

Weak Definability in Infinitary Languages Author(s): Saharon Shelah Source: *The Journal of Symbolic Logic*, Vol. 38, No. 3 (Dec., 1973), pp. 399-404 Published by: <u>Association for Symbolic Logic</u> Stable URL: <u>http://www.jstor.org/stable/2273033</u> Accessed: 21/06/2014 00:58

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

http://www.jstor.org

THE JOURNAL OF SYMBOLIC LOGIC Volume 38, Number 3, Sept. 1973

WEAK DEFINABILITY IN INFINITARY LANGUAGES

SAHARON SHELAH

Abstract. We shall prove that if a model of cardinality κ can be expanded to a model of a sentence ψ of $L_{\lambda^+,\omega}$ by adding a suitable predicate in more than κ ways, *then*, it has a submodel of power μ which can be expanded to a model of ψ in $>\mu$ ways provided that λ, κ, μ satisfy suitable conditions.

§1. Introduction. By Beth's theorem [3] and Svenonius [20] and Kueker [22].

THEOREM. Let L be a language, P a predicate (one place w.l.o.g.), T a theory in L + P, n a natural number; then the following conditions are equivalent for $\kappa \ge |L| + \aleph_0$. ((II)_{κ} is included only if T is complete.)

(I)_{κ} For every L-model M of cardinality κ , the number of $P \subseteq |M|$ such that $(M, P) \models T$ is $\leq n$.

(II)_{κ} For every (L + P)-model (M, P) of T of cardinality κ , the number of images of P under automorphisms of M is $\leq n$.

(III) There are formulas $\varphi_i(\bar{x}, \bar{y}) \in L$, $i = 1, \dots, n$, and $\psi(\bar{y})$ such that

$$T \vdash (\forall \bar{y}) \Big(\psi(\bar{y}) \to \bigvee_{i=1}^{n} (\forall x) [\varphi_i(x, \bar{y}) \equiv P(x)] \Big) \land (\exists \bar{y}) (\psi \bar{y}).$$

If we ignore (III) the theorem still tells us that the $(I)_{\kappa}$ are equivalent for $\kappa \ge |L| + \aleph_0$, and $(I)_{\kappa} \leftrightarrow (II)_{\kappa}$.

From Chang [4], Makkai [9], Reyes [12] and Shelah [16], the following theorem arises:

THEOREM. In the previous theorem's notation, the following conditions are equivalent:

(I)_{κ} For every L-model M of cardinality κ there are $\leq \kappa P \subseteq |M|$ such that $(M, P) \models T$.

(II)_{κ} For every (L + P)-model (M, P) of T of cardinality κ , the number of images of P under automorphisms of M is $\leq \kappa$.

(III) There are formulas $\varphi_i(x, \overline{y}) \in L$, i = 1, 2, such that

$$T \vdash \bigvee_{i=1}^{2} (\exists \bar{y}) (\forall x) [\varphi_{i}(x, \bar{y}) \equiv P(x)].$$

In this case, if we ignore (III), the theorem is not trivial. We have a weak generalization of the equivalence of $(I)_{\kappa}$, $(II)_{\kappa}$, $\kappa \ge |L| + \aleph_0$, to infinitary languages.

A complete list appears in Shelah [17] (correct there K_1 to K in the first sentence of the definition).

We shall give one of these weak generalizations.

For negative results on the generalization of Craig's and Beth's theorems for infinitary languages see Malitz [10] and Friedman [5]; for positive results, see

Received May 2, 1972.

399

© 1973, Association for Symbolic Logic

SAHARON SHELAH

Lopez-Escobar [19] and Malitz [10].

The theorem we shall prove is

MAIN THEOREM 1. Let ψ be a sentence in $(L + P)_{\lambda^+,\omega}$, $|L| \leq \lambda$, M an L-model of cardinality $\aleph_{\alpha+\beta}$ such that

 $|\{P:P\subseteq |M|, (M, P)\models\psi\}| > \aleph_{\alpha+\beta}.$

Assume further that $\beta < \omega_1$, \aleph_{α} has cofinality \aleph_0 , $\mu_n \ge \lambda$, $\mu = \sum_{n < \omega} \mu_n$, and $\kappa < \aleph_{\alpha} \Rightarrow \kappa^{\mu_n} < \aleph_{\alpha}$ for $n < \omega$.

Then M has an elementary submodel N of cardinality μ such that

 $|\{P: P \subseteq |N|, (N, P) \models \psi\}| \ge \mu^{\aleph_0}.$

Another theorem, which we shall not prove, as its proof is simpler is

THEOREM. Let $\psi \in (L + P)_{\lambda^+, \omega}$, M an L-model of cardinality κ such that $|\{P: P \subseteq |M|, (M, P) \models \psi\}| > \kappa$. Assume further that $\mu \ge \lambda, \kappa^{\mu} = \kappa$. Then M has an elementary submodel N of cardinality μ such that $|\{P: P \subseteq |N|, (N, P) \models \psi\}| \ge \mu^{\aleph_0}$.

In this context it is interesting to remember the following theorem of Kueker [7] (we omit the part on automorphism).

THEOREM. If $\psi \in (L + P)_{\omega_1, \omega}$ then the following conditions are equivalent: (I) For every countable L-model M,

 $|\{P: (M, P) \models \psi\}| \leq \aleph_0.$

(II) For every L-model M,

 $|\{P: (M, P) \models \psi\}| \leq ||M|| + \aleph_0.$

(III) There are $\varphi_i(x, \bar{y}) \in L_{\omega_1, \omega}$ such that $\psi \models \bigvee_{i < \omega} (\exists \bar{y}) (\forall x) [\varphi_i(x, \bar{y}) \equiv P(x)]$.

In proving our theorem for $\aleph_{\alpha+\beta}$ rather than for \aleph_{α} , we use reasoning similar to Baumgartner [1], [2] and Shelah [13], [14, Lemma 3.3] and [15, §3.3]. Another example is

THEOREM. If T is a complete theory, $|T| = \lambda^+$, λ regular (for simplicity) and every n-type of cardinality $< \lambda$ can be extended to complete n-type of cardinality $< \lambda$, then T has a model in which every finite sequence realizes a complete type of cardinality $< \lambda$.

NOTATION. We will not distinguish strictly between a predicate, a relation and the set (for a one-place relation). |M| is the universe of M, |A| the cardinality of A; λ , μ , κ cardinals, α , β , γ , *i*, *j*, *k*, ξ ordinals, δ a limit ordinal, *n*, *m* natural numbers.

A type is a set of formulas $\varphi(x_1, \dots, x_n)$ (*n* fixed); a sequence \bar{a} in a model *M* realizes the type if $M \models \varphi[\bar{a}]$ for every $\varphi(\bar{x})$ in the type.

§1. A counterexample and conjecture. We should naturally ask whether the restrictions of Theorem 1 are necessary. For this observe the following example:

EXAMPLE 1. Let $\psi \in (L + P)_{\aleph_2, \aleph_0}$ be a sentence saying that < is a partial order of a tree, the order-type of every branch is $\leq \omega_1$, and P is a branch of order-type ω_1 .

That is

$$\begin{split} \psi &= (\forall xyz)[x < y \land y < z \to x < z] \land (\forall x)[\neg x < x] \\ &\land (\forall xyz)[y < x \land z < x \to z < y \lor y < z \lor y = z] \\ &\land (\forall x) \begin{bmatrix} \bigvee_{\alpha < \omega_1} \psi_{\alpha}(x) \end{bmatrix} \land (\forall xy)[P(x) \land P(y) \to x < y \lor y < x \lor y = x] \\ &\land (\forall xy)[x < y \land P(y) \to P(x)] \land \bigwedge_{\alpha < \omega_1} (\exists x)[P(x) \land \psi_{\alpha}(x)], \end{split}$$

400

where $\psi_0(x) = \neg(\exists y)(y < x)$; for δ a limit ordinal

$$\psi_{\delta}(x) = \bigwedge_{\alpha < \delta} (\exists y) [y < x \land \psi_{\alpha}(y)] \land (\forall y) [y < x \rightarrow \bigvee_{\alpha < \delta} \psi_{\alpha}(y)],$$

$$\psi_{\alpha+1}(x) = (\exists y) [y < x \land \neg (\exists z) (y < z \land z < x) \land \psi_{\alpha}(y)].$$

It is easy to see that there is a model M of cardinality κ for which $|\{P: P \subseteq |M|, (M, P) \models \psi\}| > \kappa$ iff there is a tree of height ω_1 with κ nodes and $> \kappa$ branches of height (= order-type) ω_1 . Assuming GCH, this is equivalent to $\aleph_1 = cf(\kappa) =$ the cofinality of κ . Moreover, if \aleph_{α} is a supercompact cardinal in V which satisfies GCH, by Silver [18] there is cardinal-preserving extension V' of V such that \aleph_{α} is still a measurable cardinal and $2^{\aleph_{\alpha}} > \aleph_{\alpha+\omega_1}$.

By Prikry [11] we can extend V' to V" such that the cardinals are preserved, the cofinality of \aleph_{α} is \aleph_0 , and \aleph_{α} is a strong limit cardinal ($\kappa < \aleph_{\alpha} \rightarrow 2^{\kappa} < \aleph_{\alpha}$). So in V" there is a model M of cardinality $\aleph_{\alpha+\omega_1}$ such that $|\{P: P \subseteq |M|, (M, P) \models \psi\}| > \aleph_{\alpha+\omega_1}, \aleph_{\alpha}^{\aleph_0} = 2^{\aleph_{\alpha}} > \aleph_{\alpha+\omega_1} > \aleph_{\alpha};$ but no strong limit cardinal of cofinality ω satisfies this. This implies that the restrictions in our main theorem are natural. It would be nice to find a corresponding syntactical condition and to generalize the theorem to cardinals of cofinality, e.g., \aleph_1 , but I am pessimistic. The following conjecture, however, which is from the "other extreme" of the question, seems more hopeful:

CONJECTURE. If $\psi \in (L + P)_{\lambda^+,\omega}$, there is an L-model M of cardinality κ , $\kappa^{\mu(\lambda)} = \kappa (\mu(\lambda))$ —the Hanf number of sentences of $L_{\lambda^+,\omega}$ such that

$$|\{P:P\subseteq |M|, (M, P)\models\psi\}| > \kappa,$$

then for every $\mu \ge \lambda$ there is an (L + P)-model (M, P) of cardinality μ , such that P has $>\mu$ images under automorphisms of M.

It is interesting that this situation has a nontrivial corresponding first-order question. Let $L^* = L + \{P_i: i < i_0\}$, and let T be a theory in L^* . Let K be the class of infinite cardinals $\lambda \ge |L^*|$ such that there is an L-model M of cardinality λ , which is the reduct of $> \lambda L^*$ -models of T. What can K be? It is not hard to check that either $K = \{\lambda: \lambda \ge |L^*| + \aleph_0\}$, or $\lambda^{it_0 i} = \lambda \ge |L^*| + \aleph_0$ implies $\lambda \notin K$. In the second case, assuming GCH, there is a set I of infinite cardinals $\le |i_0|$ such that $\lambda \in K \text{ iff } \lambda \ge |L^*| + \aleph_0$ and $cf(\lambda) \in I$. (Instead of GCH, we can look only at strong limit cardinals.) Small changes (and combinations) of our example show that this result cannot be improved (only if we demand T to be complete; for big I, the answer is not clear to me). On a related problem see [21, p. 330, Conjecture 4E].

§2. Combinatorial lemmas.

LEMMA 1. If $cf(\aleph_{\alpha}) = \aleph_{0}, \beta < \omega_{1}, |A| = \aleph_{\alpha+\beta}$ then there is a family F of subsets of A each of cardinality $< \aleph_{\alpha}, |F| = \aleph_{\alpha+\beta}$ such that every subset of A of cardinality $< \aleph_{\alpha}$ is included in a union of countably many members of the family.

REMARK. If $\beta < \omega$, $\aleph_{\alpha+\beta}$ countable unions are sufficient.

PROOF. We shall prove it by induction on β . W.l.o.g. $A = \aleph_{\alpha+\beta}$.

For $\beta = 0$, as $cf(\aleph_{\alpha}) = \aleph_0$, there are $\kappa_n < \aleph_{\alpha}, \aleph_{\alpha} = \bigcup_{n < \omega} \kappa_n$. Let $F = \{\kappa_n : n < \omega\}$. Suppose we have proved, for each β , $\beta < \beta_0 < \omega_1$. Then, for each ξ , $\aleph_{\alpha} \leq \xi < \aleph_{\alpha+\beta_0}$, clearly $|\xi| = \aleph_{\alpha+\beta}$ for some $0 \leq \beta < \beta_0$; hence there is a family F_{ξ} of subsets of ξ , each of cardinality $< \aleph_{\alpha}$, such that each subset of ξ of cardinality $< \aleph_{\alpha}$ is SAHARON SHELAH

included in a countable union of sets from F_{ξ} . Let $F = \bigcup \{F_{\xi} : \aleph_{\alpha} \leq \xi < \aleph_{\alpha+\beta_0}\}$. Clearly F satisfies our demands.

LEMMA 2. If F is a family of subsets of A, |F| > |A|, $2^{\kappa} \le |A|$, then there is $B \le A$, $|B| = \kappa$ and distinct subsets P_i of B ($i < \kappa$) such that, for each $i < \kappa$,

$$|\{P: P \in F, P \cap B = P_i\}| > |A|$$

PROOF. First let κ be regular. Suppose there is no such B, P_i . Then there is no such B with $|B| \leq \kappa$. So, for any $B \subseteq A$, $|B| \leq \kappa$,

$$|\{P: P \subseteq B, |\{Q: Q \in F, Q \cap B = P\}| > |A|\}| < \kappa.$$

Define B_i , $i \le \kappa$, by induction, $B_0 = \emptyset$ and, for a limit ordinal δ , $B_{\delta} = \bigcup_{i < \delta} B_i$. If B_i is defined, then for each $P \subseteq B_i$ for which $|\{Q: Q \in F, Q \cap B_i = P\}| > |A|$ there is $a_P^i \in A$ such that $|F_{1,i}^P| > |A|$, $|F_{2,i}^P| > |A|$ where

 $F_{1,i}^{P} = \{Q : a_{P}^{i} \in Q \in F, Q \cap B_{i} = P\}, \quad F_{2,i}^{P} = \{Q : a_{P}^{i} \notin Q \in F, Q \cap B_{i} = P\}.$

We now get B_{i+1} from B_i by adding all the a_P^i . Thus B_{κ} is defined, $|B_{\kappa}| \leq \kappa$. Let $\{P_i: i < i_0\}$ be the set of $P \subseteq B_{\kappa}$ for which $|\{Q: Q \in F, Q \cap B_{\kappa} = P\}| > |A|$. As κ is regular there is $k < \kappa$ such that for $i < j < i_0, P_i \cap B_k \neq P_j \cap B_k$. If $a_{P_0 \cap B_k}^k \in P_0$, then as $|F_{2,i}^{P_1 \cap B_k}| > |A|$ there is $Q_0 \subseteq B_k$, such that $Q_0 \cap B_k = P_0 \cap B_k, a_{P_1 \cap B_k}^k \notin Q_0$ and $|\{Q: Q \in F, Q \cap B_k = Q_0\}| > |A|$. So there should be $i < i_0$ for which $Q_0 = P_i$, but by the definition of k and Q_0 this leads to contradiction. As $a_{P_0 \cap B_k}^k \notin P_0$ gives a similar contradiction, the case for κ regular is proved.

Now we are left with the case κ is singular. Then for any $\lambda < \kappa$ there is suitable B_{λ} . $B = \bigcup_{\lambda < \kappa} B_{\lambda}$ is the desired B.

§3. Proof of the main theorem. W.l.o.g. μ_n is an increasing sequence and μ_n is regular. By adding relations R_{φ} for every subformula φ of ψ we get

(i) there is a language $(L_1 + P) \supseteq (L + P)$, $|L_1| \le \lambda$, a (first-order) theory T_1 in $(L_1 + P)$, and a set of types Γ in $(L_1 + P)$, $|\Gamma| \le \lambda$, such that

(A) if (M, P) is an (L + P)-model of ψ , and we define $R_{\varphi} = \{\bar{a} : (M, P) \models \varphi[\bar{a}]\}$, then $(M, \dots, R_{\varphi}, \dots, P)$ (φ runs on subformulas of ψ) is an $(L_1 + P)$ -model of T_1 omitting every type in Γ ;

(B) if (N, P) is an $(L_1 + P)$ -model of $T_1 \cup \{R_{\psi}\}$ $(R_{\psi}$ is a zero-place relation = propositional constant) which omits every type in Γ then $(N, P) \models \psi$.

Now we can add to $(L_1 + P)$ its Skolem functions and get

(ii) there is a language $(L_2 + P) \supseteq (L_1 + P), |L_2| \le \lambda$ and a (first-order) theory $T_2 \supseteq T_1$ in $(L_2 + P)$ with Skolem functions such that every $(L_1 + P)$ -model of T_1 can be expanded to an $(L_2 + P)$ -model of T_2 .

From now on M is the L-model given in the theorem. For $P \subseteq |M|$ such that $(M, P) \models \psi$ let N_P be the corresponding $(L_2 + P)$ -model of T_2 omitting every type in Γ , and if $(M, P) \models \neg \psi$, let $N_P = \emptyset$. We know that $K = \{P : P \subseteq |M|, N_P \neq \emptyset\}$ has cardinality $> \aleph_{\alpha+\beta} = ||M||$. For $\gamma \le \omega$, let I_γ be the set of sequences of ordinals γ of length $\gamma = l(\gamma)$, such that $\eta(n) \le \mu_n$.

Now we define, by induction on $n, A_n \subseteq |M|, P_\eta \subseteq A_n, K_\eta \subseteq K$ for $\eta \in I_n$, and $B(P, \eta, i) \subseteq |M|$ for $P \in K_\eta$, $i < \omega$, such that

- (1) $A_n \subseteq |M|, |A_n| = \mu_n,$
- (2) for $\eta \in I_n$, $P_\eta \subseteq A_n$ such that, for $\eta \neq \tau \in I_n$, $P_\eta \neq P_\tau$,

402

Sh:34

(3) for $\eta \in I_n$, $K_\eta \subseteq \{P : P \in K, P \cap A_n = P_\eta\}$, $|K_\eta| > \aleph_{\alpha+\beta}$ and if $m \le n$ then $K_\eta \subseteq K_{\eta|m} [\eta|m \text{ is } \langle \eta(0), \cdots, \eta(m-1) \rangle]$,

(4) for every $\eta \in I_n$, $P \in K_n$, $i < \omega$, $B(P, \eta, i)$ belongs to F (from Lemma 1) (hence $|B(P, \eta, i)| < \aleph_{\alpha}$) and the Skolem-hull of A_n in N_P , $\text{Hull}(A_n, N_P)$, is included in $\bigcup_{i < \omega} B(P, \eta, i)$,

(5) if $m < n, i < n, P_1, P_2 \in K_\eta, \eta \in I_n$ then

 $B(P_1, \eta | m, i) = B(P_2, \eta | m, i) \text{ and} \\ \operatorname{Hull}(A_m, N_{P_1}) \cap B(P_1, \eta | m, i) = \operatorname{Hull}(A_m, N_{P_2}) \cap B(P_1, \eta | m, i),$

(6) if m + 1 < n, i + 1 < n, $P \in K_{\eta}$, $\eta \in I_n$ then $\operatorname{Hull}(A_m, N_P) \cap B(P, \eta | m, i) \subseteq A_n$,

(7) if $P_1, P_2 \in K_{\eta}, \eta \in I_n, \bar{a}$ a finite sequence from $A_n, \varphi(\bar{x})$ a formula in $(L_2 + P)$ then

(A) $N_{P_1} \models \varphi[\bar{a}] \Leftrightarrow N_{P_2} \models \varphi[\bar{a}],$

(B) for every function symbol $f \in (L_2 + P)$ and $i < \omega$,

$$f^{N_{P_1}}(\bar{a}) \in \mathcal{B}(\mathcal{P}_1, \eta, i) \Leftrightarrow f^{N_{P_2}}(\bar{a}) \in \mathcal{B}(\mathcal{P}_2, \eta, i).$$

For n = 0 there is no problem so suppose we have defined up to n and we want to define for n + 1. Let

 $A_n^* = A_n \cup \bigcup \{ \text{Hull}(A_m, N_P) \cap B(P, \eta | m, i) : i < n, m < n, \eta \in I_n, P \in K_\eta \}$ (this is for satisfying (6)_{n+1}).

By condition (5)_n clearly $|A_n^*| = \mu_n$. By Lemma 2 for each $\eta \in I_n$ there is a set $A_n^* \subseteq |M|, |A_n^*| = \mu_{n+1}$ and distinct sets $P^i \subseteq A_n^*$, for $i \leq \mu_{n+1}$ such that

 $|\{P:P\in K_{\eta}, P\cap A_{\eta}^{*}=P^{i}\}|>\aleph_{\alpha+\beta}$

and $i < j \leq \mu_n \rightarrow P^i \neq P^j$.

Define

$$A_{n+1} = A_n^* \cup \bigcup_{\eta \in I_n} A_\eta^*.$$

Clearly $|A_{n+1}| = \mu_{n+1}$ and conditions $(1)_{n+1}$ -(6)_{n+1} are satisfied. For $\eta \in I_n$, $i \leq \mu_{n+1}$ let

$$K^1_{\eta} \uparrow_{\langle i \rangle} = \{ P \colon P \in K_{\eta}, P \cap A^*_{\eta} = P^i \}.$$

So $|K_{\tau}^{1}| > \aleph_{\alpha+\beta}$ for each $\tau \in I_{n+1}$. Now for each $P \in K_{\tau}^{1}$ ($\tau \in I_{n+1}$) by Lemma 1, we can define $B(P, \tau, i) \in F$ for $i < \omega$ such that $\operatorname{Hull}(A_{n+1}, N_{P}) \subseteq \bigcup_{i < \omega} B(P, \tau, i)$. This will assure us that condition $(4)_{n+1}$ will be satisfied. Now for $\eta \in I_{n+1}$ the number of possible sequences $\{B(P, \eta | m, i) : m \le n, i \le n\}$ for $P \in K_{\eta}$ is $\le |F|^{(n+1)^{2}} = \aleph_{\alpha+\beta} < |K_{\eta}^{1}|$. Hence there is $K_{\eta}^{2} \subseteq K_{\eta}^{1}, |K_{\eta}^{2}| > \aleph_{\alpha+\beta}$ such that for $P_{1}, P_{2} \in K_{\eta}^{2}, i \le n, m \le n, B(P_{1}, \eta | m, i) = B(P_{2}, \eta | m, i)$. This will partly assure $(5)_{n+1}$. Similarly as $|B(P, \eta | m, i)|^{u_{n}} < \aleph_{\alpha}$ [because $B(P, \eta | m, i) \in F$] and $2^{|A_{n}|} < \aleph_{\alpha}$ we can find $K_{\eta} \subseteq K_{\eta}^{2}, |K_{\eta}| > \aleph_{\alpha+\beta}$ so that also $(5)_{n+1}$ and $(7)_{n+1}$ will be satisfied. This completes the inductive definition.

Define $A = \bigcup_{n < \omega} A_n$, and let N be the submodel of M with universe A. Now for each $\eta \in I_{\omega}$ we define an expansion N^{η} of N to an $(L_2 + P)$ -model by the following: If \bar{a} is a sequence from A, $\varphi(\bar{x})$ an atomic formula in $(L_2 + P)$, then $N^{\eta} \models \varphi[\bar{a}]$ iff for every big enough $n < \omega$ and for every $P \in K_{\eta|n}$, $N_P \models \varphi[\bar{a}]$.

Using (4), (5), (6), (7) we can prove inductively that this holds for every $\varphi \in (L_2 + P)$. [Notice that if \bar{a} is from A_n , f a function symbol then, for each

SAHARON SHELAH

 $P \in K_{n|n}$, by (4), there is i = i(P) such that $f^{N_P}(\bar{a}) \in B(P, \eta|n, i)$; and by (7)(B), $i(P) = i_0$ for each $P \in K_P$; hence by (6) for every $P \in K_{n|m}$ $(m \ge i_0 + 2, m \ge n + 2)$, $f^{N_P}(\bar{a}) \in A_m$, and so by (7)(A), there is $b \in A_m$ such that $N_P \models f(\bar{a}) = b$ for every $P \in K_{n|m}$.]

REFERENCES

[1] J. E. BAUMGARTNER, *Results and independence proofs in combinatorial set-theory*, Ph.D. thesis, University of California, Berkeley, 1970.

[2] ——, On the cardinality of dense subsets of linear orderings. I. Notices of the American Mathematical Society, vol. 15 (1968), p. 935. Abstract #68T-E33.

[3] E. W. BETH, On Padoa's method in the theory of definitions, Indagationes Mathematicae, vol. 15 (1953), pp. 330-339.

[4] C. C. CHANG, Some new results in definability, Bulletin of the American Mathematical Society, vol. 70 (1964), pp. 808–813.

[5] H. FRIEDMAN, Back and forth, L(Q), $L_{\infty,\omega}(Q)$ and Beth theorem, mimeograph, Stanford University, November 1971; Israel Journal of Mathematics (to appear).

[6] H. J. KEISLER, Model theory for infinitary logic, North-Holland, Amsterdam, 1971.

[7] D. KUEKER, Definability, automorphisms and infinitary languages, the syntax and semantics of infinitary languages (J. Barwise, Editor), Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1972, pp. 152–165.

[8] K. KUNEN, Implicit definability and infinitary language, this JOURNAL, vol. 33 (1968), pp. 446-451.

[9] M. MAKKAI, A generalization of a theorem of E. W. Beth, Acta Mathematica Academiae Scientiarum Hungaricae, vol. 15 (1964), p. 227.

[10] J. MALITZ, Infinitary analogs of theorems from first order model theory, this JOURNAL, vol. 36 (1971), pp. 216–228.

[11] K. PRIKRY, Changing measurable into accessible cardinals, Dissertationes Mathematicae Rozprawy Matematyczne, No. 68, Warsaw, 1970.

[12] G. E. REYES, Local definability theory, Annals of Mathematical Logic, vol. 1 (1970), pp. 95–137.

[13] S. SHELAH, Generalizations of saturativity, Notices of the American Mathematical Society, vol. 18 (1971), p. 258. Abstract #71T-E2.

[14] ——, The number of nonisomorphic models of an unstable first order theory, Israel Journal of Mathematics, vol. 9 (1971), pp. 473–487.

[15] —, Notes in combinatorial set theory, Israel Journal of Mathematics (to appear).

[16] ——, Remark to "Local definability theory" of Reyes, Annals of Mathematical Logic, vol. 2 (1971), pp. 441–447.

[17] ——, Weak definability for infinitary languages, Notices of the American Mathematical Society, vol. 17 (1970), p. 834. Abstract #70T-E57.

[18] J. SILVER (to appear).

[19] E. LOPEZ-ESCOBAR, An interpolation theory for denumerably long sentences. Fundamenta Mathematicae, vol. 57 (1965), pp. 253–272.

[20] L. SVENONIUS, A theorem on permutations in models, Theoria, vol. 25 (1959), pp. 173–178.

[21] S. SHELAH, Stability, the f.c.p. and superstability, model-theoretic properties of formulas in first order theory, Annals of Mathematical Logic, vol. 3 (1971), pp. 262–271.

[22] D. W. KUEKER, Generalized interpolation and definability, Annals of Mathematical Logic, vol. 1 (1970), pp. 423-468.

PRINCETON UNIVERSITY PRINCETON, NEW JERSEY 08540

HEBREW UNIVERSITY JERUSALEM, ISRAEL

404