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Abstract

By an w,-tree we mean a tree of cardinality w; and height o,. An w-tree is called a Kurepa
tree if all its levels are countable and it has more than w, branches. An w,-tree is called
a Jech—Kunen tree if it has x branches for some & strictly between w, and 2°*. A Kurepa tree is
called an essential Kurepa tree if it contains no Jech—Kunen subtrees. A Jech—Kunen tree is
called an essential Jech—Kunen tree if it contains no Kurepa subtrees. In this paper we prove
that (1) it is consistent with CH and 2”* > w, that there exist essential Kurepa trees and there
are no essential Jech—Kunen trees, (2) it is consistent with CH and 2°* > w, plus the existence of
a Kurepa tree with 2t branches that there exist essential Jech—Kunen trees and there are no
essential Kurepa trees. In the second result we require the existence of a Kurepa tree with
2”1 branches in order to avoid triviality.

Introduction

Our trees are always growing downward. We use 7, for the ath level of T and use
Tlofor { Jy<,T;. Forevery teT let ht(t) = a iff t € T,. Let ht(T), the height of T, be
the least ordinal « such that T, = . By a branch of T we mean a totally ordered subset
of T which intersects every nonempty level of 7. For any tree T let m(T) be the set of
all maximal nodes of 7, ie. m(T)={teT: (VseT)s <t — s=1t)}. All trees con-
sidered in this paper have cardinalities less than or equal to w, so that, without loss of
generality, we can assume all those trees are subtrees of (w;*“!, 2), where w ““* is the
set of all functions from some countable ordinals to w,. Hence every tree here has
a unique root @ and if {¢,: new} = Tis a decreasing sequence of T, thent = Unew t,1s
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the only possible greatest lower bound of {t,: n e w}. We are also free to use either <,
or = for the order of a tree T, ie. s <rt if and only if s 2¢.

By an w,-tree we mean tree of height w, and cardinality w,. Notice that our
definition of w,-tree is slightly different from the usual definition by not requiring
every level to be countable. An w-tree 7 is called a Kurepa tree if every level of T is
countable and 7 has more than w, branches. An w,-tree T'is called a Jech— Kunen tree
if T has x branches for some x strictly between o, and 2**. We call a Kurepa tree thick
if it has 2* branches. Obviously, a Kurepa non-Jech-Kunen tree must be thick, and
a Jech—Kunen tree with every level countable is a Kurepa tree.

While Kurepa trees are better studied, Jech—Kunen trees are relatively less popular.
It is Kunen [7,8], who brought Jech-Kunen trees to people’s attention by proving
that: under CH and 2°' > w,, the existence of a compact Hausdorff space with weight
w; and cardinality strictly between w; and 2 is equivalent to the existence of
a Jech—Kunen tree. It is also easy to observe that: under CH and 2°t > w,, the
existence of a (Dedekind) complete dense linear order with density o, and cardinality
strictly between w,; and 2! is also equivalent to the existence of a Jech—Kunen tree.
Above results are interesting because those compact Hausdorff spaces and complete
dense linear orders cannot exist if we replace w; by w, while the existence of
a Jech-Kunen tree is undecidable. In this paper we would like to consider
Jech—Kunen trees only under CH and 2** > w,.

The consistency of a Jech-Kunen tree was given in [2], in which Jech constructed
a generic Kurepa tree with less than 2°* branches in a model of CH and 2“* > w,. By
assuming the consistency of an inaccessible cardinal, Kunen proved the consistency of
nonexistence of Jech—Kunen trees with CH and 2* > w, (see [7, Theorem 4.8]). In
Kunen’s model there are also no Kurepa trees. Kunen proved (see [7, Theorem 4.10])
also that the assumption of an inaccessible cardinal above is necessary. The differences
between Kurepa trees and Jech—Kunen trees in terms of the existence have been
studied in [4-6, 10, 11]. It was proved that the consistency of an inaccessible cardinal
implies (1} it is consistent with CH and 2°* > w, that there exist Kurepa trees but
there are no Jech—Kunen trees [10], (2) it is consistent with CH and 2 > w, that
there exist Jech—-Kunen trees but there are no Kurepa trees [11].

What could we say without the presence of large cardinals? Instead of killing all
Kurepa trees, which needs an inaccessible cardinal, while keeping some Jech-Kunen
trees alive, or killing all Jech—Kunen trees, which needs again an inaccessible cardinal,
while keeping some Kurepa trees alive, we can kill all Kurepa subtrees of
a Jech—Kunen tree or kill all Jech—Kunen subtrees of a Kurepa tree without using
large cardinals. Let’s call a Kurepa tree T essential if T has no Jech—Kunen subtrees,
and call a Jech—Kunen tree T essential if 7 has no Kurepa subtrees. In [4], the first
author proved that it is consistent with CH and 2 > w,, together with Generalized
Martin’s Axiom and the existence of a thick Kurepa tree, that no essential Kurepa
trees and no essential Jech—Kunen trees. We required the presence of thick Kurepa
trees in the model in order to avoid triviality. In [6], the first author proved that it is
consistent with CH and 2”* > w, that there exist both essential Kurepa trees and
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essential Jech—Kunen trees. A weak version of this result was proved in [4] with help
of an inaccessible cardinal. This paper could be considered as a coniinuation of the
research done in [4-6,10,11].

In Sactinn 1 at 1t 1
In Section 1, we prove that it

essential Kurepa trees but there are no essential Jech—Kunen trees. In Section 2, we
prove that it is consistent with CH and 2”* > w, plus the existence of a thick Kurepa
tree that there exist essential Jech—Kunen trees but there are no essential Kurepa
trees. In Section 3, we simplify the proofs of two old results by using the forcing notion
for producing a generic essential Jech—Kunen tree defined in Section 2.

We write ¢ in the ground model for a name of an element ¢ in the forcing extension.
If a is in the ground model, we usually write a itself as a canonical name of a. The rest
of the notation will be consistent with [97 or [3].

1. Yes essential Kurepa trees, no essential Jech-Kunen trees

In this section we are going to construct a model of CH and 2 > w, in which there
exist essential Kurepa trees and there are no essential Jech—Kunen trees. Our strategy
to do this can be described as follows: first, we take a model of CH and 2! > w, plus
GMA (Generalized Martin’s Axiom) as our ground model, so that in the ground
model there are no essential Jech—Kunen trees, then, we add a generic Kurepa tree
which has no Jech—-Kunen subtrees. The hard part is to prove that the forcing adds no
essential Jech—Kunen trees.

Let P be a poset. A subset S of P is called linked if any two elements in S are
compatible in P. A poset P is called w,-linked if P is the union of w, linked subsets of
P. A subset S of P is called centered if every finite subset of S has a lower bound in P.
A poset P is called countably compact if every countable centered subset of P has
a lower bound in P. Now GMA is the following statement:

Suppose P is an w,-linked and countably compact poset. For any x < 2”1, if
2 = {D,: 2 < x} is a collection of k dense subsets of P, then there exists a filter
G of P such that G D, # 0 for all x < .

We choose the form of GMA from [1], where a model of CH and 2”* > w; plus
GMA can be found.

Let / be any index set. We write K, for a poset such that p is a condition in I, iff
p =(A4,,1,) where 4, is a countable subtree of (w;”, 2) of height , + | and [, is
a function from a countable subset of I into (A,),,, the top level of 4,. For any p,
g €K,, define p < ¢ iff

(DA ta, +1 =4,

(2) dom(I,) = dom(l,),

(3) (V& edom(I)(L,(¢) < (¢)).

It is easy to see that [K; is countably closed (or w,-closed). If CH holds, then I, is
w;-linked. Let M be a model of CH and K; € M. Suppose that G is a K;-generic filter
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over M and let T = UPGGAI,. Then in M[G], the tree T is an w,-tree with every
level countable and T has exactly |I] branches. Furthermore, if for every i el let

B(i) = [ J{I,(i): p €G and i edom(l,)},

then B(i) # B(i') for any i,i’ €l and i # i’, and { B(i): i €I} is the set of all branches of
T; in M[G]. Hence if |I| > w,, then T; will be Kurepa tree with |I| branches in
M[G]. K; is the poset used in [2] for creating a generic Kurepa tree. All those facts
above can also be found in [2] or [12].

For convenience we sometimes view [, as an iterated forcing notion

K, = Fn(INI', T¢,, wy),

for any I' = I, where G, is a K -generic filter over the ground model and
Fn{I\I', T, w1), in M[G], is the set of all functions from some countable subset of
INI' to T, with the order defined by letting p < q iff dom(q) S dom(p) and for any
iedom(q), p(i) < q(i). The poset Fn(J, T;, w,) 1s in fact the countable support
product of | J|-copies of T;;. We say two posets [P and @ are forcing equivalent if there
is a poset R such that R can be densely embedded into both P and Q. The posets
iK; and K * Fn(I\T', T, , w,) are forcing equivalent because the map

F: KIHKI'*Fn(I\I/’ TG, ,(1)1)
such that for every p e K,
F(p) = ((Ap, 1, 1I'), I, 1 I\T')

is a dense embedding.

Lemma 1 (Kunen). Let M be a model of CH. Suppose that A > w, is a cardinal in
M and K, € M. Suppose G, is a [K;-generic filter over M and Tg;, = U,,Eg)_ A,. Then in
M[G,] the tree Tg, is a Kurepa tree with J. branches and Tg, has no subtrees with
x branches for any k strictly between w, and i.

Proof. Assume that T is a subtree of T, with more than w,; branches in M[G;]. We
want to show that 7"has A branches in M[G,]. Since | T| = w, and K, has w,-c.c., then
there exists a subset I = / in M with cardinality < w, such that Te M[G;], where

G,={peG:dom(l,) = I}.

Notice that T, = T§, (in fact Ty = Tg ). Since in M[G,] the tree T, has only |/|
branches, then the tree T can have at most w, branches in M[G,]. Let B be a branch
of T in M[G,] which is not in M[G,]. Since | B| = w,, there exists a subset J of A\I
with cardinality < w, such that Be M[G,][H,], where H,isa Fn(J, Tg,, w,)-generic
filter over M[G;]. Now 4\ can be partitioned into A-many subsets of cardinality w,
and for every subset J' = A\(I u J) of cardinality w, the poset B, = Fn(J, Tg,, w) is
isomorphic to the poset P, = Fn(J', Tg,, w) through an obvious isomorphism = in-
duced by a bijection between J and J'. Let B be a P,-name for B. Then n.(B) is
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a P;-name for a new branch of 7. Forcing with P, x P, will create two different
branches B},J and (n,,(B))H‘,,. Hence forcing with Fn(Z\1, Tg, , w,) will produce at least
7 new branches of 7. ]

Next lemma is a simple fact which will be used later.

Lemma 2. Suppose P is an w,-closed poset of cardinality w, (hence CH must hold).
Then the tree (w{ ", 2) can be densely embedded into P.

Proof Folklore. O

Lemma 3. Let M be a model of CH and 2°' > w, plus GMA and let
P = (wr*', 2D eM. Suppose G is a P-generic filter over M. Then in M[G] every
Jech—Kunen tree has a Kurepa subtree.

Proof. Let T be a Jech—Kunen tree M[G] with § branches for w, < § < 4 = 2”1
Without loss of generality we can assume that there is a regular cardinal x such that
w; < k < ¢ and for every t € T there are at least k branches of T passing through r in
M[G]. Again in M[G] let f:k+— %(T) be a one to one function such that for every
teT and for every « < x there exists an f§ e k\a such that ¢ €f (). Without loss of
generality let us assume that

1p I (T is a Jech—-Kunen tree and fix>B(T)
is a one to one function such that (Yre T)(Vxex)(IB ex\x)(t ef(B))).

We want now to construct a poset R in M such that a filter H of R obtained by
applying GMA in M will give us a P-name for a Kurepa subtree of 7in M[G].

Let r be a condition of R iff r = (1,, P,, o7,, &%,) where I, is a countable subtree of
(™, 2), P, =<pl:tel,), o, =(Al:tel,) and &, = {S: t€l,) such that

(1) P, = P and for every t €1, the element A} is a nonempty countable subtree of
(o™, D) of height o] + 1 (we will use some A;’s to generate a Kurepa subtree of T)
and S} is a nonempty countable subset of ,

(2) (Vs,tel,)(s St « p; < pp) (this implies that s and t are incompatible iff p; and
p: are incompatible for all s, t €1, because P is a tree),

Q) (Vs,tel)(s =t — A[Thi(A47) = AY),

4) (Vs,tel)(sst - S;< Sy),

(5) (Yrel)(pi F A7 = T),

(6) (Yt el,)(VaeSi)(Tae(A]), )(pi I aef(2).

The order of R: for any r, ¥ eR, let r < v iff I, = I, and for every tel,

Pl =pl, A = A, and S; =S

Claim 3.1. The poset R is w,-linked.



Sh:498

112 R. Jin, S. Shelah | Annals of Pure and Applied Logic 69 (1994) 107-131

Proof of Claim 3.1. Let r, ¥ €R such that I, = I,., P, = P,. and &/, = /. Then the
condition r” € R such that

I.=1,, P, =P,, oA =of, and &, =(STuS' :tel.>

is a common lower bound of both r and . Since there are only w, different
{I,,P,, o >’s and for each fixed {{, , P, , o, the set

{i' ER: (Irs prv <g[r> = <Iru’ Proa 4‘-1/;'0>}

is linked, then R is the union of w, linked subsets of R. [
Claim 3.2. The poset R is countably compact.

Proof of Claim 3.2. Suppose that R’ is a countable centered subset of R. Notice that
for any finite Ry =< R and for any t e ﬂ{l,: reRo} all pi’s are same and all A} are
same for r e Ry because R, has a common lower bound in R. We now want to
construct a condition 7 € R such that 7 is a common lower bound of R'. Let

1) 1= Uyes

(2) P.= (pi: tel;> where p; = p| for some r e R’ such that te1,,

(3) of = (Al: tel,)> where A} = A] for some r € R’ such that te1,,

@) F=<(Si:tely where S{ = J,_,S;and S, = { J{S: (reR)(sel,)}.

Notice that form the argument above all p{’s, A;’s and S}’s are well-defined. We need
to show 7 eR. It is obvious that 7 is a common lower bound of all elements in R’ if
FelR.

It is easy to see that 7 satisfies (1), (2), (3), (4) and (5) in the definition of a condition in
R. Let’s check (6).

Suppose t €I; and x € S{. We want to show that there exists an a e(A;')I,; such that
pi Ik aef(a). Let reR’ be such that rel,, let ¥ e R’ and s €I, be such that s = ¢ and
o eS%. Since r and ¢’ are compatible, then there exists an r” € R such that #” < r and
r” < r. By the facts that

pi=pi=p, Ai=A=A, S cScs

and r" € R we have now that there exists an a €(A4]),; such that p; I+ a eflx. O

Next we are going to apply GMA in M to the poset R to construct a P-name for
a Kurepa subtree in M[G].
For each t ew ! define

D, ={reR:rel}.
For each p e P define
E,={reR:(3tel)p;<p)}.
For each o« < w, define

F,={reR: (Vsel,)3tel,)(s <t and ht(4]) > ).
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For each x < k define

O0,={reR:(¥Vsel,)3tel)s<tand [a k)N S #0)}.
Claim 3.3. All those D,, E,, F, and O,’s are dense in R.

Proof of Claim 3.3. Let r, be an arbitrary element in R.
We show first that for every r e w " the set D, is dense in R, i.e. there is an r e D,
such that » < ry. It’'s done if t €1,,. Let’s assume that t¢l,,. Let
to={J{sels=t}.
Case 1: to€l,,. Find a sequence {p,: 1, S s = ¢} in P such that p,, = pj2 and
(Vs,sWtp & 5SSt py<py).
The sequence {p;: 1o S s  t} exists because P is w,-closed. Let
L=L,ulsitocsct}.
For any sel,, if sel,,, then let
pe=ps°, Ag= AP and Sg=SP.
Otherwise let
D5 = Dss AL = A7 and S;=Sp.

It is easy to see that reD, and r < ry.
Case 2: toél,,, ic. I, has no least element which is above t.
Let

L= u{sito=sct}.
Again by w,-closedness we can find
{pitoSsctjcP
such that p,, is a lower bound of
{pe:s=stoand sel,,}
and
(Vs, W tp S sS5 St pe<py).
Let
Ay = {Ar:s€e]

ro

and s < 14}
and let

S, =U{Sw: sel, and s < 15}
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If the height of A, is a successor ordinal, then let 4,, = A, . If the height of A;, is
a limit ordinal, then we have to add one more level to 4; . For any f €S, let s’ = ¢,
and s" € I,, be such that f € SP?. Then for any s eI, such that s’ < s < 1, there exists an
as,p € (A%),» such that pi° Ik a, g ef(B). Now let

ap=\J{a,ps =s<t,and sel,}
and let
A=A, u{ag BeS,}.

It is easy to see that
(1) the height of A,, is a successor ordinal.
(2) for every s < ¢, the tree A,, is an end-extension of A%, i.c.

Ag, [ ht(AP) = AP,

(3) for every f8 €85, there exists an aj in the top level of 4, such that p,, I+ a4 ef(p).
Now for every sel,, if rel,,, then let

pi=py, Ai=AP and S;=Sp.
Otherwise let
pg:psa A;= Ato and S;: Sto-

It is easy to sce that reD, and r < rq.

We show now that for every p € P the set E, is dense in R. We want to find anreE,
such that r < ry. If there exists an t €, such that pj° < p, then rp € E,,.
Let us assume that for every t €I,, pj°£ p. Let

to=J{tel,: p<pi°}.

Case 1: toel,,. Lett' = 1,0, i.e. ¢ is a successor of ty. It is clear that t'¢l,,. Let
I, =1,u{t'}. Foreverytel,, if t = ¢, then let

pi=p, Ai=Ayg and S§7=S}.
Otherwise let
p: = p° Ay= A and Si=SpP.

Then we have reE, and r < ro.

Case 2: to¢l,,. Let I, = I, U {t,}. We construct S,,, 4;, and then 4,, exactly same
as we did in the proof of Case 2 about the denseness of the set D,. For every t e 1,, if
t = to, then let

pi=p, Ai=A4, and S =S§,.
Otherwise let

pr = pi°, At = Aj° and S7=Sp.
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Now reE, and r < ro. Notice also that E, is open, i.e.
(Vp. p" €P)p < p'np €E, > p€E,).

We show next that for every a € w, the set F, is dense in R. We need to find anr e F,
such that r < r.

Let I, 2 I,, be such that 1, is a countable subtree of wy “*, I,\1,, is an antichain and
foreverys el, thereisat e [,\I,, suchthats < t. Forevery t eI\ I, let p, e P be such
that p, < pi° for every sel,, and s = ¢, let

Si=1J{S®:sel,,and s =t}
and let
A;=|J{AP:sel, and s = t}.
If ht(A;) is a successor ordinal, then let 4, = A;. Otherwise let
A = Aju {ag: peSt)
where
ag=|J{aed; p Faef(B)}.

Since S} is countable and P is w,-closed, then there exists a pj < p, such that for every
B €8] there exists an a € w% such that p} IF a ef(p). Let

A= Ao laeo ABeS)pi Facf(P)).

Then ht(A}) = « is a successor ordinal and for every f§ € S} there exists an a in the top
level of A} such that p! I a ef(B). For every t eI,\I,, we have already defined p?,
Af and S}. If t €1, , then let

pi=p, Ai=AP and S7=Sp.

Hence r € F, and r < ry.

We show next the O, for every a < x is dense in R, i, finding an r € 0, such that
r<ry.

By imitating the proof of the denseness of F, we can find an ' < ry such that I\ 1,
is an antichain and for every s € I, there exists an t € I,/\I,, such that s < t. For every
tel A1, fix a f which is an successor of t (for example ¥ = 1°(0}). Let

I=1vu{ttel\1L,,}.
For every t €1, let
pi=pi, A=4" and S§/=18}.

For every T with t € I,\I,, we want to construct p;, A7 and S}. If there isa § € S} which
is greater than «, then let p! be any proper extension of p}, let A7 = A} and let St = S .
Otherwise, first, pick an a in the top level of A7, then choose a fex\xand a p < p/
such that p IF a ef(f). This can be done because

1p F (Ve eT)(Va ex)3B ex\a)(t €f(B))



Sh:498

116 R. Jin, S. Shelah | Annals of Pure and Applied Logic 69 (1994) 107—-131

Is true in M. Now let
pi=p, A;=A] and S;=S]uU{p}.
It is easy to see that r €0, and r < ry. [

By applying GMA in M we can find an R-filter Hsuchthat HAD, #0HA~F, #0
and HNE,n 0, # 0 for each r ew{ ", each x ew,, each peP and each « ex.
Since D, is dense for every t e ", then

Iy={l,:reHd} = w7
Let

Py=J{P,: reH}
and let

Ay =\J{, reH}.

Notice that for any r, ¥ € H and for any tel, n1,. we have p! = p’ and A} = A"
because r and r' are compatible. So now for every t € I'; we can define p, = p; for some
r € H and define A, = A} for some r € H. It is clear that the map t—p, is an isomor-
phism between I; and Py, i.e. for any s, t € Iy we have s < 1 iff p, < p,. It is also clear
that the map t— A4, is a homomorphism from Iy to o7y, i.e. for any s, t € I; we have
s < t implies A, [ ht(A4,) = A,.

Claim 3.4. For each t €Iy the set {p .. 7 €w,} is a maximal antichain below p, in P.

Proof of Claim 3.4. Let y and v be two ordinals in @,. Since Iy = w{ and H is
a filter, there exists an r € H such that ¢"(y), £'(y’> €l,. Hence pl-.., and pl..., are
incompatible. So {p.(.,: y €w,} is an antichain.

Suppose that p e and p < p, such that p is incompatible with any of p,.,’s. Let
reH n E,. Then there is an s <l, such that p, = p; < p. Since p,e Py, then p, < p,
implies t < s. Hence there exists an y ew; such that t"(y> = s. This means that
Ps < Pe¢y» 1€. p and p,, are compatible, a contradiction. [J

We now work in M[G]. Since G is a P-generic filter over M, then Py G is
a linearly ordered subset of Py. Let T; = | J{A,: p, € G}.

Claim 3.5. T; is a Kurepa subtree of T in M[G].

Proof of Claim 3.5. Since for every p, € G we have p,+ A, < T, itis clear that T, = T
in M[G]. For any p,, p,eG we have p, < p, implies s <t which implies
A, T ht(A,) = A,. Hence T is an end-extension of A4, for every p, € G. This implies that
every level of Ty is a level of some A,, hence is countable.

We want to show now that Ty has at least x branches. Suppose | #(7;)| < k. Then
there exists an a € k such that for every §§ € k\ « the function value f(f) is not a branch
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of T;. So there is a p € Py and there is an x ex such that
p b (YBex\a)(f(P) is not a branch of Tg).

On the other hand, since H " E,n O, # 0, then there exists an re HN 0, N E,. In
M let s €1, be such that p, < p and there is a f € S such that § > o. Then for every
tely,s <t there is an t' € Iy, t < t’, such that

pe I+ aef(ph)

for some a €(A, ), 4,,- This shows that
ps Ik f(B) is a branch of T¢,

which contradicts p; < p and

p b (VB ex\a)(f(B) is not a branch of T).
Hence T; has at least x branches in M[G]. O

Now we conclude that M[G]FT has a Kurepa subtree 7, which proves
Lemma 3. [J

Theorem 4. It is consistent with CH and 2°' > w, that there exist essential Kurepa
trees and there are no essential Jech—Kunen trees.

Proof. Let M be a model of CH and 2“' = 1 > w, plus GMA. Let [, € M. Suppose
G, is a [€;-generic filter over M. We are going to show that M[G,] is a model of CH
and 2°' > w, in which there exist essential Kurepa trees and there are no essential
Jech—Kunen trees.

It is easy to see that M[ G, ] satisfies CH and 2“! > w,. Lemma 1 implies that there
exist essential Kurepa trees. We need only to show that in M[G;] there are no
essential Jech—Kunen trees.

Assume T is a Jech—-Kunen tree in M[G;]. We need to show that T has a Kurepa
subtree M[G,]. Since | T| = w,, then there is an I < A of cardinality @, in M such that
TeM[G,], where

G, ={peG,:dom(l,) = I}.
We claim that
B(T)~M[G,] < M[G,].

If the claim is true, then T is a Jech-Kunen tree in M[G;]. Suppose that
BeZ(T)n(M[G,;]\M[G,]). Then there is a J < A\l such that Be M[G,][H,]
where H; is a Fn(J, Tg,, w,)-generic filter over M[G,]. Let B be a Fn(J, TG, wy)-
name for B. For any J' = J\({ v J) such that |J’| = |J] there is an isomorphism 7 from
Fn(J, Tg,, »,) to Fn(J', Tg,, o) induced by a bijection between J and J'. Since in
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M[G,], the branches ( B)H and (7, (B))H are different, then 7 has at least A branches.
This contradicts that Tis a Jech— T(nnpn tree. Let T have § branches in MTG; 1. Since
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I, has cardinality w,; and is w;-closed, then it contains a dense subset which is
isomorphic to P = (w*, 2} in M. Hence there is a P-generic filter G over M such
that M[G] = M[G/]. By Lemma 3, the tree T has a Kurepa subtree in M[G].
Obviously, the Kurepa subtree is still a Kurepa subtree in M[G,], so T is not an
essential Jech-Kunen tree in M[G;]. [

2. Yes essential Jech—Kunen trees, no essential Kurepa trees

In this section we will construct a model of CH and 2! > w, plus the existence of
a thick Kurepa tree, in which there are essential Jech—Kunen trees and there are no
essential Kurepa trees. The arguments in this section are a sort of “symmetric” to the
arguments in the last section.

We first take a model M of CH and 2“* = 4 > w, plus a thick Kurepa tree, where
AS* = 4 in M, as our ground model. We then extend M to a model M[G] of CH and
29t = ] > w, plus GMA by a A-stage iterated forcing (see [1] for the model and
forcing). It has been proved in [4] that in M[G] there are neither essential
Jech—Kunen trees nor essential Kurepa trees. Instead of taking a model of GMA as
our ground model as we did in Section 1, we consider this A-stage iterated forcing as
a part of our construction because it will be needed later (see also [4], Theorem5]).
Next we force with an w,-closed poset Js , in M[G] to create a generic essential
Jech—Kunen tree, where S is a stationary—costationary subset of w;. Again, the hard
part is to prove that forcing with Js , over M [ G] will not create any essential Kurepa
trees.

Recall that for T, a tree, m(T) denotes the set

{teT:(VseT)s<rt > s=1)}.

Let I be any index set and let S be a subset of w,. We define a poset Jg ; such that p is
a condition in Jg ; iff p = (A4, [,) where

(1) A, is a countable subtree of wy®!,

(2) 1, is a function from some countable subset of I to m(A4,).
For any p, g € Jg [ define p < ¢ iff

(1) 4, < A

(2) forevery t € A,\ A, either there is an s e m(A,) such that s < r or that « < ht(A4,)
and « €S is a limit ordinal imply

a# | J{ht(s): s€eA, and s = t}.

(3) dom(ly) & dom(l,) and (V& € dom(I))(I,(x) € ().

Lemma 5 (CH). Js ; is wy-closed and w-linked.
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Proof. We show first that Jg ; is w;-linked. For any p, g elJs ;. if A, = A,, then the
condition (A,, [, ,) is a common extension of p and q. Because there are only w,
different countable subtrees of wi !, it is clear that Jg ; is the union of @, linked sets.

We now show that Jg ; is w,-closed. Let {p,: new} be a decreasing sequence in
Js.i. Let A=,.,A,, and let D =}, ., dom(l,). For each i e D let

iy = J{l,,(): new and i edom(l,)} .
Define a condition p € Jg ; such that

A,=Au{l(i):ieD} and I,=1

r

We claim that p is a lower bound of the sequence { p,: n € w}. It suffices to show that
for any n and for any t € 4,\\ A, either there exists an s em(A4,, ) such that s < t or that
a < ht(Ap,) and x €S is a limit ordinal imply

a # | J{ht(s): s€A,, and s S t}.

If 1 € A, then there is an k > nsuch that t € 4, . Hence either there is an s em(A,, ) such
that s © ¢ or that o < ht(4,,) and «€ S is a limit ordinal imply

a # | J{ht(s): seA,, and s St}
because p, < p,. If t =1(i) for some ieD, then, by assuming {/, :new) is not
eventually constant, there is a k > n and there isa ' € A, \ 4, such that 1" = t. Hence
either there is an s em(A4,,) such that s = ¢’ < ¢ or that a < ht(A4,,) and o €S is a limit
ordinal imply

x % J{ht(s):seA, and s '}

because p; < p,. [

Remark. Again, we may consider the poset Jg; as a two-step iterated forcing
Js. = Fn(INI', T, ,), where I’ is a subset of I, T, = \J{A4,: peG,} for a generic
filter G, of Js ;- and Fn(I\I', T¢,, w,) is a countable support product of | I\ I'|-copies
of Ty, . The map

p = (Apa Ip)H((AP’ lp rI,)’ Ip TI\I’)

is a dense embedding from Jg ; to Jg ;- * Fn(I\I', T, w4).

We now define S-completeness of a tree T. Let o be a limit ordinal and let T'be a tree
with ht(T) = a. Let S be a subset of «. Then T is called S-complete if for every limit
ordinal €S and every Be%(T|f) the union | /B T}, ie. every strictly decreasing
sequence of 7 has a greatest lower bound b in T if ht(b)eS.

Lemma 6. Let M be a model of CH and let Jg ; € M where S < w, and [ is an index set
in M. Suppose G is a Js -generic filter over M. Then the tree Tg =], A, is
(w1 \S)-complete in M{G].

peG
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Proof. Let o ew;\S be a limit ordina‘ and let B be a branch of T; [ a. We need to show
thatt = UB € T;. The set Bis in M because Jg ; is w,-closed and B is countable. Let

po € G be such that B < A4,,. It is clear that
po IF B< Tg.

Let
Dy={pels;p<poandt=|JBed,}

Then Dy is dense below p, because for any p < p, the element p’ = (A4, U {{ B}, [} is
a condition in Jg ; and p’ < p (here we use the fact that « e w,\S). Since p, € G, then
thereisa pe G Dg. Hence t = | JBeT;. O

Lemma 7. Let M be a model of CH. In M let U be a stationary subset of w,, let T be an
w;-tree which is U-complete and let I be any index set. Let K € M be any w,-tree such
that every level of K is countable. Suppose P = Fn(I, T, w,) e M and G is a P-generic
filter over M. Then

BK)A"M[G] < M,

i.e. the forcing adds no new branches of K.

Proof. Suppose that Bis a branch of K in M [ G]\ M. Without loss of generality, let us
assume that

lp F Be(B(K)\M).
By a standard argument (see [9, p. 259]) the statements

(VpeP)(Vaecw )(Itew)Ap < p)p' I+ teB)
and
(VpeP)Vaew,)(Vtea?)(p I teB) > (VB ew,\a)(Iy €w,;\fp)

(A ew)(to # t,)(Ap; < p)(p; I+ t;€B))

for j=0,1, are true in M.

Let’s work in M. Let 0 be a large enough cardinal and let N be a countable
elementary submodel of (H(6), €) such that K, P, BeN. Let § = N nw, €U (such
N exists because U is stationary). In M we choose an increasing sequence of ordinals
{,: new} such that | ), 6, = 3. Again in M we construct a set

{p:5e2=?} PN
and a set

{ts;s€2°*} = KnN
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such that

(1) (V5,8 €2 s s e py < ps oty < 1),

(2) (Vs €2°°)(p, IF t,€B),

(3) helty) > 8,

(@) (Vi edom(p))(hi(p,(i)) = 3,),
where |s| means the length of the finite sequence s.

Let py = 1p and let ty = @, the root of K. Assume that we have found {p,: s€2 <"}
and {t,: s €2<"} which satisfy (1), (2), (3) and (4) relative to 2 <", Pick any s € 2". Since
the sentence

(YpeP)Vaecw,)(Vtewi)(pFteB > (VBew \a)(Ty ew,;\f)(3t; e w})
(to # 11)3p; < p)(p; I+ tjEB))

for j =0, 1, is true in M, then it is true in N. Since p,, t;€ N, then in N there exist
p° p' < p, and there exist (°. ' e w, (° # t', for some y €\J,y+, such that

p’ Ik t'eB
for j = 0, 1. Again in N we can extend p° and p' to p,~, and p,;, respectively so that
(Viedom(py ) ht(py ;5 (i) = S+ 1)

for j = 0, 1. Since T is U-complete and for every [ €2, for every i € U
have

dom(p;,,) we

new

(U {ht(p;.(i): new and i edom(p;y,)} = €U,

then the condition p, such that dom(p,) = | ),.,dom(p;;,) and

nEW

pr(i) = J{ps1ali): n €w and i edom(p;)}

for every i edom(p;) is a lower bound of {p;,: new} in P. Here we use the fact that
T is U-complete so that pe(i)eT for every iedom(p;). Let t; = Unewt”,,. Then
ht(t;) = 6. Since

pr Ikt €B
for every n e w, then
pr F t;eBnK,.
It is easy to see that if f, f" € 2¢ are different, then ¢, and ¢, are different. Hence K is

uncountable, a contradiction. [

Lemma 8. Let M be a model of CH and 2° = 1 > w, and let Js,, €M where x is
a cardinal in M such that w, < k < A and S is a stationary subset of w,. Suppose that
pec Ap is an essential
Jech—Kunen tree with x branches.
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Proof. It is easy to see that 7 is an w, tree. We will divide the lemma into two claims.

Claim 8.1. For every ¢ ex let

B(&) = J{l,(¢): peG and & edom(l,)}.
Then

B(Tg) = {B(¢): Sk}

and for any two different ¢ and &' in k the branches B() and B(E') are different.

Proof of Claim 8.1. Since in M, for every ¢ ek and for every o ew; the set
D;: ,={peds: Eedom(l,) and ht(l(&)) > o}

is dense in Js ., then B(&) is a branch of T;. For any two different {, {’ e x the set
Dy ={peds,: & & edom(l,) and [,(&) #1,(¢)}

is also dense in Jg . So the branches B(¢£) and B(&') are different.
We now want to show that all branches of T; in M[ G] are exactly those B(&)’s.
Suppose that in M[G] the tree T; has a branch B which is not in the set

[B(&): Eex}.
Without loss of generality, let us assume that
Ly, b Be(B(T)\{B(&): Eex}).

Work in M. Let 6 be a large enough cardinal and let N be an elementary submodel
of (H(6), €) such that «, S, B, # = {B(¢): £ex}, Js, €N and if peN nJ,,, then
dom(l,) € N.Let 6 = N nw, €S. In M we choose an increasing sequence of countable
ordinals {J,: n e w} such that 6 = [, _,,0. We now want to find a decreasing sequence
{pr:new} € J; .~ N such that p, =1, and for each new

(1) (V& edom(l,, ) (At €4, )par1 F teBEONB),

(2) (Ate A, . \A,)(ht(t) = ht(A,)and p,,.; - teB,

(3) hi(Ay,) > Oy,

Assume we have found {py, py,...,p.}. We now work in N. Let

dom(l,) = {&: kew)
which is an enumeration in N. Choose g, = p, = g, = --- such that for every ke w,
there is a t € 4, such that

g I+ teB(&)\B.
Assume, in N, that we have found {qy, gy, ..., g, }. Since the sentence

ax b (3t € Te)(t € BEEJ\B)
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is true in N (because it is true in H(#) and &, e N), then there isa t ewT®* NN = 5%
and there 1s a ¢’ < ¢, such that
g Ik (teT;and t e B(&,)\B).
Since
g+ A, = T;,

then there is a g,y < ¢q' such that ted, . Since N F“Jg, is w,-closed” and
{gi: k ew} is constructed in N, then there is a geJg , in N such that ¢ is a lower
bound of {g,: kew,}. Let o = max{ht(A4,), d,+,}. Notice that « € because p, € N.
Since in N

q I+ Bis a branch of Tg,
then
q b (3t €(Tehr 1)t €B).

Hence there is a § < g and there is a t e " ! n N such that

gk teB.

We can also assume that t € 4.

We now go back to M and let p,., = 4. This finishes the construction of
{pa: new}.

Let p € Js,, be such that

dom(l,) = | ) dom(l,),

new

for every & edom(l,)

(&) = as = {J{1,,(&): new and & edom(l,)}
and

A, =(J 4,,) U {as: Eedom(l,)}.

new

By the construction of p,’s we have
(J{ht(t):teA,and p - teB} = d€S.

Pick any teA,. If t # a; for any £ edom(l,), then we can find a y ew, such that
t(y>¢A,. Extend t*(y)> to Few]. Define p such that

A, =A,u{utcuci}

and I, = 1. If t = a, for some £ edom({l,), then simply extend t to b, cw? (if ht{a;) = 3,
then b; = a,). Define p such that

A= A,u{utcuc b}
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and
lp = (T dom(I)\{E})) v {(E b))

It is easy to see that p < p and ht(A4;) = d + 1. Let
a=\J{ted; plrteB}.

It is also easy to see that for any g < p the element a is not in 4,. Here we use the fact
0 €8, 0 is a limit ordinal and ht(A;) > 6. Hence

p Ik Bn TGgBmA,;.
This contradicts that
p I+ Bis a branch of T;. [

Claim 8.2. T has no Kurepa subtree in M[ G].

Proof of Claim 8.2. Suppose that T; has a Kurepa subtree K in M[G]. Since
|K| = w,, then there is an I < k such that |I| < w, and K e M[G,], where

G, ={peG:dom(l))=I}.

Notice that G; is a J; ,-generic filter over M. Since Js , is forcing equivalent to
Js.rx Fn(xc\1, T, w,) and Tg, is (w;\S)-complete in M[G,] (notice that S is still
stationary—costationary), then by Lemma 7, the set of all branches of K in M[G,] is
same as the set of all branches of K in M[G]. Hence K is a Kurepa tree in M G;]. But
by Claim 8.1, the tree T¢ = T, has only |{]| branches in M[G;] and K is a subtree of
T;. Hence K has at most @, branches in M[ G,]. This contradicts that K is a Kurepa
tree in M[G,]. O

Lemma 9. Let M be a model of CH and 2°' =) > w, with A"* = /). In M let
(P,: o < 4),(Q,: o < A)) be a I-stage iterated forcing notion used in [ 1] for a model of
GMA. Suppose that G, is a P,-generic filter over M. In M[G,] let P = (w1 ®*, 2) and
let H be a P-generic filter over M[G,]. Then in M[G,][H] there are no essential
Kurepa trees.

Proof. For any « < / the poset P, can be factored to P,*P* and G; can also be
written as G, * G* such that G, is a [P,-generic filter over M and G* is a P*-generic filter
over M[G,]. Suppose T'is a Kurepa tree in M[ G, ][ H] with 4 branches. Without loss
of generality, let’s assume that for every ¢ € T there are exactly 4 branches of T passing
through ¢t in M[G,][H]. In M[G,][H] let f: w,+—> Z(T) be a one to one function
such that for every t € T and for every o < w, there exists a f € w,\a such that t ef ().
Notice that w, here can be replaced by any regular cardinal « satisfying w, < k < 4.
Without loss of generality, let us assume that

1 I (Tis a Kurepa tree andf:wzHQ(T')

is a one to one function such that (V¢ e T)(Va e w,)(3 € w, \o)(t ef(ﬁ))).
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We want now to construct a poset R’ in M[G,] such that a filter G of R’ obtained
by applying a forcing argument similar to GMA in M[G,] will give us a P-name for
a Jech—Kunen subtree of 7in M[G,]{H].

Let » be a condition in R’ iff r = (I,, P,, o#,, &,) where I, is a countable subtree of
(we, 2), P, ={pi:tel,), o, =<A,:tel,> and &, = {S};: t €1, such that

(1) P, = P, and for every t €1, the element A} is a nonempty countable subtree of

(', ) of height of + 1 (we will use some A7’s to generate a Jech—-Kunen subtree of

T) and S! is a nonempty countable subset of @, (the requirement “S; < w,” makes R’
different from R defined in Lemma 3),

(2) (Vs,tel)(s =t o p; < po)

(3) (Vs,tel)s=t — AfTht(4A5) = A)),

(@) (Vs,tel (st » S <8,

(5) (Veel)(p Ik A7 < T),

(6) (Vtel,)(VxeS)(3ae(AD )P} IF aef ().

Foranyr, relR, let r </ iff I, < I,, and for every tel,

pi=pi, A=A and S =S
Claim 9.1. The poset R’ is w,-linked.
Proof of Claim 9.1. Same as the proof of Claim 3.1. [
Claim 9.2. The poset R’ is countably compact.
Proof of Claim 9.2. Same as the proof of Claim 3.2. [

For each t ewT " define
D, ={reR:tel}.

For each p e P define
E,={reR:Qtel)(p < p)}.

For each « < w, define
F,={reR:(Vsel,)3tel,)(ht(A]) > a)}.

For each « < w, define

0,={reR:(¥sel,)3tel, s = tand [, w;) " S; #0)}.
Claim 9.3. All those D,, E,, F, and O,’s are dense in R,

Proof of Claim 9.3. Same as the proof of Claim 3.3. [
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Note that [R’| = w,. Note also that M[G,;][H] = M[H][G,]. By the construction
of P, there exists an < 4 such that those dense sets D,, E,,, F, and O, are in M[G,],
the tree Tis in M[G,][H] or T'is in M[G,] and

Iy, F Qp=FR,

i.e. R is the poset used in fSth step forcing in the A-stage iteration.
Let U; be a Qg-generic filter over M[Gg] such that Gy« Uy = Gy
Since D, is dense for every t ew; “1, then

Iy, = J{I,:rels} = of®r.
Let

Py, = (J{P,: reUs}
and let

oy, = J{, reUs}.

Notice that for any r, ' € Up and for any t €1, n I, we have p; = p; and A] = A}
because r and r” are compatible. So now for every t € Iy, we can define p, = p} for some
reUs and define A4, = Af for some reUg. It is clear that the map t—p, is an
isomorphism between I, and Py, ie. for any s, t € Iy, we have s = ¢ iff p, < p;. It is
also clear that the map t+— 4, is a homomorphism from Iy to &/, i.e. for any s, t € I,
we have s =t implies A4, [ ht(4,) = A,.

Claim 9.4. For eacht €Iy, the set {p,-.,,: y €w,} is a maximal antichain below p, in P.
Proof of Claim 9.4. Same as the proof of Claim 34. O

The next claim is something different from Lemma 3. Let T4 = U{A,: p.eH}
where H is the P-generic filter over M[G,].

Claim 9.5. Ty is a Jech—Kunen subtree of T in M[G,;][H].

Proof of Claim 9.5. By the proof of Claim 3.5, it is easy to see that Ty is a subtree of
T with more than w; branches. It suffices to show that T has exactly w, branches.

Suppose that Ty has more than w, branches. Then there is a branch B in
M{G;][H] which is not in the range of the function f. Without loss of generality, let
us assume that

Ip F (Vaew,)(B # f()
where B is a P-name for B and let

Dy={reR:(Vsel,)3tel,)(s < t and ht(B A A7) < ht(A})}.
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Since M[G,1[H] = M[G;][H][G*] and P* is w,-closed in M[G;][H], then B is in
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Kurepa tree 7. We assume also that the P-name B is in M[Gg]. Hence the set Dy is in
MTIG.1 Let

SL~pa

Es= {piePy;: reDsyn Uy and p; Fht(B n A]) < ht(A])}.
Subclaim 9.5.1. Dy is dense in R'.

Proof of Claim 9.5.1. Let r, be any element in R'. It suffices to show that there is an
element r in Dy such that r < r,. Let’s first extend r to #' such that for every sel,,
there i is a tem(l,)such that s < t. Let t e m(I,-). For every a € 8¢ let a, € (A} Jay' such
that p} IF a, €f(x). Since we have

Py (Que T)uef(e)\B)

and P is o;-closed, then there is a u, = a, in w; 1 for every x €S} and a p, < p} such
that for every a e S

p, I+ u ef(a)\B.

Without loss of generality, we can assume that there is a y € w; such that ht(u,) = 7
and

p. Ik B differs from all f(o) below y
for every a €87 . Let
I, =1, U {F fis a successor of ¢ for t e m(I,)}.
For every t € 1, let
pi=pf, A=A and S/=3857.
For every fel, \I, let
pi=np, A=A U{s:s<u,forsome aeS;'} and S;=3S.

Now it is casy to see that r < rpand reDyz. O
Subclaim 9.5.2. Ej; is dense in Py,.

Proof of Subclaim 9.5.2. Let p, € Py,. We need to show that there is a p € Py, such that
p < poand pe Ey.

Since p, € Py, , then there is an r € Uy such that p, = pg. Since Dy is dense and r € Uy,
then there is an r’ < r such that ' € Uy n Dj. Since pf = p; and r’ € Dy, then there is
a t €l, such that s = t and

Pl Ik ht(B A AY) < ht(A]).
Hence we have p!’' < pi = po and p{ e Eg. O
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We prove Claim 9.5 now. Assume B be a branch of T and B is not in the range of f.
We want to show that Bis not a branch of Ty;. Suppose Bis a branch of Ty, Then there

LAY N0 A0l 4 Dlial vppUet Do g DIall

is a p € H such that
p I+ BeB(Ty).

Since Ej is dense in P, then we can find a p} € E; such that p} < p. Hence we derived
a contradiction because we have

P I+ Be®(Ty),

Pk (Ty)lop +1=4]
and

Pi b ht(B n A}) < ht(A)).

Hence in M[G,][ H] the tree Ty has w, branches because #(Ty) = f"w, (the range
of f). O

By Claim 9.5 there are no essential Kurepa trees in M[G,;][H]. This proves
Lemma 9. [J

Theorem 10. It is consistent with CH and 2°* > w, plus the existence of a thick Kurepa
tree that there exist essential Jech—Kunen trees and there are no essential Kurepa trees.

Proof. Let M be a model of CH and 2°t = A > w, such that in M, 1<% = A and there
is a thick Kurepa tree. Such model exists by Lemma 1. In M let

(P o0 < A),(Qy: 2 < )

be the A-stage iterated forcing notion used in [1] for a model of GMA. Suppose G; is
a [P,-generic filter over M. Then

M[G,] F CH + 2 = 4 > w, + GMA.

In M[G;] let k be a cardinal such that w, <k <1 and let S be a station-
ary—costationary subset of w;. Suppose that H is a Js ,-generic filter over M[G,].
Then by Lemma 8, the tree Ty = | J{A,: pe H} is an essential Jech-Kunen tree in
M G,][H]. It is obvious that the thick Kurepa trees in M are still thick Kurepa trees
in M[G,;][H]. We need only to show that there are no essential Kurepa trees in
M[G,;][H]

Suppose that K is an essential Kurepa tree in M[G,][H]. Since |K| = w;, then
there exists an I < x such that |I}| = v, and Ke M[G;][H,], where

H;=Hnlsg;={peH:dom(l,) = I}.
Since Jg, . is forcing equivalent to

Js, 1% Fn(x\I, Ty, 01))
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and by Lemma 6, the tree T}, is (@ \ §)-complete, then by Lemma 7, there are no new
branches of K in M[G,;][ H] which are notin M G,][H,]. So K is still a Kurepa tree
in M[G,][H;]. But the poset Jg, is w,-closed and has cardinality ;. So by
Lemma 2, the poset Jg ; is forcing equivalent to (wy®*, 2). Hence by Lemma 9, the
Kurepa tree K has a Jech—Kunen subtree K’ in M[ G, ][ H,]. Since every branch of K’
is a branch of K and the set of branches of K stays the same in M[G,][H,]and in
M G;][H], then K’ is still a Jech—Kunen subtree of K in M[G,][H]. This contra-

dicts that K is an essential Kurepa tree in M[G;][H]. O

Remark. It is quite easy to build a model of CH and 2“* > w, in which there exist
essential Jech—Kunen trees and there are no essential Kurepa tree without requiring
the existence of a thick Kurepa tree. Let M be a model of GCH. First, increase 2°! to
w3 by an w-closed Cohen forcing. Then, force with the poset Js ,,,. In the resulting
model CH and 2°* = w, hold and there is an essential Jech—Kunen tree. It can be
shown easily that there are no thick Kurepa trees in the resulting model. Hence it is
trivially true that there are no essential Kurepa trees in that model.

3. New proofs of two old results

In [10], we proved that, assuming the consistency of an inaccessible cardinal, it is
consistent with CH and 2“* > w, that there exist Jech—Kunen trees and there are no
Kurepa trees. The model for that is constructed by taking Kunen’s model for
non-existence of Jech—-Kunen trees as our ground model and then forcing with
a countable support product of w, copies of a “carefully pruned” tree T, The way that
the tree T is pruned guarantees that (1) the forcing is w-distributive, (2) forcing does
not add any Kurepa trees, (3) 7 becomes a Jech—Kunen tree in the resulting model. In
[6], this pruning technique was also used to construct a model of CH and 2°* > w, in
which there exist essential Kurepa trees and there exist essential Jech-~Kunen trees.
Here we realize that the Jech—Kunen tree obtained by forcing with that carefully
pruned tree in [10] and [6] can be replaced by a generic Jech—Kunen tree obtained by
forcing with Jg ., the poset defined in Section 2. So now we can reprove those two
results in [10] and [6] without going through a long and tedious construction of
a “carefully pruned” tree.

Let Lo(x, w;), the countable support Lévy collapsing order, denote a poset defined
by letting p € Lok, w,) iff p is a function from some countable subset of k¥ x w, to
k such that p(¢, n) e ¢ for every (¢, n) edom(p) and ordered by reverse inclusion.

Let Fn(4, 2, ), the countable support Cohen forcing, denote a poset defined by
letting p € Fn(2, 2, w,) iff p is a function from some countable subset of 4 to 2 and
ordered by reverse inclusion.

Theorem 11. Let x and i be two cardinals in a model M such that x is strongly
inaccessible and A > « is reqular in M. Let S € M be a stationary—costationary subset of
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wy and let Jg . € M be the poset defined in Section 2. Let Lv(x, w,) and Fn(4, 2, w,) be
in M. Suppose that G x H x Fis a(Lv(k, w1) X Fn(4, 2, ) x 35, )-generic filter over M.
Then M[G][H][F] F (CH + 2°* > w, + there exist Jech—Kunen trees + there are
no Kurepa trees).

Proof. It is easy to see that
M[G][H][F] F (CH 4+ 2" =1 >k = w,).

It is also easy to see that @, and all cardinals greater than or equal to k in M are
preserved. By Lemma 8, the tree 7 = | J,.p 4, is a Jech-Kunen tree. We now need
only to show that there are no Kurepa trees in M[G][H][F]. Suppose that K is
a Kurepa tree in M[G][H][F]. Since |K| = w;, then there exists an I < x with
[I] = wy such that K € M[G][H][F;] where F; = F nJs ; (recall that the poset
Js, 1s forcing equivalent to Jg ;*Fn(x\I, T¢,, w;)). By Lemma 7, the tree K is still
a Kurepa tree in M[G][H][F,]. Since the poset Js ; is w;-closed and has cardinality
wy, then by Lemma 2, Jg , is forcing equivalent to Fn(w,, 2, w,). By a standard
argument we know that Fn(Z, 2, w;) x Fn(wy, 2, w,) is isomorphic to Fn(4, 2, w,).
Hence there is a Fn(/, 2, w,)-generic filter H' over M[G] such that M[G][H][F,]
= M[G][H']. But it is easy to see that in M[G][H'] there are neither Kurepa trees
nor Jech—-Kunen trees. So we have a contradiction that K is a Kurepa tree in
M[G][H]. O

Theorem 12. Let M be a model of GCH. Let x and A be two regular cardinals in M such
that 4 > 1 > w; and let S be a stationary subset of w, in M. In M let I; and Js, , be two
posets defined in Sections 1 and 2, respectively. Suppose that Gx H is a I{; xJg -
generic filter over M. Then

M[GxH] F (CH+2"=A>k >w,
+ there exist essential Kurepa trees

+ there exist essential Jech—Kunen trees).

Proof. It is easy to see that M[G x H] is a model of CH and 2°* = 1 > k > w,. Since
IK; and Js . are w;-closed, then K, is absolute with respect to M and M[H], and
Jg. . is absolute with respect to M and M[G]. By Lemma 8, the tree 7y = UpecA,, is
an essential Jech—-Kunen tree in M[G][H]. By Lemma 1, the tree 7T = U A,isan
essential Kurepa tree because M[G][H] = M[H][G]. [

peG
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