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THE JOURNAL OF SymsoLic Loagic
Volume 35, Number 1, March 1970

ON THE CARDINALITY OF ULTRAPRODUCT OF FINITE SETS

SAHARON SHELAH

ABSTRACT. We shall prove that if 2 is an ultrafilter and R, < A = IIn,/2,
A% = A, This affirms a conjecture of Keisler.

Let £ be an ultrafilter on I, n;, i € I, be natural numbers. Keisler in [2, on the
bottom of p. 49] conjectured the following:

CoNJECTURE. If A = IIn,/2 > R, then A% = A,

We shall affirm this.

Let N be standard model of natural number, and let M = N?/2. In N the usual
arithmetical functions are definable. Hence we shall use them freely. It is known
that M, as an ultrapower of N, is elementarily equivalent to it, and M is N;-
saturated (see, for example, [1] or [2]). Let a, b, c be elements of M, and < (<) be
the ordering relation. We define

|6] = |{a: a < b}| = the power of the set {a: a < b}.
m, n will be natural numbers.

It is easily seen that if b = {n;: i € I)/2 then |b| = lIn,/2. So it is sufficient to
show that |b| > X, implies |b|% = |b|. Suppose |b] = A > R,, Ao > A; we shall
get a contradiction, and so prove the conjecture.

It is easy to see that |ab| = |a| |b|. This is because xb + yforx = 0,--+,a — 1;
y=0,:---,b — 1 ranges the elements 0,---,ab — 1, and every element <ab
is obtained exactly once. Hence |a*| = |a|* and if |a| > R, then |a*| = |a|. Let

us define b, for natural numbers n: b, = [V/B], b, 1 = [VB,] ([V*] is the integral
part of V/x)- It is easily seen that b} .1 < byf2, and 50 X, ., <02 < b,,, and also

|ba| = |b] = A. Let C be the set of sequences <{c,: n < w) such that ¢, < b, and
¢ denotes an element of C. It is clear that |C| = II,.,|b,] = A% > X, For every
¢ =<c,:n < wy € C we define

p(©) = {Z Cabn < X < D Cpby + bpim < w}.

nsm nsm

As m; < my, implies
2 cnbn < z cnbn < Z Cnbn + bm2 = Z cnbn + bm;

n=<my n<mg n<mg nsmy
every finite subset of p(¢) is satisfiable in M, and so, as M is X,-saturated, p(¢) is
realized in M by a(¢).
Now a(?) < Zin<oCibn + bo = (co + )by < b < b. Suppose & # &2, & =
{ci:n < w), ¢% = {ci:n < w). There exist m < w such that ¢} = c2 for n < m,
and ¢}, # ¢2 and without loss of generality ¢l > c2. So

a(@) = X ciby = X cibn + hbn = D €3, + (2 + Dby, > a(@?).

nsm n<m n<m

Thus a(¢') # a(c?).
Received May 18, 1969.

83

This content downloaded from 91.229.229.192 on Fri, 13 Jun 2014 19:08:24 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

84 SAHARON SHELAH

We can conclude that
|6] = [{a:a < B} = [{a(@): ce C}| = |C| = X% > A = |}
a contradiction, and so we have proved the conjecture.
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