
is a countable elementary submodel of (H(1))"¢1,

We choose the Lévy model ¥ = V2%%®) as our ground model throughout this
section, where x is a strongly inaccessible cardinal in V and Lv(x,®,), the Levy
collapsing order, is the set

{pZS(xxw)xk: pis a countable function and (¥(a, f) € dom(p))(p(a, B)€a)}

ordered by reverse inclusion. For any 4 C x we write Lv(4,w) for the set of all p €
Lu(k,w,) such that dom(p)C A x w;.
First, we mention an easy result without proof.
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Theorem 2. Let P be a forcing notion of size < w in V. If forcing with P does not
add new countable sequences of ordinals, then there are no Kurepa trees in VP.

The proof of Theorem 2 is very simple. Since forcing with P does not add any
new countable sequences of ordinals, then P is interchangeable with Luv(x\n,w;) for
some 7 € k. But the forcing notion Lv(k\#, ;) could be viewed again as a countable
support Lévy collapsing order.

Next we show the result concerning (S, w)-proper forcing notions with a brief sketch
of the proof.

Definition 3. A forcing notion P is said to satisfy property (i) if for any x € H(Z),
there exists a sequence (N; : i € w) of elementary submodels of H(A) such that

(1) N; € Ny, for every i € w,

(2) {P,x} CNo,

(3) for every pePNN, there exists a ¢ < p such that g is (P, N;)-generic for every
i€ow.

Lemma 4. Let V be any model. Let P and Q be two forcing notions in V such that
P has size < w, and satisfies property (1), and Q is w-closed (in V). Suppose T is
an wi-tree in VP, Then T has no branches which are in VF*@ but not in VP.

Proof (sketch). Suppose, towards a contradiction, that there is a branch & of 7T in
yPx@\ PP Without loss of generality, we can assume that

Fplkg (b is a branch of T in VFX@\pP),

Claim d4a. For any p e P, g € Q, n € @ and o« € w,, there are p'< p, q; < q for
j<n and f € w\a such that

p ”f((fi{tj ¢j<n}§Tﬁ)<(j #F/ oG #F)N N (g by 65)))-

j<n

The claim follows from a fact about forcing (see [11, p. 201]).

Claim 4b. Let n € w; and let g € Q. There exists a v < w1, a maximal antichain
(px : @ < V) of P, two decreasing sequences (g3 : o < V), j = 0,1, in Q and an
increasing sequence (n, : @ <v) in wy such that 43,9} < g, no >n and for any a <v

P2 F (G, 1y € Ty )t # 11 A2 IF 1o € DY A (gL I+ 1y € B))).

The proof of a similar version of this claim could be found in either [5] or [9]. The
size of P less than or equal to w; is used to ensure v < w;.

The lemma follows from above two claims. Let (N, : n € w) witness that P satisfies
property (1). Let n € w, §, = w; NN, and let 6 = Unew on. For each s € 2" we
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construct, in N,, a maximal antichain (p5 : o < v;) of P, two decreasing sequences
(g’ 1 @ <) for j = 0,1, and an increasing sequence (15 : « < v;) in 8, such that
Vs < 0y, g, are lower bounds of (g : & < vy} for j=0,1, 75 = 6", and

Py ((Bto,t1 € T )to # 01 A(GS° IF 19 € BYA (G IF 11 € B))).

Each step of the construction uses Claim 4b relative to N, for some n € w. We
can choose ¢5° and ¢3! to be lower bounds of {gj : & < Vs,1) in N, because
(g5 : @ < Vspn—1) is constructed in N,—; and hence is countable in N,. Here we use the
fact N,_; € N,.

Let p < lp be (P,N,)-generic for every n € . Since Q is w,-closed in V, for
every f € 2% there is a gy which is a lower bound of (qér " ne w). Let GCP
be a V-generic filter such that p € G. It is now clear that 75 is uncountable because
different g,’s force different ¢/’s into Ts for f € V. O

A forcing notion P is called w-proper if for any w-sequence (N, : n€ @) of countable
elementary submodels of H(4) such that N, € N, for every n € w and P € Ny, for
any p € PN N, there is a p< p such that p is (P,N,)-generic for every n € w.
Let § be a stationary subset of w;. A forcing notion P is called S-proper if for any
countable elementary submodel N of H(A) such that P € N and NNw; € §, and
for any p € PN N there is a p< p such that p is (P,N)-generic. A forcing notion
P is called (S, w)-proper if for any w-sequence (N, : n € w) of countable elementary
submodels of H(4) such that N, € N, for every n € w, N,Nw; € S for every n € w,
NN €8, where N = {J,,Np, and P € Ny, for any p € PN N there is a p<p
such that p is (P, N,)-generic for every n € w.

Theorem 5. Let S be a stationary subset of w; and let P be an (S, w)-proper forcing
notion of size < wy in V. Then there are no Kurepa trees in VP.

Proof (sketch). Choose an 5 < k such that S and P are in V2" Then

PP — pLotnon)sP)xLte\no).

Note that Lv(k\n,w;) is wi-closed in ¥ %m@) Now the theorem follows from
Lemma 4 by the fact that P satisfies property (1) in V20-@) To prove this fact
the reader may find that Lemma 1 is needed. []

Remark. (1) The idea of the proof of Lemma 4 is originally from [5]. A version of
Theorem 5 for axiom A forcing was proved in [9]. The reader who is familiar with
the above two papers may reproduce a complete proof of Theorem 5 without too many
difficulties. The proof of Theorem 9 has also some similar ideas.

(2) If P satisfies axiom A, then P is w-proper or (w;, ®)-proper. Hence forcing with
a forcing notion of size < w, satisfying axiom A in ¥ does not create Kurepa trees.
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(3) The w-properness implies the (S, w)-properness and the (S, w)-properness implies
the property (7).

Now we prove the result on some non-(S, w)-proper forcing notions.

The existence of a Kurepa tree implies that there are no countably complete, N,-
saturated ideals on w;. Therefore, one can destroy all those ideals by creating a generic
Kurepa tree [16]. But one does not have to create Kurepa trees for this purpose.
Baumgartner and Taylor [4] proved that adding a club subset of w; by finite conditions
destroys all countably complete, N,-saturated ideals on ;. The forcing notion for
adding a club subset of w; by finite conditions has size < w; and is proper but not
(S, w)-proper for any stationary subset S of w;. We are going to prove next that this
forcing notion and some other similar forcing notions do not create Kurepa trees if our
ground model is the Lévy model 7. Notice also that the ideal of nonstationary subsets
of w; could be N,-saturated in the Lévy model obtained by collapsing a supercompact
cardinal down to w, [6]. As a corollary we can have a ground model ¥V which contains
countably complete, X;-saturated ideals on w; such that forcing with some small proper
forcing notion P in ¥ destroys all countably complete, w,-saturated ideals on w;
without creating Kurepa trees.

We first define a property of forcing notions which is satisfied by the forcing notion
for adding a club subset of w; by finite conditions.

Definition 6. A forcing notion P is said to satisfy property (#) if for any x € H(4)
there exists a countable elementary submodel N of H(A) such that {PP,x} C N and for
any pg € PNN there exists a p < po, p is (P, N)-generic, and there exists a countable
subset C of P such that for any p’ < pthereisace Canda p € PNN, p'<po
such that:

(i) for any dense open subset D of P below p’, D € N, there is a d € DNN such
that d is compatible with ¢, and

(ii) for any » € PN N and r< p/, » is compatible with ¢ implies » is compatible
with p’.

Let us call the pair (p',c) a related pair corresponding to p'.

Example 7. The following three examples are forcing notions which satisfy prop-

erty (#).
(i) Let

P={pCw xw : pis a finite function which can be extended to
an increasing continuous function from ; to w;}

and let P be ordered by reverse inclusion. PP is one of the simplest proper forcing
notions which do not satisfy axiom A [3]. Forcing with [P creates a generic club subset
of w; and destroys all countably complete, R,-saturated ideals on w; [4]. It is easy to
see that P satisfies property (#) defined above. For any x € H(4) we can choose a
countable elementary submodel N of H(4) such that {P,x} CN and N Nw; = 6 is
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an indecomposable ordinal. For any po € PN N let p = poU(8,0) and let C = {p}.
Then for any p' < pthereisa p' = p’ [ 5 and a ¢ = p € C such that all requirements
for the definition of property (#) are satisfied.

(ii) Let S be a stationary subset of w;. If we define

Ps = {p: p is a finite function such that there is an increasing continuous
function f from some countable ordinal to S such that pC f}

and let Ps be ordered by reverse inclusion, then Pg is S-proper [3]. Forcing with
Ps adds a club set inside S. It is also easy to check that Pg satisfies (#). For any
x € H(4) let N be a countable elementary submodel of H(A) such that {x,Ps} CN,
N Nw; = ¢ is an indecomposable ordinal and 4 € S. Then for any py € Ps NN the
element p = po U {(5,0)} is (Ps,N)-generic. Now N, p and C = {p} witness that
Ps satisfies property (#).

(ili) Let 7 and U be two normal Aronszajn trees such that every node of T or
U has infinitely many immediate successors. Let P be the forcing notion such that
p=4p, fp)ePiff

(a) 4, is a finite subset of w;,

(b) fp is a finite partial isomorphism from T [ 4, into U [ 4,

(c) dom( fp) is a subtree of T [ 4, in which every branch has cardinality |4,|.

P is ordered by p < q iff 4,24, and f, D f;. P is proper [15]. P is used in [1] for
generating a club isomorphism from 7 to U. For any x € H(A), for any countable
elementary submodel N of H(A) such that {P,x} CN and for any po€ PNN, let 6=
NNwi, let A5 = 4,,U{} and let f; be any extension of f,, such that TsNdom( f5) #
0. Then p = (Ap, f5) is a (P, N)-generic condition. Let

C ={d :d is a finite isomorphism from Tj to Us}.
Then C is countable. For any p' < pletc = (f [ T5) € C, let a < §, & > max(4 7 NJ)
and let

G={(u)eT, x U, : (A, ) e (f 1 Ts)Mt <t Au<u')}

be such that g, and fj [ T5 have same cardinality, let 4, = (45 N 8) U {a}, let
S =(fp r(UveAI;/né T,))U gy, and let p’ = (4,/, fpr). Then (p/,c) is a related pair
corresponding to p’ [1] and N, p, C witness that P satisfies property (#).

For any stationary set S Cw; an S-proper version of this forcing notion, which
satisfies also property (#), could be defined in a similar way.

Lemma 8. Let V be a model. Let P and Q be two forcing notions in V such that
P has size < wy and satisfies property (#), and Q is w,-closed (in V). Suppose T is
an wy-tree in V®. Then T has no branches which are in VP*Q but not in VP.

Proof. Suppose, towards a contradiction, that there is a branch b of T in VPXQ\pP,
Without loss of generality, we assume that

Ibp kg (b is a branch of T in VPX\pP),
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Following the definition of property (#), we can find a countable elementary sub-
model N of H(4) such that {IP,@,T,5} CN, a p < 1p which is (P, N)-generic and a
countable set C C P such that N, p and C witness that [ satisfies property (#). Let
{(pisci) 1 i € @) be a listing of all related pairs in (PNN) x C with infinite repetition,
i.e. every related pair (p,c) in (PN N) x C occurs infinitely often in the sequence.

We construct now, in ¥, a set {g; € QNN : 5 € 2<%} and an increasing sequence
{0y : n € ) such that

(1) sCt implies ¢, < g;,

2)d,€d=NnNuw,

(3) for every n € w there is a p’ € PN N, p’ < p, such that p’ is compatible with
¢y, and

P ((B{ts (5 € 2”}gT";")((s #5 ot £t)N N\ (g F & € 5))).

SE2"

The lemma follows from the construction. Let G C P be a V-generic filter and p€G.
We want to show that

V[G] [ Ts is uncountable.

For any f€2°NV let g5 €Q be a lower bound of the set {g,}, : » € w} such that
there is a t; € T5 such that gy I+ ¢y € b. Suppose T is countable. Then there are
f,9 €2°NV such that ¢; = t,. Let iz, {; be P-names for tr,2, and let 5’ < p be
such that

P (i =i, A (qs Fif €BYA(gy iy € BY).

Let m = min{i € @ : f(i) # g(i)}. By the definition of property (#) we can find a
related pair (p,c) corresponding to p’. Choose an n € w such that n>>m and (p,c) =
(pnscn). Since Definition 6(i) is true, there is a p’ € PN N such that p'<p, p' is
compatible with ¢, and

pl I <(E|{ts s € 2n}§T5,,)<(s #sl — 7'& o) A /\ (gs F g € b)))
se"

Since g5 < qrps and g4 < ggpa, then

P IF((Cto,ts € Ts,)to # i A(gy IF 8o € D) A(gy I+ 1y € B))).
But also

P (Bt e Ts)(gr Ft€b)A(gy kb))

By the fact that any two nodes in 75, which are below a node in 75 must be same,
and that p’ is compatible with p’, we have a contradiction.

Now let us inductively construct {J; : i € w} and {gq, : s € 2<“}. Suppose we have
had {g;:s5 € 25"} and {8 : i < n}. let DC P be such that r € D iff

(1) r< p, (recall that (p,,c,) is in the enumeration of all related pairs in (PN N)
x C,
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(2) there exists 1 > J, and there exists {g; < g1 : § € 2""!} such that

r ik ((H{tx 15 € 2"“}§T',,)<(s #F5 =t FtIN N (g h i€ 5))).

Se2n+]

It is easy to see that D is open and D € N.
Claim 8a. D is dense below p,.

Proof. Suppose ro < p,. It suffices to show that there is an » < rg such that r € D.
Applying Claim 4a, for any s € 2" we can find r; < 79, s >, and {q] < g5:j < 2m+1y
such that

s - ((a{t,- j<2mic T,,s)((j #i = G#N N (g g€ 5))>.
j<2n+l
Let {s; : i <2"} be an enumeration of 2". By applying Claim 4a 2" times as above
we obtained rg =ry, 27y, = - - - Fs,._, such that above arguments are true for any s € 2",
Pick n = max{n, : s € 2"}. Then we extend rs,,_, to ', and extend g; to q; for every
such s and j such that for each s € 2"

vk ((a{t,- :j<2"+1}§T,,)((j;éj' —H# )N A .(‘77 I ¢ eE))).
j<an+t
Now applying an argument in Claim 4b repeatedly we can choose {gs,qs1} C
{g; : j <2"*!} for every s € 2" and extend r’ to " such that

se2n+!

r Ik ((E{ts tse2mty QT,,)((s #£s5 =t AN N (gsHi € 5))).

This showed that D is dense below p,.

Notice that since N is elementary, then # exists in N and all those g,’s for s € 2"*!
exist in N. Choose r € D such that r, c, are compatible and let ,.; be correspondent .
This ends the construction. O

Theorem 9. If P in V is a forcing notion defined in (i)-(iii) of Example 7, then
forcing with P does not create any Kurepa trees.

Proof. Suppose T is a Kurepa tree in 7P Let 7 < k be such that P,T € yLvmen,
Since the definition of P is absolute between ¥ and V1*-“))_ then P satisfies property
(#) in ¥2o)_ Since T has less than « branches in FZ%n@)*P  there exist branches
of T in ¥ which are not in V@ P This contradicts Lemma 8. [

Remark. The forcing notions in Example 7, (i)—(iii) are not (S, w)-proper for any
stationary S.
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2. Creating Kurepa trees by a small forcing is easy

In this section we construct a model of CH plus no Kurepa trees, in which there is
an o-distributive Aronszajn tree T such that forcing with T does create a Kurepa tree
in the generic extension.

Let ¥ be a model and x be a strongly inaccessible cardinal in V. Let 4 be the set of
all countable normal trees. Given a set 4 and a cardinal 4, let [4]<* = {SC 4 : |S| < 1}
and [4]S”* = {SC4:|S| < 1}. We define a forcing notion P as following:

Definition 10. p is a condition in P iff
P = {%p,tp.kp, Up, By, Fp)

where

(a) ap € 1,

(b) t, € 7 and ht(t,) =ap, + 1,

(c) k, is a function from #, to J such that for any x € ¢,, ht(kp(x)) = ht(x) + 1,
and for any x, y € t,, x < y implies kp(x) Senakp(y),

(d) Uy € [x]<°,

(¢) B, = {bY : y € U,} where by is a function from z, to w;“" such that for any
x € tp, bY(x) € (kp(x))nx) and for any x,y € ,, x < y implies bY(x) < b5(y),

(f) F, ={ff :y € U,} where f is a function from a, + 1 to y

(g) for any x € ¢, [ o), for any finite Uy C U, and for any & such that ht(x) <
¢ < ap, there exist infinitely many x’ € (¢,), such that x’ > x and for any y,,7; € U,
bY (x) = bl (x) implies bS (x') = bS,(x").

In the condition (g) of the definition we call each x' a conservative extension of x
at level ¢ with respect to Up (or with respect to {b} : y € Up}).

Generally, we need the following notation. Suppose t € J and B is a set of functions
with domain(b) =t for each b € B. We say ¢ is consistent with respect to B if for
any x € t, for any finite By C B and for any ¢ such that ht(x) < ¢ < ht(t), there exist
infinitely many x’ € (¢), such that x’ > x and for any b;,b; € By, b1(x) = by(x) implies
bi(x') = by(x"). So p € P implies that ¢, is consistent with respect to B),.

For any p,q € P we define the order of P by letting p < ¢ iff

(1) g < ap, ty Senalp, kg Skp and U, C U,

(2) for any y € U,, b1 C by and f7 C f7,

For any 0 <k let

Po={pecP:U,C8}.

Then the identity embedding of Py into P is a complete embedding. For each p € P
we shall write p [Py = q if (ap,tp,kp) = (0,85, k4), Uy = Up,N O and for each y € U,
we have b) = b7 and ff = f].

Remark. In the definition of P the part ¢, is used for creating an w-distributive Aron-
szajn tree T. The part &, is used for creating a T-name of an w;-tree K. The part B,
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is used for adding k branches to X so that K becomes a Kurepa tree in the generic
extension by forcing with T. The part F}, is used for collapsing all cardinals between
wy and k.

For any ¢ € w;, y € x and €y, let
Dl={peP:a,>¢},
2 .
Dy ={peP:yel},
Dfm, ={p€P:ye U, and 5 € range( f})},

Lemma 11. The sets D}, D> and D} , are open dense in P.

Proof. It is easy to see that all three sets are open.

Given po€P. We need to find a p< pp such that p € D}. Pick an a,, > ¢ such that
ap=ap,. Let £, € T be such that k(1) = ap+1 and 1y, <ena?p. For each x € (25))s,,
choose a t, € 7 such that ht(t;) = oy + 1 and kp,(x) <endtx. For any x’ € ¢, x’ > x,
define k,(x') = ¢, | ht(x’) + 1 and define &, | ¢,, = kp,. Let U, = Up,,. For each
X € (tp)a,, let

{bFrx):y e Up} ={ym:n<i}

with y,’s being distinct, for some / < w. For each y, we choose a z, € (&), such
that y, < z,. Then for each x’ € t,, x’ > x and for each y € U, we define bJ(x") =
¥ € (tp)nxy such that y, < y < z, where bf(x) = y,. Also let bf ¢, = bJ°. For each
y € U, let ff be any extension of f7° to «, + 1 complying with Definition 10(f). It
is easy to see that p € PN D! and p< po.

Given po € P. We need to find a p< po such that p € D2. If y € U, let p = py.
Assume that y € U,,. If Uy, =0, then let 5] and f7 be any functions complying with
Definition 10(e) and (f), respectively. If U, # 0, then pick any y' € Up,, and let
b = b7, and let f be any function complying with Definition 10(f). Let the rest of
p be same as py. Then p € lPﬂD§ and p< po.

Given pyeP. We need to find a p< py such that p € Df;’y. Without loss of genera-
lity, we assume that p; € D.f. Let p< po be chosen as in the proof of the denseness
of D} with a, > ap, except that we require f;’(x,,) = 7. Then p € PN D], and
p<po. U

Lemma 12. P is w;-closed.

Proof. Let {p, : n € w} be a decreasing sequence in P. If {«,, : n € w} has a largest
element o = o, , then we can just let

ap =a, tp =tp,,05 kp =kp"0, Up = U va,,a

ncw
B, ={bl":y € Up,,n=no} and Fp = {fP" 1y € Up,,n=no}.

Then p is a lower bound of p,’s.
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Assume that o = | J,.,, ®p, is a limit ordinal. Let

new n
t= Uty k= Ukp and U= | U,.
n€w new new

For each y € U let
by =U{b) v € U}

and let

fr=U{f"vel}

ncw

For each x € ¢ and each finite set 4 C U we can choose a countable set of branches
{¢x,4n 1 1 € w} of t passing through x such that for each y € ¢, 4, and y >x, y is a
conservative extension of x with respect to 4. Now let a, = o and let

t,=tU{y:xet,4e[Ul"*ncw, and y = Uecy a1}
Let U, = U. For each y € U, let b/ be an extension of b, such that for each y € (p)a,
bl(y)=U{b(z):z €,z < y}.
For each y € U, let f be an extension of f, such that for each y € (¢,), )
T =U{f@):zetz<y}

Finally, let k, be an extension of k such that k,(y) € 7 for each y € (¢,)a, such that
ht(kp(y)) = ap + 1,

Ufk(z) :z € £,z < y} Senakp(y)
and
{62(y) 1y € Up} Chp(»).
It is easy to see that p is a lower bound of p,’s in P. [J

Lemma 13. P satisfies x-c.c..

Proof. Let {p, : n € k} CP. By a cardinality argument and 4-system lemma there is
an S Ck, |S| = k and there is a triple {0, fo, ko) such that for every n € S

((qu, tpu’ kpn> = (“0, to, k0>,

and {Up,, : n € S} forms a A-system with the root Up. Furthermore, we can assume
that for each y € U,

Py _ Py Py __ !
b =" and fP' = f7



Sh:563

R. Jin, S. Shelah! Annals of Pure and Applied Logic 85 (1997) 47-68 59

for any 5,7’ € S. Since there are at most (jw *|/)® sequences of length w of the
functions from #, to w;*, there are 7’ € S such that

{6y" :y € Uy \Up} and (B iy e Up, \Uo}
are same set of functions. It is easy to see now that the element
p = (%, to, ko, Up, U Up,,, Bp, UBp . Fp UFp,)
is a common lower bound of p, and p,. [
Lemma 14. All cardinals between w, and x in V are collapsed in V®.
Proof. Using F,-part of the conditions together with a density argument in P. O

Remark. By Lemmas 12-14 we have

VP = (2° = 0! = and 2* = k = wy).

Lemma 15. Let GC P be a V-generic filter and let Tg = |J{t, : p € G}. Then T
is an w-distributive Aronszajn tree in V[G].

Proof. It is obvious that T is an w;-tree. Suppose there is a py € P such that
po Ik B is a branch of Tg.

We construct py > p; = p> = --- such that (a, :n € w) is strictly increasing and
Pny1 Pz, € BN (tp, )a,,

op, and

n

for some z, € w?”". Let p be the lower bound of p,’s such that a, = |J
let p’ be same as p except that 1, = ¢,\{UJ
Pn’s. But now we have

new

hcwZn}. Then p' is still a lower bound of

P FBCt,.

Next we prove that T is w-distributive. Let Q@ = (T, <’) be the forcing notion
by reversing tree order (<’ = >7,). Given any 7 € 2¢ in V'P*@, It suffices to show
that T € V. We construct a decreasing sequence

{pPo,Xo0) = (p1,%1) = (P2, X2) = - -
in P % Q such that
{po,Xo) IF 7 is a function from o to 2,

Pn+1 I x, = x,
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for some %, € w;” and

(Pns1sXns1 IV i(n) =1,

for some /, € {0,1}. Let x = | J,, %, and let p be a lower bound of p,’s such that
%p = Upee %p, and x € 2,. Then (p,x) € P x Q and

gx)Fi=0o
for o = (Ig,l1,..y€2°in V. O

Lemma 16. Let GCP be a V-generic filter and let k¢ = \J{k, : p € G}. Let T
and Q be same as in Lemma 15. Suppose HCQ is a V[Gl-generic filter. Then
Ky ={kc(x): x € H} is a Kurepa tree in V[G)[H]

Proof. It is easy to see that Ky is an w-tree. For any y € « let
by=U{bl: peGandyec U}

Then b, is a function with domain 7. Let
Wy =U{byx): x e H}.

Then it is easy to see that W, is a branch of K. We need now only to show that ¥,
and W, are different branches for different y,y’ € x. Given distinct y and y' in x. Let

D}, ={peP:(Vx€t,la,)(3y € 1,)(y>x and bL(y) # bL(¥))}.

Claim 16a. The set D;".',, is dense in P.

Proof. Given p; € P. Without loss of generality, we assume that pg € Df,ﬂD%,. First,
we extend po to p’ such that

®p = oy, + L.

For each x € (¢p,).,, We add one extra successor node yx of x to (t)q, to form ¢,.

Let o, = oy, U, = Uy and let ff, = )f,’,’ for all y” € U,. By complying with
Definition 10 we arbitrarily extend &, to k, on ¢, and extend b;ﬁl, to b2, on ¢, for all
7' € U, except that we require b (yy) # b/(yx). Then p € PND; ., and p< po. This

ends the proof of the claim. [J

We need to prove W, and W, are different branches of Ky in V[G][H]. Suppose
x € H and

x Wy = W),:
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in V{G]. Let pp € G be such that x € ¢,,. By the claim we can find a p< py and
peG OD;",Y, such that a, > ht(x). Then we can choose y € f, and y > x such that
bf(y) # bh(y). Therefore

y Wy #E Wy,
which contradicts that

xkW,=Ww,. O

The proof of next lemma is probably the hardest part of this section.

Lemma 17. There are no Kurepa trees in VP.

Proof. Suppose
e T is a Kurepa tree.

Since P has k-c.c., there exists a regular uncountable cardinal 6 < x such that Tisa
Pg-name. Because of 2°' < k in V'Ps, there exists a set of P-names € = {¢g : B € x},
where ¢g’s are P-names of different branches of T in ¥'®\VP. We want to show that
VP k= T; is uncountable for some & € w,.

For each § € x with cof(B) = (2°)* we choose an elementary submodel Ag of
H(A) such that

(a) |%p] <2°,

(b) {T’(g’ P,ﬂ}U@gQ«[ﬁ,

(c) [U]<0 C 9y
We shall not distinguish a model from its base set. By the Pressing Down Lemma we
can find a stationary set

S'C{B e x:cof(B)=(2°"}

and a § € « such that for any f € S’ we have

UBnUpg) = B.
Then by the 4-System Lemma we can find an S C S’ such that |S] =,
{QIﬂ 1B e S}

forms a A-system with common root 8 and g N g C B for each f € S. Furthermore,
we can assume that for any f,’ € S there is an isomorphism kg g from g to Wy
such that hg g | B is an identity map. Note that ' UPyC B and Py € B. Note
also that for any f, ' € S we have hg e (B) = f'.

Let o = minS. In Ay, we want to construct inductively the sequences

{pn € Py :n € 0},

(ps € PNUp, 15 €29,

(Nn € 01 : 1 € W)
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and

(xs € 07 15 €2°9)
such that for any » € w and any s,s’ € 2<¢

(1) Pn+1t < pau and Ap, <O%p,.ys

(2) ps<py if s'Cs,

(3) ps I Po = pu,

(4) Mn <Mt

(5) x¢ < x5 if s’ Cs,

(6) nn—1 < ht(xs) <ny, if s €27,

(7) x; and x¢ are incompatible if s and s’ are incompatible,

(8) ps I xg € ég, for every s € 29,

(9) each function in {J,,. B,, has a copy in B, (note that (9) is stronger than that
‘tp, is consistent with respect to | J,cn Bp,’)-

We need to construct two more sequences and add three more requirements for all
the sequences along the construction. Let us fix an onto function j : @ — w X @ such
that j(n) = {a,b) implies a < n. Let m, 7, be projections with 7,({a,b)) = a and
n2({a, b)) = b for any pair {(a,b). Let

é,,:wr—wp"x([ U U_Y] w)
sE2"

and

Lniw— U U,
se2"

be two infinite-to-one onto functions for each n € w. Let e be a function with dom(e) =
o and for each n € @

e(n) = &n(jn(m(j(n))).

The functions &,’s, {,’s and e will be used for bookkeeping purpose. For s € 2" and
m<n let

Con=1{s €2":5Cs"}.
For any m,n € w, m < n define

Zh = {15 €2MUM) 5 € my(e(m)) N U, and 5" € C;,}
U{bP* 15 € 22Uy € U, and y = {g,(jimy)(i) for some i < n}.

Note that Z7 is finite. For each m,n € w, m < n, let
Yo =A{Vmi:m<i<n}

Then Z’s and Y)’s and other four sequences should satisfy three more requirements.
(10) ymm = mi(e(m)) and ym,; € (¢p,),, for m<i<n,
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(11) ymit1 is a conservative extension of y,,; with respect to Z,",,Jrl form<i<n,
(12) for any m < i < n either yp; < Ynn OF Vim; and y,,4 are incomparable.
Suppose for some / € w we have found

{(ph € Py:n<i),

(ps €PN Uy :s€2<,
(e € :n <),
(x; € 0™ 15 €2,
{28 :n<I,m<n}

and

{Y?:n<lm<n}.

Claim 17a. For any p € PNUp, and for any o € w, there exists an n € w\«, there
exist q,q0,q1 € P N Wp, and there exist xp,x| € w'l’, X9 # x1, such that q € Py,

g lPo=q:[Py=gq,

40,91 < p, each function in By, U B,, has a copy in By, and
g: - x; € ¢y,

fori=0,1.

Proof. Pick a f; € S\{fo} and let p’ = hg, g,(p). Notice that p and p’ are compatible
because the part of p not in B is completely moved away while the part in B is fixed.
We construct a common lower bound of p and p’. Let r = p [Py and let

¥ = (o, bty iy, Upr Byt Fp ),
where
O = Oy, by =1y, ke = ky, Uy = U, Uy,
By =B,UBy and F. =F,UF,.
Then ' < p, p’. Since
¥ I g, # gy,

then there exists an 7" < 7/, there exist 1 € w;\a and there exist xg,x; € w, xo # x|
such that

r' Ik x; € ég,

for i = 0,1. By adding in countably many new ordinals in 8 to U,» and using those
ordinals to index the copies of all functions in B,~ we can assume that for any y € U,
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there is a ' € U,» N8 such that b;" and b;:' are same functions. Let ¢ = "’ | Pg. Then
the following is true.

H(2) = (3g0 € P)(qo<P) A (90 [Po = g) A (Y € Uy,)
(37 € Up )% = b)) A(qo Ik X0 € ég,))-

Since Ap, is an elementary submodel of H(A), there exists a go € Ug, such that the
above sentence is true in Ag,. By the same reason we can find ¢; € P in Up, such
that

Up, (g1 <P A (g1 TPo=9q) AWy €Uy )3y € UpXby' =b3) A(g) Ik x1€é,).
By the fact that

kg g(B1) = Bo,  hp.p(P)=pP kg pld) =4,
hg 5(Po) =Po,  hg p(x1)=x1, kg, p5(Cs) = Cpo
and letting kg, 5,(¢7) = q1 we have
Wp, E (@1 <PIN (@ 1Pa=q) A(VyEU, )(FyY €Up) (B = bl) Algr I+ x1 € Eg,).

Clearly, every function in B, U B, has a copy in B,. It is easy to check that
1,9,90,91,%0,x) are desired elements.

Claim 17b. Given p € P and po = p | Py. Suppose every function in B, has a copy
in By, Let qy € Py be such that qo< po. Then there is a q € P such that q< p,
q[Ps < go and U,\0 = U,\0.

Proof. Let
g = Ogy, ty = g ky = kg, U, = U, UU,.

For every y € Uy, let b7 = b and let fy = f*. Suppose y € U,\Uj,,. Let fy be
any extension of f;¥ on «, + 1 complying with Definition 10(f). For 5] we first pick
a y' € Uy, C Uy, such that b) = b/’ Then let b] = b%. Clearly, g is what we want.

We now want to apply Claims 17a and 17b to obtain p;, {ps : s € 2'}, n; and
{x; : s € 2'} in the inductive construction. Let 2/ = {s1,52,...,5,} and let p;_, = ¢°.
For n=1,2,...,2' we apply Claims 17a and 17b to construct ¢", g5, for i = 0,1, 7,
and x,,4 for i = 0,1, inductively so that for any n <2’ and any i = 1,2

(1) qn an+l ,

(2) 95,1 < s,

(3) 15, € 1 \mi—1,

4) Xs, i € w’11:n and Xs, 0 7é Xs,"15

5) s, I X5, € éﬁo-
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Let p; = g% . Let
m =max{n, :n=12,..,2} +1.
Now it is easy to apply Claim 17b again to extend g, to ps,~ such that
Ps,0 [Po = ps, 1 [Ps = pu.

We need also define Z.’s and Y’s for all m < I. Note that all Z’s are already defined.

Let y;,; = mi(e(!)). For m <1 we choose ym,; € (1, )a,, such that yn ; is a conservative

extension of y,, ;—; with respect to Z,ﬁ, and for any m < i </ either y,,; < y;_1,;—1 or

Yi-1,1 is incompatible with yy, ;. This can be done because y;..; ;—; has infinitely many

conservative extension with respect to Z,’_1 at next level. This ends the construction.
Now we conclude the lemma. For each m € w let

Ym = U Ym,i-

icw

We want to define p,, and p, for each 7 € 2%, Given 7 € 2°. Let

tpw = tl’r = ( U tpn) U{J’m ‘meg (l)}.

nEw

Clearly, t,, € 7. Let

apm = apr = U apn'

new
Then ht(tp,) = ap, + 1. Let k' = U, ¢, kp, and let U = J;cy<w Up,. Let
Upr = U Uprl‘n'

ncw

For each y € U, let

by =U{by" 17 €U, }

and let
bl =bU {<y,,,, U b;(y)> imée w}
Y<Ym

Let
f7 = (UL v € Up,, U {(0,,0) ).

The only things we have not defined are k,, and k, ’s. Actually we need only k,,
and let k, = k,, for every t € 2. First let

kpm f U tpn = k,'

ncw
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For every m € @ we want to define k,, (ym) € 7 so that
ht(kp,(ym)) = ap, + 1,
U kl()’) <endkpm(ym)
Y<¥n

and
{Bf(ym) 1 m € 0,7 € 27} C(kp, ), -

For doing this we need only to check that the set {6} (yn) : m € w,7 € 2°} is at
most countable. This is guaranteed by Definition 10(g) and by the construction of Z};’s
and Y"’s. Since for each y € U and m € o, there exists an n € w such that for any
s, €2 with I >nand sn=ys|n we have bJ*(ym 1) = b}* (ym1). So for any
7,7 € 2 we have 7 [n = ' | n implies b (ynm) = bY” (ym). Hence for each y € U
the set

{6y (ym) 1 m € 0,7 €27}

is at most countable.
Up to this stage, we have defined p,, and p. such that p, is a lower bound of p,’s,
p: is a lower bound of p;,’s and p. [Py = p, for each 7 € 2¢. Let

o0=U
ncw
Given 7 € o. Let
x= U X
new

Then x; € w} and
pelkx. €ép,NTs

Note that {x, : T € 2”} is an uncountable set. Let Gy C Py be a V-generic filter such
that p, € Gy. Then T € V[Gg] because T is a Pp-name. Note also that the identity
map from Py into P is a complete embedding. Then

V[Gg] }= x. € Ts

because V[Gp][H] = V[G] for some V{Ggl-generic filter H and some V-generic filter
G C P such that p, € G. (See [11, p. 244 (D4)] for the details.) So 75 is uncountable
in V[Gy]. This contradicts the assumption that T is a Kurepa tree in ¥®. O

3. Questions

We would like to ask some questions.

Question 1. Suppose our ground model is the Lévy model defined in the first section.
Can we find a proper forcing notion such that the forcing extension will contain Kurepa
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trees? If the answer is ‘no’, then we would like to know if there are any forcing notions
of size < w; which preserve w; such that the generic extension contains Kurepa trees?

Question 2. Suppose the answer of one of the questions above is “Yes’. Is it true that
given any model of CH, there always exists an -preserving forcing notion of size
< w, such that forcing with that notion creates Kurepa trees in the generic extension?

Question 3. Does there exist a model of CH, plus no Kurepa trees, in which there is
a c.c.c.-forcing notion of size < w; such that forcing with that notion creates Kurepa
trees in the generic extension? If the answer is ‘Yes’, then we would like to ask the
same question with c.c.c. replaced by one of some nicer chain conditions such as
N, -caliber, Property X, etc.
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