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Volume 38, Number 3, Sept. 1973

WEAK DEFINABILITY IN INFINITARY LANGUAGES

SAHARON SHELAH

Abstract. We shall prove that if a model of cardinality « can be expanded to a
model of a sentence ¢ of L;+ , by adding a suitable predicate in more than « ways,
then, it has a submodel of power . which can be expanded to a model of ¢ in >u
ways provided that A, x, u satisfy suitable conditions.

§1. Introduction. By Beth’s theorem [3] and Svenonius [20] and Kueker [22].

THEOREM. Let L be a language, P a predicate (one place w.l.o.g.), T a theory in
L + P, nanatural number ; then the following conditions are equivalent for « > |L| +
Ro. ((ID, is included only if T is complete.)

(I)c For every L-model M of cardinality «, the number of P < |M| such that
(M,P)ET is <n.

(1), For every (L + P)-model (M, P) of T of cardinality «, the number of images
of P under automorphisms of M is <n.

(IIl) There are formulas (%, )L, i = 1,---, n, and H(§) such that

T+ (99)(#7) > V. (Wlox, ) = P@]) A GG

If we ignore (I1I) the theorem still tells us that the (I), are equivalent for « >
|L| + xm and (I)x « (II))C
From Chang [4], Makkai [9], Reyes [12] and Shelah [16], the following theorem

arises:

THEOREM. In the previous theorem’s notation, the following conditions are equival-
ent:

(I)x For every L-model M of cardinality « there are <« P < |M| such that
(M,P)ET.

(II), For every (L + P)-model (M, P) of T of cardinality «, the number of images of
P under automorphisms of M is <«.
(III) There are formulas o(x,y)€e L, i = 1, 2, such that

T+ @I, 7) = PO

In this case, if we ignore (III), the theorem is not trivial. We have a weak gener-
alization of the equivalence of (I),, (II),, « > |L| + R,, to infinitary languages.

A complete list appears in Shelah [17] (correct there K; to K in the first sentence
of the definition).

We shall give one of these weak generalizations.

For negative results on the generalization of Craig’s and Beth’s theorems for
infinitary languages see Malitz [10] and Friedman [5]; for positive results, see
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400 SAHARON SHELAH

Lopez-Escobar [19] and Malitz [10].

The theorem we shall prove is

MAIN THEOREM 1. Let ¢ be a sentence in (L + P)\+ o, |L| < A, M an L-model
of cardinality R, ; such that

I{P:PQ lMl, (M’P) l=‘/’}l > xa+8'

Assume further that B < w,, R, has cofinality Ry, p, = A, p = =, opn, and
k< Ry =>wn < R, forn < w.

Then M has an elementary submodel N of cardinality p such that

[(P:P < NI, (N, P) F 3] = .

Another theorem, which we shall not prove, as its proof is simpler is

THEOREM. Let (L + P)r+,,, M an L-model of cardinality « such’ that
{P:P < |M|,(M,P)Ey}| > k. Assume further that u > A, k* = «. Then M has an
elementary submodel N of cardinality p such that |{P: P < |N|, (N, P) Ey}| > p¥o.

In this context it is interesting to remember the following theorem of Kueker
[7] (we omit the part on automorphism).

THEOREM. [If e (L + P),,, ., then the following conditions are equivalent:

(I) For every countable L-model M,
{P: (M, P)Ey}| < R,.
(I1) For every L-model M,
{P: (M, P)E g} < [M] + R,.

(III) There are i(x, J) € Ly, , such that y b \/, < ,(3P)(Vx)[p(x, §) = P(x)].

In proving our theorem for R, , ; rather than for X,, we use reasoning similar to
Baumgartner [l], [2] and Shelah [13], [14, Lemma 3.3] and [15, §3.3]. Another
example is

THEOREM. If T is a complete theory, |T| = A*, X regular (for simplicity) and
every n-type of cardinality < X can be extended to complete n-type of cardinality < A,
then T has a model in which every finite sequence realizes a complete type of car-
dinality <A.

NoTATION. We will not distinguish strictly between a predicate, a relation and
the set (for a one-place relation). [M | is the universe of M, | 4| the cardinality of 4;
A, u, « cardinals, o, B, v, i, j, k, £ ordinals, & a limit ordinal, », m natural numbers.

A type is a set of formulas ¢(x,, - -+, x,,) (n fixed); a sequence @ in a model M
realizes the type if M F ¢[a] for every ¢(X) in the type.

§1. A counterexample and conjecture. We should naturally ask whether the
restrictions of Theorem | are necessary. For this observe the following example:
ExAMPLE 1. Let ¢ € (L + P)y, x, be a sentence saying that < is a partial order
of a tree, the order-type of every branch is <w,;, and P is a branch of order-type
wi.
That is
b=Wxyz)[x <yAy<z—x<z] A Wx)[-x < x]
ANExp)y<xAzx—>z<yvVvy<zvys=z|
A (Vx)[ayw! x/Ja(x)] A (XP[Px)APY)—>x<yVy<xVy=x]

A (Yxp)lx <y A P(y) = P(x)] A a/(\w ! @X[Px) A $o(x)],
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wherc PYo(x) = =@yXy < x); for 8 a limit ordinal
Po(x) = A\ Iy < x A ()] A (Vy)[y <x— “\</6 %(,v)],

Yor1(X) =AMy < x A =@2)Ny <z Az < x) A (D).

It is easy to see that there is a model M of cardinality « for which
KP: P < |M|, (M, P)EJ}| > «iff there is a tree of height w; with « nodes and >«

branches of height (= order-type) w,. Assuming GCH, this is equivalent to X, =

cf () = the cofinality of x. Moreover, if X, is a supercompact cardinal in ¥ which
satisfies GCH, by Silver [18] there is cardinal-preserving extension ¥’ of ¥ such
that X, is still a measurable cardinal and 2% > R, .

By Prikry [11] we can extend V' to ¥ such that the cardinals are preserved, the
cofinality of X, is 8,, and R, is a strong limit cardinal (x < X, — 2* < X,). So in
V”* there is a model M of cardinality X, ,,, such that |{P: P < |M|, (M, P) E y}} >
R,ro, Rio=2%>RK ., >K,; but no strong limit cardinal of cofinality
w satisfies this. This implies that the restrictions in our main theorem are
natural. It would be nice to find a corresponding syntactical condition and to
generalize the theorem to cardinals of cofinality, e.g., X;, but I am pessimistic. The
following conjecture, however, which is from the “other extreme” of the question,
seems more hopeful:

CoNJECTURE. If ye(L + P),+,,, there is an L-model M of cardinality «,
"N = i (u(A)—the Hanf number of sentences of L,+_,,) such that

KP:P< |M|,(M,P)E4}| > «,

then for every u > A there is an (L + P)-model (M, P) of cardinality u, such that P
has > p images under automorphisms of M.

It is interesting that this situation has a nontrivial corresponding first-order
question. Let L* = L + {P;: i < iy}, and let T be a theory in L*. Let K be the class
of infinite cardinals A > [L*| such that there is an L-model M of cardinality A,
which is the reduct of > A L*-models of 7. What can K be? It is not hard to check
that either K = {A: X > |L*| + X}, or A%l = X > |L*| + R, implies A ¢ K. In the
second case, assuming GCH, there is a set I of infinite cardinals < |i,| such that
Ae Kiff X > |L*| + X, and cf() € I. (Instead of GCH, we can look only at strong
limit cardinals.) Small changes (and combinations) of our example show that this
result cannot be improved (only if we demand T to be complete; for big I, the
answer is not clear to me). On a related problem see [21, p. 330, Conjecture 4E].

§2. Combinatorial lemmas.

LemMA 1. Ifcf(R,) = R, B < wy, |4| = R, ; then there is a family F of subsets
of A each of cardinality <R,, |F| = R, ,; such that every subset of A of cardinality
<R, is included in a union of countably many members of the family.

REMARK. If 8 < w, R, ., countable unions are sufficient.

ProOF. We shall prove it by induction on 8. W.lLo.g. 4 = X, ,.

For B = 0, as cf(R,) = R, there are x, < R, Ry = Un<orn. Let F = {k,:n < w}.

Suppose we have proved, for each B, B < By < w;. Then, for each &, R, < ¢ <
R, . 5., Clearly |¢] = R, ; for some 0 < B < B,; hence there is a family F; of sub-
sets of £, each of cardinality < X,, such that each subset of ¢ of cardinality <X, is
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included in a countable union of sets from Fy. Let F = U{F:: R, < £ < R, 4}
Clearly F satisfies our demands.

LEMMA 2. If F is a family of subsets of A, |F| > |A|, 2° < |A|, then there is
B < A, |B| = « and distinct subsets P; of B (i < «) such that, for each i < «,

|{P:PeF,PNB=P}| > |4|

ProoF. First let « be regular. Suppose there is no such B, P;. Then there is no
such B with |B| < «. So, forany B< 4, |B| < «,

{P:P< B,|{Q: Qe F,Q N B =P} > |A]}| <«

Define B,, i < «, by induction. B, = @ and, for a limit ordinal 8, B, = U;<sB:. If
B, is defined, then for each P < B, for which [{Q: Q€ F, Q N B; = P}| > |A4]|
there is ab € 4 such that |[FT,| > |4|, |F§ | > |A| where

FPi={Q:ab€QeF,QNB, =P}, F{,={Q:ab¢QcF, QN B =P}

We now get B, from B; by adding all the ab. Thus B, is defined, |B,| < «. Let
{P;: i < iy} be the set of P < B, for which |[{Q: Q€ F, Q N B, = P}| > |4|. As «
is regular there is k < « such thatfori < j < ip, Py N By # P; N By. If af g, € Po,
then as | F{4"B¢| > |A| thereis Qo = By, suchthat Qo N B, = Py N By, af, np, ¢ Qo
and |{Q: Q€ F, QN B, = Qg}| > |4|. So there should be i < i, for which
Q, = P, but by the definition of k and Q, this leads to contradiction. As a§ g, ¢
P, gives a similar contradiction, the case for « regular is proved.

Now we are left with the case « is singular. Then for any A < « there is suitable
B,. B = |Ux<,B, is the desired B.

§3. Proof of the main theorem. W.l.o.g. u, is an increasing sequence and u, is
regular. By adding relations R, for every subformula ¢ of ¢ we get

(i) there is a language (L, + P) = (L + P), |L;| < A, a (first-order) theory T}
in (L, + P), and a set of types T in (L, + P), |[I'| < A, such that

(A) if (M, P)is an (L + P)-model of , and we define R, = {a: (M, P) F ¢[al},
then (M, ---, R,,- -+, P) (p runs on subformulas of ) is an (L, + P)-model of T;
omitting every type in I';

(B) if (N, P)is an (L, + P)-model of T; U {R;} (R is a zero-place relation =
propositional constant) which omits every type in I' then (¥, P) F .

Now we can add to (L, + P) its Skolem functions and get

(ii) thereis a language (L, + P) 2 (L, + P),|L,| < A and a (first-order) theory
T, = T, in (L, + P) with Skolem functions such that every (L, + P)-model of T}
can be expanded to an (L, + P)-model of 7.

From now on M is the L-model given in the theorem. For P = |M| such that
(M, P) ks let N; be the corresponding (L, + P)-model of T, omitting every type in
T, and if (M, P) F —y, let N, = @. We know that K = {P: P = |M|, Np # @}
has cardinality > &, ., = |M|. Fory < w, let I, be the set of sequences of ordinals
n of length y = I(x), such that y(n) < p,.

Now we define, by induction on n, 4, < |M|, P, < A4,, K, = KforneI,, and
B(P,n,i) < |M| for Pe K,, i < w, such that

(1) 4, < |M|’ |An‘ = Hn»

(2) fornel,, P, < A, such that, fory # r€l,, P, # P,
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(3) for nel,, K,c {P:PeK,PN A, =P}, |K,| >X,,, and if m < n then
K, = Kyin [7I|m is <n(0), - - -, n(m — Ml
(4) for every nel,, PeK,, i < w, B(P,n,i) belongs to F (from Lemma 1)
(hence |B(P, 7, i)| < R,) and the Skolem-hull of 4, in Np, Hull(4,, Ny), is in-
cluded in J; <,B(P, 1, i),
(5) ifm < n,i <n, P, Pe K,,nel, then
B(Py,n|m, i) = B(Pg, n|m,i) and
Hull(4,,, Np,) N B(Py, n|m, i) = Hull(4,, Np,) N B(Py, n|m, i),
6)ifm+1<ni+1<n, PeK,, nel,then Hull(4,, Np) N B(P, n|m, i) <
A,
(7) if Py, P, € K,, n € I,,, @ a finite sequence from 4,, ¢(X) a formula in (L, + P)
then
(A) Np, Fgla]l < Np, F glal,
(B) for every function symbol fe (L, + P)and i < w,

fNe(@) € B(Py, 1, 1) < f772(a) € B(P,, 7, ).

For n = 0 there is no problem so suppose we have defined up to n and we want
to define for n + 1. Let

A¥ = 4, v U{Hull(4,,, Np) " B(P,ylm,i):i < n,m < n,mel, PeK,}

(this is for satisfying (6), . ).

By condition (5), clearly |A¥| = u,. By Lemma 2 for each 7 € I, there is a set
A¥ < |M|, |A¥| = un ., and distinct sets P* = A¥, for i < p, ., such that

[{P:Pe K,, PN AF = P'}|> R, .,

and i < j < pp,— P' # P

Define

Apsr = AF 0 U 4F

nely

Clearly |A4,.1| = pn+1 and conditions (1),.:—(6),,, are satisfied. For ne I,

[ < poyqlet

Ki~g, = {P:Pe K, PN AF = P

So |K}| > N, foreach reI,,,. Now for each Pe K} (r € I,,,,) by Lemma 1, we
can define B(P, r,i)€ F for i < w such that Hull(4, ,,, Np) € U;<oB(P, T, i).
This will assure us that condition (4), ,; will be satisfied. Now for 5 € I,, . ; the num-
ber of possible sequences {B(P, n|m, i): m < n,i < n} for Pe K, is <|F|"*V* =
R, +s < |K}. Hence there is K2 < K}, |K2| > 8, such that for Py, P, K2,
i <n,m<n, B(P,n|m, i) = B(Ps, n|m, i). This will partly assure (5),+;. Simi-
larly as | B(P, n|m, i)|*» < X, [because B(P, n|m, i) € F]and 2! < R, we can find
K, < K2, |K,| > R,,, so that also (5),,; and (7),,, will be satisfied. This com-
pletes the inductive definition.

Define 4 = |, <wA4., and let N be the submodel of M with universe 4. Now for
each 7y € I, we define an expansion N" of N to an (L; + P)-model by the following:
If a is a sequence from A, ¢(X) an atomic formula in (L, + P), then N" k gp[a] iff for
every big enough n < w and for every P € K., Np F ¢[al.

Using (4), (5), (6), (7) we can prove inductively that this holds for every
pe(Ly + P). [Notice that if @ is from A4,, f a function symbol then, for each
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P e K,,, by (4), there is i = i(P) such that f¥»(a) € B(P, y|n, i); and by (7)(B),
i(P) = i, for each P € K»; hence by (6) forevery P € K,ju (m = iy + 2, m > n + 2),
SVe(@) € An, and so by (7)(A), there is b € A4,, such that Ny k f(@) = b for every
Pe Kyn.]
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